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Abstract

The progress towards the realization of quantum computing is contingent upon the
understanding and development of suitable physical systems in which quantum
bits may be encoded. However, the requirements placed on such a system pose
significant research challenges. Quantum bits need to be reliable and robust in
the face of noise, easy to manipulate, and possess the scalability necessary to
create powerful quantum processors. Despite the significant strides made in recent
years, a qubit design that is able to satisfy these requirements well enough for
applications within quantum information has yet to be realized. Further progress
within the field thus depends on finding novel systems for hosting and coupling
quantum bits. A promising field in that regard is in hybrid systems in which we
may utilize the combined properties of the individual subsystems.

In this thesis we consider one such proposal: singlet-triplet spin qubits hosted
in double quantum dots, coupled through exchange interaction to a ferromagnet.
Through a combined analytical and numerical analysis, we evaluate the potential
of the system to provide intermediate-range coherent qubit-qubit coupling with
little to no leakage.

We derive the Hamiltonian of the combined system, including magnetic
anisotropy in the ferromagnet, and find that the introduction of anisotropy
gives rise to tunable rotating and counter-rotating coupling terms between the
quantum dots and the ferromagnet. Numerical analysis of the time evolution
of the system demonstrates coherent switching between the qubit states with
limited leakage to states outside the qubit subspace. Furthermore, through the
Schrieffer-Wolff transformation, we derive an effective low-energy Hamiltonian for
ferromagnets in which the magnon energy is significantly larger than the qubit
splitting energy, and confirm numerically that the obtained effective Hamiltonian
accurately reproduces the dynamics of the original Hamiltonian.

In the regime where both the magnon energy and the externally applied
magnetic field is significantly larger than the qubit splitting energy, we derive
expressions for the effective terms describing the coupling between the qubit
states and the leakage to states outside the qubit subspace. Using these terms,
we show that the rotating and counter-rotating terms may be tuned in such a way
that the leakage terms are completely suppressed within the effective Hamiltonian.
Finally, we show numerically that this tuning of the coupling parameters indeed
results in significantly reduced leakage for the full system Hamiltonian.
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Sammendrag

Utviklingen mot realiseringen av kvantedatamaskiner er avhengig av forståelsen og
utviklingen av passende fysiske systemer hvor kvantebits kan konstrueres. Å møte
kravene for et slikt system er dog en betydelig forskningsutfordring. Kvantebits
må være pålitelige og robuste i møte med støy, enkle å manipulere, og være
skalerbare nok til å kunne danne kraftige kvanteprosessorer. Til tross for betydelig
framgang i senere år gjenstår det fortsatt å finne et kvantebitdesign som møter
disse kravene godt nok til applikasjoner innen kvanteinformasjonsteknologi. Den
videre utviklingen innenfor feltet er dermed avhengig av å finne nye systemer for å
konstruere og sammenkoble kvantebits. Et lovende område er hybridsystemer hvor
vi kan benytte oss av kombinasjoner av egenskapene til individuelle undersystemer.

I denne mastergradsavhandlingen undersøker vi et slikt potensielt system:
singlett-triplett kvantebits konstruert i doble kvanteprikker, sammenkoblet gjen-
nom utvekslingskobling til en ferromagnet. Gjennom en kombinert analytisk
og numerisk analyse evaluerer vi dette systemets potensial til å gjennomføre
mellomavstands koherent og tapsfri sammenkobling av to kvantebits.

Vi utleder Hamilton-operatoren for det kombinerte systemet, inkludert mag-
netisk anisotropi, og viser at denne anisotropien gir opphav til justerbare roterende
og motroterende koblingselementer mellom kvanteprikkene og ferromagneten. Nu-
merisk analyse av tidsutviklingen til systemet demonstrerer koherent veksling
med begrenset lekkasje til kvantetilstander utenfor kvantebitunderromet. Videre,
gjennom en Schrieffer-Wolff transformasjon, utleder vi en lav-energi effektiv
Hamilton-operator for magneter hvor magnonenergien er betydelig større enn
energiforskjellen i kvantebiten, og bekrefter numerisk at denne effektive Hamilton-
operatoren presist gjenskaper dynamikken til den originale Hamilton-operatoren.

I et regime hvor både magnonenergien og det eksternt påtrykte magnetfeltet
er betydelig større enn energiforskjellen i kvantebiten utleder vi uttrykk for de
effektive koblingselementene mellom kvantebittilstandene så vel som lekkasjeele-
mentene til tilstander utenfor kvantebitunderromet. Ved hjelp av disse uttrykkene
viser vi at de roterende og motroterende koblingskonstantene kan justeres slik at
lekkasjeelementene er fullstendig eliminerte. Avslutningsvis viser vi numerisk at
denne justeringen av koblingskonstantene resulterer i betraktelig redusert lekkasje
for Hamilton-operatoren til det fullstendige systemet.
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Chapter 1

Introduction

In the past few decades, much interest has been given to the theoretical de-
scription and experimental realization of a quantum computer. From Feynman’s
1982 proposal that quantum problems would be efficiently solved by a computer
operating on quantum principles [2], to recent demonstrations of apparent quan-
tum supremacy for certain computational tasks [3], much progress has already
been made. The prospects of implementing significantly improved algorithms
for data searches and prime factorization, developed by Grover [4] and Shor [5]
respectively, allow for quantum computers to solve problems that are believed
to be intractable for even the most powerful conventional computers. Further-
more, realizing quantum computation may provide an opportunity to handle the
incredibly complex problems in quantum chemistry and solid state physics [6].

Despite intense research focus, however, quantum computers have yet to be
realized on a practical scale. This is due to some significant challenges that need
to be overcome, both in the design of the quantum computer and the engineering
advances needed to implement said designs. These issues in large part relate to the
fragility of quantum systems; current quantum computer designs are susceptible
to noise, inducing errors in the computations that render the answers incorrect
[7]. This challenge is being approached in two ways: by designing systems for
quantum computation that are protected from noise, so that errors are less likely,
and by designing systems that are able to detect and correct errors as they appear,
thus reducing the likelihood of producing incorrect answers [8, 9]. At the core of
any proposal to meet these challenges lies the quantum bit.

1.1 Quantum bits
As with the bits used in conventional computation, the fundamental building
blocks in quantum computation are quantum bits, or qubits. In analogy with the
state of a conventional bit, which may be either 0 or 1, a qubit is constructed
from the quantum states |0⟩ and |1⟩1. Unlike a conventional bit, however, a qubit

1The brackets | ⟩ are the Dirac notation for quantum states, which will be used throughout
the thesis. For an introduction to Dirac notation, see e.g. Berman’s Introductory Quantum

1



2 CHAPTER 1. INTRODUCTION

is not restricted to existing in either state |0⟩ or |1⟩: it may exist in any state |χ⟩
that is a superposition of |0⟩ and |1⟩,

|χ⟩ = α |0⟩ + β |1⟩ , (1.1)

where α and β may be any complex numbers such that |α|2 + |β|2 = 1. Similarly
to conventional bits, the qubit state must be read out to determine what state
it is in. However, while the qubit state |χ⟩ need not be exactly |0⟩ or |1⟩, any
measurement of the qubit state will return one of these states, with probability |α|2
or |β|2, respectively. These probabilities may in turn be altered by manipulating
the state of the qubit. By using the constraint |α|2 + |β|2 = 1, and ignoring any
overall phase factor, we may choose to rewrite the qubit state |χ⟩ in Eq. 1.1 as

|χ(θ, ϕ)⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ . (1.2)

In this form we may view |χ(θ, ϕ)⟩ as a vector in a three-dimensional vector space
defined by the angle θ and ϕ as well as the constraint |α|2 + |β|2 = 1. Indeed, the
set of all states |χ⟩ that may be described by Eq. 1.2 define a unit sphere, with
θ and ϕ as the polar and azimuthal angles, respectively. This sphere is known
as the Bloch sphere, and is shown in Fig. 1.1a. For a given state, θ contains
information about the distribution of probability between |α|2 and |β|2, while
ϕ describes the phase of the state. The top and bottom of the Bloch sphere,
or north and south poles, correspond to the |0⟩ and |1⟩ states, respectively [11].
Furthermore, unitary gate operations on a qubit may be represented by rotations
around an axis on the sphere [12].

(a) (b)
(c)

Figure 1.1: a) Bloch sphere denoting a qubit state |χ⟩. As seen from Eq. 1.2, θ
and ϕ are the polar and azimuthal angles of the sphere, respectively. Here, the north
pole denotes the |0⟩-state, while the south pole denotes the |1⟩-state. b) Bloch sphere
illustrating how transversal noise may cause a qubit in the |1⟩-state to relax, causing
decoherence. c) Bloch sphere illustrating how longitudinal noise affects the phase angle
ϕ, causing phase information to become lost. All figures adapted from [13].

The Bloch sphere is a useful tool for visualizing one of the most prolific
challenges faced by potential qubits: decoherence in the form of either relaxation

Mechanics [10].
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or dephasing [13]. Relaxation is the tendency of a qubit to dissipatively transition
to the ground state. Dephasing refers to the loss of phase information; denoted
by ϕ in Fig. 1.1a. In both cases, the decoherence is the result of noise in the
physical system in which the qubit is encoded. While relaxation is a result of
transversal noise, dephasing is a result of longitudinal noise.

In the context of the Bloch sphere, longitudinal noise gives rise to uncertainty
in the splitting between the |0⟩ and |1⟩ states, that is, in the ẑ-direction. Such
noise affects the phase ϕ of the qubit state. To see this, consider for instance a
qubit encoded in the energy splitting between the spin-up and spin-down states
of an electron in a magnetic field. The applied magnetic field causes the spin to
precess with a phase velocity proportional to the applied field. Therefore, any
variation in the applied field, or equivalently, variations in the qubit splitting,
gives rise to a variation in the phase velocity. This causes information about the
phase of the qubit to become lost. Fig. 1.1c illustrates this process. Noise in
the transverse (x,y) plane may instead cause the qubit to relax to its ground
state. For instance, the operators that cause a spin to be excited or relax may be
written as a combination of operators acting in the (x,y)-plane, S± = Sx± iSy [14].
Similarly, pertubations in this plane may cause the qubit to relax by transferring
its energy to the environment and transitioning to the ground state. Such a
process is depicted in Fig. 1.1b.

In order to realize quantum computing, we need to be able to encode such
qubits in physical systems with the desired properties. Again, an analogy to
conventional bits is appropriate. These bits may for instance be encoded in
current pulses through a transistor; if current is passing through the transistor,
the state is 1. Otherwise, the state is zero [15].

Similarly, in order to physically construct a qubit we require a quantum system
with two well defined states to represent |0⟩ and |1⟩ [16]. Simply finding such a
system is not sufficient, however; for qubits to be able to perform computations,
certain requirements must be met. Fundamental to the operation of a quantum
computer is the "closed box" requirement; during operation the qubits must be as
isolated from the environment as possible [17]. Only a small degree of unwanted
interaction with the environment may cause the qubits to lose coherence and
information to leak out of the system. However, this must simultaneously be
balanced with the ability to easily and accurately control the qubits in order to
perform actual computations. In order to evaluate the feasibility of a system to
perform quantum computations, one may consider the five requirements proposed
by DiVincenzo [18, 19]. First, the qubits should be well-defined within the Hilbert
space2 of the system, preferably in a Hilbert space that may be decomposed into
direct products. Second, it must be possible to reliably initialize the system in a
given state. Third, as stated above, the system must be sufficiently isolated from
its environment as to limit decoherence. Fourth, it must be possible to perform
gate operations as a sequence of unitary transformations of the system. Fifth
and finally, it must be possible to measure the system in a way that accurately

2In quantum mechanics, the Hilbert space denotes the complex linear vector space in which
a quantum state, in this case the state of the qubit, exists [20].
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determines the outcome of the performed operations.
Various systems have been proposed, and to some extent realized, as potential

qubits. These include collective excitations in superconductors, photonic modes,
nitrogen vacancy centers in diamond, and in the quantum numbers of topologically
non-trivial quasiparticle systems [21–24]. All these approaches come with their
own set of advantages and disadvantages. In general, proposals building atomic,
molecular and optical (AMO) physics, such as trapped ions and optical cavities, are
able to manipulate qubits with a high degree of precision. Proposals built on solid-
state physics, on the other hand, promise easier scalability and implemantation
in quantum circuits [25]. In particular, spin qubits constructed in semiconductor
quantum dots have been given much attention due to their potential to utilize
the mature fabrication technology of semiconductor-based circuitry [26]. This
proposal for realizing quantum computation will be the focus of this thesis.

1.2 Quantum-dot-based spin qubits
The idea of employing single electron spins in quantum dots to encode qubits,
first proposed by Loss and DiVincenzo [19], has been given much attention due in
part to its potential similarities to conventional semiconductor technologies. Even
though early attempts at realizing quantom dot based spin qubits were based
on gallium arsenide (GaAs) structures, the spin qubit design is still similar to
conventional silicon-based semiconductor chips. As expanded upon in Sec. 1.2.2,
silicon-based spin qubits have recently emerged as an attractive option due to its
potentially nuclear-spin-free environment.

In the proposal by Loss and DiVincenzo, the |0⟩ and |1⟩ states are constructed
from two opposite spin directions of an electron spin, denoted spin-up (|↑⟩) and
spin-down (|↓⟩). As these spins are localized magnetic moments, they may be
made to differ in energy by the Zeeman splitting imposed by an external magnetic
field. The initial spin states may be produced by applying a uniform magnetic
field at low temperatures and waiting for the spins to relax to the ground state.
If an initial state where the spins are not all pointing in the same direction is
needed, this can be accomplished by injecting the quantum dots with electrons
that are already in the desired spin state for each dot, which may be done by
using a spin filter that only admits electrons carrying specific spins. Alternatively,
one may construct the desired algorithm to start with all spins in the ground state
and use avaliable gates to manipulate the qubits into the desired configuration.

Single-qubit operations may be performed by subjecting the qubit to external
fields in specific ways. An applied static magnetic field will cause an electron spin
to precess around the ẑ-axis of the Bloch sphere, with a frequency proportional
to the strength of the applied field, the so-called Larmor frequency. For rotations
around the x̂-axis, the qubit is exposed to a oscillating magnetic field perpendicular
to the aforementioned static field. This field causes the spin to rotate around the
x̂-axis with a frequency know as the Rabi frequency. Thus, by sequentially pulsing
these fields for specific durations, full single-qubit control is accomplished [27].
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Two-qubit gate operations are performed by lowering the electrostatic barrier
between two quantum dots for a suitable time, allowing the spins to be coupled.
Read out may be performed by allowing spins to tunnel either to a nearby
paramagnetic dot, in which the spin would establish a measurable ferromagnetic
domain, or through a spin valve to a secondary dot. In the latter case, if the
spin valve for example permits only spin-up electrons, the presence of charge at
the dot would indicate that the spin state in the qubit had indeed been spin-up.
Since the original proposal by Loss and DiVincenzo, more convenient methods
for read out have been proposed, for instance by using Pauli spin-blockade for
spin-to-charge conversion before read out is performed [28, 29].

In conclusion, the Loss and DiVincenzo proposal, with a few modifications,
should be a suitable platform to implement quantum computing. However, spin
qubit based quantum computing is yet to be realized on a practical scale. This
apparent lack of progress is due to a few key challenges in the realization of the
proposal. As mentioned in Sec. 1.1, noise may cause the qubits to decohere
during computation, so that any information is lost. In the case of quantum
dot spin qubits, this may be due to unwanted interactions between the localized
electron spins carrying the information and the ensemble of randomly fluctuating
nuclear spins of the host semiconductor [30]. Furthermore, producing sufficiently
precise oscillating magnetic fields to control such qubits is challenging, more so
because the qubits must be closely packed in order to be able to interact [16]. The
short range interaction also limits qubits to nearest neighbor coupling, reducing
the flexibility of the setup. Finally, as the physical system in which a qubit is
constructed is rarely a perfect two-level system, there may exist states that are
coupled to the qubit states. Transitions to these states causes information to be
lost from the qubit, which is referred to as leakage [31].

In the years since the Loss and DiVincenzo proposal, the efforts of the spin
qubit field have been focused on overcoming these challenges. In the following
three sections, some of the solutions that have been proposed in these efforts are
presented.

1.2.1 Singlet-triplet spin qubits
In order to eliminate the necessity for localized oscillating magnetic fields, one
can encode the qubit in a multi-electron state [32]. This may for instance be done
by constructing a double quantum dot (DQD) system carrying a total of two
excess electrons. We consider the potential landscape of such a system, shown
as the solid blue lines in Fig. 1.2. The dotted orange lines may be ignored for
now; they will be discussed below. The potential of each of the quantum dots is
shown as a valley separated by a potential barrier. Within each valley there are
states that the electrons, depicted as a black dots, may occupy. These states are
depicted as horizontal lines.

In the case of a DQD system carrying a total of two excess electrons, assuming
each electron is confined to different dots, there are four possible spin states:
the spins may form a singlet or a triplet, and have different spin projections



6 CHAPTER 1. INTRODUCTION

Figure 1.2: Sketch of the potential landscape of a DQD system hosting two electrons,
the two valleys corresponding to the two quantum dots. The horizontal lines in each of
the valleys denote available states that the electrons may occupy in each dot. The black
dots on these lines depict electrons occupying said states. The electrons may transition
between the two quantum dots through the tunnel coupling if they are able to overcome
the potential barrier between the dots. This coupling is denoted by the dotted black
line. Such a transition would transfer the system from the (1,1) charge configuration, as
is depicted, to the (0,2) configuration. Eorb denotes the energy difference between the
lowest and second lowest energy orbitals. The two dots may be subjected to a relative
electrostatic potential, parametrized by ε. The solid blue line shows the potential for
ε = 0, in which the energies of electrons occupying each of the dots are degenerate. The
dotted orange lines show the same potential for non-zero ε. The shift in the potential
landscape shifts the energies of the available states. Note that this figure is only a
sketch; the differences in energy between the different states, as well as the height of
the potential barrier do not correspond to physically relevant values.

[33]. With the indices denoting the electron spin being located in dots 1 and 2,
respectively, this reads

|S⟩ = 1√
2

(|↑1↓2⟩ − |↓1↑2⟩)

|T0⟩ = 1√
2

(|↑1↓2⟩ + |↓1↑2⟩)

|T+⟩ = |↑1↑2⟩
|T−⟩ = |↓1↓2⟩ .

(1.3)

Here, |S⟩ (|T0⟩) is the singlet (triplet) with spin quantum number ms = 0, while
|T+⟩ and |T−⟩ have ms = ±1. We refer to this configuration of electrons, with
each electron in different dots, as the (1,1) charge configuration.

By careful application of the gate voltages on each dot, we may change
the electrostatic potentials of the dots so that certain charge configurations are
favorable. For instance, we may set these gate voltages such that the electron in
dot 1 is allowed to tunnel to the second dot, so that the double dot system is in
the (0,2) charge configuration [34]. In Fig. 1.2 the tunneling process is described
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by the dotted black line. Transitions between charge configurations in principle
preserve electron spin. Thus, if the two electrons are in different dots and have
the same spin, any electron tunneling to the other dot would have to occupy
a higher energy orbital in order to obey the Pauli principle. As shown in Fig.
1.2, the difference in energy between the ground state orbital and the excited
orbital, Eorb, is quite large. In typical systems, Eorb is on the order of meV [28].
As long as the difference in electrostatic potential between the two dots is not
too large, this leads to only the singlet state being populated in the (0,2) charge
configuration:

|S02⟩ = 1√
2

(|↑2↓2⟩ − |↓2↑2⟩), (1.4)

where the indices on the arrows indicate that both electron spins are located on
the second dot.

Within the regime of gate voltages that favor the (1,1) and (0,2) charge
configurations, we may alter the relative electrostatic potential between the dots,
thereby altering the energy levels of the available states, while requiring the
average of the energy levels of the two dots to remain unchanged [34]. This is
referred to as detuning the dots, and will be described by the detuning parameter
ε. The solid blue potential in Fig. 1.2, which we discussed above, depicts a system
in the absence of detuning, that is, ε = 0. In dotted orange, however, we show
the same potential for non-zero ε. By shifting the energy in the left dot by ε and
the energy in the right by −ε, as shown, the average of the two naturally remain
unchanged. Hence, the energies of the (1,1) states are unaffected by variations in
the detuning parameter. The |S02⟩ state, however, with both electrons in a single
dot, will have its energy altered.

The energy spectrum of a DQD system confined to the (1,1) or (0,2) config-
urations is shown in Fig. 1.3, as a function of the detuning parameter ε. The
energies of the polarized triplet states |T+⟩ and |T−⟩ have been split by an applied
magnetic field. These energies are depicted as the purple and blue horizontal
lines in Fig. 1.3, respectively. The green horizontal line depicts the unpolarized
triplet state |T0⟩, which, due to having equal parts spin-up and spin-down remains
unaffected by the applied field. We observe that, as mentioned above, these states
are unaffected by changes in the detuning parameter.

An electron in the (1,1) singlet |S⟩ may tunnel to the other dot, transitioning
to the (0,2) singlet |S02⟩, and vice versa. If the tunnel barrier between the two
dots is high enough, however, the energy required for this transition to take
place effectively decouples the two singlet states. If so, the (1,1) singlet will be
degenerate with |T0⟩, both having equal parts spin-up and spin-down. Like the
(1,1) singlet, the (0,2) singlet will be unaffected by the applied magnetic field,
but its energy will vary with ε. The situation where tunnel coupling is prohibited
corresponds to large values of |ε| in Fig. 1.3. On both the far left and far right of
the figure, the (1,1) singlet is degenerate with the unpolarized triplet, while the
(0,2) singlet is a linear function of the detuning parameter.

As the detuning parameter is reduced, the tunnel coupling between the states
becomes more important, and the states hybridize. This hybridization causes
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the states to mix, and an exchange energy splitting J opens up between the
unpolarized triplet and the singlet states, as depicted in Fig. 1.3. At this point,
the eigenstates are not simply either the (1,1) or (0,2) singlet, but rather a
superposition of the two. The qubit may then be encoded in the |T0⟩ state and
in the low energy singlet eigenstate, that is, in the green and orange lines in Fig.
1.3. The qubit splitting energy, that is, the energy difference between the |1⟩
and |0⟩ states, then depends on the detuning parameter of the system, granting
electrical control of this facet of the qubit.

Consider a Bloch sphere with the north and south poles defined as |S⟩ and
|T0⟩, respectively, the poles along the x̂-axis being the |↑↓⟩ and |↓↑⟩ states. This
is consistent with setting |0⟩ = |S⟩ and |1⟩ = |T0⟩. In this view, the pulsing
of the exchange interaction between the electrons amount to a rotation of the
qubit state around the ẑ-axis of the Bloch sphere, so that the |↑↓⟩ and |↓↑⟩ states
may be swapped [35]. While this manipulation method opens the qubits up to
be affected by charge noise, this noise may be suppressed by operating them
symmetrically [36].

Note that this does not amount to full control of the qubit; we still need to
be able to perform rotations around an axis perpendicular to the ẑ-axis. This
may be accomplished by establishing a magnetic field gradient ∆B across the
two dots [33].

1.2.2 Nuclear-spin-free spin qubits
While research into quantum dot based spin qubits in the beginning focused on
III-V semiconductors such as GaAs, these host materials are disadvantaged by
carrying non-zero nuclear spin. The large number of nuclei in the vicinity and
the host material of the quantum dot set up an effective random magnetic field
that acts on the electrons occupying the dot. Electrons coupling to the nuclear
spin bath lowers the decoherence time of the qubit due to the random nature
of the effective magnetic field. In response to this challenge, using group IV
semiconductors such as silicon and germanium as host materials has become an
increasingly attractive option [37]. These materials can be made nuclear spin free
through isotopic purification, potentially increasing the coherence times of qubits
significantly. Coherent control of singlet-triplet qubits in Si/SiGe heterostructures
has been reported, with significantly longer coherence times than for similar GaAs
structures [38].

A different approach to solve the same problem involves encoding qubits in
a singlet-only subspace. This subspace is protected from nuclear spin induced
decoherence as it does not interact with the fluctuating Zeeman fields of the
nuclear spin bath [39]. Thus, by constructing a system of four electron spins, one
may use the singlet-only subspace to encode the qubit. The basis states of this
qubit are then [32]

|1⟩ = |S14S23⟩

|0⟩ = 1√
3

(|S13S24⟩ + |S12S34⟩),
(1.5)
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Figure 1.3: Typical energy spectrum of double quantum dot confined to the (1,1) or
(0,2) charge configurations, as a function of the detuning parameter ε. The dots are
subjected to a uniform external magnetic field B = B0ẑ. The three horizontal lines,
starting from the top, depict the energies of the |T+⟩ (purple), |T0⟩ (green), and |T−⟩
(blue) states, which are not affected by a change in the detuning. The two curved lines
(red and orange) are superpositions of the |S⟩ and |S02⟩ states. Of the (0,2) charge
states, only |S02⟩ is included as the (0,2) triplet states are higher in energy. The tunnel
coupling between the two dots is tc = 0.2B.

where |Sij⟩ = 1√
2(|↑i↓j⟩ − |↓i↑j⟩). These states are not coupled by the nuclear

field, so that the nuclear spin bath is not able to directly cause dephasing of the
qubit, granting significantly improved decoherence times. Still, the nuclear field
may couple these states to states that are not in the qubit subspace, causing
information to leak out of the qubit.

1.2.3 Spin qubits with long range coupling

The exchange interaction between spin qubits is short range. It is therefore of
significant interest to be able to extend spin qubit coupling distances to be able
to reach beyond nearest neighbor interactions. One approach is through the use
of microwave resonators. Here, two qubits are coupled through a superconducting
cavity by tuning the qubit splittings of each qubit into resonance with one
another and the electric field in the cavity. This has been reported to couple
spins separated by distances over 4 millimeters [40]. While this clearly allows for
long range qubit coupling, it also presents a challenge in terms of scalability. In a
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future quantum processor potentially containing millions of qubits tightly packed
together [16], only being able to couple qubits that are millimeters apart would
be impractical.

Here, we focus on coupling spin qubits through magnons rather than microwave
cavities. Magnons, being quasiparticles of the collective magnetization in a spin
lattice, are able to transport spin information without necessitating charge transfer
[41]. This has sparked interest in using ferromagnets to mediate the coupling
between spin qubits. Such a coupling can extend the possible distance between
qubits to the order of micrometers rather than nanometers [42].

In this thesis, we build on the understanding gained from previous work on
quantum-dot-based single spin qubits, and study two singlet-triplet spin qubits
hosted in double quantum dots coupled to an insulating ferromagnet through
the exchange interaction. This hybrid platform, combining the well known and
well understood subjects of insulating ferromagnets and double quantum dot-
based spin qubits, offers a promising path to overcome some of the challenges
faced by contemporary quantum computing. Specifically, we are interested
in the potential of this platform to realize coherent qubit-qubit coupling over
intermediate distances, with little to no leakage to states outside the qubit
subspace. The potential is due in large part to the tunability of the system, both
through electrical control of the singlet-triplet qubits and through the tunability
of the ferromagnetic coupling of the qubits. We investigate this potential through
a theoretical derivation of the system Hamiltonian, which will form the basis
for both numerical and perturbative analysis of the dynamics of the proposed
system. Through the application of the Schrieffer-Wolff transformation, we obtain
effective terms describing coupling between the qubits, as well as leakage out of
the qubit subspace.

1.3 Structure of the thesis
In the upcoming chapter 2, we present some fundamental tools and theory to
be used in the remainder of the thesis. This includes a brief description of the
quantum harmonic oscillator in section 2.1 followed by an overview of the concept
of qudrature squeezing of bosonic modes in section 2.2. section 2.3 presents
the Holstein-Primakoff transformation of spin operators in ferromagnets. The
chapter concludes with two related methods in perturbation theory; section 2.4
reviews time independent perturbation theory to second order, while section 2.5
presents the main tool to be used in the perturbative analysis in the thesis: the
Schrieffer-Wolff transformation.

In chapter 3 the Hamiltonian for a ferromagnetically coupled single spin
qubit system is derived. The derivation is performed by splitting the system
Hamiltonian into three parts that may be individually treated. Thus, in section 3.1
we consider the Hamiltonian of a single spin qubit. In section 3.2 we consider the
Hamiltonian of an insulating ferromagnet, both in the presence and absence of
anisotropy. In section 3.3 we consider the interaction between the two preceding
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subsystems. With the full single spin Hamiltonian derived, section 3.4 presents a
numerical analysis of the system dynamics.

Having established the framework for a coupled single spin Hamiltonian,
chapter 4 proceeds by considering a ferromagnetically coupled double quantum
dot system. As in chapter 3 we consider a tripartite Hamiltonian. This derivation
is performed using two different bases for the double quantum dot Hamiltonian,
and includes the derivation of effective Hamiltonians using the Schrieffer-Wolff
transformation.

Chapter 5 considers the dynamics of ferromagnetically coupled double quantum
dots using a similar numerical analysis as in section 3.4. In section 5.2 we compare
the numerical simulations of the full system Hamiltonian to the results obtained
using the effective Hamiltonian, and consider in detail the terms describing the
coupling strength and leakage of the coupled double quantum dot system.





Chapter 2

Preliminary Concepts

The purpose of this chapter is to present some tools and concepts that will be
important in the remainder of the thesis. It begins by considering the quantum
harmonic oscillator before continuing with the subject of quadrature squeezing of
bosonic modes. We briefly present the Holstein-Primakoff transformation of spin
operators in ferromagnets. The final two sections are dedicated to two variants
of perturbation theory: time independent perturbation theory to second order,
and the Schrieffer-Wolff transformation to second and fourth order.

2.1 Quantum harmonic oscillator
We begin by considering one of the simplest, yet most important systems in
quantum mechanics; the quantum harmonic oscillator. As we will see, an un-
derstanding of this system will be useful both in the description of quadrature
squeezing in the following section and in the description of magnon excitations in
a ferromagnet in Sec. 3.2.

Similarly to the well known classical harmonic oscillator, we may write the
Hamiltonian of a single-mode quantum harmonic oscillator as

Ĥ = p̂2

2m + mω2q̂2

2 , (2.1)

where the operators p̂ and q̂ are momentum and position operators, respectively
[43, p.84]. The angular frequency of the harmonic oscillator, ω, is defined as in
the classical case, ω =

√
k/m. Rather than solving the Schrödinger equation for

the Hamiltonian in Eq. 2.1, it is helpful to define the operators

â =
√
mω

2ℏ

(
q̂ + i

p̂

mω

)

â† =
√
mω

2ℏ

(
q̂ − i

p̂

mω

)
.

(2.2)

With these operators, we may rewrite Eq. 2.1 as

Ĥ = ℏω
(
â†â+ 1

2

)
. (2.3)

13
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We may now define the number operator n̂ = â†â along with its eigenvalues n,
obtained through n̂ |n⟩ = n |n⟩. It follows that the eigenenergies of Eq. 2.3 are

En = ℏω
(
n+ 1

2

)
. (2.4)

It can be shown that the operators â† and â act on the eigenstates as [43, p.85]

â |n⟩ =
√
n |n− 1⟩

â† |n⟩
√
n+ 1 |n+ 1⟩ ,

(2.5)

where n is a non-negative integer. This, along with the eigenenergies obtained in
Eq. 2.4, allows us to interpret the operators â† and â as creating and annihilating
excitations of an energy quantum, denoted by n, with which the system exceeds
the zero-point energy E0 = 1

2ℏω. For these operators we obtain

[
â, â†

]
= i

2ℏ([p, x] − [x, p]) = 1. (2.6)

We also note that [â, â] =
[
â†, â†

]
= 0. From this we may conclude that the

excitations described by the operators â and â† follow bosonic commutation
relations.

The states |n⟩, known as Fock states, are important states in quantum field
theory. By describing a quantized field, such as the electromagnetic field, as an
infinite array of decoupled harmonic oscillators, the Fock state |n⟩ represents
a state with exactly n excitations of the energy quantum ℏω. In Sec. 3.2, this
representation will be used to describe magnons as excitations of the magnetization
field of a ferromagnet.

2.2 Quadrature squeezing
Quadrature squeezing is a well-known concept in quantum optics, wherein it refers
to the reduction in uncertainty of either the photonic momentum or position
operator at the expense of increased uncertainty of the other. The concept is not
exclusively applicable to photons, however, but may be applied to any bosonic
mode. In Sec. 3.2 we will use the theory derived in this section to consider
squeezing of the aforementioned magnons, as these excitations follow bosonic
commutation relations.

We begin by constructing dimensionless versions of the position and momentum
operators of the quantum harmonic oscillator as written in Eq. 2.1,

X̂1 = 1
2
(
â+ â†

)
X̂2 = 1

2i
(
â− â†

)
,

(2.7)
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where the operators â and â† are the ladder operators of the quantum harmonic
oscillator as defined in Eq. 2.2. The dimensionless operators X̂1,2 are so-called
quadrature operators, obeying the commutation relation[

X̂1, X̂2
]

= i

2 . (2.8)

The term quadrature stems from the original use in classical optics, in which the
operators X̂1 and X̂2 are the real and imaginary parts of a phasor, and are a
quarter cycle (90°) out of phase with one another [44]. Following a generalization
of the well known Heisenberg uncertainty principle [45], the uncertainty in the
simultaneous measurement of two operators Â and B̂ may be written [46]

∆Â∆B̂ = 1
2 |Ĉ|, (2.9)

where Ĉ =
[
Â, B̂

]
is the commutator of the aforementioned operators. The

uncertainty in the quadrature operators thus follow the relation

⟨(∆X̂1)2⟩⟨(∆X̂2)2⟩ ≥ 1
16 , (2.10)

where the uncertainty is defined as ∆X̂i =
√〈

X̂2
i

〉
−
〈
X̂i

〉2
and

〈
X̂i

〉
is the

expectation value of the operator X̂i for i = 1, 2.
States where this uncertainty is uniformly distributed across the two quadra-

tures, so that ⟨(∆X̂j)2⟩ = 1
4 for j = 1, 2, are known as coherent. If, on the other

hand, either ⟨(∆X̂1)2⟩ < 1
4 or ⟨(∆X̂2)2⟩ < 1

4 , the state is said to be squeezed.
That is, a squeezed state has lower uncertainty than the coherent state in one of
the quadratures, at the cost of a corresponding increase in the uncertainty of the
other quadrature maintaining the relation in Eq. 2.10.

Such states may be generated by acting on a non-squeezed state with the
squeeze operator Ŝ(ξ), defined as

Ŝ(ξ) = exp
[1
2
(
ξ∗â2 − ξ(â†)2

)]
, (2.11)

with ξ = r eiθ, where the squeeze parameter r is real and positive and 0 ≤ θ ≤ 2π.
Note that Ŝ(ξ) is unitary and obeys Ŝ†(ξ) = Ŝ(−ξ). In order to be able to
evaluate the expectation values of the â-operators, and subsequently determine
the variances of X̂1 and X̂2, we use the Baker-Hausdorf lemma to obtain

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r
Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r.

(2.12)

Considering the vacuum state, which we denote |0⟩, we construct the squeezed
vacuum state |ξ⟩ = Ŝ(ξ) |0⟩. For this state, we obtain the variances

⟨(∆X̂1)2⟩ = 1
4
[
cosh2 r + sinh2 r − 2 sinh r cosh r cos θ

]
⟨(∆X̂2)2⟩ = 1

4
[
cosh2 r + sinh2 r + 2 sinh r cosh r cos θ

]
,

(2.13)
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which, for θ = 0 reduces to

⟨(∆X̂1)2⟩ = 1
4e

−2r

⟨(∆X̂2)2⟩ = 1
4e

2r.
(2.14)

As r > 0, this implies that the uncertainty in the X̂1 quadrature is squeezed, that
is, reduced at the expense of the uncertainty in the X̂2 quadrature [47]. This
is visualized in Fig. 2.1, showing en error ellipse for θ = 0. As we can see, the
distribution of uncertainty is smaller in X̂1 than in X̂2.

2.3 Holstein-Primakoff transformation
In order to make spin operators in ferromagnets more tractable, it is helpful to
express them in terms of bosonic operators describing fluctuations about the
classical ground state of the magnet. Assuming the ground state magnetization
to be along ẑ, the spin component along the ẑ direction at each lattice site is the
spin quantum number S. This spin moment may be reduced by fluctuations in
the ground state, which we include as bosonic excitations with spin-1 in the −ẑ
direction. In this view, the ẑ-component of the spin at each lattice site in the
ferromagnet may be written

Szi = S − â†
i âi, (2.15)

Figure 2.1: Ellipse showing the distribution of uncertainty of the squeezed vacuum
state for θ = 0. The squeezing is in the X̂1 quadrature, lowering the uncertainty at the
expense of an increased uncertainty in the X̂2 quadrature. For the pure vacuum state,
the ellipse would be a circle. Figure adapted from [47].
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where â†
i and âi are creation and annihilation operators of the spin-1 bosons,

similar to the ladder operators of the quantum harmonic oscillator discussed in
Sec. 2.1 [48].

Recalling the discussion of Fock states in Sec. 2.1, we may understand Eq.
2.15 as expressing the fluctuations about the ordered ground state as quantized
excitations in the magnetization field of the ferromagnet. These excitations are
known as magnons, and will be further considered in Sec. 3.2.

Consider now the x̂ and ŷ components of the spin operator, Sxi and Syi . It is
convenient to express these components through spin excitation and relaxation
operators S+

i = Sxi + iSyi and S−
i = Sxi − iSyi . Through the Holstein-Primakoff

transformation, these may be expressed in terms of the aforementioned bosonic
operators as [49]

S+
i =

√
2S
(

1 − â†
i âi
2S

) 1
2

âi

S−
i = â†

i

√
2S
(

1 − â†
i âi
2S

) 1
2

.

(2.16)

This is the Holstein-Primakoff transformation of spin operators. In cases
where the spin system is nearly ordered, for instance at low temperatures, the
number of excitations around the classical ground state is small. We may then
assume ⟨n̂i⟩ =

〈
â†
i âi
〉

≪ S, so that the second term within the parentheses above
may be discarded. Thus, we approximate the spin excitation and relaxation
operators as [50]

S+
i ≈

√
2Sâi

S−
i ≈

√
2Sâ†

i .
(2.17)

2.4 Time independent perturbation theory
As a primer to the main pertrubative tool used in the thesis, the Schrieffer-
Wolff transformation, we include a short description of the more familiar time
independent perturbation theory to first and second order. As we shall see in
Sec. 2.5, the theories are closely related. Consider a system described by a
Hamiltonian that may be written as a sum of an unperturbed Hamiltonian Ĥ0
and the perturbation V̂

Ĥ = Ĥ0 + V̂ , (2.18)

where the eigenstates
∣∣∣n(0)

〉
and eigenenergies E(0)

n of the unperturbed Hamilto-
nian is assumed to be known. We now attempt to obtain the eigenstates and
eigenenergies of the full Hamiltonian including the perturbation by solving(

Ĥ0 + λV̂
)

|n⟩ = En |n⟩ , (2.19)

where λ is a book-keeping parameter introduced to keep track of the order of
the perturbation as we proceed to expand the eigenenergies and eigenstates in
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powers of λ. Doing so, we may write Eq. 2.19 as(
Ĥ0 + λV̂ − E(0)

n − λE(1)
n − λ2E(2)

n − ...
)(∣∣∣n(0)

〉
+ λ

∣∣∣n(1)
〉

+ λ2
∣∣∣n(2)

〉
+ ...

)
= 0.

(2.20)
For the above equation to be valid for any λ, it has to hold for each power of λ.
This allows us to obtain the following set of equations, retaining terms to O(λ2):

O
(
λ1
)

:
(
Ĥ0 − E(0)

n

) ∣∣∣n(1)
〉

+
(
V̂ − E(1)

n

) ∣∣∣n(0)
〉

= 0

O
(
λ2
)

:
(
Ĥ0 − E(0)

n

) ∣∣∣n(2)
〉

+
(
V̂ − E(1)

n

) ∣∣∣n(1)
〉

− E(2)
n

∣∣∣n(0)
〉

= 0,
(2.21)

where the equation for O(λ0) has been omitted as it is true by assumption. We
can obtain the first order correction to the energy by multiplying the first order
equation above with

〈
n(0)

∣∣∣ from the left, yielding

E(1)
n =

〈
n(0)

∣∣∣V̂ ∣∣∣n(0)
〉
. (2.22)

Similarly, we can obtain the first order correction to the eigenstates by multiplying
the same equation from the left with

〈
m(0)

∣∣∣, where m ̸= n and using that∣∣∣n(1)
〉

= ∑
m

∣∣∣m(0)
〉 〈
m(0)

∣∣∣n(1)
〉
, yielding

∣∣∣n(1)
〉

=
∑
m

〈
m(0)

∣∣∣V̂ ∣∣∣n(0)
〉

E
(0)
n − E

(0)
m

∣∣∣m(0)
〉
. (2.23)

Note that due to the denominator in the above expression, this only holds for
non-degenerate states. The second order correction to the energy levels may be
obtained by multiplying the second order equation in Eq. 2.21 with

〈
n(0)

∣∣∣ from
the left, just as in the first order case. Inserting the result for

∣∣∣n(1)
〉

from Eq.
2.23 yields [20]

E(2)
n =

∑
m

∣∣∣ 〈m(0)
∣∣∣V̂ ∣∣∣n(0)

〉∣∣∣2
E

(0)
n − E

(0)
m

. (2.24)

2.5 Schrieffer-Wolff transformation
In chapters 3 and 4 we will consider the Hamiltonians of systems with qubits
coupled to a ferromagnet. The ferromagnet in these systems is in principle
able to host any number of magnons up to 2SN , where N is the number of
lattice sites in the magnet , as this would entail that all spins are completely
flipped. For any realistic ferromagnet, N is a rather large number, making the full
Hilbert space of any Hamiltonian describing it intractably large. It is therefore of
interest to be able to separate the lower energy blocks in the Hamiltonian into
an effective Hamiltonian, whilst retaining coupling to higher energy states. This
may be achieved by employing a Schrieffer-Wolff (SW) transformation: a unitary
transformation to decouple energy-separated blocks in a Hamiltonian [51].
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The SW transformation is performed by separating the Hamiltonian into a
block diagonal part Ĥ0 and a block off-diagonal perturbative part V̂ , so that the
Hamiltonian is written

Ĥ = Ĥ0 + λV̂ , (2.25)
where λ is a small perturbation parameter. The unperturbed Hamiltonian is a
matrix on the form

Ĥ0 =
(
Ĥ

(1)
0 0
0 Ĥ

(2)
0

)
, (2.26)

where Ĥ(1)
0 and Ĥ(2)

0 denote Hamiltonians of two subspaces that are separated in
energy from one another. Similarly, the perturbative part of the Hamiltonian is
of the form

V̂ =
(

0 V̂12

V̂21 0

)
, (2.27)

so that the perturbation V̂ couples the blocks of the unperturbed Hamiltonian
H0 [33, Appendix A]. For the leading order result of the transformation to be
accurate, the eigenenergies of Ĥ(1)

0 may be degenerate on their own, but must
differ from the eigenenergies of Ĥ(2)

0 so that any coupling element between states
in the different subspaces is smaller than the energy differences between the states,
|V̂ij| ≪ |Ei − Ej|, where Ei and Ej denote eigenenergies in different subspaces.
Note that, as the original Hamiltonian is hermitian, V̂12 = V̂ †

21 is required.
This Hamiltonian is then subjected to a unitary transform U so that all block

off-diagonal terms in the Hamiltonian are cancelled. The transformation is often
expressed through U = eS, where S is termed the generator of the transformation.

The effective Hamiltonian is written H̃ = UĤU † = eSĤe−S = eS(Ĥ0+λV̂ )e−S,
with λ as a perturbation parameter. The rotated Hamiltonian H̃ now acts in a
Hilbert space spanned by the transformed basis states

∣∣∣ψ̃〉 = eS |ψ⟩, where |ψ⟩ are
the basis states of the Hamiltonian before the transformation. For the transform
to be unitary, the generator S is required to be skew-hermitian, S = −S†.
Furthermore, S is expressed as a power series in λ, S = ∑∞

n=0 λ
nSn. Expanding

the generator S and retaining terms to O(λ2), the transformation becomes

H̃ = (I + λS1 + λ2S2 + λ2

2 S
2
1)(Ĥ0 + λV̂ )(I − λS1 − λ2S2 + λ2

2 S
2
1). (2.28)

Expanding this expression, again to O(λ2), results in

H̃ = Ĥ0

+ λ(V̂ + S1Ĥ0 − Ĥ0S1)

+ λ2(S1V̂ − V̂ S1 + S2Ĥ0 − Ĥ0S2 + 1
2S

2
1Ĥ0 + 1

2Ĥ0S
2
1 − S1Ĥ0S1)

(2.29)

Grouping the terms in Eq. 2.29 into commutators we arrive at

H̃ = Ĥ0 + λV̂ + λ
[
S1, Ĥ0

]
+ λ2

[
S1, V̂

]
+ λ2

[
S2, Ĥ0

]
+ λ2

2
[
S1,

[
S1, Ĥ0

]]
. (2.30)
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For H̃ to be block diagonal to first order in the perturbation, we need to cancel
the block off-diagonal perturbation V̂ . Thus, setting λ = 1, we require[

S1, Ĥ0
]

= −V̂ . (2.31)

Furthermore, we ensure that the
[
S2, Ĥ

]
-term does not give any block off-diagonal

contributions by letting S2 = 0. Inserting this into Eq. 2.30 simplifies the
expression into

H̃ = Ĥ0 + 1
2
[
S1, V̂

]
. (2.32)

From Eq. 2.32 we may observe that S1, in addition to being skew-hermitian,
must be block off-diagonal for H̃ to be block diagonal. The effective Hamiltonian
H̃ is now on the form

H̃ =
(
H̃

(1)
0 0
0 H̃

(2)
0

)
, (2.33)

so that the blocks H̃(1)
0 and H̃

(2)
0 are decoupled. This allows us to consider for

instance H̃(1)
0 independently, without having to consider the subspace described

by H̃(2)
0 . The generator S1 may be determined from Eq. 2.31. For each element

in S1, Ĥ0 and V̂ , ∑
k

[
Ĥ0,ikS1,kj − S1,ikĤ0,kj

]
= V̂ij. (2.34)

If the unperturbed Hamiltonian is diagonal, each element may be written as
Ĥ0,ij = Eiδij, where Ei are the diagonal elements 0f Ĥ0. Thus,

S1,ij = V̂ij
Ei − Ej

. (2.35)

Inserting this into Eq. 2.32, we obtain an expression for each element of the
transformed Hamiltonian

H̃ij = Ĥ0,ij + 1
2
∑
k

[
V̂ikV̂kj
Ei − Ek

+ V̂ikV̂kj
Ej − Ek

]
. (2.36)

Consider the diagonal elements of Eq. 2.36, H̃ii = Ei + V̂ikV̂ki

Ei−Ek
. This correction to

the unperturbed energy Ei is indeed the correction obtained in Eq. 2.24 through
second order perturbation theory.

In certain contexts it is insufficient to compute the SW transformation to
second order. To resolve this we may also compute the transformation to fourth
order by once again expressing the generator as S = ∑∞

n=0 λ
nSn and retaining

terms to O(λ4). This yields a transformed Hamiltonian

H̃ = Ĥ +
[
S, Ĥ

]
+ 1

2
[
S,
[
S, Ĥ

]]
+ 1

6
[
S,
[
S,
[
S, Ĥ

]]]
+ 1

24
[
S,
[
S,
[
S,
[
S, Ĥ

]]]]
+ O

(
λ5
)
.

(2.37)
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We now insert Ĥ = Ĥ0 + λV̂ and simplify to obtain

H̃ = Ĥ0 + λ2

2
[
S1, V̂

]
+ λ3

(1
3
[
S1,

[
S1, V̂

]]
+
[
S3, Ĥ0

])
+ λ4

2

([
S3, V̂

]
+ 1

4
[
S1,

[
S1,

[
S1, V̂

]]]
+
[
S1,

[
S3, Ĥ0

]])
,

(2.38)

where we require that
[
S1, Ĥ0

]
= −V̂ and

[
S3, Ĥ0

]
= −1

3

[
S1,

[
S1, V̂

]]
. As in

the second order transition, we have set S2 = 0. Furthermore, as S4 carries a
contribution of O(λ4) on its own, it only appears in a single term in Eq. 2.37, said
term being

[
S4, Ĥ

]
. Therefore, we have chosen S4 = 0 in Eq. 2.38, for simplicity.

From the requirements above, we find that S1 may be determined through
Eq. 2.35, as in the second order SW transformation. Similarly, for a diagonal
unperturbed Hamiltonian, we may obtain the thrid order component of the
generator through

S3,ij = Xij

Ei − Ej
, (2.39)

where X = 1
3

[
S1,

[
S1, V̂

]]
. Finally, we obtain the effective Hamiltonian

H̃ = Ĥ0 + λ2

2
[
S1 + S3, V̂

]
− λ4

24
[
S1,

[
S1,

[
S1, V̂

]]]
. (2.40)

This Hamiltonian is block diagonal and includes terms to fourth order in the
perturbation. Note that, if the unperturbed Hamiltonian is not diagonal, finding
the generator of the transformation is not trivial. This applies to both S1 and S3.
Thus, in this thesis, we will restrict the application of the SW transformation to
diagonal unperturbed Hamiltonians.





Chapter 3

Coupled single spin qubit
Hamiltonian

Here, we derive the system Hamiltonian for two quantum dot based single spin
qubits coupled to a ferromagnet, following the work of Skogvoll et al. [52]. With
this framework established, we in chapter 4 proceed to expand the system by
adding a second quantum dot and a second electron to each of the qubits in
the single spin system. We then derive both a full system Hamiltonian and
an effective low-energy Hamiltonian for this coupled DQD system. We begin,
however, with the single spin qubit system.

The Hamiltonian for single spin qubits coupled to a ferromagnet may be split
into three parts: the energy of the qubits, the ferromagnetic energy, and the
interaction energy between the ferromagnet and the qubits,

Ĥ = Ĥq + ĤF + Ĥint, (3.1)

with Ĥq describing a spin qubit, ĤF describing the ferromagnet, and Ĥint describ-
ing the interaction between the two. In the following sections, we derive each of
the three terms of Eq. 3.1.

3.1 Spin qubit Hamiltonian
Lifting the degeneracy of the spin-up and spin-down states of the electron by an
applied magnetic field, the qubit may be encoded in this energy splitting, thereby
defining spin-up as |1⟩ and spin-down as |0⟩. Defining the qubit energy splitting
to be ωq, the Hamiltonian of the qubits may be written

Ĥq =
∑
i=1,2

ω(i)
q

2 σ̂(i)
z , (3.2)

where the index i denotes the qubit number, and σ̂(1)
z = σ̂z ⊗ I2, σ̂(2)

z = I2 ⊗ σ̂z.
Here, σ̂z is the standard Pauli matrix and I2 is the 2x2 identity matrix. The
operators σ̂(i)

z as defined above function as Pauli operators in the two-qubit Hilbert

23
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space. Setting the energy splitting of the first qubit ω(1)
q = ωq, we may write

the energy splitting of the second qubit as ω(2)
q = ωq − δ, so that δ parametrizes

the difference in qubit splittings between the two qubits. The case δ = 0 thus
corresponds to the two qubits having the same splitting.

3.2 Ferromagnet Hamiltonian
In the context of this paper, we consider the ferromagnet to be an array of spins
that, in the ground state, are parallel. The spins are all assumed to be coupled to
their nearest neighbor through the exchange interaction with a coupling strength
described by J :

Ĥ
(1)
F = −J

∑
⟨i,j⟩

Si · Sj, (3.3)

where the exchange energy J > 0 and the sum over ⟨i, j⟩ runs over nearest
neighbors on each lattice site [53, p. 74]. We assume the magnet to be insulating,
neglecting any electron tunneling between sites. Applying a magnetic field H0ẑ
gives a contribution

Ĥ
(2)
F = |γ|µ0H0

∑
i

Szi , (3.4)

known as the Zeeman energy, at each site i. Here, |γ| is the gyromagnetic ratio
and µ0 is the vacuum permeability. Finally, we take into account a general
magnetic anisotropy in the ferromagnet, included as

Ĥ
(3)
F =

∑
i

[
Kx(Sxi )2 +Ky(Syi )2 +Kz(Szi )2

]
. (3.5)

Here, the constants Kx,y,z parametrize the magnetic anisotropy in their respec-
tive directions. This anisotropy may for instance arise from magnetocrystalline
anisotropy, wherein aligning magnetic moments along certain axes in the ferro-
magnet crystal structure is energetically favorable [54]. The total ferromagnetic
Hamiltonian is finally written as the sum of these three contributions:

ĤF = −J
∑
⟨i,j⟩

Si ·Sj+|γ|µ0H0
∑
i

Szi +
∑
i

[
Kx(Sxi )2 +Ky(Syi )2 +Kz(Szi )2

]
. (3.6)

The Hamiltonian in Eq. 3.6 may be mapped into bosonic magnon operators
using the Holstein-Primakoff transformation presented in Sec. 2.3. Assuming
the contribution from the Zeeman energy to be considerably larger than the
contribution from anisotropy, the spins are considered to be mostly ordered along
ẑ. It then suffices to use the linear Holstein-Primakoff transformation found in Eq.
2.17. First, consider a ferromagnet in the absence of magnetic anisotropy, that is,
consider only the first two terms in Eq. 3.6. Employing the Holstein-Primakoff
transformation and keeping terms to second order in magnon operators gives

Ĥ
(1,2)
F = |γ|µ0H0

∑
i

â†
i âi − 2JS

∑
⟨i,j⟩

[
â†
i âj − â†

i âi
]
. (3.7)
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Above, we have neglected all constant terms as they simply alter the zero-
point reference energy. The magnon operators in Eq. 3.7 may be represented
as quantized spin waves [48, p. 292] with wavevector k. Introducing Fourier
transformed operators ak through the relations âi = 1√

N

∑
k âke

−ik·ri and â†
i =

1√
N

∑
k â

†
ke

ik·ri , where N is the number of lattice sites, yields

Ĥ
(1,2)
F = |γ|µ0H0

∑
k
â†

kâk + 2JS
∑

k
[z − χ(k)]â†

kâk, (3.8)

where z is the number of nearest neighbors on a lattice site, χ(k) = ∑
δ e

−ik·δ, and
δ denotes vectors between neighboring lattice sites. Note that χ(0) = ∑

δ 1 = z
by definition, as z is the number of available vectors δ to nearest neighbors. The
prefactors in Eq. 3.8 may all be combined into ωk = |γ|µ0H0 − 2SJz + χ(k),
resulting in the isotropic ferromagnet Hamiltonian

Ĥ
(1,2)
F =

∑
k
ωkâ

†
kâk. (3.9)

The operator â†
kâk is the magnon number operator; it simply counts the

number of magnon excitations with wavevector k present in the ferromagnet.
The prefactor ωk is then the energy associated with each such magnon excitation.
Furthermore, Ĥ(1,2)

F is diagonal; the above magnons are eigenmodes of the isotropic
system. Note the similarity with the Hamiltonian of the quantum harmonic
oscillator presented in Sec. 2.1. As in Eq. 2.3, the magnons may be viewed as
excitations of spin-flips that increase the energy of the system above the ground
state of completely aligned spins.

Now, consider the anisotropy term in Eq. 3.5. By employing the relations
Sxi = 1

2

(
S+
i + S−

i

)
, Syi = 1

2i

(
S+
i − S−

i

)
and the Holstein-Primakoff transformation

as above, Ĥ(3)
F may be rewritten

Ĥ
(3)
F =

∑
i

[
S

2 (Kx −Ky)
(
â†
i â

†
i + âiâi + 2â†

i âi
)

+Kz

(
S2 − 2Sâ†

i âi
)]
. (3.10)

In order to write this in a way that is comparable to Eq. 3.9, similar Fourier
transforms as above are carried out, resulting in

Ĥ
(3)
F = S(Kx −Ky + 2Kz)

∑
k
â†

kâk + S

2 (Kx −Ky)
∑

k

[
â†

kâ
†
−k + âkâ−k

]
. (3.11)

Now, Eqs. 3.9 and 3.11 may be combined into the total ferromagnet Hamiltonian

ĤF =
∑

k

[
Akâ

†
kâk +Bk

(
â†

kâ
†
−k + âkâ−k

)]
, (3.12)

with Ak = |γ|µ0H0 + 2JS[z − χ(k)] + S(Kx −Ky + 2Kz) and Bk = S
2 (Kx −Ky).

Similarly to Eq. 3.9, the term ∑
k Akâ

†
kâk describes the number of magnon

excitations for each wavevector k, and the energy of each excitation. The terms∑
k Bk

(
â†

kâ
†
−k + âkâ−k

)
, however, deviate from this simple picture and require
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further investigation. For simplicity, we consider only the uniform k = 0 mode in
the following derivation. This is justified by considering magnets on a sufficiently
small scale so that the uniform mode is well separated from higher energy modes
[55]. This simplifies Eq. 3.12 to

ĤF = Aâ†â+B((â†)2 + â2), (3.13)

with A = |γ|µ0H0 + S(Kx −Ky + 2Kz) and B = S
2 (Kx −Ky).

However, Eq. 3.13 still contains the off-diagonal terms (â†)2 and â2. In
order to diagonalize it, we perform a Bogoliubov transformation, a canonical
transformation in which we introduce new operators α̂ and α̂† such that

â = uα̂ + vα̂†. (3.14)

Here, we require that the new operators obey bosonic commutation relations,
so that

[
α̂, α̂†

]
= 1 and [α̂, α̂] =

[
α̂†, α̂†

]
= 0. These relations are satisfied as

long as u2 − v2 = 1. Considering this constraint we may parametrize u and v as
u = cosh r and v = sinh r. With this transformation, the Hamiltonian becomes

HF = ω0α̂
†α̂, (3.15)

with sinh r = −2B√
(A+ω0)2−4B2

and ω0 =
√
A2 − 4B2 [52]. The operators α̂, α̂† are

bosonic eigenmodes of the anisotropic ferromagnet, with ω0 as the eigenmode
energy. Unlike the spin-1 magnons that were eigenmodes of the isotropic ferro-
magnet, this transformed magnon excitation is a superposition of odd-number
magnon states [56]. In order to understand the relation between these magnons
and the spin-1 magnons that were eigenmodes of the isotropic ferromagnet, we
consider the vacuum state of the anisotropic system, defined as

α̂ |0⟩α̂ = 0, (3.16)

where the subscript α̂ denotes the vacuum state in the transformed basis. Consid-
ering the transformation in Eq. 3.14, we may conversely write the α̂ operator as
α̂ = uâ− vâ†, with u = cosh r and v = sinh r. Inserting into Eq. 3.16, we obtain

(cosh râ− sinh râ†) |0⟩α̂ = 0. (3.17)

Comparing this expression to Eq. 2.12, we see that the definition of the vacuum
state for the anisotropic ferromagnet corresponds to acting on the spin-1 magnon
operator with a squeezing operator S(ξ) for θ = 0. Thus, in analogy to squeezed
states of light in quantum optcs, we may call these new eigenmodes of the
anisotropic ferromagnet squeezed magnons. The parameter r that defines the
transformation to the squeezed basis is therefore known as the squeezing parameter.
Importantly, the squeeze parameter is directly related to the anisotropy of the
ferromagnet. This anisotropy may be affected by external fields, for instance by
imposing a strain on the magnet [57]. This, in principle, allows for tuning of the
degree of squeezing in the system. As we shall see in the following section, this
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(a) (b)

Figure 3.1: Uncertainty ellipses for a) isotropic and b) anisotropic ferromagnets with
ground state magnetization along ẑ. In the anisotropic ferromagnet, the fluctuations
in the ŷ component the spin operator are, in this case, suppressed. Heisenberg’s
uncertainty relation is upheld by a corresponding increase in the fluctuations of the x̂
component. Figures adapted from [58].

has important implications for the coupling between the quantum dots and the
ferromagnet.

The squeezing results from the system reducing uncertainty in one quadrature
while increasing uncertainty in another, so that the normally circular uncertainty
is squeezed into an elliptical shape. This is visualized in Fig. 3.1, in which we
show an example of uncertainty ellipses for an anisotropic ferromagnet, contrasted
with the isotropic case. In the figure, we have assumed the energy cost on the ŷ
component of a spin in the ferromagnet to be larger than that of the x̂ component,
corresponding to Kx < Ky in Eq. 3.5. Hence, the quantum fluctuations in the ŷ
component of the spin operator will be suppressed at the expense of increased
fluctuations of the x̂ component [58]. This allows the ferromagnet to minimize
energy while upholding the Heisenberg uncertainty relation [59].

3.3 Interaction Hamiltonian
We assume the spin qubits to be exchange coupled to the ferromagnet, and here
derive the Hamiltonian describing one spin qubit coupled to the ferromagnet. For
each spin qubit, assume there are Nint sites where coupling between the qubit
and the ferromagnet may occur. The interaction Hamiltonian may be written

Ĥint = Jint
∑
l

Sl · sl, (3.18)

where Sl is the ferromagnetic spin operator at interfacial site l and sl is the spin
of the electron in the quantum dot at the same site. Jint describes the strength
of the exchange coupling. We first consider the ferromagnet to be isotropic.
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The spin operator of the electron may be expressed as [52]

sl = |ψl|2

2 σ, (3.19)

where ψi is the amplitude of the wavefunction of the electron at site l. The
components of the Pauli vector σ = σ̂xx̂ + σ̂yŷ + σ̂zẑ are defined as in Sec. 3.1.
Using S

+/−
l = Sxl ± iSyl and s

+/−
l = sxl ± isyl , we may express the interaction

Hamiltonian as the sum of two terms Ĥint = Ĥint1 + Ĥint2, where

Ĥint1 = Jint
∑
l

Szl s
z
l

= Jint
2
∑
l

|ψl|2(S − â†
l âl)σ̂z

≈ 1
2JintNintξSσ̂z,

(3.20)

and ξ = ∑
l

|ψl|2
Nint

is the average qubit wavefunction intensity averaged over all
interfacial sites. In the second line we have applied the Holstein-Primakoff
transformation as in Sec. 2.3, retaining terms to quadratic order in magnon
operators. For the second contribution we obtain

Ĥint2 = Jint
2
∑
l

(S+
l s

−
l + S−

l s
+
l )

= Jint

√
S

2
∑
l

|ψl|2(â†
l σ̂− + âlσ̂+),

(3.21)

where the Holstein-Primmakoff transformation has once again been applied. As
in Eq. 3.8 we introduce Fourier transformed operators for âl and retain only the
uniform k = 0 mode. This yields

Ĥint2 = JintNintξ

√
S

2N (â†σ̂− + âσ̂+). (3.22)

Having obtained these two contributions we may write the combined interaction
Hamiltonian as

Ĥint = JintNintξ

√ S

2N (â†σ̂− + âσ̂+) + S

2 σ̂z

. (3.23)

The second term within the brackets of Eq. 3.23 renormalizes the qubit
splitting and may be absorbed into the qubit energy derived in Sec. 3.1, redefining
Ĥ ′
q = Ĥq + Ĥint1 = ω′

q

2 σ̂z where ω′
q = ωq + JintNintξS [56]. In order to avoid

clutter the primes will be omitted in the remainder of the thesis.
The first term describes two possible processes that may occur due to the

interaction between the ferromagnet and the qubit. First, an excited spin state
in the qubit may relax while a magnon is created, described by â†σ̂−. Second, a
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magnon may be destroyed, causing an excitation of spin in the qubit, described
by âσ̂+. Note that in both cases, the number of spin excitations is conserved.
The prefactors to this term are gathered into a coupling constant g so that
the interaction Hamiltonian may be written, for two spin qubits coupled to an
isotropic ferromagnet,

Ĥint =
∑
i=1,2

g(â†σ̂
(i)
− + âσ̂

(i)
+ ), (3.24)

assuming g to be the same for both qubits.
If instead the ferromagnet is anisotropic, a similar Bogoliubov transformation

as in Sec. 3.2 may be carried out for the magnon operators in Eq. 3.24. Inserting
the transformation â = cosh rα̂ + sinh rα̂† into Eq. 3.24 results in

Ĥint =
∑
i=1,2

[
gR(α̂†σ̂

(i)
− + α̂σ̂

(i)
+ ) + gCR(α̂†σ̂

(i)
+ + α̂σ̂

(i)
− )
]
, (3.25)

where we have defined gR = g cosh r and gCR = g sinh r. Here gR and gCR are
prefactors to what are known as rotating and counter-rotating terms, respec-
tively. Unlike the rotating terms, the counter-rotating terms α̂†σ̂+ and α̂σ̂− do
not conserve the number of excitations. Rather, the α̂†σ̂+ term describes the
simultaneous excitation of both a spin state and magnon. Similarly, the α̂σ̂−
term describes the simultaneous relaxation and annihilation of a spin state and a
magnon, respectively. Furthermore, note that by setting the squeezing parameter
r = 0 the counter-rotating terms vanish, and we regain the Hamiltonian of Eq.
3.24, as expected. Additionally, as both cosh r and sinh r are monotonically
increasing functions of r, the coupling strength increases with magnon squeezing.

Finally, we may combine Eqs. 3.2, 3.15, and 3.25 into the full system Hamil-
tonian

H = ω0α̂
†α̂+

∑
i=1,2

[
ω(i)
q

2 σ̂(i)
z + gR

(
α̂†σ̂

(i)
− + α̂σ̂

(i)
+

)
+ gCR

(
α̂†σ̂

(i)
+ + α̂σ̂

(i)
−

)]
. (3.26)

This Hamiltonian is a realization of the anisotropic quantum Rabi model [60].
By including anisotropy in the derivation of the ferromagnetic and interaction
Hamiltonians, we obtain squeezed magnons as the eigenmodes of the ferromagnet.
This in turn gives rise to counter-rotating terms (gCR) in the interaction between
the qubits and the Hamiltonian.

Recall the tunability of the squeezing parameter r as described in the previous
section. Through the dependence of the coupling terms gR and gCR on r, we
are in principle able to alter the coupling between the quantum dots and the
ferromagnet by altering the anisotropy of the magnet. In Sec. 5.2 we will see
that this tunability plays an important role in limiting leakage from the qubit
subspace.

3.4 Numerical simulation of coupled spin qubits
The full system Hamiltonians of Eq. 3.26, for the single spin qubit case, is difficult
to treat analytically. Thus, in order to understand how the system evolves in
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time, we here solve the time-dependent Schrödinger equation (TDSE),

iℏ
∂

∂t
|ψ(t)⟩ = Hψ(t), (3.27)

numerically using the Python QuTiP package [61]. This is done by applying
the QuTiP built in function for solving the TDSE, sesolve [62], on a matrix
Hamiltonian constructed from Eq. 3.26. Given an initial state |ψ(0)⟩ and a
Hamiltonian H, the sesolve function calculates the time evolved state |ψ(t)⟩ for
each time step. We may then calculate the overlap with any state |χ⟩ we are
interested in as | ⟨ψ(t)|χ⟩ |2. The code used to produce the following simulations
may be found in Appendix A.1

We begin by presenting a summary of the numerical results obtained for the
single spin qubit case. Later on, in Sec. 5.1, this will be useful to highlight the
specific benefits of the coupled DQD system. For a more thorough report on the
single spin qubit system, we refer to the preceding project work [1].

In each of the following calculations, the single spin qubit Hamiltonian (Eq.
3.26) was limited to containing a maximum of 50 magnons. Due to the energy cost
associated with increasing magnon occupations, this is believed to be sufficient to
capture all effects from magnons on the dynamics of the system. In the following
sections, unless stated otherwise, we assume the qubits to be identical so that
δ = 0 and ω(1)

q = ω(2)
q = ωq. We also define the zero point energy of the system

to be in the middle of the qubit splitting, so that the energy associated with
a spin-up (spin-down) state is (−)ωq

2 . In all following simulations, the rotating
coupling term is set to gR = 0.1ωq

We now evaluate the dynamics of the states in the 0-magnon subspace (|0 ↑↑⟩,
|0 ↑↓⟩, |0 ↓↑⟩, and |0 ↓↓⟩) and how they are influenced by states with higher
magnon occupations. We begin by considering a system where the magnon energy
is tuned to be resonant with the qubit splitting, setting ω0 = ωq. This system
is evaluated both for an isotropic (gCR = 0) and an anisotropic (gCR = 0.1ωq)
ferromagnet. The same evaluation is then carried out for a system with magnon
energy tuned away from resonance, setting ω0 = 2ωq. Once again we consider
both isotropic and anisotropic ferromagnets.

First, we consider the system in absence of magnon squeezing by setting
gCR = 0. Furthermore, we set the magnon energy to resonance (ω0 = ωq) and
initialize in |0 ↑↓⟩. Calculating the time evolution from this initial state, we
evaluate the probability for the system to occupy the |0 ↑↓⟩ and |0 ↓↑⟩ states
as a function of time. These probabilities are plotted in Fig. 3.2, as the solid
blue and orange lines, respectively. The figure shows well behaved coherent
switching between the two states. Note however the slight deviation from harmonic
oscillation in both plots; the valleys appear to be slightly broadened compared
to the peaks. This is due to leakage to the |1 ↓↓⟩ state through the rotating
coupling term α†σ−, which in Fig. 3.2 is depicted as the dotted green line. In
this coupling, a spin is relaxed from spin-up to spin-down (σ−) and a magnon
excitation created (α†). The energies associated with the |0 ↑↓⟩ and |0 ↓↑⟩ states
are zero, as the two opposite spins cancel the contribution from one another.
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Figure 3.2: Time evolution of Hamiltonian in Eq. 3.26, initialized in |0 ↑↓⟩, depicting
occupation probabilities of |0 ↑↓⟩ (solid blue line), |0 ↓↑⟩ (solid orange line), and |1 ↓↓⟩
(dotted green line). In this simulation, ω0 = ωq, gR = 0.1ωq and gCR = 0 was employed.

The |1 ↓↓⟩ state has an energy of ω0 − ωq. Therefore, for ω0 ≈ ωq, the states are
degenerate, facilitating the transition. Crucially, this leakage prevents the qubits
from evenly mixing without influence from states outside the qubit subspace. Due
to the probability for the system to simultaneously leak into |1 ↓↓⟩ (visible as
peaks in the dotted green lines), the |0 ↑↓⟩ and |0 ↓↑⟩, the crossing point between
the two states is lowered.

We now include magnon squeezing by setting gCR = gR = 0.1ωq. As in
Fig. 3.2, we initialize in |0 ↑↓⟩ and calculate the evolution of the |0 ↑↓⟩, |0 ↓↑⟩,
|1 ↓↓⟩, and |1 ↑↑⟩ states with the magnon energy at resonance, shown in Fig 3.3.
Although the inclusion of the squeezed magnons has decidedly made the evolution
more complicated than in Fig. 3.2, the two qubits still exchange their states.
As before, the |0 ↑↓⟩ (solid blue) and |0 ↓↑⟩ (solid orange) states are coupled to
|1 ↓↓⟩ (dotted green) through the rotating coupling. Through the introduction
of squeezed magnons, they are also able to excite a magnon and excite a spin
(α†σ+), which couples them to the |1 ↑↑⟩ state (dotted yellow). However, leakage
into this state is minimal, evident by the probability of |1 ↑↑⟩ to be occupied
being close to zero in Fig. 3.3. This is likely due to this state having an energy
of ω0 + ωq, higher than that of the other three states considered here.

As noted above, the significant leakage to the |1 ↓↓⟩ state we may observe
in Figs. 3.2 and 3.3 is likely due to this state being degenerate with |0 ↑↓⟩ and
|0 ↓↑⟩ when the magnon energy is resonant with the qubit splitting. To mitigate
this leakage issue we now consider systems in which the magnon energy is tuned
away from resonance, setting ω0 = 2ωq, lifting the aforementioned degeneracy.

We first consider a system comprised of an isotropic ferromagnet, setting
the counter rotating term gCR to be zero. We once again initialize in |0 ↑↓⟩,
and calculate the time evolution of the |0 ↑↓⟩, |0 ↓↑⟩, |1 ↓↓⟩ and |1 ↑↑⟩ states for
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Figure 3.3: Time evolved occupation probabilities of |0 ↑↓⟩ (solid blue), |0 ↓↑⟩ (solid
orange), |1 ↓↓⟩ (dotted green) and |1 ↑↑⟩ (dotted yellow), with initial state |ψ(0)⟩ =
|0 ↑↓⟩, at resonance (ω0 = ωq) and including magnon squeezing so that gR = gCR =
0.1ωq.

a system with the magnon energy tuned away from resonance. The resulting
time evolution is shown in Fig. 3.4a. As we can see, the |1 ↓↓⟩ and |1 ↑↑⟩
states are barely occupied, indicating that the leakage issue has indeed been
mitigated. Furthermore, we observe that the |0 ↑↓⟩ and |0 ↓↑⟩ states show well-
behaved coherent switching, and are able to evenly mix. This is in contrast to
the situation depicted in Fig 3.2, where the leakage into |1 ↓↓⟩ prevented even
mixing of the states. Similar conclusions may be drawn from Fig. 3.4b, in which
we have introduced anisotropy to the ferromagnet, setting gCR = 0.1ωq. The
parameters are otherwise the same as the ones used to calculate the evolution in
Fig. 3.4a. Once again, we calculate the time evolution of the |0 ↑↓⟩, |0 ↓↑⟩, |1 ↓↓⟩
and |1 ↑↑⟩, initializing in |0 ↑↓⟩. Qualitatively, the time evolution is identical to
the isotropic ferromagnet system. We observe a slight increase in the switching
frequency of the qubits, likely due to the inclusion of the counter-rotating term
increasing the coupling strength between the qubit states.
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(a)

(b)

Figure 3.4: Time evolved occupation probabilities of |0 ↑↓⟩ (solid blue), |0 ↓↑⟩
(solid orange), |1 ↓↓⟩ (dotted green) and |1 ↑↑⟩ (dotted yellow), with initial state
|ψ(0)⟩ = |0 ↑↓⟩, with magnon energy tuned to ω0 = 2ωq and gR = 0.1ωq. a) Time
evolution calculated for a system with an isotropic ferromagnet, gCR = 0. b) Time
evolution calculated for a system with an anisotropic ferromagnet, gCR = 0.1ωq.





Chapter 4

Coupled singlet-triplet
Hamiltonian

Building on the framework established in the single spin qubit case, we now expand
the system to include a second quantum dot on each side of the ferromagnet. The
setup is sketched in Fig. 4.1. Each DQD on either side of the ferromagnet hosts
two electrons that may either inhabit the (1,1) or (0,2) charge configurations.
The DQDs are subjected to a relative electrostatic potential described by the
detuning parameter ε. We assume the dots to be small enough and the relative
electrostatic potential of the dots to be tuned so that the orbital level splitting
between the (0,2) singlet and triplet states is sufficiently large that any occupation
probability of the (0,2) triplet may be safely neglected. Furthermore, the DQDs
are exposed to a uniform external magnetic field B in order to lift the degeneracy
of the spin-up and spin-down states.

The two dots in the DQD are tunnel coupled to one another, hybridizing the
singlet states. However, due to the limited range of the exchange interaction,
only the dot closest to the ferromagnet experiences the exchange coupling to
the magnet. To account for this we include a magnetic field gradient ∆B across
the two quantum dots. This gradient may be understood by considering the
contribution to σ̂z derived in Eq. 3.20, which will only apply for the closest of
the dots. A second contribution to the gradient is due to the demagnetization
field of the ferromagnet varying across the double dot system. We will not derive
the exact form of the magnetic field gradient in this thesis, but rather take it as
a parameter of the system.

We describe the DQD system through the {|T+⟩ , |T0⟩ , |S11⟩ , |T−⟩ , |S02⟩}
states. Here, the |T±⟩ states refer to the polarized triplet states |↑↑⟩ and |↓↓⟩.
The leftmost arrow in |↑↑⟩ and |↓↓⟩ denotes the spin in the dot closest to the
ferromagnet. For brevity the indices indicating the dot hosting the electron spin
have been dropped for states in the (1,1) charge configuration. The |T0⟩ (|S11⟩)
state refers to the unpolarized triplet (singlet) state 1√

2(|↑↓⟩ ± |↓↑⟩). Finally, the
|S02⟩ state refers to the (0,2) configuration singlet state, |↑2↓2⟩, where the indices
denote that the spins are located in the second dot.

The qubit states |0⟩ and |1⟩ are encoded in the second and third lowest energy

35
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Figure 4.1: Schematic of the ferromagnetically coupled double quantum dot system.
The ferromagnet is depicted in blue, with two quantum dots depicted in gray on either
end of the magnet, each hosting two spins.

eigenstates of the DQD Hamiltonian, respectively. These energies may be seen in
Fig. 4.2, in which the energies of each eigenstate of the DQD system is calculated
numerically as a function of the detuning parameter. The energy of the |1⟩ state
corresponds to the green line, while the energy of the |0⟩ state corresponds to the
orange line. As we can see from Fig. 4.2, the difference in energy between these
states varies depending on the choice of detuning parameter. This allows us to
tune the qubit splitting via varying the relative electrostatic potential between
the two quantum dots.

In the derivation of the system Hamiltonian, and subsequently, an effective
Hamiltonian, we will be working in a basis constructed from the eigenstates of the
DQD. However, as we will see in Sec. 4.3, these eigenstates are quite complicated
superpositions of the |T0⟩, |S11⟩, |S02⟩ states. Thus, to gain an understanding
of the system, we begin by working in the {|T+⟩ , |↑↓⟩ , |↓↑⟩ , |T−⟩ , |S02⟩}-basis,
which we will call the |↑↓⟩-basis for brevity. This choice of basis is motivated by

Figure 4.2: Numerically calculated energy spectrum of the DQD system as a function
of the detuning parameter ε. The dotted blue line depicts the zero energy point. In
contrast to Fig. 1.3, we include a magnetic field gradient across the DQD system,
setting ∆B = 0.2B0. The dotted black lines correspond to energies of ±∆B. Starting
from the top, the energies correspond to the |T+⟩, |2⟩, |1⟩, |0⟩, and |T−⟩ states, as
described in Eq. 4.13. For both plots, the tunnel coupling is t = 0.2B0. The DQD is
exposed to a uniform external magnetic field of B = B0ẑ.
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recognizing that, for sufficiently negative detuning parameters, the |0⟩ and |1⟩
states may be approximated by the |↓↑⟩ and |↑↓⟩ states, respectively.

To understand this, consider the energy spectrum in Fig. 4.2 for ε ≤ −0.5B0,
for which we may consider the mixing of the |S11⟩ and |S02⟩ due to the tunnel
coupling to be quite small. Thus, if we disregard for the moment the magnetic field
gradient (as in Fig. 1.3), the |0⟩ and |1⟩ states consist mainly of the |S11⟩ and |T0⟩
states, respectively, and these states are close to degenerate. Re-introducing the
magnetic field gradient lifts the degeneracy and causes the |S11⟩ and |T0⟩ states to
hybridize. If the eigenstates were exactly even mixtures of these states, this would
correspond to the states |0⟩′ = 1√

2(|T0⟩ − |S11⟩) and |1⟩′ = 1√
2(|T0⟩ + |S11⟩), which

are precisely the |↓↑⟩ and |↑↓⟩ states. These states would, in the absence of tunnel
coupling, have energies of ±∆B, respectively. These energy levels are depicted
as the dotted black lines in Fig. 4.2. We see that the energies of the |0⟩ and |1⟩
deviate slightly from these energy levels, implying that the actual eigenstates
will differ from |↓↑⟩ and |↑↓⟩. However, this energy shift is small enough that
considering |↓↑⟩ and |↑↓⟩ as the qubit states is a reasonable approximation for
values of ε that are negative and sufficiently far from zero.

Using the |↑↓⟩-basis and restricting our analysis to a regime where ε is negative
thus allows us to consider the simple |↓↑⟩ and |↑↓⟩ states rather than the more
complicated actual eigenstates, and perform the derivation whilst maintaining a
firmer grasp on the physical processes the Hamiltonian describes. This allows us
to better understand the choices made when perturbatively obtaining an effective
Hamiltonian, which will be useful when proceeding with the eigenstate basis.

Naturally, any state of the full coupled system will include information about
the magnon occupation number as well as the state of each of the DQDs. These
states will be written as |nϕ1ϕ2⟩. Here, n denotes the number of magnon ex-
citations present in the system. The states of the DQDs on either side of the
ferromagnet are described by ϕ1,2, respectively. For states with n = 0 we will
omit the magnon excitation number from the state label, writing simply |ϕ1ϕ2⟩.

4.1 In the |↑↓⟩-basis

Consider the DQD Hamiltonian in the {|T+⟩ , |↑↓⟩ , |↓↑⟩ , |T−⟩ , |S02⟩}-basis. The
applied magnetic field only has a net effect on the polarized states |T±⟩; for
the remaining states the contribution from the spin-up and spin-down electrons
cancel one another. The magnetic field gradient between the dots due to the
demagnetization field serves to lift the degeneracy of the |↑↓⟩ and |↓↑⟩ states.
The relative electrostatic potential between the dots is taken into account by the
detuning parameter ε lowering or raising the energy of the |S02⟩ state. Finally,
the |↑↓⟩ and |↓↑⟩ states are tunnel coupled to the |S02⟩ state and vice versa. As
the tunneling process does not involve a spin flip, this is not possible for the
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triplet states. This results in the DQD qubit Hamiltonian

Ĥq = B(|T+⟩ ⟨T+| − |T−⟩ ⟨T−|)
+ ∆B(|↑↓⟩ ⟨↑↓| − |↓↑⟩ ⟨↓↑|) − ε |S02⟩ ⟨S02|

+ t√
2

(|↑↓⟩ ⟨S02| − |↓↑⟩ ⟨S02|) + h.c.

(4.1)

Alternatively, we may write this Hamiltonian as a matrix by making use of Heisen-
berg’s matrix formulation of quantum mechanics, in which quantum mechanical
operators in a N -dimensional Hilbert space are represented as NxN -dimensional
matrices, and states as N -dimensional column vectors [63]. In this formulation,
Ĥq becomes

Ĥq =



B 0 0 0 0
0 ∆B 0 0 t√

2
0 0 −∆B 0 − t√

2
0 0 0 −B 0
0 t√

2 − t√
2 0 −ε

. (4.2)

Furthermore, we need to construct new spin excitation and relaxation oper-
ators, σ̂+ and σ̂− for this choice of basis. These operators only act on the spin
in the dot closest to the ferromagnet, consistent with the limited range of the
exchange coupling. With this limitation in mind, we obtain

σ̂1,+ =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

, σ̂1,− =


0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

, (4.3)

where the subscript 1 denotes that the operators act on spin states of electrons
in the dot closest to the ferromagnet.

As in the single spin qubit case, all operators need to be written in the
Hilbert space of the combined system. Thus, we redefine Ĥq = Ĥ(1)

q + Ĥ(2)
q , where

Ĥ(1)
q = IN ⊗Ĥq⊗I5 and Ĥ(2)

q = IN ⊗I5⊗Ĥq. IN and I5 are the N-dimensional and
5-dimensional identity matrices, respectively, where N is the number of allowed
magnon states in the system. While the parameters in the DQD Hamiltonian
of each double dot in principle may differ from the other double dot, we here
assume the DQDs to be identical. In Sec. 5.1 we will briefly consider the effect of
introducing a small difference between the detuning parameters ε1, ε2 of the two
DQDs. Similarly, the spin excitation and relaxation operators for each double
dot are constructed as σ̂(1)

1,± = IN ⊗ σ̂1,± ⊗ I5 and σ̂
(2)
1,± = IN ⊗ I5 ⊗ σ̂1,± in the

combined Hilbert space. Furthermore, the magnon operators are defined as
α̂(†) = α̃(†) ⊗ I5 ⊗ I5, where α̃(†) is the annihilation (creation) operator for a
squeezed magnon excitation in the ferromagnet as defined in Sec. 3.2. This allows
us to obtain the interaction Hamiltonian, as in the single qubit case, as

Ĥint =
∑
i=1,2

[
gR
(
α̂†σ̂

(i)
1,− + α̂σ̂

(i)
1,+

)
+ gCR

(
α̂†σ̂

(i)
1,+ + α̂σ̂

(i)
1,−

)]
. (4.4)
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The ferromagnet Hamiltonian is unchanged by the transition from coupling a
single quantum dot to a DQD, and may still be written as in Eq. 3.15. The full
system Hamiltonian for two DQDs coupled through a ferromagnet may then be
written as

Ĥ = Ĥq + Ĥint + ĤF . (4.5)

As mentioned in Sec. 2.5, the actual Hilbert space of this Hamiltonian is
too large to be considered in its entirety. In the following derivations we will
work in the simplest reduced Hilbert space that still captures the interaction
between the DQDs and the ferromagnet by setting N = 2 and disregarding
any states with magnon occupation numbers n > 1. As even this simplification
results in a Hamiltonian existing in a 50-dimensional Hilbert space, we will
construct and handle the system Hamiltonian in Wolfram Mathematica [64].
To do so we may once again make use of the matrix formulation of quantum
mechanics, and represent the Hamiltonian and its basis states as matrices and
vectors, respectively. Such vectors and matrices may easily be constructed and
manipulated in Mathematica using its symbolic computation capabilities.

Fig. 4.3a shows a schematic of the full Hamiltonian as obtained in Eq. 4.5,
each red mark corresponding to a non-zero matrix element. This way of depicting
the Hamiltonian, while not giving any information about the actual form of each
of the non-zero matrix elements will enable us to visualize how the Hamiltonian
consists of blocks and coupling elements between said blocks. This will allow us
to identify the subspaces of the Hamiltonian that we wish to decouple using the
Schrieffer-Wolff transformation. In Fig. 4.3, meshes have been added to more
easily recognize the block structure of the Hamiltonian. The top left and bottom
right blocks contain states in the n = 0 and n = 1 subspaces, respectively, while
the top right and bottom left contain coupling terms between these subspaces.
We may interpret this Hamiltonian as the sum of an unperturbed Hamiltonian
Ĥ0 = Ĥq + ĤF , shown schematically in Fig. 4.3b, and a perturbation V̂ = Ĥint,
shown in Fig. 4.3c. This allows us to reduce the Hamiltonian to the sum of a
part that we understand quite well, i.e. an isolated DQD system and an isolated
ferromagnet, and the interaction between the two.

These Hamiltonians are block diagonal and block off-diagonal, respectively.
The elements of the block off-diagonal perturbation Hamiltonian are all Vij ∝
gR, gCR, as these coupling terms correspond to processes that alter the number of
magnon excitations in the system. For magnon energies ω0 that are significantly
larger than the energy splitting of the qubit and the applied magnetic field,
the subspaces of states with magnon occupations of n = 0 and n = 1 are well
separated in energy, allowing us to perform a Schrieffer-Wolff transformation to
incorporate the effects of the n = 1 block into the n = 0 block, as detailed in Sec.
2.5. This will allow us to directly assess the effective coupling between states that
may be coupled through a state containing a magnon excitation.

For instance, the |T+T−⟩ state may relax a spin up in the state of the left
dot (|T+⟩) and excite a magnon through the gRα̂†σ̂1,− term in the interaction
Hamiltonian, resulting in the |1 ↓↑ T−⟩ state. This state may then annihilate its
magnon excitation and excite a spin in the state of the right dot (|T−⟩) through
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the gRα̂σ̂1,+ term, so that the state transitions to the |↓↑ ↑↓⟩ state in the n = 0
subspace. Through the second order SW transformation, this coupling path, and
any other two-step coupling path between states in the n = 0 and n = 1 subspace,
will be included through the appearance of coupling elements between the initial
and final states in the n = 0 subspace. There are, of course, coupling paths that
require four or more steps to return to the initial subspace. These may, as we
shall see, be included by performing higher order SW transformations. We begin
by performing the transformation to second order.

However, as the unperturbed Hamiltonian contains off-diagonal terms, cal-
culating the generator of the SW transformation is not trivial. To facilitate the
calculation, we transform Ĥ0 into a diagonal form. The off-diagonal in Ĥ0 terms
result from the tunnel coupling between the states in the DQD Hamiltonian Ĥq.
We therefore need to rewrite Ĥq on a diagonal form. To do so, we perform a
second order SW transformation on Ĥq in order to perturbatively include the
effect of the tunnel coupling on the |↑↓⟩ and |↓↑⟩ states. Note that the accuracy
of this transformation, as described in Sec. 2.5, depends on the energy difference
between the |↑↓⟩ / |↓↑⟩ states and the |S02⟩ state being significantly larger than
the tunnel coupling between them. Assuming the magnitude of the detuning
parameter |ε| to be larger than the tunnel coupling, we rewrite Ĥq as Ĥq = H0 +V ,
where

H0 = B(|T+⟩ ⟨T+| − |T−⟩ ⟨T−|)
+ ∆B(|↑↓⟩ ⟨↑↓| − |↓↑⟩ ⟨↓↑|) − ε |S02⟩ ⟨S02| ,

V = t√
2

(|↑↓⟩ ⟨S02| − |↓↑⟩ ⟨S02|) + h.c.

(4.6)

As the unperturbed Hamiltonian H0 is diagonal, we obtain a generator S1
for the SW transformation through Eq. 2.31 and perform a second order SW

(a) (b) (c)

Figure 4.3: Schematic plots of a) full system Hamiltonian Ĥ, b) the unperturbed
Hamiltonian Ĥ0 = Ĥq + ĤF , and c) the perturbation V̂ = Ĥint, in the |↑↓⟩-basis.
Each red square corresponds to a non-zero element in the matrix. The operators have
dimensions of 50x50, which are separated into four 25x25 blocks. The top left block
contains states with magnon occupation number n = 0, while the bottom right block
contains states with magnon occupation number n = 1. The two remaining blocks
contain elements that couple the two subspaces.



4.2. EFFECTIVE HAMILTONIAN IN THE |↑↓⟩-BASIS 41

transformation to obtain the effective Hamiltonian

H̃q =



B 0 0 0 0
0 ∆B + t2

2(∆B+ε)
t2ε

2(∆B2−ε2) 0 0
0 t2ε

2(∆B2−ε2) −∆B − t2

2(∆B−ε) 0 0
0 0 0 −B 0
0 0 0 0 ε(t2−∆B2+ε2)

∆B2−ε2

, (4.7)

for the DQD qubit.
We now argue that the leading order correction due to the tunnel coupling

has been taken into account by the shift in energies of the |↑↓⟩ and |↓↑⟩ states,
equivalent to the second order energy correction in perturbation theory (Eq. 2.24).
The remaining correction, the off-diagonal elements in Eq. 4.7, may be discarded
as long as this coupling element is significantly smaller than ∆B, which will be
the case for sufficiently negative values of ε. Thus, for the parameter regime that
is considered here, we may proceed with only the diagonal elements of H̃q.

Finally, as the SW transformation performed above slightly alters the states
in the DQD basis, the spin excitation and relaxation operators of Eq. 4.3 are no
longer strictly correct. To account for this we transform them in the same way,
setting

σ̃1,+ = eS1σ̂1,+e
−S1 , σ̃1,− = eS1σ̂1,−e

−S1 , (4.8)

retaining terms to second order in S1. The structure of the full Hamiltonian
constructed with these updated operators is shown in Fig. 4.4. As expected, the
unperturbed Hamiltonian, visible in the top left and bottom right 25x25 blocks,
is now diagonal. Furthermore, we observe that the structure of the coupling
between them, in the two off-diagonal blocks, has changed from Fig. 4.3. To
understand this, consider the effect of the SW transformation on the states in the
chosen basis. In addition to altering the Hamiltonian, the states in the basis have
been transformed so that |↑↓⟩ −→ eS1 |↑↓⟩, |↓↑⟩ −→ eS1 |↓↑⟩, and |S02⟩ −→ eS1 |S02⟩.
As the |T+⟩ and |T−⟩ states are unaffected by the perturbation, they remain
unchanged by the transformation. Thus, the transformed spin excitation and
relaxation operators of Eq. 4.8 no longer act on the pure |↑↓⟩ and |↓↑⟩ states.
Rather, they act on states that are mixtures of the |↑↓⟩, |↓↑⟩, and |S02⟩ states.
Therefore, several new coupling elements have been introduced in Fig. 4.4 as
compared to the coupling elements shown in Fig. 4.3c. To separate the pure
states from the transformed states we will denote the latter as |ϕ⟩S, so that
|ϕ⟩S = eS1 |ϕ⟩.

4.2 Effective Hamiltonian in the |↑↓⟩-basis
Having obtained a suitable full system Hamiltonian, in the case that we limit the
possible magnon occupation numbers to n = 0 and n = 1, we now want to obtain
an effective low-energy Hamiltonian that adequately reproduces the dynamics of
the full Hamiltonian. Obtaining such an effective Hamiltonian will enable us to
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Figure 4.4: Schematic plot of the full system Hamiltonian in the |↑↓⟩-basis. The
top left and bottom right 25x25 blocks contain the diagonal unperturbed Hamiltonian
for states with magnon occupation numbers of n = 0 and n = 1, respectively. The
remaining two blocks contain the perturbation that couples the two aforementioned
blocks.

evaluate how the each of the system parameters influences the behavior of the
qubit. This, in turn, will allow us to predict parameter regimes that may enhance
the qubit coupling and limit leakage.

We begin by decoupling the n = 0 and n = 1 magnon subspaces, so that we
may consider only states in the n = 0 subspace. By applying a SW transformation
to the full system Hamiltonian, taking the off-diagonal terms as the perturbation,
we may include the effects of the coupling via the n = 1 magnon subspace into
the Hamiltonian for the n = 0 subspace, as described in Sec. 4.1. Note that the
accuracy of this transformation depends on the n = 0 and n = 1 blocks to be well
separated in energy, so that the perturbation is much smaller than the energy
difference between the states it couples, that is, |Vij| ≪ |Ei − Ej|. For this to
hold we assume the magnon energy ω0 to be significantly larger than the energy
scale of the qubit. This assumption further justifies the limitation on the magnon
occupation number; states with higher magnon occupation numbers will be far
removed in energy, and transitions to these states become unlikely.

As the unperturbed Hamiltonian Ĥ0 = H̃q + ĤF is diagonal, we may simply
calculate the second order SW transformation using Eq. 2.36. The resulting
effective Hamiltonian is shown schematically in Fig. 4.5a. The n = 0 and n = 1
blocks are indeed decoupled, and effective coupling elements have been introduced
between states within each block.

Turning our focus specifically to the coupling between the |↑↓ ↓↑⟩S and
|↓↑ ↑↓⟩S states, we observe that these states are not coupled in the effective
Hamiltonian we have obtained. That is, ⟨↑↓ ↓↑|H̃|↓↑ ↑↓⟩S = ⟨↓↑ ↑↓|H̃|↑↓ ↓↑⟩S =
0, where H̃ is the effective Hamiltonian. This may be seen in Fig. 4.5a, where
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these matrix elements have been outlined in black.
To understand this we may turn to the interaction Hamiltonian, consisting of

terms that excite or annihilate magnon and spin excitations, one at a time. If
we, for the moment, disregard the magnon excitations and view the interaction
as simply flipping one spin state at the time, it is evident that two spin flips
is insufficient to transition between the |↑↓ ↓↑⟩ and |↓↑ ↑↓⟩ states. As the spin
states of four electrons need to be flipped, the shortest possible coupling path
is fourth order in the interaction. An example of such a path, disregarding any
change in magnon excitations, may be

|↑↓ ↓↑⟩ −→ |↓↓ ↓↑⟩ −→ |↓↑ ↓↑⟩ −→ |↓↑ ↑↑⟩ −→ |↓↑ ↑↓⟩ ,

where we see that four transtitions are indeed required. Thus, in order for this
effective coupling to be included in the n = 0 subspace, we need to perform the
SW transformation to fourth order.

Performing the transformation as presented in Eq. 2.40 yields an effec-
tive Hamiltonian whose structure is shown in Fig. 4.5b. The coupling terms
⟨↑↓ ↓↑|H̃|↓↑ ↑↓⟩S = ⟨↓↑ ↑↓|H̃|↑↓ ↓↑⟩S are once again outlined in black. While
they are too algebraically complicated to be easily displayed here, they are indeed
non-zero, confirming that the coupling between the states is fourth order in the
perturbation.

Thus, we see that, using the SW transformation we are indeed able to obtain
effective coupling elements between the |↑↓ ↓↑⟩S and |↓↑ ↑↓⟩S states, and we
observe that such a coupling is necessarily fourth order in the perturbation.
Given the similarity between these states and actual qubit states, we expect to
be able to obtain similar results for |10⟩ and |01⟩ when we now proceed in the
eigenstate basis.

4.3 In the eigenstate basis
Recall that we encode the qubit in the second and third lowest energy eigenstates
of the DQD system. While the |↑↓⟩-basis used in the previous section succeeds in
presenting an intuitive picture of the DQD system, it is limited by not explicitly
including the qubit states. We now turn to a DQD Hamiltonian constructed from
a basis of the eigenstates of the DQD system. To do so we consider first a DQD
Hamiltonian in the {|T+⟩ , |T0⟩ , |S11⟩ , |S02⟩ , |T−⟩}-basis,

Ĥq =


B 0 0 0 0
0 0 ∆B 0 0
0 ∆B 0 t 0
0 0 t −ε 0
0 0 0 0 −B

. (4.9)

From the above Hamiltonian we may already note that the |T±⟩ states are
eigenstates of the DQD system, with eigenenergies E± = ±B. Thus, to find the
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(a) (b)

Figure 4.5: Schematic plots of effective full system Hamiltonians in the ↑↓-basis,
transformed through a) second order and b) fourth order SW transformations. The
top left block contains states in the n = 0 magnon subspace, while the bottom right
block contains states in the n = 1 magnon subspace. As the remaining two blocks
contain no non-zero elements, the n = 0 and n = 1 blocks are decoupled and may be
treated independently. The coupling elements ⟨↑↓ ↓↑|H̃|↓↑ ↑↓⟩S and ⟨↓↑ ↑↓|H̃|↑↓ ↓↑⟩S
are outlined in black in both plots.

remaining eigenstates we proceed by diagonalizing the reduced Hamiltonian in
the {|T0⟩ , |S11⟩ , |S02⟩}-basis,

Ĥ ′
q =

 0 ∆B 0
∆B 0 t

0 t −ε

. (4.10)

Doing so results in the eigenstates

|ψi⟩ = ai |T0⟩ + bi |S11⟩ + ci |S02⟩

ai = ∆B(ε+ Ei)
tEiχi

bi = ε+ Ei
tχi

ci = 1
χi

χi =

√√√√1 + (E2
i + ∆B2)(Ei + ε)2

E2
i t

2

(4.11)

where i = {0, 1, 2} and Ei being the energy of the corresponding state |ψi⟩. These
energies are the roots of the third degree polynomial

λ3 + ελ2 −
(
t2 + ∆B2

)
λ− ∆B2ε = 0. (4.12)
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The solutions to this equation may be derived to obtain exact expressions for each
eigenenergy. We will, however, proceed with the energies Ei as parameters in the
DQD Hamiltonian and insert numerically determined values when needed. Thus
we may simply write the DQD Hamiltonian in the {|T+⟩ , |ψ2⟩ , |ψ1⟩ , |ψ0⟩ , |T−⟩}-
basis as

Ĥq =


B 0 0 0 0
0 E2 0 0 0
0 0 E1 0 0
0 0 0 E0 0
0 0 0 0 −B

, (4.13)

where the energies and corresponding eigenstates have been chosen such that
E0 < E1 < E2. The qubit is encoded in the |ψ0⟩ and |ψ1⟩ states, so we define
|0⟩ = |ψ0⟩, |1⟩ = |ψ1⟩, and |2⟩ = |ψ2⟩.

As in the |↑↓⟩-basis, we need to rewrite the spin excitation operators of the
interaction Hamiltonian for this choice of basis. This yields

σ̂+ =



0 a2−b2√
2

a1−b1√
2

a0−b0√
2 0

0 0 0 0 a2+b2√
2

0 0 0 0 a1+b1√
2

0 0 0 0 a0+b0√
2

0 0 0 0 0

, σ̂− =



0 0 0 0 0
a2−b2√

2 0 0 0 0
a1−b1√

2 0 0 0 0
a0−b0√

2 0 0 0 0
0 a2+b2√

2
a1+b1√

2
a0+b0√

2 0

.

(4.14)
Note that none of the ci-components appear in these operators; this is to be
expected as the excitation or relaxation of a spin only affects states in the (1,1)
charge configuration. As with the eigenenergies, we proceed with the variables
ai, bi, and ci rather than inserting their full expressions, and keep in mind that
they all depend on t, ε, and ∆B. While this does obscure the relations between
the physical parameters of the system and the variables in the Hamiltonian, it also
greatly simplifies calculations and allows us to maintain manageable expressions
in the forthcoming analysis. We may then reinsert the actual expressions at the
end of our calculations.

Restricting our analysis to systems hosting either n = 0 or n = 1 magnons, we
construct the 50x50 Hamiltonian shown schematically in Fig. 4.6. As expected
it consists of two diagonal blocks of states with magnon occupation numbers
n = 0 and n = 1, respectively, and two off-diagonal blocks of coupling elements
Vij ∝ (ak ± bk)gR, gCR. By comparison to Fig. 4.4, we see that the structure of
the Hamiltonian in the eigenstate basis is quite similar to that of the Hamiltonian
in the |↑↓⟩-basis for the transformed DQD Hamiltonian H̃q. This is consistent
with the earlier arguments on the similarities of the |↑↓⟩ and |↓↑⟩ states to the
actual eigenstates of the Hamiltonian.

4.4 Effective Hamiltonian in the eigenstate basis
As in Sec. 4.2, we wish to obtain an effective Hamiltonian that reproduces the
behavior of the qubits as determined by the full system Hamiltonian. Specifically,
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Figure 4.6: Schematic plot of the full system Hamiltonian in the eigenstate basis.
The two blocks on the diagonal correspond to the n = 0 and n = 1 magnon subspaces,
respectively, while the off-diagonal blocks contain terms coupling these subspaces.

we are interested in the behavior of the system when initialized in the |10⟩ and
|01⟩ states. The goal of this section is therefore to obtain a Hamiltonian describing
the effective coupling between these two states, as well as any leakage out of the
qubit subspace.

If we once again require that the magnon energy ω0 is significantly larger than
the qubit splitting energy and the applied magnetic field, we may interpret the
Hamiltonian shown in Fig. 4.6 as consisting of a block diagonal unperturbed
Hamiltonian, Ĥ0 = Ĥq + ĤF , and a block off-diagonal perturbation, V̂ = Ĥint, for
which the criterion for the validity of the SW transformation, |Vij| ≪ |Ei − Ej|,
holds. We perform a second order SW transformation as derived in Eq. 2.36 to
decouple the n = 0 and n = 1 magnon subspaces, perturbatively including the
effect of the coupling between the two within each of the blocks. The result of
this transformation is presented schematically in Fig. 4.7a. Once again, we see
that the subspaces are decoupled, but as in the |↑↓⟩-basis, the coupling elements
between the |01⟩ and |10⟩ states, outlined in black, are zero. This implies that,
like the transition between the |↑↓ ↓↑⟩ and |↓↑ ↑↓⟩ states, the transition between
|01⟩ and |10⟩ requires at least four actions by the perturbation Ĥint. If we recall
the discussion on the close relation between the |↑↓⟩ and |↓↑⟩ states and the
eigenstates in the beginning of the chapter, this is to be expected.

We perform the SW transformation to fourth order to obtain an effective
Hamiltonian H̃, which is plotted schematically in Fig. 4.7b. The coupling terms
⟨01|H̃|10⟩ = ⟨10|H̃|01⟩ are once again outlined in black. We observe that they
are indeed non-zero, and while they are too large to be easily included here, we
note that they are fourth order in the coupling terms gR, gCR, as expected.

Having decoupled the subspaces with different magnon occupation numbers
we may proceed with only the n = 0 subspace. We now show that, by considering
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(a) (b)

(c)

Figure 4.7: Schematic plots of effective Hamiltonians in the eigenstate basis, trans-
formed through a) second order and b) fourth order SW transformations. The top
left block contains states in the n = 0 magnon subspace, while the bottom right block
contains states in the n = 1 magnon subspace. As the remaining two blocks contain
no non-zero elements, the n = 0 and n = 1 blocks are decoupled and may be treated
independently. The coupling elements ⟨01|H̃|10⟩ and ⟨10|H̃|01⟩ are outlined in black
in both a) and b). In c) we show a schematic plot of the reorganized top left block
of the Hamiltonian in b). Note that, while the plots in a) and b) have dimensions of
50x50, the plot in c) has dimensions of 25x25, and only depicts the n = 0 subspace.
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the rotating and counter-rotating terms in the interaction Hamiltonian more
closely, and specifically the effect they have on the total number of excitations
of the system, we may further divide this into two decoupled subspaces. In
this context, the excitations in question may be either spin states or squeezed
magnons.

The rotating term gR(α̂†σ̂− + α̂σ̂+) exchanges a spin excitation for a magnon
excitation, or vice versa. Thus, the rotating coupling conserves the total excitation
number. The counter-rotating term gCR(α̂†σ̂+ + α̂σ̂−), however, describes the
simultaneous relaxation or excitation of a spin and a magnon, thus changing the
total number of excitations by ±2. As only transitions changing the number of
excitations by 0 or ±2 are possible, the parity of excitations in the system is
conserved. This entails that any even (odd) parity state only couples to other
even (odd) states, creating two decoupled subspaces.

Consider the excitation numbers of each of the states in the DQD Hamiltonian.
The |T0⟩, |S11⟩, and |S02⟩ states all carry net zero spin, being equal parts spin-up
and spin-down. Therefore, as the |0⟩, |1⟩, and |2⟩ states are superpositions of
states with net zero excitations, they too carry net zero excitations. The polarized
triplet states |T±⟩, on the other hand, carry a net spin of ±1.

We now consider the combined excitation numbers of the states in the n = 0
subspace, which is summarized in Table 4.1. Any state that is a combination of
two of the |0⟩, |1⟩, and |2⟩ states, for instance the |01⟩ state, will carry zero total
excitation. The same is true for the |T+T−⟩ and |T−T+⟩ states. Any state that is
a combination of one of the |T±⟩ states and one of the |0, 1, 2⟩ states, will carry
a total excitation number of ±1. Finally, the |T+T+⟩ and |T−T−⟩ states carry a
total excitation number of ±2, respectively.

In Fig. 4.7c we include a schematic plot of the n = 0 subspace wherein
we have reorganized the basis to show that the even and odd parity subspaces
are indeed decoupled. The top left block in Fig. 4.7c contains the even parity
states |11⟩, |10⟩, |01⟩, |00⟩, |T+T−⟩, |T−T+⟩, |T+T+⟩, |22⟩, |20⟩, |21⟩, |02⟩, |12⟩,
and |T−T−⟩. As the qubit states we are interested in, being states containing |0⟩
and |1⟩, are included in the even parity subspace we may safely disregard the
odd parity subspace. Doing so, we have obtained a 13x13 effective Hamiltonian
describing the coupled qubit system.

In order to understand the suitability of the proposed system for qubit coupling,

|T+⟩ (+1) |2⟩ (0) |1⟩ (0) |0⟩ (0) |T−⟩ (−1)
|T+⟩ (+1) +2 +1 +1 +1 0

|2⟩ (0) +1 0 0 0 -1
|1⟩ (0) +1 0 0 0 -1
|0⟩ (0) +1 0 0 0 -1

|T−⟩ (−1) 0 -1 -1 -1 -2

Table 4.1: Table showing the combined excitation number of each of the 25 states in
the n = 0 subspace of the system Hamiltonian. The numbers in parentheses denote the
excitation number carried by each of the five DQD states.
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Figure 4.8: Numerically calculated energy spectrum of the DQD system as a function
of the detuning parameter ε. Starting from the top, the energies correspond to the
|T+⟩, |2⟩, |1⟩, |0⟩, and |T−⟩ states, as described in Eq. 4.13. The tunnel coupling is
t = 0.2B0. As in Fig. 4.2, we include a magnetic field gradient across the DQD system,
setting ∆B = 0.2B0. The externally applied magnetic field is set to B = 4B0. The
dotted line depicts the zero-point energy.

we need to be able to describe the switching rate between |01⟩ and |10⟩, as well
as the leakage out of the qubit subspace. We limit this analysis to a regime where
both the applied magnetic field B and the magnon energy ω0 are significantly
larger than the qubit splitting. The effect of the increased magnetic field is shown
in Fig. 4.8, where the strength of the external field has been quadrupled from
Fig. 4.2. The states |0⟩, |1⟩, and |2⟩ remain unchanged by this increase, but the
energy difference between these and the |T+⟩ and |T−⟩ states is increased. This is
consistent with Eqs. 4.12 and 4.13, where the energies E0,1,2 are independent of
the external magnetic field. Furthermore, we require the detuning parameter ε to
be negative.

For large B, the |T+T+⟩ and |T−T−⟩ states are far removed from the |01⟩ and
|10⟩ states in energy, and any transition probability to these states may safely
be neglected. The remaining states in the 13x13 Hamiltonian are significantly
closer in energy, however, and require more careful consideration. Using the DQD
energy spectrum in Fig. 4.8, we may construct a diagram of the energies of the
combined |0⟩ and |1⟩ states, along with other combinations of states that will be
close in energy. This diagram is shown in Fig. 4.9. As the energies of the |0⟩
and |1⟩ state are slightly asymmetric around the zero-point energy in Fig. 4.8,
the energy of the combined |01⟩ and |10⟩ is slightly below zero. The combined
states that are closest in energy are the |T+T−⟩ and |T−T+⟩ states, whose energies
are exactly zero. For t = ∆B = 0.2B0 and ε = −0.5B0, the energy difference
between these states is ∆E1 = |E|T+T−⟩ − E|01⟩| = 0.078B0.

As we can see from Fig. 4.9, the remaining states are all farther removed
in energy. The energy difference between the |01⟩ / |10⟩ states and the |11⟩
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and |00⟩ states is, for the same parameters as above, ∆E2 = |E|11⟩ − E|01⟩| =
|E|00⟩ − E|01⟩| = 0.38B0. To first approximation, the coupling between |01⟩ and
|10⟩ and all states except the |T+T−⟩ and |T−T+⟩ states may then be disregarded.
We therefore consider a 4x4 Hamiltonian in the {|10⟩ , |01⟩ , |T+T−⟩ , |T−T+⟩} basis,
neglecting coupling to the remaining 7 states in the above 13x13 Hamiltonian.
This Hamiltonian allows us to evaluate the coupling between the |01⟩ and |10⟩
states and the leakage to the states outside the qubit subspace that are closest in
energy.

The 4x4 Hamiltonian obtained here will, in Sec. 5.2 be compared with the
results of a numerical calculation of the time evolution of the system, to assess
the degree to which this effective Hamiltonian is able to capture the behavior of
the full coupled qubit system. The numerical analysis the effective Hamiltonian
will be compared to is presented in Sec. 5.1.

Figure 4.9: Diagram of the energy levels of the |00⟩, |01⟩, |10⟩, |T+T−⟩, |T−T+⟩, |11⟩,
|02⟩, and |20⟩ states, based on the DQD energy spectrum in Fig. 4.8. States that are
higher in energy than |02⟩ and |20⟩ have been omitted from the diagram. The energy
difference between the |T+T−⟩ / |T−T+⟩ states and the |01⟩ / |10⟩ states is denoted
by ∆E1. For t = ∆B = 0.2B0 and ε = −0.5, this energy difference is ∆E1 = 0.078B0.
Similarly, the energy difference between to the |11⟩ and |00⟩ states is denoted by ∆E2.
For the same parameters, this energy difference is ∆E2 = 0.38B0.



Chapter 5

Results

5.1 Numerical simulations of the DQD system
This section presents numerical simulations of the time evolution of the ferro-
magnetically coupled DQD system for different parameter regimes. As in Sec.
3.4, we solve the TDSE numerically using the QuTiP sesolve function applied
on a matrix Hamiltonian constructed from Eq. 4.5. We show that the proposed
system exhibits coherent switching and low leakage for a wide range of parameters.
As for the single spin case, the code used in these simulations may be found in
Appendix A.2

As in Sec. 3.4, we consider magnon energies tuned both on and off resonance
with the qubit splitting, and systems both with and without the counter-rotating
terms gCR. The energy scale in the following simulations, while in principle abi-
trary, is defined relative to the energy of the |T+⟩ state for a specific magnetic field
B = B0. Furthermore, for ease of notation, the figures in the following sections
will have occupation probabilities denoted simply by the state label |χ⟩, rather
than the more precise |⟨ψ(t)|χ⟩|2, |ψ(t)⟩ being the state of the system at time t.
Unless stated otherwise, the simulations presented in this section used system
Hamiltonians limited to containing a maximum of 6 magnon excitations. As the
matrix Hamiltonian associated with each magnon occupation number is 25x25,
unlike the 4x4 Hamiltonians in the single spin qubit case, the computation time
for each simulation rises more steeply than in the previous section. Simulations
of the DQD system also require significantly more time-steps than the single
spin qubit system, further increasing the computation time of each simulation.
This limit on the number of magnon excitations is therefore chosen in order to
be able to compute the simulations in a reasonable time-scale. In the following
simulations, the strength of the tunnel coupling between the dots was set to
t = 0.2B0, and the magnetic field gradient due to the demagnetization field was
similarly set to ∆B = 0.2B0.

We first consider a system where the magnon energy is tuned to be resonant
with the qubit splitting, which we define as ωq = E1 − E0. Setting ω0 = ωq,
we initialize in the |01⟩ state and evaluate the occupation probabilities of the
|11⟩, |01⟩, |10⟩, and |00⟩ as the system evolves in time. The simulation is carried
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out both in the absence and presence of magnon squeezing, that is, including
and excluding the counter-rotating coupling terms, respectively. The simulation
results shown in Fig. 5.1a were obtained using gCR = 0, while the results in Fig.
5.1b were obtained using gCR = 0.1B0. In both cases, the applied magnetic field
was set to B = 1B0, the detuning parameter was set to ε = −0.3B0, and the
rotating coupling constant was set to gR = 0.1B0.

Recall that, for magnon energies resonant with the qubit splitting, the single
spin qubit system displayed significant leakage out of the qubit subspace. Fur-
thermore, the introduction of magnon squeezing caused the time evolution of the
qubit states to become quite chaotic. These issues are not present for the DQD
system. In Fig. 5.1a, we observe that the qubit states are able to evenly mix,
showing no sign of significant leakage. This is in contrast to the leakage visible in
Fig. 3.2. By comparing Figs. 3.3 and 5.1b, we see that the DQD system, unlike
the single spin qubit system, maintains coherent switching at resonant magnon
energies even when including anisotropy and magnon squeezing. Apart from a
shift in the switching frequency, the DQD system exhibits well-behaved switching
and even mixing both for gCR = 0 and gCR = 0.1B0. The frequency shift is due to
a change in the coupling strength between the |01⟩ and |10⟩ states; when magnon
squeezing is included, additional coupling paths between |01⟩ and |10⟩ become
available through the α̂†σ̂+ and α̂σ̂− terms in the Hamiltonian, altering the total
coupling. Note that the slight broadening of the lines in Fig. 5.1 is due to low
amplitude, high frequency oscillations in the occupation probabilities of the |01⟩
and |10⟩ states, similar to the oscillations visible in Fig. 3.4.

We now consider a system where the magnon energy is tuned well away from
resonance, setting ω0 = 4B0. Once again, we calculate the time evolution of the
|11⟩, |01⟩, |10⟩, and |00⟩ states, initialized in the |01⟩ state, both with and without
the counter-rotating term gCR. The detuning parameter is set to ε = −0.5B0,

(a) (b)

Figure 5.1: Time evolution of the |11⟩, |01⟩, |10⟩, and |00⟩ states, initialized in |01⟩.
The magnon energy is resonant with the qubit splitting, ω0 = ωq, the applied magnetic
field is B = 1B0, and the detuning parameter is ε = −0.3B0. Both simulations use
gR = 0.1B0, t = 0.2B0 and ∆B = 0.2B0. The counter-rotating terms is set to a)
gCR = 0 and b) gCR = 0.1B0.
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and the applied magnetic field is B = 1B0. These simulations are presented in
Figs. 5.2a and 5.2b for gCR = 0 and gCR = 0.1B0, respectively. In both cases,
we observe well behaved coherent switching between, and even mixing of, the
|01⟩ and |10⟩ states, indicating that any leakage out of the qubit subspace is
minimal. This is similar to the behavior of the single spin qubit for detuned
magnon energies, as shown in Figs. 3.4a and 3.4b. As in these figures, we observe
that the only effect of introducing squeezed magnon, setting gCR = 0.1B0, is a
slight increase in the switching frequency between the states.

One of the main benefits of encoding the qubit in DQDs rather than in single
spin quantum dots is that the requirement for highly localized oscillating magnetic
fields are replaced by precised electrical control. However, this precision may
indeed pose a challenge in practical implementations of the proposed system. To
illustrate this we once again calculate the time evolution of the coupled DQD
system initialized in the |01⟩ state, using the same parameters as in Fig. 5.2b.
This time, however, we slightly alter the detuning of one of the dots. The time
evolution of the occupation probabilities of the |11⟩, |01⟩, |10⟩, and |00⟩ states
are plotted in Fig. 5.3. For DQD 1, that is, the DQD initialized in |0⟩, we still set
ε1 = −0.50B0 in both Figs. 5.3a and 5.3b. For DQD 2, initialized in |1⟩, we in Fig.
5.3a set ε2 = −0.5005B0, while we in Fig. 5.3b set ε2 = −0.51B0. We observe
that, as the difference in the detuning parameter between the two DQD increases,
the oscillation between the |01⟩ and |10⟩ states is increasingly suppressed. Note
that this effect is not specific to the current choice of parameters; similar results
are obtained using different parameters, and in systems with the magnon energy
tuned to resonate with the qubit splitting.

This may be understood by considering the requirement for energy to be
conserved. Due to the energies of the |0⟩ and |1⟩ states depending on the detuning
parameter, the introduction of a difference in detuning parameters between the

(a) (b)

Figure 5.2: Time evolution of the coupled DQD system for a) gCR = 0 and b)
gCR = 0.1B0, showing the |11⟩, |01⟩, |10⟩, and |00⟩ states. In both simulations, the
external magnetic field was set to B = 1B0, the magnon energy to ω0 = 4B0, and the
rotating coupling term to gR = 0.1B0. As before, t = 0.2B0 and ∆B = 0.2B0. Both
simulations were initialized in the |01⟩ state.
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qubits lifts the degeneracy of the |01⟩ and |10⟩ states. This sharply reduces the
transition probability between the states, consequently reducing the switching
frequency. This issue may be overcome by considering qubits coupling strengths
that are sufficiently strong to overcome the reduction in the transition probability,
but for the system considered here, a slight difference in qubit splitting renders the
switching time imperceptibly long, and places strict requirements on the precision
of the applied electrostatic voltages on each DQD. The successful implementation
of exchange-only quibts implies that this precision is indeed attainable [35], but
it does highlight that the benefits of the singlet-triplet qubit over the single spin
qubit does come at the cost of increased susceptibility to electric noise [65].

In order to understand the behavior of the coupled DQD system in the
parameter regime for which we derived the effective Hamiltonian in Sec. 4.4, we
now perform similar simulations as above for an increased applied magnetic field.
We initialize in the |01⟩ state, still setting ω0 = 4B0 and ε = −0.5B0, and increase
the applied magnetic field to B = 10B0. In these simulations, the Hamiltonian
was limited to hosting either n = 0 or n = 1 magnon excitations. This is done to
facilitate comparison with simulations conducted using the effective Hamiltonian
derived in Sec. 4.4, for which we assumed the magnon occupation number to be
no higher than n = 1, and also serves to reduce computation time. For such large
magnon energies, states with higher magnon occupation numbers are far removed
in energy, reducing the likelihood of any states with higher magnon numbers
impacting the qubit coupling. The exception is the |5 T−T−⟩ state, which has an
energy of exactly zero for these parameters. However, as this state carries an
odd-parity excitation number, it is decoupled from the qubit states. Figs. 5.4a and
5.4b show the time evolution of the |11⟩, |01⟩, |10⟩, and |00⟩ states, for gCR = 0
and gCR = 0.1B0, respectively. We see that the well-behaved coherent switching

(a) (b)

Figure 5.3: Numerically calculated time evolution of the |11⟩, |01⟩, |10⟩, and |00⟩
states, initialized in |01⟩. The calculation was performed using B = 1B0, ω0 = 4B0,
and t = ∆B = 0.2B0. A slight difference between the detuning parameter of each DQD
was introduced in the calculation. The detuning parameter of the first dot (initialized
in |0⟩) is fixed at ε1 = −0.5B0 for both plots. In a) the detuning parameter of the
second dot (initialized in |1⟩) is set to ε2 = −0.5005B0. In b), ε2 = −0.51B0 was used.
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between |01⟩ and |10⟩ states remains for the increased magnetic field, although
the frequency is significantly slower than before. As in the previous simulations,
the introduction of squeezed magnons by setting gCR = 0.1B0 only alters the
oscillation frequency. Besides this shift, the behavior of the coupled qubit system
remains largely the same. In Fig. 5.4c, we calculate the occupation probabilities
of the |T+T−⟩ and |T−T+⟩ states. While these occupation probabilities being
non-zero indicate leakage from the qubit subspace, the leakage is low enough to
not visibly affect the switching of the qubit states.

5.2 Comparing full and effective Hamiltonians

Having derived an effective 4x4 Hamiltonian H̃ for the coupled DQD system for
large applied magnetic fields B and magnon energies ω0 in Sec. 4.4, the goal of
this section is to evaluate the accuracy of the obtained Hamiltonian and more
closely examine the coupling term between the |01⟩ and |10⟩ states.

We begin by performing a numerical simulation of the time evolution, as in
the preceding section, this time using the effective Hamiltonian. Once again, the
tunnel coupling and magnetic field gradient is set to t = ∆B = 0.2B0, and the
detuning parameter to ε = −0.5B0. For the assumptions in the derivation of
H̃ to hold, both the applied magnetic field and the magnon energy has to be
significantly larger than the qubit splitting, so we set B = 10B0 and ω0 = 4B0.
Naturally, these are the same parameters used in the simulations shown in Fig.
5.4, enabling us to make a direct comparison between the full 50x50 Hamiltonian
and the 4x4 effective Hamiltonian. The result of the simulations using H̃, for
both gCR = 0 and gCR = 0.1B0, are presented in Figs. 5.5a and 5.5b, respectively.
Fig. 5.5c shows the leakage to the |T+T−⟩ and |T−T+⟩ states as the system
evolves in time. By comparison to Fig. 5.4 we see that the effective Hamiltonian
accurately reproduces the time evolution of the full 50x50 Hamiltonian, for both
gCR = 0 and gCR = 0.1B0. The leakage in Fig. 5.5c is larger than that of the full
Hamiltonian in Fig. 5.4c, and the time evolution does not match quite as well as
that of the |01⟩ and |10⟩ states. However, the leakage remains small enough to
not significantly affect the switching of the qubits.

Having justified the assumptions made in the derivation of H̃ and established
that it accurately reproduces the behavior of the coupled DQD system in the
chosen parameter regime, we may now take a closer look at the coupling and
leakage terms in this effective Hamiltonian. We consider the coupling between
the |01⟩ and |10⟩ states, ⟨01|H̃|10⟩, and the terms describing the leakage to the
|T+T−⟩ and |T−T+⟩ states, ⟨01|H̃|T±T∓⟩ and ⟨10|H̃|T±T∓⟩. Note that, as H̃ in
addition to being Hermitian is also real-valued, the Hamiltonian is symmetric:
⟨ϕi|H̃|ϕj⟩ = ⟨ϕj|H̃|ϕi⟩.

As we have assumed B and ω0 to be significantly larger than the qubit splitting,
we may expand the elements of H̃ as a power series in B−1 and ω−1

0 , retaining only
terms to leading order. This allows us to obtain an expression for the coupling
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(a)

(b)

(c)

Figure 5.4: Time evolution of the coupled DQD system for a) gCR = 0 and b)
gCR = 0.1B0, showing the |11⟩, |01⟩, |10⟩, and |00⟩ states. In both simulations, the
external magnetic field was set to B = 10B0, the magnon energy to ω0 = 4B0, and the
detuning parameter to ε = −0.5B0. For the rotating coupling we used gR = 0.1B0. As
before, t = 0.2B0 and ∆B = 0.2B0. Both simulations were initialized in the |01⟩ state.
c) Plot of the occupation probabilities of the |T+T−⟩ and |T−T+⟩ states calculated
using the same parameters as in b).
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(a)

(b)

(c)

Figure 5.5: Time evolution of the |01⟩, |10⟩, |T+T−⟩, and |T−T+⟩ states calculated
using the effective Hamiltonian H̃, initialized in |01⟩. To comply with the assumptions
in the derivation of this Hamiltonian, the applied magnetic field was set to B = 10B0
and the magnon energy to ω0 = 4B0. The rotating coupling was set to gR = 0.1B0,
while the counter-rotating coupling was a) gCR = 0 and b) gCR = 0.1B0. c) Plot of
the occupation probabilities of the |T+T−⟩ and |T−T+⟩ states calculated using the same
parameters as in b).



58 CHAPTER 5. RESULTS

between the |01⟩ and |10⟩ states as

⟨01|H̃|10⟩ =E1E0 + ∆B2

Σ1Σ0
[ (E1 − ∆B)(E0 − ∆B)

(B + ω0)3 g4
CR

− (E1 + ∆B)(E0 + ∆B)
(B − ω0)3 g4

R

+ 2B(E1 + E0)∆B + 2ω0(E1E0 + ∆B2)
(B − ω0)2(B + ω0)2 g2

CRg
2
R],

(5.1)

where Σi = ∆B2 + E2
i (1 + t2

(Ei+ε)2 ) for i = 0, 1. For the leakage terms to the
|T+T−⟩ and |T−T+⟩ states we obtain

⟨01|H̃|T+T−⟩ = ⟨10|H̃|T−T+⟩

= (E1 − ∆B)(E0 + ∆B)(E1 + ε)(E0 + ε)
2E1E0t2χ1χ0(B − ω0)(B + ω0)

· [B(g2
CR − g2

R) − ω0(g2
CR + g2

R)]

(5.2)

⟨01|H̃|T−T+⟩ = ⟨10|H̃|T+T−⟩

= (E1 + ∆B)(E0 − ∆B)(E1 + ε)(E0 + ε)
2E1E0t2χ1χ0(B − ω0)(B + ω0)

· [B(g2
CR − g2

R) − ω0(g2
CR + g2

R)],

(5.3)

where χ0,1 are as defined in Eq. 4.11. Note that the expression in the square
brackets above appears in both Eqs. 5.2 and 5.3. Recall that the coupling
constants gR and gCR may be tuned by manipulating the magnetic anisotropy of
the ferromagnet. Therefore, we see that we are able to completely suppress the
leakage to both |T+T−⟩ and |T−T+⟩ by choosing coupling constants so that

B(g2
CR − g2

R) − ω0(g2
CR + g2

R) = 0. (5.4)

This equations holds for coupling constants gR and gCR such that gCR =
±gR

√
B+ω0
B−ω0

. As gCR only appears in even powers, we may disregard the sign and
choose for instance gCR = gR

√
B+ω0
B−ω0

. Inserting this into Eq. 5.1, we obtain

⟨01|H̃|10⟩ = 2E1E0 + ∆B2

Σ2Σ3
g4
R, (5.5)

which, importantly, is non-zero. Therefore, by careful tuning of the coupling
constants gR and gCR, we completely suppress leakage to these states, while
maintaining coupling between the qubit states |01⟩ and |10⟩. This amounts
to decomposing the 4x4 effective Hamiltonian into two 2x2 blocks containing
decoupled subspaces. Thus, any state initialized within the qubit subspace
spanned by |01⟩ and |10⟩ will inevitably remain within this subspace as any
leakage paths in the effective Hamiltonian are eliminated. Naturally, this is not
strictly true for the full 50x50 Hamiltonian. For this Hamiltonian, the coupling
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to |T+T−⟩ and |T−T+⟩, while reduced, will remain non-zero. This is due to
the approximations made in the SW transformation and the truncated series
expansion above. Furthermore, the coupling to the remaining even parity states
is not necessarily diminished by this choice of coupling constants. These states
are, however, farther removed in energy, rendering leakage less likely.

As a demonstration, we once again calculate the time evolution of the system
using the 4x4 effective Hamiltonian. All the parameters apart from the counter-
rotating coupling constant remain unchanged from the ones used in Fig. 5.5,
apart from gCR, which is tuned so that leakage is suppressed. For the given
parameters, this amounts to setting gCR = 0.153B0, a slight increase from the
previous value. The resulting time evolution is presented in Fig. 5.6. While
decidedly slower than for gCR = 0.1B0, we once more observe coherent switching
between the |01⟩ and |10⟩ states, and, as expected, no occupation of the |T+T−⟩
and |T−T+⟩ states.

Finally, this choice of counter-rotating coupling presents us with an opportunity
to both evaluate the actual leakage from the qubit subspace in this setup, and
simultaneously visualize the difference between the effective and full Hamiltonians.
In Fig. 5.7, we calculate the occupation probabilities of the |T+T−⟩ and |T−T+⟩
states using the full 50x50 Hamiltonian. The system is initialized in |01⟩ with
the same parameters as in Fig. 5.6, that is, parameters that in the effective
Hamiltonian would result in exactly zero leakage. We observe from Fig. 5.7
that, while the leakage is non-zero, it is several orders of magnitude lower than
in Fig. 5.4c, where gCR = 0.1B0 was used. Furthermore, from the magnitude
of the leakage, we may surmise that the effective Hamiltonian in this case
reproduces the behavior of the 50x50 Hamiltonian with a deviation on the order
of 10−6. This confirms both that the choice of coupling constants derived from the
effective Hamiltonian indeed reduces leakage significantly, and that the effective
Hamiltonian is able to accurately reproduce the behavior of the full system.

Note the difference in time-scale between Figs. 5.6 and 5.7. Due to the low
oscillation frequency of the qubits in this setup, the computation time required
to evaluate a switching cycle increases drastically. While time-consuming, it is
possible to calculate when using the 4x4 effective Hamiltonian. For the full 50x50
system, however, the time required to compute the time evolution over such a
time scale is on the order of several days1.

1If only someone had invented a quantum computer we could run the simulations on instead...



60 CHAPTER 5. RESULTS

Figure 5.6: Time evolution of the |01⟩, |10⟩, |T+T−⟩ and |T−T+⟩ states, initialized in
|01⟩. Calculated using the effective Hamiltonian H̃ for B = 10B0 and ω0 = 4B0. The
rotating coupling was set to gR = 0.1B0. The counter-rotating coupling constant was
tuned to suppress leakage, setting gCR = 0.153B0.

Figure 5.7: Time evolution of the occupation probabilities of the |T+T−⟩ and |T−T+⟩
states calculated using the full 50x50 Hamiltonian. for B = 10B0 and ω0 = 4B0. The
rotating coupling was set to gR = 0.1B0. The counter-rotating coupling constant was
tuned to suppress leakage, setting gCR = 0.153B0. Initialized in |01⟩. Note the shorter
time-scale compared to Fig. 5.6.



Chapter 6

Concluding remarks

In this thesis we have conducted a theoretical study of a ferromagnetically
coupled singlet-triplet qubit system with qubits hosted in double quantum dots.
By combining the tunability and electrical control of the DQD-based singlet-
triplet qubit with the intermediate-range coupling provided by the ferromagnet,
this platform proves to be a promising proposal to improve upon key challenges
in the progress towards realizing quantum computing.

We build on the previously established framework for a similar system con-
sisting of a ferromagnet coupling single spin qubits, and expand this to consider
two electrons in a double quantum dot setup. The derivation of the system
Hamiltonian is performed by considering it as tripartite; we derive Hamiltonians
for the DQDs, the ferromagnet, and the interaction between the two. For the
ferromagnet Hamiltonian, the inclusion of anisotropy causes the eigenmodes of
the spin fluctuations in the ferromagnet to take the form of squeezed magnons.
This squeezing results in the appearance of counter-rotating terms in the exchange
interaction between the ferromagnet and the electron in the nearest of the dots
in each of the DQDs. Importantly, this allows us to tune the coupling constants
between the ferromagnet and the DQDs by altering the magnetic anisotropy.

The exchange coupling gives a contribution to σ̂z that is only present for the
electron in the dot closest of the dots. We include this effect as a magnetic field
gradient across the DQD. Additionally, we include an applied magnetic field, a
relative electrostatic potential, and the tunnel coupling between the two dots.
With these parameters, we construct the DQD Hamiltonian, and obtain the full
system Hamiltonian as the sum of the three parts. The qubit states |0⟩ and |1⟩
are then encoded in two energy eigenstates in the DQD.

With the goal of understanding the coupling between the |01⟩ and |10⟩ states,
we proceed to derive effective an effective low-energy Hamiltonian for the 0-
magnon subspace. To do so, we assume the magnon energy to be larger than
the energy scale of the qubits and perform a fourth order SW transformation
to decouple the n = 0 subspace, obtaining effective coupling terms between the
|01⟩ and |10⟩ states. Furthermore, by considering how the coupling through the
ferromagnet conserves the parity of excitation numbers, we divide this subspace
into to subspaces of different parity states. This allows us to obtain an effective
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13x13 Hamiltonian containing all states in the n = 0 subspace to which the |01⟩
and |10⟩ states are coupled to.

Through numerical analysis of the time evolution of the full system Hamilto-
nian, we are able to show that the coupled qubit system demonstrates coherent
switching of the qubit states in several parameter regimes. Furthermore, the
even mixing of the qubit states implies that leakage from the qubit subspace is
minimal. These numerical results are compared to results obtained using the
effective Hamiltonian. We show that, through the SW transformation, we have
obtained a Hamiltonian in the n = 0 subspace that is able to accurately reproduce
the dynamics of the system.

To proceed we assume the magnetic field as well as the magnon energy to be
significantly larger than the qubit splitting, and consider the energy levels of the
aforementioned 13 states. We find that we may, to first order, disregard leakage
from |01⟩ and |10⟩ to any states other than the |T+T−⟩ and |T−T+⟩ states, due
to these being significantly closer in energy than the remaining states. We thus
obtain an effective Hamiltonian in a reduced Hilbert space containing only the
|01⟩, |10⟩, |T+T−⟩, and |T−T+⟩ states describing their energies and the coupling
between them.

In order to assess the coupling between the |01⟩ and |10⟩ states, along with
the leakage to the |T+T−⟩ and |T−T+⟩ states, we perform a series expansion of
the terms in the 4x4 effective Hamiltonian to obtain tractable expressions for the
aforementioned coupling terms. Having obtained these, we find that by tuning
the rotating and counter-rotating constants, we are able to completely suppress
leakage to the |T+T−⟩ and |T−T+⟩ states. Numerical simulations using the full
system Hamiltonian for the choice of coupling constants found to suppress leakage
show markedly reduced leakage compared to previous simulations, and confirm
the accuracy of the obtained effective Hamiltonian.
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Appendix A

Numerical analysis of time
evolution

In this appendix we include the Python code used to create system Hamiltonians
and solve the TDSE for the single spin qubit and the DQD qubit case. Both the
construction of the Hamiltonian matrices, basis states, and projection operators,
as well as the solve-function for the TDSE are handled using the QuTiP package.

1 import numpy as np
2 import qutip as qt
3

4

5 ### DEFINING OPERATORS ###
6

7 ## sigma -z operators
8 sigz1 = qt. tensor ([qt. sigmaz (), qt.qeye (2) ]) ## sigma z, dot 1
9 sigz2 = qt. tensor ([qt.qeye (2) , qt. sigmaz ()]) ## sigma z, dot 2

10 sigz1.dims = [[4] , [4]] ## setting dimensions
11 sigz2.dims = [[4] , [4]]
12

13 ## sigma -plus/minus operators
14 sp1 = qt. tensor ([qt. sigmap (), qt.qeye (2) ]) ## sigma plus , dot 1
15 sm1 = qt. tensor ([qt. sigmam (), qt.qeye (2) ]) ## sigma minus , dot 1
16 sp2 = qt. tensor ([qt.qeye (2) , qt. sigmap ()]) ## sigma plus , dot 2
17 sm2 = qt. tensor ([qt.qeye (2) , qt. sigmam ()]) ## sigma minus , dot 2
18 sp1.dims = [[4] , [4]] ## setting dimensions
19 sm1.dims = [[4] , [4]]
20 sp2.dims = [[4] , [4]]
21 sm2.dims = [[4] , [4]]
22

23 ## magnon number operator
24 def num(N):
25 n = qt. tensor ([qt.num(N), qt.qeye (4) ])
26 n.dims = [[4*N], [4*N]]
27 return n
28

29

67
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30 ## system Hamiltonian , single spin qubit
31 def h(w, N, gr = 0.1, gcr = 0.1, delta = 0):
32 ## w: magnon energy , N: number of allowed magnons , gr ,gcr:

coupling constants
33 ## delta: difference in qubit energy between dots 1 and 2
34

35 I = qt.qeye(N) ## Identity operator in magnon Hilbert space
36 I4 = qt.qeye (4) ## Identity operator in two -qubit Hilbert

space
37 c = qt. create (N) ## magnon creation operator
38 d = qt. destroy (N) ## magnon annihilation operator
39

40 ## magnon energy
41 term1 = w*num(N)
42

43 ## constructing sigma z in full system Hilbert space
44 sg1 = qt. tensor (I, sigz1)
45 sg1.dims = [[4*N], [4*N]]
46 sg2 = qt. tensor (I, sigz2)
47 sg2.dims = [[4*N], [4*N]]
48 term2 = (sg1 +(1- delta)*sg2)*0.5 ## qubit energy
49

50 ## magnon operators in full system Hilbert space
51 c4 = qt. tensor ([c, I4])
52 d4 = qt. tensor ([d, I4])
53 ## spin excitation and relaxation operators in full system

Hilbert space
54 sm1N = qt. tensor ([I, sm1 ])
55 sp1N = qt. tensor ([I, sp1 ])
56 sm2N = qt. tensor ([I, sm2 ])
57 sp2N = qt. tensor ([I, sp2 ])
58

59 ## rotating coupling term
60 term32 = gr*(c4*sm1N + d4*sp1N + c4*sm2N + d4*sp2N)
61 ## counter - rotating coupling terms
62 term42 = gcr *(c4*sp1N + d4*sm1N + c4*sp2N + d4*sm2N)
63 term32 .dims = [[4*N], [4*N]]
64 term42 .dims = [[4*N], [4*N]]
65

66 return term1+term2+ term32 + term42 ## returns full system
Hamiltonian

67

68 ## CALCULATING TIME EVOLUTION OF SINGLE SPIN SYSTEM ##
69 def evolution (w, N, gr , gcr , tstart , tend , state , steps = 10000 ,

delta = 0):
70 ## state: initial state (0+n: up/up , 1+n: up/down , 2+n: down/

up , 3+n:down/down)
71 init = qt.basis (4*N, state)
72 ## n: desired magnon occupation number
73

74 I = qt.qeye(N)
75

76 ## spin state projection operators
77 updown = qt.basis (4*N, 1).proj ()
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78 downup = qt.basis (4*N, 2).proj ()
79 downdownmag = qt.basis (4*N, 7).proj ()
80 upupmag = qt.basis (4*N, 4).proj ()
81 upup = qt.basis (4*N, 0).proj ()
82 downdown = qt.basis (4*N, 3).proj ()
83 updownmag = qt.basis (4*N, 5).proj ()
84 downupmag = qt.basis (4*N, 6).proj ()
85 downdown2 = qt.basis (4*N, 11).proj ()
86 upup2 = qt.basis (4*N, 8).proj ()
87

88 ## CHOOSE OPERATORS TO EVALUATE HERE ##
89 ops = [upup , updown , downup , downdownmag , upupmag ]
90

91 a = h(w, N, gr , gcr , delta) ## system Hamiltonian
92 tlist = np. linspace (tstart , tend , steps) ## time steps
93

94 ## Solving TDSE ##
95 result = qt. sesolve (a, init , tlist , ops , options = qt. Options

( nsteps = 50000000) )
96 return result

Listing A.1: Single spin qubit system

1 import numpy as np
2 import qutip as qt
3

4

5 ### DEFINING OPERATORS ###
6 I5 = qt.qeye (5)
7

8 ## sigma plus / sigma minus
9 sigmaminus = (1/ np.sqrt (2))*qt.Qobj(np.array

([[0 ,0 ,0 ,0 ,0] ,[1 ,0 ,0 ,0 ,0] ,[ -1 ,0 ,0 ,0 ,0] ,[0 ,1 ,1 ,0 ,0] ,[0 ,0 ,0 ,0 ,0]])
)

10 sigmaplus = (1/ np.sqrt (2))*qt.Qobj(np.array
([[0 ,1 , -1 ,0 ,0] ,[0 ,0 ,0 ,1 ,0] ,[0 ,0 ,0 ,1 ,0] ,[0 ,0 ,0 ,0 ,0] ,[0 ,0 ,0 ,0 ,0]])
)

11

12 # transfer to full Hilbert space
13 sgmp1 = qt. tensor (sigmaplus , I5)
14 sgmp1.dims = [[25] ,[25]]
15 sgmp2 = qt. tensor (I5 , sigmaplus )
16 sgmp2.dims = [[25] ,[25]]
17

18 sgmm1 = qt. tensor (sigmaminus , I5)
19 sgmm1.dims = [[25] ,[25]]
20 sgmm2 = qt. tensor (I5 , sigmaminus )
21 sgmm2.dims = [[25] ,[25]]
22

23

24 ### DQD Hamiltonian ###
25 def h_basis_B (B, epsilon , t, dbz = 0):
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26 ## B: applied magnetic field , epsilon : detuning parameter , t:
tunnel coupling , dbz: magnetic field gradient

27 return qt.Qobj(np.array ([[B,0,0,0,0], [0,0,dbz ,0,0], [0,dbz
,0,0,t], [0,0,0,-B,0], [0,0,t,0,- epsilon ]]))

28

29

30 ### FULL HAMILTONIAN OF COUPLED DQD SYSTEM ###
31 def two_dots_h (B, w, N, gr , gcr , epsilons , t, dbz = [0 ,0]):
32 ## epsilons : detuning for each dot [e1 , e2]
33 ## dbz: magnetic field gradient for each dot [dbz1 , dbz2]
34 IN = qt.qeye(N)
35 ## magnon energy
36 term1 = w*qt.num(N)
37 term1 = qt. tensor (term1 , I5 ,I5)
38 term1.dims = [[N*25] , [N*25]]
39

40 ## qubit energies
41 h1 = qt. tensor (IN , h_basis_B (B, epsilons [0], t, dbz [0]) , I5)
42 h1.dims = [[N*25] , [N*25]]
43 h2 = qt. tensor (IN , I5 , h_basis_B (B, epsilons [1], t, dbz [0]))
44 h2.dims = [[N*25] , [N*25]]
45 term2 = h1+h2
46

47 ## interaction energies
48 c = qt. tensor (qt. create (N), I5 , I5) ## magnon creation

operator
49 c.dims = [[N*25] , [N*25]]
50 d = qt. tensor (qt. destroy (N), I5 , I5) ## magnon annihilation

operator
51 d.dims = [[N*25] , [N*25]]
52

53 sp1 = qt. tensor (IN , sgmp1) ## sigma plus , DQD 1
54 sp1.dims = [[N*25] , [N*25]]
55 sp2 = qt. tensor (IN , sgmp2) ## sigma plus , DQD 2
56 sp2.dims = [[N*25] , [N*25]]
57 sm1 = qt. tensor (IN , sgmm1) ## sigma minus , DQD 1
58 sm1.dims = [[N*25] , [N*25]]
59 sm2 = qt. tensor (IN , sgmm2) ## sigma minus , DQD 2
60 sm2.dims = [[N*25] , [N*25]]
61 term31 = gr*(c*sm1 + d*sp1) + gcr *(c*sp1 + d*sm1) ## rotating

terms
62 term32 = gr*(c*sm2 + d*sp2) + gcr *(c*sp2 + d*sm2) ## counter -

rotating terms
63

64 term3 = term31 + term32
65 return term1 + term2 + term3 ## returns full system

Hamiltonian
66

67 ### TIME EVOLUTION OF COUPLED DQD SYSTEM ###
68 def evo_two_dots (B, w, N, tstart , tend , es , tc , steps = 50000 , g1

= 0.1, g2 = 0.1, dbzs = [0,0], res = True , mode = ’qb’):
69 ## es: detuning list [e1 ,e2]
70 ## g1: rotating constant , g2: counter - rotating constant
71 ## res: True -> magnon energy resonates with qubit splitting
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72 ## res: False -> magnon energy takes input value w
73

74 ## mode: operation mode of function
75 # ’qb ’: evaluates the qubit states 11, 01, 10, 00
76 # ’leak ’: evaluates leakage to T+T- and T-T+
77 # ’dqd1 ’/’dqd2 ’: evaluates the eigenstates of dqd1/dqd2
78 # ’mag ’: evaluates occupancy of different magnon number

states
79

80 IN = qt.qeye(N) ## magnon Hilbert space identity operator
81 tlist = np. linspace (tstart , tend , steps)
82

83 ## resonant magnon energy
84 w_opt = h_basis_B (B, es[0], tc , dbzs [0]). eigenenergies ()[2]-

h_basis_B (B, es[0], tc , dbzs [0]). eigenenergies () [1]
85 if res:
86 a = two_dots_h (B, w_opt , N, g1 , g2 , es , tc , dbz = dbzs)
87

88 ## off - resonant magnon energy
89 else:
90 a = two_dots_h (B, w, N, g1 , g2 , es , tc , dbz = dbzs)
91

92 ## eigenstates of DQD Hamiltonian for DQD 1, low energy to
high energy

93 zero1 = h_basis_B (B, es[0], tc , dbzs [0]). eigenstates () [1][0]
94 one1 = h_basis_B (B, es[0], tc , dbzs [0]). eigenstates () [1][1]
95 two1 = h_basis_B (B, es[0], tc , dbzs [0]). eigenstates () [1][2]
96 three1 = h_basis_B (B, es[0], tc , dbzs [0]). eigenstates ()

[1][3]
97 four1 = h_basis_B (B, es[0], tc , dbzs [0]). eigenstates () [1][4]
98

99 ## eigenstates of DQD Hamiltonian for DQD 2, low energy to
high energy

100 zero2 = h_basis_B (B, es[1], tc , dbzs [1]). eigenstates () [1][0]
101 one2 = h_basis_B (B, es[1], tc , dbzs [1]). eigenstates () [1][1]
102 two2 = h_basis_B (B, es[1], tc , dbzs [1]). eigenstates () [1][2]
103 three2 = h_basis_B (B, es[1], tc , dbzs [1]). eigenstates ()

[1][3]
104 four2 = h_basis_B (B, es[1], tc , dbzs [1]). eigenstates () [1][4]
105

106

107 ## PROJECTION OPERATORS FOR EIGENSTATES OF EACH DOT ##
108

109 p01 = zero1.proj ()
110 p01 = qt. tensor (IN , p01 , I5)
111 p11 = one1.proj ()
112 p11 = qt. tensor (IN , p11 , I5)
113 p21 = two1.proj ()
114 p21 = qt. tensor (IN , p21 , I5)
115 p31 = three1 .proj ()
116 p31 = qt. tensor (IN , p31 , I5)
117 p41 = four1.proj ()
118 p41 = qt. tensor (IN , p41 , I5)
119 p02 = zero2.proj ()
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120 p02 = qt. tensor (IN , I5 , p02)
121 p12 = one2.proj ()
122 p12 = qt. tensor (IN , I5 , p12)
123 p22 = two2.proj ()
124 p22 = qt. tensor (IN , I5 , p22)
125 p32 = three2 .proj ()
126 p32 = qt. tensor (IN , I5 , p32)
127 p42 = four2.proj ()
128 p42 = qt. tensor (IN , I5 , p42)
129

130 dot1 = [p01 , p11 , p21 , p31 , p41]
131 dot2 = [p02 , p12 , p22 , p32 , p42]
132

133 ## PROJECTION OPERATORS FOR T+T- AND T-T+
134

135 pcpm = qt. tensor (four1 , zero2).proj ()
136 pcpm = qt. tensor (IN , pcpm)
137 pcmp = qt. tensor (zero1 , four2).proj ()
138 pcmp = qt. tensor (IN , pcmp)
139

140 leak = [pcpm , pcmp]
141

142

143 ## PROJECTION OPERATORS FOR QUBIT STATES 11, 01, 10, 00 ##
144

145 pc00 = qt. tensor (one1 , one2).proj ()
146 pc00 = qt. tensor (IN , pc00)
147 pc01 = qt. tensor (one1 , two2).proj ()
148 pc01 = qt. tensor (IN , pc01)
149 pc10 = qt. tensor (two1 , one2).proj ()
150 pc10 = qt. tensor (IN , pc10)
151 pc11 = qt. tensor (two1 , two2).proj ()
152 pc11 = qt. tensor (IN , pc11)
153 qb_list = [pc00 , pc01 , pc10 , pc11]
154

155 ## MAGNON OCCUPANCY OPERATORS ##
156 mag = qt. tensor (qt.num(N), I5 ,I5) # magnon occupancy
157 mag = []
158 for i in range(N):
159 temp = qt.basis(N, i).proj ()
160 mag. append (qt. tensor (temp , I5 , I5))
161

162 ### CHOOSE INITIALIZATION HERE ###
163 init = qt. tensor (qt.basis(N, 0), one1 , two2).unit ()
164

165 ## SOLVING TDSE FOR GIVEN MODE ##
166 if mode == ’dqd1 ’:
167 result = qt. sesolve (a, init , tlist , dot1 , options = qt.

Options ( nsteps = 5000000) , progress_bar = True)
168 ## note progress bar as these simulations take

significantly longer than the single spin qubit case
169 ## disabled by setting progress_bar = None
170

171 elif mode == ’dqd2 ’:
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172 result = qt. sesolve (a, init , tlist , dot2 , options = qt.
Options ( nsteps = 5000000) , progress_bar = True)

173

174 elif mode == ’mag ’:
175 result = qt. sesolve (a, init , tlist , mag , options = qt.

Options ( nsteps = 5000000) , progress_bar = True)
176

177 elif mode == ’leak ’:
178 result = qt. sesolve (a, init , tlist , leak , options = qt.

Options ( nsteps = 5000000) , progress_bar = True)
179

180 elif mode == ’qb’:
181 result = qt. sesolve (a, init , tlist , qb_list , options = qt

. Options ( nsteps = 5000000) , progress_bar = True)
182

183 else:
184 print(’Input mode does not match accepted value.’)
185 return
186 return result

Listing A.2: Singlet-triplet qubit system



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Øyvind Finnseth

Ferromagnetically mediated singlet-
triplet qubit coupling

Master’s thesis in Nanotechnology
Supervisor: Jeroen Danon
June 2022

M
as

te
r’s

 th
es

is


	Introduction
	Quantum bits
	Quantum-dot-based spin qubits
	Singlet-triplet spin qubits
	Nuclear-spin-free spin qubits
	Spin qubits with long range coupling

	Structure of the thesis

	Preliminary Concepts
	Quantum harmonic oscillator
	Quadrature squeezing
	Holstein-Primakoff transformation
	Time independent perturbation theory
	Schrieffer-Wolff transformation

	Coupled single spin qubit Hamiltonian
	Spin qubit Hamiltonian
	Ferromagnet Hamiltonian
	Interaction Hamiltonian
	Numerical simulation of coupled spin qubits

	Coupled singlet-triplet Hamiltonian
	In the -basis
	Effective Hamiltonian in the -basis
	In the eigenstate basis
	Effective Hamiltonian in the eigenstate basis

	Results
	Numerical simulations of the DQD system
	Comparing full and effective Hamiltonians

	Concluding remarks
	Numerical analysis of time evolution

