
ISBN 978-82-326-5987-6 (printed ver.)
ISBN 978-82-326-6899-1 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:234

Magnus Karsten Oplenskedal

Realizing Context-Aware
Services through Intelligent
Mobile Data AnalysisD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2022:234
M

agnus Karsten O
plenskedal

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Trondheim, January 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Magnus Karsten Oplenskedal

Realizing Context-Aware
Services through Intelligent
Mobile Data Analysis

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Magnus Karsten Oplenskedal

ISBN 978-82-326-5987-6 (printed ver.)
ISBN 978-82-326-6899-1 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:234

Printed by NTNU Grafisk senter

Realizing Context-Aware Services

through Intelligent Mobile Data Analysis

Thesis submitted for the degree of Philosophiae Doctor
Department of Information Security and Communication Technology

Norwegian University of Science and Technology, 2022

Applicant: Magnus Oplenskedal
Supervisors: Peter Herrmann and Amir Taherkordi

Abstract

In recent years there has been a rapid development of mobile technologies,
Internet of Things (IoT) and cellular network infrastructures. In combina-
tion with the fast evolution of data analysis, and particularly within ma-
chine learning, this has led to new unprecedented opportunities for building
smart environments. Central to smart environments lie context-aware sys-
tems. These systems sense the users environment, analyse the sensed data
to deduce new insights and, from this, provide content, experiences, help and
suggestions to the users. Accessing and providing such services have never
been easier, since more than 6.5 billion people in the world own smartphones,
a platform prime for supporting context-aware services.

A topical form of context-aware services, when using smartphones as sens-
ing equipment, are so-called location-aware services. Their particular char-
acteristic is the utilization of the user’s location to provide useful suggestions
related to their surroundings. Location-aware services, in particular, ser-
vices used in retail (shopping) and public transport, are the main focus of
this thesis. That are two domains, people generally interact with on a daily
basis.

In retail and shopping, so-called mobile recommender systems (MRS)
are used to perform recommendations such as points of interest or products
in the user’s proximity. Crucial to these services are the accurate real-time
locations of both, the user and the products they suggest. The location of the
user can be provided using a real-time location system (RTLS) tracking the
user’s smartphone. However, an accurate, efficient solution to the location
of the product is not as readily available.

In public transport on the other hand, the detection of the mobile context
of vehicles and their passengers is key to realize intelligent transportation
systems (ITS). A topical example of this is the in-vehicle presence of a pas-
senger, essential for context-aware services such as automated-ticketing. In
order for these systems to work, the accuracy of the solution needs to be
incredibly high, something, the state-of-the-art solutions available today still
lack.

To support these next-generation location-aware services, advanced con-
text reasoning techniques, i.e., algorithms extracting useful information from
the data sensed from the user’s environment, are of utmost importance. Ma-
chine learning algorithms form a very promising category of such context-
reasoning techniques. In consequence, most of the work done in this Ph.D.
project centers on them. Particularly, machine learning technology is used in
this thesis to address challenges regarding context-aware services within the
above mentioned fields retail and public transport. Altogether, we provided
the following four contributions:

The first contribution introduced in this thesis, is an automatic product
localisation algorithm. The product locator proposed in this thesis infers the
location of the products in a store by accumulating the locations at which
customers stop when picking up products as well as the list of purchased
products. A simulation-based environment shows that 99.9% out of 8, 000
products in a typical large Norwegian grocery store can be correctly located
by aggregating data from customers over a 12-day period.

The second contribution presented in this thesis is DeepMatch, a highly
accurate in-vehicle presence detection algorithm.

The approach is utilizing the smartphone of a passenger to analyze and
match the sensor event streams of the device against the streams of sensors
embedded in an on-board reference unit installed in public transportation
vehicles. The matching is facilitated by a new deep learning model employed
in a distributed fashion, where the feature extraction and dimensionality
reduction is offloaded to the smartphones and the reference unit, while the
matching is performed on a remote server. The approach achieved an in-
vehicle prediction accuracy of 0.9781 on a dataset consisting of real data
gathered by volunteers.

The third contribution builds on the second one. It consists of the method
DeepMatch2, the successor of Deepmatch, that increases its accuracy from
0.9781 to 0.9851. In addition, the algorithm improves its efficiency, effec-
tively reducing the amount of data needed by the model by a factor of four.
Furthermore, we propose a travelling user inference system based on Deep-
Match2 with the ability to infer if and for which period of time a passenger
makes a trip in a public transport vehicle with a very low error rate.

The fourth contribution of this thesis is Ataraxis, a solution to hardware-
less in-vehicle presence prediction. Through the collaboration with Public
Transportation Authorities, we learned that some PTAs do not have the
control to decide autonomously about the hardware that is installed in the
vehicles they use. Therefore, the hardware-based solution proposed in Deep-
Match and DeepMatch2, i.e., the installation of additional hardware in the
vehicles, is not always suitable. Ataraxis addresses this challenge. A deep

convolutional neural network to detect the transport mode of users from the
sensor events generated by ordinary smartphones was developed. The user
mode is used in combination with a GPS trace of the user and nearby public
transport vehicles in order to infer the in-vehicle presence of the user. The
deep learning model created for Ataraxis achieved an F1 Score of 98.69%
when classifying the four user modes driving a car, riding a bike walking and
using public transport.

To summarize, in this thesis, we contribute applied research through sev-
eral learning algorithms, system designs, and software solutions in order to
enhance and improve the intelligence and quality of location-based context-
aware services within retail and public transport. Furthermore, we show
through extensive empirical experiments that the proposed approaches can
be used in practice without negatively impacting the users smartphones. It
answered the main research objective as well as provided several business
critical patents to the industrial partner.

Preface

This dissertation is submitted in fulfillment of the requirements for the degree
of Philosophiae Doctor (PhD) at the Norwegian University of Science and
Technology (NTNU). The presented work was carried out at the Department
of Information Security and Communication Technology (IIK), Trondheim,
conducted under the supervision of Professor Peter Herrmann and Associate
Professor Amirhosein Taherkordi. The thesis was supported by the Nor-
wegian Research Council within the Industrial Ph.D. scheme under Grant
276259 (MobiTrack project) and was done in a close collaboration between
the industrial partner of the project, Forkbeard Techonologies1 and the aca-
demic partner NTNU.

1https://www.forkbeardtech.com/

Acknowledgements

First of all, with a deep sense of gratitude, I thank my supervisor Profes-
sor Peter Herrmann, for the opportunity to pursue a PhD career under his
supervision. Throughout the last six years, during both my masters degree
and this PhD, Peter has been a great source of inspiration and a pillar to
rely on. His ability to quickly attain new knowledge, to tackle any challenge
head on and his dedicated support and guidance has helped me through any
difficulties during my work on this thesis.

I am also extremely grateful to my co-supervisor, associate professor Amir
Taherkordi. Amir was responsible for arranging this PhD and with his sharp
and clever mind, his expertise in the topics covered by this PhD and rock solid
understanding of the academic world made this journey a pleasure. With his
unlimited ability to support when needed, he went above and beyond any
expectations one could have for their co-supervisor.

I would also like to thank all my colleagues at IIK, especially Mona for
being the omniscient being of administrative tasks at the faculty and to
Mister Ergys for making my days at the university a pleasure and for being
a sparring partner with me late at night when practicing for exams.

Additionally I would like to express my thanks towards colleagues at
Forkbeard Technologies, especially Wilfred for his expertise and technical
assistance and for making this thesis become reality, and to Endre for making
my days at the office a pleasure through insightful discussions and interesting
coffee talks.

I cannot even begin to express my thanks to my partner Marte, who have
been nothing but patient and supportive to me throughout all these years,
this journey would not have been possible without her.

I would also like to give my most profound thanks to my family for their
never ending support and belief in me.

Finally, I would like to dedicate this work to my late mother. She was
the main driving force behind my academic interests and career, and always
believed that nothing was impossible as long as I gave it a shot.

Contents

I Thesis Summary 1

1 Introduction 2
1.1 Motivation and Research Questions 2

1.1.1 Primary Research Objective 3
1.1.2 Retail Stores . 3
1.1.3 Public Transport . 5

1.2 Research Methodology . 7
1.3 Thesis Structure . 9

2 Background 10
2.1 Context-Aware Computing . 10

2.1.1 Context-Aware Service 10
2.2 Location-Aware Computing 13

2.2.1 Location-Sensing Technologies 13
2.2.2 Location-Aware Applications 15

2.3 Context Reasoning . 17
2.3.1 Context Reasoning Techniques 17

2.4 Learning-Based Reasoning . 20
2.4.1 Unsupervised Learning 22
2.4.2 Supervised Learning 22

2.5 Artificial Neural Networks . 27
2.5.1 The Neuron . 27
2.5.2 A Network of Neurons 28
2.5.3 Network Layer Types 29
2.5.4 Network Architectures 33
2.5.5 Conclusion and Discussion 36

3 Related Work 38
3.1 Mobile Recommender Systems in Retail 38
3.2 In-Vehicle Presence Detection 40

CONTENTS

4 Results 44
4.1 Summary of the Papers . 44
4.2 Complementary Aspects . 52

5 Conclusions and Future Work 54
5.1 Conclusions . 54
5.2 Future Work . 56

II Papers 68

1 Automated Product Localization ThroughMobile Data Anal-
ysis 69

2 DeepMatch: Deep Matching for In-Vehicle Presence Detec-
tion in Transportation 90

3 DeepMatch2: A Comprehensive Deep Learning-based Ap-
proach for In-Vehicle Presence Detection 119

4 Ataraxis: A Deep Learning Approach for Hardwareless In-
Vehicle Presence Detection 164

List of Figures

1.1 The regulative cycle . 8

2.1 Context-Aware Computing . 11
2.2 Example Context-Aware Application; Shopping Assistance . . 14
2.3 Linear Regression . 23
2.4 Linear vs. Polynomial Regression 24
2.5 Support Vector Machine . 26
2.6 Simplified Decision Tree for classifying animals 27
2.7 Simple artificial neuron . 28
2.8 Artificial Neural Network (ANN) with fully connected layers . 28
2.9 Convolutional Layer . 30
2.10 Recurrent Neuron(left), unrolled through time (right) 32
2.11 one-to-one(a), many-to-one(b), one-to-many(c) and many-to-

many(d) . 33
2.12 An simple Stacked Autoencoder 34
2.13 A simple Siamese Neural Network 36

4.1 The relationship between the domains, research questions(RQs),
thesis contributions(TCs) and the papers. 45

4.2 The scope of the Product Locator: from processing customer
input data to potential applications (Paper 1) 46

4.3 A sample scenario presenting DeepMatch(2) (Paper 2 and 3) . 48
4.4 Overview of the DeepMatch(2) distributed framework 49
4.5 The different user modes Ataraxis is capable of recognizing . . 51

List of Tables

2.1 Components of Context-Aware Systems 11
2.2 Rule-Based Context Reasoning 18

Acronyms

AE Autoencoder

ANN Artificial Neural Networks

BDS BeiDou Navigation Satellite Systems

BiBo Be-In/Be-Out

BLE Bluetooth Low Energy

CAE Convolutional Autoencoder

CARS Context-Aware Recommender System

CNN Convolutional Neural Network

DNN Dense Neural Network

DTW Dynamic Time Warping

GPS Global Positioning System

HAR Human Activity Recognition

HMM Hidden Markov Models

IoT Internet of Things

ITS Intelligent Transportation Systems

MEMS Micro-Electronics-Mechanical Systems

ML Machine Learning

MRS Mobile Recommender Systems

NLP Natural Language Processing

Acronyms

PTA Public Transportation Authorities

RFID Radio Frequency Identification

RNN Recurrent Neural Network

RSS Received Signal Strength

RTLS Real-Time Location System

SNN Siamese Neural Network

SVM Support Vector Machines

TMD Transportation Mode Detection

Part I

Thesis Summary

1

Chapter 1

Introduction

1.1 Motivation and Research Questions

Today, the convergence of research and development within mobile technolo-
gies, IoT, cellular network infrastrcutures and advanced data analyses tools
sets the stage for new and improved context-aware services.

These services collect data from the users environment, i.e., context, and
use it to anticipate the users requirements in order to offer enriched, context-
aware and usable content/functions and experiences. They can be found on
a wide variety of platforms, such as on desktop, mobile, web and through
IoT based applications. Moreover, development and research of such services
is receiving intensive attentions in a plethora of domains such as healthcare,
retail, transportation, vacation related service and so on. Context aware
services are often categorized by their main source of information, and type of
assistance/recommendation they provide. Prominent examples of categories
are social-based, shopping-based, and location-based applications.

In this work, we focus on the last one, i.e., location-based context-aware
services. The application domains of our research is mainly within Retail and
Public Transportation. This is a result of close ties between the industrial
partner and relevant organisations and corporations within these domains.
When working on context-aware services, access to relevant data and in-
sights into the domains where they are used, is of the utmost importance.
Additionally, as we will show throughout this work, existing context-aware
services in these domains are lacking, and, the potential for useful services
and interesting research within them is high.

One key source of information used by location-based services is the real-
time location of the user (i.e., the real-time location of the user’s smart
phone). Until recently, the adoption of this approach in indoor scenarios

2

1.1. MOTIVATION AND RESEARCH QUESTIONS 3

has been hampered by the lack of an accurate indoor positioning system
for smartphones. Now such systems are developed making it possible to
track the location of a phone with centimeter level precision. This allows
us to engineer new types of context-aware systems, which was previously
unattainable. One of these new in door real-time location systems has been
created by Forkbeard Technologies. It realizes this much coveted level of
accuracy using a low cost infrastructure and full backwards compatibility
with billions of smartphone devices running iOS or Android.

In parallel to the development of better sensing equipment, improving
the acquisition of the contextual information of the user, there has been
an almost revolutionary improvement in the field of context reasoning, i.e.,
in the analysis of the contextual data. A prominent embodiment of this
is the current, expansive research and development of learning algorithms,
specifically within the field of Artificial Neural Networks.

1.1.1 Primary Research Objective

Considering the motivations elaborated above, the following primary scien-
tific research objective was proposed:

To conduct applied research and develop design concepts, software frame-
works, and algorithms to utilize the real-time position, and sensor data from
smartphones in order to improve the intelligence and quality of context-aware
services that are directly or indirectly location-dependent.

In order to tackle this research objective, within the two domains men-
tioned above Retail and Public Transportation, six research questions were
posed.

In the following, these research questions will be presented and the back-
ground for each question will be discussed.

1.1.2 Retail Stores

Through a thorough related work study, and close collaborations with in-
dustry stakeholders, we discovered that the field of Mobile Recommender
Systems was worth investigating. Mobile recommender systems are a type of
context-aware systems which use the location of the user in order to provide
it with suggestions such as product recommendations. Moreover, two impor-
tant inputs for these systems are the real-time locations of the user and the
location of the products in the stores. While the first input can be provided

1.1. MOTIVATION AND RESEARCH QUESTIONS 4

by Real-Time Location Systems (RTLS), the second, i.e., the location of the
products, are not readily available.

With this in mind, the first two research questions of this thesis are
formed:

RQ1: Can the data captured by an RTLS of customers moving through
stores, together with their shopping receipt, be used to infer the location of
the products?

There are typically two categories of solutions proposed to this prob-
lem: The first is to attach tags transmitting some signal to the products
and receiver technology througout the store in order to track their exact
position [73]. However, this approach is not feasible for e.g., grocery stores
with a vast amount of products, including several product categories, such
as vegetables and fruit, that are often unlabeled. The solutions in the second
category suggest registering and updating the position of the products man-
ually [18, 104]. However, this requires a lot of human effort, and especially
in cases that products are regularly relocated.

Thus, in order to support Mobile Recommender Systems, an automated,
reliable, efficient way to localize the products in the store is needed. Given
that a store is equipped with a RTLS for localizing customers and a cashier
system, providing an overview over the products purchased by each individual
customer, we wanted to find out if the data generated by these systems
could be used as a source of contextual information in order to infer the
location of the products. To answer this, it was necessary to research ways
of finding correlations between where the customers moved, what products
they purchased, and the location of these products.

RQ2: How can a product localization algorithm quickly update its knowl-
edge after a product it has already located is moved?

When accumulating large amounts of data from customers in order to
localize the products in the store, it might become biased towards established
products located at an established location, e.g., if the first 800 customers
found a product p in location x, the algorithm should establish the location of
the product to be in location x. However, if the product is moved, it should
not afford data from more than 800 customers to update the location of
the product. The product localization algorithm needs to have some inbuilt
trade-off mechanism in order to correctly localize a product from accumulated
data, but at the same time be able to overcome the bias, this accumulation
might entail.

1.1. MOTIVATION AND RESEARCH QUESTIONS 5

1.1.3 Public Transport

A key feature of modern public transportation systems is the accurate de-
tection of the mobile context of transport vehicles and their passengers. A
prominent example is automatic in-vehicle presence detection which allows,
e.g., passenger flow analysis, dynamic vehicle allocation and automated tick-
eting of passengers. Most existing in-vehicle presence solutions are based on
either using active RFID or Bluetooth Low Energy (BLE) technology respec-
tively, or mobile data analysis. Unfortunately, the spatial and/or temporal
accuracy of these systems are too low to be usable in practice.

These existing systems do not utilize that today most passengers use
smartphones equipped with various types of sensors and high processing
power. This potential of the smartphones for in-vehicle presence detection
has not yet been thoroughly investigated, and has been central to the work
presented in this thesis.

To provide the next-generation of context-aware services within pub-
lic transport, a solution to highly accurate in-vehicle presence detection is
needed. To this end, the following four research questions are posed:

RQ3: Can the sensors of modern smartphones be used to provide a highly
accurate in-vehicle presence detection system?

As mentioned above, early approaches use communication technologies
such as RFID and BLE to perform in-vehicle presence detection [36, 37, 47].
However, these approaches yield a too low accuracy to be used in practice.
Other approaches, such as the ones proposed in [100] and [39], utilize sensor
events from smartphones to infer in-vehicle presence. Even though these
approaches promise a better accuracy than the ones based on communication
technologies, they are still too low to be used in practice. For more details
on the related work, see Section 3.2.

Hence, we posed the question on how sensor data generated by smart-
phones can be utilized in order to provide a sufficiently high in-vehicle pres-
ence detection accuracy.

RQ4: How can a highly accurate in-vehicle presence detection algorithm
be built whilst at the same time minimize the resource demands of the al-
gorithm on the user’s smartphone (e.g., computation, battery consumption,
data transmission)?

In the process of answering RQ3, it is important to keep the potential
trade-off between power consumption, computational overhead and accuracy
in mind. For instance, an approach providing a high in-vehicle presence
detection accuracy, while at the same time draining the smartphones battery
or requiring all the computational capabilities of the users smartphone, will
most likely not be accepted by the smartphone user. Context-aware services

1.1. MOTIVATION AND RESEARCH QUESTIONS 6

are often expected to be running over extended periods in the background
on users smartphones and thus it is very important that the context-aware
service is not interfering with other applications. Furthermore, as described
by the authors of [44], smartphone embedded sensors are found to be highly
power hungry, i.e., they are a major source of battery power consumption.

It is therefore of the utmost importance to research and perform empirical
studies on the minimal number of sensors needed, the optimal awake time and
collection frequency of these sensors and to find a suitable trade-off between
off-loading communicating to other devices, while at the same time making
sure the communication is not hurting more than helping.

RQ5: How can a highly accurate in-vehicle presence detection algorithm
be used to infer the time period over which a passenger is traveling in a
vehicle?

When using in-vehicle presence detection to provide, e.g., automated tick-
eting, it is important for the algorithm to infer the duration of the passenger’s
trip to be flexible. For instance, one passenger might take a trip lasting 50
seconds, while another traveler spends 2 hours in the vehicle. In general, an
in-vehicle presence detection algorithm will typically require some minimum
amount of data in order to be accurate, e.g., 10 seconds of sensor data. Then,
if the duration of a passenger’s trip is 10 minutes, the algorithm can carry out
60 independent in-vehicle predictions. Even with an in-vehicle presence de-
tection accuracy of 98%, the likelihood that all these predictions are correct
is only around 30%. Thus, an algorithm is needed, that can infer passenger
trips with varying lengths from sequences of in-vehicle presence predictions
with a high degree of precision. This algorithm should be able to tolerate
occasional matching errors.

RQ6: How can the issue of in-vehicle presence detection be solved without
requiring the installation of additional hardware in the vehicles of the Public
Transportation Authorities?

Most state-of-the art approaches to in-vehicle presence detection rely on
installing hardware such as BLE-transmitters [79], RFID receivers [36,37] or
comparing features extracted from smartphone sensor data against the corre-
sponding features extracted from a reference unit installed in the vehicle [62].

However, in some cases, it might not be feasible to install such hardware in
the vehicles. Conversations with various Public Transportation Authorities
(PTA) revealed that some PTAs, whilst providing services such as ticketing
passengers, are not in control of the hardware-installations in the operated
vehicles. Additionally, a solution not requiring the installation of hardware
can potentially improve the maintainability and scalability of the service.

Solutions to this problem are often based on so-called Transportation
Mode Detection (TMD) techniques. In TMD the goal is to recognize the

1.2. RESEARCH METHODOLOGY 7

type of transportation mode performed by the carrier of the smartphone,
often including modes such as Walking, Riding a bike, driving a car and
riding in a bus, train or tram. Early approaches to this problem were solved
by using the GPS or wireless network [87, 105]. However, the accuracy of
these approaches were generally to low, 70% to 85% [26,105], and the power
consumption too high. Later approaches using sensor-based transportation
mode detection were shown to be more reliable and energy-efficient [21, 38,
55,75]. However, these sensor-based approaches with an high accuracy tend
to either impose unacceptably high power consumption and computational
overhead, or require very long sequences of data.

These insights have motivated us to conduct research on ways of provid-
ing in-vehicle detection, using sensors and computational capabilities of the
smartphones carried by the passengers, whilst still providing the necessary
accuracy as stated in RQ3, and not making the approach impracticable to
be used in practice as stated in RQ4.

1.2 Research Methodology

In this section, the research methodology used as an inspiration for the work
in this Ph.D. thesis is described. The methodology follows the six steps of
Design Science Research described by Peffers, Ken, et al. in [69]:

1. Identification of the research problem,

2. Definition of research objective,

3. Design and development of artefacts,

4. Demonstration by solving problems using the artefacts,

5. Evaluation of the demonstrations,

6. Communication of the problem, artefacts and their ability to solve
the problem.

As described in Section 1.1, this thesis was conducted as a joint project be-
tween the industrial partner Forkbeard Technologies, and the research part-
ner NTNU. Thus, the work in this project was started by the identification
and definition of the main goals of both stakeholders. These goals were
condensed into the primary scientific objective described in 1.1. Further-
more, through brainstorming and discussions with the project stakeholders,
and through a thorough study of related works, the research questions in

1.2. RESEARCH METHODOLOGY 8

Figure 1.1: The regulative cycle

Section 1.1 were identified. Throughout the project, the regulative cycle,
described in [99], has been roughly followed. The circle typically starts by
investigating a practical problem, which can itself be the result of solving a
previous practical problem. Thereafter, a solution is designed for the prob-
lem, followed by an evaluation of this design by, e.g., developing and testing a
proof-of-concept. Based on the evaluation results, the design is implemented
and can thereafter trigger a new round through the regulative cycle.

In the first step, the problem investigation, the research object posed in
Section 1.1 was investigated and decomposed into six research questions.
These questions were analyzed and prioritized together with the projects
stakeholders. From this prioritized list, the solution design was performed
through the design and development of solutions and artifacts such as the-
oretical models, algorithms, and software design models. In the validation
phase, various validation strategies were used depending on the problem,
questions, the goals of the stakeholders and the availability of real data.
However, the main concern of the evaluations was always to answer whether
the suggested solutions would bring the stakeholders closer to their goals. For
evaluation, frameworks such as the Python frameworks, Tensorflow, Keras,
Pandas and Numpy as well as proprietary simulation and analysis tools were
used. After a complete turn of the regulative cycle, the knowledge gained
from the evaluations and the input from the stakeholders were used to start
a new iteration of the cycle.

Furthermore, throughout this work, the design solutions, their implemen-
tations and evaluation results were communicated through paper and journal
submissions and finally presented in this thesis.

1.3. THESIS STRUCTURE 9

1.3 Thesis Structure

This thesis was conducted as a collection of papers in line with NTNU’s reg-
ulations for the doctoral degree. The thesis is organized in two main parts:

Part 1 presents a summary of the thesis, consisting of the following chapters:

• Chapter 1 Introduction: Establishing the motivation for the work in
this thesis, the proposed research questions, and the applied research
methodology.

• Chapter 2 Background: Giving the theoretical background for under-
standing the research done and contributions provided by this thesis.

• Chapter 3 Related Work: Presenting the state-of-the art literature and
works related to the research objective, research questions and contri-
butions of this thesis.

• Chapter 4 Results and Implications: Presenting the paper contributions
of this thesis and concluding the thesis with a discussion on the results
followed by suggestions for future work.

Part 2 consists of the four papers published throughout this work, repre-
senting the contributions of this thesis.

Chapter 2

Background

In this chapter, the theoretical background for the work in this thesis is pre-
sented. The chapter starts with a short introduction to context-aware com-
puting, followed by a thorough description of location-based context-aware
services. Thereafter, context reasoning techniques are presented, and in par-
ticular learning-based strategies are discussed in detail. Finally, the chapter
is concluded with a presentation of relevant related works together with a
discussion of identified, open challenges related to the research questions
presented in Chapter 1.

2.1 Context-Aware Computing

Today, context-aware computing can be found nearly everywhere. It is used
in innumerable situations by desktop, web, and mobile applications, by IoT-
based applications, in autonomous driving systems etc. In general, the goal of
context-aware computing is to discover useful facts about the user’s current
environment without distracting or interacting with them. Then, based on
these facts, the service should improve the users situation by, e.g., providing
guidance, recommendations, or helpful suggestions.

Other terms commonly used to describe this type of computing are ubiq-
uitous or pervasive computing, invisible computing, proactive computing,
ambient intelligence, and sentient computing [59].

2.1.1 Context-Aware Service

An application using context-aware computing is generally referenced to as a
context-aware service. In [59], Loke defines a context-aware service to consist
of the three components sensing, thinking and acting, see Table 2.1. In

10

2.1. CONTEXT-AWARE COMPUTING 11

Table 2.1: Components of Context-Aware Systems

Component Example

Sensing

Weather Sensors

Motion Sensors

Location Sensors

Thinking

Pattern Recognition

Mathematical Modeling

Machine Learning

Acting

Actuator

Recommendation

Assistance

Figure 2.1 these components are illustrated as three yellow boxes. Moreover,
the figure presents how the raw contextual information sensed by the sensing
component is passed on to the thinking component. This component infers
new contextual knowledge from its input and passes this knowledge on to the
acting component. Finally, the acting component is utilizing this knowledge
in order to provide some recommendation, assistance or suggestion to the
user.

ActingThinkingSensing

User

Recommendation/
Assistance/

Service

Context-Aware Service

Inferred
Contextual
Knowledge

Sensory DataRaw Contextual
Information

Environment

Figure 2.1: Context-Aware Computing

A prominent example of a context-aware service is the smartphone appli-
cation and finger ring provided by Oura [67]. In this context-aware service, a
ring is performing context-sensing through a wide variety of embedded sen-
sors such as heart-beat, O2, and body-temperature sensors and an accelerom-
eter, magnetometer and a gyroscope. These sensors provide the sensing com-
ponent of the service. Further, the output from these sensors are analysed by

2.1. CONTEXT-AWARE COMPUTING 12

advanced machine learning techniques, representing the thinking component
of the system. For instance, the thinking component can infer that the user
is sitting still for longer periods of time or that the temperature and 02 levels
of the user indicate some sickness.

Based on these inferences, the acting component can provide suggestions
such as “Time to move around a bit” or “Your body temperature is slightly
elevated, take it easy today”, through their proprietary smartphone applica-
tion.

In the following the three components proposed by Loke will be described
in closer detail.

Sensing
As previously described, the sensing component is responsible for acquiring
information from the context of the entity, i.e., it is gathering information
from the environment of the user. Contextual information can be sensed
using many different sensors depending on the context, the entity and the
goal of the context-aware service. For instance MEMS (micro-electronics-
mechanical systems) sensors such as the magnetometer, accelerometer, gyro-
scope, barometer, light sensor and GPS are commonly found in smartphones.
Moreover, so-called virtual sensors such as tilt-compensated compass, or the
shake and orientation sensors can be provided by fusing the data generated
by the MEMS sensors [28]. In autonomous vehicle systems, similar sensors
have been used in addition to cameras and LIDAR. Even social interactions
can be said to be sensed by analysing the data generated on social media
platforms.

In this thesis the context sensing has mainly been performed by the
MEMS sensors found in smartphones.

Thinking
Thinking or reasoning is arguably the most important component of a context-
aware system. It is the part of the system that grants it the ability to infer
new knowledge and deduce a better understanding of the context. The pro-
cess of a thinking component is typically to aggregate, transform or combine
the input from the sensing component in order to recognize patterns and hid-
den insights in the data either through mathematical modelling or various
types of learning algorithms. Thinking components can also be configured
in an iterative manner, where the output from one thinking component is
used as the input to the next. For instance, in the work proposed by this
thesis on automatic product localization, the product localization algorithm
infers the location of products based on, among several sources, the output
from a human activity recognition algorithm. This algorithm, in turn, is

2.2. LOCATION-AWARE COMPUTING 13

recognizing the activity of a human based on the output from the sensors
in a smartphone. The usefulness of a context-aware system is often dictated
by the thinking components’ ability to understand the contextual informa-
tion. Consequently, the main contributions of this thesis is research and work
om various thinking components. In Section 2.3, context reasoning, i.e., the
thinking component, will be further elaborated and several context reasoning
techniques will be described in detail.

Acting
The acting component is the final component of the context-aware service.
It is here that the new knowledge regarding the context, inferred by the
thinking component, is provided to the user in order to improve the users
current situation. Typically, this will be realized as some mobile- or web-
application from which the user can get suggestions, help, assistance, or
recommendations based on the current context.

2.2 Location-Aware Computing

As previously described, this thesis was a joint project between the Industrial
partner Forkbeard Technologies, and the university NTNU. Forkbeards’ main
business is to provide indoor navigation solutions, and thus specialize in
building location-aware services. Consequently, the focus of this thesis was
research in this type of context-aware services where the location of the user
is part of the input to the system. In [90], the authors consider location-based
context-services, in other words location-aware services, to be the standard
applications for the early stages of context-aware computing. They define
it as “applications that deliver functions or services to the user based on
their physical location”. Location-aware applications can be anything from
simple services providing the location of a user on a map, to more advanced
services such as a personal shopping assistance. For instance, the application
sketched in Figure 2.2 providing path-finding assistance to a user looking for
milk. This type of application requires the position of the user and the
location of the product the user is looking for.

2.2.1 Location-Sensing Technologies

In location-aware services, the sensing component, described in Section 2.1.1,
is entrusted with the ability to sense the location of the user, usually through
some technologies providing the location of the user. For instance, it can
be the user’s geo-location, i.e., location somewhere on earth, or the user’s

2.2. LOCATION-AWARE COMPUTING 14

Figure 2.2: Example Context-Aware Application; Shopping Assistance

presence within a vehicle, building or more accurately the floor and room.
It can even be a (x, y, z) coordinate within an indoor environment. There
is a plethora of technologies providing the location of a user, with varying
coverage, accuracy, accessibility, cost, etc. Research and development of
these technologies are outside of the scope of this thesis. However, for clarity
some topical technologies will be shortly sketched, and their strengths and
weaknesses will be discussed.

Global Navigation Satellite Systems

Systems such as the Global Positioning System (GPS) [40], Galileo [29],
BeiDou Navigation Satellite Systems (BDS) [6] or GLONASS [33] are well
known solutions to track devices in outdoor environments. Devices that
can be located by these systems are embedded with a receiver capable of
reading signals transmitted from satellites. The device then estimates its
position/location by measuring variances in different properties in the signals
received from multiple satellites. The accuracy of these systems is generally
accepted to be approximately around a couple of meters, however, this varies
based on the surroundings of the device, the device itself and the availability
of satellites in the area.

Short-Range Wireless Technologies

In indoor environments, either natural or human built, the signals from the
satellites used by the GPS technology is disrupted and the accuracy of the lo-
cation estimates falls drastically. In order to combat this, other signal sources
can be used to transmit the signal used by devices to estimate their position.
Transmitters transmitting signals such as RFID, IR, WLAN, Bluetooth and
Ultrasound have all been used successfully in this aspect. Depending on the

2.2. LOCATION-AWARE COMPUTING 15

number of transmitters and the type and amount of indoor obstacles, these
technologies can offer a location detection accuracy on the centimeter level.

2.2.2 Location-Aware Applications

In this section, some prominent applications domains will be presented, il-
lustrating how the location of a user, sensed by various sensing technologies
embedded in smartphones, can be used to create location-aware smartphone
applications.

Outdoor/Indoor Navigation

Navigation assistance is a service most people around the world have gotten
used to, for instance, guiding a user to his/her desired destination. It was
previously achieved using specialized GPS devices. However, nowadays it is
provided by the GPS embedded in the user’s smartphone. A well known
example of an outdoor maps provider is Google Maps [35]. In addition to
outdoor navigation assistance, indoor navigation assistance is a popular re-
search and development field and has experienced great improvements in the
last decade. Forkbeard Technologies is a provider of technologies enabling in-
door navigation [27] using Ultrasound and BLE in order to infer the location
of a users smartphone.

Mobile Gaming

The mobile gaming industry has seen an exponential growth the last couple
of years. It accounted for 50% of the global video game revenue [88] in 2020.
Lately games such as Pokemon Go [66] and Geocaching [30] use the real-
time location of the player as a core component of the gaming experience. In
Pokemon Go, the player needs to travel around in the real world finding and
“catching” digital creatures called pokemons. In Geocaching, the players use
their mobile phones as a “treasure map” leading them to real physical boxes
placed in various places all around the world. The goal is to find these boxes,
sign the physical log-books inside them, and register the achieved treasure in
the application.

Mobile Recommender Systems (MRS)

In contrast to regular recommender systems that only rely on some rec-
ommendation algorithms, mobile recommender systems also take the user’s
mobile context into account. As the authors explain in [72], “mobile rec-
ommender systems are based on a recommendation algorithm and contextual

2.2. LOCATION-AWARE COMPUTING 16

information to provide recommendations of items or services to users of mo-
bile devices.”

For instance, in retail and shopping, personal shopping assistance applica-
tions such as The Personal Shopping assistance and IRL SmartCart proposed
in [45] and [42], respectively, enrich the target recommendation algorithm by
taking the current location of the user into consideration.

In some other works, media recommendations are provided to the smart-
phone carrier based on their mobile context. For example, in [103] the au-
thors propose a framework for media recommendations, whilst in [4], a music
recommendation system is provided for passengers in a car.

Another interesting category of works aims to recommend information
to the user based on the user’s location. For instance, a mobile recom-
mender system recommending photos to users from their mobile context was
proposed in [53]. In [76], the authors present SMARTMUSEUM providing
tourists with context-aware on-site access to cultural heritage.

Furthermore, within the health and fitness domain, works such as Moti-
vate, proposed in [57], aim to change the behavior of the user by suggesting
simple daily activities based on the user’s contextual information such as
weather, user location, geo-information and user agenda.

Public Transportation

Public Transport Authorities (PTAs) already utilize several location-aware
systems such as pathfinding to the nearest bus stop/metro station, etc. In
addition, some PTAs provide services using the current location of all nearby
vehicles combined with the location of the user in order to suggest the op-
timal travel route, e.g., in cases where there are both a bus stop and a
metro stop nearby, however, the next bus is arriving 10 minutes later than
the next metro, the application will suggest using the metro station rather
than the bus. Another area of location-aware applications within public
transportation is applications providing automated ticketing, i.e., a so-called
Be-In/Be-Out (BIBO) applications [64]. These applications aim to reduce
the complexity for users when they purchase public transport tickets. This
can be achieved if the system can recognize the in-vehicle presence of pas-
sengers, i.e., knowing for sure when a person enters a certain vehicle, and
when the person leaves. Early in-vehicle presence detection systems were
based on active RFID tags carried by the passengers communicating with a
single communication unit in the center of the vehicles. Solutions such as
EasyRide [37], developed by the Swiss Railways Association and Allfa [36]
proposed by T. Gründel, H. Lorenz, and K. Ringat to be used in Dresden,
Germany, used this technology. Later on, solutions such as [63], [49] and [47]

2.3. CONTEXT REASONING 17

used BLE communication between the smartphones and devices installed in
the vehicles in order to detect in-vehicle presence of the smartphones carrier.

2.3 Context Reasoning

All the location-aware applications mentioned above have one important
thing in common, and that is they all depend on the contextual informa-
tion of the user, in particular their location. Further, the system’s ability
to retrieve new knowledge from the sensed data determines the complexity
and type of service the context-aware application can provide to its users.
In other words, the most central feature a context-aware service is the think-
ing component and its ability to perform context reasoning. Due to the
importance of this component, and that most of the work in this thesis is
on context reasoning, we have dedicated the following section to carefully
describing various context reasoning techniques.

2.3.1 Context Reasoning Techniques

Depending on the data sensed by the sensing component, and the goals of
the acting component, i.e., the context-aware application, various context
reasoning techniques can be employed.

Perera et al. [70] categorize these techniques into the following six classes;

• Rules

• Probabilistic logic

• Fuzzy Logic

• Ontology Based

• Unsupervised Learning

• Supervised Learning

In the following, we describe each of these techniques. However, since
the learning-based techniques, unsupervised and supervised learning, are at
the center of this thesis, we elaborate more on these in their own dedicated
section, Section 2.4.

2.3. CONTEXT REASONING 18

Table 2.2: Rule-Based Context Reasoning

Inferred Context Reasoning Rules

Flying

Barometer (low) ∧
Speed (very high) ∧
Cell signal (zero)

Sleeping

Moving (no) ∧
Light (dark) ∧
Pulse (low)

Workout
Moving (yes) ∧
Pulse (high)

Rules

Rule-based techniques are used to build the most straightforward context-
aware services. They are usually built based on IF-THEN-ELSE structures
and they are generally easy to develop. However, their strength is also their
weakness, i.e., their reasoning algorithm is hard coded and thus they struggle
to adapt to dynamic and complex environments.

In table 2.2, three examples are presented on how higher level contexts
can be inferred from lower level contextual information using rule-based rea-
soning. As can be seen from the table, a rule is defined by combining a set
of lower-level contextual inputs, e.g., the context flying is inferred when the
barometer sensor is in “low-state”, the speed is “high” and the received cell
signal is “zero”. However, a potential weakness of rule-based reasoning is
when several contexts can be inferred from the same reasoning rules, e.g.,
the reasoning rules for Sleeping could also be used to infer Watching TV if
the light-sensor was embedded on the users smartphone, and the smartphone
was located in the users pocket.

Creating suitable, unambiguous rules for any given context, can often be
challenging. Additionally, determining a set of rules to use in an application
can be difficult. However, even with these limitations Perera et al. [70] believe
that rules are expected to play a significant role in, e.g., IoT.

Probabilistic Logic

The publications [11] and [70] describe techniques belonging to this cate-
gory as methods for reasoning when the facts composing the context have
probabilities attached to them. For instance, when two different sources are
providing contextual data in conflict with each other. e.g., the accelerom-

2.3. CONTEXT REASONING 19

eter sensor shows movement while the GPS sensor senses a user standing
still. Moreover, Dempster-Shafer theory [81], also known as belief functions,
provides a general framework for reasoning with uncertainty, allowing one to
arrive at a conclusion with a degree of certainty based on combined evidence
from different sources. For instance [80], [56] and [3] proposed solutions to
Human Activity Recognition (HAR) using Dempster-Shafer in order to fuse
the output from multiple sensors in smart-environments. Another popular
probabilistic technique used to infer the contextual information from observ-
able evidence is Hidden Markov Models (HMM), e.g., the authors of [8] use
this technique in order to learn situation models in smart homes.

Fuzzy Logic

In fuzzy logic, partial truths are acceptable in contrast to boolean logic where
acceptable truth values are either true(1) or false(0). Furthermore, it pro-
vides the ability to represent a context more naturally by supporting vague
descriptions of the context. Propositions can be seen as elastic constraints,
and reasoning can be thought of as elastic constraint propagation, in contrast
to regular propositional logic where reasoning is precise and a certain propo-
sition leads to an exact conclusion. Fuzzy logic is often used in combination
with other reasoning techniques such as ontological, probabilistic, or rule
based reasoning. For instance in [43], the authors propose a context-aware
access control solution using fuzzy logic and ontology-based reasoning. As
an example of their approach, their system gives the employees in a hospital
access to medical records of the patients based on fuzzy facts as the context
elements, e.g., ”The patient’s health status is 95% critical”.

Ontology-Based Reasoning

Reasoning techniques belonging to the ontology category are based on de-
scription logic, a family of logic-based knowledge representations. Within
computer science, ontology modelling encompass a formal way of represent-
ing a set of concepts within a domain and the relationships between these
concepts. Ontological reasoning uses a combination of ontology modelling
and logic-based reasoning, e.g., the authors of [97] propose OWL for model-
ing context in pervasive computing environments, and for supporting logic-
based context reasoning. One shortcoming of ontology-based reasoning is
that it is not capable of handling missing values or ambiguous information.
Ontological reasoning have been used in a wide range of applications such
as intelligent handling of customer complaints in [52], activity recognition
in [12] and event detection in [91].

2.4. LEARNING-BASED REASONING 20

2.4 Learning-Based Reasoning

In this thesis, the context-aware services have been built using learning-based
context-reasoning techniques. Thus, these techniques will be described in
greater detail. However, the field of learning algorithms is broad and covers
more than just context-reasoning algorithms. In this section, we will first
give an overview over learning algorithms, unsupervised and supervised, in
general. Thereafter, we take a closer look at a specific branch within learning
algorithms; Artificial Neural Networks (ANNs), and topics within the field
of ANN that are relevant to this thesis.

In contrast to the categories described in the previous section, which
mainly reason using human-made and hand-crafted algorithms, techniques
belonging to this category are instead learning to extract higher level con-
textual information from lower-level context data. Learning algorithms learn
from being exposed to large quantities of data from their environment. More-
over, it is important that the data, they are exposed to, consists of a sub-set
of the environment that is large and varied enough to capture its intrinsic
properties. Without a suitable dataset, a learning algorithm is not able to
learn useful mappings between what it senses and the properties it is sup-
posed to infer.

Important concepts

In this paragraph, some important concepts for learning algorithms, that are
not explained in the text, will be shortly described.
Weights/Trainable Parameters: Most learning algorithms consists of a
function, where some of the variables in the function are so-called Train-
able Parameters or Weights. The goal during training of a algorithm is to
tune/change these parameters in order to achieve a desired outcome, given
a certain input.
Training and Validation Sets: Learning algorithms, especially supervised,
learn by being exposed to a training set. The training and validation sets
usually consist of samples of some input and a corresponding, expected out-
put, i.e., a label. For instance, the training and validation sets for an image
classifier will contain a certain number of images, and a label describing the
content of the images.
Classification: A typical task of learning algorithms is to recognize the class
of a sample, e.g., recognizing whether an image is of a dog or a cat. In these
tasks, it is common to describe the prediction of the algorithm to: True
Positive(TP): a correctly classified positive sample; True Negative(TN): a
correctly classified negative sample; False Negative(FN): a positive sample

2.4. LEARNING-BASED REASONING 21

wrongly classified as negative; False Positive(FP): a negative sample falsely
classified as positive. Further, in order to measure the performance of the
learning model when performing a classification task, the follow metrics are
typically used:

• Precision (PR): The ratio of correct positive predictions to the total
number of predicted positive samples, i.e., out of all samples classified
as positive, how many are actually positive:

PR ≜ TP

TP + FP
(2.1)

• Recall (RE): The ratio of correct positive predictions to the total num-
ber of positive samples, i.e., out of all available positive samples in the
dataset, how many were correctly classified by the model:

RE ≜ TP

TP + FN
(2.2)

• Accuracy (ACC): In a dataset with a 50/50 class distribution, the ac-
curacy describes how good the model is at classifying samples from all
classes, i.e., it describes how many of all predictions are correct:

ACC ≜ TP + TN

TP + FP + TN + FN
(2.3)

• F1-score (F1): The harmonic mean between precision and recall. The
F1-score is useful in cases where the distribution of the classes in the
dataset is not 50/50.

F1 ≜ 2 · PR ·RE

PR + RE
(2.4)

Learning-based algorithms are typically divided into two categories; unsu-
pervised and supervised learning. In some cases, two additional categories are
included; semi-supervised and reinforcement, however, they are not covered
in this section since they are of less relevance for the work in this thesis.

In the following two sections, the most archetypical techniques, con-
cepts and algorithms related to supervised and unsupervised learning will
be shortly described, and those most relevant for this thesis will be elabo-
rated in detail.

2.4. LEARNING-BASED REASONING 22

2.4.1 Unsupervised Learning

An unsupervised learning algorithm is a type of algorithm that learns pat-
terns and intrinsic structures in data. The data used to train the learning al-
gorithm is typically not labelled, in contrast to data used to train supervised
learning algorithms, hence it is called unsupervised. The typical problem
solved by unsupervised learning algorithms is clustering of data. Cluster-
ing is the process of grouping similar objects into so-called clusters, and the
training aspect of the process is to learn what similarity entails in any given
environment. A well-trained clustering algorithm, such as K-means, Hierar-
chical Cluster Analysis(HCA) and Expectation Maximization have the ability
to group un-labeled samples together with other similar samples in the given
context. For instance, training a clustering algorithm on a dataset consisting
of unlabeled images of cats and dogs should result in two distinct clusters.
Then, when exposing the algorithm to three new images, one of a cat and two
of dogs, the algorithm should be able to recognize that the two dog images
are dissimilar from the cat image, even though the algorithm is not able to
classify the image as an image of a cat.

Unsupervised learning has been used for a plethora of use cases such
as data exploration, customer segmentation [20], recommender systems [92],
data visualization [65] and input noise reduction [94].

2.4.2 Supervised Learning

In contrast to unsupervised learning, supervised learning uses so-called la-
beled data during training. They can be described as a type of function
approximation technique, where they try to mimic a function f mapping
from an input X to some output y. In order to do this, the learning algo-
rithm is presented with a training set of inputs labeled with their expected
output. From the training set the learning algorithm is expected to detect
and learn some underlying structures or patterns in the dataset such that
it finds a generalized way of mapping any input, within the bounds of the
problem, to any output. If we have a function f(X) = y, we want the learn-
ing algorithm to build a solution f ′(X) = y′, where the distance between y′

and y is as small as possible for any given X.
A typical task in supervised learning is to solve a classification. For in-

stance the ability to recognize the content of an image, the meaning of a text,
the words in a sound wave, or the activity performed by a person carrying a
smartphone, etc. In addition to these typical multi-class classification prob-
lems, where there are more than two potential outputs, binary classification
problems are also common. For a binary classification algorithm, the goal is

2.4. LEARNING-BASED REASONING 23

typically to train some functions in order to map some input, to one of two
potential binary outputs. It can be used to answer typical yes or no ques-
tions such as “Is this user allowed to receive a loan?”, “Is this a fraudulent
transaction?” or “ Does this patient have cancer?”

In addition to the classification problems mentioned above, supervised
learning can also be used in regression problems, where the goal of the learn-
ing algorithm is to map from some input to a numerical value, such as the
expected price of a house given a set of features as input (e.g., number of
rooms, location, age, etc.), the future cost of a stock given the stock value
in the previous six months, and the probability that it will snow tomorrow
given a set of meteorological, geographical features.

Some of the most important supervised learning algorithms worth noting
are:

• Linear and Polynomial Regression,

• Logistic Regression,

• Support Vector Machines,

• Decision Trees and Random Forests,

• Artificial Neural Networks.

Linear and Polynomial Regression

X

Y

Figure 2.3: Linear Regression

In linear and polynomial regression the goal is to find a function f capable
of mapping an input X, typically called the independent variables to a value

2.4. LEARNING-BASED REASONING 24

y′, typically called the dependent variable. Specific to regression models is
that their output, i.e., the dependent variable is expected to be some scalar
value. In linear regression you have either simple linear regression, where the
input is only one independent variable, or you have multiple linear regression,
where the input consists of two or more variables. Following is a formal
description of the two linear regression models; simple linear regression model
in Equation 2.5 and multiple linear regression in Equation 2.6:

y′ = β0 + β1X (2.5)

y′ = β0 + β1X1 + β2X2 + βnXn (2.6)

Here, y′ denotes the dependent variable and the predicted output from the
model. β0 and βn are the trainable parameters of the model which can be
tuned in order to fit the model to its training data. β0 describes the y-
intercept and β1 and βn the slope of the line.

A shortcoming of linear regression algorithms is that they only work when
the relationship between their dependent and independent variables are lin-
ear. In Figure 2.4 this problem is illustrated by the plot on the left, where
the line is not able to fit the samples, however, this is resolved in the plot on
the right by using polynomial regression.

X

Y

X

Y

Figure 2.4: Linear vs. Polynomial Regression

Polynomial regression is formally described with the following equation:

y′ = β0 + β1X + β2X
2 + βnX

n (2.7)

When the relationship between the dependent and the independent variables
are not linear, one can use try to describe their relationship using n-th degree
polynomials instead.

2.4. LEARNING-BASED REASONING 25

Common to both linear and polynomial regression is the way they learn.
As previously mentioned, they learn by adjusting their trainable parameters,
i.e., all relevant β parameters. In order to improve the model, we first need
to figure out how wrong it is, in other words we need to quantify the dis-
agreement between the predicted and the actual y values for any known X
in our training set. Formally, this is typically described as the loss function
or sometimes referred to as the cost function.

A typical cost function used for linear and polynomial regression is the
Mean Squared Error cost function:

L =
1

m

m∑

i=1

(f ′(xi) − yi)
2 (2.8)

Where f ′(xi), equals the predicted output of the model for the ith sample
xi in the training set, yi denotes the true value for that sample and m denotes
the total number of samples in that training set. L is the mean squared error
over all m samples of the training set, quantifying the mean error of the
model given the current set of trainable parameters.

When adjusting the parameters of the model, it is important to adjust
them in proportion to the influence, they had on the outcome, i.e., the
amount of loss. To do this one typically uses Gradient Descent. The process
of gradient descent is to calculate the partial derivates of the loss function
with regards to the parameters of the model. The partial derivates of the
function quantifies the effect each parameter had on the loss, and, thus,
by adjusting the parameters correspondingly, one can effectively reduce the
amount of error they induce in the model.

Support Vector Machines

Support Vector Machines (SVMs) are another very popular and useful type
of supervised learning algorithm, capable of solving both linear and non-
linear, binary classification and regression problems. The core idea of SVMs
is to separate instances of the two classes by one or several hyperplanes in a
higher dimensional space. The hyperplanes can be thought of as the widest
possible road, separating the two instances of the two classes closest to each
other in the training set. In Figure 2.5, an illustration of a SVM is depicted,
where the solid line represents the center and the dotted-lines represent the
edges of the hyperplane. There are two instances circled at the edges of the
hyperplane, which are called the support vectors, and as long as new training
instances are added “off” the hyperplane, the boundaries of the hyperplane
will not be affected. In general, the wider the hyperplane is, the better the

2.4. LEARNING-BASED REASONING 26

Y

Figure 2.5: Support Vector Machine

model is at generalizing to the problem, i.e., the model is expected to have
a high accuracy when classifying new, previously unseen samples.

SVMs have been used successfully to solve various context reasoning prob-
lems such as human activity recognition in [68], context based recommenda-
tions in [48], and patient fall detection in hospitals in [19].

Decision Trees

Decision Trees are a type of supervised learning technique mainly used to
solve classification problems. The core concept is to distribute the features
of the input as nodes in the tree, always one root node, and one or several
intermediate nodes. During training, the distribution of features to nodes
is performed. This is done using certain metrics such as the Gini Index for
categorical decision trees, or the Mean Square Error for regression trees. The
metrics are used to evaluate which feature is best at splitting the training
set into pure sub-sets. The features best capable of doing this are placed
higher up in the decision tree. In Figure 2.6, a toy-example of a decision
tree for deciding the family of an animal is depicted. Inputs to the decision
tree consists of five attributes, i.e., if the animal has a backbone, is cold
blooded, has wings, lives in water and if it has scales. There are in total
four intermediate nodes and one root node representing the attributes of the
samples in the dataset, and six leaf nodes, representing the classes.

Prominent works where various forms of decision tree algorithms have
been used to perform context reasoning are for instance the CARS (context-
aware recommender system) framework proposed in [58], the location-based

2.5. ARTIFICIAL NEURAL NETWORKS 27

Has Backbone?

Invertebrate

Yes No

Is Cold Blooded?

Wings? Lives In Water

Reptiles

Fish

Bird Mammal Has Scales?

Amphibian

No

No No

No

Yes

Yes

Yes

Yes

Figure 2.6: Simplified Decision Tree for classifying animals

recommendation system “I’m feeling LoCo” proposed in [77], and the human
activity recognition algorithm proposed in [61].

2.5 Artificial Neural Networks

Artificial Neural Networks (ANNs) encompass a huge number of learning
algorithms, and include a vast sub-set of so-called machine learning (ML)
models. ANNs have been used to solve different problems in different do-
mains. In this section, we will give a short introduction to some important
concepts within artificial neural networks, followed by a description of the
most popular network types, and finally some advanced neural network ar-
chitectures that have been important in order to answer some of the research
questions presented in this thesis.

2.5.1 The Neuron

All artificial neural networks consist of a structured organization or network,
of small computational units called neurons. These neurons typically accept

2.5. ARTIFICIAL NEURAL NETWORKS 28

X0

W0X0

W1 X1

W2 X2

Wi Xi + b
i

f()Wi Xi + b
i

W0

X1

X2

W1

W2

Figure 2.7: Simple artificial neuron

one or more input scalars, each of which are multiplied by a trainable param-
eter called a weight. Thereafter, the products from these multiplications are
added together and used as input to an activation function, which outputs a
single scalar representing the activation of the neurons.

Figure 2.7 depicts a simple neuron accepting three inputs, X0, X1 and X2,
all being multiplied by their corresponding weights W0, W1 and W2 before
the resulting products are summed and passed to the activation function f .

2.5.2 A Network of Neurons

Input Layer Hidden Layer Output Layer

Figure 2.8: Artificial Neural Network (ANN) with fully connected layers

2.5. ARTIFICIAL NEURAL NETWORKS 29

A neural network is modeled as a collection of neurons connected in var-
ious configurations as an acyclic graph. The neurons are usually organized
into distinct layers, where the most basic networks, also called single layer
neural networks, consist of two layers, an input layer and a output layer. In
these networks, each neuron in the input layer is connected to the neurons
in the output layer. In other words, the output from a neuron in the input
layer is passed on to all neurons in the output layer. In order for a model to
learn more complicated functions, there are usually more layers than these
two. Layers in-between the input and output layers are usually called the
hidden layers, and networks consisting of multiple hidden layers are often
called Deep Neural Networks. The way neurons are connected between one
layer and the next is defined by their layer type. In the next section, the
most well-known layer types are discussed.

2.5.3 Network Layer Types

The way a layer is connected to the previous layer in the network defines
the type of layer. The three most popular and well known types of layers
are Dense layers, Convolutional Layers, and Recurrent Layers. Typically, if
a network consists of mainly one of the layer types, the overall network is
named after that layer type e.g., a network consisting of mainly convolution
layers is called a Convolutional Neural Network.

In the following subsections, the three most popular layer types will be
described.

Dense Layer

Dense layer, or commonly called Fully Connected Layers, are layers in which
each neuron in one layer is connected to all neurons in the next. Neural
networks consisting of only dense layers are typically called Dense Neural
Networks(DNN) or previously called Multi-Layered Perceptrons, and are the
quintessential deep learning models. These types of models have been suc-
cessfully used for a wide variety of context reasoning use-cases such as activity
recognition in hospitals in [25] to in-building localization in [1]. A short-
coming of fully-connected networks, however, is their incapability to han-
dle spatio-temporal properties in their input. Moreover, all samples must
be structured equally. Therefore, these networks are well suited for prob-
lems where the input to the network consists of attributes that are spatio-
temporally independent from each other. For instance, if the input to the
network is a set of attributes describing a human, i.e., age, gender, height, in-
come, etc., the order of the attributes in the input vector is irrelevant for the

2.5. ARTIFICIAL NEURAL NETWORKS 30

performance of the model, as long as the order of the attributes in the vector
is the same for all samples. However, in image classification or time-series
related problems where the input vector represents pixels or points in time,
the topology of the input is important. Understanding the spatio-temporal
properties of the input is crucial for the model to be able to work for these
types of inputs. In these cases, a DNN is not necessarily the best option,
and it can be better to use models consisting of the following two layer types
instead.

Convolutional Layer

Fe
at

ur
e

M
ap Input

Filter

Figure 2.9: Convolutional Layer

Convolutional Networks, also called Convolutional Neural networks (CNNs)
are networks consisting mainly of convolutional layers (Conv layers). Their
speciality is to process input data configured in a certain multidimensional
grid-like topology data such as images (2D) or time series (1D). These types
of networks are based on three fundamental ideas to ensure shift and distor-
tion invariance, i.e., to be able to recognize features in their input data, no
matter, where in the input grid the feature reside. Examples are local recep-
tive fields, shared weights and spatio-temporal subsampling [51]. As input,
the neurons in a convolutional layer receive the result from applying some
n-dimensional filter on-top of the input. This filter represents the receptive
field of the neuron, i.e., the field of the input a neuron is capable of observ-
ing. In Figure 2.9 as an illustration of a 3x3 filter, the filter is illustrated as
the red square on top of the blue input image. The filter consists of a mul-
tidimensional array of weights that is applied (convolved), step-wise, across
the layers input. The convolution of the filter is done by computing the
dot product between the weights of the filter and the input at any position.

2.5. ARTIFICIAL NEURAL NETWORKS 31

Thereafter, the resulting value is passed through an activation function in the
same manner as with the dense layers described in the previous section. Con-
volving the filter across the input results in a multidimensional array called
a feature map, illustrated as the white two-by-two square in Figure 2.9. A
convolutional layer usually contains several n-dimensional filters resulting in
an n + 1-dimensional array of feature maps. The size of the additional di-
mension equals the number of filters in the layer, and correspondingly the
number of generated feature maps.

In convolutional neural networks, it is common to stack several convolu-
tional layers on-top of each other. Consequently, the input of one layer is the
feature maps from the previous, i.e., the filters of a hidden layer in a CNN
is convolved over the feature maps from the previous layer. A consequence
of this is that the earlier layers, i.e., the layers closer to the input usually
learn to detect lower level geometric features such as curves, lines etc. Lay-
ers deeper in the network learn to recognize more high level features, such as
eyes, a mouth, fur and so on. Whilst layers close to the output layer learns
to recognize concepts such as heads, bodies etc.

Another important aspect of CNNs is the so-called Pooling Layers. It
is common to to periodically insert a Pooling layer in between consecutive
conv. layers. Doing this progressively reduces the size of the data transmit-
ted through the network and consequently reduces the number of trainable
parameters and computations in the model. A pooling layer works similar to
a convolutional layer, in the way that it is applied to its input. It is convolved
across its input, and, for every step, it calculates some summary statistic of
the values within the range of the filter. Typical calculations performed by
a pooling layer are either the max operation, finding the largest value within
the range of the filter and returning it, or calculating the average. For in-
stance, a 2x2 max pooling layer would for every four values in its input return
one value, effectively discarding 75% of its input.

Convolutional networks have been tremendously successful in practical
applications. Prominent examples of context reasoning using CNNs are the
various solutions to human activity recognition in [2, 13, 74, 101], sleep stage
scoring in [89], abnormal status detection by an intelligent surveillance robot
in [83] and context-aware dialoguing services for a Cloud-Based Robotic Sys-
tem in [41].

Recurrent Layer

The two previous types of layers are generally referred to as feed-forward
layers, i.e., the data from one layer is fed directly to the next one. Recurrent
layers on the contrary, are not only feeding data from one layer to the next,

2.5. ARTIFICIAL NEURAL NETWORKS 32

f()

X

y

f()

X(t-3)

y(t-3)

f()

y(t-2)

f()

X(t-1)

y(t-1)

X(t-2)

f()

X(t)

y(t)

Time

Figure 2.10: Recurrent Neuron(left), unrolled through time (right)

it also has connections pointing backwards such that the data processed from
one sample is fed back into the same layer together with the next sample,
see Figure 2.10. This provides the neural network with a basic memory-
like functionality, i.e., the ability to maintain state across input samples.
Therefore, with these memory like capabilities, RNNs excel at processing long
sequences of input, where the temporal relationships between the elements
of the sequence are important and the relationship between the elements can
span multiple elements.

For instance, a topical field for RNNs is Natural Language Processing
(NLP). In NLP, the goal is to provide a computational unit with the ability
to infer meaning from text of spoken words. For instance, in the sentence
“The cat is chasing the mouse around the house”, the relationship between
the words “cat” and “mouse” are important to understand the meaning of
the sentence, even though these two elements are not right next to each other
in the input sequence.

RNNs can be structured differently to solve different kinds of problems.
The first and most basic type is the one-to-one structure, which simulta-
neously take a sequence as input. From that, it continuously produces an
equally sized sequence as output, see Figure 2.11.a.

Alternatively, the network many-to-one can be used, here the network
is fed a sequence of inputs and from the whole sequence produce one single
output, for instance a movie review used as as input can output a sentiment
score (e.g., 1-5 stars), see Figure 2.11.b.

In contrast, a so-called one-to-many structure receives a single sample as
input, and produces an output sequence from it. For example, the input can
be an image from which the network produces a caption (sequence of words)
as output, see Figure 2.11.c.

Lastly, a many-to-many network configuration can be used in instances
where a full sequence will be used as an input, resulting in a sequence as

2.5. ARTIFICIAL NEURAL NETWORKS 33

X(0)

y(0)

X(1)

y(1)

X(2)

y(2)

X(3)

y(3)

X(0) X(1) X(2) X(3)

y(3)

X(0)

y(0) y(1) y(2) y(3)

X(0) X(1)

y(2) y(3)

a) b)

c) d)

Figure 2.11: one-to-one(a), many-to-one(b), one-to-many(c) and many-to-
many(d)

output. For instance in machine translation, where the meaning of the first
word in a sentence can be dictated by the last, it is important for the model to
receive the whole sentence before it makes its translation, see Figure 2.11.d.

RNNs have been successfully applied to solve problems related to in con-
text in several works, such as predicting future movements of humans/objects
in [16], human activity recognition in [71,85] and emotion detection and sen-
timent analysis in conversations in [82].

2.5.4 Network Architectures

In the previous sections, we described the most important building blocks of
any neural network and the various forms, these building blocks usually take.
In many cases a reasoning problem can be resolved by starting with a small
simple neural network, consisting of as few neurons and layers as possible,
and then expanding the number of neurons and layers in order to improve
the performance of the model. However, there are some problems which are
usually solved by a certain type of architecture, i.e., the configuration of the
layers of the model improves the networks ability to solve the problem.

There are countless types of neural network architectures, and creating
and optimizing these architectures is on its own a huge research field. In this
section we describe two concepts which are important to solve some of the
research questions posed in this thesis.

2.5. ARTIFICIAL NEURAL NETWORKS 34

Autoencoders

Encoder DecoderLatent
Space

Input Data
(x)

Reconstruction
(r)

Latent
Representation

(h)128

64

32

64

128

Figure 2.12: An simple Stacked Autoencoder

Autoencoders (AEs) are artificial neural networks used to learn efficient
representations of their input data, often called latent representation or cod-
ings. They are usually used for dimensionality reduction and feature ex-
traction [34]. Moreover, AEs learn by copying their inputs to their outputs.
However, this is not the end goal of an autoencoder. Typically when training
an autoencoder, it is constrained in various ways, such that the copy process
becomes difficult. Therefore, when copying its input, the model is forced to
learn underlying properties in the data. For example, a constraint can be
to reduce the size of the latent representation in comparison to its original
form. By doing this, the autoencoder is forced to learn the most important
features and properties of its input data in order to be able to reconstruct it
later.

To better understand this process, it can be useful to view an autoencoder
as consisting of two parts: an encoder function h = f(x) and a decoder
function r = g(h). The encoder function converts the models’ input data to
a latent representation h and the decoder uses h to create a reconstruction
r. The cost function used to train an autoencoder is some measure of the
dissimilarity between the models’ original input x and r, its reconstruction.

2.5. ARTIFICIAL NEURAL NETWORKS 35

In Figure 2.12, a typical Stacked Autoencoder is depicted. The name
of the model is prefaced with the term Stacked since both the encoder and
the decoder consist of several layers. As with other artificial neural network
architectures, adding more depth to the network, i.e., adding more hidden
layers, is useful for the models ability to solve problems of higher complexity.

Depending on its input data, the type of layers used to create the autoen-
coder can vary, similar to that of other ANN architectures. For instance, in
cases where the topology of the input data has no relevance for the data, a
fully connected autoencoder can be used successfully, similar to the one illus-
trated in Figure 2.12. However, when the topology of the input data is impor-
tant for the networks’ ability to infer underlying properties, convolutional lay-
ers can be used. An autoencoder, also called Stacked Convolutional Autoen-
coder [60], suitable for processing input data with spatio-temporal proper-
ties can be created by stacking convolutional layers and pooling/upsampling
layers. In these types of architectures the convolutional layers are used to
capture and learn the underlying topological structures in the input data,
the pooling layers are used by the encoder for dimensionality/size reduction
and the upsampling layers are used by the decoder in order to reverse the
size reduction done by the encoder.

Autoencoders have been used in works such as anomaly detection [78],
speaker-aware denoising [15] and context-aware recommendations [106].

Siamese Architecture

In classification tasks, the goal of the neural network is to recognize some
properties in the input data in order to predict the class the input data be-
longs to. To train classifiers, one needs a large dataset consisting of many
samples from each expected class in order for the model to generalize well.
However, in problems where the goal is to recognize if two samples belong to
the same class, e.g., if two images are of the same person, or whether a sig-
nature belongs to a certain individual, this general approach can be difficult.
In order to solve this with regular classification, one has to create one class
for each person of interest, e.g., for signature verification used by a bank we
need one class for each customer. Additionally, we need to have a large set
of signatures from each person, and further, to retrain the machine learning
model for each new customer. A solution to problems of this type can be
to create a Siamese Neural Network (SNN), see Figure 2.13 Siamese Neural
Networks contain two or more identical sub-networks, in other words the sub-
networks consist of identical layers sharing all trainable parameters/weights,
represented as the green layers in Figure 2.13 . The output from these sub-
networks, the latent representation of their input, are thereafter passed on to

2.5. ARTIFICIAL NEURAL NETWORKS 36

Input Data
A

Input Data
B

Latent
Representation

of A

Latent
Representation

of B

Output
Matching

Result

Layers With shared weights Matching network

Figure 2.13: A simple Siamese Neural Network

an objective function performing matching of the models inputs, represented
as blue layers in Figure 2.13. During training, the neural network will learn
to ignore features in its input not relevant for matching, and to recognize
and extract the most important features for matching detection. Siamese
architectures have been used to solve various problems such as signature ver-
ification in [9], face verification in [14], person re-identification in [102], and
Human Activity Recognition in [7].

2.5.5 Conclusion and Discussion

As mentioned above, selecting the appropriate reasoning technique for any
given contextual input is not straightforward and usually one has no uni-
versally right answers. This is in particular true when it comes to choosing
layers, structures, architectures and other hyperparameters for artificial neu-
ral networks. However, there are some basic rules, e.g., as mentioned above,

2.5. ARTIFICIAL NEURAL NETWORKS 37

one should try using convolutional layers when it is expected that some rel-
evant patterns can be found in the spatial arrangement of the input to the
model. Likewise, when elements far apart in a sequence are expected to be
related with each other, e.g., in time-series data, using RNN layers may be
advised. Moreover, in some cases, it might be wise to design the model as an
SNN giving the network the ability to accept two inputs at once, and thus
the network will map the two inputs in an identical manner, enabling the rest
of the network to perform matching detection on the inputs. Furthermore,
one can use Stacked Convolutional Autoencoders as input layers providing
several other advantages to the model. For instance, using autoencoders pro-
vides the capability to drastically reduce the dimensionality of its input, and
thus the model learns to prioritize the most important features of its input
filtering out unimportant information.

Chapter 3

Related Work

In this chapter, existing approaches relevant to the work carried out in this
thesis are presented. First, we introduce the works related to location-aware
mobile recommender systems in retail. Thereafter, the state-of-the art on
in-vehicle presence prediction is presented. The chapter is concluded with a
discussion of the works.

3.1 Mobile Recommender Systems in Retail

As described in Chapter 2, Mobile Recommender System (MRS) aim to
provide services to users based on the context, they are in, specifically con-
sidering the location of the users. For instance in [24], the authors propose
a mobile recommender system for indoor shopping using their own novel in-
door mobile positioning approach. Moreover, they use the received signal
patterns of mobile phones in order to localize them. Their proposed mobile
recommender system implicitly captures user’s preference by analysing their
positions without requiring their explicit input. They show through com-
prehensive experimental evaluations that the proposed MRS achieves a high
user satisfaction score.

Another mobile recommender system is RecStore [84] in which the authors
propose a solution that assists customers in malls by proposing relevant shops
based on two key elements; the location and historical purchase behavior of
the user. Through empirical experiments, they also show that their approach
meets the customers needs better than baseline models.

The authors of [10] verify that the products recommended by their loca-
tion history-aware recommender system far exceeded the product recommen-
dations of the two baseline approaches they studied. Additionally, several
volunteers trying their systems gave positive feedback on the variability and

38

3.1. MOBILE RECOMMENDER SYSTEMS IN RETAIL 39

serendipity of their systems’ recommendations.
The important finding in the above works is that location-based mobile

recommender systems can improve shoppers experiences even though such
approaches provide relatively coarse grained recommendations, i.e., they sug-
gest relevant stores or, in the best case, products in some nearby stores.

However, to enable more fine grained recommender systems, e.g., rec-
ommending products at specific locations in a store, while the customer is
inside, a more accurate position of the products is required.

Current solutions typically rely on one of two strategies, both using em-
ployees or system experts. The first is to attach tags to the products, e.g.,
RFID-tags, and use a signal transmitted either by the tag or by an infrastruc-
ture to locate the product. The other strategy entails registering the location
of the product in the system manually. For instance, SugarTrail [73] is a
system providing both, positioning products and finding paths to their loca-
tion in in-door environments. To this end, SugarTrail aggregates sequences
of magnetometer readings and radio round-trip time-of-flight measurements
from stationary nodes in order to automatically record the user’s movement
path while they move around in the store. These paths are used to construct
so-called Virtual Road Maps (VRMs), which they in turn use to provide nav-
igation assistance to the users in the store. The authors suggest combining
this approach with RFID tags on products, and when an employee is plac-
ing products in the shelves, they simultaneously register the product in the
location using their mobile unit.

Another approach to this problem is Travi-Navi [104], which combines
high quality images and sensor readings from a Guiders smartphone and
packs them into a navigation trace. Their approach is meant to be used by,
e.g., shop owners in order to record a path to their stores. Then followers,
moving through an indoor environment, can use the path registered by the
Guider to be guided to their destination.

In Canoe [18], the authors propose a solution where the Received Signal
Strength (RSS) is measured in various parts of an indoor environment. The
registered RSS values are compared with those of a user’s device in order to
direct them to points of interests.

Another approach relying on RFID readers and RFID tagged products is
proposed in [11]. Their approach suggests products to customers in a store
according to the customers’ preferences, shopping records and current loca-
tion.

Summary
In this section works on various mobile recommender systems have been
presented, showing that these services tend to improve experience of users

3.2. IN-VEHICLE PRESENCE DETECTION 40

while moving through retail environments. Yet, in order to develop solutions
with a higher fidelity and more fine-grained recommendations, one of their
key inputs, the location of the recommendation, needs to be highly accurate.
However, current approaches to localizing products are either very costly, i.e.,
when requiring tags on all products, or very labor intensive, i.e., when using
employees to manually register the location of the products. Additionally,
these solutions do not suggest any efficient approach to updating the location
of products when they are relocated, other than repeating the process used
to localize them in the first place. These challenges will be handled by the
answers to research questions RQ1 and RQ2, presented in Section 4.1.

3.2 In-Vehicle Presence Detection

As elaborated in Chapter 2, an important aspect of enabling future context-
aware services within public transportation is their ability to detecting the
in-vehicle presence of passengers with a very high degree of precision.

Early approaches to in-vehicle presence detection used Radio Frequency
Identification (RFID) in the form of active tags carried by passengers and
communications units installed in the vehicles. The active tags transmit
a signal detected by the on-board communication unit and thus the tags’
proximity to the unit could be used to infer in-vehicle presence. Approaches
using this solution were EasyRide [37], made by the Swiss Railways Associ-
ation and Allfa [36], made by Siemens VDO, Fraunhofer, GWT and VVO
in Dresden, Germany. Unfortunately, tests unveiled that these systems were
too unreliable to be used in practice. The authors of [37] attribute this to
the weak transmitter strengths of the RFID-tags. In order to combat this
weakness, they tried installing a vast number of receiver units in their vehi-
cles, however, even this did not improve the accuracy of in-vehicle presence
prediction sufficiently, e.g., the accuracy of Allfa was reported to being 68%.

An alternative to RFID for in-vehicle presence detection arose with the
advent of the technology Bluetooth Low Engery (BLE) in 2010. The solu-
tions using BLE build on the same core principle: The passengers are either
carrying a BLE transmitter propagating a signal which is received by on-
board equipment or, the other way around, an on-board BLE-transmitter
transmits signals that are received by devices carried by the passengers. In
contrast to the approaches using RFID, the BLE-based solutions can utilize
smartphones and their innate ability to both transmit and receive BLE sig-
nals. An early adopter of this approach was the solution proposed in [47], in
which the authors used BLE to detect the end-to-end trip of passengers on
public transport buses. Another interesting work was presented in [63]. The

3.2. IN-VEHICLE PRESENCE DETECTION 41

authors’ goal was to research whether BLE was applicable for Be-In/Be-Out
systems in public transportation in general. They conclude their research
with a cautious “yes”. However, they expressed concerns regarding the ac-
curacy of the solution in cases where people outside the vehicle could receive
the signal, e.g., people riding a bike or driving in a car next to the vehicle.

In contrast to the signal being too strong and thus being received by
people outside the vehicle, the authors of [50] found that objects and other
people will partly block or interfere with the BLE signal making the technol-
ogy less suitable for indoor localization. It is therefore reasonable to assume
similar problems can arise inside crowded vehicles.

The authors of [98] pose the question “Is Bluetooth Low Energy feasible
for mobile ticketing in urban passenger transport?” and conclude, from the
technology point of view, that it can be feasible. However, they also report
problems related to weak beacon signal reception at long distances and in
crowded stations and vehicles. In addition, some phone models and brands
were limiting the frequency at which the devices were searching for beacons,
negatively impacting the accuracy of the system.

A BLE-based solution called SEAT was proposed by the authors of [79],
using the BLE capabilities of smartphones together with devices installed in
vehicles to track the journeys of passengers in order to provide automatic
ticketing. However, the main contribution of their work was on various non-
functional demands such as security, performance and power consumption,
rather than focusing on the accuracy of the in-vehicle presence solution.

Even though several works are cautiously optimistic in regards to using
BLE-based approaches to in-vehicle presence detection, the potential for in-
accurate signal detection, both false positives and false negatives, seem to
make them inadequate as stand-alone solutions.

Some works, on the other hand, rely on the sensor events generated by
embedded smartphones, analysing them using some form of context reasoning
technique, and from this analysis directly or in-directly infer the in-vehicle
presence of passengers.

Several works use mathematical modelling as their context reasoning tech-
nique. An example is Hybrid-Baro [100], that proposes a sensor-based system
where the journey of the user inside a vehicle is inferred by using the Dymanic
Time Warping (DTW) correlation technique on the sensor event stream of
the barometer embedded in the users smartphone. In addition, in very flat
areas where the barometer might struggle, they fuse the barometer events
with GPS data in order to improve the accuracy of their solution. Another
approach using DTW in order to infer the travelled path of users from their
barometer trace is published in [39]. The authors demonstrate how the high
correlation between barometer sensor events and elevation data can be used

3.2. IN-VEHICLE PRESENCE DETECTION 42

to accurately track driving patterns. Their proposed solution can estimate
the possible routes that users have travelled with an accuracy of more than
80%. In [62], the authors present their work on a ticketless transportation
solution using features extracted from the passenger’s sensor events matched
against the corresponding features extracted from units installed in the ve-
hicle. They report in-vehicle presence detection accuracy of 84 to 98% from
experiments conducted in five bus-lines over more than 20 hours.

Other works rely on using machine learning techniques in order to in-
fer in-vehicle presence from sensor data. Using machine learning techniques
to infer contextual information from smartphone sensor data was surveyed
extensively by the authors of [95]. The survey investigates the use of deep
learning for sensor-based activity recognition in particular. The authors re-
port on the accuracy of human activity recognition using deep learning mod-
els such as CNN, RNN, Restricted Boltzman Machines, autoencoders, and
various combinations of CNNs and RNN. They conclude that deep learning
models outperform classical hand-crafted, pattern recognition algorithms in
all experiments. Furthermore, from a technical viewpoint, they state that
no one model is outperforming all others. On the contrary, they recommend
to try various models, and then select the one that is best suited to solve
the task. In RoadSphygmo [17], the authors propose an approach to detect
traffic congestion using Support Vector Machines (SVMs). VLD, proposed
by the authors in [96], provides vertical location detection for vehicles in
metropolises using SVMs.

Other works in this category focus on detecting the users mode of trans-
portation, i.e., Transport Mode Detection (TMD) using the sensor output of
the user’s smartphones. Works such as [93] demonstrate how the barometer
can be used to classify user activities such as riding or leaving a cable-car
using Bayesian networks, decision trees and RNNs. More advanced machine
learning models such as the Multimodal spectro-temporal resnet proposed by
the authors of [32] were able to recognize the six user activities Still, Walk,
Run, Bike, Car, Bus, Train, Subway, from sensor data generated by smart-
phones, with a F1-score of 94.9% on the Sussex-Huawei Locomotion(SHL)
dataset [31]. In [54], the authors propose a transportation mode detection
algorithm in the form of an 1-dimensional CNN, using as input 10.24 seconds
of a smartphone’s accelerometer data. This approach provides an accuracy
of 94.48%.

Summary
The important finding from the works presented in this section, is that the
accuracy of existing in-vehicle detection solutions is not good enough to be
used in practice. Even though the solutions using sensor event analytics

3.2. IN-VEHICLE PRESENCE DETECTION 43

through various machine learning based inference techniques promise a bet-
ter accuracy, it is still not at the level required to support next generation
context-aware services. For instance in automated ticketing, false negatives
will result in lost revenue, and false positives will result in user complaints,
thus it is imperative to provide a high in-vehicle presence detection accuracy.
Our solutions to research questions RQ3, RQ4, RQ5 and RQ6 aim to address
these challenges, see Section 4.1.

Chapter 4

Results

This chapter presents a summary of the included papers, their contributions
and how they relate to the research questions (RQs) posed in Section 1.1.
Figure 4.1 illustrate these relationships, i.e., the papers, their thesis contri-
butions and the research questions they answer.

4.1 Summary of the Papers

The papers are introduced in the order they were published. The first pa-
per describes a product localization algorithm for automated detection of
the location of products in a retail store. In the second paper, DeepMatch
is introduced, a deep learning model and design of an associated generic
distributed framework offering highly accurate in-vehicle presence detection
using smartphone sensors. This was followed by our third paper, published
in a high-impact journal: It introduces DeepMatch2, a comprehensive deep
learning-based approach for in-vehicle presence detection, in which multiple
enhancements to the second work was made. Moreover, this paper contains
a thorough discussion on travelling user inference systems. Our solution is
capable of inferring if and for which period of time a passenger makes a trip
in a public transport vehicle with a very low error rate. Finally, the fourth
paper included in this thesis presents Ataraxis, a deep learning approach for
hardwareless in-vehicle presence detection.

44

4.1. SUMMARY OF THE PAPERS 45

RQ1
Can the data captured by an RTLS of customers
moving through stores, together with their shopping
receipt, be used to infer the location of
the products?

RQ2
How can a product localization algorithm quickly
update its knowledge after a product it has already
located is moved?

Research Questions

Paper 1

TC 1
Introduces the product locator learning
algorithm. The algorithm infers the location of
products in a store by accumulating the
locations at which customers stop when picking
up products as well as the list of purchased
products.

Additionally it introduces an extension to the
algorithm: The Leaky Customer Score
Accumulation The extension improves the time
it takes for the product locator to recalculate the
position of a product after it has been moved.

Contributions

TC 2
Introduces DeepMatch, a highly accurate in-
vehicle presence prediction algorithm. The
algorithm uses a Siamese Neural Network to
match the sensor events generated by the
smartphone carried by a user against the sensor
events generated by an on-board reference unit
installed in the vehicles.

Paper 2

Paper 3

TC 3
Presents DeepMatch2, an extension of
DeepMatch, providing a even better in-vehicle
prediction accuracy whilst at the same time
reduces the size of its input by a factor of four.
Morover, it introduces a travelling user inference
system capable of inferring if and for which period
of time a passenger is travelling with a very low
error rate.

RQ3
Can the sensors of modern smartphones be used
to provide a highly accurate in-vehicle presence
detection system?

RQ4
How can a highly accurate in-vehicle presence
detection algorithm be built whilst at the same time
minimize the resource demands of the algorithm on
the user's smartphone ?

Paper 4

TC 4
Proposes Ataraxis, a solution to hardware-less
in-vehicle presence detection using a CNN for
user mode detection on smartphone sensor
data together with the GPS-trace of the user
and nearby public transport vehicles.

RQ6
How can in-vehicle presence detection be solved
without requiring the installation of additional
hardware in the vehicles of the Public
Transportation Authorities?

R
et

ai
l

Pu
bl

ic
 T

ra
ns

po
rt

RQ5
How can a highly accurate in-vehicle presence
detection algorithm be used to infer the time
period over which a passenger is traveling in a
vehicle?

Figure 4.1: The relationship between the domains, research questions(RQs),
thesis contributions(TCs) and the papers.

Paper 1

“Automated Product Localization Through Mobile Data Analysis”
Magnus Oplenskedal, Amir Taherkordi and Peter Herrmann
In: Proceedings of IEEE International Conference on Mobile Data Manage-
ment (MDM). (2019)

Summary

4.1. SUMMARY OF THE PAPERS 46

Product
Placement

Optimalisation

Mobile
Recommender

Systems

Indoor
Navigation
Assistance

Position of
User

Location of
Product

Product
Locator

Store-Specific
Cashier System

Items Purchased
by User

HAR RTLS

Activity Done
by User

Figure 4.2: The scope of the Product Locator: from processing customer
input data to potential applications (Paper 1)

In this paper, context reasoning in retail stores was explored. In particular,
our solution uses the data gathered from a user’s context to autonomously
detect the location of products in the store. The work presented in this paper
answers the research questions RQ1 and RQ2:

• RQ1: Can the data captured by an RTLS of customers moving through
stores, together with their shopping receipt, be used to infer the location
of the products?

• RQ2: How can a product localization algorithm quickly update its
knowledge after a product it has already located is moved?

Our approach uses two sets of data from each customer, i.e., the set of po-
sitions at which the customer stops while in the store, and the list of items
purchased. These sets are accumulated from a large number of customers.
Since customers have to walk to the locations of the products they purchase,
the accumulated sets can be used to reveal distinct correlations between
items and the places at which their buyers stop. These correlations can be
utilized to infer the positions of the goods. To realize this, a basic Customer
Score Accumulation learning algorithm was proposed. The algorithm first
accumulates customer data and thereafter infers the locations of the prod-
ucts, thus answering RQ1. Moreover, we introduced two extensions of the
algorithm (i.e., Leaky Customer Score Accumulation and Softmax-based In-
ference). Leaky Customer Score Accumulation is used to improve the time it

4.1. SUMMARY OF THE PAPERS 47

takes for the algorithm to recalculate the position of the products after they
have been relocated, effectively reducing the amount of data the learning
algorithm needs in order to re-calibrate to new product positions, providing
a solution to RQ2. Softmax-based Inference improves the algorithms ability
to infer product locations from the accumulated data.

To evaluate the proposed approach suitable simulation tools simulating
indoor stores and customers were developed. The tools were equipped with
the possibility to configure the size and layout of the stores, the number of
products and the number and frequency of customers using it. Additionally,
the tools provide the possibility to induce errors in the simulation.

Considering a significant number of errors in the customer data sets, e.g.,
customers randomly stopping without picking up products, the simulation-
based evaluation results show that 99.9% of 8,000 products in a typical large
Norwegian grocery store can be correctly localized after aggregating the data
of around 12,000 customer trips.

Contributions. The contributions of Paper 1 are summarized as follows:

• A learning algorithm for automated product localization using the lo-
cation at which customers stop when picking up products together with
the shopping receipt of the purchased products as inputs.

• Two extensions to the learning algorithm (i.e., Leaky Customer Score
Accumulation and Softmax-based Inference), improving position cal-
culation on relocated products, and improving the rate at which the
algorithm learns the location of products. This effectively reduces the
amount of data the algorithm needs to learn.

Paper 2

“DeepMatch: Deep Matching for In-Vehicle Presence Detection in Trans-
portation”
Magnus Oplenskedal, Amir Taherkordi and Peter Herrmann
Published: July 2020
In: Proceedings of ACM International Conference on Distributed and Event-
Based Systems (DEBS).(2020)

Summary
In this paper, DeepMatch is proposed as a solution to in-vehicle presence
detection. The work answers the research questions RQ3 and RQ4:

• RQ3: Can the sensors of modern smartphones be used to provide a
highly accurate in-vehicle presence detection system?

4.1. SUMMARY OF THE PAPERS 48

P1 P2 P3

tn tn tn

Reference
device

tn

Server

Figure 4.3: A sample scenario presenting DeepMatch(2) (Paper 2 and 3)

• RQ4: How can a highly accurate in-vehicle presence detection algo-
rithm be built whilst at the same time minimize the resource demands
of the algorithm on the user’s smartphone (e.g., computation, battery
consumption, data transmission, etc.)?

The work proposes a highly autonomous solution that can detect in-
vehicle presence with a very high degree of precision. The approach relies on
equipping vehicles with a reference device (e.g., an Android phone) support-
ing the ability to deduce the presence of passengers in the vehicle based on
the similarity between the data gathered by sensors of the device and those
registered by the sensors of the passengers’ smartphones. The approach uti-
lizes a deep learning model to verify the in-vehicle presence of a passenger.
The model is created from two Stacked Convolutional Autoencoders (CAE),
configured in a Siamese Architecture. The CAEs are used for feature extrac-
tion and dimensionality reduction, whilst similarity detection is performed
by a fully connected deep neural network. The model is trained on real data
traces gathered by a group of volunteers traveling 160 unique public transport
trips. Evaluation results show that the statistical accuracy of DeepMatch is
0.978 for in-vehicle presence detection, providing an answer to RQ3.

Furthermore, the paper shows extensive testing on different input combi-
nations, i.e., varying which sensors are used as input to the inference algo-
rithm. Moreover, it presents experiments on segment sizes, i.e., the length of
the input data, and illustrates its feasibility for practical use through exten-
sive testing on the computational overhead and power consumption of the
approach when run on used smartphones from various brands and with a
wide age range, answering RQ4.
Contributions. The contributions of this paper are as follows:

4.1. SUMMARY OF THE PAPERS 49

• A novel, distributed framework, for in-vehicle presence detection with
a very high degree of precision.

• Thorough evaluation using real data gathered by volunteers traveling
in public transport.

• Extensive testing on the optimal choice of sensors, and sensor data
lengths.

• Extensive testing on computational overhead and power consumption
of the approach, when used on user’s smartphones.

Paper 3

“DeepMatch2: A Comprehensive Deep Learning-based Approach for In-
Vehicle Presence Detection”
Magnus Oplenskedal, Peter Herrmann and Amir Taherkordi
In: Information Systems Journal. (2021)

Encoded Data (8)

tn

Sensor Events
(128)

Encoded Data (8)

tn

Sensor Events
(128)

Passenger Phone Reference Device

Server

In-Vehicle Presence Detection

Figure 4.4: Overview of the DeepMatch(2) distributed framework

Summary
The third paper of this thesis presents DeemMatch2, an extension of the work
done in Paper 2. The work improved on the answers that Paper 2 proposed
for RQ3 and RQ4, and provided an answer to RQ5. In this paper several
improvements were done to the deep learning model proposed in Paper 2.
Changes were made to the structure of the Convolutional Autoencoders, the
way the latent data from the two autoencoders were concatenated before the
data was fed to the matching module, and lastly, the layers of the matching
module was changed from dense to convolutional layers. These changes made

4.1. SUMMARY OF THE PAPERS 50

it possible for the model to increase its statistical accuracy from 0.9781 to
0.9851, and at the same time reduce the amount of data it needs to perform
in-vehicle presence prediction from 512 to 128 barometer events, improving
the answers posed to RQ3 and RQ4.

The paper also goes deep into the topic of using the output from the deep
learning model to infer the duration of a passengers trip in public transport
with a very low error rate, in order to answer RQ5.

Contributions. The summarized contributions of this paper are as follows:

• Improved efficiency by reducing the amount of data necessary for in-
vehicle presence detection by a factor of four.

• In spite of the considerable reduction of the size of the input, the ac-
curacy of DeepMatch2 was improved to 98.51% in comparison to the
accuracy value of 97.81% in DeepMatch.

• Trip inference systems were thoroughly investigated and it showed how
DeepMatch2 would be used to infer if and for which period of time a
passenger is making a trip in a public transport vehicle.

• Finally, an in-depth description on how the accuracy of such an infer-
ence algorithm can be found theoretically was presented, as well as how
the result of these calculations can be used to fine tune the parameters
of such an algorithm in order to achieve a extremely low error rate.

Paper 4

“Ataraxis: A Deep Learning Approach for Hardwareless In-Vehicle Presence
Detection”
Magnus Oplenskedal, Amir Taherkordi and Peter Herrmann
In: Proceedings of International Conference on Cognitive Machine Intelli-
gence (CogMI). (2021)
Summary
In the fourth and final paper of this thesis research question RQ6 was inves-
tigated:

RQ6: How can the issue of in-vehicle presence detection be solved with-
out requiring the installation of additional hardware in the vehicles of the
Public Transportation Authorities?

In contrast to the solutions presented in Papers 2 and 3, the solution
proposed in this paper does not rely on the installation of any additional

4.1. SUMMARY OF THE PAPERS 51

User Modes

Mode
Detection

Mode
Prediction

Car

Public Transport

Walking

Bike

Figure 4.5: The different user modes Ataraxis is capable of recognizing

hardware in the vehicles. Instead, it presumes the presence of some external
service providing the real-time and historical geolocation of the vehicles. In
Norway, the government-funded organization Entur [22] has set strict reg-
ulations and requirements to what kind of hardware all vehicles operated
by the public transport authorities have to be equipped with. One of these
requirements is that all vehicles should submit real-time data to the publicly
available Entur API [23] based on the SIRI 2.0 standard [86]. The SIRI stan-
dard includes the real-time location of the vehicle, and as such, all vehicles
operated by public transportation providers in Norway are equipped with
GPS. In Ataraxis, a solution to hardware-less in-vehicle presence detection
is proposed, utilizing a novel deep convolutional neural network. The model
was trained on a dataset collected by volunteers performing the four user
modes “walking”, “riding a bike”, “driving a car”, and “traveling in public
transport”. From this, Ataraxis can recognize whether the carrier of a smart-
phone is inside a public transport vehicle or not. If the user is assumed to
be inside a public transport vehicle, the trace of their position can be com-
pared with those of the vehicles in their vicinity using the Entur API [23] or
similar services. Finally, this information can be used to infer which public
transport vehicle the user is traveling in, answering research question RQ6.
However, only the transport mode detection model is included in this paper,
while the alignment of the user and vehicle GPS traces are work to be done
in the future.

The proposed deep learning model achieved an accuracy of 98.69% when
predicting the user mode of users from 12.8 seconds of data generated by
the magnetometer, gyroscope, and accelerometer sensors typically found in

4.2. COMPLEMENTARY ASPECTS 52

modern smartphones. Additionally, the paper shows the results of extensive
empirical experiments on important non-functional aspects of the solution
such as the size of the input data of the model, which sensors data yield the
highest accuracy, and the energy consumption and CPU overhead when run
on smartphones.

Contributions. The contributions of this paper can be summarized as
follows:

• A deep learning model for highly accurate transport mode detection
using the embedded sensors in user’s smartphones.

• The results from testing on the optimal choice of sensors, and sensor
data lengths.

• The results from testing showing that Ataraxis incurs an negligible com-
putational overhead and power consumption on user’s smartphones.

4.2 Complementary Aspects

Besides answering the research questions posed in this thesis, some comple-
mentary aspects were also discovered. We did not answer them because they
are out of the scope of this work. Nonetheless, they are important aspects
worth mentioning as descried below.

When it comes to the work carried out in Paper 1 on the product locator,
the simulation tools used to train and evaluate the proposed approach simu-
lates only the expected output from customers moving through a store. These
stores are, in general, represented by a two-dimensional array of locations in
which a pre-defined number of products could reside. An interesting further
development of this approach could be to create more realistic digital envi-
ronments in which the virtual customers actually walk through the store. For
instance, some retail stores are rectangular with tall, long shelves, whereas
others are more quadratic, with lower, smaller shelves. These configurations
affect the way customers move through the environment and can influence the
precision and learning rate of the algorithm. Furthermore, improvements to
the simulation of virtual customers can provide various customer behaviours
such as hasty purchases after work or strolling through the store at a leisurely
pace while trying to discover something new.

Regarding the work performed in Paper 4, on a hardware-less in-vehicle
presence detection approach, further work can be done on the actual trip
detection algorithm. Ataraxis provides a transport mode detection deep

4.2. COMPLEMENTARY ASPECTS 53

learning model, and outlines an algorithm for trip detection, however, finding
an optimal way of providing trip detection using GPS trace matching is an
interesting research topic that deserves attention.

Another aspect related to the work in this thesis, is the preservation
of privacy concerns for the users data. As it is the case for most context-
aware services, all approaches proposed in this thesis rely on contextual data
regarding the user for providing services. Gathering this data can potentially
breach the privacy and data security of the users, and thus finding solutions
to this can be an interesting research topic. A solution to this problem is
using Federated Learning [46] in order to train the machine learning models
used for context reasoning. Federated learning is a technique to train the
machine learning model across many decentralized devices at ones. Within
each device, a local model is trained on a small dataset only persisted in
the device. Then, at a certain frequency, the parameters, i.e., the weights of
the neural network, are transmitted from the devices, to a central server, in
order to create a global model. This way, it is possible to train one model
on all of the distributed data while still keeping the data decentralized and
never shared with the central server. Thus, this addresses critical issues such
as access rights, privacy and data security.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

The rapid evolution of mobile technologies, IoT and cellular network infras-
tructures in combination with the mass adoption of smartphones (i.e., 6.64
billion people in the world own one [5], equal to 83.89% of all people on
earth), has set the stage for the development of new types of context-aware
services. These services sense the users environment, lean new knowledge
from it and use these new insights to provide the user with usable content,
functions and experiences. A sub-set of these services use the location of
the user as a key source of input, so-called location-aware services. Cen-
tral to these services is that they depend on a high degree of precision and
sophistication in their input. Additionally, since these services rely on the
computational capabilities of the user’s smartphone, it is important to al-
ways consider the impact the services have on non-functional requirements
such as power consumption, CPU-overhead and data-transmission.

Through a thorough related work investigation and collaborations with
the industrial and research partners of the project, it was uncovered that
the finesse and accuracy of many of these services are inadequate. In con-
sequence, they cannot be used in practice. This guided us to to define the
main research focus of this Ph.D. thesis as follows:
To conduct applied research and develop design concepts, software frame-
works, and algorithms to utilize the real-time position, and sensor data from
smartphones in order to improve the intelligence and quality of context-aware
services that are directly or indirectly location-dependent.

We derived the six research questions introduced in Section 1.1 from this
objective. The results and contributions achieved in the work answering the
research questions can be summarized as follows:

54

5.1. CONCLUSIONS 55

• The Product Locator: A learning algorithm for the automatic detec-
tion of location of products in stores. The key information for mobile
recommender services is the location of the user and the location of the
suggested point of interest or product. The location of users can be
provided using Real-Time Location Systems (RTLS). However, a reli-
able, efficient and automatic way of locating the products was missing
before. The learning model proposed in this work solves this issue. It
provides the location of the products using as input the aggregated tra-
jectory of users moving through the store together with the shopping
receipts generated by a typical cashier system.

• DeepMatch: A deep learning-based distributed framework for in-vehicle
presence detection of users in public transport. A key feature of context-
aware services, e.g., for automated ticketing (Be-In/Be-Out) in public
transport is the in-vehicle presence detection of passengers. DeepMatch
provides a solution to this coveted mobile context with a very high
accuracy such that is can be used in practice. Moreover, the system
does not impact the computational capabilities and battery of the users
smartphone negatively, such that there is high probability that it will
be accepted by the users.

• DeepMatch2: An extension to DeepMatch, further improving the accu-
racy of the in-vehicle presence detection while at the same time reducing
the amount of data it needs to do so by a factor of four. Furthermore, a
travelling inference system building on the DeepMatch learning model
for accurately detecting the start, end, and duration of whole trips for
passenger travelling in public transport with an extremely low error
rate is proposed.

• Ataraxis: A deep learning based solution to hardware-less in-vehicle
presence prediction of passengers. This approach offers the ability to
perform in-vehicle presence prediction also in cases, where the installa-
tion of hardware in the vehicles is not possible, such that solutions such
as DeepMatch and DeepMatch2 cannot be used. Ataraxis proposes an
system based on a convolutional neural network (CNN) trained to de-
tect the transportation mode of a user from the sensor output of the
user’s smartphone. The work also shows how this can be achieved with-
out imposing too much strain on the user’s smartphone and draining
its battery.

5.2. FUTURE WORK 56

5.2 Future Work

To conclude Part 1 of this thesis, some future research directions related to
the contributions of this work will be presented.

Currently the product locator proposed in this thesis is able to provide
the (x, y) coordinates for the product based on where the customer stops,
i.e., 2D product localization. In most retail stores, however, many products
are also distributed along the z axis, they are placed vertically on different
shelves. Hence, an interesting research topic would be to find a solution to
the detection of the z coordinate of the product, i.e., the shelf the product
is located on. In other word, the extended system shall provide 3D product
localization. To achieve that, one has to answer the question whether it is
possible to detect the actions standing, bending and reaching from the output
of the smartphones’ sensors such that it should be able to infer which shelf
the product was on.

Another interesting research direction is the possibility of creating an
efficient, automatic infection-tracing algorithm using the matching capabil-
ities of the DeepMatch deep learning model together with some clustering
algorithms. The learning model of DeepMatch is tailor made to predict the
in-vehicle presence of a passenger with a very high precision by matching
the barometer events generated by his/her phone against the correspond-
ing data generated by a reference unit installed in the vehicle. Instead of
matching the data from a user against a fixed reference device, it can also
be matched against the data created by other users at the same time. This
would allow us to build temporal clusters, to which two or more users belong
if they stay in the same vehicle at the same time. Then, if one of the users
were infected with some pathogen, other users that participated in the same
temporal-clusters as this user, can be informed. Such a system would have
proven very helpful in the COVID19 pandemic.

Finally, the event matching capabilities of DeepMatch opens a new hori-
zon for future event-based systems in which the similarity between events
is not clearly and easily visible, implying that the sate-of-the-art matching
techniques would not applicable. For instance, a system comparing the en-
ergy consumption between inhabitants in a neighborhood. The output of
these comparisons (i.e., matching) can be used to provide customized in-
telligent offers to a category of consumers (i.e., consumer classification), or
categorised recommendations on how to use energy in different hours to re-
duce the overall cost. The DeepMatch learning model proposed in this thesis
can provide a good basis for meeting event matching requirements in systems
where streams of data should be compared intelligently and efficiently.

Bibliography

[1] Uzair Ahmad, Andrey Gavrilov, Uzma Nasir, Mahrin Iqbal, Seong Jin
Cho, and Sungyoung Lee. In-building localization using neural net-
works. In 2006 IEEE International Conference on Engineering of In-
telligent Systems, pages 1–6. IEEE, 2006.

[2] Zeeshan Ahmad and Naimul Khan. Cnn-based multistage gated aver-
age fusion (mgaf) for human action recognition using depth and inertial
sensors. IEEE Sensors Journal, 21(3):3623–3634, 2020.

[3] Fadi Al Machot, Heinrich C Mayr, and Suneth Ranasinghe. A hy-
brid reasoning approach for activity recognition based on answer set
programming and dempster–shafer theory. In Recent Advances in Non-
linear Dynamics and Synchronization, pages 303–318. Springer, 2018.

[4] Linas Baltrunas, Marius Kaminskas, Bernd Ludwig, Omar Mol-
ing, Francesco Ricci, Aykan Aydin, Karl-Heinz Lüke, and Roland
Schwaiger. Incarmusic: Context-aware music recommendations in a
car. In International conference on electronic commerce and web tech-
nologies, pages 89–100. Springer, 2011.

[5] BankMyCell. How Many Smartphones are in the World? https://

www.bankmycell.com/blog/how-many-phones-are-in-the-world,
2022. Accessed: 2022-02-22.

[6] BeiDou. BeiDou (Global Navigation Satellite Systems). http://en.

beidou.gov.cn/SYSTEMS/System/. Accessed: 2022-02-22.

[7] Samuel Berlemont, Grégoire Lefebvre, Stefan Duffner, and Christophe
Garcia. Class-balanced siamese neural networks. Neurocomputing,
273:47–56, 2018.

[8] Oliver Brdiczka, James L. Crowley, and Patrick Reignier. Learning
situation models in a smart home. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 39(1):56–63, 2009.

57

BIBLIOGRAPHY 58

[9] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and
Roopak Shah. Signature verification using a” siamese” time delay neu-
ral network. Advances in neural information processing systems, 6,
1993.

[10] Thomas Chatzidimitris, Damianos Gavalas, Vlasios Kasapakis, Char-
alampos Konstantopoulos, Damianos Kypriadis, Grammati Pantziou,
and Christos Zaroliagis. A location history-aware recommender system
for smart retail environments. Personal and Ubiquitous Computing,
24(5):683–694, 2020.

[11] Chia-Chen Chen, Tien-Chi Huang, James J. Park, and Neil Y.
Yen. Real-time Smartphone Sensing and Recommendations towards
Context-awareness Shopping. Multimedia Systems, 21:61–72, 2015.

[12] Liming Chen and Chris Nugent. Ontology-based activity recognition
in intelligent pervasive environments. International Journal of Web
Information Systems, 2009.

[13] Heeryon Cho and Sang Min Yoon. Divide and conquer-based 1d
cnn human activity recognition using test data sharpening. Sensors,
18(4):1055, 2018.

[14] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity
metric discriminatively, with application to face verification. In 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), volume 1, pages 539–546. IEEE, 2005.

[15] Fu-Kai Chuang, Syu-Siang Wang, Jeih-weih Hung, Yu Tsao, and Shih-
Hau Fang. Speaker-aware deep denoising autoencoder with embedded
speaker identity for speech enhancement. In Interspeech, pages 3173–
3177, 2019.

[16] Enric Corona, Albert Pumarola, Guillem Alenya, and Francesc
Moreno-Noguer. Context-aware human motion prediction. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6992–7001, 2020.

[17] A. Dimri, H. Singh, N. Aggarwal, B. Raman, D. Bansal, and K. K.
Ramakrishnan. RoadSphygmo: Using Barometer for Traffic Conges-
tion Detection. In 8th Inter. Conf. on Communication Systems and
Networks (COMSNETS), 2016.

BIBLIOGRAPHY 59

[18] K. Dong, H. Ye, W. Wu, M. Yang, Z. Ling, and W. Yu. Canoe: An
Autonomous Infrastructure-Free Indoor Navigation System. Sensors
(Basel), 17(5):996, 2017.

[19] Charalampos Doukas, Ilias Maglogiannis, Philippos Tragas, Dimitris
Liapis, and Gregory Yovanof. Patient fall detection using support vec-
tor machines. In IFIP international conference on artificial intelligence
applications and innovations, pages 147–156. Springer, 2007.

[20] J Du Toit, R Davimes, A Mohamed, K Patel, and JM Nye. Customer
segmentation using unsupervised learning on daily energy load profiles.
Journal of Advances in Information Technology Vol, 7(2):69–75, 2016.

[21] Alexandros Efthymiou, Emmanouil N. Barmpounakis, Dimitrios
Efthymiou, and Eleni I. Vlahogianni. Transportation mode detection
from low-power smartphone sensors using tree-based ensembles. Jour-
nal of Big Data Analytics in Transportation, 1(1), 2019.

[22] Entur. About entur. https://om.entur.no/bedrift/om-entur,
2021. Accessed: 2021-10-07.

[23] Entur. Entur API. https://developer.entur.org, 2021. Accessed:
2021-10-07.

[24] Bing Fang, Shaoyi Liao, Kaiquan Xu, Hao Cheng, Chen Zhu, and
Huaping Chen. A novel mobile recommender system for indoor shop-
ping. Expert Systems with Applications, 39(15):11992–12000, 2012.

[25] Jesus Favela, Monica Tentori, Luis A Castro, Victor M Gonzalez,
Elisa B Moran, and Ana I Mart́ınez-Garćıa. Activity recognition for
context-aware hospital applications: issues and opportunities for the
deployment of pervasive networks. Mobile Networks and Applications,
12(2):155–171, 2007.

[26] Tao Feng and Harry J P Timmermans. Comparison of Advanced Impu-
tation Algorithms for Detection of Transporation Mode and Activity
Episode using GPS Data. Transportation Planning and Technology,
39(2), 2016.

[27] Forkbeard Tech. https://forkbeardtech.com/. Accessed: 2022-01-
15.

[28] Manish Gajjar. Mobile sensors and context-aware computing. Morgan
Kaufmann, 2017.

BIBLIOGRAPHY 60

[29] Galileo. Galileo (Global Navigation Satellite Systems). https://www.
gsc-europa.eu/galileo/what-is-galileo. Accessed: 2022-02-22.

[30] Geocaching. https://www.geocaching.com. Accessed: 2022-01-15.

[31] Hristijan Gjoreski, Mathias Ciliberto, Lin Wang, Francisco Javier Or-
donez Morales, Sami Mekki, Stefan Valentin, and Daniel Roggen. The
university of sussex-huawei locomotion and transportation dataset for
multimodal analytics with mobile devices. IEEE Access, 6:42592–
42604, 2018.

[32] Martin Gjoreski, Vito Janko, Gašper Slapničar, Miha Mlakar, Nina
Reščič, Jani Bizjak, Vid Drobnič, Matej Marinko, Nejc Mlakar, Mitja
Luštrek, et al. Classical and deep learning methods for recognizing
human activities and modes of transportation with smartphone sensors.
Information Fusion, 62:47–62, 2020.

[33] GLONASS. GLONASS (Global Navigation Satellite Systems). https:
//www.glonass-iac.ru/en/about_glonass/. Accessed: 2022-02-22.

[34] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

[35] Google Maps. https://www.google.no/maps/. Accessed: 2022-01-15.

[36] T. Gründel, H. Lorenz, and K. Ringat. The ALLFA Ticket in Dresden.
Practical Experience of Fare Management Based on Be-In/Be-Out &
Automatic Fare Calculation. IPTS Conference, Seoul, South Korea,
2006.

[37] T. Gyger and O. Desjeux. EasyRide: Active Transponders for a Fare
Collection System. IEEE Micro, 21(6), 2001.

[38] Samuli Hemminki, Petteri Nurmi, and Sasu Tarkoma. Accelerometer-
based Transportation Mode Detection on Smartphones. In 11th ACM
Conference on Embedded Networked Sensor Systems, 2013.

[39] Bo-Jhang Ho, Paul Martin, Prashanth Swaminathan, and Mani Sri-
vastava. From Pressure to Path: Barometer-based Vehicle Tracking.
In 2nd ACM Inter. Conf. on Embedded Systems for Energy-Efficient
Built Environments (BuildSys), Seoul, South Korea, 2015.

[40] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and James
Collins. Global positioning system: theory and practice. Springer Sci-
ence & Business Media, 2012.

BIBLIOGRAPHY 61

[41] Jhih-Yuan Huang, Wei-Po Lee, and Tsu-An Lin. Developing context-
aware dialoguing services for a cloud-based robotic system. IEEE ac-
cess, 7:44293–44306, 2019.

[42] Gerrit Kahl, Lübomira Spassova, Johannes Schöning, Sven Gehring,
and Antonio Krüger. Irl smartcart-a user-adaptive context-aware in-
terface for shopping assistance. In Proceedings of the 16th international
conference on Intelligent user interfaces, pages 359–362, 2011.

[43] ASM Kayes, Wenny Rahayu, Tharam Dillon, Elizabeth Chang, and
Jun Han. Context-aware access control with imprecise context char-
acterization through a combined fuzzy logic and ontology-based ap-
proach. In OTM Confederated International Conferences” On the Move
to Meaningful Internet Systems”, pages 132–153. Springer, 2017.

[44] Inayat Khan, Shah Khusro, Shaukat Ali, and Jamil Ahmad. Sensors
are power hungry: An investigation of smartphone sensors impact on
battery power from lifelogging perspective. Bahria University Journal
of Information & Communication Technologies (BUJICT), 9(2), 2016.

[45] Ting Loong Khor. Personal Shopping Assistant. PhD thesis, UTAR,
2016.

[46] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning:
Strategies for improving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

[47] V. Kostakos, T. Camacho, and C. Mantero. Wireless detection of end-
to-end passenger trips on public transport buses. In 13th IEEE Inter-
national Conference on Intelligent Transportation Systems, 2010.

[48] Aansi A Kothari and Warish D Patel. A novel approach towards con-
text based recommendations using support vector machine methodol-
ogy. Procedia Computer Science, 57:1171–1178, 2015.

[49] Sriharsha Kuchimanchi. Bluetooth low energy based ticketing systems.
Master’s thesis, Aalto University, Espoo, Finland, 2015.

[50] Andrzej Kwiecień, Micha l Maćkowski, Marek Kojder, and Maciej
Manczyk. Reliability of Bluetooth Smart Technology for Indoor Local-
ization System. In Inter. Conf. on Computer Networks (CN). Springer,
2015.

BIBLIOGRAPHY 62

[51] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for im-
ages, speech, and time series. The handbook of brain theory and neural
networks, 3361(10):1995, 1995.

[52] Ching-Hung Lee, Yu-Hui Wang, and Amy JC Trappey. Ontology-
based reasoning for the intelligent handling of customer complaints.
Computers & Industrial Engineering, 84:144–155, 2015.

[53] Fabŕıcio DA Lemos, R Carmo, Windson Viana, and R Andrade. To-
wards a context-aware photo recommender system. In Context-aware
recommender system workshops, 2012.

[54] Xiaoyuan Liang and Guiling Wang. A convolutional neural network
for transportation mode detection based on smartphone platform. In
2017 IEEE 14th international conference on mobile Ad Hoc and sensor
systems (MASS), pages 338–342. IEEE, 2017.

[55] Xiaoyuan Liang, Yuchuan Zhang, Guiling Wang, and Songhua Xu.
A deep learning model for transportation mode detection based on
smartphone sensing data. IEEE Trans. on Intelligent Transportation
Systems, 21(12), 2019.

[56] Jing Liao, Yaxin Bi, and Chris Nugent. Using the dempster–shafer
theory of evidence with a revised lattice structure for activity recogni-
tion. IEEE Transactions on Information Technology in Biomedicine,
15(1):74–82, 2010.

[57] Yuzhong Lin, Joran Jessurun, Bauke de Vries, and Harry Timmermans.
Motivate: Context aware mobile application for activity recommenda-
tion. In International Joint Conference on Ambient Intelligence, pages
210–214. Springer, 2011.

[58] Sonal Linda and Kamal Kant Bharadwaj. A decision tree based
context-aware recommender system. In International Conference on
Intelligent Human Computer Interaction, pages 293–305. Springer,
2018.

[59] Seng Loke. Context-aware pervasive systems: architectures for a new
breed of applications. CRC Press, 2006.

[60] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber.
Stacked convolutional auto-encoders for hierarchical feature extraction.
In International conference on artificial neural networks, pages 52–59.
Springer, 2011.

BIBLIOGRAPHY 63

[61] Merryn J Mathie, Branko G Celler, Nigel H Lovell, and Adelle CF
Coster. Classification of basic daily movements using a triaxial ac-
celerometer. Medical and Biological Engineering and Computing,
42(5):679–687, 2004.

[62] R. Meng, D. W. Grömling, R. R. Choudhury, and S. Nelakuditi.
RideSense: Towards Ticketless Transportation. In 2016 IEEE Vehicu-
lar Networking Conference (VNC), 2016.

[63] W. Narzt et al. Be-In/Be-Out with Bluetooth Low Energy: Implicit
Ticketing for Public Transportation Systems. In IEEE 18th Intr. Conf.
on Intelligent Transportation Systems, 2015.

[64] Wolfgang Narzt, Stefan Mayerhofer, Otto Weichselbaum, Stefan
Haselböck, and Niklas Höfler. Be-in/be-out with bluetooth low energy:
Implicit ticketing for public transportation systems. In 2015 IEEE 18th
International Conference on Intelligent Transportation Systems, pages
1551–1556. IEEE, 2015.

[65] Tim W Nattkemper and Axel Wismüller. Tumor feature visualiza-
tion with unsupervised learning. Medical Image Analysis, 9(4):344–351,
2005.

[66] Nintento. Pokemon Go. https://pokemongolive.com/. Accessed:
2022-01-15.

[67] Oura. Oura. https://ouraring.com/, 2019. Accessed: 2022-02-22.

[68] Shwetak N Patel, Thomas Robertson, Julie A Kientz, Matthew S
Reynolds, and Gregory D Abowd. At the flick of a switch: Detecting
and classifying unique electrical events on the residential power line
(nominated for the best paper award). In International Conference on
Ubiquitous Computing, pages 271–288. Springer, 2007.

[69] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir
Chatterjee. A design science research methodology for information sys-
tems research. Journal of management information systems, 24(3):45–
77, 2007.

[70] Charith Perera, Arkady Zaslavsky, Peter Christen, and Dimitrios Geor-
gakopoulos. Context aware computing for the internet of things: A sur-
vey. IEEE Communications Surveys Tutorials, 16(1):414–454, 2014.

BIBLIOGRAPHY 64

[71] Schalk Wilhelm Pienaar and Reza Malekian. Human activity recogni-
tion using lstm-rnn deep neural network architecture. In 2019 IEEE
2nd wireless africa conference (WAC), pages 1–5. IEEE, 2019.

[72] Elias Pimenidis, Nikolaos Polatidis, and Haralambos Mouratidis. Mo-
bile recommender systems: Identifying the major concepts. Journal of
Information Science, 45(3):387–397, 2019.

[73] Purohit, A., Sun, Z., Pan, S., Zhang, P. Sugartrail: Indoor Navigation
in Retail Environments without Surveys and Maps. In 10th annual
IEEE Communications Society Conference on Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), pages 300–308, 2013.

[74] Nafiul Rashid, Berken Utku Demirel, and Mohammad Abdullah
Al Faruque. Ahar: Adaptive cnn for energy-efficient human activ-
ity recognition in low-power edge devices. IEEE Internet of Things
Journal, 2022.

[75] Sasank Reddy, Min Mun, Jeff Burke, Deborah Estrin, Mark Hansen,
and Mani Srivastava. Using Mobile Phones to Determine Transporta-
tion Modes. ACM Transactions on Sensor Networks (TOSN), 6(2),
2010.

[76] Tuukka Ruotsalo, Krister Haav, Antony Stoyanov, Sylvain Roche,
Elena Fani, Romina Deliai, Eetu Mäkelä, Tomi Kauppinen, and Eero
Hyvönen. Smartmuseum: A mobile recommender system for the web
of data. Journal of Web Semantics, 20:50–67, 2013.

[77] Norma Saiph Savage, Maciej Baranski, Norma Elva Chavez, and Tobias
Höllerer. I’m feeling loco: A location based context aware recommen-
dation system. In Advances in Location-Based Services, pages 37–54.
Springer, 2012.

[78] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoen-
coders with nonlinear dimensionality reduction. In Proceedings of the
MLSDA 2014 2nd workshop on machine learning for sensory data anal-
ysis, pages 4–11, 2014.

[79] C. Sarkar, J. J. Treurniet, S. Narayana, R. V. Prasad, and W. de Boer.
SEAT: Secure Energy-Efficient Automated Public Transport Ticketing
System. IEEE Transactions on Green Communications and Network-
ing, 2(1), 2018.

BIBLIOGRAPHY 65

[80] Faouzi Sebbak, Farid Benhammadi, Abdelghani Chibani, Yacine
Amirat, and Aicha Mokhtari. Dempster–shafer theory-based hu-
man activity recognition in smart home environments. annals of
telecommunications-annales des télécommunications, 69(3):171–184,
2014.

[81] Glenn Shafer. A mathematical theory of evidence, volume 42. Princeton
university press, 1976.

[82] Aman Shenoy and Ashish Sardana. Multilogue-net: A context aware
rnn for multi-modal emotion detection and sentiment analysis in con-
versation. arXiv preprint arXiv:2002.08267, 2020.

[83] Moonsun Shin, Woojin Paik, Byungcheol Kim, and Seonmin Hwang.
An iot platform with monitoring robot applying cnn-based context-
aware learning. Sensors, 19(11):2525, 2019.

[84] Diogo Vińıcius de Sousa Silva, Renato de Santana Silva, and Fred-
erico Araújo Durão. Recstore: Recommending stores for shopping mall
customers. In Proceedings of the 23rd Brazillian Symposium on Multi-
media and the Web, pages 117–124, 2017.

[85] Nikhil Kumar Singh and Koduru Sriranga Suprabhath. Har using bi-
directional lstm with rnn. In 2021 International Conference on Emerg-
ing Techniques in Computational Intelligence (ICETCI), pages 153–
158. IEEE, 2021.

[86] SIRI. SIRI Standard. http://www.transmodel-cen.eu/standards/

siri/, 2020. Accessed: 2020-10-07.

[87] Timothy Sohn, Alex Varshavsky, Anthony LaMarca, Mike Y. Chen,
Tanzeem Choudhury, Ian Smith, Sunny Consolvo, Jeffrey Hightower,
William G. Griswold, and Eyal de Lara. Mobility Detection using Ev-
eryday GSM Traces. In International Conference on Ubiquitous Com-
puting. Springer, 2006.

[88] Statista. Mobile Gaming Statistics. https://www.statista.com/

topics/1906/mobile-gaming/#dossierKeyfigures. Accessed: 2022-
01-15.

[89] Akara Supratak, Hao Dong, Chao Wu, and Yike Guo. DeepSleepNet: A
Model for Automatic Sleep Stage Scoring based on Raw Single-channel
EEG. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, 25(11), 2017.

BIBLIOGRAPHY 66

[90] Punnarumol Temdee and Ramjee Prasad. Context-aware communica-
tion and computing: Applications for smart environment. Springer,
2018.

[91] Kia Teymourian, Olga Streibel, Adrian Paschke, Rehab Alnemr, and
Christoph Meinel. Towards semantic event-driven systems. In 2009 3rd
International Conference on New Technologies, Mobility and Security,
pages 1–6. IEEE, 2009.

[92] Moshe Unger. Latent context-aware recommender systems. In Pro-
ceedings of the 9th ACM Conference on Recommender Systems, pages
383–386, 2015.

[93] Salvatore Vanini, Francesca Faraci, Alan Ferrari, and Silvia Giordano.
Using Barometric Pressure Data to Recognize Vertical Displacement
Activities on Smartphones. Computer Communications, 87, 2016.

[94] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol. Extracting and composing robust features with denoising
autoencoders. In Proceedings of the 25th international conference on
Machine learning, pages 1096–1103, 2008.

[95] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha
Hu. Deep Learning for Sensor-based Activity Recognition: A Survey.
CoRR, arXiv:1707.03502:10 pages, 2017.

[96] X. Wang, L. Kong, T. Wei, L. He, G. Chen, J. Wang, and C. Xu. Vld:
Smartphone-assisted vertical location detection for vehicles in urban
environments. In 2020 19th ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN), 2020.

[97] Xiao Hang Wang, D Qing Zhang, Tao Gu, and Hung Keng Pung.
Ontology based context modeling and reasoning using owl. In IEEE
annual conference on pervasive computing and communications work-
shops, 2004. Proceedings of the second, pages 18–22. Ieee, 2004.

[98] Bartosz Wieczorek and Aneta Poniszewska-Marańda. Towards the cre-
ation of be in/be out model for smart city with the use of internet
of things concepts. In International Conference on Service-Oriented
Computing, pages 156–167. Springer, 2019.

[99] Roel Wieringa. Design science as nested problem solving. In Proceed-
ings of the 4th international conference on design science research in
information systems and technology, pages 1–12, 2009.

BIBLIOGRAPHY 67

[100] M. Won, A. Mishra, and S. H. Son. HybridBaro: Mining Driving
Routes Using Barometer Sensor of Smartphone. IEEE Sensors Journal,
17(19), 2017.

[101] Shuochao Yao, Shaohan Hu, Yiran Zhao, Aston Zhang, and Tarek
Abdelzaher. Deepsense: A Unified Deep Learning Framework for Time-
series Mobile Sensing Data Processing. In 26th Inter. Conf. on World
Wide Web, 2017.

[102] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Deep metric learning
for person re-identification. In 2014 22nd international conference on
pattern recognition, pages 34–39. IEEE, 2014.

[103] Zhiwen Yu, Xingshe Zhou, Daqing Zhang, Chung-Yau Chin, Xiaohang
Wang, and Ji Men. Supporting context-aware media recommendations
for smart phones. IEEE Pervasive Computing, 5(3):68–75, 2006.

[104] Y. Zheng, G. Shen, L. Li, C. Zhao, M. Li, and F. Zhao. Travi-Navi:
Self-Deployable Indoor Navigation System. IEEE/ACM Transactions
on Networking, 25:2655–2669, 2014.

[105] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma.
Understanding Mobility based on GPS Data. In 10th International
Conference on Ubiquitous Computing, 2008.

[106] Jin Peng Zhou, Zhaoyue Cheng, Felipe Pérez, and Maksims Volkovs.
Tafa: Two-headed attention fused autoencoder for context-aware rec-
ommendations. In Fourteenth ACM Conference on Recommender Sys-
tems, pages 338–347, 2020.

Part II

Papers

68

Paper 1

Automated Product
Localization Through Mobile
Data Analysis

69

Automated Product Localization
Through Mobile Data Analysis

Magnus Oplenskedal1,3, Amir Taherkordi1,2,3, Peter Herrmann1

1Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2University of Oslo, Norway

3Forkbeard Technologies, Oslo, Norway

{magnukop, amirhost, herrmann}@ntnu.no

Abstract

Recent developments in the field of indoor Real-Time Locating
Systems (RTLS) using mobile devices stimulate decision support for
users. For instance, smartphone-based navigation in shops can enable
location-aware recommendations of certain products to customers. An
impeding factor to realize such systems is that they need the exact
position of products. Existing product localization solutions, however,
are based on tagging or manual location registering which tend to be
quite costly and laborious. In this paper, we propose an automated
product localization approach solving this problem. Our system infers
the location of products based on the results of accumulating two sets
of customer data, i.e., the locations at which the customers stop for
picking up items as well as the list of the items, they purchase. These
two data sets are accumulated for a large number of users, making
it possible to build correct mappings between the products and their
positions. We introduce a basic version of our localization algorithm
and two extensions. One helps to improve calculating the position
of relocated products while the other one fosters a faster localization
using a smaller number of user data sets. We discuss the results of
various simulation runs which give evidence that our system has a
good potential to work in practice.

Keywords— Automated Localization, Real-Time Location Sensing, Intel-
ligent Data Analysis, Mobile Services, Dynamic Leaky Accumulation, Softmax-
based Inference.

70

1 Introduction

In recent years, the rapid development of mobile technology has created unprece-
dented opportunities to realise intelligent environments. In particular, the wide
presence of smartphones in our daily life with their powerful sensors and process-
ing capabilities creates new opportunities to support the users with context-aware
systems [1]. These types of applications use information gathered from the users’
environments to support their decision making process in various fields, such as
mobile recommendations. A Mobile Recommender System (MRS) analyzes infor-
mation retrieved from the environment in which a user is moving through, and uses
the analysis results to provide meaningful suggestions [2]. The recommendations
can be made based on the information collected from the surrounding context and
the user behavior.

A key element of context information for an MRS is the real-time position of the
user, which is basically the current location of her/his smartphone. For context-
aware outdoor systems, global navigation satellite systems like GPS provide this
information, e.g., the pathfinding algorithm of Google Maps [3]. Until recently, the
development of indoor MRS was hampered due to the lack of accurate smartphone-
based indoor positioning technology. However, new indoor Real-Time Locating
Systems (RTLS) are emerging that are able to detect the exact location of a user’s
smartphone with an accuracy of a few centimeters. For instance, the ultrasound-
based Forkbeard technology [4] is a novel RTLS solution promising to locate a
smartphone with a precision of less than 10 cm.

A typical MRS application using an indoor RTLS is navigation support in shops
helping customers to find products as well as giving them useful recommendations.
Similar to the navigation systems in vehicles, customers are provided with a path
that guides them to the places where desired goods are stored. The realization of
such a system, however, requires the accurate position of products, while in many
shops this type of information is not available yet. The reason for that is that only
two solutions seem feasible [5] that are both not optimal: One possibility is to
attach special computer-readable tags to the products in a store and use them to
let the RTLS track their exact positions. The provision of the products with such
tags, however, is a major cost factor. The other solution is to register and update
the position of the products manually. Yet, this needs a lot of human effort, in
particular, if products are regularly relocated which is the case in many grocery
stores [6]. Considering indoor localization, existing work is mostly focused on
coarse-grained indoor navigation in stores, e.g., to guide the customer by means of
different sensor types on the user’s smartphone and basic localization technologies
(e.g., signal strength measured at various places) [6–9].

In this paper, we aim at proposing a cost-efficient approach to automatically
locate products in retail stores. Instead of tagging products or registering their
positions manually, product localization is performed using two sets of customer
data: the set of positions at which the customer stops while shopping, and the list

71

Product
Placement

Optimalisation

Mobile
Recommender

Systems

Indoor
Navigation
Assistance

Position of
User

Location of
Product

Product
Locator

Store-Specific
Cashier System

Items Purchased
by User

HAR RTLS

Activity Done
by User

Figure 1: The scope of Product Locator: from processing customer input
data to potential applications

of items purchased by her/him. Then, we accumulate these data pairs over a large
number of customers. Since the customers can purchase products only by passing
through the location of products, the accumulation reveals distinct correlations
between items and places at which their buyers stop. These correlations are utilized
to infer the positions of the goods. To realize this, we propose a basic Customer
Score Accumulation algorithm to accumulate customer data and to infer product
locations based on the accumulation results. Further, we introduce two extensions
of the algorithm (i.e., Leaky Customer Score Accumulation and Softmax-based
Inference) to improve position calculation for relocated products, respectively to
reduce the number of customers needed to infer the location of products.

Considering a significant number of errors in the customer data sets, e.g.,
stopping at places without picking up items, our simulation-based evaluation re-
sults show that 99.9% of the 8,000 products in a typical large Norwegian grocery
store [10] can be correctly located after aggregating the data of around 12,000
customers. Assuming 1,000 customers a day, our algorithm needs to run about 12
days to calculate the location of items, which seems practically feasible.

The rest of this paper is organized as follows: In Sect. 2, we give an overview
of our aggregation and inference approach and discuss its scope. Thereafter, we
present the approach in Sect. 3 followed by introducing both, the simulation tech-
nology used and the results revealed by the various test runs in Sect. 4. The
article is completed with a discussion of related work in Sect. 5 followed by some
concluding remarks in Sect. 6.

72

2 Overview and Scope

The scope of our approach is shown in Fig. 1. Intelligent location aware systems,
such as mobile recommender systems, product placement optimization, and cus-
tomer guidance, rely on the current position of users that can be obtained using
an RTLS. As mentioned in the introduction, MRS also needs the location of the
offered products which can be retrieved with our Product Locator. For a large
number of users, the Product Locator collects data sets consisting of the places
at which the customers stop while passing through the store as well as the list of
items, they purchase. The customer stops are deduced from the RTLS data, while
the list of purchased items can be obtained from the cashier systems or special
apps provided by the stores. In addition, the activities done by the user during
shopping can be a useful source of information for the Product Locator. In the rest
of this section, we discuss these three sources of customer data and their relevance
to our approach.

2.1 User Activity Recognition

Interpreting sensor inputs of mobile phones to find out certain activities is of
growing importance, e.g., in health care [11]. This is usually done by Human
Activity Recognition (HAR) systems that use pattern recognition algorithms to
classify human activities from sensor data. Recently, the adoption of machine
learning algorithms in HAR research have shown great results [12] such that HAR
classifiers with an accuracy of greater than 90% can now be provided (see [13–16]).

The development of HAR systems, however, tends to be complex. In our
context, it would be nice if one could detect whether a product is picked up or
not from the movements sensed by the customer’s smartphone. Yet, to allow an
HAR system to learn the relation between sensor data and this activity, one needs
example data sets for the activity “item pickup”. Unfortunately, we could not
find any openly available HAR data sets for this activity, and creating our own set
would be a highly complex and laborious challenge. Therefore, we decided to use
a much simpler way to recognize the picking up of items in a shop.

We simply record stops performed by customers while they are in the store.
There are plenty of openly available datasets containing the activity “stop” and/or
“standing” such that an HAR model trained on these datasets would provide the
required stop locations. Using an RTLS, however, even a simpler approach might
suffice: The stop activity is classified as “staying within a small area for a certain
amount of time”, e.g., staying in an area of one meter diameter for at least three
seconds. Since customers perform those stops when they pick up products to
buy, this classifier seems to be a good replacement for more complex activity
recognitions.

Nevertheless, the price for the simplicity to just register stops instead of using
more complex HAR mechanisms is a potentially larger number of errors in the

73

customer data sets. For example, customers can also stop at places at which they
only look at certain products but decide not to buy them, or simply conduct other
activities like checking their phones. Moreover, they may pick up products without
stopping such that the location of a product pickup is not registered by the RTLS.
The simulations carried out, however, revealed that our algorithm is sufficiently
robust against these errors. The only effect is that the number of customers needed
to locate all products correctly is slightly growing but, the errors do not lead to
false localizations (see Sect. 4.2).

2.2 User Position Detection

Most existing indoor RTLS are not sufficiently precise for applications that need
an accuracy at the level of less than a meter. They are based on different radio
communication technologies such as UWB, RFID, Bluetooth, Ultrasound, Visible
Light, SigFox, and LoRA. Among these, Ultrasound-based systems seem to be
particularly promising since they are less affected by interference from metallic
objects than electromagnetic methods. They are less influenced by opaque objects
in the environment than optical technology while being cheaper to realize [17]. An
RTLS usually comprises of fixed units located at particular points in a closed room
which receive wireless signals from tags or badges attached to persons or objects
of interest. The units measure the arrival times of a signal which vary due to the
different distances between the units and a tag transmitting the signal. From the
travel time spread and the knowledge about the locations of the fixed units, the
position of the signal transmitters can then be computed using triangulation.

A practical and efficient solution to locate a user in a confined area such as
a retail store is to utilize the microphone of his/her smartphone as a localization
tag. This is, for instance, done by the Forkbeard technology [4]. It uses fixed units
which are usually installed at the ceiling of a room and emit ultrasound signals in
precisely coordinated intervals. The various signals are received by smartphones
in the environment which measure the time lags between the signals. Further, the
fixed units send their exact positions in the room such that the smartphone can
triangulate its own position. This technology promises to reach a precision level
of at least 10 cm. For retail stores, this precision is more than enough since a
location accuracy of around 30 cm is sufficient to differentiate between different
product-containing compartments in the store.

The user stop detection mechanism is realized as follows: An app in a cus-
tomer’s smartphone measures constantly its position using the RTLS. If the phone
rests for a certain time in an area as discussed in Sect. 2.1, this is classified as a
stop and the position is stored in a data base. In this way, all places at which the
customer stops while shopping are retained. When the shopping activity is fin-
ished, the data set will be sent in anonymous form (to preserve the user’s privacy)
to the server running the Product Locator.

74

2.3 List of Purchased Items

The second data set to be used by the Product Locator is the list of all items
bought by the customer in the shopping environment. A way to achieve this is
to let the customer’s smartphone retrieve the list from the cash register used for
paying. An alternative is to use special customer apps. Lately, a trend among
grocery stores has been to provide such apps giving additional digital experiences
to their customers, e.g., systems providing bonuses, sales or discounts based on
products purchased [18, 19]. These apps register which items each customer buys
every time she/he visits the store. This information can be easily used to create the
list of products purchased by a customer during a single store visit. Further, it is
simple to combine this list with the set of stops also registered in the smartphone.
From a judicial point of view, this solution is also helpful since customers who do
not want their purchases being stored for inferring product locations, can simply
switch of the tracking functionality or avoid to use this app at all.

3 Product Locator

Before describing the product localization approach in detail, we give a short
introduction to the various designators used in this section. We define a particular
indoor Environment of interest as E. The space covered by E is restricted by
artificial boundaries in which a finite set of positions and items can be found. The
set of all unique Positions in E is described by the set P while I refers to all unique
Items available in E. The positions of the various items in E are described by the
Localization function L : [I → P] that maps each item to its actual position. L is
not an one-to-one mapping such that a position p can be assigned to several items.

Our approach accumulates the data of a large number of customers C =
{c1, c2, . . .} moving in E over time. For a single customer c ∈ C, we define Pc ⊆ P
as the trajectory of positions, c passes while moving through E for shopping. The
set Sc ⊆ Pc is the set of positions at which the RTLS registers Stops for c.
Further, we define Ic ⊆ I as the set of items purchased by customer c during a
traversal through E. Based on that, we can now define for a customer c the pair
of data sets dsc ≜ ⟨Sc, Ic⟩ that will be utilized by the Product Locator.

In the following, we describe how the user data sets dsc are analyzed and
processed in order to obtain the localization mapping L for all items i ∈ I in E.
Our inference algorithm consists of three steps:

1. Calculate the score for each customer c ∈ C from her/his data set dsc ≜
⟨Sc, Ic⟩.

2. Accumulate the scores of all users in C and store the result in a data store.

3. Infer mapping L : [I → P] from the computation in step 2 by comparing the
scores for each item that it is placed at a certain location, and return the
position that has the highest score.

75

The three steps are described below. Thereafter, we introduce two extensions of
the score accumulation step. The one is the Leaky Score Accumulation algorithm
that weights newer customer data higher than older. This makes the algorithm
more flexible against moving certain items to other positions in a store. The
second improvement of the score accumulation is Softmax-based Inference. It uses
the Softmax function [20] which makes the inference of correct item-to-position
mappings faster and more reliable.

To clarify the various aspects of our Product Locator algorithm, we use a
simple scenario. In a grocery store, bread is at position p1, milk at p2, eggs
at p3, and cheese at p4. Further, we assume a user buying milk, bread, and
eggs while a second one purchases only milk and a third one milk, bread, and
cheese. For simplicity, we assume that all three customers stop at all the posi-
tions at which their purchased products are, and at no other positions. We can
formalize that by using the sets C = {c1, c2, c3} referring to the three customers,
I = {i1 (milk), i2 (bread), i3 (eggs), i4 (cheese)} describing the four products, and
P = {p1, p2, p3, p4} representing the four positions of the products. The data sets
for our three customers can then be defined as follows:

dsc1 ≜ ⟨{p1, p2, p3}, {i1, i2, i3}⟩, dsc2 ≜ ⟨{p2}, {i1}⟩,
dsc3 ≜ ⟨{p1, p2, p4}, {i1, i2, i4}⟩

3.1 The Basic Algorithm

Let us assume that our indoor environment E comprises n different positions
P ≜ {p1, . . . , pn} at which products can be stored and offers m different items
I ≜ {i1, . . . , im} for sale.

3.1.1 User Score Calculation

In the first step, we take the data gathered for a customer c and stored in form
of the data set dsc ≜ ⟨Sc, Ic⟩. The set dsc is transformed into a matrix Mc that
contains a row for each item and a column for each position. Using m items and n
positions, this matrix has then the size m×n. In Mc, we mark all matrix elements
considering an item purchased by c and a position at which c stopped as 1 and
else as 0:

Mcxy ≜
{
1 if ix ∈ Ic ∧ py ∈ Sc

0 else

For the three customers in our example, this leads to the three matrices Mc1 , Mc2 ,
and Mc3 depicted in Fig. 2.

76

Figure 2: Matrices of the three customers c1, c2 and c3 in the example.

3.1.2 Accumulation of Customer Scores

In this step, the customer matrices Mci are accumulated to a Data Store matrix
DS which can be achieved by simple matrix addition:

DS =
∑

c∈C
Mc

For our example, the following matrix is computed:

DS =

2 3 1 1
2 2 1 1
1 1 1 0
1 1 0 1

 (1)

An advantage of the algorithm is that not all customer scores have to be re-
ceived when running it. Instead, DS can be calculated based on just the currently
available customer data. When data from a new customer cnew arrives, DS can
be augmented by adding the corresponding customer score matrix Mcnew to its
previous version.

3.1.3 Inference of the Localization Mapping

The final step of the algorithm is inferring the locations of the items in the indoor
environment from the data in matrix DS. To achieve that, we attach to each item
the position that according to DS has the highest value.

Thus, we can define the localization mapping L : [I → P] as follows:

L[ix ∈ I] ≜ choose p ∈ P | ∃y ∈ {1, . . . , n} : p = py ∧
∀l ∈ {1, . . . , n} : DSxy ≥ DSxl

If a product is placed at several positions in the store, we will locate only one
of them which, however, is sufficient for indoor navigation and recommendation
assistance.

Looking at our example data store DS (see eq. 1), we can only unambiguously
infer that item i1 is at position p2 while the exact positions of the other items

77

are not clear-cut after considering just three customers. The inferences would be
getting unambiguous if some more customer results were considered. Nevertheless,
we will see in Sect. 3.3 that there are improvements to the accumulation process
possible that allow us to infer the correct positions even if only our three customers
are considered.

3.2 Leaky Customer Score Accumulation

The goal of this optimization of the customer score accumulation is to reduce the
bias, the system has for older data compared to newly collected customer scores.
The data registered for a product in DS, i.e., the value of element exy for an item x
at the position y, will become very large over time as more customers purchase the
product, and to be able to do so, stop at its position. This can be seen as positive
as long as the position of the product is never moved. If products, however, are
regularly relocated which happens often in grocery stores [6], the algorithm needs
quite long until inferring the correct position again. The reason is that many
customer scores considering the new location of the item have to be accumulated
until those considering the old place are outpaced. The Leaky Customer Score
Accumulation algorithm allows us to mitigate this problem.

We define the so-called leaky factor α with 0 < α < 1. When we now add the
score matrix Mc of a new customer c to the data store matrix DS, we reduce all
the elements of DS referring to items bought by c and places that she/he did not
visit. Using DSold to describe the value of DS before adding Mc and DSnew for
the one afterwards, we can express this operation as follows:

DSnew
xy ≜

DSold
xy +Mcxy if Mcxy ̸= 0

DSold
xy · α if Mcxy = 0 ∧

∃l ∈ {1, . . . , n} : Mcxl ̸= 0

DSold
xy else

The intuition for this improvement is that for all items i ∈ Ic purchased by c, the
correct position for the items will most likely be among the positions p ∈ Sc at
which the customer stopped. Based on this assumption, all matrix elements in
DS that describe products in Ic, and positions not in Sc, are less likely to refer to
correct product locations. Thus, it is useful to reduce the values of these matrix
elements. If an item is now moved to another place, there will be several customers
buying it but not stopping at its old location anymore. Thus, the value for the
old position will decline relatively quickly such that it will be faster passed by the
value for the new location of the product.

Finding the right balance between prioritizing new over old data was done by
empirical experimentation. The value α = 0.985 achieved the best results in our
tests.

The simulation of different values of α inspired us to a further improvement
that we call the Dynamic Leaky Score Accumulation. Here we use a confidence level

78

to indicate our trust in the data of a single customer c that is allocated her/his
own leaky factor αc. For instance, a customer buying one item and stopping at
one location probably provides more accurate data than a customer stopping at
20 locations to buy a single product. Thus, the confidence level is based on two
parameters, the number of items purchased, i.e., |Ic|, and the relation between the
number of items purchased and number of stops performed by the customer, i.e.,
|Ic|
|Sc| . Our simulation runs showed the following dynamic leaky factor αc to provide
good results:

αc =

0.750 if 5 < |Sc| ≤ 10 ∧ |Ic|
|Sc| ≥ 0.5

0.650 if |Sc| ≤ 5 ∧ |Ic|
|Sc| ≥ 0.5

0.985 else

Thus, customers buying few products and stopping at most twice as often as the
number of items purchased, are granted greater influence than other ones.

3.3 Softmax-based Inference

The intuition behind the second improvement strategy for the score accumulation
in Sect. 3.1.2 is to amplify the differences between the values of the elements in
our data store DS. Moreover, we want to consider the general numbers of stops at
a certain position to evaluate the likelihood that a certain product resides there.
Look for instance on the third row of the data store DS in our example (see eq. 1).
There we have the value 1 in all of the first three columns such that we cannot
claim a direct winner. On the other hand, the sums of the values in the first two
columns of DS are much larger than the sum of the values in the third column.
This indicates that fewer people not procuring item i3 stopped at position p3 than
at p1 or p2 which makes it more likely that p3 is, indeed, the place where i3 is
placed. The extension to the score accumulation algorithm presented here follows
this consideration. It is based on the Softmax function (see, e.g., [20]) and will be
carried out in three steps:

1. To amplify the more significant relations between items and positions, we
transform matrix DS to DSexp that uses exponential values. A problem
to be solved is that the elements of DS may contain large numbers when
the inputs of many users are stored such that computing the exponential
value leads to an arithmetic overflow. To avoid that, we simply subtract the
value dsmax of the largest matrix element in DS from all elements. Thus, no
element will have a value larger than 0 and arithmetic overflow is prevented.
The matrix DSexp is computed as follows:

DSexp
xy ≜ eDSxy−dsmax

The use of the exponential value makes it possible to get rid of the zeros in
data store DS since a product might be located in a position not yet visited.

79

Figure 3: The three matrices DSexp, DSrow, and DSsm of our example.

2. Thereafter, we perform the last step of the Softmax function by normalizing
the rows of the exponential matrix DSexp. This is done in order to find, for
each product, the probability distribution based on the stops performed by
customers buying this product. The matrix reached in this step is named
DSrow and computed as follows:

DSrow
xy ≜ DSexp

xy∑n
l=1DSexp

xl

3. Finally, we normalize the columns of matrix DSrow such that the sum of the
values in each column is 1. The resulting Data Store DSsm is computed as
follows:

DSsm
xy ≜

DSrow
xy∑m

k=1DSrow
ky

Thus, we realize the consideration discussed above, that a product is more
likely at a position if relatively few people not buying it stopped there.

Then we take matrix DSsm instead of DS in the inference step described in
Sect. 3.1.3.

Starting with matrix DS of our example (see eq. 1), the extended algorithm
provides the matrices shown in Fig. 3. In contrast to the result of the basic
algorithm in eq. 1, the adapted algorithm makes it possible to infer the mapping
L unambiguously since every row in matrix DSsm has a unique maximum value
(marked in green). Thus, the mapping L from items to positions can be correctly
determined:

L[i1] = p2, L[i2] = p1, L[i3] = p3, L[i4] = p4

For i1, i3, and i4, this localization mapping can even be inferred if we demand a
difference of 0.1 between the highest and second highest value to prevent wrong
localizations.

4 Evaluation

We evaluate the proposed approach through simulating the data sets. The issue is
that real data traces for the discussed shopping use case are not currently available.

80

For that, the necessary RTLS hardware for high precision indoor location sensing
must be provided, and the existing store apps on the smartphones of the customers
have to be extended to provide the list of purchased items per shopping. To eval-
uate the core functionalities of our proposed solution, and to learn more about it
in order to fine-tune it (e.g., selecting the correct leaky factor α, see Sect. 3.2), we
carried out hundreds of simulations of various shop environments. To achieve that,
we developed a suitable tool simulating indoor environments and the required cus-
tomer data. For simulation, we considered data sets based on several distributions
in order to cover many different realistic shopping scenarios. Therefore, we believe
that the reported simulation results provide practical and relevant insights to our
product localization solution. The first subsection describes the three modules of
the simulation tool, in detail. Thereafter, we discuss the results of the evaluation
runs.

4.1 Simulator

Our simulation tool consists of a creator for the shop environment, a creator for
customer behavioral inputs, and the simulator core.

The Environment Creator module creates models of an indoor environment
E to be simulated. For typical grocery stores in Norway, 8,000 items offered
at 800 positions are realistic values to be used. The difference between the two
numbers results from the fact that many products are pooled in shelves. From
these inputs, the Environment Creator builds the sets I and P (see Sect. 3) as well
as the data store matrix variable DS (see Sect. 3.1) with |I| rows and |P | columns.

The second module of the simulation tool is the Customer Creator. It is used to
simulate customers moving through the simulated environment and purchasing the
offered items. For each simulated customer c, the Customer Creator generates a
random data set dsc = ⟨Sc, Ic⟩ (see Sect. 3). To simulate realistic customer behav-
ior, the demand for certain goods differs vastly. This reflects that some products
like low-fat milk are bought much more often than others, for example, mustard
with truffles. We also like the number of items purchased by the customers to be
in line with normal shopping behavior. To solve these two requirements without
having access to real data of a retail store as a foundation for the simulations,
the Customer Creator uses a truncated gaussian distribution when selecting the
number of items purchased by a customer. This distribution is also used to select
with which likelihood the customers buy a certain item.

As discussed above, we need to consider errors in the data sets since customers
may stop at positions without buying the goods available there, and they might
pick certain products on the fly without being detected as a stop by the RTLS.
To consider these errors in our simulations, the Customer Creator works as fol-
lows: When creating a new customer c, it first determines the number of items
the customer purchases using the corresponding truncated gaussian distribution.
Thereafter, it selects which items the customer buys using the other gaussian dis-

81

Create
Simulated

Environment
Should simulate

more customers?

Yes

No

Simulate Customer
Data

Add Customer
Score to Data Store

Perform
Product Location

Inference

Persistent Storage of
Accuracy

Measurements

Create Customer
Score Matrix

Measure
Accuracy

Figure 4: Flow chart illustrating the simulation tool

tribution. This leads to the set Ic, followed by querying the Environment Creator
for the correct locations of the selected items. Using these data directly as Sc

would produce a “perfect” data set for the Product Locator, i.e., the customer
would stop at exactly the positions at which the purchased products are located.

This perfect user set is then altered by an error function. At first, a random
number of additional locations from the simulated environment is selected and
added to set Sc. This function follows a certain distribution that can be parame-
terized prior to a simulation run. At second, to simulate the event that the RTLS
misses stops at places at which items are picked, elements of Sc from the perfect
data set are removed following also a parameterizable function.

The third module is the Simulator Core which is responsible for initiating both
the Environment Creator and the Customer Creator. Further, this module real-
izes the Product Locator and feeds it with the data sets created by the Customer
Creator. To give meaningful information about the accuracy of the Product Lo-
cator during the learning phase, i.e., its ability to predict the correct location for
the products, the core module compares the produced function L with the real
positions in predefined intervals and stores this information.

The different steps performed during a simulation run are depicted in Fig. 4.
The simulation is started by the Environment Creator building an indoor environ-
ment. If more customers shall be simulated, the Customer Creator creates a new
data set that may contain errors followed by the three steps of the Product Locator
(see Sect. 3.1). If the predefined interval is finished, moreover, the accuracy of the
location mapping is checked and stored.

When all desired customers are simulated, the simulator terminates by storing

82

Figure 5: The increase in accuracy as customer data is added to the system
depending on different error rates.

the accuracy measurements in a JSON file. This data can be used to evaluate our
proposed solution. We report about some simulation results in the following.

4.2 Results

Our Product Locator was thoroughly tested through hundreds of simulation runs,
wherein various store configurations were used to further analyze the system be-
havior in varying environments. To evaluate the quality of our solution, we use the
accuracy metric acc. Be Iloc ⊆ I the set of all items that can be unambiguously
assigned a location, since in the rows of the data store DSsm (see Sect. 3.3) the
largest value is at least 0.1 larger than the second largest one. We then define
the accuracy as acc ≜ |Iloc|

|I| . The accuracy is measured and stored after adding
the data of ten customers to the data store. Some of the simulation results are
discussed in the following.

4.2.1 Testing the Basic Product Locator

First, we show the gradual increase in accuracy using what we claim to be “realis-
tic” parameters. We simulated a shopping environment with 8,000 items, 800 po-
sitions, and 35,000 customers.

83

Figure 6: The time to recover after moving 20% of the items in the environ-
ment.

Besides stopping at the correct positions of the bought items, each customer
can stop at various places without picking up any products. We use the so-called
30/20/10 likelihood pattern to select the number of such “erroneous” stops at
which no products are picked up. It means that we choose a value between 0
and 10 erroneous stops with a probability of 4

7 . A number of stops in the interval
between 11 and 20 of such stops is selected with a likelihood of 2

7 , i.e., half of the
probability for the interval 0-10. With a likelihood of 1

7 , i.e., half of that for 11-20
stops, we select a value between 21 and 30 erroneous stops. When one of the three
intervals has been chosen, the exact value within this interval is selected following
a uniform distribution.

Further, we assume with a probability of 10% that a stop at a correct position
is not noted by the RTLS. Then, we get the hyperbola depicted in Fig. 5 with the
green curve. With the simulation parameters described above, an accuracy of 99%
is achieved after 8, 420 customers, 99.9% after 12, 170, and finally, all products
were correctly located after 18, 630 customers.

4.2.2 Increased Error Rates

The second group of simulations intends to fathom the robustness of our algorithm
by vastly increasing the likelihoods of additional stops and not detected pickings of
products. We added the curves of these tests also to Fig. 5. The red curve describes
a likelihood of 40/30/20 for additional stops and 20% for not registering pick ups,
and the blue one is even more extreme assuming probabilities of 50/40/30 resp.
30%. It is interesting that the increased error rates do not change the hyperbola
forms of the curves. The Product Locator still locates all items in the simulated
environment, albeit with a slightly greater delay.

84

4.2.3 Handling Relocated Products

The third group of simulations considers the behavior of our algorithm when prod-
ucts are relocated. Figure 6 shows the results from simulations in which 20% of
the items in the store were moved to a new location. All three simulations shown
in the figure use the simulation configuration with the “realistic” parameters intro-
duced in Sect. 4.2.1. The green curve shows the results from the Dynamic Leaky
Accumulation algorithm, described in Sect. 3.2. The result using plain Leaky Ac-
cumulation is plotted in as the red curve, while the blue one depicts the results
when using only the base algorithm without any leaky accumulation. These curves
clearly show that the Dynamic Leaky Accumulation has a clear advantage against
the simple Leaky Accumulation and even more against the simple algorithm when
we have to expect significant relocation of items during the lifetime of the Product
Locator.

4.2.4 Comparing the Score Accumulation Variants

Figure 7: Results of using different score accumulation variants.

Finally, we compare the customer score accumulation of the basic variant (see
Sect. 3.1.2) with the Dynamic Leaky Customer Score Accumulation (see Sect. 3.2),
and the Softmax-based Inference (see Sect. 3.3) for our “realistic” shop scenario
without product relocations.

85

The green curve in Fig. 7 describes the behavior when using both Dynamic
Leaky Customer Score Accumulation and Softmax-based Inference, while the red
refers to customer score accumulation through Dynamic Leaky Customer Score
Accumulation alone. Softmax-based Inference alone, is shown as a blue curve, and
the basic algorithm is provided in purple. The curves reveal that the differences
between the four scenarios are minimal. Just with relatively few customer data
sets like in the example used in Sect. 3, the Softmax-based extension gives a better
accuracy score which becomes nearly irrecognizable when the data sets of more
than 15,000 customers are considered. On the other hand, Softmax-based Inference
has an advantage for localizing items that are rarely purchased. Thus, if a store
has a fair number of such items, Softmax-based inference is more efficient than the
basic algorithm.

5 Related Work

Being an important enabler for Mobile Recommender Systems (MRS), a fair
amount of research has been conducted on indoor navigation systems. With re-
spect to locating products in stores, most existing technologies propose manual
tagging or registration of product locations performed by employees or system
experts. To our best knowledge, previous work has neither been done on the au-
tomated localization of products in large stores nor on preserving the accurate
location information when products are subject to relocation. Below, we discuss
existing work of special interest.

Purohit et al. developed SugarTrail [6], a system providing the location of items
and guidance to them in indoor environments without depending on existing maps.
SugarTrail aggregates movement paths registered from users carrying mobile nodes
utilizing magnetometers in addition to collecting data from stationary radios while
traversing the indoor environment. The aggregated paths are used to construct
Virtual Road Maps, which, in turn, can provide navigation assistance to items for
customers in the store. The main contribution of SugarTrail is indoor navigation
for stores, which is different from the goal of this paper, i.e., product localization.

Some other approaches leverage technologies such as computer vision, sensors
and RSS to locate points of interests in indoor environments. Travi-Navi [7] com-
bines high quality images and sensor readings from a Guiders smartphone and
packs them into a navigation trace. This can be done, e.g., by a shop owner to
provide navigation assistance to their stores. While moving through the indoor
environment, the followers (customers) can follow the navigation trace defined by
the Guider to the point of interest. In Canoe [8], the Received Signal Strength
(RSS) is measured in various parts of a shop. Then, the observed RSS values
are compared for directing users to points of interest. In Shopper Observer [9],
the Redpin indoor localization framework which allows its users to create virtual
fingerprints of locations, is used to find paths of customers in a shop which can be
utilized, e.g., for product placement. In these approaches, the precision of localiza-

86

tions is lower. Therefore, they are better suited for scenarios where only relatively
coarse-grain localization is needed.

In [21], Chia-Chen Chen et al. use RFID readers on smart devices together
with RFID tags on products to recommend products to users according to their
preferences, previous purchasing records, and current location. The recommenda-
tion mechanism works by a K-means algorithm, clustering customers based on their
shopping behaviors. Augmented Reality (AR) is deployed in [22] to recommend
healthy foods in grocery stores. This approach utilizes the camera on customer
smartphones to both localize the customer within the store, and to display AR
overlay tagging recommended products. The authors mention that product in-
formation is available in electronic product databases, however, not necessarily
associated with their locations. This category of work is mainly focused on algo-
rithms and techniques on intelligent product recommendation. In our view, the
Product Locator proposed in this paper can be a good add-on to these approaches
since it creates precise information about the position of products that can be
leveraged to provide more intelligent user recommendations.

6 Conclusion and Future Work

The paper presents an algorithm for product location detection in indoor environ-
ments. Our approach only requires the trajectory of stops and items purchased by
customers while they move through an environment. The data collection can be
done during the normal shopping routines of customers without any other partic-
ipation than installing an app on their smartphones.

We developed a basic algorithm consisting of score calculation for individual
customers, accumulation of the scores of various customers, and inference of prod-
uct locations from the accumulated scores. Furthermore, we propose improvements
to the score accumulation algorithm by Static and Dynamic Leaky Accumulation as
well as Softmax-based Inference. Evaluating the various aspects of the algorithm,
we found out that the Dynamic Leaky Accumulation can be very helpful in sce-
narios with relocated goods while Softmax-based Inference is more efficient when
rarely purchased items have to be located and if only a relatively small number of
customer data sets are available.

The next step is to create a simulator that considers the spatial aspects of a
shopping environment. Using retail data sets, we plan to create a simulated shop
layout and let customers “roam” through it simulating the trajectories performed
while shopping. In this way, we can simulate varying customer behaviors, e.g.,
hasty purchases on the way home or cozy strolling being inspired by the available
products. Also spatial aspects like the contorted ways performed when searching a
hidden product can be simulated in this way. Thus, the extended simulator should
allow us to test our approach with more realistic customer data.

Finally, when the Forkbeard technology is fully implemented, a prototype in-
stallation with a Norwegian grocery store operator is planned. This will make it

87

possible to find out even more about user activity recognition, in particular, how
long the waiting time of a user in an area should be in order to classify that as a
stop. Moreover, we will investigate the accuracy of the assumptions we made in
the simulations about the likelihood of errors in stop detection.

References

[1] Ö. Yürür, C. H. Liu, Z. Sheng, V. C. M. Leung, W. Moreno, and K. K. Le-
ung, “Context-awareness for mobile sensing: A survey and future directions,”
IEEE Communications Surveys Tutorials, vol. 18, no. 1, pp. 68–93, 2016.

[2] F. Ricci, L. Rokach, and B. Shapira, Recommender Systems: Introduction
and Challenges. Boston, MA, USA: Springer US, 2015, pp. 1–34.

[3] R. Gibson and S. Erle, Google Maps Hacks. O’Reilly Media, 2006.

[4] “Forkbeard Technology,” https://www.sonitor.com/forkbeard/, accessed:
2018-12-04.

[5] P. Bolliger, “Redpin - Adaptive, Zero-configuration Indoor Localization
Through User Collaboration,” in First ACM International Workshop on Mo-
bile Entity Localization and Tracking in GPS-less Environments (MELT).
San Francisco, CA, USA: ACM, 2008, pp. 55–60.

[6] Purohit, A., Sun, Z., Pan, S., Zhang, P., “Sugartrail: Indoor Navigation
in Retail Environments without Surveys and Maps,” in 10th annual IEEE
Communications Society Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks (SECON), 2013, pp. 300–308.

[7] Y. Zheng, G. Shen, L. Li, C. Zhao, M. Li, and F. Zhao, “Travi-Navi: Self-
Deployable Indoor Navigation System,” IEEE/ACM Transactions on Net-
working, vol. 25, pp. 2655–2669, 2014.

[8] K. Dong, H. Ye, W. Wu, M. Yang, Z. Ling, and W. Yu, “Canoe: An Au-
tonomous Infrastructure-Free Indoor Navigation System,” Sensors (Basel),
vol. 17, no. 5, p. 996, 2017.

[9] M. Bourimi, G. Mau, S. Steinmann, D. Klein, S. Templin, D. Kesdogan,
and H. Schramm-Klein, “A Privacy-Respecting Indoor Localization Approach
for Identifying Shopper Paths by Using End-Users Mobile Devices,” in 8th
International Conference on Information Technology: New Generations. Las
Vegas, NV, USA: IEEE Computer, 2011, pp. 139–144.

[10] Norgesgruppen, “Innenfor flere varegrupper er matvareutvalget større i Norge
enn i Sverige,” https://www.norgesgruppen.no/presse/nyhetsarkiv, in Norwe-
gian, accessed: 2019-01-27.

88

[11] M. N. K. Boulos, A. C. Brewer, C. Karimkhani, D. B. Buller, and R. P.
Dellavalle, “Mobile Medical and Health Apps: State of the Art, Concerns,
Regulatory Control and Certification,” Online Journal of Public Health In-
formatics, vol. 5, p. 229, 2014.

[12] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep Learning for
Sensor-based Activity Recognition: A Survey,” CoRR, vol. arXiv:1707.03502,
p. 10 pages, 2017. [Online]. Available: https://arxiv.org/abs/1707.03502

[13] Z. He and L. Jin, “Activity Recognition from Acceleration Data based on
Discrete Consine Transform and SVM,” in IEEE International Conference
on Systems, Man and Cybernetics, 2009, pp. 5041–5044.

[14] Z.-Y. He and L.-W. Jin, “Activity recognition from acceleration data using
ar model representation and svm,” in International Conference on Machine
Learning and Cybernetics, vol. 4, 2008, pp. 2245–2250.

[15] A. Khan, Y. Lee, and S. Lee, “Accelerometer’s Position Free Human Activity
Recognition using a Hierarchical Recognition Model,” in IEEE International
Conference on e-Health Networking Applications and Services (Healthcom),
2010, pp. 296–301.

[16] O. Lara and M. Labrador, “A Survey on Human Activity Recognition using
Wearable Sensors,” IEEE Communications Surveys & Tutorials, vol. 15, pp.
1192–1209, 2013.

[17] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, “The Anatomy
of a Context-Aware Application,” Wireless Networks, vol. 8, pp. 187–197,
2002.

[18] Rema 1000, “Æ App,” https://www.rema.no/ae/, in Norwegian, accessed:
2018-12-04.

[19] Trumf, “Trumf App,” https://www.trumf.no/, in Norwegian, accessed: 2018-
12-04.

[20] D. Heckerman and C. Meek, “Models and Selection Criteria for Regression
and Classification,” in Thirteenth conference on Uncertainty in Artificial In-
telligence (UAI). Providence, RI, USA: Morgan Kaufmann Publishers, 1997,
pp. 223–228.

[21] C.-C. Chen, T.-C. Huang, J. J. Park, and N. Y. Yen, “Real-time Smartphone
Sensing and Recommendations towards Context-awareness Shopping,” Mul-
timedia Systems, vol. 21, pp. 61–72, 2015.

[22] J. Ahn, J. Williamson, M. Gartrell, R. Han, Q. Lv, and S. Mishra, “Support-
ing Healthy Grocery Shopping via Mobile Augmented Reality,” ACM Trans
Multimedia Comput Commun Appl, vol. 12, p. 16:1–16:24, 2015.

89

Paper 2

DeepMatch: Deep Matching
for In-Vehicle Presence
Detection in Transportation

90

DeepMatch: Deep Matching for
In-Vehicle Presence Detection in

Transportation

Magnus Oplenskedal1,3, Amir Taherkordi1,2,3, Peter Herrmann1

1Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2University of Oslo, Norway

3Forkbeard Technologies, Oslo, Norway

{magnukop, amirhost, herrmann}@ntnu.no

Abstract

A key feature of modern public transportation systems is the ac-
curate detection of the mobile context of transport vehicles and their
passengers. A prominent example is automatic in-vehicle presence
detection which allows, e.g., intelligent auto-ticketing of passengers.
Most existing solutions, in this field, are based on either using active
RFID or Bluetooth Low Energy (BLE) technology, or mobile sensor
data analysis. Such techniques suffer from low spatiotemporal accu-
racy in in-vehicle presence detection. In this paper, we address this
issue by proposing a deep learning model and the design of an as-
sociated generic distributed framework. Our approach, called Deep-
Match, utilizes the smartphone of a passenger to analyze and match
the event streams of its own sensors and the event streams of the
counterpart sensors in an in-vehicle reference unit. This is achieved
through a new learning model architecture using Stacked Convolu-
tional Autoencoders for feature extraction and dimensionality reduc-
tion, as well as a dense neural network for stream matching. In this
distributed framework, feature extraction and dimensionality reduc-
tion is offloaded to the smartphone, while matching is performed in a
server, e.g., in the Cloud. In this way, the number of sensor events to
be transmitted for matching on the server side will be minimized. We
evaluated DeepMatch based on a large dataset taken in real vehi-
cles. The evaluation results show that the statistical accuracy of our
approach is 0.978 for in-vehicle presence detection which, as we will
argue, is sufficient to be used in, e.g., auto-ticketing systems.

91

Keywords—Mobile Context, Sensor Event Streams Analysis, Deep Learning,
Event Matching, Intelligent Transportation

1 Introduction

Within logistics and public transportation, there is a strong need for accurate and
intelligent detection of mobile context situations of users, smart devices and vehi-
cles. By mobile context, we refer to any kind of information that can be used to
characterize spatiotemporal properties of a mobile entity [1]. An example is the
position data of a moving vehicle making it possible to find out its current location.
Public transportation providers in many countries (e.g., in Northern Europe) are
providing smartphone applications for their passengers, in which the user can, e.g.,
purchase tickets and get route guidance. A key feature to enhance the next gener-
ation of these mobile context-aware applications is the integration of information
about the presence of a passenger in a vehicle. An advantage of this extension is
that it becomes easier to determine the exact flow of passengers between particular
places. This makes it possible to plan optimal public transport networks in which
passengers are offered rides when they need them and are brought to their desti-
nations without the need to change vehicles often if at all. Further, peak hours
can be detected and the supply of vehicles is optimized accordingly.

If the in-vehicle presence detection is highly accurate, we can also make the
ticketing of passengers considerably simpler. In existing smartphone applications,
the passengers have to remember buying tickets before starting a ride. Moreover, in
order to buy the right ticket for the intended trip, they need to have fair knowledge
about the ticketing system of the transport provider. In contrast, using a highly
accurate in-vehicle presence detection solution, a so-called Be-In/Be-Out (BIBO)
system [2], tickets can be automatically issued to the passengers based on the exact
duration of their ridings on vehicles. Thus, they can conveniently enter and leave
public transport vehicles without having to deal with the transportation provider
in advance. If this seamless way of travel is accepted by many passengers, there
is no need for cost intensive ticket checkpoints, ticket machines, and passenger
controls anymore.

Existing solutions for in-vehicle presence detection are based on two different
approaches. The first group applies communication systems such as Radio Fre-
quency Identification (RFID) or Bluetooth Low Energy (BLE). While travelling,
temporary connections are built up between the user’s mobile device and certain
fixed vehicle equipment through which evidence can be established that the pas-
senger is within the vehicle. Prominent examples for such systems are EasyRide [3]
and SEAT [4]. Approaches in the other group use event streams from smartphone
sensors to analyze for certain properties. Modern smartphones are provided with
a variety of sensors such as magnetometers, accelerometers, gyroscopes, GPS, and
barometers which offer unprecedented opportunities to analyze mobile context in-
formation from the user’s environment. Two prominent solutions for sensor-based

92

analysis are HybridBaro [5] and RideSense [6]. We will argue later that the accu-
racy of both categories above is still not high enough.

In this paper, we address the accuracy problem and propose a highly au-
tonomous approach that can detect in-vehicle presence with a sufficient degree of
precision. A central aspect of our approach is to equip each vehicle with a refer-
ence device (e.g., an Android phone). This allows us to deduce the presence of
passengers in the vehicle based on the match between the stream of events gener-
ated by sensors of the reference device and those measured by the sensors of the
passengers’ smartphones. We propose the system DeepMatch which provides a
deep learning model to verify in-vehicle presence. The new learning architecture
is based on Stacked Convolutional Autoencoders, used for feature extraction and
dimensionality reduction. Matching is provided using a fully connected neural
network. DeepMatch is a distributed framework, where feature extraction and
dimensionality reduction is offloaded to the users’ smartphones, while the matching
process is performed in a server, e.g., a cloud server. Using Stacked Convolutional
Autoencoders, our model not only learns the most essential features of the sensed
data stream (i.e., encoded data), but also finds out which part of the stream can
be omitted without deteriorating matching. The part of the model running on
a server compares the input encoded data of a smartphone with that of the cor-
responding reference device and outputs a value indicating the probability of the
two data sources being present in the same vehicle. The server can be realized as a
centralized unit out of the vehicle. Alternatively, it can be locally installed in the
vehicle, e.g., in the reference device, or on a local router in the vehicle following
the principle of fog computing [7].

The model is trained on real data traces gathered by a group of people using
public transportation in two large Norwegian cities. The evaluation results show
that the statistical accuracy, the so-called F1-score, of DeepMatch is 0.978 for
in-vehicle presence detection outperforming the two well-known technologies Nor-
malized Correlation by 4%, and Dynamic Time Warping by 16%. This can provide
a significant advantage for practical in-vehicle presence detection as we will discuss
later.

The rest of this paper is organized as follows. In Section 2, we discuss existing
solutions followed the presentation of our in-vehicle presence detection approach
in Section 3. In Section 4, the experimental evaluation results are reported. We
conclude the paper with a discussion of our future plans in Section 5.

2 Related Work

As mentioned above, existing solutions for in-vehicle presence detection are based
on either utilizing communication technologies or analyzing mobile sensor events.
These approaches are presented in this section followed by the discussion of some
recent works leveraging deep learning for mobile context detection.

93

2.1 Communication Technology-based Solutions

Early in-vehicle presence detection systems were based on active RFID tags, car-
ried by the passengers, and a single communication unit in the center of vehicles.
A contactless, mid-range radio-based identification and communication protocol
was used for tracking. One of the first solutions was EasyRide [3], developed by
the Swiss Railways Association. Allfa [8] is another RFID-based system, tested
for half a year in busses, trams and trains in Dresden, Germany. Due to the weak
transmitter strengths of the active tags, it is difficult to guarantee that all of them
are detected in the vehicle. As discussed in [3], this affords a vast number of read-
ers in the vehicle, at least one at each door. However, such approaches still suffer
from lack of enough detection precision. For instance, Allfa has an accuracy rate
of just 68% making it unsuitable for practical use.

Another category is based on BLE. Compared with active RFID approaches
using battery-powered tags, BLE-based BIBO systems can utilize smartphones
with additional monitoring options, the possibility to measure signal strengths for
proximity determination, larger distribution channels, etc. The first BLE-based
solution is proposed in [2], while [9] suggests a ticketing system adding a custom
profile on top of the BLE to fulfill the payment procedure. In SEAT [4], a BLE-
enabled smartphone communicates with devices installed in vehicles to track the
journey for automatic pricing. Its main focus is on security, performance, and bat-
tery friendliness, but not on the accuracy of the in-vehicle presence detection. The
authors of [2] are cautiously optimistic that BLE might work for BIBO systems.
However, the chassis of a vehicle does not limit the accessibility of a BLE trans-
mitter which makes it possible that somebody close to it, e.g., a person in another
vehicle, is wrongly detected. On the other hand, things in a vehicle may inhibit
a BLE connection such that devices in the vehicle are not detected. This is con-
firmed by the authors of [10] when using BLE for indoor localization. While precise
indoor location seems to be more complex than “just” finding out if somebody is
in a vehicle, we expect similar accuracy problems.

2.2 Mobile Sensor Event Analytics-based Solutions

Existing work in this field analyzes the data stream of the sensors in user smart-
phones to detect mobile contexts in transportation. Our extensive experiments
and the obtained results, reported in Section 4.4.1, show that the smartphone
barometer is the only useful sensor for in-vehicle presence detection since the
position and orientation of the phone as well as the movements of its carrier
influence the measurements of other sensors. This is also confirmed by related
approaches that mostly focus on analyzing the barometer data. In [11], Sankaran
et al. demonstrate that the barometer can be applied to detect user activities of
IDLE, WALKING, and VEHICLE at low-power through their context-detection
algorithm, using four stages; pre-processing, jump detection, peak detection and
walk detection. Likewise, in [12], user activities are classified using the barome-

94

ter sensor on smartphones. This approach leverages Bayesian networks, decision
trees, and RNN as inference models to predict user action, e.g., riding or leaving a
cable-car. In [13], the authors demonstrate how the pressure data collected from
a smartphone barometer can be utilized to accurately track driving patterns. An
expansion is to correlate pressure time-series data sensed by the barometer against
topographic elevation data and road maps for a given region. This allows a cen-
tralized server to estimate the possible routes through which users have driven.
An example is HybridBaro [5], featuring a hybrid algorithm to adaptively utilize
GPS data to increase the detection accuracy in flat areas. RoadSphygmo [14] uses
the barometer in smartphones to detect traffic congestion. RideSense [6] is aimed
to match a passenger’s sensor trace against the traces of buses to determine the
riding and leaving times.

The important finding of the above approaches is that the barometer can be
used as a reliable sensor on smartphones for mobile context detection scenarios.
However, they all require continuous sensor event measurements and transmission.
Further, while better than RFID and BLE, the accuracy promised by these ap-
proaches is still not good enough to fulfill the demands of transportation systems.
For example, the accuracy of RideSense for more than 20 hours of traces from five
bus lines is between 84 to 98%. As pointed out in Section 4.5, only the uppermost
value of 98% would be sufficient for using this technology in practice. Lower levels
of accuracies are not acceptable considering the large number of daily trips made
through different public transport modes in a city, e.g., 950,000 daily trips in Oslo
as an average sized city.

2.3 Mobile Sensor Events and Deep Learning

In some recent works, deep learning has been leveraged to analyze sensor events
for detecting mobile contexts. In [15], the authors report on the accuracy of mod-
els such as RNN, CNN, various Hybrid models, Restricted Boltzman Machines,
and Autoencoders with respect to their ability to classify human activities from
body-worn sensors. They conclude that, compared to traditional pattern recog-
nition methods, deep learning reduces the dependency on human-crafted feature
extraction and achieves better performance by automatically learning high-level
representations of the sensor events. The authors also state that, from a technical
viewpoint, there is no model outperforming all the others in general. Thus, they
recommend to choose the models based on the requirements of specific scenarios.
DeepSense [16] uses CNN and RNN to provide an estimation and classification
framework for car tracking with motion sensors and human activity recognition.
In [17], DeepSleepNet, a deep learning framework for automatic sleep stage scor-
ing based on electroencephalogram data, is proposed. The authors show that
the model automatically learns features for different datasets without utilizing
any hand-engineered features. The model achieves an accuracy that is similar to
the state-of-the-art methods using hand-engineering. From the ML-based stream

95

Figure 1: A sample scenario presenting DeepMatch.

matching perspective, StreamLearner [18] is a distributed Complex Event Pro-
cessing (CEP) system proposed for scalable and low-latency event detection on
streaming data that uses neural networks. StreamLearner is mainly designed for
systems with multiple event sources causing diverse patterns in the event streams.
Its case study is detecting anomalies (i.e., abnormal sequences of sensor events) in
smart factories.

The important finding of most works in this category is that deep learning
can outperform hand-crafted feature extraction methods when applied to mobile
sensor event streams. This can be used to deduce valuable information about the
mobile context. We aim to exploit this power of deep learning in DeepMatch to
build a model capable of highly accurate in-vehicle presence prediction solely based
on sensor event streams. In addition, the limited work carried out on ML-based
sensor stream matching, is more focused on the quality of stream matching, e.g.,
to provide higher throughput.

3 DeepMatch

In this section, we first provide an overview of our approach. Then, we explain
the hardware and software settings on which DeepMatch is built, followed by
the presentation of our mobile stream data analysis and matching approach and a
detailed description of the associated design and architecture model.

3.1 Overview

Figure 1 shows a simple scenario that we use to outline our approach. Three
passengers are traveling with a bus. Everybody carries a smartphone with an
app featuring the DeepMatch learning model. As fixed equipment, the bus is
provided with a BLE-transmitter and a reference device (RefDev) that uses the
same type of sensors as found on the smartphones. When a passenger enters the
bus, the mobile app is awoken by the OS based on detecting the BLE signal. The

96

application then immediately starts to retrieve sensor data. Moreover, it performs
feature extraction converting the sensed data to a lower dimensional representa-
tion. The compressed version of the data is timestamped and tagged with the ID
of the BLE signal awakening the application, before it is transmitted to a remote
server. Simultaneously, RefDev is measuring, transforming and transmitting event
streams of its own sensors to the same server. Thus, the server receives two sets of
data that are compared to infer whether the two sensors are in the same vehicle.
For that, a special module carrying out the matching analysis is employed. In Sec-
tion 3.4, we explain the learning model used for the matching analysis in detail.
If the result of this analysis is that two data sets with the same BLE-transmission
ID are collected in the same vehicle, and one of them is produced by RefDev, the
person carrying the smartphone producing the other one is assumed to be in the
same vehicle.

3.2 Hardware Requirements and System Settings

As indicated above, a RefDev equipped with equal sensors as a typical smart-
phone, is required to collect the same sensor events with an identical frequency.
The RefDev is used to provide a ground truth for the in-vehicle presence detection.
Through our empirical experiments, we found out that using only the barometric
sensor provides both the best matching accuracy as well as a very low power con-
sumption. This is discussed in Sections 4.4.1 and 4.8. The barometric sensors was
initially introduced in smartphones to reduce GPS delay by providing the z coor-
dinate. As described in Section 2, this sensor can also be applied to provide highly
accurate contextual information. It guarantees position-independence, resistance
to vibrations, and high sensitivity to changes in elevation that are properties of
high value to implement the matching process (see [11]). Position-independence,
i.e., the sensor’s ability to provide useful data independently of the sensor’s loca-
tion, is particularly important for underground transportation in tunnels, subways
and trains, where for instance GPS is very inaccurate. Vibration resistance is im-
portant for the ability to measure the movements of the vehicle rather than the
movements of the user. With respect to this property, the barometer clearly out-
matches the accelerometer and gyroscope sensors, which are often more sensitive
to the movements of a user’s hands than to those of the vehicle. This results in
the fact that DeepMatch with the barometer renders a precision of 97.8% while,
with the two other sensors, only around every other matching is correctly detected
(see Table 4). Finally, a high elevation sensitivity is critical for extracting useful
context data in flat terrain, as demonstrated in Section 4.6. In [13], Bo-Jhang H.
et al. report that relative pressure sensitivity for the Bosch BMP280 sensor used
in the iPhone 6 and Nexus 5 is sensitive to elevation changes of 10 to 20 cm, even
better than the specified vertical resolution of about one meter reported by Bosch
in [19].

Besides the RefDev, the vehicle is provided with a BLE transmitter that, in

97

Table 1: Example datapoints

Sensor Value Timestamp Trip Device

Accelerometer 0.117311 3366... 15 75i3...
Magnetometer 21.835773 3366... 15 75i3...
Gyroscope 0.059957 3366... 15 75i3...
Barometer 993.281097 3366... 15 75i3...

contrast to the communication technology-based approaches discussed in Section 2,
is not directly used for in-vehicle detection. Instead, its task is to wake up the app
in the passenger’s smartphone when entering a vehicle as well as to align the data
produced by this smartphone with those sensed by the RefDev. Both Android
and iOS provide the ability to start “sleeping” applications when a BLE-signal
with a pre-defined ID is detected. Thus, our application only turns on and collects
the sensor events when the phone is close to a BLE-transmitter registered in the
application. Due to the imprecise nature of BLE, a transmitter may not only be
readable in its own vehicle but also in its environment. In this case, e.g., in a bus
terminal, a smartphone may read several BLE transmitter inputs simultaneously.
The IDs of these BLE transmitters are sent together with the collected data to the
server. In this way, the service running on the server does not need to compare the
user data with those of all RefDevs in the transport network, but only with those
related with detected BLE transmitters. This significantly reduces the workload
of the server. Further, if we use local servers in the vehicles, e.g., letting RefDev
conducting matching, the BLE transmitter can be used to forward the data from
the user’s smartphones to the server.

If a vehicle enters a dead spot, i.e., an area with no cellular network coverage,
and we use a central server, the encoded data will be temporarily stored on the
device and tagged with timestamps and BLE IDs. When the vehicle leaves the
dead spot, the locally stored data will then be transmitted to the server for a
delayed in-vehicle presence detection.

3.3 Mobile Data Analysis

The deep learning model of DeepMatch performing the in-vehicle prediction has
to be trained based on real sensor events collected from RefDev and passenger
devices. In this subsection, we describe how the real sensor events are collected
and converted to the training and evaluation datasets used to train the model.

3.3.1 Data Collection and Preprocessing

The sensor events used to train our deep learning model are collected by means
of the DataCollector, an Android application that we developed for this purpose.
The application can be configured to listen to events from any available sensor

98

Table 2: An Example of interpolated data

Timestamp Accel. Magneto. Barom. Gyrosc.

0 ms 5.62421 21.83577 989.28109 0.05995
20 ms 5.58418 22.83491 989.28610 0.13596
40 ms 5.53032 24.54790 989.27981 0.07716
60 ms 5.67377 25.12537 989.26586 0.08019

in the smart device, and to store and timestamp them locally as datapoints, see
Table 1. The data from various runs can then be uploaded to a computer running
our Data Analysis tools. Moreover, the application contains a simple server-client
communication protocol using websockets. This allows us to connect several de-
vices and to synchronize their clocks. In this way, the collection of sensor events
can be carried out synchronously. The data collection is performed between two
stops along the route of a public transportation provider, where all datapoints
collected between the two stops are stored as a Trip. All trips are registered with
a unique trip ID, propagated from the server device to all clients.

The sensor framework provided by Android allows developers to determine
the sampling rate of each available sensor. The sensors generate events, using
this sampling rate as a guideline, usually with a standard deviation of one to two
milliseconds. To perform sensor event matching, however, we need a fixed sampling
rate across all sensors and devices for a trip. This is achieved through our Data
Analysis tool by interpolating the data collected by each device individually. The
interpolation of a trip’s data is done by first defining a global start time extracted
from the data. Thereafter, this start time is substracted from the timestamps of
all datapoints to get a relative timestamp. In the next step, we interpolate the
values for each sensor event set with a fixed frequency, and finally remove the
original data. With these fixed timestamp and interpolated values, we can now
create a new table where the rows represent timestamps and each column contains
the value for the given timestamp.

3.3.2 Dataset Creation

An important goal of DeepMatch is to minimize the amount of data needed to
perform in-vehicle detection which reduces the amount of data to be transmitted
between the devices and the server as well as the number of calculations performed
by the server. To this end, we trained our model to perform predictions based on
smaller segments of the trip data. Our Data Analysis tool converts the interpolated
data from a trip, shown in Table 2, into trip segments by splitting the trip data
into smaller segments of a fixed length. Furthermore, all segments are tagged with
the ID of the trip they belong to, in addition to a segment number following the
naming convention ¡trip id¿ ¡segment nr¿, e.g., the first segment of a trip with id
15 becomes 15 0 and the second 15 1. This will be the same for all devices used to

99

Figure 2: Matching samples created from trip segments.

Figure 3: Overview of the DeepMatch model design.

gather data for Trip 15. The tool allows us to configure the length of the segments
freely to find out which one renders the best matching results. However, when
applying the tool to train and use the deep learning model, all segments must
have the same length.

The created segments are used to build samples for a matching dataset. The
samples in this dataset belong to either Class 1 or Class 0. Class 1 consists of
samples from segments with the same trip id and segment number, i.e., sensor
events captured by two devices at the same time in the same vehicle. Samples
from Class 0 are created from segments with different trip ids or segment numbers.
They represent sensor events not captured at the same time or in the same vehicle,
as shown in Figure 2.

3.4 Design and Architecture of the Learning Model

The main goal of the DeepMatch learning model is to perform feature extraction,
dimensionality reduction, and matching. As already mentioned, the overall in-
vehicle presence detection process will be performed in a distributed fashion that
is depicted in Figure 3. The feature extraction and dimensionality reduction take
place both in the smartphones of the passengers and the reference devices fixed in

100

the vehicles. They are performed by Encoder Modules, which are shown in form of
green networks in Figure 3. These encoders reduce the size of the original sensor
events stream by a factor of four. In consequence, the bandwidth necessary to
transmit the sensor data from the devices to the server will be reduced to a fourth
in comparison to sending all the originally sensed data. The main objective of the
encoder is to guarantee the preservation of characteristics and features of the data
necessary for accurate matching.

The encoder is part of a neural network topology, called Autoencoder [20]. It is
composed of two parts, an encoder and a decoder. Autoencoders are used to learn
efficient, often lower-dimensional representations of their input through unsuper-
vised training. The encoder maps the autoencoders input to a latent representation
in latent space, i.e., an internal representation of its input. The decoder maps this
latent representation to a reconstructed representation of the Autoencoder’s orig-
inal input. The amount of information passed from the encoder to the decoder is
typically restricted, forcing the Autoencoder to prioritize the most relevant infor-
mation in its input. In DeepMatch, we use dimensionality reduction to restrict
the encoder in order to achieve the size reduction by the factor four.

The matching predictions are performed on the server by a fully connected
deep neural network, called the Matching module, depicted as a blue network in
Figure 3. To achieve a high in-vehicle presence detection accuracy, this module has
to learn and fine-tune the spatiotemporal thresholds to distinguish the samples in
Class 1, i.e., segments taken in the same vehicle at the same time, from those in
Class 0, i.e., segments sensed during different trips or at different locations.

The Matching module and the Autoencoder are developed and trained jointly
using the architecture shown in Figure 4. Different types of Autoencoders exist.
In DeepMatch, we use a Stacked Convolutional Autoencoder (CAE) [21] in which
the encoder is created from stacks of alternating convolutional (conv) and maxpool
layers. The conv layers are responsible for feature extraction and the maxpool
layers for dimensionality reduction.

As previously mentioned, the decoder is the part of the Autoencoder respon-
sible to recreate a copy of its input from the latent representation output by
the encoder. It is created from stacks of alternating conv and upsample layers.
Conv layers are specially suited to detect and extract time-invariant features in
sequences, see [15, 21–23]. The maxpool layers perform dimensionality reduction
using the max operator. The upsampling layers reverse this process by dupli-
cating each value in its input sequence, e.g., the sequence 1, 2, 3 would become
1, 1, 2, 2, 3, 3.

101

Figure 4: DeepMatch model architecture.

In Fig. 4, the specifics of our deep model are shown. The green boxes represent
the layers of the encoder and the orange ones the layers of the decoder. The
grey boxes show layers without trainable parameters and the blue ones the layers

102

of the Matching module. Each convolution layer represents the following three
operations sequentially: convolution, rectified linear unit activation (ReLU, i.e.,
relu(x) = max(0, x)) and batch normalization [24]. Every other layer in the
encoder is a maxpool layer, using a stride size of 2, and every other layer in the
decoder is a upsample layer, with size of 2, doubling the size of their input. The
task of the flatten layer is to reshape any N -dimensional input to an 1-dimensional
output, whilst the reshape layer reverse this process. In our model, the encoder
consists of four convolutional layers, three maxpooling layers, one flatten layer and
one dense layer. The decoder consists of five convolutional layers, three upsample
layers, one reshape layer and one dense layer. The last part of the learning model in
DeepMatch, the Matching module, consists of three consecutive fully connected
dense layers, all using ReLU activation and batch normalization.

The DeepMatch model is distributed amongst the server, the reference de-
vice, and the passenger devices. The encoder module is embedded in the smart-
phones and reference devices whilst the Matching module is implemented in the
server. The decoder module is only used during training and not in the execution
of in-vehicle presence detection.

To train the overall model depicted in Fig. 4, the CAE is duplicated, sharing all
trainable parameters W in a network topology known as a Siamese Architecture.
This architecture has been applied with great success in matching problems like
face recognition [25], signature verification [26], and human identification using
gait recognition [27]. The Siamese architecture allows the model to accept two
sensor data segments at the same time, e.g., segment Xa and Xb. Since the two
CAEs share the same weights, the encoder performs an identical mapping of the
segments. Therefore, if the segments are matched (i.e., they belong to a sample of
Class 1), the latent representations ea and eb should also be matched. Likewise, ea
and eb should be different for samples belonging to Class 0. Through joint training
of both the CAE and the Matching module, the encoder learns to prioritize both,
features of the segments that are necessary for the decoder to recreate them, and
features needed by the Matching module for matching.

3.5 Model Training

This subsection describes the training routine for the model shown in Fig. 4. We
describe two sensor data segments belonging to a matching sample as Xa and Xb

(see Section 3.3.2) while the binary label Y refers to the ground truth class of a
sample, i.e., Y = 1 for Class 1, and Y = 0 for Class 0. Through the encoder
layers of the Siamese CAEs, Xa and Xb are mapped to lower-dimensional latent
representations ea and eb, shown as dark green squares in Fig. 4. Thereafter, we
map ea and eb through the decoder layers which results in the segment recreations
X ′

a and X ′
b. Finally, we feed X ′

a and X ′
b to the Matching module which returns the

class prediction Y ′, i.e., Y ′ = 1 if the segments are matched and Y ′ = 0 otherwise.
The goal of the model training, of course, is to reduce the disagreement between

103

the ground truth label Y and the class prediction Y ′ for as many samples as
possible. To achieve that, we also need to reduce the disagreement between the
original segments Xa and Xb and the recreated ones X ′

a and X ′
b. To quantify

the disagreements between original and recreated segments, we use Mean Squared
Error :

L =
1

n

n∑

t=1

(X ′
a[t]−Xa[t])

2

Here, n is the overall time span of segment Xa while X ′
a[t] is the recreation of

the datapoint Xa[t] ∈ Xa at the point of time t. As a loss function for the
Matching module to quantify disagreements between Y and Y ′, we apply Binary
Cross Entropy :

L = −Y · log(Y ′) + (1− Y) · log(1− Y ′)

Y ′ is the predicted label of the sample containing segments Xa and Xb, and Y its
ground truth.

The disagreements found by the loss functions described above are used to up-
date the trainable parameters of the model through Stochastic Gradient Descent.
We emphasize that the gradients from both loss functions are backpropagated to
the encoders. This enables the encoders to extract not only the most defining
features of its input, but also the features relevant for matching prediction.

3.6 Design Rationale behind the DeepMatch Model

To find out the best model, we conducted hundreds of experiments on various
model configurations. Every configuration was evaluated using the performance
metrics described in Section 4.1 on the dataset described in Section 4.2. To obtain
a useful model architecture, we tried increasing as well as decreasing the number
of convolutional layers in the CAEs and swapping the convolutional layers for
dense layers. Moreover, we tried multiple variants of the Matching module, using
convolutional layers instead of dense layers, varying the size and number of dense
layers, and also exchanging the Matching module with a function calculating the
Euclidean Distance between the latent representations and using this for matching
predictions. We tried stacking convolutional layers as feature extractors instead
of using Autoencoders, removing the need for loss calculations between the input
and recreated segments. In addition to different model architectures, we tested
various hyperparameter settings such as adjusting the number and sizes of filters
in each conv layer, and trying various output sizes on the dense layers of the
Matching module. From all our experiments, the architecture in Fig. 4, using the
hyperparameter settings described in 3.4, rendered the best performance.

All experiments (i.e., training and evaluation) were performed on a desktop PC
with an Intel i7 4.00GHz CPU, 16 GB memory, and a Nvidia GTX 1080 GPU. The
models were created, trained and evaluated using Google Tensorflow 2.0, version
2.0.0-rc0 [28].

104

4 Evaluation

In this section, we first describe the performance metrics chosen to evaluate our
learned models. Thereafter, we explain how the data used during training and
evaluation was collected and pre-processed. Moreover, we show the performance
results from seven sensor modality variations of our model. For that, we inves-
tigated not only the barometer but also accelerometer, magnetometer, and gyro-
scope sensors as well as various combinations. Further, the performance results for
DeepMatch 5, DeepMatch 10 and DeepMatch 15 are compared. These vari-
ants refer to three different segment sizes of the best sensor modality with lengths
of 5, 10 and 15 seconds, respectively. Afterwards, we compare DeepMatch with
two well-known baseline methods. The results of evaluating these methods against
our datasets are reported and the performance comparison between DeepMatch
and those methods is discussed. To further illustrate the accuracy of barometer-
based DeepMatch, we look also at the special case of very flat terrain, a worst
case scenario when only barometer data is used. In addition, we investigate the
execution time overhead of the Matching module carried out on the server. Fi-
nally, the battery consumption as well as the CPU and run-time overhead for the
passenger smartphones are evaluated.

4.1 Definitions and Metrics for Evaluation

A positive sample represents segments belonging to Class 1, and a negative sample
those from Class 0. Furthermore, according to the common denominations in bi-
nary classification, we define the following terms: True Positive (TP): a correctly
classified positive sample; True Negative (TN): a correctly classified negative sam-
ple; False Negative (FN): a positive sample wrongly classified as negative; False
Positive (FP): a negative sample falsely classified as positive.

The following four metrics are used for evaluation:

• Precision (PR): The ratio of correct positive predictions to the total number
of predicted positive samples, i.e., out of all samples classified as positive,
how many belong to Class 1 :

PR ≜ TP

TP + FP
(1)

• Recall (RE): The ratio of correct positive predictions to the total number
of positive samples, i.e., out of all available positive samples in the dataset,
how many were correctly classified by the model:

RE ≜ TP

TP + FN
(2)

• Accuracy (ACC): In a dataset with a 50/50 class distribution, the accuracy
describes how good the model is at classifying samples from all classes, i.e.,

105

it describes how many of all predictions made are correct:

ACC ≜ TP + TN

TP + FP + TN + FN
(3)

• F1-score (F1): The harmonic mean between precision and recall. The F1-
score is useful in cases where the distribution of classes is not 50/50:

F1 ≜ 2 · PR ·RE

PR+RE
(4)

We plot the results of our evaluation in so-called Receiver Operating Charac-
teristics (ROC)-graphs which describe how good a function and/or a model are at
distinguishing between the classes in the dataset. The measurements for the three
DeepMatch variants using barometer data and two baseline methods according
to these metrics will be discussed in Section 4.4.

4.2 Data Collection and Dataset Creation

The data was collected by volunteers, each carrying one to three Android phones.
All phones were connected through the Android application discussed in Sec-
tion 3.3.1. The following seven Android devices were used: Huawei Nexus 5X, two
Huawei Nexus P6, Samsung S8, Sony Z3 Compact, Google Pixel XL and Google
Pixel 3a. The data was collected during trips made by public transportation (i.e.,
trains, subways, busses and trams) in Oslo and Trondheim, two Norwegian cities.
In total, we collected 21,252 unique 10 second sensor data segments that consist
of events from the magnetometer, accelerometer, gyroscope, and barometer sen-
sors1. Following the common practice in machine learning, 70% of the segments
were used for training and 30% for evaluation. Thereafter, matching sets were
created separately for both training and evaluation, resulting in a training dataset
of 180,408 and an evaluation set of 67,304 unique samples.

The creation of the matching sets was performed separately for the training
and evaluation sets to avoid using the same sensor event segments in both phases.
In this way, any segment used in the evaluation set has never previously been seen
by the model. In both sets, we selected each 50% of the segment pairs from Class
0 and Class 1. Following this approach, we created seven datasets containing data
from various sensor modality combinations:

• A: Accelerometer

• M: Magnetometer

• B: Barometer

1The datasets will be available via GitHub. In this version of the paper, we do not
share the GitHub link due to the double-blind review policy of the DEBS conference.

106

• BA: Barometer and Accelerometer

• BM: Barometer and Magnetoer

• AMG: Accelerometer, Magnetometer and Gyroscope

• AMGB: Accelerometer, Magnetometer, Gyroscope and Barometer

After training the models on these datasets, and evaluating their performance
on the evaluation sets, the best performing model and sensor modality were se-
lected for further testing. The next goal was to test how models trained on seg-
ments of varying lengths would perform. To do this, we created two additional
datasets of 5 and 15 second segments from the best performing sensor modality
data.

4.3 Baseline Methods

Two baseline methods were chosen for comparison with DeepMatch: Normal-
ized Correlation (NORM CORR) which calculates the correlation between two
sequences by comparing datapoints in the same temporal position, and Dynamic
Time Warping (DTW) which compares all datapoints in two sequences by warping
the temporal dimension to find the best correlation for any datapoint.

Since DTW describes the distance between two sequences, where a large dis-
tance equals a small correlation, we inverse the results from this function. The goal
is to find a way to classify instances belonging to the two classes in the dataset,
using these methods. The assumption is that applying either method on samples
belonging to Class 1, should provide a large value, while samples belonging to
Class 0 should return a small value. To this end, we used the following equation:

c = f(Xa, Xb), Y ′ =

{
1 if c > α

0 else

The function f represents either of the two baseline methods, and c the result
of applying f to the segments Xa and Xb in a sample from the dataset. The
delimiting value α is used to classify instances of the two classes from their c
values. To find α, we first apply f to all samples in the training set and add
the resulting c-values to a sorted array. Thereafter, we search for the optimal
delimiting value α, best able to separate instances in the sorted array. If the
value c for a sample is larger than the delimiting value α, the sample is assumed
to belong to Class 1. Otherwise, it should belong to Class 0. Optimal α values
were searched for both NORM CORR and DTW using the training set. Then, we
evaluated the functions and their corresponding α values on the evaluation set.
The results of our experiments are discussed in the following.

107

Table 3: Confusion matrix for the barometer-based DeepMatch 10

Predicted Positive Predicted Negative

Actual positive 33018 634
Actual negative 842 32810

Table 4: Performance comparison various sensor combinations

Model PR RE ACC F1

DeepMatch 10 A 0.5065 0.9531 0.5122 0.6615
DeepMatch 10 M 0.5064 0.9280 0.5118 0.6553
DeepMatch 10 B 0.9751 0.9812 0.9781 0.9781
DeepMatch 10 BA 0.7332 0.9697 0.8082 0.8350
DeepMatch 10 BM 0.7081 0.9708 0.7853 0.8189
DeepMatch 10 AMG 0.5011 0.9646 0.5020 0.6595
DeepMatch 10 AMGB 0.7079 0.9892 0.7905 0.8253

4.4 Experimental Results

During the development of our model, we continuously evaluated our results using
the metrics described above. The confusion matrix, i.e., the overall number of
TP-, TN-, FN-, and FP-rated samples, for barometer-based DeepMatch 10 is
listed in Table 3. The values of the confusion matrices for the learned models and
the two baseline models allowed us to compute the outcomes according to the four
metrics introduced in Section 4.1. The results are presented in Tables 4 and 5,
and discussed below.

4.4.1 Sensor Modality Experiments

Table 4 depicts the results from training DeepMatch on various sensor modal-
ity combinations as described in Section 4.2. The numbers show that all mod-
els trained on datasets containing barometer data outperform all other models.
Moreover, the DeepMatch 10 B, trained on barometer data alone, outperforms
all other models. As described in Section 3, the barometer sensor is precise inde-
pendently of the position of the vehicle. In particular, it is resistant to vibrations
and sudden user movements as well as highly sensitive to elevation changes. This
makes it perfectly suited to capture the movements of the vehicle rather than the
movements of the individual user.

The accelerometer and gyroscope, on the other hand, are more sensitive to the
movements of the users. The magnetometer is more sensitive to magnetic objects
in the proximity to the user as well as to the power unit of the vehicle than to the
movements of the vehicle which makes it also a poor source of data for the model.
All these factors impact the performance of the models, and the results in Table 4

108

Table 5: Performance comparison of the barometer-based DeepMatch with
baseline methods

Model PR RE ACC F1

DeepMatch 5 0.9408 0.9765 0.9574 0.9583
DeepMatch 10 0.9751 0.9812 0.9781 0.9781
DeepMatch 15 0.9348 0.9816 0.9566 0.9576
NORM CORR 0.9174 0.9595 0.9393 0.9380
DTW 0.9810 0.7350 0.8136 0.8404

show that, with one exception, DeepMatch 10 B renders the best results. That
holds particularly for the important ACC metric that shows the share of correct
versus all matchings. The high RE value of the AMGB model indicates that
the model correctly classifies most of the positive samples as positive. It seems,
however, that it has a bias towards false positives, i.e., classifying also negative
samples as positive, which results in a low PR value. Altogether, limiting ourself
to using only the barometer data seems to be the most promising way to conduct
in-vehicle presence detection.

4.4.2 Segment size experiments with the barometer-based Deep-
Match

From the numbers in Table 5, we can conclude that for all performance metrics,
DeepMatch 10 is outperforming DeepMatch 5. This is caused by the difference
in segment sizes for the two models, 512 and 256 data points respectively. Thus, the
former model has more data to learn from than the latter, which explains the higher
quality of its performance. According to this explanation, however, DeepMatch
15 with its 768 data points should outperform the two other models. This is
true for RE but not for the other three metrics where it underperforms at least
DeepMatch 10. Due to the bad PR value in comparison with the good RE result,
the model seems to be biased towards classifying samples as positive which leads
to an extended number of false positives. Probably, the composition of 15 seconds
long segments of our learning set is non-representative which leads to learning a
sub-optimal classifier. Using a larger dataset, we believe DeepMatch 15 would
outperform DeepMatch 10. We will follow this up in future experiments.

4.4.3 Baseline Methods

From Table 5, we can see that RE, ACC, and F1 of both baseline methods are
lower than the corresponding metrics for the learned DeepMatch models. The
sole exception is the metric PR for which DTW gave a better result than both
the DeepMatch variants and NORM CORR. The reason for this is a correlation
of DTW to negative samples that we discuss below. That causes the consequence

109

Figure 5: ROC-curve for baseline methods (left) and matching calculations
execution time (right).

that DTW produces only relatively few false positives which renders the good
result for PR. Instead, it generates a significant number of false negatives spoiling
the values for the other metrics.

Altogether, the two baseline methods seem to be less suited for in-vehicle pres-
ence detection than DeepMatch. For NORM CORR, we believe this is due to
the sensitivity of the function to time-lag between its input sequences, e.g., a pas-
senger sitting a couple of meters behind the RefDev in the vehicle, will experience
a lag between the signals which will result in a lower correlation value for positive
samples. Therefore, the correlation value for some of the positive samples will be
mixed with the correlation value for negative samples resulting in a less optimal
delimiter.

The low performance of DTW is most likely caused due to lacking sensitivity
to the temporal dimension. DTW warps the temporal dimension between the two
sequences to find the shortest distance. This will result in a very high correlation
value for some negative samples, making it difficult for the delimiter to separate
samples from the two classes. As a result of this, there are relatively few false
positives at the expense of many false negatives which explains the discrepancy of
DTW’s results for the different metrics in Table 5. Similar results can be observed
in the ROC-graphs for the models. The left graph in Fig. 5 depicts the ROC-
curve for DeepMatch 10, NORM CORR and DTW. A property of these curves
is that, as larger the areas under the curve are, as better the performance of the
corresponding model will be. According to that, DeepMatch 10 is better than
NORM CORR and much better than DTW what our RE, ACC and F1 results
also reflect.

4.5 Discussion of the Experimental Results

At a first glance, the differences between the accuracies of barometer-based Deep-
Match 10 (ACC = 0.9781) and the baseline model NORM CORR (ACC =
0.9393) may not seem to be considerable. In practice, however, they may have
a great effect. Let us take an auto-ticketing system for city busses. Reflecting
short distances of just one or two minutes journey time between two bus stops in

110

an inner city environment, we assume that six in-vehicle prediction runs (i.e., six
segments of 10 seconds each) are conducted during this period. To reduce the risk
of wrongly billing people who are not riding in a bus but being, e.g., in a car next
to it, the bus operator may apply a policy to ticket somebody only if at least five
of these six runs predict the user’s smartphone being in the bus. The likelihood
Pcr that our policy correctly detects a passenger can be computed as follows:

Pcr = ACC6 + 6× ACC5 (1−ACC)

Thus, taking the ACC value of NORM CORR, Pcr = 95.31% of all passengers are
ticketed on average while the rest travels for free. This system leads to a revenue
reduction of nearly 5% which few bus operators would accept. With DeepMatch
10, however, Pcr = 99.32% of the passengers are correctly billed. The loss of
revenue of less than one percent seems to be acceptable since it will be easily
outweighed by reducing the number of ticket machines and other infrastructure.

Additionally, for the case of wrongly billing non-passengers, DeepMatch 10
has a significant advantage over NORM CORR. Using the policy mentioned above,
the likelihood Per of erroneous ticketing can be calculated by the following formula:

Per = (1−ACC)6 + 6× ACC (1−ACC)5

That leads to the values Per = 0.000003% with DeepMatch 10 and Per =
0.000469% with normal correlation. In the latter case, around 171 people are
wrongly billed in a year if we assume a 100,000 non-passengers being checked for
in-vehicle presence every day which seems reasonable for a larger city. Thus, more
than three such cases arise every week leading to a lot of compensation claims and
bad press. In contrast, using DeepMatch 10, only a single person is wrongly
billed in a year which seems acceptable.

4.6 Performance in Flat Terrain

In Section 4.4.1, we showed evidence that DeepMatch works best when only
barometer data is used. This, however, may cause a problem in level areas. There-
fore, to measure the accuracy of DeepMatch in such worst case scenarios, we
made different trips in a very flat region in the central district of Trondheim.
Some results of these experiments are shown in Fig. 6. Plot 1 shows the pres-
sure measured by two different phones during the same trip, while Plot 2 depicts
pressure measurements from two trips using the same phone. The low amplitudes
in all curves show the flatness of the area. Plot 3 shows the match prediction of
DeepMatch 10 based on the sensor output from the two devices in Plot 1. Plot
4 depicts the match prediction of our model based on the sensor output from the
two trips in Plot 2. As indicated by Plot 4, DeepMatch detects dissimilarity at a
high accuracy, despite the very similar pressure values measured by Google Pixel
2 in Plot 2.

111

Figure 6: Match prediction tests for trips on flat roads.

4.7 Matching Execution Time

To use DeepMatch-based in-vehicle prediction also in real environments, the
server needs to be able to do matching calculations from a large number of concur-
rently travelling passengers. That holds particularly for centralized server struc-
tures. The right graph in Fig. 5 shows the execution time of a central server as a
function of increasing concurrent calculations. To increase the operational speed
of our system, we exploited the feature of Tensorflow models to make several si-
multaneous predictions on multiple inputs. This resulted in an execution time of
1,140 milliseconds for 50,000 concurrent matching calculations, all running on one
desktop equipped with a single GTX 1080 GPU. Since all trips between two stops
are far longer than the 1,140 milliseconds, a data center consisting of just 19 of
such computers could serve a city like Oslo with its 950,000 daily passengers even
if all of them travel at the same time.

4.8 Battery Consumption on Smartphones

In this subsection, we evaluate the battery consumption of DeepMatch which is
crucial for the adoption of our approach in practice. In general, there are three
main sources of battery drain in our framework, i.e., collecting barometer data,
the encoder module for data processing, and transmitting the processed data to
the server.

For our tests, we selected five Android phones from five different manufac-
turers that are listed in Table 6. To consider age diversity, we used phones that

112

Table 6: Android phones used in the tests

Type Battery capacity Age

Samsung S8 3000 mAh 2 years
LG Nexus 5X 2700 mAh 3 years
Huawei Nxus 6P 3450 mAh 4 years
Google Pixel 3a 3000 mAh 1 year
Sony Z3 compact 2600 mAh 5 years

Table 7: Battery consumption per hour

Brand Data collection Learning Complete

Samsung 25 mA 26 mA 31 mA
LG 23 mA 24 mA 26 mA
Huawei 22 mA 23 mA 25 mA
Google 16 mA 17 mA 18 mA
Sony 15 mA 18 mA 21 mA

are between one and five years old. Besides the battery capacity, the environment
temperature is an important factor that can influence the performance of batteries.
Therefore all tests were run in an experimental environment with a temperature of
19◦ Celsius representing the indoor temperature of typical transportation vehicles.
Since barometer-based DeepMatch 10 promises the best overall performance (as
discussed above), we consider this version of our model for the battery measure-
ments.

The battery status is collected from the app using the Batterystats and Bat-
tery Historian tools included in the Android framework [29]. These tools provide
functionality to extract details on battery consumption for all applications running
on the device. In order to ensure that the app can listen to barometer events and
process them in intervals of ten seconds, we run the tests in the background with
the wake lock parameter enabled to keep CPU processing on. Reflecting the above
mentioned battery consumption factors, we use the following three scenarios for
our experiments:

• Complete scenario: All three factors of battery consumption, i.e., the barom-
eter data collection, data processing by the encoder, and data transmission.

• Learning scenario: Data collection and data processing.

• Data collection scenario: Only barometer data collection.

The results of our tests are depicted in Table 7. The numbers show clearly
that for all five devices, DeepMatch influences the battery consumption only

113

Table 8: Run Time and CPU overhead

Brand CPU Mean Run Time Overhead

Samsung
2.3 GHz + 1.7
GHz, Cortex-
A53

49 ms 1-2 %

LG
1.4 GHz + 1.8
GHz, 64-Bit
Hexa-Core

46 ms 1-2 %

Huawei
2.0 GHz +
1.55 GHz,
64-Bit Octa-
Core

52 ms 1-2 %

Google
2.0 GHz + 1.7
GHz, 64-Bit
Octa-Core

19 ms 0-1 %

Sony
2.5 GHz
Quad-Core,
400 Krait

73 ms 3-4 %

marginally. For all phones, the battery usage will be less than 62 mA consid-
ering a total travel time of two hours a day. With a battery capacity of 3000
mAh, this equals 2.1%. This value is considerably lower than most smartphone
apps, as reported in [30]. Therefore, we believe that the battery consumption of
DeepMatch is satisfactory.

4.9 Computational Overhead on Smartphones

In this subsection, we evaluate the computational overhead of the feature extrac-
tion and dimensionality reduction performed by the barometer-basedDeepMatch
10 on smartphones. For these experiments, we used the same smartphones as in
the battery consumption analysis. We registered both the run-time and CPU us-
age of the encoder module, when it processed sensor events with intervals of 10
seconds. The results of our tests are depicted in Table 8. The numbers show
clearly that, for all phones, the mean run-time and CPU overhead of the encoder
is barely noticeable. Even for the oldest model in the tests, the five year old Sony
Z3 Compact, the mean run time of the encoder is 73 ms which affords a CPU
usage of only three to four percent.

114

5 Conclusions and Future Work

In this paper, we proposed a machine learning-based approach, called Deep-
Match, to address the challenge of in-vehicle presence detection as an important
aspect of mobile context. It utilizes the sensor event streams of a smartphone to es-
timate its presence in a public transport vehicle at the very high accuracy of nearly
98%. DeepMatch is based on utilizing Stacked Convolutional Autoencoders for
feature extraction and dimensionality reduction, and a dense neural network for
event stream matching. The feature extraction and dimensionality reduction run
on the smartphone and the reference device, while the event matching is performed
on a server. Through dimensionality reduction, the datapoints are reduced by the
factor four such that the bandwidth of the data transfer to the server is consid-
erably reduced without losing the information of the data necessary to perform
matching.

Our future plan is to improve DeepMatch 10 with further data gathering
and model optimization. During 2020, we will implement a pilot of DeepMatch
in a Norwegian city together with a public transportation provider. Moreover, we
intend to research on the optimum length of the data segments and the frequency
of data gathering (from the reference devices and the smartphones) in order to
minimize the amount of data needed for in-vehicle presence detection.

References

[1] S. Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, and J. Song,
“Orchestrator: An Active Resource Orchestration Framework for Mobile
Context Monitoring in Sensor-rich Mobile Environments,” in IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom).
Mannheim, Germany: IEEE Computer, 2010, pp. 135–144.

[2] W. Narzt, S. Mayerhofer, O. Weichselbaum, S. Haselböck, and N. Höfler, “Be-
In/Be-Out with Bluetooth Low Energy: Implicit Ticketing for Public Trans-
portation Systems,” in IEEE 18th International Conference on Intelligent
Transportation Systems. Las Palmas, Spain: IEEE, 2015, pp. 1551–1556.

[3] T. Gyger and O. Desjeux, “EasyRide: Active Transponders for a Fare Col-
lection System,” IEEE Micro, vol. 21, no. 6, pp. 36–42, 2001.

[4] C. Sarkar, J. J. Treurniet, S. Narayana, R. V. Prasad, and W. de Boer,
“SEAT: Secure Energy-Efficient Automated Public Transport Ticketing Sys-
tem,” IEEE Transactions on Green Communications and Networking, vol. 2,
no. 1, pp. 222–233, 2018.

[5] M. Won, A. Mishra, and S. H. Son, “HybridBaro: Mining Driving Routes
Using Barometer Sensor of Smartphone,” IEEE Sensors Journal, vol. 17,
no. 19, pp. 6397–6408, 2017.

115

[6] R. Meng, D. W. Grömling, R. R. Choudhury, and S. Nelakuditi, “RideSense:
Towards Ticketless Transportation,” in 2016 IEEE Vehicular Networking
Conference (VNC). Columbus, OH, USA: IEEE, 2016, pp. 1–8.

[7] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and its
Role in the Internet of Things,” in 1st Workshop on Mobile Cloud Computing
(MCC). Helsinki, Finland: ACM, 2012, pp. 13–16.

[8] T. Gründel, H. Lorenz, and K. Ringat, “The ALLFA Ticket in Dresden. Prac-
tical Experience of Fare Management Based on Be-In/Be-Out & Automatic
Fare Calculation,” 2006, iPTS Conference, Seoul, South Korea.

[9] S. Kuchimanchi, “Bluetooth low energy based ticketing systems,” Master’s
thesis, Aalto University, Espoo, Finland, 2015.

[10] A. Kwiecień, M. Maćkowski, M. Kojder, and M. Manczyk, “Reliability of
Bluetooth Smart Technology for Indoor Localization System,” in Interna-
tional Conference on Computer Networks (CN), ser. CCIS 522. Br’unow,
Poland: Springer-Verlag, 2015, pp. 444–454.

[11] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and L.-S.
Peh, “Using Mobile Phone Barometer for Low-power Transportation Context
Detection,” in 12th ACM Conference on Embedded Network Sensor Systems.
Memphis, TN, USA: ACM, 2014, pp. 191–205.

[12] S. Vanini, F. Faraci, A. Ferrari, and S. Giordano, “Using Barometric Pres-
sure Data to Recognize Vertical Displacement Activities on Smartphones,”
Computer Communications, vol. 87, pp. 37–48, 2016.

[13] B.-J. Ho, P. Martin, P. Swaminathan, and M. Srivastava, “From Pressure to
Path: Barometer-based Vehicle Tracking,” in 2nd ACM Inter. Conf. on Em-
bedded Systems for Energy-Efficient Built Environments (BuildSys). Seoul,
South Korea: ACM, 2015, pp. 65–74.

[14] A. Dimri, H. Singh, N. Aggarwal, B. Raman, D. Bansal, and K. K. Ramakr-
ishnan, “RoadSphygmo: Using Barometer for Traffic Congestion Detection,”
in 8th International Conference on Communication Systems and Networks
(COMSNETS). Bangalore, India: IEEE Computer, 2016, pp. 1–8.

[15] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep Learning for Sensor-
based Activity Recognition: A Survey,” Pattern Recognition Letters, vol. 19,
pp. 3–11, 2017.

[16] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A Unified
Deep Learning Framework for Time-series Mobile Sensing Data Processing,”
in 26th International Conference on World Wide Web. Perth, Australia:
ACM, 2017, pp. 351–360.

116

[17] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting Multi-Channels
Deep Convolutional Neural Networks for Multivariate Time Series Classifica-
tion,” Frontiers of Computer Science, vol. 10, no. 1, pp. 96–112, Feb. 2016.

[18] C. Mayer, R. Mayer, and M. Abdo, “StreamLearner: Distributed Incremental
Machine Learning on Event Streams: Grand Challenge,” in 11th ACM Inter-
national Conference on Distributed and Event-Based Systems. Barcelona,
Spain: ACM, 2017, pp. 298–303.

[19] Bosch, “Bosch BMP280,” https://www.bosch-sensortec.com/bst/products/
all products/bmp280, 2020, accessed: 2020-04-01.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, ch. Autoencoders, pp. 505–528, http://www.
deeplearningbook.org.

[21] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked Convolutional
Auto-encoders for Hierarchical Feature Extraction,” in International Con-
ference on Artificial Neural Networks (ICANN), ser. LNCS 6791. Espoo,
Finland: Springer-Verlag, 2011, pp. 52–59.

[22] N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi, “Deep Temporal
Clustering: Fully Unsupervised Learning of Time-domain Features,” arXiv,
vol. cs, no. arXiv:1802.01059, 2018.

[23] A. Supratak, H. Dong, C. Wu, and Y. Guo, “DeepSleepNet: A Model for Au-
tomatic Sleep Stage Scoring based on Raw Single-channel EEG,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp.
1998–2008, 2017.

[24] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift,” arXiv, vol. cs.LG, no.
arXiv:1502.03167, 2015.

[25] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese Neural Networks for One-
shot Image Recognition,” 2015, https://www.cs.cmu.edu/∼rsalakhu/papers/
oneshot1.pdf.

[26] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
Verification using a “Siamese” Time Delay Neural Network,” in Advances in
Neural Information Processing Systems. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 1994, pp. 737–744.

[27] C. Zhang, W. Liu, H. Ma, and H. Fu, “Siamese Neural Network based Gait
Recognition for Human Identification,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE,
2016, pp. 2832–2836.

117

[28] Tensorflow, “Tensorflow 2.0 RC Tutorials,” https://www.tensorflow.org/
beta/, 2019, accessed: 2019-10-23.

[29] B. Historian, “Batterystats and Battery Historian,” https://developer.
android.com/studio/profile/battery-historian, 2019, accessed: 2019-10-23.

[30] X. Chen et al., “Smartphone Energy Drain in the Wild: Analysis and Impli-
cations,” ACM SIGMETRICS Performance Evaluation Review, vol. 43, no. 1,
pp. 151–164, 2015.

118

Paper 3

DeepMatch2: A
Comprehensive Deep
Learning-based Approach for
In-Vehicle Presence Detection

119

DeepMatch2: A Comprehensive Deep
Learning-based Approach for In-Vehicle

Presence Detection

Magnus Oplenskedal1,3, Peter Herrmann1, Amir Taherkordi1,2,3

1Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2University of Oslo, Norway

3Forkbeard Technologies, Oslo, Norway

{magnukop, amirhost, herrmann}@ntnu.no

Abstract
The accurate detection of the mobile context information of pub-

lic transportation vehicles and their passengers is a key feature to
realize intelligent transportation systems. A topical example is in-
vehicle presence detection that can, e.g., be used to ticket passen-
gers automatically. Unfortunately, most existing solutions in this field
suffer from low spatiotemporal accuracy which impedes their use in
practice. In previous work, we addressed this challenge through a
deep learning-based framework, called DeepMatch, that allows us
to detect in-vehicle presence with a high degree of accuracy. Deep-
Match utilizes the smartphone of a passenger to analyze and match
the event streams of its own sensors with the event streams of coun-
terpart sensors provided by a reference unit that is installed inside the
vehicle. This is achieved through a new learning model architecture
using Stacked Convolutional Autoencoders to compress sensor input
streams by feature extraction and dimensionality reduction as well
as a deep convolutional neural network to match the streams of the
user phone and the reference device. The sensor stream compression
is offloaded to the smartphone, while the matching is performed in a
server. In this paper, we introduce DeepMatch2. It is an amended
version of DeepMatch that reduces the amount of data to be trans-
ferred from the user and reference devices to the server by the factor
of four. Further, DeepMatch2 improves the already good accuracy
of DeepMatch from 97.81% to 98.51%. Moreover, we propose a
travel inference algorithm, based on DeepMatch2, to detect the du-
ration of whole passenger trips in public transport vehicles with a high

120

degree of precision. This is needed to create intelligent and highly re-
liable auto-ticketing systems. Thanks to the high accuracy of 98.51%
by DeepMatch2, the inferences can be carried out with a negligible
error rate.

Keywords— Mobile Context, In-Vehicle Presence Detection, Sensor Event
Streams Analysis, Deep Learning, Event Matching, Intelligent Transportation

1 Introduction

In recent years, the rapid development of mobile technologies, IoT and cellular
network infrastructures has led to new unprecedented opportunities for making
public transportation a very environment-friendly mode of travelling more attrac-
tive. The fact that more than 3.8 billion people in the world own smartphones [1],
provides a very worthwhile research and development area already utilized by pub-
lic transportation providers in many areas of the world, e.g., in Northern Europe.
For instance, smartphone applications, that provide passengers the option to buy
tickets and offer them other context-aware services such as path-finding and travel
planning, are quite common nowadays.

However, the next generation of context-aware service within public trans-
portation will require data sources providing an extremely high degree of precision
and sophistication. In particular, one may consider the mobile context, i.e., all
kinds of spatiotemporal properties of the participating passengers and vehicles [2].
For example, if we know whether a person is inside a vehicle or not at a certain
time and place, services such as dynamic vehicle-route planners based on passenger
load and route optimization can be realized. We can detect this kind of mobile
context by precise in-vehicle detection systems. These systems can also make the
ticketing of passengers considerably simpler. In today’s smartphone applications,
the passengers have to remember buying tickets before starting a ride. Further,
they often need in-depth knowledge about the ticketing system to buy the correct
ticket for the planned trip. In contrast, using a highly accurate in-vehicle presence
detection solution, a so-called Be-In/Be-Out (BIBO) system [3], tickets can be is-
sued automatically to the passengers based on the exact duration of their journey.
This way, the passengers can conveniently enter and leave public transport vehicles
without having to deal with planning and purchasing tickets in advance.

In-vehicle presence detection has attracted the attention of the research com-
munity and industry. Early approaches like [4, 5] utilize communication systems
such as Radio Frequency Identification (RFID) or Bluetooth Low Energy (BLE).
While travelling, temporary connections are built up between the user’s mobile
device and certain fixed vehicle equipment to detect the passengers presence in-
side the vehicle. Other approaches, for instance [6,7], analyze event streams from
smartphone sensors for certain properties. Modern smartphones are equipped with
a variety of sensors such as magnetometers, accelerometers, gyroscopes, GPS, and

121

barometers which offer unprecedented opportunities to analyze mobile context in-
formation from the user’s environment. Finally, machine learning techniques have
recently been leveraged to analyze sensor events for detecting mobile contexts,
e.g., [8]. We will argue later that the accuracy of works within the above cate-
gories is still not good enough to make them suitable for auto-ticketing in practice.

To realize in-vehicle presence detection with a high degree of accuracy, in
our previous work, we proposed a deep learning-based framework, called Deep-
Match [9]. Each vehicle is equipped with a stationary Reference Device (RefDev)
(e.g., an Android phone). We record the streams of sensor events gauged in both,
the RefDev and the smartphones of potential passengers. In a so-called in-vehicle
presence detection process, the stream generated in a smartphone is then compared
with the one from the RefDev to find out if both devices are in the same vehicle.
If that is the case, the owner of the smartphone is necessarily a passenger in the
vehicle containing the stationary RefDev and can, e.g., be billed for the journey.
The in-vehicle presence detection process is realized by data compression using
Stacked Convolutional Autoencoders as well as a deep neural network matching
component that matches compressed sensor samples to find out if they were taken
from within the same vehicle. The data compression is offloaded to the users’
smartphones and reference devices, while the matching process is performed in a
server that can be external, e.g., in a cloud, or within the vehicle realizing an Edge
computing solution [10]. By training both parts of our model together, i.e., the
compression and matching parts, we achieve that the matching process does not
need the full smartphone and reference data for its comparison but can rely on the
compressed versions.

Since the design and development of DeepMatch, we continuously iterated
and improved our deep learning model to improve its efficiency and accuracy.
Moreover, we enhanced the original framework with inference algorithms that allow
us to deduce the period of time that passengers travel in public transportation with
a very high accuracy. DeepMatch lacks this feature which is highly needed, e.g.,
in automatic ticketing. The result of the improvements is a new version of our
deep learning-based framework that we call DeepMatch2. It is introduced in
this paper. In contrast to the original framework, DeepMatch2 incorporates the
following amendments:

• The efficiency was enhanced by reducing the amount of data necessary for
in-presence detection by a factor of four, i.e., from previously 512 float values
in DeepMatch to just 128 float values in DeepMatch2.

• Considering accuracy, we gradually amended the original layer structure,
and for each change, trained and evaluated the results using the designated
performance metrics. In spite of the concomitant reduction of the size of the
input parameters, we further managed to increase the accuracy of Deep-
Match2 to 98.51% in comparison to the accuracy value of 97.81% in Deep-
Match.

122

• In [9], we provided only a short sketch about how one can use the results of
DeepMatch to detect whole trips of passengers in public transport vehicles
with a high degree of precision. In this paper, we go much deeper into
this topic and discuss travelling user inference systems that are based on
DeepMatch2 and can infer if and for which period of time a passenger
makes a trip in a public transportation vehicle with a very low error rate.

The rest of this paper is organized as follows. In Sect. 2, we discuss existing
solutions followed by the presentation of the original method DeepMatch in
Sect. 3. In Sect. 4, we elaborate on the improvements made in DeepMatch2.
Thereafter, we report the experimental evaluation results for the variants of our
deep learning model and some baseline methods in Sect. 5. The travelling user
inference algorithms that allow us to detect whole passenger trips, are introduced
in Sect. 6. Finally, we conclude our paper in Sect. 7 with a discussion on the
results gained so far and a look at our future plan.

2 Related Work

In-vehicle presence detection solutions can be classified into three different cate-
gories. The first category is focused purely on utilizing communication technolo-
gies, while the second one is based on analyzing mobile sensor events to detect
in-vehicle presence. The third category consists of some recent works that lever-
age deep learning to analyze mobile contexts. In the following, we discuss each
category in detail.

2.1 Communication Technology-based Solutions

Early in-vehicle presence detection systems were implemented using Radio Fre-
quency Identification (RFID) with active tags carried by the passengers, and a
single communication unit in the center of a vehicle. To track the RFID de-
vices, contactless, mid-range radio-based identification and communication proto-
cols were used. One of the first solutions was EasyRide [4], developed by the Swiss
Railways Association. Allfa [11] is another RFID-based system, tested in busses,
trams and trains in Dresden, Germany, for half a year. In total, the system cov-
ered about 120,000 trips carried out by 2,000 users. Unfortunately, testing these
systems proved that they were too unreliable to be used for in-vehicle presence
detection in practice. The main reason for that is the weak transmitter strengths
of the active RFID-tags, which makes it difficult to detect them reliably in all areas
of the vehicle. As discussed in [4], this affords not only one but a vast number of
readers in the vehicle, at least one at each door. But even that does not seem to be
sufficient to make the passenger assignment sufficiently predictable. For instance,
Allfa has an accuracy rate of just 68% making it unsuitable for practical use.

123

Other approaches focus on Bluetooth Low Energy (BLE)-based automated in-
vehicle detection. Compared with active RFID approaches with battery-powered
tags, BLE-based BIBO systems can utilize smartphones with additional monitoring
options, the possibility to measure signal strengths for proximity determination,
larger distribution channels, etc. One of the early works on Bluetooth-based public
transport ticketing system was carried out by the authors of [12]. Their system was
in charge of collecting only the source and destination of each passenger journey.
The first BLE-based solution is proposed in [3], where the authors are cautiously
optimistic that BLE might work for BIBO systems. Nevertheless, the chassis of a
vehicle does not limit the accessibility of a BLE transmitter which makes it possible
that somebody close to it, e.g., a person in another vehicle, is wrongly detected. On
the other hand, objects in a vehicle may inhibit a BLE connection such that devices
in the vehicle may not be detected. This is confirmed by the authors of [13] who
found out that BLE is not well suited for indoor localization. As reasons preventing
connections, they name the position of a device as well as human body obstacles
like the hand carrying the device. The authors of [14] suggest a ticketing system
adding a custom profile on top of the BLE specification to fulfill the payment
procedure. In SEAT [5], a BLE-enabled smartphone communicates with devices
installed in the vehicles to track the journey for automatic pricing. The main focus
of the authors, however, is on security, performance, and battery friendliness but
not on the accuracy of the in-vehicle presence detection. To conclude, BLE-based
solutions are also suffering from low accuracy values making them less suited for
in-vehicle presence detection scenarios.

2.2 Mobile Sensor Data Analytics-based Solutions

Works in this category analyze the data of the sensors in user smartphones to
detect mobile contexts in transportation. The authors of [15] focus on context
detection using only the smartphone barometer as it is independent of the phone’s
position and orientation. They demonstrate that the barometer can be applied to
detect user activities of IDLE, WALKING, and VEHICLE at low-power. Likewise,
in [16], user activities are classified using the barometer sensor on smartphones.
This approach leverages Bayesian networks, decision trees, and RNN as inference
models to predict user action, e.g., riding or leaving a cable-car. The authors of [17]
demonstrate how the pressure data collected from a smartphone barometer can be
utilized to accurately track driving patterns based on the pressure data collected
from the smart phone’s barometer. By correlating pressure time-series data against
topographic elevation data and road maps for a given region, a centralized server
can estimate the possible routes through which users have travelled. Another
barometer-based mobile system is HybridBaro [7] that features a hybrid algorithm
to adaptively utilize GPS data to increase the detection accuracy in flat areas.
RoadSphygmo [18] uses the barometer in smartphones to detect traffic congestion.
RideSense [6] is aimed to match a passenger’s sensor trace against the traces of

124

busses to determine the riding and leaving times. The authors of [19] present a
vertical location system for vehicles in metropolises. In particular, they utilize the
barometers and gravity sensors of smartphones to remedy the deficiency of vertical
localization such as GPS. To achieve that, several novel algorithms are used (e.g.,
height and angle detection, relative height measurement, and tracking) to build a
highly accurate detection system.

While better than RFID and BLE, the accuracy promised by the approaches
mentioned above is still not good enough to fulfill the demands of transportation
systems. For example, the accuracy of RideSense [6] collected from five bus lines
over more than 20 hours, is between 84 to 98%. As pointed out in [9], only the
uppermost value of 98% would be sufficient for using this technology in practice.

2.3 Mobile Sensor Events and Deep Learning

Recently, deep learning has been leveraged to analyze sensor events for detecting
mobile contexts. In [20], the authors report on the accuracy of models such as
RNN, CNN, various Hybrid models, Restricted Boltzman Machines, and Autoen-
coders with respect to their ability to classify human activities from body-worn
sensors. They conclude that, compared to traditional pattern recognition meth-
ods, deep learning reduces the dependency on human-crafted feature extraction
and achieves better performance by automatically learning high-level representa-
tions of the sensor events. The authors also state that, from a technical view-
point, there is no model outperforming all the others in general. Thus, they
recommend to choose the models based on the requirements of specific scenar-
ios. DeepSense [8] uses CNN and RNN to provide an estimation and classification
framework for car tracking with motion sensors and human activity recognition.
In [21], DeepSleepNet, a deep learning framework for automatic sleep stage scor-
ing based on electroencephalogram data, is proposed. The authors show that the
model automatically learns features for different datasets without utilizing any
hand-engineered features. The model achieves an accuracy that is similar to the
state-of-the-art methods using hand-engineering. Some works in this category fo-
cus on detecting the transportation mode using machine learning techniques and
sensors data on smartphones such as [22,23]. From the ML-based stream matching
perspective, StreamLearner [24] is a distributed Complex Event Processing (CEP)
system proposed for scalable and low-latency event detection on streaming data
that uses neural networks. It is mainly designed for systems with multiple event
sources causing diverse patterns in the event streams. As a case study, the authors
discuss anomaly detection (i.e., finding abnormal sequences of sensor events) in
smart factories.

The important finding of most works in this category is that deep learning
can outperform hand-crafted feature extraction methods when applied to mobile
sensor event streams. This can be used to deduce valuable information about the
mobile context. We aim to exploit this power of deep learning in DeepMatch2

125

Figure 1: DeepMatch bus scenario

to build a model capable of highly accurate in-vehicle presence prediction solely
based on sensor event streams. On the other side, the limited number of works,
yet carried out on machine learning-based sensor stream matching, focus mainly
on the quality aspects of stream matching, e.g., to provide high throughput. In
contrast to this paper, the efficiency and accuracy of these approaches are only
superficially discussed in most cases.

3 DeepMatch

As we will discuss later, our deep learning method DeepMatch2 enhances its
predecessor DeepMatch in both, in-vehicle presence detection accuracy and in
the amount of data transfer needed. Nevertheless, the basic structures of Deep-
Match and DeepMatch2 are very similar. Therefore, we decided to introduce
the fundamentals for the architecture of both DeepMatch and DeepMatch2
in this section. Thereafter, we discuss the changes leading to DeepMatch2 in
Sect. 4.

In the following, we start with a general overview of the model architecture of
our deep learning model, followed by a discussion of the hardware and software
settings, on which our approach has been built. Thereafter, we describe how
DeepMatch conducts the analysis of the mobile data sensed, followed by the
design considerations and architecture of our learning model, and a discussion on
how the learning model is trained. Finally, we present the design rationale and
experimental settings behind the DeepMatch deep learning model.

126

3.1 Overview

Figure 1 depicts the equipment needed in a bus1 to realize our approach. The bus
is equipped with a Bluetooth Low Energy (BLE) transmitter as well as a so-called
Reference Device (RefDev). The RefDev can be a smartphone mounted onto the
bus or any other kind of hardware providing the same type of sensors, that can
be found in a modern smartphone. These sensors include but are not limited to
accelerometers, magnetometers, gyroscopes, barometers, and GPS receivers. The
passengers travelling with the bus carry smartphones in which a special application
is installed realizing parts of the DeepMatch deep learning model.

The BLE-transmitter continuously transmits a special ID that is unique to
the bus it is installed in. Due to the low signal strength, this signal can be only
detected by devices that are either inside the bus or nearby. When a passenger’s
phone picks up the BLE-transmitted signal for the first time, its operating system
starts the DeepMatch application. From that moment, the sensors of the phone
sample values that are forwarded to the deep learning model of DeepMatch
running in the smartphone application. DeepMatch extracts relevant features
from the sensed events and compresses them through dimensionality reduction.
Finally, the compressed data are timestamped and tagged with the IDs of the
BLE-transmitters, the phone is currently receiving.

In a similar way, the RevDef is used to continuously stream events from its
own sensors and compresses them through DeepMatch. The compressed data is
also timestamped and tagged but, in contrast to the user phones, only the tag of
the BLE transmitter installed in the same vehicle is used.

Both, the RevDef and the user phones send the compressed sensor data to
a server. Following the wishes of the public transport operators, we may realize
DeepMatch using different hardware configurations. For instance, the server
functionality can be realized using a cloud provider. Alternatively, following the
principle of fog computing [10], it can be a unit locally installed in the vehicle,
e.g., together with the RevDef.

The server matches the data of the RevDef and the user phones, that carry
the same BLE-transmitter IDs and timestamps, against each other by a special
module of DeepMatch. If the module reports a match, we assume that both data
sets were sensed within the same vehicle. Since the RevDef can be unambiguously
allocated to a particular bus, we can then assume that the smartphone and its
carrier are in the same bus.

3.2 Hardware Requirements and System Settings

As mentioned above, all vehicles using DeepMatch to provide automated in-
vehicle presence prediction, require both, a BLE-transmitter and a Reference De-

1The realization of DeepMatch in other types of public transport like subways, trams,
or trains is similar.

127

vice (RevDef). In contrast to the communication technology-based approaches
discussed in Sect. 2, the BLE-transmitter is not directly used for in-vehicle detec-
tion. Instead, we apply it to perform a coarse-grained guess in which vehicle a
passenger might be inside. In this way, the server only needs to match the user
data with those from RefDevs, that are related to the sensed BLE ID received by
the user phone, and not with the data of all RefDevs in the transport network.
An additional advantage of this approach is that we can reduce the time Deep-
Match is required to run on a user phone. Both Android and iOS provide the
ability to awaken applications in smartphones when detecting a BLE-signal with
a pre-defined ID. This provides us with the ability to run the application only if
the user is either very close to a vehicle, or inside it. Thus, both computation
overhead and battery consumption is at a minimum.

The authors of [25] show that BLE offers a good reliability also in noisy in-
house environments like those we might come across in public transport vehicles.
In their tests, at least 99.45% of all packets were transmitted within the expected
delay bounds. Based on these numbers we expect that the phone of a passenger
receives a fair number of the packets broadcasted by the BLE-transmitter within
in the first seconds after entering the vehicle. Therefore, DeepMatch will almost
certainly be started timely.

As we discuss to greater detail in Sect. 5.3, we found out through experiments,
that using only the barometric sensor provides by far the best matching accuracy.
Using DeepMatch alone with the barometric sensor provides an accuracy of
97.81% while no other combination of sensor data exceeds 80.82%. Moreover,
performance tests show that registering barometer events with a frequency of 10 Hz
incurs a very low battery consumption. The battery drain on the phones we tried
in our tests is between 15 and 25 mAh while continuously registering events from
the barometer. This equals a drain of between 0.6% and 0.8% of the total battery
capacity per hour. That is described more closely in Sect. 5.8.

In the case that a vehicle enters a dead spot, i.e., an area with no cellular net-
work coverage, we temporarily store the compressed data locally until connectivity
is regained and the data can be transmitted to the server for a delayed matching.

3.3 Mobile Data Analysis

The deep learning model performing the in-vehicle presence prediction, i.e., the
matching of sensor events, is trained on real sensor events that were collected from
Android-based smartphones in the public transport systems of the Norwegian cities
Oslo and Trondheim. In the following, we sketch the process of collecting the data
and converting it to training and evaluation sets.

The data sets used to train the deep learning model were built from sensor
events gathered by the means of an Android application, called Datacollector,
that we developed for this purpose. Datacollector registers events from all sensors
available in the phone, timestamps them, and stores them locally as data points.

128

Further, we can use the application to upload the data points to our Data Analysis
center. There, the data points can be processed further into training and testing
samples that are used to train and evaluate our deep learning network.

To allow the parallel collection of sensor data by several phones, multiple
devices running the Datacollector can be connected using a simple client-server
communication protocol. This allows us to synchronize the clocks of the various
phones. Further, we can tag all events registered by the connected devices with a
unique trip ID. When a data collection session is initiated, the trip ID is generated
by the initiating device and propagated to all devices taking part in the collection.

Android provides developers with a sensor framework where the sampling rate
of each available sensor can be separately defined. The effective sampling rate,
however, comes usually with a standard deviation of one to two milliseconds. In
addition, even though each sensor is collecting events at the provided sampling
rate, there is often a shift of the exact sensing times (e.g., while both, the barom-
eter and accelerometer sensors collect data every 20 ms, the exact points of time,
the samplings take place, deviate from each other by a few milliseconds). On the
other hand, two data streams can be matched best when the sensors in both devices
carry out their sampling steps at exactly the same points of time t. To dissolve
this contradiction between precise sampling times and the aforementioned short-
comings of the Android framework, we implemented an interpolation technique in
our Data Analysis tool which is described in detail in [9].

The deep learning model in DeepMatch was created to support travel times
of varying lengths, and to reduce the amount of data to be transmitted from
the devices in the public transport vehicles to the server, as well as the number of
operations required by the server. To fulfill these requirements, we train our model
to perform predictions on smaller segments of the collected events. In Sect. 5.4,
we report the results from training the model on segment sizes of five, ten and 15
seconds. As elaborated in Sect. 5.4, our tests showed that the model being trained
on segments consisting of ten seconds of barometer sensor events provides the best
results.

3.4 Design and Architecture of the Learning Model

The goal of the deep learning model of DeepMatch is to predict the in-vehicle
presence of a device by matching its sensor events against the sensor events gener-
ated by the on-board Reference Device (RefDev). The deep learning model consists
of three modules, an encoder, a decoder, and a matching module. All three modules
are trained jointly as one large neural network. In practice, however, the in-vehicle
presence predictions can be achieved by utilizing only the encoder and the match-
ing module. Therefore, we use the full model that also includes the decoder, only
during the training phase. When our deep learning model is sufficiently trained,
we extract the encoder and matching modules from it. Copies of the encoder are
then used in the RefDev and the passenger devices, while the matching module is

129

Figure 2: Overview of the DeepMatch distributed framework

executed in the server.
The distribution of the modules is depicted in Fig. 2. Here, the green networks

in the passenger and reference devices illustrate that the encoders are residing on
these devices. In contrast, the blue network illustrates the matching module that
runs on the server.

Figure 3 provides a sketch of the neural network used in DeepMatch. The
colored boxes represent layers of the neural network that can be trained while
the grey boxes refer to model layers that do not contain trainable parameters.
The green boxes describe trainable layers of the encoder, the orange ones train-
able layers of the decoder, and the blue boxes trainable layers of the matching
module. The hyperparameters of each layer in the neural network are represented
as numbers next to the description of the layer. More specifically, in the boxes
representing the conv layers, the size of each filter in the layer is represented as
width x height, whilst the number on the right side of a box refers to the number
of filters used. For instance, in the uppermost layers of the Stacked Convolutional
Autoencoders in Figure 3, there are 128 filters of size 8x1. Furthermore, for the
dense layers, the number of neurons in the layer is described by the number at the
end of the layer description, e.g. in the first dense layer in the matching module
the number of neurons is 256. The properties and utilization of the various layers
are discussed below.

Since the matching module has to compare the sensor data from two devices,
the RefDev and a passenger phone, we show two copies of the encoder and decoder
in Fig. 3. This type of neural network topology is generally known as a Siamese

130

Figure 3: Original architecture of DeepMatch

131

Architecture and has been successfully used to solve other matching problems such
as face recognition [26], gait recognition for person identification [27], and signature
verification [28].

Configuring the deep learning model as a Siamese architecture provides the
model with the ability to receive two simultaneous inputs, e.g. sensor data seg-
ments Xa and Xb. Since the two Convolutional Autoencoders share the same
weights, the mapping performed by the encoders on the two inputs are identical.
In consequence, two matching input segments, i.e., samples of Class 1, result in
latent representations ea and eb that are also matching. The same is true for not
matching samples belonging to Class 0. Here, the two latent representations are
dissimilar as well.

3.5 Encoder and Decoder

We use an architecture called autoencoder [29]. This kind of neural network con-
sists of two parts, that directly reflect our encoder and decoder. The encoder
transforms the input of the autoencoder into an internal representation often re-
ferred to as the latent representation in latent space, whilst the decoder aims to
reconstruct the original input from its latent representation.

The loss, i.e., the error of encoding and later decoding data, is calculated by
comparing the input with the output of the autoencoder. The goal of training
the autoencoder with a large set of samples is to keep this error minimal. As
depicted in Fig. 3, autoencoders usually consist of several encoder and decoder
layers through which the input data is sequentially forwarded. The quality of an
autoencoder often depends on the arrangement of these layers. Usually, the length
of the data forwarded between two layers is restricted such that the neural network
needs to learn to prioritize the most important characteristics of its input, i.e., the
encoder must learn which features of its input are most relevant to perform a
correct matching.

This feature extraction, can be seen as a compression algorithm. Then, the
latent representation corresponds to the compressed data while the decoder is the
corresponding decompression algorithm. In addition, the encoder provides input
noise reduction since the compression forces it to learn the most important features
of its input and to discard irrelevant features.

In DeepMatch, the ability to compress data is utilized to reduce the amount
of transmitted information from the user phones and the RefDev to the external
server. To let the autoencoder learn to prioritize those parts of the input data,
that are most relevant, we train it together with the matching module in a single
neural network. In this way, it learns to discard only those parts of the sensor
events that are less important for the in-vehicle presence detection, but to keep
all relevant data in the latent representation. This allows us to run the matching
module based on the latent representation of the sensor such that the server does
not need to decode them first.

132

As shown in Fig. 3, we created our autoencoder using alternating convolutional
(conv) and maxpooling layers in the encoder part. Here, the conv layers are re-
sponsible for the feature extraction while the maxpool layers reduce the size resp.
dimensions of the input. In the decoder, the conv layers alternate with upsample
layers that are responsible for reverting the maxpool operation in the decoder.

We use the convolutional layers since they are especially suitable to detect and
extract time-invariant features in sequences, see [20, 30–32]. Of course, this time-
invariance is very important for our in-vehicle presence detection problem since
we want to find out whether two devices are at the same place, i.e., the same
vehicle, independent from temporal influences like those caused by the distance
between the phones in the vehicle. The maxpool layers reduce the size of their
input data by a factor of two using the max operator. The upsample layers make it
possible to reverse this process by duplicating each value in its input sequence, e.g.,
upsample(x, y, z) = x, x, y, y, z, z. An autoencoder consisting of conv, maxpool,
and sample layers, is called a Stacked Convolutional AutoEncoder (CAE) [31].

Each layer of our CAE consists of three or four more elemental machine learning
operations. At first, a convolution is carried out followed by a Rectified Linear Unit
(ReLU) activation. If the layer has maxpooling or upsampling functionality, this
is executed after the ReLU. Finally, in each layer a batch normalization is carried
out.

3.6 Matching Module

As previously mentioned, the matching predictions to find out if a smartphone is
in the same vehicle as a RefDev, are performed by the matching module residing
in a server. To match the sensor data previously compressed by the encoders,
without having first to decompress them, the matching module needs to be able
to compare the latent representations. To achieve this, we trained it to learn an
accurate spatiotemporal threshold for separating instances of Class 1, i.e., sensor
events gathered by two devices in the same vehicle at the same time, from instances
of Class 0, i.e., a pair of sensor event sequences collected during different trips or
at different locations.

The functionality of the matching module is represented by the blue boxes in
Fig. 3. It consists of two Dense layers using the ReLU activation function, and
finally another dense layer using the Sigmoid activation function. The Sigmoid
function converts any real number into a value between zero and one. It is used in
DeepMatch to describe whether the deep learning model believes that its input
pairs belong to Class 1 or Class 0.

3.7 Model Training

As discussed above, the three modules of theDeepMatch deep learning model are
jointly trained using the configuration shown in Fig. 3. In our Siamese architecture,

133

we observe two separate copies of the CAE that compress the sensor data segments
Xa and Xb. Both CAEs share the same set W of trainable parameters causing
the model to perform identical mappings for its two inputs. The CAEs produce
the latent representations ea and eb that we illustrate as dark green squares in the
figure. In the training phase, the latent representations are propagated through
the layers of the decoders mapping them to the recreated segments X ′

a and X ′
b.

In parallel, ea and eb are also sent to the matching module that is depicted by the
blue boxes in Fig. 3. Here, the latent representations are being matched and the
class prediction Y ′ is being produced. It assigns the value Y ′ = 1 if the model
predicts that ea and eb are matches, and Y ′ = 0 if they are not. The values of Y ′

correspond to the ground truth labels Y of our sample pairs since we assign Y = 1
to a pair Xa and Xb if the samples are from Class 1. Likewise, for a sample pair
of Class 0, we use Y = 0.

The goal of the training regime is now to train the layers of the matching
module such that their computed values Y ′ are mostly identical to the ground
truth labels Y of the training sample pairs. This kind of training utilizing external
information about the training samples, i.e., the ground truths, is usually called
Supervised Learning. Formally, we describe the deviation between the ground truth
Y and its prediction using the Binary Cross Entropy L:

L = −Y · log(Y ′) + (1− Y) · log(1− Y ′) (1)

The goal of the training is to find weights for the layers of the matching module
such that the prediction renders values of L close to zero.

In the same step, the layers of the encoder and decoder are trained by reducing
the disagreements between the original segment pairs Xa and Xb and the recreated
ones X ′

a and X ′
b. This improves the quality of the sample compression and decom-

pression steps. Since neither the ground truths of the samples nor other external
information is used, this training regime is referred to as Unsupervised Learning.
We quantify the disagreements between the original and recreated segments using
the Mean Squared Error MSE:

MSE =
1

n

n∑

t=1

(X ′
a[t]−Xa[t])

2 (2)

In formula (2), n is the duration of the sensor event sequence Xa while X ′
a[t] is

the recreation of the value Xa[t] ∈ Xa at time t.
The disagreements between original and recreated samples as well as those

between the ground truths and the values predicted by the matching module are
used to update the weights of the neural network through the machine learning
technique Stochastic Gradient Descent. In this technique, both the gradients from
the mean squared error calculations and the Binary Cross Entropy loss functions
are backpropagated to the neurons of the encoders. This enables our encoder
to extract both, the most important features of the input segments for a good

134

recreation and the features that are relevant for an accurate matching prediction.
In consequence, it is sufficient to use the latent representations ea and eb instead of
the original sample pairs Xa and Xb to conduct the matchings. This is the reason
that, when executing DeepMatch to detect real in-vehicle presence of passengers,
we only need to use the encoder of the CAE in passenger smartphones and in the
RefDev as well as the matching module in the server, while the functionality of
the decoder module is not needed.

3.8 Design Rationale and Experimental Settings be-
hind the DeepMatch Model

In our quest to find the best model, we conducted hundreds of experiments on
various model design and hyperparameter configurations. Our approach relied
on starting with smaller, shallower neural networks, before expanding them by
adding layers, filters within the CONV layers, and by increasing the size of these
filters. To keep track of the various experiments, every configuration and design
of the network was evaluated using the performance metrics described in Sec-
tion 5.2. During this work, we also experimented with various activation functions
for both CONV and dense layers. Moreover, we tried swapping the CONV layers
in the Autoencoders with dense layers and exchanging the Matching Module with
a function calculating the Euclidean Distance between the latent representations,
respectively. Furthermore, we experimented on how we trained the modules of the
network, e.g. we tried training the autoencoders separately from the matching
module. This was done by first training the autoencoders, and thereafter using
the autoencoders to create datasets consisting of encoded samples. These encoded
samples where then used to train the matching module. In addition to design, ar-
chitectural, and training experiments, we tested a large number of hyperparameter
settings, e.g. the number of neurons in each dense layer, the size of batches used
during training, the number of epochs for each training session and so on. From
the experiments conducted for our previous work in [9], the model architecture
shown in Figre 3, using the hyperparameter settings described in Section 3.4, gave
us the pest performance. All experiments were conducted on a desktop PC with
an Intel i7 4.00GHz CPU, 16 GB memory, and a Nvidia GTX 1080 GPU. The
models were created, trained and evaluated using Google tensorflow 2.0, version
2.0.0-rc0 [33].

4 DeepMatch2

Since the original publication of DeepMatch in [9], we continuously iterated and
improved our deep learning models. That has led to several improvements that we
could incorporate into the new version DeepMatch2 of our in-vehicle presence
detection system. In particular, we amended the layer structure of the architecture.

135

In the following, we will discuss the improvements in greater detail.

4.1 Design Rationale and Experimental Settings of the
DeepMatch2 Model

We started the work on our new model basing it on the original architecture
of DeepMatch, depicted in Figure 3. We followed the approach described in
Sect. 3.8 by gradually making incremental changes to the model architecture, and
for each change, training and evaluating the results using the performance metrics
described in Sect. 5.2. Moreover, we investigated adapting the numbers of con-
volutional layers and filters within the CONV layers as well as changing the sizes
of the individual filters. Thereafter, we experimented with the ratio between the
numbers of CONV and maxpool layers used by the CAEs. In particular, the struc-
ture of the matching module was modified. DeepMatch2 uses another method
to concatenate the two latent representations, the module receives from the au-
toencoders. This is described in detail in Sect. 4.3. Our experiments revealed
that the model architecture and the model parameters depicted in Fig. 4 yielded
the best results. Also for these experiments, we used the desktop PC and Google
tensorflow version described in Sect. 3.8.

4.2 Dimensionality Reduction

During the initial development of our original deep learning model, we were not
aware that the best in-vehicle detection accuracy could be achieved using events
from the barometer sensor alone. We learned this fact through the empirical
studies described in Sect. 5.3, for which a first version of DeepMatch was needed.

After gaining the insight that just barometer events would be sufficient for
inference, we started to refine and restructure parts of the model in order to
better accommodate samples containing only this type of data. Our aim hereby
was to utilize the limitation to barometer inputs for a reduction of the size of data
transmitted between the distributed computational units. Of course, this should
happen without worsening the accuracy of the in-vehicle prediction, but rather
with an improvement.

Our first major change was to reduce the size of the model inputs, from previ-
ously 512 float values in DeepMatch to just 128 float values in DeepMatch2.
The model of the previous version was laid out to accept events from multiple
smartphone sensors that publish events at fixed rates but possibly with different
maximum frequencies and varying reading points in time. In each layer of our
model, the maxpool operator reduces the size of its input by the factor of two
such that the input length needs to be a multiple of two. However, the output
of a layer must also be a multiple of two since it is directly used as the input for
the maxpool operator of the next layer. To guarantee this property for a number
of subsequent layers, we therefore need the size of the initial encoder input to be

136

an exponent of two. The highest frequency of the sensors tested in DeepMatch
was 50 Hz, and the first sample size, we aimed to create, was 10 seconds worth of
sensor data resulting in 500 events. Considering the aforementioned requirement
that the input must be an exponent of two, the closest sample size to 500 was 512
events, resulting in an actual sample size length of 10.24 seconds.

On the other hand, the barometer sensor conducts its sensing with a maximum
frequency of 10 Hz such that a sample of 10 seconds only needs 100 events. To fulfill
the demand of using a number of events that is an exponent of two, we decided
to increase the sample period to 12.8 seconds such that a sample processed in
DeepMatch2 contains 128 barometer events. That is just a quarter of the original
sample size.

137

4.3 Accuracy Improvement

Figure 4: Architecture of DeepMatch2

138

Figure 5: Old and new Matching module input concatenation strategy

While the accuracy of 97.81% of the original deep learning model is quite good,
we aimed to make it even better in DeepMatch2. The most impactful change,
we made to improve the accuracy of our deep learning model architecture, was
altering the way the matching module concatenates its two inputs. These changes
are illustrated in Fig. 5. As shown at the top of the figure, in DeepMatch, the
two input samples were simply concatenated along the first axis. That means that
two float vectors that both had the length x, were transformed into one vector of
the length 2x. This concatenation, however, usually creates a large spatial distance
between the pairs of values that need to be compared by the matching module.

To reduce this distance, we altered the concatenation by transforming two
input vectors of length x into a matrix with the size (x, 2) which is shown at the
bottom of Fig. 5. This adaptation to the input of the matching module allowed
us to replace some of the dense layers by convolutional layers. As discussed in
Sect. 3.5, convolutional layers are well suited to handle time-invariant features in
different sequences such that they promise to be a better fit than the dense layers.

As a result, we achieved the layer structure that is illustrated by the blue
boxes in Fig. 4. Its uppermost layer is a concatenate layer that concatenates
the inputs from the two encoders by transferring them into a matrix of the size
(x, 2). This matrix then forms the input of the first of two convolutional layers.
Thereafter, a Flatten layer flattens its n-dimensional input into a one-dimensional
vector. Finally, a dense layer uses the Sigmoid function explained in Sect. 3.6.
This amended layout led to an improved accuracy of 98.51% which we discuss in
greater detail in Sect. 5.6.

139

Table 1: Smartphones used by volunteers to collect data

Brand Model

LG Nexus 5X
Huawei Nexus P6
Samsung Galaxy S8
Sony Z3 Compact
Google Pixel XL
Google Pixel 3a

5 Evaluating the Deep Learning Models

Our evaluation effort includes three main steps. First, we explain how we created
our training data, and present the performance metrics used to evaluate differ-
ent models. Thereafter, we report on the experiments carried out to find which
sensor data are best for in-vehicle presence detection and the best segment size
(cf. Subsect. 5.1—5.4). Second, we evaluate the prediction performance of both
DeepMatch and DeepMatch2. To this end, we compare several versions of the
original deep learning model DeepMatch with varying sample lengths. This is
followed by comparison of DeepMatch with two well-known baseline methods
and, of course, with our updated version DeepMatch2 (cf. Subsect. 5.5 and 5.6).
Third, we investigate and discuss the execution time overhead of the matching
module on the server, and the battery consumption as well as the CPU run-time
overhead for the smartphones of the passengers (cf. Subsect. 5.7—5.9). Note that
the evaluation results, in this step, apply to both versions of our learning models,
namely, DeepMatch and DeepMatch2.

5.1 Data Collection and Dataset Creation

The data used to develop and evaluate our deep learning model was collected in
various public transportation vehicles (i.e., trains, subways, busses and trams) in
the Norwegian cities of Oslo and Trondheim by volunteers. They used different
Android phones that are listed in Tab. 1. All these phones were provided with the
Datacollector application introduced in Sect. 3.3 such that their clocks could be
synchronized and common trip IDs assigned.

In total, our volunteers collected 212,520 seconds of unique sensor data events
from the magnetometer, accelerometer, gyroscope and barometer sensors. Seg-
ments of sensor events from two different sources were paired in each data set
sample to model that DeepMatch and DeepMatch2 match pairs of sensor data
segments from a user’s phone and a RefDev. Moreover, the pairs of sensor event
segments were classified as illustrated in Fig. 6. Thus, sensor event segments with
identical trip IDs and beacon identifiers, i.e., segments computed by different de-

140

Figure 6: Matching samples created from trip segments

vices in the same vehicle at the same time, were labeled as positive samples, i.e.,
Class 1. In contrast, event segment pairs with differing trip IDs or beacon iden-
tifiers were fetched at different times or in different vehicles. Therefore, they are
labeled as negative samples, i.e., Class 0.

Following common practice in machine learning, we shuffled the samples of
our dataset. Thereafter, we normalized the data using minmax and, finally, we
split our samples into training and testing ones. The training set consisted of
around 70% of the overall data. The other 30% were used to create testing sets for
the purpose of model evaluation. By completely separating the training from the
testing samples, we avoided to use the same sensor events in both phases. Further,
we made sure that the distribution of Class 1 and Class 0, were about 50/50 in
both data sets.

5.2 Metrics to Evaluate Learning Models

To evaluate the different versions of our deep learning model with each other and
with other methods introduced later, we use the four metrics precision, recall,
accuracy, and F1-score that all are popular means to evaluate machine learning
models. In order to define these metrics, we use four binary classifiers that describe
if a sample is positive or negative in reality, and if it is correctly classified:

• True Positive(TP): A correctly classified positive sample,

• True Negative(TN): A correctly classified negative sample,

• False Positive(FP): A negative sample that is falsely classified as a positive
one,

• False Negative(FN): A positive sample that is wrongly classified as a negative
one.

With the help of these classifiers, we can now introduce the four metrics used
to evaluate the models:

• Precision (PR): The ratio of correct positive predictions to the total number
of predicted positive samples, i.e., out of all samples classified as positive,

141

how many belong to Class 1 :

PR =
TP

TP + FP
(3)

• Recall (RE): The ratio of correct positive predictions to the total number
of positive samples, i.e., out of all samples in the dataset that are indeed
positive, how many were correctly classified as such by the model:

RE =
TP

TP + FN
(4)

• Accuracy (ACC): This metric states how good the model classifies samples
from all classes, i.e., it describes how many of all predictions are correct:

ACC =
TP + TN

TP + FP + TN + FN
(5)

The accuracy results are usually only reliable if the number of members
from Class 0 and Class 1 are about equal. That is the reason for using
equal representation of Class 1 and Class 0 in our training and testing sets
(see Sect. 5.1).

• F1-score (F1): The harmonic mean between precision and recall.

F1 = 2 · PR ·RE

PR+RE
(6)

In the various experiments introduced in the next subsections, we compare the
different methods using these four metrics.

5.3 Sensor Modality Experiments

In a first set of experiments, we wanted to find out which combinations of smart-
phone sensors are most suited to be used in our deep learning model. To be able to
compare various sensor mixes, we created the following seven sensor modality com-
binations: Accelerometer (A), Magnetometer (M), Barometer (B), Barometer and
Accelerometer (BA), Barometer and Magnetometer (BM), Accelerometer, Magne-
tometer, and Gyroscope (AMG), and Accelerometer, Magnetometer, Gyroscope,
and Barometer (AMGB).

We trained and tested each of these modality combinations with our original
deep learning method DeepMatch using sample lengths of 10 seconds. The test
results of these experiments are depicted in Tab. 2. From the table, we can see
that the models trained on datasets of type DeepMatch 10 B containing sensor
events only from the barometer, have a significantly higher precision, accuracy,
and F1-scores than the other models. The recall values are much closer for all

142

Table 2: Performance comparison between various sensor combinations

Model PR RE ACC F1

DeepMatch 10 A 0.5065 0.9531 0.5122 0.6615
DeepMatch 10 M 0.5064 0.9280 0.5118 0.6553
DeepMatch 10 B 0.9751 0.9812 0.9781 0.9781
DeepMatch 10 BA 0.7332 0.9697 0.8082 0.8350
DeepMatch 10 BM 0.7081 0.9708 0.7853 0.8189
DeepMatch 10 AMG 0.5011 0.9646 0.5020 0.6595
DeepMatch 10 AMGB 0.7079 0.9892 0.7905 0.8253

models but also here DeepMatch 10 B finishes in the top two, albeit a little
behind DeepMatch 10 AMGB.

We believe, the reason for the good result of just using the barometer is that
this sensor particularly suited to capture the movements of the vehicle rather than
those of the smartphone user. For instance, it is position independent, i.e., the
precision of the barometer events is not affected by the location of the sensor.
This is especially important for the use in underground transportation, e.g., in
subways, where the GPS performs poorly. Further, the barometer is highly re-
sistant to vibrations as well as movements of the smartphone user. This in stark
contrast to the accelerometer and gyroscope which are more strongly affected by
the movements of the user than by those of the vehicle. Unlike the barometer,
the magnetometer is highly sensitive to magnetic objects in the environment like
the power unit of the vehicle. All these traits make the barometer perfectly suited
to capture just the movements of the vehicle and to ignore the movements and
immediate surroundings of the carrier of the smart device.

The absence of the mentioned weaknesses of the other sensors makes it easier
for our deep learning model to learn how to separate instances of Class 1 and Class
0 only using the barometer events. This is confirmed by the overall good values
for DeepMatch 10 B in comparison to the other sensor combinations. The fact,
that DeepMatch 10 AMGB has a little better recall value, results probably from
a tendency to classify samples as positive even if they are negative in reality. This
is not punished by the recall value but by the precision and accuracy values that
are meager for DeepMatch 10 AMGB.

Altogether, our sensor modality experiments led to the decision to consider only
the barometer sensor data for our deep learning method. This is in accordance
with most of the other works introduced in Sect. 2.2 which also claim that the
barometer data are best for classifying in-vehicle detection, e.g., [15, 16].

143

Table 3: Performance comparison of the barometer-based DeepMatch with
various sample lengths as well as with baseline methods and DeepMatch2

Model PR RE ACC F1

DeepMatch 5 0.9408 0.9765 0.9574 0.9583
DeepMatch 10 0.9751 0.9812 0.9781 0.9781
DeepMatch 15 0.9348 0.9816 0.9566 0.9576
NORM CORR 0.9174 0.9595 0.9393 0.9380
DTW 0.9810 0.7350 0.8136 0.8404
DeepMatch2 0.9769 0.9935 0.9851 0.9851

5.4 Segment Size Experiments

After deciding to base the deep learning model just on the barometer input, we
wanted to find the sample length for which DeepMatch renders the best results.
Therefore, we trained and tested the model with different sample lengths of five,
ten, and 15 seconds. The results are shown in the first three lines of Tab. 3.

We see that variant DeepMatch 10 with its ten seconds long samples out-
performs DeepMatch 5, the model trained on matching samples of five seconds.
The cause is most likely the greater number of sensor events contained in a Deep-
Match 10 sample. This provides a better foundation for training the neural
network in DeepMatch 10 than in DeepMatch 5.

Following this logic, however, we should expect that DeepMatch 15, the
model trained on 15 seconds long matching data, outperforms DeepMatch 10
since it has an even higher number of sensor events available in a sample. Yet, this
is not the case for the precision, accuracy, and F1-score performance metrics, while
the recall values are basically even. Like with DeepMatch AMGB in the tests
discussed in Sect. 5.3, it seems that DeepMatch 15 is biased towards classifying
samples as positive since it produced good recall but bad precision values. The
most likely reason for this surprising effect is that we have fewer 15 seconds long
samples available than shorter ones in our training set. In consequence, there
might be simply too few sample pairs available to train the neural network well.

Due to the ongoing Covid-19 pandemic it is currently too dangerous to send
our volunteers into public transport vehicles. When the pandemic is over, however,
we will collect a larger number of longer samples expecting that DeepMatch 15
will outperform DeepMatch 10 when also these can be used for training and
testing.

144

5.5 Comparing DeepMatch with two Baseline Meth-
ods

In order to get a better comparison of our deep learning method with other possible
approaches, we also employed two well-known baseline methods that seem to be
suited to perform sensor event matching for in-vehicle presence prediction. One
of the selected baseline methods is Normalized Correlation (NORM CORR). It
calculates the correlation between two vectors by comparing the values in the
same position. The other baseline method is Dynamic Time Warping (DTW).
In DTW, all values in the two vectors are compared by warping the temporal
dimension until the best correlation for any data point is found. In consequence,
DTW does not inherently describe the correlation between two vectors but the
distance between them, and a large distance equals a small correlation. Thus,
to use DTW as a measure of correlation on par with NORM CORR, we had to
inverse the results produced by it.

In both baseline methods, we need to find a threshold value α such that all
sample pairs with a correlation c larger than α are from Class 1 and all others
from Class 0. This corresponds to the following equation:

c = f(Xa, Xb), Y ′ =

{
1 if c > α

0 else
(7)

Here f represents the baseline method used. To find a good threshold α, we first
applied f to all samples of our training set and added the resulting c-values to a
sorted array. Thereafter, we searched the sorted array for an optimal delimiting
value that minimizes the number of falsely grouped sample pairs. In the final step,
α was set to this delimiter.

The results of our baseline methods tests are shown in the fourth and fifth
lines in Tab. 3. We see that, except for the precision of DTW, the two baselines
are clearly outperformed by DeepMatch with the different sample sizes.

The reason for the poor performance of NORM CORR is most likely its sen-
sitivity to potential time-lags between its input sequences. This is due to the fact
that two passengers, who are at different locations in a public transportation vehi-
cle, register changes in altitude with a time-lag that corresponds with the quotient
of the spatial distance between them and the speed of the vehicle. This time-lag
produces a lower correlation value for NORM CORR even though the passengers
are in the same vehicle.

On the other hand, the poor results of DTW are most likely caused by its in-
sensitivity to the temporal dimension. Warping the temporal dimension can cause
the function to achieve a very high correlation value for some negative samples
which increases the number of false positives. While this error is rewarded by the
precision metric, it makes it very hard to find a good delimiter value α. This is
the likely reason that the other three metrics are particularly bad for DTW.

145

Figure 7: Execution time to execute matchings in parallel

Altogether, it seems that the baseline methods are less suited to perform in-
vehicle presence detection on barometer data than DeepMatch.

5.6 Prediction Performance of DeepMatch2

We also trained our updated version DeepMatch2 with the available data. The
performance results of our tests are listed in the last row of Tab. 3. We can
see that, except for the precision value of DTW that was already discussed above,
DeepMatch2 outperforms all other tested models for all four performance metrics
used. If we take a closer look at the results, we see that the largest change between
DeepMatch 10 and DeepMatch2 is the increase of the recall value by more than
a percentage point. The likely reason is that the improvements we made to the
model (see Sect. 4), increased the ability of DeepMatch2 to correctly classify
positive samples of the dataset. This could be achieved without classifying too
many samples as positive, as can be seen by its precision value that is also slightly
better than the one of DeepMatch 10.

Achieving good results for both the precision and recall means that Deep-
Match2 is good at separating the samples in our evaluation dataset. That is also
proved by the very high accuracy and F1-scores of DeepMatch2 which are both
around 0.7% better than their counterparts in DeepMatch 10. Thus, in spite of
increasing the compression of the sensor data by the factor of four, we managed
to improve the performance metrics of DeepMatch2.

5.7 Execution Time in the Server

Since usually a lot of passengers use public transportation throughout the day,
particularly during the rush hour, the server of a public transport authority per-
forming the matching calculations of DeepMatch or DeepMatch2, needs to

146

be able to handle large amounts of concurrent data simultaneously. To test the
expected load for such a central server, we exploited a feature of Tensorflow that
allows the matching module to accept multiple inputs. Further, we used the pow-
erful parallel computational capabilities of Tensorflow that make it possible to
calculate the matchings for all received inputs simultaneously.

Fig. 7 depicts the execution time of the matching module performing its matches
based on latent data, after it has been extracted from the overall deep learning
model of DeepMatch2. It reveals that 50,000 matching calculations can be exe-
cuted in parallel in 1,560 milliseconds all running on a single five years old GTX
1080 GPU. Due to the the fact that the matching calculation is only performed
once for every 12.8 seconds of collected data per passenger, a data center consisting
of only three such GPUs could serve a city like Oslo with its 960,000 daily passenger
trips even if all passengers travel at the same time. Running these calculation on
a newer GPU with improved concurrency and computational capabilities, would
improve these results even further.

5.8 Battery Consumption on Smartphones

Power consumption is an important issue when using deep learning models on
mobile devices that run on rechargeable batteries since the models often require a
large number of calculations at high speed, which usually demands a lot of power.
Fortunately, we do not require the encoders executed on the smartphones to run
continuously in our approach. Even if the phone is in close proximity to a a
BLE-transmitter (see Sect. 3.1), we only carry out the encoder in certain intervals
corresponding to the lengths of the samples to be matched, e.g., every 12.8 seconds
when using DeepMatch2.

In addition to running the deep learning model, the continuous sensor event
generation and the transmission of the compressed data to the server are power
consuming tasks the smartphones will have to perform. To ensure that our ap-
proach does not cause an excessive drain on the batteries of the smartphones,
we constructed three test scenarios that reflect the battery consumption factors
mentioned above:

• Complete scenario: All three factors of battery consumption, i.e., the barom-
eter data collection, data processing by the encoder, and data transmission,

• Learning scenario: Barometer data collection and data processing,

• Data collection scenario: Only barometer data collection.

To ensure diversity in our testing devices, we used five Android smartphones
from five different manufacturers. To ensure age diversity, these phones are be-
tween zero and six years old, as can be seen in Tab. 4. To make sure that the test
results were not influenced by the environments in which the tests were run, we

147

Table 4: Android phones used in battery tests

Brand Age Battery Capacity

LG Nexus 5X 5 years 2700 mAh
Huawei Nexus P6 4 years 3450 mAh
Samsung Galaxy S8 3 years 3000 mAh
Sony Z3 Compact 6 years 2600 mAh
Google Pixel 3a 0 years 3000 mAh

Table 5: Battery consumption per hour

Brand Data collection Learning Complete

Samsung 25 mA 26 mA 31 mA
LG 23 mA 24 mA 26 mA
Huawei 22 mA 23 mA 25 mA
Google 16 mA 17 mA 18 mA
Sony 15 mA 18 mA 21 mA

performed all tests indoors with a constant temperature of 19◦C, representing the
indoor temperature of a typical public transportation vehicle in Norway.

To measure the battery power usage, we used the tools Batterystats and Battery
Historian provided by Google to log the battery consumption of all processes
running on an Android device [34]. The tests were run in the background with
the wake lock parameter enabled. This allowed us to simulate an environment in
which our application retrieving sensor inputs, encoding them, and forwarding the
encoded data to the server, runs in the background of a user phone.

The results of our tests are depicted in Tab. 5. They clearly show that for all
devices used in the tests, our learning models influence the battery consumption on
a smart device only marginally. Considering a passenger travelling with a public
transportation vehicle for over two hours, measuring, encoding and transmitting
barometer sensor events, only around 62 mAh will be used for the Samsung Galaxy
S8, the phone with the highest power usage. With a battery capacity of 3000
mAh, this equals to the use of 2.1% of the overall battery capacity. Compared
to the numbers reported in [35], this is substantially lower than most smartphone
applications.

As a result of our tests, we consider that our approach has no significant
negative impact on the overall battery consumption of the user smartphones. For
the reference devices, we expect that they have a power connection with the battery
of the transport vehicle.

148

Table 6: Run Time and CPU overhead

Brand CPU Mean Run Time Overhead

Samsung 2.3 GHz + 1.7 GHz, Cortex-
A53

49 ms 1-2 %

LG
1.4 GHz + 1.8 GHz, 64-Bit
Hexa-Core

46 ms 1-2 %

Huawei
2.0 GHz + 1.55 GHz, 64-Bit
Octa-Core

52 ms 1-2 %

Google
2.0 GHz + 1.7 GHz, 64-Bit
Octa-Core

19 ms 0-1 %

Sony 2.5 GHz Quad-Core, 400
Krait

73 ms 3-4 %

5.9 Computational Overhead on Smartphones

As mentioned above, deep learning models are often large complex computational
units. Thus, in addition to affecting the battery consumption of the devices run-
ning the model, the computations might influence their CPU usage such that a
smartphone is not able to support other applications, that the user likes to run
in parallel to our learning models DeepMatch or DeepMatch2. Therefore, we
evaluated also the computational overhead of the models executed on smartphones.
For these experiments, we used the same five devices listed in Tab. 4. We analysed
both, the CPU usage and the time, the encoder module needed to process one
sample of input. Table 6 shows the results of these tests. We can clearly see from
the mean run time and CPU overhead produced for the devices, that the over-
head of our models are barely noticeable and should not impact other functions
executed on the phone in parallel.

6 Travelling User Inference

Up to now, DeepMatch and DeepMatch2 can determine with a high accuracy
whether a person’s smartphone is in the same public transport vehicle as a RefDev
over a fixed time interval of, e.g., 12.8 s. To make our approach usable for, e.g.,
automatic ticketing, however, a solution is required to find out, over which time
period the owner of the phone effectively travels in the vehicle.

To infer the duration of being in the vehicle, we can utilize that a normal
trip in a city bus may be up to an hour such that DeepMatch2 can conduct
hundreds of samples. The samples of the user’s phone taken on a trip and the
corresponding ones produced by the reference device are paired and merged to a
so-called matching sequence. This is illustrated in Fig. 8.

As an example, let us assume that a passenger travels with a bus for 20 minutes.

149

Figure 8: Matching Sequence output from the matching module

That gives DeepMatch2 the necessary time to generate a matching sequence con-
taining 93 successive matches. Due to the accuracy of 98.51% for DeepMatch2,
the likelihood that all these matches are correctly detected as being in-vehicle (i.e.,
Class 1), however, is only 24.76%. Thus, in more than three quarters of trips with
a 20 minute duration, at least one matching will be falsely declared as being out
of the vehicle (i.e., Class 0). Similarly, if a person rides in a car next to a bus for
20 minutes, e.g., due to slow moving traffic, the chance that all matches are Class
0, is also only around 25%. Thus, we need an algorithm that can infer passenger
trips from matching sequences with a high degree of precision in spite of occasional
matching errors. In this section, we describe how one can develop and evaluate
such an inference algorithm.

In the following, we first describe how we gathered the data that explains the
travel time between two adjacent stops for busses in Norway’s capital Oslo. There-
after, we introduce some concepts based on which the algorithm is designed and
presented. A relevant parameter of this algorithm is the degree of fault tolerance
it supports, which is investigated at the end of this section.

6.1 Travelling Times between Adjacent Bus Stops

To get the travelling times between two adjacent stops for busses in Oslo, we
gathered all real-time data of the bus network of Oslo over twelve hours on a normal
Monday. ENTUR, a government-funded organization, gathers and openly shares
traffic data from all public transportation operators in Norway. In particular, it
offers an API [36] which is based on the SIRI 2.0 standard [37].

The collected data allows us to understand the distribution of the travelling
times between two adjacent stops. To this end, we aggregated the arrival and
departure times for all buses at all stops throughout the recorded 12-hour slot.
From this, we calculated for all bus trips the times needed to travel between two

150

Figure 9: Number of times any vehicle traveled a route segment in x seconds

adjacent stops. The results were summed up, and we obtained the distribution
depicted in Fig. 9. The x axis refers to travelling times in seconds while the y axis
shows how often busses needed a particular time segment between two neighboring
stops during the 12-hour slot. As can be seen, the most prevalent travelling time
between two adjacent stops is between 40 s and 50 s. Another interesting fact is
that in less than 2% of the gathered cases, the travelling time between two stops
is less than 40 seconds. We will show how these facts can be utilized to provide
good results.

6.2 Matching Sequences and Travel Inference Algo-
rithms

As introduced above and illustrated in Fig. 8, a matching sequence is the sequence
of outputs generated by the matching module of DeepMatch2. It is basically a
sequence of ones and zeros that forms the input of the inference algorithm. Based
on this input, the inference algorithm decides whether the user traveled in the
vehicle for the duration of the matching sequence, or not.

To better understand the possible errors that the inference algorithm could
make, we classify its results (in analogy to the true and false positives and negatives
introduced in Sect. 5.2) as follows:

• True Travelling user (TT) denotes an actual passenger who is correctly in-
ferred as a traveller.

• False Travelling user (TF) is a person not using the public transport vehicle,
but who was falsely inferred to be travelling in it.

151

Figure 10: Example travellers and expected matching sequence

• True Non-Travelling user (NTT) is a user not travelling with the vehicle in
question who is correctly inferred as being not in the vehicle.

• False Non-Travelling user (NTF) is an actual travelling user who was, how-
ever, falsely inferred as not travelling with the vehicle.

In Fig. 10, the four types of travellers are illustrated, where green dashed lines
indicate the time period that the passengers are inside the vehicle, while red dashed
lines refer to the phases they are outside. The orders of white boxes beneath the
dotted lines represent the matching sequence for each passenger. The goal of
the algorithm is to detect true travelling and true non-travelling users with a high
accuracy. In particular, it should keep the number of false travelling users very low
since billing people who do not use public transport, may easily lead to complaints,
lawsuits, and bad press for the operator. Moreover, false non-travelling users shall
be avoided since they end up with travelling for free.

6.3 User Travel Inference Algorithm

In this section, we describe our methodology to design and evaluate the inference
algorithm. It shall take the accuracy of DeepMatch2 of 98.51% into account.

152

While this accuracy is relatively high, it is not perfect as matching sequences can
occasionally contain a mix of ones and zeros, and the inference algorithm should
be able to perform inference with a high accuracy even from such mixed sequences.
Overall, our goal is to find an inference strategy that keeps the number of false
non-travellers and false travellers low.

We first need to calculate the accuracy of an inference algorithm based on
the accuracy of DeepMatch2. We use the binomial experiment to calculate the
likelihood of occurring a certain ratio of ones and zeros in a matching sequence:

P (k) =

(
n

k

)
pk(1− p)n−k (8)

Here, n denotes the number of trials, i.e., the length of the matching sequence,
while k refers to the number of successful trials, i.e., the number of correct match-
ings in the sequence. Finally, p states the probability of a successful trial which,
in our case, corresponds to the accuracy of DeepMatch2, i.e., 0.9851.

With the binomial experiment, we can compute the two probabilities that a
certain proportion of ones and zeros in a matching sequence is rightfully inferred
to be in or out of the vehicle. From that, we can easily determine the likelihoods
for the four user types introduced in Sect. 6.2.

As an example, let us assume that, in fear of inferring false travelling users, the
public transport authority decides to bill a passenger when all the six entries in the
matching sequence are ones. Using formula (8) leads to the following likelihoods
for the four inference results:

PTT
(6) = 0.98516 = 0.9139

PNTF
(6) = 1− PTT

(6) = 0.0861

PTF
(0) = (1− 0.9851)6 = 1.09 · 10−11

PNTT
(0) = 1− PNTF

(0) = 0.999999999989

The likelihood, that DeepMatch2 produced all six Class 1 predictions wrongly
and with that infers a false travelling user, is PTF

(0) = 1.09 · 10−11. In correspon-
dence, the likelihood to detect a true non-traveller is very high since our strategy
declares all passengers who produced at least one zero in their matching sequences,
as not travelling. The corresponding probability is 1−PTNF

(0) = 0.999999999989.
The price of this very rigid approach is the relatively high rate of false non-

travelling users which is calculated as 1 − PTT
(6) = 0.0861. Thus, nearly every

twelfth passenger gets a free ride which might be unacceptable for most operators.
In consequence, the likelihood for a true travelling user is only PTT

(6) = 0.9139.
To avoid such a large rate of false non-travelling users, we need to bring some
tolerance into our inference algorithm. To achieve that, we extend equation (8)
for the binomial probability to the so-called cumulative binomial probability, that

153

is described by the following formulas:

P (k ≥ M) =

n∑

k=M

(
n

k

)
pk(1− p)n−k (9)

P (k ≤ M) =
M∑

k=0

(
n

k

)
pk(1− p)n−k (10)

In formula (9), M refers to the minimum and in (10) to the maximum number of
trials that have to be successful in order to accept a trip as in-vehicle. The other
symbols used in these formulas are identical to those introduced for formula (8).

The cumulative binomial probability provides the means to calculate the prob-
abilities for more fault-tolerant inference algorithms, e.g., accepting matching se-
quences of the length six as in-vehicle, when they contain at least five ones. This
algorithm leads to the following results for the four inference results:

PTT
(k ≥ 5) = 0.98516 + 6 · 0.98515(1− 0.9851) = 0.9968

PNTF
= (1− PTT

(k ≥ 5) = 0.0032

PTF
(k ≤ 1) = (1− 0.9851)6 + 6 · 0.9851(1− 0.9851)5 = 4.35 · 10−9

PNTT
= (1− PTF

(k ≤ 1)) = 0.9999999957

This more fault-tolerant algorithm reduces the likelihood of false non-travelling
users to just around 0.3%. While the number of false travelling users is increased
by two digits compared to the more rigid algorithm described above, it is still very
low. Therefore, this more tolerant inference algorithm seems to be a better fit for
a billing system than the stricter one discussed above.

The fact is that we still do not know if this algorithm is the best, or if more
fault-tolerant policies render even better results. Moreover, for most passenger
trips, DeepMatch2 produces much longer matching sequences than ones with
just six matching pairs. Utilizing the data from the public transportation behavior
analysis discussed in Sect. 6.1, we conducted several experiments to find out the
best inference algorithm solutions, which are discussed below.

6.4 Considering Different Forms of Fault Tolerance

The aforementioned comparison of two algorithms for matching sequences of length
six shows that there is a trade-off between false travellers and false non-travellers
based on the degree of fault tolerance—the percentage of zero values that a match-
ing sequence may contain whilst still being inferred as in-vehicle. In the rigid
example in Sect. 6.3, the fault tolerance was 0, while for the second case it was
1
6 = 16.6̄%. The value M in the cumulative binomial probability formulas (9) and
(10) can be calculated from the fault tolerance as follows:

M =

⌊
(1− fault tolerance) · n+

1

2

⌋
(11)

154

Figure 11: Probability of predicting a False Non-Travelling user (PNTF
) over

varying matching sequence lengths

Thus, the higher the fault tolerance is, the more occasional zeros are allowed in the
matching sequence when the inference algorithm infers that the user is inside the
vehicle. In consequence, by using a higher fault tolerance, we reduce the number
of false non-travellers, albeit at the cost of more false travellers.

To analyze the influence, we calculated the likelihoods of false non-travellers
and false travellers for different fault tolerances ranging from 0% to 90% in steps
of 10% and for all matching sequence lengths from 1 to 100. Figure 11 depicts
the probabilities for non-travelling users depending on the lengths of the matching
sequences. The dark blue curve, showing no fault tolerance at all, rises towards 1
while all other trajectories converge towards 0. The interesting observation is how
early the approximation towards 0 starts: Even with a fault tolerance of just 10%,
the likelihood for producing non-travelling users is next to nothing for trips that
produce more than 40 matchings. Thus, for trip lengths longer than nine minutes,
this low fault tolerance would be sufficient.

The curves show that the selection of a good fault tolerance value is only
relevant for short trips for which relatively short matching sequences are produced
by DeepMatch2. To make the differences of the curves for short journeys more

155

Figure 12: Probability of predicting a False Travelling user (PTF
) over match-

ing sequence lengths

legible, we show a zoomed-in version in the lower part of Fig. 11. In Sect. 6.1, we
claimed that less than 2% of all time periods between adjacent bus stops is lower
than 40 seconds. Since passengers can enter and leave the vehicle only at bus
stops, we can therefore assume that for nearly every trip, at least three matchings
are produced. From our curves, one can see that with a fault tolerance of 40%, it
is enough to produce nearly no false non-travellers.

Figure 12 shows the same curves for false travelling users. Similarly to the false
non-travelling users, the likelihood of creating false travelling users is negligible if
a smartphone user is close to a vehicle for a longer time period. Thus, even with
a fault tolerance of 90%, the inference is enough if the length of the matching
sequence is at least 30, which corresponds to 6.4 minutes.

Yet, a non-travelling user will usually be close to a vehicle only for a relatively
short time period, e.g., less than a minute. Therefore, it is particularly important
that the inference algorithm handles those cases correctly. The zoomed-in curves
in the lower part of Fig. 12 show that the fault tolerance of 40%, that we already
mentioned as sufficient for false non-travellers, is very close to zero for all matching
sequences except for those consisting of just one matching.

156

Our findings about false non-travelling and false travelling users provide useful
hints for the configuration of the inference algorithm. Since nearly no distances
between two stops are less than 30 seconds (cf. Fig. 9), if our algorithm declares
all matching sequences of lengths one and two as out-of-vehicle, it will hardly
affect the overall accuracy of the algorithm. For all matching sequences of lengths
three or larger, the policy may use a fault tolerance of 40%, which should lead to
excellent results with very few false non-travellers and false travellers.

6.5 A More Formal Look at the Trade Off between
NTF and TF

The discussion above to determine a good fault tolerance seems coherent, however,
it is not very formal. A public transport authority that has resilient statistics about
the travelling times of its passengers, can therefore go a step further and determine
the trade offs between NTF and TF for different fault tolerance percentages more
formally.

To be able to assess false travellers differently than the potentially less problem-
atic false non-travellers, we use a weight factor w ∈ [0, 1] that describes the weight

that TF shall have in comparison to NTF . With P ft
NTF

(ft,msl) and P ft
TF

(ft,msl),
we state the probabilities forNTF resp. TF for a certain fault tolerance ft and mes-
sage sequence length msl that can be calculated using the formulas (9), (10), and
(11). Moreover, pl refers to the likelihood that the travelling time of a passenger
has a certain length such that the corresponding matching sequence has l-many
entries. Finally, Maxmsl describes the maximum length of matching sequences
that can occur in practice. These values can be computed from the operator’s
travelling time statistics. The weighted average Av between NTF and TF can be
computed as follows:

Av(ft, w) =

Maxmsl∑

l=1

pl · (w · P ft
TF

(ft, l) + (1− w) · P ft
NTF

(ft, l)) (12)

With formula (12), one can compare different fault tolerances and select the one
ft that gives the lowest value Av(ft, w) for the desired weight w.

Unfortunately, in spite of an in-depth search and requests to some public trans-
portation authorities, we could not get access to meaningful statistics about usual
travel durations of passengers. Thus, we based our calculations on the worst case
scenario in which every passenger travels only between a stop and the adjacent
one. We also assume that the number of people travelling are evenly distributed
among the operator’s buses. Then, we can use the distribution presented in Fig. 9
to calculate the likelihoods pl for the lengths of the matching sequences.

The result of applying formula (12) to these values and the 10 different fault
tolerant values 0% to 90% is listed in Tab. 7. The columns show the likelihoods
for false non-travellers and false travellers as well as the weighted averages for the

157

Table 7: Weighted averages for all matching sequences with lengths between
one and 21

Fault
PNTF

PTF

0.5 · PNTF
0.1 · PNTF

Tolerance + 0.5 · PTF
+ 0.9 · PTF

0% 31.22957% 0.15125% 15.69041% 3.25908%
10% 8.49190% 0.15125% 4.32158% 0.98532%
20% 1.73878% 0.15126% 0.94502% 0.31001%
30% 0.95806% 0.15139% 0.55473% 0.23206%
40% 0.46660% 0.15828% 0.31244% 0.18911%
50% 0.15829% 0.46545% 0.31187% 0.43473%
60% 0.15796% 0.48792% 0.32294% 0.45492%
70% 0.15139% 0.96164% 0.55652% 0.88062%
80% 0.15125% 2.54341% 1.34733% 2.30419%
90% 0.15125% 10.11554% 5.13340% 9.11911%

Figure 13: Total number of erroneous travel predictions over MS lengths
using a Fault Tolerance of 40% and the average weight w set to 50% (blue)
and 90% (orange)

weights w = 0.5 and w = 0.9. Non-surprisingly, the likelihood for NTF is lower
if a higher degree of fault tolerance is allowed, while it is the opposite for TF . If
we weight both error cases equally (i.e., w = 50%), fault tolerances of 40% and
50% render the best trade off results closely followed by 60%. When we consider
false travellers as more important and set the weight to w = 90%, the result is
much clearer. Here, 40% is the winner followed by 30%. These results foster our
assumption from Sect. 6.4 that 40% seems to be a efficient fault tolerance value.

In a final step, we checked the probability of errors for certain matching se-
quence lengths l, i.e., w · P ft

TF
(ft, l) + (1 − w) · P ft

NTF
(ft, l). The results for the

158

two weights and a fault tolerance of 40% are shown in Fig. 13. We see in both
curves that the two shortest matching sequence lengths 1 and 2 are responsible
for nearly all of the errors, while all the others give good results. This confirms
the suggestion of our inference algorithm to bill only passengers for which at least
three matchings were generated. The only losses are for passengers that travel only
between two adjacent stops with less than 40 s distance. Assuming an average bus
speed of 27 km/h between these stops, they are just 300 meters apart. In reality,
people would walk this distance instead of waiting for a bus.

It would be nice to repeat our trade off calculations based on real travelling time
statistics, and we will do so as soon as we get our hands on such data. However,
we do not expect very different results since, in reality, the average travelling times
will be much longer than in our thought experiment, and the graphs in Figs. 11
and 12 show that the inference is becoming better with longer matching sequences.
Therefore, the likelihoods for the errors would probably be lower than in Tab. 7.
However, based on the considerations from Sect. 6.4 and in this subsection, we
still expect that 40% will be the winning fault tolerance value in most cases.

7 Conclusions and Future Work

To address the challenge of in-vehicle presence detection as an important aspect of
mobile context analysis, we introduced our proposed deep learning-based approach,
called DeepMatch and its improved version DeepMatch2. Our approach uti-
lizes the sensor event streams of smartphones to predict their presence inside public
transportation vehicles with an accuracy of 98.51% in the case of DeepMatch2.
The deep learning model consists of custom made Stacked Convolutional Autoen-
coders for feature extraction and dimensionality reduction configured in a Siamese
architecture, and a matching module consisting of several layers of stacked Convo-
lutional Layers for event stream matching. The deep learning model is distributed
among the smartphones carried by passengers, a reference device installed in public
transport vehicles, and a central server. The Stacked Convolutional Autoencoders
allow for compressing the sensor events through feature extraction and dimen-
sionality reduction on the smartphone and the reference device, while the event
matching is performed on the server. Through dimensionality reduction, the input
data is reduced by the factor eight such that the bandwidth of the data transferred
to the server is considerably reduced without losing the information of the data
necessary to perform the matching.

Furthermore, we discussed how the deep learning-based approach can be used
to create inference algorithms that deduce the travel time duration for passengers
travelling in public transportation with a very high accuracy. In particular, we
presented a theoretical framework that can be used to configure the inference
algorithms to weight the various types of potential erroneous inferences, and thus
accommodate the needs of the public transportation providers.

As our future plan, we intend to implement a pilot of DeepMatch2 together

159

with a public transportation provider in Norway. Moreover, we intend to research
on the optimum length of the data segments and the frequency of data gathering
(from the reference devices and the smartphones) in order to minimize the amount
of data needed for in-vehicle presence detection.

References

[1] BankMyCell, “How Many Smartphones are in the World?” https:
//www.bankmycell.com/blog/how-many-phones-are-in-the-world, 2022, ac-
cessed: 2022-02-22.

[2] S. Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, and J. Song,
“Orchestrator: An Active Resource Orchestration Framework for Mobile
Context Monitoring in Sensor-rich Mobile Environments,” in IEEE Interna-
tional Conference on Pervasive Computing and Communications (PerCom).
Mannheim, Germany: IEEE Computer, 2010, pp. 135–144.

[3] W. Narzt, S. Mayerhofer, O. Weichselbaum, S. Haselböck, and N. Höfler, “Be-
In/Be-Out with Bluetooth Low Energy: Implicit Ticketing for Public Trans-
portation Systems,” in IEEE 18th International Conference on Intelligent
Transportation Systems. Las Palmas, Spain: IEEE, 2015, pp. 1551–1556.

[4] T. Gyger and O. Desjeux, “EasyRide: Active Transponders for a Fare Col-
lection System,” IEEE Micro, vol. 21, no. 6, pp. 36–42, 2001.

[5] C. Sarkar, J. J. Treurniet, S. Narayana, R. V. Prasad, and W. de Boer,
“SEAT: Secure Energy-Efficient Automated Public Transport Ticketing Sys-
tem,” IEEE Transactions on Green Communications and Networking, vol. 2,
no. 1, pp. 222–233, 2018.

[6] R. Meng, D. W. Grömling, R. R. Choudhury, and S. Nelakuditi, “RideSense:
Towards Ticketless Transportation,” in 2016 IEEE Vehicular Networking
Conference (VNC). Columbus, OH, USA: IEEE, 2016, pp. 1–8.

[7] M. Won, A. Mishra, and S. H. Son, “HybridBaro: Mining Driving Routes
Using Barometer Sensor of Smartphone,” IEEE Sensors Journal, vol. 17,
no. 19, pp. 6397–6408, 2017.

[8] S. Yao, S. Hu, Y. Zhao, A. Zhang, and T. Abdelzaher, “Deepsense: A Unified
Deep Learning Framework for Time-series Mobile Sensing Data Processing,”
in 26th International Conference on World Wide Web. Perth, Australia:
ACM, 2017, pp. 351–360.

[9] M. Oplenskedal, A. Taherkordi, and P. Herrmann, “DeepMatch: Deep Match-
ing for In-Vehicle Presence Detection in Transportation,” in Proceedings of the

160

14th ACM International Conference on Distributed and Event-based Systems,
2020, pp. 97–108.

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and its
Role in the Internet of Things,” in 1st Workshop on Mobile Cloud Computing
(MCC). Helsinki, Finland: ACM, 2012, pp. 13–16.

[11] T. Gründel, H. Lorenz, and K. Ringat, “The ALLFA Ticket in Dresden. Prac-
tical Experience of Fare Management Based on Be-In/Be-Out & Automatic
Fare Calculation,” 2006, iPTS Conference, Seoul, South Korea.

[12] V. Kostakos, T. Camacho, and C. Mantero, “Wireless detection of end-to-
end passenger trips on public transport buses,” in 13th IEEE International
Conference on Intelligent Transportation Systems, 2010.

[13] A. Kwiecień, M. Maćkowski, M. Kojder, and M. Manczyk, “Reliability of
Bluetooth Smart Technology for Indoor Localization System,” in Interna-
tional Conference on Computer Networks (CN), ser. CCIS 522. Br’unow,
Poland: Springer-Verlag, 2015, pp. 444–454.

[14] S. Kuchimanchi, “Bluetooth low energy based ticketing systems,” Master’s
thesis, Aalto University, Espoo, Finland, 2015.

[15] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and L.-S.
Peh, “Using Mobile Phone Barometer for Low-power Transportation Context
Detection,” in 12th ACM Conference on Embedded Network Sensor Systems.
Memphis, TN, USA: ACM, 2014, pp. 191–205.

[16] S. Vanini, F. Faraci, A. Ferrari, and S. Giordano, “Using Barometric Pres-
sure Data to Recognize Vertical Displacement Activities on Smartphones,”
Computer Communications, vol. 87, pp. 37–48, 2016.

[17] B.-J. Ho, P. Martin, P. Swaminathan, and M. Srivastava, “From Pressure to
Path: Barometer-based Vehicle Tracking,” in 2nd ACM Inter. Conf. on Em-
bedded Systems for Energy-Efficient Built Environments (BuildSys). Seoul,
South Korea: ACM, 2015, pp. 65–74.

[18] A. Dimri, H. Singh, N. Aggarwal, B. Raman, D. Bansal, and K. K. Ramakr-
ishnan, “RoadSphygmo: Using Barometer for Traffic Congestion Detection,”
in 8th International Conference on Communication Systems and Networks
(COMSNETS). Bangalore, India: IEEE Computer, 2016, pp. 1–8.

[19] X. Wang, L. Kong, T. Wei, L. He, G. Chen, J. Wang, and C. Xu, “Vld:
Smartphone-assisted vertical location detection for vehicles in urban environ-
ments,” in 2020 19th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN), 2020.

161

[20] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep Learning for Sensor-
based Activity Recognition: A Survey,” Pattern Recognition Letters, vol. 19,
pp. 3–11, 2017.

[21] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, “Exploiting Multi-Channels
Deep Convolutional Neural Networks for Multivariate Time Series Classifica-
tion,” Frontiers of Computer Science, vol. 10, no. 1, pp. 96–112, Feb. 2016.

[22] P. Castrogiovanni, E. Fadda, G. Perboli, and A. Rizzo, “Smartphone data
classification technique for detecting the usage of public or private trans-
portation modes,” IEEE Access, vol. 8, pp. 58 377–58 391, 2020.

[23] L. Wang, H. Gjoreski, M. Ciliberto, P. Lago, K. Murao, T. Okita, and
D. Roggen, “Summary of the sussex-huawei locomotion-transportation recog-
nition challenge 2020,” in Adjunct Proceedings of the 2020 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Pro-
ceedings of the 2020 ACM International Symposium on Wearable Computers,
ser. UbiComp-ISWC ’20. New York, NY, USA: Association for Computing
Machinery, 2020, p. 351–358.

[24] C. Mayer, R. Mayer, and M. Abdo, “StreamLearner: Distributed Incremental
Machine Learning on Event Streams: Grand Challenge,” in 11th ACM Inter-
national Conference on Distributed and Event-Based Systems. Barcelona,
Spain: ACM, 2017, pp. 298–303.

[25] M. Spörk, C. A. Boano, and K. Römer, “Performance and Trade-offs of the
new PHY Modes of BLE 5,” in Proceedings of the ACM MobiHoc Workshop
on Pervasive Systems in the IoT Era (PERSIST-IoT). ACM, 2019, pp.
7––12.

[26] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese Neural Networks for One-
shot Image Recognition,” 2015, https://www.cs.cmu.edu/∼rsalakhu/papers/
oneshot1.pdf.

[27] C. Zhang, W. Liu, H. Ma, and H. Fu, “Siamese Neural Network based Gait
Recognition for Human Identification,” in IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Shanghai, China: IEEE,
2016, pp. 2832–2836.

[28] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature
Verification using a “Siamese” Time Delay Neural Network,” in Advances in
Neural Information Processing Systems. San Francisco, CA, USA: Morgan
Kaufmann Publishers, 1994, pp. 737–744.

[29] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, ch. Autoencoders, pp. 505–528, http://www.
deeplearningbook.org.

162

[30] N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi, “Deep Temporal
Clustering: Fully Unsupervised Learning of Time-domain Features,” arXiv,
vol. cs, no. arXiv:1802.01059, 2018.

[31] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked Convolutional
Auto-encoders for Hierarchical Feature Extraction,” in International Con-
ference on Artificial Neural Networks (ICANN), ser. LNCS 6791. Espoo,
Finland: Springer-Verlag, 2011, pp. 52–59.

[32] A. Supratak, H. Dong, C. Wu, and Y. Guo, “DeepSleepNet: A Model for Au-
tomatic Sleep Stage Scoring based on Raw Single-channel EEG,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11, pp.
1998–2008, 2017.

[33] Tensorflow, “Tensorflow 2.3,” https://www.tensorflow.org/api docs/python/
tf, 2019, accessed: 2020-11-27.

[34] B. Historian, “Batterystats and Battery Historian,” https://developer.
android.com/studio/profile/battery-historian, 2019, accessed: 2019-10-23.

[35] X. Chen et al., “Smartphone Energy Drain in the Wild: Analysis and Impli-
cations,” ACM SIGMETRICS Performance Evaluation Review, vol. 43, no. 1,
pp. 151–164, 2015.

[36] Entur, “Entur public transport API,” https://developer.entur.org, 2020, ac-
cessed: 2020-10-07.

[37] SIRI, “SIRI Standard,” http://www.transmodel-cen.eu/standards/siri/,
2020, accessed: 2020-10-07.

163

Paper 4

Ataraxis: A Deep Learning
Approach for Hardwareless
In-Vehicle Presence Detection

164

Ataraxis: A Deep Learning Approach for
Hardwareless In-Vehicle Presence Detection

Magnus Oplenskedal1,3, Amir Taherkordi1,2,3, Peter Herrmann1

1Norwegian University of Science and Technology (NTNU), Trondheim, Norway

2University of Oslo, Norway

3Forkbeard Technologies, Oslo, Norway

{magnukop, amirhost, herrmann}@ntnu.no

Abstract

Accurately detecting the mobile contexts of public transport vehi-
cles and their passengers is a key requirement of intelligent context-
aware services in such systems. A prominent example is in-vehicle
presence detection which can be used to provide various services such
as automated ticketing, dynamic vehicle distribution, and live route
optimization. To use such services in practice, in-vehicle presence
detection needs to be close to infallible. However, most existing solu-
tions in this field suffer from low spatiotemporal accuracy. To address
this challenge, we introduce Ataraxis in this paper—an approach to
hardwareless in-vehicle presence detection. In particular, we develop
a deep convolutional neural network that can be trained to detect, if
a user is inside a public transportation vehicle such as a tram, sub-
way, or bus, from the raw sensor events generated by the sensors in
a single ordinary smartphone. We show that this information can be
used to infer the in-vehicle presence of users over time when com-
bined with other sources such as the GPS trace of the user and that
of the public transport vehicles. Ataraxis has the capability to dis-
tinguish between the four user modes: driving a car, riding a bike,
walking, and using public transport with an accuracy of 98.69%. This
is higher than the accuracy of existing techniques for transport mode
detection. We also made experiments on the battery consumption
and CPU overhead. The results show that Ataraxis incurs a negligi-
ble computational overhead and power consumption on smartphones,
even though we base our approach on sensor data collection and a
deep learning model.

165

Mobile Context, In-Vehicle Presence Detection, Transport Mode Detection,
Sensor Event Streams Analysis, Deep Learning, Intelligent Transportation

1 Introduction

Many public transportation providers offer smartphone applications that provide
services such as route planning, path finding, live updates regarding the trans-
portation infrastructure, and ticket sales. In particular, many providers are mov-
ing rapidly away from legacy systems and routines such as ticket sales by vehicle
operators or ticket-machines, the manual control of tickets, and ticket validation
machines. A main goal of this technological movement is to reduce infrastructure-
and personnel-related costs. Another advantage is the improvement of the user
experience and the removal of unnecessary steps for the passengers which make
public transport more attractive.

The rapid development of mobile technologies such as the Internet of Things
(IoT) and cellular network infrastructures (e.g., 5G) will lead to unprecedented op-
portunities making the next generation of public transportation even more appeal-
ing. To support such improvements, however, mobile context information [1] about
passengers and the vehicles transporting them, have to be extremely accurate. If
we know with a probability bordering on certainty whether a person is inside or
outside a means of transportation, what type of vehicle it is, and more specifically,
in which vehicle the person is travelling, we can provide various context-aware ser-
vices such as route optimization, dynamic vehicle distribution, and live passenger
flow analysis. With this type of information, user-centric services can be provided
as well, e.g., within the so-called Be-In/Be-Out (BIBO) systems [2]. They can
automatically issue tickets based on the exact duration/distance traveled by users.
Such systems alleviate the user from having in-depth knowledge regarding the fare
rules and the ticketing system used.

Like the aforementioned services, a BIBO system can only work in practice
if an excellent in-vehicle presence detection accuracy can be achieved. Therefore,
we proposed two deep learning-based frameworks, called DeepMatch [3] and
DeepMatch2 [4], which provide a good accuracy of up to 98.51%. More details
about these approaches and other BIBO technologies are provided in Sec. 2. An
important disadvantage of these approaches, however, is that they require extra
hardware, e.g., reference devices and BLE transmitters as fixed equipment installed
in busses, which imposes additional costs associated with implementation and
maintenance.

This calls for a solution that works without using additional hardware. In
this paper, we address this need by introducing our new approach Ataraxis.
In particular, we propose a deep learning model enabling hardwareless in-vehicle
presence detection. It depends only on the presence of two platforms:

• Smartphones carried by passengers that offer certain sets of sensors like

166

accelerometers, barometers, magnetometers, gyroscopes, and GPS receivers.

• An external service providing spatiotemporal information, in particular,
the real-time and historical locations of a certain vehicle. In Norway, the
government-funded organization Entur has set strict regulations and require-
ments to what kind of hardware all vehicles operated by public transporta-
tion providers have to be equipped with. This entails hardware supporting
the submission of real-time data to a publicly available API [5] based on the
SIRI 2.0 standard [6]. One of the requirements is the real-time location of
the vehicle, such that all vehicles have to be equipped with GPS.

The core of Ataraxis is a deep convolutional neural network trained on our
own dataset collected by volunteers performing four different activities: walking,
bike, car, and public transport. The goal of the learning model is to recognize the
activity of users based on the sensor event streams of their smartphones. From this,
we can recognize whether the users are believed to be riding in a public transport
vehicle. If they are assumed to be inside such a vehicle, we can then compare
traces of their positions with those of the vehicles in their vicinity using the Entur
API [5] or a similar service. This allows us to find out in which public transport
vehicle users are effectively travelling. Based on this information, a BIBO system
to ticket the users automatically can then be realized. The main contribution of
this paper is the introduction of our transport mode detection model while we will
explain the alignment of traveller position traces with those of vehicles using the
Entur service elsewhere.

The rest of the paper is organized as follows: Our previous work, i.e., the
approaches DeepMatch and DeepMatch2, are sketched in Sect. 2. In Sect. 3,
we provide an in-depth presentation of our proposed approach followed by a report
on experimental evaluation results in Sect. 4. In Sect. 5, we present related work
before we conclude the paper with a discussion of future plans in Sect. 6.

2 DeepMatch and DeepMatch2

Existing solutions for in-vehicle presence detection can be separated into two dif-
ferent groups. The approaches of the first group use communication technologies
such as Radio Frequency Identification (RFID) and Bluetooth Low Energy (BLE).
These build up temporary connections between the user’s mobile device and certain
fixed hardware installed in the vehicles. Examples of such systems are SEAT [7]
and EasyRide [8]. The approaches of the other group rely on analyzing event
streams produced by the sensors embedded in the passengers’ smartphones. Hy-
bridBaro [9] and RideSense [10] are prominent solutions for sensor-based solution
used to provide in-vehicle presence detection.

In our previous work [3, 4], we argue that the accuracy of these approaches is
not good enough to use them in practice. To alleviate this issue, we proposed two
deep learning-based frameworks, called DeepMatch [3] and DeepMatch2 [4]. In

167

our solutions, each vehicle needs to be equipped with a stationary Reference Device
(RefDev), embedded with the same sensors that can be typically found in modern
smartphones. The sensor event streams generated by the on-board reference device
and those of the passenger phones believed to be inside the vehicle are compared
with one another using a special deep learning model built and trained for this
specific purpose. If our model predicts that the two sensor streams match, the
devices are assumed to be sensing from within the same vehicle inferring that the
smartphone and, in consequence, its user are effectively riding in this vehicle.

The deep learning models in DeepMatch and DeepMatch2 consist of sev-
eral distributed modules. Apps running on the users’ smartphones and the RefDev
in the vehicle contain modules allowing for sensor data compression and feature
extraction. These modules are the encoder part of a Stacked Convolutional Au-
toencoder. The most significant difference between both approaches is that the
compression factor of DeepMatch2 is four times higher than the one used in
DeepMatch.

The other part of each of the two models is a separate deep neural network
that matches the data generated by the encoders in the RefDev and the passenger
phone. It is supposed to run either on the RefDev or an external server. In the
experiments for DeepMatch presented in [3], we achieved an in-vehicle presence
prediction accuracy of 97.81% which, as we elaborated in the article, is sufficient
to carry out passenger trip inference with a negligible error rate. Thanks to some
further changes in the extended model DeepMatch2 [4], we reached a slightly
improved accuracy of 98.51% in spite of the drastically smaller data sets transferred
between the devices and the external server.

The disadvantage of DeepMatch, DeepMatch2, and other approaches re-
quiring extra hardware like the RefDevs installed in the vehicles is the increased
costs associated with implementation and maintenance. Further, Public Transport
Authorities (PTA) are often reluctant to use approaches that require extra hard-
ware. Besides the additional costs, a reason for this is that the PTAs often do not
operate the vehicles themselves but outsource their operation to subcontractors.
Many of the vehicle operators provide service for several PTAs and want to have
the freedom to easily swap their vehicles between areas handled by different PTAs.
When moving a vehicle between PTAs, however, its operator has to exchange all
devices working for just one of them which can be quite costly and laborious. That
makes the operators reluctant to the use of additional hardware. Based on this
insight, we investigated alternatives to the hardware-based solution proposed in
DeepMatch and DeepMatch2.

3 Ataraxis

In this section, we provide an overview of our approach. Then we elaborate on
the hardware and system settings on which our approach is built, followed by a
presentation of how the data used to train our deep learning models were collected

168

Register Sensor Events

Classify User Mode

Fetch Vehicle Data From
Public Transport API

Match GPS Trace

Store Matching Result

In Public transport?

Trip Inference

Yes

Wake Up Signal

No

Figure 1: Outline of the Ataraxis algorithm

and transformed to suitable data sets. Thereafter, we introduce the design and
architecture of our learning models, before the training regime of our experiments
is described. Finally, we present the design rationale and experimental settings of
Ataraxis.

3.1 Overview

The core algorithm of our approachAtaraxis is depicted in Fig. 1. A user carries a
smartphone, on which an application featuring the Ataraxis deep learning model
is installed. In both Android and iOS, an application can be configured to run
long-living background processes which can listen for certain triggers and then
prompt other services in the application. In Ataraxis, the background service
listens for a wake-up signal, e.g., a user movement over a longer distance like 100 m.
When the wake-up signal is sensed by the device, the application starts to register
events from all relevant sensors. After a certain fixed period, the events sensed in
this period are fed to the Ataraxis deep learning model, which uses this segment
of data to predict whether the user is travelling in a public transport vehicle, in a
car, on a bike, or is walking.

If this model predicts that the phone and its user are, indeed, in a public
transport vehicle, the application also fetches data from an external service like
Entur [5] in Norway that provides real-time GPS data of all public transportation
vehicles in the area. The application then filters out all transport vehicles which
are further away than a certain threshold (e.g., 20 m) and tries to match the

169

GPS traces of the remaining ones with the one of the user taken by the GPS
receiver built into the smartphone. If one vehicle with a similar trace as that of
the smartphone is detected, the user mode prediction is locally stored together
with the GPS matching result for further processing. Thereafter, the algorithm
starts a new loop.

The sequence of GPS matchings and user mode predictions generated over
time are thereafter used in the trip inference step. Here, we can infer over several
classifications in a sequence to find out, if the user was in a certain user mode over
time. For that, we use a method introduced in [4] which allows this inference with
a very high accuracy even if some classifications in the sequence are wrong.

In this method, we use the cumulative binomial probability described by the
following formulas:

P (k ≥ M) =
n∑

k=M

(
n

k

)
pk(1− p)n−k (1)

P (k ≤ M) =

M∑

k=0

(
n

k

)
pk(1− p)n−k (2)

The variable n refers to the number of user mode classifications performed in a
single sequence while k describes the number of classifications that are correctly
predicted. Finally, in formula (1), M describes the minimum and in (2) the maxi-
mum number of user mode classifications, for a certain user mode um, that needs
to be in the sequence in order to decide that the user is effectively in um for the
whole sequence. M can be calculated using equation (3):

M =

⌊
(1− fault tolerance) · n+

1

2

⌋
(3)

Here, the fault tolerance describes the percentage of all predictions in the sequence
that can be wrong whilst still correctly inferring that the user is in a particular
user mode during this sequence.

To find an optimal value for M , where we achieve the least amount of false
positives and false negative sequence inferences, we searched for a suitable fault
tolerance value. Our tests described in [4] show that the most accurate results are
achieved when a fault tolerance value of 40% is used.

In the rest of this section, we describe the Ataraxis deep learning model, the
central aspect of our approach, in detail.

3.2 Hardware Requirements and System Settings

As mentioned in the introduction, the Ataraxis deep learning model requires
events gathered by the typical sensors embedded in modern smartphones in order
to be able to perform user mode classification. Through experiments, we found
out that using events from the accelerometer, magnetometer, and gyroscope sensors

170

Z

Y

X

Z'

Y'

X'

Figure 2: The orientation of a smartphone vs. that of the carrying user

provides the highest user mode detection accuracy of 98.69%. We chose to use the
raw sensor output from these sensors instead of output from software-based sensors
(such as linear acceleration), since software-based sensors are less common, at least
in older phones.

To make correct predictions of the user activities, the classifier needs access
to additional information about the users’ movements. For instance, the raw
hardware-based sensor events from the accelerometer embedded in smartphones
outputs the acceleration for a coordinate system aligned with the chassis of the
phone. In consequence, if users change the orientations of their devices, e.g., by
taking them out of their pocket, the acceleration values will change drastically.
This is quite disadvantageous, since the change in orientation is wrongly inter-
preted as a change in acceleration of the user.

To solve this issue, one typically transforms the collected accelerometer data
represented along theX, Y , and Z axes of the phone’s coordinate system to theX’,
Y ′, and Z ′ axes of the carrier’s coordinate system utilizing the angular rotations
performed around X, Y , and Z, see Fig. 2. In some works, this reorientation is
performed by handcrafted algorithms, in contrast to being learned by the model
itself, before the data is fed to the classifier [11]. The reorientation is calculated
from the accelerometer data collected on the smartphone’s coordinates and the
output from the gravity sensor. That is a software-based sensor derived from the
output of the accelerometer, the magnetometer, and the gyroscope.

As previously mentioned, however, the accessibility of such software-based sen-
sors varies. Therefore, we chose to use the raw sensor outputs to train our deep
learning model. This forces the model to learn considering the orientation of the
device in relation to its user. As pointed out in our empirical studies discussed in
Sect. 4, the learning models provided with input from these three sensors, i.e., the
accelerometer, magnetometer and gyroscope, are the ones providing the highest
classification accuracy.

171

Table 1: Example datapoints

Mode Sensor Value Timestamp ID Device

Car Acc. X 1.582 3366... 15 75i3...
Car Acc. Y 0.285 3366... 15 75i3...
Car Acc. Z 10.468 3366... 15 75i3...
Car Mag. X 23.245 3366... 15 75i3...
Car Mag. Y 9.875 3366... 15 75i3...
Car Mag. Z -4.875 3366... 15 75i3...
Car Gyro. 0.019 3366... 15 75i3...

3.3 Data Collection and Dataset Creation

In the following, we describe first, how we collected and pre-processed sensor
data. Thereafter, we discuss how the datasets, that we used to train and test
the Ataraxis model, were created from these sensor data.

3.3.1 Collection and Preprocessing

In previous work on in-vehicle presence detection, we developed the Android ap-
plication DataCollector [4] which makes it easy for the carrier of a smartphone to
collect, label, timestamp, and persist sensor events gathered by all the sensors em-
bedded in this device. Each sensor event is stored as a datapoint in a local SQLite
database. A datapoint contains the timestamp when the event was gathered as
well as the type of sensor emitting the event, the value of the event, the device
ID, and the collection ID, see Table 1. The data acquired by the application can
later be uploaded to a computer and digested by our custom made Data Analysis
Tools. The user can start and stop the data collection anytime. Of course, that
should happen when a certain travelling mode is entered and left, respectively. All
events sensed during a data collection session are then marked with a unique ID
for later processing.

When attaching listeners to sensors using the Android framework, the devel-
oper can configure a preferred data collection rate for each individual sensor. In
reality, the rate at which the events are generated, deviates from the specified
sampling rate with an average of one to two milliseconds due to limitations of
the sensor control software. The consequence is that not all sensors emit their
events exactly at the same time such that it is not possible to get the exact set
of datapoints at a point in time. In our approach, however, we need one event
for each sensor at the exact same timestamp. To resolve this problem, we created
a set of data analysis tools that are able to interpolate the gathered data. This
interpolation is performed through the following four steps:

1. Define a global start time. For that, we use the timestamp of the first sensor

172

Table 2: An Example of interpolated data

Time Mode Acc.X. Mag.X. Gyro. . . .

0 ms Car 5.624 21.835 0.059 . . .
100 ms Car 5.584 22.834 0.1356 . . .
200 ms Car 5.530 24.547 0.077 . . .
300 ms Car 5.673 25.125 0.080 . . .

event in a data collection.

2. Subtract the global start time from all timestamps of all data points to get
a relative timestamp.

3. Interpolate the values for each sensor event with a fixed frequency.

4. Remove the original sensor events.

When this process is complete, we achieve a set of unified datapoints. For
example, the datapoints from Table 1 are replaced by those in Table 2.

3.3.2 Dataset Creation

User Modes

Mode
Detection

Mode
Prediction

Car

Public Transport

Walking

Bike

Figure 3: The different user modes Ataraxis is capable of recognizing

The goal of this process is to create suitable datasets to support the development of
a User Mode Classifier able to distinguish between the four user activities walking,
using public transport, driving in a car, and riding a bicycle, as depicted in Fig. 3.

173

Table 3: Example dataset sample used to train Ataraxis

sensor t0 t1 t2 t3

Acc. X 1.582 1.232 1.531 1.622
Acc. Y 0.285 0.182 0.335 0.233
Acc. Z 10.468 10.231 10.468 10.468
Mag. X 23.245 23.325 23.245 23.245
Mag. Y 9.875 9.575 9.999 9.234
Mag. Z -4.875 -4.235 -4.536 -4.658
Gyro. 0.019 0.002 0.123 0.321

By using our data analysis tools, we can create suitable datasets by configuring
the following parameters:

• Number of datapoints in each sample;

• Sensors, the data of which shall be included in each sample;

• Number of samples in each dataset.

The tools guarantee that all datapoints included in a sample are from a sequential
collection done in the same trip since all datapoints have to contain identical data
collection IDs. Moreover, to find out which sensors contribute to good accuracy
results and which might be impedimental, we can also create samples containing
events only from subsets of the sensors available. Additionally, to find the optimal
length of the input to the model, we can build datasets consisting of samples of
different lengths.

3.4 Design and Architecture of the Learning Model

Using various combinations of datasets created with the data analysis tools, we
conducted a plethora of tests with different architectures. The deep learning model
depicted in Fig. 4 rendered the best results. It is a Convolutional Neural Network
(CNN, ConvNet). These networks are specially suited to detect and extract time-
invariant features in sequential data, see [12–15]. This is exactly what we need to
solve our problem.

The green boxes in Fig. 4 represent two-dimensional convolutional layers. They
contain filters that are trained to detect patterns in the input sensor event se-
quences unique to the various user modes contained in our datasets. Each convolu-
tional filter executes the three consecutive operations (1) convolution, (2) rectified
linear unit activation (ReLu), and (3) batch normalization, see [16]. The inputs
to the convolutional layers are two-dimensional. As pointed out by the example
in Table 3, the rows of the matrix refer to sensor inputs, while the columns depict
the points of time for which the sensor values were interpolated. The texts in the

174

3x12 Conv2D, 64

1x4 Conv2D, 64

7x22 Conv2D, 16

7x22 Conv2D, 32

3x12 Conv2D, 64

User Mode Prediction Y'

Sensor data sample

dropout 40%

average pooling

dropout 20%

dropout 20%

average pooling

dropout 20%

1x4 Conv2D, 128

dropout 20%

flatten

dense 4

dropout 20%
Conv2D Layers

Dense Layers

Layers without
trainable parameters

Figure 4: Ataraxis deep learning model architecture

green boxes describe the size of the convolutional filter matrices used in a layer.
For instance, in the model’s uppermost layer, the number of rows of the convolu-
tional matrix equals that of the input matrix and the number of columns is 22,
i.e., each filter processes 22 events from all sensors for each convolution. In each
green box, the size of the filter for the corresponding layer is shown by the text
on the left side, whilst the number at the right side refers to the number of filters,
e.g., 16 on the uppermost layer.

The grey boxes represent layers without any trainable parameters. Two layers
of this class are average pooling layers that perform dimensionality reduction by
outputting the average for every two consecutive values of their input. In this
way, the large number of dimensions of the input data can be gradually decreased.
That is important to reduce the complexity of the overall machine learning model,
i.e., the number of trainable parameters. Reducing the complexity and size of the

175

machine learning model also helps us to avoid overfitting the model to its training
data.

Finally, the blue box at the bottom of the architecture represents a dense
layer. It has four outputs equaling the number of classes, i.e., user modes, that
the overall model has to predict. Acting as the output of the model, this layer
uses the softmax activation function such that a probability distribution over the
four user modes is rendered.

As can be seen in Fig. 4, our model consists mainly of convolutional layers that
are interspersed with two average pooling layers as well as one flatten layer and
lastly a dense layer. We use a significant number of dropout layers, as shown in
the figure, which helped the model in avoiding overfitting to the training data.

3.5 Model Training

In this subsection we describe the configurations and hyperparameters used when
training our Ataraxis deep learning models. As discussed above, the datasets
used as input to our machine learning model are formed as two-dimensional rep-
resentations of the sensor events registered over a certain time period, where the
rows point at specific sensor events and the columns at points in time (see Ta-
ble 3). For each input sample in the training set, there is further a true label
Y , representing the class, the sample belongs to, i.e., one of the four user modes
presented in Fig. 3. During training, the label Y of each sample is converted into
a one-hot-encoding, i.e., a vector of length equal to the number of classes in the
training set. The output of the last layer of the deep learning model is a proba-
bility vector with the same length, produced by the softmax-activation function.
The vector element with the largest value is the one predicted by the model as the
correct user mode. In the following, we name the predicted output vector as Y ′.

The goal of model training is to reduce the disagreement between the actual
one-hot encoded label Y and the element of Y ′ with the largest value. We quantify
this disagreement using categorical cross-entropy :

L = −
n∑

i=1

yi · log(y′i)

Here, y′i represents the i-th scalar value in the model output vector Y ′, while yi is
the corresponding target value in the one-hot encoded label Y .

Furthermore, Stochastic Gradient Descent in the form of the ADAM opti-
mizer [17] is used to update the trainable parameters of the model using the
disagreement found by the loss function described above. The ADAM optimizer
was configured with the setting depicted in Table 4.

176

Table 4: ADAM optimizer settings

Parameter Value

alpha (learning rate) 0.001
beta1 0.9
beta2 0.999
epsilon 1e-07

3.6 Design Rationale behind the Deep Learning Model

When developing the deep learning model, we first started with a very small model
architecture of only three layers with few small filters within each convolutional
layer. We trained the iterations of our model on the created datasets following
the description in Sect. 3.3.2 and evaluated the results using the well-known per-
formance metrics Precision, Recall, and F1-score which are described in greater
detail in Sect. 4.1.

Then we gradually and incrementally changed the hyperparameter configura-
tion of the model and calculated the performance metrics for each new iteration.
We also tried to use dense layers instead of conv layers as well as both, bigger and
smaller filter sizes in addition to varying the number of filters within each conv
layer. Furthermore, we gradually created a deeper neural network until we reached
the architecture described in Fig. 4 that rendered better precision metrics values
than all other iterations we tried.

All experiments were carried out on a desktop PC, equipped with an Intel i7
4.00GHz CPU, 32 GB memory and a Nvidia GTX 1080 GPU. The Data collector
application was developed for the Android platform, while the Data Analysis tools
were implemented in Python. The deep learning models were trained and evaluated
using Google Tensorflow 2.0, version 2.0.0-rc0 [18].

4 Evaluation

First, we introduce the performance metrics, that we use to evaluate the Ataraxis
deep learning model in greater detail. Thereafter, we describe the data collected
by our volunteers, how it was collected, and the various datasets created from it.
Finally, the battery consumption as well as the CPU usage and run-time overhead
of our approach for the passenger smartphones are discussed.

4.1 Definitions and Metrics for Evaluation

In our evaluations, we use a number of definitions that are introduced as follows:
A positive sample represents segments belonging to Class 1, i.e., it covers a case in
which a deep learning model predicts the correct user mode. In contrast, a negative

177

sample is from Class 0, i.e., it refers to a case when a wrong user mode is predicted.
According to the common denominations in binary classification, we further apply
the following terms: True Positive (TP) as a correctly classified positive sample,
True Negative (TN) as a correctly classified negative sample, False Negative (FN)
as a positive sample that is wrongly classified as negative, and a False Positive
(FP) as a negative sample which is falsely classified as positive.

Using these four terms, we can define the following three metrics that are
helpful to evaluate the performance of a machine learning model:

• Precision (PR): The ratio of correct positive predictions and the total num-
ber of predicted positive samples, i.e., out of all samples classified as positive,
how many belong to Class 1 :

PR ≜ TP

TP + FP
(4)

• Recall (RE): The ratio of correct positive predictions and the total number
of positive samples, i.e., out of all available positive samples in the dataset,
how many were correctly classified by the model:

RE ≜ TP

TP + FN
(5)

• F1-score (F1): The harmonic mean between precision and recall:

F1 ≜ 2 · PR ·RE

PR+RE
(6)

A fourth metric, that could have been used, is the accuracy which, however,
is less sensitive to false positives and false negatives than the F1-score, see [19].
Since the avoidance of false positives and false negatives is a crucial feature of
Ataraxis, we use it instead of the accuracy metric in our evaluations.

4.2 Data Collection and Dataset Creation

The datasets used to train the models in this work was collected by volunteers,
each carrying a smartphone whilst performing one of the four activities using public
transport, biking, riding in a car, or walking. The data was collected using our
DataCollector application described in Sect. 3.3.1. Copies of it were installed on
the following seven Android devices: a Huawei Nexus 5X, two Huawei Nexus P6,
a Samsung S8, a Sony Z3 Compact, a Google Pixel XL and a Google Pixel 3a. In
Table 5, the amount of data collected by our volunteers is listed. The Data Size
column shows the total amount of data collected by all our volunteers for a given
user mode, and the smartphone position describes the locations of the phones,
while the data was collected1.

1In cars, the phone was only held by passengers but never by the driver.

178

Table 5: Data sizes and smartphone positions collected for the different user
modes

User Mode Data Size Smartphone Position

Public Transport 530 min In hand, pocket, bag
Car 530 min In hand, pocket, holder, bag
Bike 530 min Pocket, holder, bag
Walking 530 min In hand, Pocket, bag

Table 6: Performance metric values for the four user modes

Class PR Recall F1-Score

Public Transport 0.9975 0.9897 0.9936
Car 0.9925 0.9826 0.9875
Bike 0.9759 0.9863 0.9810
Walking 0.9818 0.9890 0.9854
Macro Avg 0.9870 0.9869 0.9869

The collection rate was set to 100 ms, i.e., 10 Hz, for all sensors. This rate was
selected since it is the fastest collection frequency offered by the slowest sensors in
the smart devices, we used in our experiments. For each of the four user modes,
we have a total of approximately 318,000 events per sensor.2

Altogether, we built six different datasets with the aim to find out which
combination of input data provides the best result for our deep learning model.
Based on the results from these experiments, we selected the best sensor modality
combination, see Sect. 4.2.1.

The next test step was to find an optimal sample size, i.e., the duration of the
sensor events segment used to build a sample of the datasets. Thus, we created
three datasets to find out which sample lengths render the best performance results.
This is discussed in Sect. 4.2.2.

In Table 6, the three performance metric values provided by our best perform-
ing model, i.e., the one depicted in Fig. 4, are listed for the four user modes using
the k-fold cross-validation algorithm [20]. In our experiments we set k to be 5,
resulting in an distribution of 80% training samples and 20% testing samples of
this algorithm.

4.2.1 Sensor Modalities

To make sure that we found a good trade off between the computational and
battery consumption induced by our approach and the performance of the deep

2The datasets are available to interested readers on request.

179

Table 7: Performance comparison sensor combinations

Model PR RE F1

Ataraxis 12.8 A 0.8919 0.8919 0.8919
Ataraxis 12.8 B 0.7370 0.7368 0.7369
Ataraxis 12.8 BA 0.9456 0.9451 0.9454
Ataraxis 12.8 AM 0.9765 0.9765 0.9765
Ataraxis 12.8 AMG 0.9870 0.9869 0.9869
Ataraxis 12.8 AMGB 0.9836 0.9835 0.9835

learning model, we created six datasets with sample lengths of 12.8 seconds con-
sisting of the sensor combinations Accelerometer (A), Barometer (B), Barometer
and Accelerometer (BA), Accelerometer and Magnetometer (AM), Accelerometer,
Magnetometer, and Gyroscope (AMG) as well as Accelerometer, Magnetometer,
Gyroscope, and Barometer (AMGB).

In Table 7, the results from training Ataraxis on these datasets are presented.
As can be seen from the performance metrics depicted in the table, the combination
AMG, i.e., the dataset built from samples consisting of sensor events from the
accelerometer, magnetometer and gyroscope, rendered the best results. The F1-
score of this modality is 98.69%.

We believe that the reason for achieving the best results by training the model
on the AMG and the AMGB datasets is that data from the accelerometer, magne-
tometer, and gyroscope are required to translate the sensor events registered along
the X, Y and Z axes of the device to movements along the X ′, Y ′ and ′Z axes of
the person carrying the device, see Sect. 3.2. The slightly reduced performance of
the model based on AMGB comes in our opinion from the additional noise that
the barometer introduces to the input of the model.

Interestingly, this result is exactly opposite to our previous work on Deep-
Match and DeepMatch2, where using only the sensor events generated by the
Barometer rendered the best results. As we described in [3], the Barometer is
great when the goal is to ignore the movements of the user, and rather capture the
movements of the vehicle, the user is traveling in. This property makes it easy to
compare the data of a smartphone with other devices present in the same vehicle,
i.e., the RefDev. When predicting the user mode, however, the Barometer does
not seem to be a good source of input since here the movements done by both,
the user and the vehicle are relevant characteristics in order to decide if the user
travels in a public bus, a car, rides a bike, or walks.

4.2.2 Sample Size Experiments

The length of the input data used by the deep learning model in Ataraxis is
important for a couple of reasons. Firstly, the size of the input of the model

180

Table 8: Performance comparison sample sizes

Sample Length PR RE F1

3.2 sec 0.9506 0.9502 0.9504
6.4 sec 0.9845 0.9844 0.9844
12.8 sec 0.9870 0.9869 0.9869

influences its performance, i.e., the more data a model can base its predictions on,
the better the chance it that it will succeed in making good predictions. This is
true as long as the additional amount of data contains information still helpful to
improve the pattern recognition. However, from a certain threshold on, the added
data does not contain relevant new information, and it will not help to increase the
sample size past that. From our experiments made for this purpose, the threshold
is around 10 seconds.

Secondly, the size of the sample influences how often the model can predict the
users mode anew. As discussed in Sect. 3.1, the trip inference algorithm introduced
in [4] works better if more single predictions can be considered. That also calls
for using a sample size that is not too big. Lastly, running the machine learning
model on the smartphone induces a computational overhead that we want to keep
minimally.

In Table 8, the results from training the Ataraxis model on three different
sample lengths are presented. In our tests, the samples consist of datasets that
are taken in time intervals of 3.2, 6.4, and 12.8 seconds, respectively. Since our
data collection frequency was 10 Hz, this results in sample size lengths of 32, 64
and 128 datasets, respectively. Applying datasets where the sample lengths are
multiples of two, simplifies the creation of deep learning models using stacks of
conv. and average pooling layers. The reason for this is that the average pooling
operator divides the size of its input in half. Since we use more than one average
pooling layer consecutively, it is therefore good to have an input size, the half of
which is also a multiple of two.

We see that the variant trained on a dataset consisting of 12.8 second long
samples yields the best performance with an F1-score of 98.69%. Nevertheless,
the model trained on 6.4 second long samples performed nearly as well with an
F1-score of 98.44%.

4.3 Power Consumption on Smartphones

As mentioned above, in Ataraxis, the application responsible for inferring the in-
vehicle presence of a user is expected to run on the user’s smartphone. Therefore
limiting the power consumption of Ataraxis is crucial to guarantee a high degree
of acceptance by the users.

In this subsection, we evaluate the power consumption of our approach in

181

Table 9: Android phones used in the power consumption tests

Battery
Age

Data Lear- Commun-
Phone capacity

[yrs]
coll. ning ication

[mAh] [mA] [mA] [mA]

Huawei P30 Pro 4200 2 12 1 1
Huawei Nexus 6P 3450 5 8 3 2
Sony Z3 compact 2600 7 24 0.5 0.5

practice. In particular, we measure the consumption of the three main sources
of potential battery drain, namely, sensor data collection, prediction performed
by the deep learning model, and communicating with the central server to fetch
public transport vehicle data.

The tests were carried out using the three Android phones listed in Table 9. To
consider age diversity, we used phones that are between two and seven years old.
Moreover, an important factor on battery life is the temperature of the smartphone
and its environment. To make sure, that our test environment simulates a typical
public transport vehicle, we performed all tests indoors at an temperature of about
19◦C. Since Ataraxis AMG with 12.8 seconds long samples yielded the best test
results, we only considered this model for our power consumption runs. The
tests were performed by collecting battery statistics from the phones using the
Batterystats and Battery Historian tools provided by Android [21]. To quantify
the aforementioned sources of power consumption, we constructed three scenarios
for our experiments:

• Data collection scenario: The battery used by the three sensors continuously
collecting data

• Prediction scenario: The power consumed by the machine learning model
processing data every 12.8 seconds

• Communication scenario: The power consumption used to communicate
with a server

The results from our battery tests are depicted in Table 9. They show clearly
that, using just between 0.5 and 3 mAh, the deep learning model of Ataraxis
influences the overall battery consumption only marginally. Even for the oldest
device used in the tests, the seven years old Sony Z3 compact, the total power
consumption of all three scenarios was just 25 mAH. This equals to only 0.96 %
of the total battery capacity. As a result from our tests, we consider that our
approach has a negligible impact on the overall battery power consumption.

182

Table 10: Run Time and CPU overhead

Phone CPU Mean Run Time Overhead

P30 Pro
2x 2.6 GHz, 2x
1.92 GHz, 4x 1.8
GHz Octa-Core

32 ms 2 %

P6
2.0 GHz + 1.55
GHz, 64-Bit
Octa-Core

59 ms 5 %

Z3 2.5 GHz Quad-
Core, Krait

48 ms 10.2 %

4.4 Computational Overhead on Smartphones

In addition to the battery consumption, the computational overhead induced by
applications running passively on user smartphones is of utmost importance in
practice. To learn about this overhead, we therefore ran tests registering the CPU
usage and the mean run time of the machine learning model when the phone is
used to process sensor data collected by its sensors.

In our tests, we used the same devices as in the battery tests. The results are
depicted in Table 10. We see that the CPU overhead and mean run-time is small
at least for the newer models. This is particularly true since the computational
overhead is only present during the execution of the deep learning model, e.g.,
over the duration of 32 ms for the P30 Pro. Furthermore, since the machine
learning model is only executed every 12.8 s, the machine learning model should
hardly impact any other applications or services that are executed on the phone
in parallel.

5 Related Work

In Sec. 2, we briefly discussed our own as well other approaches that rely on addi-
tional equipment in order to realize in-vehicle presence detection. In this section,
we mainly explore hardware-less solutions for in-vehicle presence detection. These
types of solutions are often built upon Transportation Mode Detection (TMD)
techniques.

TMD has been addressed from different methodological angles and methods
throughout the past two decades. Earlier techniques were limited to separating
only motorized from non-motorized vehicles. In contrast, most recent solutions
aim to identify more than just these two basic transportation modes. Often, one
distinguishes walking, bicycle, cars, and buses, where the main challenge is to
separate cars from the rest of motorized transport [22].

From another perspective, existing techniques can be arranged in two cate-

183

gories, i.e., location-based [23] and sensor-based [24] approaches. Location-based
solutions often rely on location data provided by the GPS or wireless network [25].
The issue with these approaches is that they can induce high power consumption.
Moreover, one may not always have sufficient cellular network accessibility, e.g.,
when traveling in metros operating underground or on ferries [26]. In addition, the
accuracy of detecting transport modes or vehicles such as walking, running, cy-
cling, motorcycles, buses, and subways using the GPS-based techniques is reported
to be just between 70% to 85%, see [27,28].

Most works in this category rely on GPS data [29], while others combine GPS
with the use of a Geographic Information System (GIS) platform or the map service
APIs [30]. In another group of approaches, GPS, accelerometer and Bluetooth are
combined with map-matching algorithms, see [31–33]. Finally, some approaches
utilize the fusion of GPS and accelerometer data, see [32,33].

Sensor-based transportation mode detection techniques can be used in a more
energy-efficient and reliable manner than the location-based approaches [34]. The
reason is that the data can be sampled from sensors at higher sampling frequencies
with a considerably lower energy consumption.

Traditionally, rule-based or simple machine learning based approaches were
applied for TMD. One of the works using shallow machine learning techniques and
motion sensors on phones was proposed by Fang et al. in [35]. As described in [36],
however, the accuracy rates decrease significantly with the increasing number of
transportation classes. Therefore, more advanced machine learning mechanisms,
in particular, deep learning approaches, have been introduced to enhance the clas-
sification success rate for models that shall distinguish between large numbers of
different transportation modes. Fang et al. could increase the success rate from
83.57% to 95% using Deep Neural Networks (DNN) [37].

Convolutional Neural Networks (CNN) is another popular DNN-based ap-
proach, that was originally designed for image classification problems, but can
be adapted to TMD. G. Yanyun et al. reported a success rate of 98 % for four
classes using DNNs for TMD. In [38], the authors aim to classify seven classes
using a CNN. They achieved 94.48 % success rate, but the high overlapping ra-
tio of 87.5% is an issue in their model since it causes additional computational
costs. T. Vu et al. introduced a Recurrent Neural Network (RNN) for TMD [39].
The authors used Vanilla RNN as well as some other variations of RNNs such as
Control Gate-based Recurrent Neural Networks (CGRNN) and Long-Short Term
Memory (LSTM). The most efficient one was CGRNN with an accuracy of 94.72%
for a dataset consisting of 10 classes. In another LSTM-based approach, Asci et
al. [40] use accelerometer, gyroscope, and magnetometer sensors as inputs into a
recurrent neural network to classify ten different transport modes with an accuracy
of 97.07%.

The important finding in the above approaches is that accurate transportation
mode detection is complex, and usually a high accuracy entails either an unaccept-
able power consumption and a high computational overhead, or requiring very long

184

data sequences. In comparison to all these approaches, Ataraxis provides excel-
lent results as can be seen from Tables 6 and 7. In addition, our approach uses
relatively short sample sizes as depicted in Table 8. This allows for conducting
a greater number of user mode classifications during a tour which makes the trip
inference more precise, see [4]. Moreover, it induces a hardly noticeable power
consumption as shown in Table 9 and a low computational overhead as presented
in Table 10.

6 Conclusion and Future Work

Providing accurate in-vehicle presence detection is an important step towards pro-
visioning future context-aware services in public transport. In this paper, we ad-
dressed this challenge through Ataraxis, a deep learning based approach to hard-
wareless in-vehicle presence detection. We presented the Ataraxis deep learning
model which can detect the four user modes walking, public transport, driving and
riding a bike with an accuracy of 98.69 %. The model achieves this using only the
raw sensor events generated by the accelerometer, magnetometer, and gyroscope
sensors typically embedded in modern smartphones. We showed through empirical
experiments that the combination of these three sensors and an input length of
12.8 seconds yields the best results. Furthermore, we presented tests showing that
the computational overhead and power consumption of Ataraxis is low, even for
a 7-year old, used, Android phone.

In the future, we plan to implement the hardwareless in-vehicle presence detec-
tion, together with a public transportation provider in Norway. In particular, we
will combine the user mode predictor introduced in this paper with the open Entur
API providing the real-time location of all public transportation vehicles in the
country. Moreover, we plan to continue making improvements to the Ataraxis
deep learning model by further data collection and model optimizations. Here,
we will also include the use of electrical scooters (e-scooters) in our datasets and
model classification, since the usage of these vehicles has recently exploded in many
countries. Together with the localization systems of the e-scooters, our method
will then allow their providers to automatically bill the users of these devices who
can simply board and dismount them without having to think about ticketing.

References

[1] S. Kang, Y. Lee, C. Min, Y. Ju, T. Park, J. Lee, Y. Rhee, and J. Song,
“Orchestrator: An Active Resource Orchestration Framework for Mobile
Context Monitoring in Sensor-rich Mobile Environments,” in IEEE Inter-
national Confonference on Pervasive Computing and Communications (Per-
Com). Mannheim, Germany: IEEE Computer, 2010.

185

[2] W. Narzt, S. Mayerhofer, O. Weichselbaum, S. Haselböck, and N. Höfler,
“Be-In/Be-Out with Bluetooth Low Energy: Implicit Ticketing for Public
Transportation Systems,” in IEEE 18th International Conference on Intelli-
gent Transportation Systems. Las Palmas, Spain: IEEE, 2015.

[3] M. Oplenskedal, A. Taherkordi, and P. Herrmann, “DeepMatch: Deep Match-
ing for In-Vehicle Presence Detection in Transportation,” in 14th ACM In-
ternational Conference on Distributed and Event-based Systems, 2020.

[4] M. Oplenskedal, P. Herrmann, and A. Taherkordi, “DeepMatch2: A Compre-
hensive Deep Learning-based Approach for In-Vehicle Presence Detection,”
Information Systems, 2021, accepted.

[5] Entur, “Entur API,” https://developer.entur.org, 2021, accessed: 2021-10-07.

[6] SIRI, “SIRI Standard,” http://www.transmodel-cen.eu/standards/siri/,
2020, accessed: 2020-10-07.

[7] C. Sarkar, J. J. Treurniet, S. Narayana, R. V. Prasad, and W. de Boer,
“SEAT: Secure Energy-Efficient Automated Public Transport Ticketing Sys-
tem,” IEEE Transactions on Green Communications and Networking, vol. 2,
no. 1, 2018.

[8] T. Gyger and O. Desjeux, “EasyRide: Active Transponders for a Fare Col-
lection System,” IEEE Micro, vol. 21, no. 6, 2001.

[9] M. Won, A. Mishra, and S. H. Son, “HybridBaro: Mining Driving Routes
Using Barometer Sensor of Smartphone,” IEEE Sensors Journal, vol. 17,
no. 19, 2017.

[10] R. Meng, D. W. Grömling, R. R. Choudhury, and S. Nelakuditi, “RideSense:
Towards Ticketless Transportation,” in 2016 IEEE Vehicular Networking
Conf. (VNC). Columbus, OH, USA: IEEE, 2016.

[11] D.-N. Lu, D.-N. Nguyen, T.-H. Nguyen, and H.-N. Nguyen, “Vehicle mode and
driving activity detection based on analyzing sensor data of smartphones,”
Sensors, vol. 18, no. 4, 2018.

[12] N. S. Madiraju, S. M. Sadat, D. Fisher, and H. Karimabadi, “Deep Temporal
Clustering: Fully Unsupervised Learning of Time-domain Features,” arXiv,
vol. cs, no. arXiv:1802.01059, 2018.

[13] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep Learning for Sensor-
based Activity Recognition: A Survey,” Pattern Recognition Letters, vol. 19,
pp. 3–11, 2017.

186

[14] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked Convolutional
Auto-encoders for Hierarchical Feature Extraction,” in International Conf.
on Artificial Neural Networks (ICANN), ser. LNCS 6791. Espoo, Finland:
Springer-Verlag, 2011.

[15] A. Supratak, H. Dong, C. Wu, and Y. Guo, “DeepSleepNet: A Model for
Automatic Sleep Stage Scoring based on Raw Single-channel EEG,” IEEE
Trans. on Neural Systems and Rehabilitation Engineering, vol. 25, no. 11,
2017.

[16] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift,” arXiv, vol. cs.LG, no.
arXiv:1502.03167, 2015.

[17] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[18] Tensorflow, “Tensorflow 2.0 RC Tutorials,” https://www.tensorflow.org/
beta/, 2019, accessed: 2019-10-23.

[19] P. Huilgol, “Accuracy vs. F1-Score,” medium.com/analytics-vidhya/
accuracy-vs-f1-score-6258237beca2, 2019, accessed: 2021-10-14.

[20] M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predic-
tions,” Journal of the Royal Statistical Society: Series B (Methodological),
vol. 36, no. 2, 1974.

[21] B. Historian, “Battery Stats and Historian,” https://developer.android.com/
studio/profile/battery-historian, 2021, accessed: 2021-10-10.

[22] A. Efthymiou, E. N. Barmpounakis, D. Efthymiou, and E. I. Vlahogianni,
“Transportation mode detection from low-power smartphone sensors using
tree-based ensembles,” Journal of Big Data Analytics in Transportation,
vol. 1, no. 1, 2019.

[23] T. Sohn, A. Varshavsky, A. LaMarca, M. Y. Chen, T. Choudhury, I. Smith,
S. Consolvo, J. Hightower, W. G. Griswold, and E. de Lara, “Mobility Detec-
tion using Everyday GSM Traces,” in International Conference on Ubiquitous
Computing. Springer, 2006.

[24] S. Wang, C. Chen, and J. Ma, “Accelerometer based transportation mode
recognition on mobile phones,” in 2010 Asia-Pacific Conf. on Wearable Com-
puting Systems. IEEE, 2010.

[25] A. Jahangiri and H. A. Rakha, “Applying Machine Learning Techniques to
Transportation Mode Recognition using Mobile Phone Sensor Data,” IEEE
trans. on intelligent transportation systems, vol. 16, no. 5, 2015.

187

[26] Z. A. Lari and A. Golroo, “Automated Transportation Mode Detection using
Smart Phone Applications via Machine Learning: Case Study Mega City of
Tehran,” in Transportation Research Board 94th Annual Meeting, Washing-
ton, DC, USA, 2015.

[27] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding Mobility
based on GPS Data,” in 10th International Conference on Ubiquitous Com-
puting, 2008.

[28] T. Feng and H. J. P. Timmermans, “Comparison of Advanced Imputation
Algorithms for Detection of Transporation Mode and Activity Episode using
GPS Data,” Transportation Planning and Technology, vol. 39, no. 2, 2016.

[29] P. Sadeghian, J. H̊akansson, and X. Zhao, “Review and Evaluation of Meth-
ods in Transport Mode Detection based on GPS Tracking Data,” Journal of
Traffic and Transportation Engineering, 2021.

[30] L. Zhu and J. D. Gonder, “A driving cycle detection approach using map
service api,” Transportation Research Part C: Emerging Technologies, vol. 92,
2018.

[31] J. Chen and M. Bierlaire, “Probabilistic Multimodal Map Matching with Rich
Smartphone Data,” Journal of Intelligent Transportation Systems, vol. 19,
no. 2, 2015.

[32] B. D. Martin, V. Addona, J. Wolfson, G. Adomavicius, and Y. Fan, “Methods
for Real-Time Prediction of the Mode of Travel using Smartphone-based GPS
and Accelerometer Data,” Sensors, vol. 17, no. 9, 2017.

[33] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen, and M. Srivastava, “Using
Mobile Phones to Determine Transportation Modes,” ACM Transactions on
Sensor Networks (TOSN), vol. 6, no. 2, 2010.

[34] S. Hemminki, P. Nurmi, and S. Tarkoma, “Accelerometer-based Transporta-
tion Mode Detection on Smartphones,” in 11th ACM Conference on Embedded
Networked Sensor Systems, 2013.

[35] S.-H. Fang, H.-H. Liao, Y.-X. Fei, K.-H. Chen, J.-W. Huang, Y.-D. Lu,
and Y. Tsao, “Transportation Modes Classification using Sensors on Smart-
phones,” Sensors, vol. 16, no. 8, 2016.

[36] M. Nikolic and M. Bierlaire, “Review of Transportation Mode Detection Ap-
proaches based on Smartphone Data,” in 17th Swiss Transport Research Con-
ference, 2017.

188

[37] G. Yanyun, Z. Fang, C. Shaomeng, and L. Haiyong, “A Convolutional Neu-
ral Networks based Transportation Mode Identification Algorithm,” in In-
ternational Conference on Indoor Positioning and Indoor Navigation (IPIN).
IEEE, 2017.

[38] X. Liang and G. Wang, “A Convolutional Neural Network for Transportation
Mode Detection based on Smartphone Platform,” in IEEE 14th International
Conference on Mobile Ad Hoc and Sensor Systems (MASS). IEEE, 2017.

[39] T. H. Vu, L. Dung, and J.-C. Wang, “Transportation Mode Detection on
Mobile Devices using Recurrent Nets,” in 24th ACM International Conference
on Multimedia, 2016.

[40] G. Asci and M. A. Guvensan, “A Novel Input Set for LSTM-based Transport
Mode Detection,” in IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops). IEEE, 2019.

189

ISBN 978-82-326-5987-6 (printed ver.)
ISBN 978-82-326-6899-1 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:234

Magnus Karsten Oplenskedal

Realizing Context-Aware
Services through Intelligent
Mobile Data AnalysisD

oc
to

ra
l t

he
si

s

D
octoral theses at N

TN
U

, 2022:234
M

agnus Karsten O
plenskedal

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page
	Blank Page

