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Preface

The research work presented in this master thesis was conducted at the Department of ICT and

Natural Sciences, Faculty of Information Technology and Electrical Engineering at the Norwe-

gian University of Science and Technology (NTNU), Ålesund, Norway. It has been written to

complete the essential part for fulfilling the requirements of the Master Program in Simulation

and Visualization.

In April 2021, I was lucky to invite my best friends Amirashkan Haghshenas and Amirabbas Hoj-

jati to work as a small team to explore the potential research work directions under the supervi-

sion of Prof. Ricardo da Silva Torres. With his encouragement and guidance, we researched the

state-of-the-art data visualization methods and decided to optimize an existing visualization

method aiming its application in some funded projects. That is also the original idea related to

this master thesis research. In August 2021, we had to work individually because of the study

schedule, and I decided to continue the research work alone with Prof. Ricardo. Until Decem-

ber 2021, the software prototype and one draft report of a journal paper had been produced as a

result of our efforts. In Spring 2022, Prof. Ricardo proposed this master thesis topic and encour-

aged me to continue this work, with more emphasis on computation efficiency improvement,

visualization prototype design, case studies research, etc.

This research work has been considered in the context of the NORDARK project, funded by

NordForsk, and the Smart Plan [grant number #310056] and Twin Fjord [grant number #320627]

projects funded by the Research Council of Norway. The research questions were formulated

with my main supervisor Prof. Ricardo da Silva Torres and co-supervisor Prof. Agus Hasan.

The research was quite challenging, but conducting comprehensive research has answered the

questions we raised. The conducted research includes the design and implementation of new

algorithms, the creation of software prototypes, and their validation in terms of their perfor-

mance and also in the context of their utilization in two relevant case studies. The whole re-

search addressed existing literature gaps related to the encoding and visualization of temporal

changes in the context of topology density maps.
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Summary

Spatiotemporal urban data analysis is one of the most relevant and challenging topics in the

computer graphics and information visualization research areas. This master project introduces

a novel solution, named Temporal Topology Density Map (TTDM), to represent 2D discrete spa-

tial data with temporal variations into a 2D continuous spatial space constrained by a topol-

ogy. Two algorithms are introduced in the conducted research. The first one integrates Image-

Foresting Transform (IFT) into the computation of Topology Density Map (TDM), which leads to

an efficient solution. The second one, in turn, combines topological density maps with Change

Frequency Heatmap (CFH) to convey visual information on changes over time, which lead to a

new visualization method. Two case studies related to the analysis of response time associated

with emergency services and walkability changes over time for areas of interest demonstrate

the effectiveness of the proposed approach in challenging scenarios. We could observe that

the proposed solution provides an intuitive visualization for supporting the accurate analysis of

spatiotemporal data changes over time using topology density maps.
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API Application Programming Interface.

CFH Change Frequency Heatmap.

CSV comma-separated values.

DAG directed acyclic graph.

DLL Dynamic Link Library.

IFT Image-Foresting Transform.

ITDM IFT-based Topology Density Map.

JSON JavaScript Object Notation.
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NKDE Network-constrained Kernel Density Estimation.

POI points-of-interest.

SDK Software Development Kit.

ST spatiotemporal.

TDM Topology Density Map.

TTDM Temporal Topology Density Map.

UI user interface.

v



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background Concepts 9

2.1 Topology Density Map (TDM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Change Frequency Heatmap (CFH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Image-Foresting Transform (IFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Literature Review 17

3.1 Visualization based on Density Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Temporal Change Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 IFT-based Topology Density Map (ITDM) 21

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



CONTENTS vii

4.2 IFT-based Computation of Access Time to Each POI . . . . . . . . . . . . . . . . . . 22

4.2.1 Vertex Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 IFT Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3 Access Time Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.3 Estimate Density Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Temporal Topology Density Map (TTDM) 29

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Compute Representative IFT-based Topology Density Map (ITDM) . . . . . . . . . 31

5.3 Encode Temporal Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Compute IFT-based Topology Density Map (ITDM)s . . . . . . . . . . . . . . 32

5.3.2 Compute Change Frequency Heatmap (CFH) . . . . . . . . . . . . . . . . . . 33

5.4 Compute the Visual Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.1 Network Color Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.2 Density Field Color Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.3 Height Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.4 Visual Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Validation 44

6.1 Implementation Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.1 Overview of Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.2 Overview of Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.2 Performance and Qualitative Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.1 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



CONTENTS viii

6.3.2 Case Study 1: Walkabaility Analysis . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.3 Case Study 2: Emergency Services . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 Conclusions 68

7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A The detailed information of the nodes in case studies 73

Bibliography 79



List of Figures

1.1 Examples of density maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Topology Density Map (TDM) algorithm pipeline. . . . . . . . . . . . . . . . . . . . . 11

2.2 A running example for Topology Density Map (TDM). . . . . . . . . . . . . . . . . . 12

2.3 Change Frequency Heatmap (CFH) algorithm pipeline. . . . . . . . . . . . . . . . . 13

2.4 A running example for Change Frequency Heatmap (CFH). . . . . . . . . . . . . . . 14

2.5 Image-Foresting Transform (IFT) algorithm pipeline. . . . . . . . . . . . . . . . . . . 16

2.6 A running example for Image-Foresting Transform (IFT). . . . . . . . . . . . . . . . 16

4.1 IFT-based Topology Density Map (ITDM) computation pipeline. . . . . . . . . . . . 21

4.2 ITDM visual effects for an ITDM running example. . . . . . . . . . . . . . . . . . . . 22

4.3 Pipeline for the IFT-based computation of access time to POIs. . . . . . . . . . . . . 23

4.4 Illustration of the vertex mapping step. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.5 The approximate position calculation for the nodes. . . . . . . . . . . . . . . . . . . 24

4.6 Illustration of the IFT computation step. . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 Visual effects of density fields for TDM and ITDM. . . . . . . . . . . . . . . . . . . . 28

5.1 Temporal Topology Density Map (TTDM) algorithm pipeline in concept . . . . . . 30

5.2 A running example for Temporal Topology Density Map (TTDM). . . . . . . . . . . 30

5.3 Compute Representative IFT-based Topology Density Map (ITDM) pipeline. . . . 31

ix



LIST OF FIGURES x

5.4 Encode temporal changes pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.5 An example of the computation of multiple ITDMs. . . . . . . . . . . . . . . . . . . . 33

5.6 Illustration of the compute Change Frequency Heatmap (CFH) step. . . . . . . . . 34

5.7 Illustration of temporal changes for the nodes in an example. . . . . . . . . . . . . . 35

5.8 An example of temporal variation mapping. . . . . . . . . . . . . . . . . . . . . . . . 36

5.9 Compute the Visual Representation pipeline. . . . . . . . . . . . . . . . . . . . . . . 37

5.10 An example of network color mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.11 An example of density field color mapping. . . . . . . . . . . . . . . . . . . . . . . . . 39

5.12 An example of height mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.13 An example of mesh interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.14 Illustration of mesh interpolation procedures. . . . . . . . . . . . . . . . . . . . . . . 43

5.15 The visual integrator example with the multiple layers. . . . . . . . . . . . . . . . . . 43

6.1 Overview of the different technologies used in the implementation of the prototypes. 45

6.2 The implementation architecture of the TTDM computation analysis tool (Desktop). 47

6.3 Screenshot of the TTDM computation analysis tool (Desktop) . . . . . . . . . . . . 48

6.4 The implementation architecture of the TTDM visualization analysis tool (Web

server). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.5 Screenshot of the TTDM visualization analysis tool (Web server) . . . . . . . . . . . 49

6.6 Visual effects of the default example after the initialization. . . . . . . . . . . . . . . 50

6.7 Visual effects of the object track function . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.8 TTDM computation time on Topology 1. . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.9 TTDM computation time on Topology 2 and Topology 3. . . . . . . . . . . . . . . . . 56

6.10 TTDM computation time on Topology 3 and Topology 4. . . . . . . . . . . . . . . . . 56

6.11 Value difference of label maps and density maps on Topology 1 and Topology 2. . . 57

6.12 The assumption of the snow depth on the roads. . . . . . . . . . . . . . . . . . . . . 59

6.13 The interested sample regions in the Case Study 1 . . . . . . . . . . . . . . . . . . . . 61



LIST OF FIGURES xi

6.14 Overall visual effects for the two solutions . . . . . . . . . . . . . . . . . . . . . . . . 61

6.15 The results of the sample regions after computing the representative ITDM . . . . 62

6.16 The TTDM results related to the encoding of temporal changes . . . . . . . . . . . . 63

6.17 The comparison of filtering the daily data for different types of day. . . . . . . . . . 63

6.18 The comparison of various quarterly time periods with the binary pattern “01.” . . 64

6.19 The interested sample regions in the Case Study 2 . . . . . . . . . . . . . . . . . . . . 65

6.20 Overall visual effects for Case Study 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.21 The results of computing a representative ITDM for the average and interested

timestamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.22 The results of encoding temporal changes with different binary pattern strings. . . 67



List of Tables

6.1 The road networks considered in the conducted validation. . . . . . . . . . . . . . . 53

6.2 The different resolution scales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 Parameters for simulated temporal changes by snow depth. . . . . . . . . . . . . . . 59

A.1 The information of the nodes in the Case Study 1 . . . . . . . . . . . . . . . . . . . . 73

A.2 The information of the nodes in the Case Study 2 . . . . . . . . . . . . . . . . . . . . 74

xii



Chapter 1

Introduction

This chapter presents motivational aspects related to the conducted work as well as the objec-

tive and associated research questions. It also provides an overview of the proposed approach,

and presents a summary of the main contributions of this work. Finally, this chapter outlines

the organization of the document.

1.1 Background

Advances in terms of processing and storage capacity of devices have led to the creation of large

data collections in several domains. In particular, a large amount of spatiotemporal (ST) data is

being produced and consumed, especially associated with the widely use of sensing technolo-

gies or as a result of the application of algorithms (data-driven or simulation-based). The proper

analysis of these data, associated with the identification and understanding of their relevance

based on trends and patterns, is of paramount importance for supporting proper decision-

making. In particular, analyzing and understanding changes related to multiple variables (e.g.,

attributes) over space and time is essential.

Information visualization has become a relevant discipline in Computer Science dedicated to

the development of tools to improve the understanding of multiple and complex data. Infor-

mation visualization has often been associated with transforming data into a visual form. In the

context of spatiotemporal data analysis, a practical and intuitive visualization design is more de-

manding because of space- and time-related challenges. For example, multiscale data intricates

relations of entities and their attributes across time and space.

The visualization and analysis of ST data are especially worthwhile in the study of ecology [1,

2, 3], biology [4, 5], transportation [6, 7], meteorology [8, 9], medicine [10, 11], etc. This work

has been centered in the definition of information visualization algorithms to support mobil-

1
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ity analysis for urban planning applications. That is partially motivated by needs and demands

of Norwegian cities concerning the implementation of sustainable operations for mobility de-

mands. Ålesund, Norway, for example, has become part of the United Nations Smart Cities

program, which defines a set of Key Performance Indicators (KPI) to support decision-making.

Some indicators are connected with the traffic and mobility conditions. In the present time,

there are some groups of engaged research projects connected to this program. The Nord-

forsk NORDARK,1 for example, aims to identify and characterize the impact of light infrastruc-

ture in green urban areas. Digital twins to support the intervention planning and visualization

of collected data concerning light impact on outdoor environments, and human and animal

behaviour are expected to be developed. Smart Plan2 and TwinFjord3 are other two related

projects, both funded by the Research Council of Norway. These last projects concern the design

and implementation of decision-making systems for public planning processes with new digital

tools, and visualization methods associated with multidimensional data. Most of the collected

data used in those projects are spatiotemporal. In all projects, novel visualization schemes are

needed to support the professional analysis of these data, which should be not only be flexible

on the mobility-related problem under investigation, but also effective and efficient.

The visualization of spatiotemporal data is one of the most promising and challenging topics

in the field of information visualization. This type of data should reflect three distinct types of

attributes; non-spatiotemporal, spatial, and temporal attributes simultaneously in a limited 2D

display space.

Density map visualization is one approach often explored to generate areas around groups of

points of data in the view [12]. It encodes the continuous distribution of scalar fields in a 2D

space. These approaches promise to visualize the projected spatial patterns associated with

various types of data. By dividing the data space into an arbitrary number of density fields and

then visualizing them, it is possible to distinctly discern the patterns that are present within

particular datasets [13, 14]. Density map visualizations have been successfully explored in sev-

eral applications, especially in the context of urban data management. Those approaches, for

example, support analyses related to traffic conditions [15], pollution distribution [16], and de-

mographic evolution [17].

Despite the success of existing methods in encoding spatial distributions (e.g., using kernel-

based methods [18, 14]), few initiatives have dedicated to the presentation of density maps tak-

ing into account topological information found in networks (e.g., road networks [17]). Feng

et al. [17] introduced recently a promising approach for the computation of Topology Density

1https://nordark.org/ (As of May 2022).
2https://www.unitedfuturelab.no/en/projects/smart-plan----planning-through-visualizatio

n-and-simulation/ (As of May 2022).
3https://www.twinfjord.no/ (As of May 2022).

https://nordark.org/
https://www.unitedfuturelab.no/en/projects/smart-plan----planning-through-visualization-and-simulation/
https://www.unitedfuturelab.no/en/projects/smart-plan----planning-through-visualization-and-simulation/
https://www.twinfjord.no/
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Figure 1.1: Examples of density maps. The left figure is a density map, while the right one is a
Topology Density Map (TDM).

Map (TDM). In their method, the computation process extends the density estimation from a

1D network to a 2D space, providing correct and intuitive visualizations. The correct visualiza-

tion means the accurate reflection of the directional and topological road network and dynamic

path costs directly linked to the traffic conditions. The intuitive aspect refers to providing den-

sity fields on 2D planar fields intuitively. Figure 1.1 illustrates a density map (left) and a Topol-

ogy Density Map (TDM – right) associated with the analysis of spatial data. The color intensity

is proportional to the density for each position. The TDM result on the right side in the fig-

ure provides the 1D road network with colored taper lines, which greatly help users to visualize

density variations along with road segments. The density intensity change is challenging to be

represented on density map calculation only (left).

The algorithm of Feng et al. [17] is very promising and was validated in the context of compelling

applications related to urban mobility analysis. Their solution, however, is not efficient to de-

termine the density maps for regions not belonging to the input network. Another problem is

the lack of support for representing changes of topology density maps over time. In fact, to sup-

port the proper analyses of urban data is not only relevant the spatial distribution of scalar field,

but also the temporal variation. In several applications, understanding trends and patterns over

time of spatial data are of a key element to support better-informed decision-making. To the

best of our knowledge, the problem of encoding temporal changes visually and associated with

topology density maps is still a problem overlooked in the literature.

One suitable alternative to address the first limitation relies on employing efficient algorithms

for computing influence zones of network nodes. A promising alternative is the Image-Foresting

Transform (IFT) [19]. IFT is a graph-based approach [19] to the design of image processing

operators based on connectivity. It basically computes the Dijkstra’s shortest-path algorithm

based on the Euclidean distance, partitioning the input image according to a given seed pixel
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set. It can be seen as region growing algorithm based on seed pixels.

In the context of change pattern representation and characterization, several approaches have

been proposed in the literature [20, 21, 22, 23]. In particular, Change Frequency Heatmap

(CFH) [24] has established as a promising method to encode temporal changes according to

application-oriented customized metrics and behavior patterns. It has been successfully em-

ployed in the analysis of multivariate temporal data associated with plant phenology data [24,

25], including both data obtained from direct observation of individuals [24] over time and vari-

ations defined by sequences of images [25].

This master thesis encompasses the investigation of information visualization approaches to

support the understanding of temporal changes connected with topology density map. It con-

nects with the raised issues concerning the use of TDM for spatiotemporal data analysis. The

first issue is the low efficiency in the density intensity computation. We investigate the use of IFT

to speedup the computation of TDMs. The second problem is the encoding and representation

of temporal changes. In our research, we explore the use of CFH to encode temporal changes

associated with TDMs and provide a visualization of the interesting change patterns.

1.2 Objective and Research Questions

The objective of this work is to design, implement, and validate efficient and effective methods

for the computation of temporal changes in topology density maps. In this work, we explore and

design a new algorithm based on three background concepts, which are Topology Density Map

(TDM), Change Frequency Heatmap (CFH), and Image-Foresting Transform (IFT) (Chapter 2).

Moreover, we introduce two prototypes, which are validated and evaluated in compelling usage

scenarios with real data.

This work addresses four research questions, defined as follow:

• RQ1: How to compute Topology Density Map (TDM) using the Image-Foresting Trans-

form (IFT)?

The Topology Density Map (TDM) algorithm [17] calculates first the shortest path with

the minimum cost from points-of-interest (POI) nodes to other nodes (non-POI) in a 1D

road network. The network topology and edge costs can reflect the road information and

traffic conditions. Second, the algorithm computes density field on each edge, which is

the density estimation on the 1D road network. And last, the algorithm determines the

shortest access time from each POI to an arbitrary point on the 2D planar surface and

computes density fields. The computation of the access time from each POI to a point

depends on the Euclidean distance calculation. This is a time-consuming step because it
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needs the iterated execution for each node and each position.

The image partition based on the calculation of the Euclidean distance with a given seed

set is also one kind of region growing problem. Therefore, the IFT is selected to compute

the propagation step of TDM. We choose pixels associated with non-POI nodes as the

seeds. The IFT directly outputs the Euclidean distances between any arbitrary pixel to the

belonging seed, which leads to a partition of the space. Each region can be seen as a prop-

agation (influence zone) associated with one seed. The algorithm, therefore, computes

the POI accessibility for any pixel. This strategy greatly saves time when the resolution of

2D space is higher, as the IFT reduces the calculation time for the TDM in the computa-

tion of density field in 2D planar surface. The details and analysis related to the use of IFT

are described in Chapter 4.

• RQ2: How to encode and visualize temporal changes on Topology Density Map (TDM)

using Change Frequency Heatmap (CFH)?

To address this research question, we investigate different formulations of CFH for the en-

coding and representation of temporal changes associated with TDMs. We then introduce

Temporal Topology Density Map (TTDM), a new algorithm that allows for encoding and

visually representing changes on TDMs. TTDM integrates the efficiency of the IFT with

the representation power of CFH. It is constructed with a stack of graphs including tem-

poral changes of edge costs as the input. After the computation, it produces three outputs

(the visualized 1D network, 2D planar texture color map, and a 3D mesh with height map)

for the final visualization. Chapter 5 presents the whole solution pipeline with the theo-

retical basis, outlines the associated algorithm, and illustrates its execution in a running

example.

• RQ3: Would the use of Image-Foresting Transform (IFT) lead to a more efficient computa-

tion of Topology Density Map (TDM)? To what extent is the new algorithm different from

the TDM?

To emphasize this research question, we explore the use of the IFT algorithm for comput-

ing density and label maps. Furthermore, we assess the computation time of its differ-

ent components, considering various usage scenarios (topologies with diverse number of

nodes and distinct density map resolutions). The differences of computed density map

intensities with distinct parameters when compared with the outputs produced by the

algorithm of Feng et al. [17] are also evaluated. The experimental data refer to random

temporal changes applied to real road networks. The evaluated parameters include the

resolution scale, the size of network, the number of POIs, and the length of time consid-

ered. The indicators refer to the differences among density maps produced by the pro-
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posed algorithm and the ones computed by the original algorithm [17].

• RQ4: Would the use of Temporal Topology Density Map (TTDM) be effective for analyzing

changes over time in mobility-related applications?

Walk network (small region, slower speed) and drive network (large region, faster speed)

are two typical kinds of directed networks in mobility-related applications. The accessibil-

ity time for both are affected by the severity of weather conditions, such as the frequency

of snow and rain. Those conditions are critical factors especially in Nordic countries. In

this work, we validate TTDM in the context of compelling mobility-related urban analysis

using real data of Ålesund, Norway. In the considered case studies, we assume that the

snow intensity on the roads directly affects the moving speed of pedestrians and vehicles.

Then, the access time related to the path from a POI to another geographical position is

also correspondingly changed (defined in terms of the road distance divided by speed).

Finally, it causes the temporal changes of density values in the target region. We analyze

two case studies associated with different kinds of temporal changes in Section 6.3. Case

Study 1 concerns the identification of the optimal location for public services considering

a walk network. Case study 2, in turn, refers to the analysis of change patterns related to

topology density maps computed around a drive network. The final results are discussed

based on visual patterns associated with sample regions and alternative visualization de-

signs.

Figure 1.2 indicates the whole research approach outline. It starts from three background con-

cepts (TDM, CFH, and IFT) and two related research fields. Afterwards, our research explores

the design, analysis, and evaluation of different algorithms for the efficient and effective compu-

tation of Temporal Topology Density Maps in the following three chapters. The figure outlines

the relations among background concepts and research questions. In the end, we draw the final

conclusions on the results.

1.3 Contributions

The contributions of this work can be summarized as follows:

1. It introduces a new algorithm, named IFT-based Topology Density Map (ITDM) – based on

the Image-Foresting Transform (IFT) – for the efficient computation of Topology Density

Map (TDM) .

2. It introduces a new algorithm, named Temporal Topology Density Map (TTDM), for the

encoding of temporal changes associated with Topology Density Map (TDM).

3. It proposes a new method for the visualization of temporal changes associated with TDM.
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Figure 1.2: Research outline presenting the relationships among each chapter’s content, back-
ground concepts (the colored squares) and research questions (the numbered hexagons). The
figure is adapted from the ones presented in [26, 27].

4. It presents a software prototype, named TTDM computation analysis tool (Desktop), in

Unity,4 based on the devised algorithms, for supporting the analysis of temporal changes

associated with Topology Density Maps. It supports the GeoJSON5 and customized for-

mat file as input and output data. A web-end open-source prototype, referred to as TTDM

visualization analysis tool (Web server)6,7, is also designed for the user-friendly visualiza-

tion and evaluation of different visual layouts.

5. It demonstrates the feasibility and usability of the proposed approach in the context of

spatiotemporal (ST) urban data analysis related to the visualization of changes over time.

4https://unity.com/ (As of May 2022).
5https://geojson.org/ (As of May 2022).
6https://folk.ntnu.no/zhichenh/MasterThesis (As of May 2022).
7https://felando1984.github.io/WebTTDM (As of May 2022).

https://unity.com/
https://geojson.org/
https://folk.ntnu.no/zhichenh/MasterThesis
https://felando1984.github.io/WebTTDM
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1.4 Outline

The remaining of this document is organized as follows:

• Chapter 2 introduces relevant background concepts, such as Topology Density Map (TDM),

Change Frequency Heatmap (CFH), and Image-Foresting Transform (IFT). The descrip-

tion of the background concepts also includes the discussion of running examples. These

three concepts serve as the basis for the proposed algorithms.

• Chapter 3 provides an overview of related work in two corresponding research areas con-

sidered in our work: visualization based on density maps and temporal change visualiza-

tion.

• Chapter 4 presents IFT-based Topology Density Map (ITDM), a new algorithm for Topol-

ogy Density Map computation that combines TDM and IFT. This is the core part of the

proposed algorithm for encoding and visually representing temporal changes.

• Chapter 5 introduces a new algorithm, named Temporal Topology Density Map (TTDM),

for encoding temporal changes associated with Topology Density Map (TDM).

• Chapter 6 addresses validation aspects. It covers the evaluation protocol and the pre-

sentation and discussion of results related to the efficiency analysis of the proposed algo-

rithms. The chapter also presents and discusses the use of the Temporal Topology Density

Map (TTDM) and real usage scenarios with real data.

• Chapter 7 summarizes the main conclusions and contributions of the research work and

points out directions for future work.



Chapter 2

Background Concepts

This chapter presents background concepts, utilized in the proposed formulation for comput-

ing Temporal Topology Density Map. First, we introduce a recent formulation for computing

Topology Density Map (Section 2.1). Next, we present the Change Frequency Heatmap and how

this representation encodes temporal changes (Section 2.2). Finally, we introduce the Image-

Foresting Transform algorithm (Section 2.3).

2.1 Topology Density Map (TDM)

Density map is an effective visualization method, which could present the continuous distribu-

tion of scalar fields in a 2D planar space by assigning a specific color to each scalar vertex. It

is widely used in many applications of urban analysis, such as traffic conditions analyses [15],

demographic evolution detection [17] and air pollution distribution assessment [16]. Recently,

Feng et al. [17] introduced a new method for computing density maps, named Topology Den-

sity Map (TDM). Their goal was to create more correct and intuitive density maps in the context

of urban data visualizations. Their work explored the use of a directed acyclic graph (DAG) to

propagate nonlinear scalar fields along 1D road networks. Next, their formulation extends the

density calculation from the scalar fields to 2D planar surface by identifying POI nodes and

computing density scalar fields for all points in this 2D space.

Figure 2.1 illustrates the pipeline, composed of six modules, for computing a TDM. The figure

also provides our simplified presentation and the relationship between them. Our formulation

of the TDM computation was designed for easy understanding and linking with our new algo-

rithm by using similar terms. It comprises three modules: encode network data, compute ac-

cessibility data, and surface mapping. The first module is responsible for encoding the network

data, graph G = (V ,E), which includes the node set V and directional edges set E . The node

9
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set V = {v1, v2, . . . , vi , . . . , vnodeNum}, where vi is a vertex and nodeNum is the number of nodes

in V . To each node, attributes, such as name, location, or if it is a POI, are assigned. The edge

set E = {e1,e2, . . . ,ei , . . . ,eed g eNum}, where e j = (vx , vy ) is a ordered pair of vertices ((vx , vy ) ∈V 2,

and vx ̸= vy ) and edgeNum is the number of edges in E . A weight may be associated with the

edge (vx , vy ), representing the cost from vx to vy , such as time, distance, or other customized

scalar. In this research, the cost is typically the access time rather than the physical distance

(e.g., Euclidean distance). Moreover, the terms network, graph and topology will be used inter-

changeably in our research.

The output of the first module is a wrapped structured DAGs data (GD AG ), computed from dif-

ferent POIs. Implemented using the Dijkstra shortest path algorithm, the second module is re-

sponsible for calculating a set of shortest path costs between every non-POI node and POI nodes

based on GD AG . Then, it constructs the accessibility data Gcost , which includes all accessibility

data information for each non-POI node (the shortest path cost from the nearest POI as well as

the POI name). The accessibility data Gcost is utilized as the input of the last module, surface

mapping, which is responsible for computing (GT DM ), the estimated density field values for a

2D planar surface.

The following density estimation Equation 2.1 [17] is used to calculate the density field value for

any arbitrary point P on the 2D planar surface:

λ(P |POInr ,G) = 1

r
Fk (

(Fc (POInr , Nnr )+Fc (Nnr ,P ))−α

r
) (2.1)

where λ is the density estimation, P is any point on the 2D map, POInr is the nearest POI node,

G is the road graph which is a tuple composed of nodes and edges with specific costs, Nnr is the

nearest node to point P ,α is the accessibility coefficient. According to the literature, the value of

α is usually between 0.9 and 2.29 [28]. FK is the kernel function with a kernel radius r . Fc (vx , vy )

is the cost function of two vertices vx and vy . If both vertices are input nodes, Fc is the path

cost, which is the sum of the weights (cost) in the edges in the path from vx to vy . When vy is an

arbitrary vertex like P , the cost function Fc is calculated by Equation 2.2.

Fc (Nnr ,P ) = d(Nnr ,P )

sav g
(2.2)

where d is the distance between point P and the closest non-POI node Nnr , sav g is the average

speed for the path between Nnr and P .

In [17], the Gaussian (Fk−Gaussi an) and Sigmoid (Fk−Si g moi d ) kernels are considered in the im-
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a b c d e f
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Figure 2.1: Topology Density Map (TDM) algorithm pipeline. The six white background mod-
ules emphasized as a⃝ - f⃝ are original definition for TDM [17]. The three red background steps
are our simplified formulation of TDM, marked with the related defined modules in the top-
right corner.

plementation of Fk (x), where x is the input value. Those kernels are defined as follows:

Fk−Gaussi an(x) = 1p
2π

e− 1
2 x2

(2.3)

Fk−Si g moi d (x) = 1

1+ex
(2.4)

The main novelty of the formulation of Feng et al. [17] relies on the extension of 1D-limited

network discrete information to a 2D-continuous space. It greatly improves the insight depth in

spatial aspect. The approach was validated in two relevant applications related to the analyses of

road topology and traffic conditions on accessibility and to the identification of optimal location

of new public facilities.

Figure 2.2 provides an example related to the computation of a TDM. The input network data

includes six nodes. We assume that H1 and H2 are POIs and the other four nodes (A,B ,C ,D)

are non-POIs. After the encoding of network data, the graph G will be wrapped up to two DAGs

for POIs H1 and H2. The cost Fc is calculated from the POI to non-POI nodes and finally to

any point in the 2D planar space. The density field is the complete 2D planar surface for this

network. In this figure, the color of the nodes and the tapered edges reflect the accessibility

data Gcost . The visualization of GT DM concerns one density estimation field with colors that

represent the propagation of the density values along the edges and the 2D planar surface. For

example, the blue region with the nodes H1, A, B has more variations in the intensities of den-

sity fields when compared to the red region with the nodes D , C , H2.
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Figure 2.2: A running example for TDM. The network data G includes two POI nodes (H1, H2)
and four non-POI nodes (A,B ,C ,D). For each POI node, GD AG is one DAG connecting non-POI
nodes from it. Gcost is the accessibility data, which include the path cost and related POI label.
It can be directly used for the GT DM for the final visualization.

2.2 Change Frequency Heatmap (CFH)

Mariano et al. [24] presented a novel image-based representation, named Change Frequency

Heatmap (CFH), which encodes the frequency of occurrence of temporal patterns associated

with multivariate numerical data.

The CFH computation algorithm comprises three steps as illustrated in Figure 2.3: encode tem-

poral data, compute temporal binary pattern, and compute histogram. The first step is re-

sponsible for encoding the temporal multivariate data S = {X1, X2, ..., Xn}, which is a set with

n elements Xi =< xi ,1, xi ,1, . . . , xi ,m > with m dimensions. The output is a stack of matrices M ,

where M =< M1, M2, . . . , MT >, and Mt is an n × m numerical matrix at timestamp t ∈ [1,T ]

composed of n lines and m columns. Any element mt of the matrix Mt represents the pattern

information at the corresponding position in the space S(n,m) and timestamp t . The space

S(n,m) =< (1,1), (1,2), . . . , (1,m), . . . , (n,1), (n,2), . . . , (n,m) > represents the discretization grid of

a continuous 2D space. The second module computes temporal binary patterns by employing

customized functions that encode temporal change profiles associated with the different ma-

trix cells. This step results in a new stack of matrices D, where D =< D1,D2, . . . ,DT−1 > and and

D t is an n ×m numerical matrix at timestamp t ∈[1,T-1] composed of n lines and m columns.

Therefore, any cell dt in D t is the same position as mt in Mt . Equation 2.5 defines one exam-

ple of encoding function, where number 1 means that there was a change across consecutive

neighbor timestamps, while number 0 means that no temporal changes occurred.

dt =
1, mt ̸= mt+1

0, otherwise
(2.5)

During the last step, patterns of interest p in the dt sequences of numbers ‘0’s or ‘1’s (e.g., p0 = 0,

p1 = 010, p2 = 0110, and p3 = 01110) are utilized. The change presentation d = d1d2d3...dt ...dT−1
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Figure 2.3: Change Frequency Heatmap (CFH) algorithm pipeline.

where ωx,y is a sub part of d , x and y are the indexes of staring and ending timestamp. For ex-

ample, ω2,4 = d2d3d4. If l = l eng th(p), y = l −1+x.

C F Hh counts the number of occurrences of the pattern of interest (binary pattern) in any ele-

ment h of the matrix SC F H , as defined in Equation 2.6:

C F Hh =
T−l∑
x=1

1{ωx,y = p | ωx,y ∈Ω{d}} (2.6)

where 1 ≤ x < y ≤ T −1, y = l −1+x, andΩ{d} is the set of all sub parts of d .

We could consider that C F Hh is a pure matrix calculation algorithm to encode a pixel change

pattern of a stack of matrices and output a binary motion histogram matrix. This method, there-

fore, provides a way to analyze temporal changes across sequences of matrices (e.g., images). As

C F Hh encodes the relevant pattern changes in a matrix (grid), a heatmap is often utilized for

their visualization.

Figure 2.4 introduces one running example in a 2D space. The values here have no actual mean-

ing. For real applications, it could be any interested indicators like source POI label value, the

cost value, etc. In the figure, the temporal data S includes a 4×4 discretization grid for a 2D

space. The metric function calculates the change pattern (Equation 2.5) for neighbor matrices

Ms and outputs into a new stack of matrices D. For example, D1 is computed based on M1 and

M2. The pixel value of the final result matrix DC F H how many times the pattern occurs. For in-

stance, DC F H (0) has the number of ‘0’ for each pixel and DC F H (010) counts the pattern change

‘010.’

2.3 Image-Foresting Transform (IFT)

Image-Foresting Transform (IFT) is a graph-based approach to the design of image processing

operations. The considerable efficiency has been proved and its use has been demonstrated in

several image analysis techniques and applications [19]. IFT solves image partition problems
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Figure 2.4: A running example for CFH. The temporal data S includes a 4×4 discretization grid
for one limited 2D space. The metric function calculates the change pattern as Equation 2.5 for
neighbor matrices Ms and outputs into a new stack of matrices D. For example, D1 is computed
on M1 and M2. The pixel value of the final result matrix DC F H encodes how many times a pattern
of interest occurs. For instance, DC F H (0) has the number of ‘0’ for each pixel and DC F H (010)
counts the pattern change ‘010.’ The figure drawing is adapted from [25].

in a graph-based formulation, in which an image is seen as a graph where pixels are vertices

and edges are defined based on relations among pixels. It receives a seed set S as input and

produces as output a minimum-cost path forest. For pixel-based image partition, the graph is

often defined based on an Euclidean adjacency relation A. Two pixels (vertices) are neighbour

if their Euclidean distance is below a threshold. The cost of a path depends on the local image

properties along the path as color, gradient, or pixel position [29].

In our research, the IFT is modeled to compute an Euclidean Distance Transform that provides

a label propagation model, as illustrated in Figure 2.5. The input is an image I with the seed set

pixels. The output is a forest F with three images: the predecessor map P , the cost map C , and

the root map R. For each pixel, the value of the predecessor map P represents the predecessor

pixel index in the optimum path connecting the nearest seed to it. The value of the cost map

C is the cost of the optimum path. The intensities found in the root map R encode the nearest

seed index.

The IFT is computed according to Algorithm 1 below, which refers to an Euclidean Distance

Transform [19, 29, 30]. The algorithm starts by setting zero to the cost intensity for the seed pix-

els and the infinity for the rest (Lines 2-3). Then, it adds all the seeds into the priority queue Q

and marks the seeds as the roots with the index value −1. That means that there is no prede-

cessor for these pixels. The cost of the seeds are 0 because there is no distance difference for

themselves. Next, the algorithm iterates over all pixels in Q, from the ones with the lowest cost

to the ones with the largest (Lines 4-16). For a target pixel p, the algorithm computes the dis-

tance between the root pixel R(p) and any arbitrary pixel q in the neighborhood of p (defined
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Algorithm 1: IFT algorithm

1 Auxiliary Data structures: A priority queue Q.
Data: An image I , a set S of seed pixels in I , and an Euclidean adjacency relation A.
Result: A forest F with root map R, the corresponding cost map C , and predecessor

map P.
2 For all pixels p of image I , set C (p) ←+∞;
3 For all p ∈ S, set P (p) ← ni l , R(p) ← p, C (p) ←0, and insert p in Q;
4 while Q is not empty do
5 Remove from Q a pixel p = (xp , yp ) such that C (p) is minimum;
6 foreach pixel q = (xq , yq ) such that q ∈ A(p) and C (q) >C (p) do
7 Set C ′ ← (xq −xR(p))2 + (yq − yR(p))2, where R(p) = (xR(p), yR(p)) is root pixel of p;
8 if C ′ <C (q) then
9 if C (q) ̸= +∞ then

10 Remove q from Q;
11 end
12 Set P (q) ← p, C (q) ←C ′, R(q) ← R(p);
13 Insert q in Q;
14 end
15 end
16 end

by an Euclidean adjacency relation A – Line 7). The Euclidean adjacency relation A is often im-

plemented using the 8-connected adjacency, which means the closest pixels around a pixel of

interest from 8 directions. When the distance is shorter, the predecessor index, the cost value,

and the seed index of this pixel q are updated (Line 12). Finally, the algorithm propagates the

cost intensity by inserting the neighbour pixels to the priority queue (Line 13). With this algo-

rithm, a label propagation is performed.

Falcao et al. [19] demonstrated that with the use of a proper data structure in the implementa-

tion of the priority queue Q, the computational complexity of the IFT algorithm is O(n), where

n is number of pixels in the input image I .

One 5×5 image with two seeds is the input of the running example shown in Figure 2.5. The blue

seed (index 6) and the red seed (index 18) are marked as pixel values 1 while the other non-seed

pixels have value 0. After the calculation, the root map R has the corresponding blue and red

regions. The cost map C has the square of the Euclidean distance along the path from each pixel

to the belonging seed. The predecessor map reflects the path with the connectivity among the

pixels. Figure 2.6 provides the visualization of this example. The blue and red dots in the figure

(on the right) are two seeds. The forest is illustrated with the predecessor map by the arrows, the

cost map by numbers, and the root map by the seed colors (on the left).
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Figure 2.5: Image-Foresting Transform (IFT) algorithm pipeline.
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Figure 2.6: A running example for IFT. The two seeds (blue and red) in the image lead to a par-
tition of the space into two regions. The result also includes information about cost and the
predecessor.



Chapter 3

Literature Review

This chapter provides an overview of related work connected with our research. It includes

visualization based on density maps and temporal change visualization. The concepts Topology

Density Map (TDM) and Change Frequency Heatmap (CFH) mentioned have been introduced

in Chapter 2.

3.1 Visualization based on Density Maps

Hogräfer et al. [12] provided an overview of map-based visualization approaches. According

to them, density-based field schematization is an effective technique for aggregating represen-

tatives for local regions and displaying continuous scalar field data in one 2D space with map

rendering. Density map visualization is one promising approach among density-based filed

schematization to construct the visual coding of field data by density value, emphasizing geo-

graphic accuracy over visualization.

Due to the effectiveness in supporting space-oriented assessments, density maps have been

successfully applied to urban analysis, especially concerning services of transporting people

and goods, etc. Danese et al. [31] explored the application of density maps for the seismic risk

analysis to improve the civil protection planning. Xie et al. [15] presented a new density estima-

tion method for traffic accidents and validated the visual effects with real datasets. Scheepens

et al. [13, 14] proposed a novel framework of using density maps to visualize multiple attributes

by multivariate trajectories and validated it in vessel traffic conditions analyses. More recently,

Delso et al. [32] evaluated the density map application for the impact of the obstacles for the

pedestrian walkability. Ren et al. [16], in turn, designed an interactive visual analytic system

on density map technique to demonstrate the effectiveness in air pollution distribution assess-

ment.

17
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An effective density map computation method reflects the attribute value distribution by the

density intensity. Because of the data observation limited on the nodes and edges of the topo-

logical network, the computation of density values for each position in a 2D space is the most

critical process of density map visualization. This process is called density estimation. Various

methods for density estimation have been proposed. For example, Borruso [33] validated Quatic

Kernel Density Estimation (KDE) method in urban immigrant population from the spatial dis-

tribution and tendency aspect. Krisp et al. [34] presented an adaptive directed KDE (AD-KDE)

to recognize the underlying dynamics of the vehicles for traffic condition analysis. Nie et al. [35]

designed a kernel density method called NKDE-GLINCS, which integrates Network-constrained

Kernel Density Estimation (NKDE) and Network-constrained Getis-Ord Gi* (GLINCS), to detect

the road segment anormal status. Yuan et al. [36] proposed a new Quad-tree-based Fast and

Adaptive KDE (QFA-KDE) algorithm to compute the aggregation patterns more efficiently.

In the context of urban analysis, these density estimation methods may be distinguished in two

categories. One type, referred as planar KDE refers to the estimation of the density value based

on the Euclidean distance between positions without any constrained network. The typical ap-

plications includes the trail analysis of vessels [13, 14], trains [37] and flights [38]. The other type,

named as NKDE, emphasizes the density estimation along a constrained network. It is widely

adapted for the road-constrained events analysis like traffic conditions, etc.

Topology Density Map (TDM) [17] (described in Section 2.1) proposed by Feng et al., is a novel

method integrating the advantages of planar KDE and NKDE. It utilized real traffic datasets and

road network to validate its effectiveness of density estimation in 2D space as well as 1D net-

work. Compared with other research and existing methods [39, 40, 41] regarding spatiotemporal

data analysis, TDM provides an intuitive visualization for supporting decision making.

In our research, we improve the computation efficiency of TDM when estimating the density

field from 1D network to 2D space. Furthermore, we explore a new visualization method to

encoding and visualizing temporal changes results of TDMs. Those algorithms are validated in

the context of mobility applications. Both formulations aim to leverage the added-value of using

density maps by decision makers during the exploration of ST datasets.

3.2 Temporal Change Visualization

In the spatiotemporal context, temporal changes represent the attribute value changes over

time, while spatial changes related to variations observed in distinct locations [42]. Recently,

Fang et al. [43] presented a comprehensive survey of methods for time series data visualization.

Their work divided most of the temporal change visualization methods into two categories. One

is the visualization of time attributes, such as Spiral diagram, Calendar view, ThemeRiver view,
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Dynamic visualization, etc. The other is the visualization of high-dimensional time series data,

which involves Parallel coordinate methods, ThemeRiver methods, etc. However, all of them

focus on the visualization of the attributes change over time, not detecting the change patterns

for multiple attributes simultaneously.

With the increasing collection of urban context data, it is challenging to analyze the temporal

aspects associated with spatial data. One promising direction is to analyze and visualize the

temporal changes in an explicit way. Krukowicz et al. [44] provided a comprehensive analy-

sis of animal-vehicle road crashes by the temporal analysis with Calendar view and KDE of the

accidents number. Liang et al. [45], in turn, explored temporal changes of population in a ge-

ographical area using an eigen decomposition method. Ziwen et al. [46] focused their work on

the spatial and temporal patterns analysis for tourist source market using the travel demand in-

dex pattern evolution method. Many other methods have been proposed to represent temporal

changes in the literature [20, 21, 22, 23], but their applications are limited to specific scenarios

and applications, i.e., they are not generic enough to be tailored to other applications.

In the context of urban data, Zheng et al. [47] summarized the existing visualization techniques

from temporal, spatial, and other aspects. One of their focus was the data exploration and pat-

tern interpretation, which are highly relevant for decision making. According to them, for the

multiple attribute visualization, pixel-based techniques interpreted by a matrix form is one of

the most popular techniques. However, these techniques have pose challenges when their use

requires filtering some patterns of interest explicitly for all the pixels simultaneously.

On the other hand, popular density estimation methods, such as KDE, have been extended to

handle the temporal dimension. The spatiotemporal kernel density estimation (STKDE) method

is an example [48]. A predictive hotspot mapping to represent the risk factor by considering the

temporal dimension is a sample application of this type of density estimations [49]. As far as we

know, none of them is suitable to visualize the temporal changes for TDMs.

To encode the temporal changes of multivariate attributes, Mariano et al. [24] have proposed

a promising method Change Frequency Heatmap (CFH) – see Section 2.2. It may utilize ST

datasets as a stack of matrices to produce a matrix of recording the occurrences of the interested

change patterns for each position and has been validated in plant phenology analysis. It has not

been utilized in the visualization of time-related urban data. In this work, we investigate its use

in combination with topology density maps. The main motivation relies on the fact that the

computation of CFH is essentially a matrix-based operation.

One of the most popular methods used for temporal representation is Space-Time Cube (STC),

originally proposed by Hägerstrand [50] and represented by Kraak [51]. STC is a descriptive way

for temporal data visualization using a 3D cube, whose one dimension represents time. This
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visualization strategy has been validated on many kinds of datasets, especially in urban con-

texts [6, 11, 39, 40, 41]. Compared with CFH heatmap, this visual effect provides one dimension

for the temporal attribute. However, it is more suitable for the sparse distribution network or

nodes, but messy for all the pixels on the geographic map.

Furthermore, Bach et. al [52, 53] presented all possibilities to transform this 3D STC cube into

a 2D plane for the visualization. This means all temporal data visualizations method can be

mapping to one kind of transformation. For instance, time flattening, collapsing the space-

time cube along its time axis, represents merging all time slices into a single 2D image. It could

be a effective visualization approach for temporal changes of spatial data. This inspires us to

transform the temporal changes into a novel visualization.

Our research work aims to integrate CFH to encode temporal changes of the results of TDM with

application-oriented customized metrics and behavior patterns. The traditional visualization

of CFH is the heatmap, we explored to reflect the CFH result in the 3D map view with density

maps. It is easier to understand trends and temporal pattern from a geographic location in

urban analysis instead of an individual in plant phenology.



Chapter 4

IFT-based Topology Density Map (ITDM)

This chapter introduces IFT-based Topology Density Map (ITDM), a new method based on the

Image-Foresting Transform (IFT) to compute Topology Density Map.

4.1 Overview

The ITDM computation follows the same pipeline adopted by Feng et al. [17] to compute a

Topology Density Map (TDM), but for steps e⃝ and f⃝ (highlighted in Figure 4.1). In our formu-

lation for step e⃝, the IFT algorithm is used to compute the Euclidean Distance Transform that

partitions the 2D space according the proximity of points to vertices. Next, information about

the partition (label map produced by IFT) and proximity (cost map) is used to estimate the fi-

nal density map (step f⃝). Figure 4.2 illustrates the visual result by computing TDM using the

same example presented Section 2.1. The performance analysis of this algorithm is conducted

in Section 6.2.

This chapter addresses research question 1, which refers to how to use IFT to compute TDM.

Figure 4.1: ITDM computation pipeline. It is based on modifications (highlighted in blue) on
the TDM computation pipeline proposed by Feng et al. [17] (described in Section 2.1).

In the following, the proposed formulations for computing steps e⃝ and f⃝ are detailed.

21
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Figure 4.2: ITDM visual effects for an ITDM running example. The network data G includes two
POI nodes (H1 and H2) and four non-POI nodes (A,B ,C , and D).

4.2 IFT-based Computation of Access Time to Each POI

Figure 4.3 presents the main steps associated with the computation of the access time of any

point in a 2D space to POIs. Three steps are considered: vertex mapping, IFT computation, and

access time computation. Vertex mapping refers to encoding the input graph into an image that

will be used as input of the IFT algorithm, i.e., it converts the graph to an image. In this step,

the nodes in the graph are mapped to seed pixels in the image. Section 4.2.1 provides more

details about the mapping process. As presented in Section 2.1, the accessibility data include

the shortest path cost from the nearest POI as well as the POI label. It is the input of computing

access time to each POI (step e⃝). After the completion on 1D road network, the TDM algorithm

compares the access time from each POI to any arbitrary point P , which is defined according to

the Euclidean distance of the straight connection between P and the nodes. In this chapter, we

propose a formulation to compute this Euclidean distance and find the closest node for each

point P on the 2D space by using the IFT algorithm. Section 4.2.2 presents how this formulation

works. The IFT computation produces a root map and a distance map that are used for the

access time computation. This step is described in Section 4.2.3.

4.2.1 Vertex Mapping

The IFT algorithm maps an image to a forest based on the propagation of the influence zones

defined by different seeds. The vertex mapping step concerns the creation of the IFT input im-

age given the graph associated with the density field on each vertex. Let G = (V ,E) be the this

graph, where V is a set of nodes and E is a set of edges. Recall that each node v ∈V has a position

in the 2D space (xv , yv ). Let I be an image with dimensions W ×H .
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Figure 4.3: Pipeline for the IFT-based computation of access time to POIs.

Figure 4.4: Illustration of the vertex mapping step.

Figure 4.4 illustrates the use of a mapping functionφ to map vertices to an image. The resolution

of the output image is defined according to the minimum distance among two vertices. The goal

is to map vertices to different pixels, i.e., for each node vertex v ∈ V there will be a pixel p ∈ I .

Each pixel p associated with a node vertex v is taken as a seed of the seed set S used in the IFT

algorithm.

The vertices vmi n(xmi n , ymi n) and vmax(xmax , ymax) are two corners in our targeted 2D space

with marked coordinate system. The point p is calculated by Equation 4.1 with the given v . It

computes the scale parameter Kpx first, which is critical to keep the same scale for x and y axis

to avoid the distortion during the calculation. Next, we use Kpx to calculate x and y value based

on the difference between v and wmi n , and the floor function.
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p =Φ(v) = (⌊xv −xmi n

Kpx
⌋,⌊ yv − ymi n

Kpx
⌋) (4.1)

where

Kpx = xmax −xmi n

W −1
= ymax − ymi n

H −1
(4.2)

There are also non-seed pixels p in the image I . For any pixel p with position (xp , yp ) in the

image by IFT, there exist one corresponding point P in the 2D space by the TDM algorithm. For

each Point P , there is a vertex vP , computed by Equation 4.3.

vP =Φ−1(P ) = (xp ×Kpx +xmi n , yp ×Kpx + ymi n) (4.3)

Two factors are worthy to be handled with care. The first is the distance concept difference

between TDM and IFT. The d(vi , v j ) is to calculate the distance between two vertices vi and v j

on the 2D planar surface while d(pi , p j ) is the Euclidean distance between two pixels pi and

p j for the image. The d(vi , v j ) is the geographical distance and it could be scaled from the

Euclidean distance d(pi , p j ) directly.

Figure 4.5: The approximate position calculation for the nodes.

The other factor is the approximate position calculation for the nodes. As illustrated in Fig-

ure 4.5, there is one vertex a (black) that represents a node in the 2D space. It may be mapped

to a close position in the discretized space like a′ (blue) in the vertex mapping procedure. Ver-

tex b is not a node. However, the approximate distance d(a′,b) ̸= d(a,b), which is the real one.

When d(a′,b) ≫ d(a′, a), the distance d(a′, a) could be ignored. For the nearby vertices of a,

the distance d(a′,b) is close to d(a′, a) and the error is larger. There are two ways to overcome

this limitation. The first one is to increase the resolution and decrease the distance d(a′, a). The
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other method is to change the IFT algorithm. For instance, we could map a position to the image

by Equation 4.1 without the floor function. This pixel position value could be float number to

replace the integer, which is the approximated pixel position. This pixel can not be shown in the

real image, but it is feasible to use this float position in the execution of the IFT algorithm. Then,

this solution would eliminate the distance d(a′, a). In our research, we use the first strategy.

4.2.2 IFT Computation

This step concerns the execution of the IFT algorithm using the image I and the seed set S de-

fined in the vertex mapping step. The IFT will partition the image into regions defined according

to the Euclidean distance of pixels to the seeds. The IFT will produce a root map, a cost map,

and a predecessor map.

As Section 4.2.1 discussed, the seeds in IFT are the nodes in TDM. The definition of seed pixels

in the input image relies on assigning 1 as their values. With regard to the three IFT outputs, the

predecessor map is not necessary for TDM. From now on, we will not refer to this map. The root

map R and the cost map C are kept for the access time computation.

Figure 4.6 illustrates the computation of the IFT algorithm for the input graph presented on the

right. The grey-scale images in this Figure are PGM P5 format 1. The known non-POI nodes

A,B ,C , and D are taken as the seed pixels (marked white color) in the image (background color)

in the first step vertex mapping. The discretization of 2D space are 145 × 109 pixels, which is

also the size of input image I . After the IFT call, the root map, the color map, the predecessor

map are created. For example, the root map R reflects four regions (influence zones) belonging

to the four nodes given and the color map C shows the Euclidean distance values increase from

the center because the nodes are in the center region. R and C are used to calculate the access

time later.

4.2.3 Access Time Computation

Before computing access time, we need to determine how to estimate a density field. For that,

we use Equation 2.1 in step f⃝. Equations 4.4 and 4.5 below define how this density map is

computed based on a simple variable substitution of Equations 2.1 and 2.2. In the equations,

Fc (POInr ,P ) is the cost from POInr to any arbitrary point P on the 2D planar surface. In this re-

search, the cost represents the access time. Therefore, Fc (POInr ,P ) is the access time value we

need compute. d(Nnr ,P ) is the distance and sav g is the average speed for the direct connection

between Nnr and P . The other parameters were introduced in Section 2.1 and are not empha-

sized here since they have no impact the the use of IFT to compute topology density maps.

1http://netpbm.sourceforge.net/doc/pgm.html (As of May 2022).

http://netpbm.sourceforge.net/doc/pgm.html
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Figure 4.6: Illustration of the IFT computation step.

Fc (POInr ,P ) = Fc (POInr , Nnr )+ d(Nnr ,P )

sav g
(4.4)

λ(P |POInr ,G) = 1

r
Fk (

(Fc (POInr ,P ))−α

r
) (4.5)

For any pixel p of the image I by IFT, Nnr is the root map value R(p) and d(Nnr ,P ) is calculated

by the cost map value C (p) and scale parameter Kpx by Equation 4.6. Therefore, the access time

Fc (POInr ,P ) can be computed based on the root map and the cost map of IFT. We construct the

access time values for all pixels of the image I as the access time map Fc .

d(Nnr ,P ) = Kpx ×
√

C (p) (4.6)

The use of the IFT opens the opportunity to perform analysis of changes on density maps over

time. Assuming that the input network may change over time, those changes would lead to

different TDMs that could be computed efficiently using the IFT. We explore this scenario in

Chapter 5.
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4.3 Estimate Density Field

Different from the original TDM algorithm, in our formulation, the density field estimation (step

f⃝) will produce a density map Λ and a label map L. Those maps will be used for the temporal

change computation in Chapter 5.

If only the root map by IFT is used to calculate the label map, this formulation is referred to as

option 1 for ITDM. If both the root map and cost map produced by IFT are used to calculate the

label map and density map, this is referred to as option 2 for ITDM.

Algorithm 2 outlines the main steps for the density field estimation. It iterates over all pixels in

the image I (Lines 2-15). For ITDM option 2, it starts by creating a density mapΛwith the access

time map Fc (Line 4). Next, it finds the corresponding node vertex by the root map R (Line 5).

Finally, it produces the source POI node for the given node Nnr (Line 6) using the accessibility

data Gcost , which includes all accessibility information for each non-POI node.

Algorithm 2: Estimate density field

1 Auxiliary Data functions: TDMΛ() and TDML() are two functions separately to compute
the density map and label map value by TDM for the given pixel p.

Data: Access time map Fc , Accessibility data Gcost

Result: Density MapΛ, Label Map L
2 foreach pixel p in image I do
3 if ITDM option 2 then

4 SetΛ(p) ← 1
r Fk ( (Fc (p))−α

r )(Eq. 4.5);
5 Set Nnr ← R(p);
6 Set L(p) ← the source POI node of node Nnr by Gcost ;
7 else if ITDM option 1 then
8 SetΛ(p) ← TDMΛ(p);
9 Set Nnr ← R(p);

10 Set L(p) ← the source POI node of node Nnr by Gcost ;
11 else
12 SetΛ(p) ← TDMΛ(p);
13 Set L(p) ← TDML(p);
14 end
15 end

Figure 4.7 illustrates the visual effects about the running example by TDM and ITDM. The results

may be different from the original TDM. The definition of the suitable estimation option may

consider requirements of the target application. In the example, a visualization based on ITDM

option 2 is illustrated.
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Figure 4.7: Visual effects of density fields for TDM and ITDM.

4.4 Computational Complexity

In the original TDM algorithm [17], the Euclidean distance computation is based on the com-

putation of the distance of each pixel in the planar space to each node in the topology. Let N

and n be the number of nodes in the topology and the number of pixels in the 2D space, respec-

tively. The computational complexity of this operation is therefore O(N ×n). For large values of

N , the original algorithm [17] is much more costly than ITDM. Recall from Section 2.3, that the

computational complexity of IFT is O(n).



Chapter 5

Temporal Topology Density Map (TTDM)

This chapter describes the steps for the computation of the Temporal Topology Density Map

(TTDM), a new algorithm to encode and visualize temporal changes in topology density maps.

Changes are encoded by Change Frequency Heatmap (CFH) and are visually represented in the

output maps produced by the IFT-based Topology Density Map (ITDM) algorithm. In this chap-

ter, we address research question 2, which concerns how to use CFH to encode and visualize

temporal changes on TDM.

5.1 Overview

Figure 5.1 illustrates the pipeline. The input data is a stack of graphs. Two main branches use

this stack of graphs as input. The first one goes through the Compute Representative ITDM com-

ponent and produces two outputs. They are the network accessibility data for the 1D network

and the density map with the label map for the 2D space. Section 5.2 describes how it works.

The other branch goes through the component Encode Temporal Changes and creates a change

frequency map (matrix). Section 5.3 provides the details of this component. These three outputs

of these branches are utilized to construct the final 3D visual effects by the module Compute the

Visual Representation, which is presented in Section 5.4.

The input data of TTDM is a set of graphs G = {G1,G2, . . . ,GT } for timestamps 1,2, . . . ,T . G en-

codes temporal changes in terms of edge costs. The network data Gi (V ,E) ∈ G is the same as

explained in Section 2.1. A cost is associated with each edge, representing the dynamic tempo-

ral weight value. To incorporate temporal aspects in the current method, which is the main goal

of this research work, we define the possibility of variations among the edge values. This means

that the cost between each two nodes can dynamically change with time, and consequently, the

nearest POI for each node may also change.

29
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Figure 5.2: A running example for TTDM. Matrix M1 (right) encodes the graph represented initial
condition for the working example (left). M1 ∼ M4 are the corresponding matrices for the four
timestamps in sequence.

Adjacency matrices can be used to represent the edge costs of all graphs Gi ∈G . Let M be a set

of matrices such that M =< M1, M2, . . . , Mt , . . . , MT >, where Mt is an s × s matrix at timestamp

t ∈ [1,T ] composed of s lines and s columns. s is the number of nodes.

Figure 5.2 provides the running example for this chapter. It integrates a four timestamps tem-

poral changes on the same example in Chapter 4. It is composed of V = {H1, A,B ,C ,D, H2}

and E = {e1,e2, ...,e11}, where the edge is defined as e1 = (H1, A). In this case, the stack of matri-

ces M =< M1, M2, M3, M4 > with the node number s = 6 and the size of the timestamps T = 4.

According to our assumed temporal changes, matrix M1 refers to the graph at timestamp t1 il-

lustrated in Figure 5.2. The empty elements in M1 are filled out with zeroes for the diagonal and

infinity for the other positions. The same applies for the other three matrices M2, M3, and M4.
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5.2 Compute Representative IFT-based Topology Density Map

(ITDM)

This step aims to compute a graph to serve as a representative of the whole set G . This represen-

tative graph (Gr d ) will be used as input to the ITDM algorithm. The goal is to produce maps to

be used for the 1D network and 2D space visualization. As Figure 5.3 illustrates, with the input

M , the module works as a filter that process all graphs in G using the input function fr d . The

default function is a weighted computation based on edge values as defined in Equation 5.1.




Input Function

Filter graphs function  frd
(Average)

Compute Representative ITDM

Compute ITDM
Filter Graphs


Figure 5.3: Compute Representative IFT-based Topology Density Map (ITDM) pipeline.

Mr d = 1

T

T∑
t=1

wt Mt (5.1)

where Mr d is a matrix which encodes the representative graph Gr d , wt are weights and 1
T

∑T
t=1 wt =

1. The default weighting scheme implemented assigns the same weight value for all matrices.

In our example, that means w1 = w2 = w3 = w4 = 1.

The other module (Compute ITDM) has been described in Chapter 4. It computes the shortest

path cost and the source POI label for each node. The cost and label information can then be

used to determine the accessibility of nodes (first output). Also, this module also outputs the

cost and the label maps that will be used later to produce the final visual representation related

to the TTDM.

5.3 Encode Temporal Changes

As Figure 5.4 illustrates, to encode temporal changes, ITDMs for each timestamp matrix in M

need to be computed. That step produces sequences of density maps and label maps. The

module Compute CFH utilizes the density maps or the label maps as input. It then uses a metric

fm and behavior pattern Sbp to create a change frequency map, which reflects how many times
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the behavior pattern occurs for each position of the map. In the following sections, these two

steps are detailed.




Encode Temporal Changes

Compute CFH
Compute ITDMs


Input Parameters

Metric fm
(Change)

Behavior Pattern Sbp
(1)

Figure 5.4: Encode temporal changes pipeline.

5.3.1 Compute IFT-based Topology Density Map (ITDM)s

This step concerns the computation of the IFT-based Topology Density Map (ITDM) for each

timestamp t , i.e., it computes IFT-based Topology Density Map (ITDM) for each given input

graph defined in terms of its edge cost matrix Mt (t ∈ [1,T ]).

Running the ITDM algorithm for the matrices set M leads to creation of two sets: a set of labels

Labelnr and a set of costs Costnr . These two sets define the accessibility data set < Gcost >.

After the density field estimation (Section 4.3), the algorithm creates a set of density maps <Λ>
and label maps < L >. The nodes in TDM are mapped as the seed pixels in IFT. The temporal

changes of seed pixels represent the temporal changes of the pixels in corresponding regions.

Therefore, the analysis of node temporal changes represented by Labelnr is more direct.

Figure 5.5 illustrates the computation of multiple ITDMs. The upper half part of the shows the

temporal variation in the matrices M =< M1, M2, M3, M4 > as the input. The rest of Figure 5.5

provides the computation result for the sample graph data. The cells highlighted in green re-

fer to those changed between two consecutive timestamps. The path costs from POI nodes

(H1, H2) are calculated by the Dijkstra algorithm for directional graph. After the minimum

calculation of the path costs from each POI for each nodes, Labelnr and Costnr are created,

which form the shortest path costs information (Gcost ). When t = 1, the non-POI node B has

shortest path (H1 → A → B) cost value 14 (6+ 8) from the POI node H1. With the increase of

e3(A,B) cost and decrease of e7(C ,B) at t = 2, the shortest path for non-POI node B becomes

(H2 → C → B) cost value 21 (11+ 10 ) from the POI node H2, which has lower cost than the

other path (H1 → A → B) from POI node H1 with cost value 36 (6+ 30 ). The temporal variation

affects the accessibility associated with different regions. The output is a set of Gcost for different

timestamps. This set includes the accessibility data for the nodes of graph. The density maps
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Figure 5.5: An example of the computation of multiple ITDMs. It reflects the temporal changes
of the sample graph data when T = 4.

<Λ> and label maps < L > are also illustrated in the figure.

5.3.2 Compute Change Frequency Heatmap (CFH)

This step concerns the computation of the Change Frequency Heatmap, as described in Sec-

tion 2.2. This component receives a metric function that defines the change pattern of interest

as parameter. Another parameter is the change binary pattern.

Figure 5.6 illustrates this computation process. The input is a set of temporal maps. They can

be density maps or label maps. After the compute temporal binary pattern with the metric

function fm , the algorithm creates a group of change binary maps. Finally, it outputs one change

frequency map with the count number of the given behavior pattern.

Algorithm 3 outlines the steps of temporal change encoding. The first step is the construction
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Algorithm 3: Encode temporal changes.

1 Auxiliary Data structures: The binary change map set Dc for saving the binary pattern
representation.

2 Auxiliary Data functions: I sC hang ed() is a function to return whether the two input
elements are changed or not within the difference by the threshold value Tr , the
function i ndex() gets the element index for the map.

Data: Temporal change map set Mc , the number of timestamps T , the binary pattern
string Sbp , the metric function fm is I sC hang ed()

Result: Change Frequency Map T f

3 foreach element m in Mc do
4 foreach timestamp t in (1,T-1) do
5 if IsChanged(mt ,mt+1, Tr ) then
6 dt ← 1;
7 else
8 dt ← 0;
9 end

10 end
11 end
12 p = Sbp ;
13 foreach element d in Dc do
14 T f (i ndex(d)) ←∑T−l

x=1 1{ωx,y = p | ωx,y ∈Ω{d}}(Eq. 2.6);
15 end

Figure 5.6: Illustration of the compute Change Frequency Heatmap (CFH) step.

of binary change maps (Lines 3-11). Next, the algorithm computes the change frequency map

(Lines 13-15). The output change frequency map is used for the visual representation.

Figure 5.7 provides a scenario related to temporal changes observed for nodes in the working ex-

ample when the binary pattern string Sbp is “1.” The figure also represents the temporal changes

for the seed pixels in the label maps < L > when we set the label maps as the temporal change
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Figure 5.7: Illustration of temporal changes for the nodes in an example.

maps for computing the change frequency map. In the illustration, changes refer to nodes (also

seed pixels) A, B , C , and D (non-POI nodes), and H1 and H2 (POI nodes). The variations of

source POI for nodes, Labelnr , are represented in this figure (see the Temporal Change Score

row related to label maps). It was produced by the module Compute ITDMs (Section 5.2).

Figure 5.8 shows a more detailed example of the temporal changes with label maps and colored

nodes. In the example, the center region of the label maps is highlighted. The corresponding

graph is presented in the middle of the figure for different timestamps. We assume that the color

of H1 is blue and the color of H2 is red. At timestamp 1, the point of interest H2 is the closest

to node C , and H1 is the closest to other nodes. At timestamp 2, the nearest point of interest for

node B changes from H1 to H2. At timestamp 3, node B is more accessible from H1 again, while

node D falls into the H2 group. Finally, at timestamp 4, there are no changes in the nearest point

of interest among the nodes. If we encode these changes into numbers, there were two changes

found in the status of node B and one change in the status of node D . Therefore, the temporal

variation value for node B is two and for node D is one.

5.4 Compute the Visual Representation

The module Compute the Visual Representation provides the resulting visualization related to

the execution the TTDM algorithm. As Figure 5.9 shows, it computes 1D network with the mod-

ule (Network Color Mapping) and 2D space with the module (Density Field Color Mapping).

Both of them are the outputs produced by the module Compute Representative ITDM (Sec-

tion 5.2). Moreover, it utilizes the output of the module Encode Temporal Changes (Section 5.3)

to calculate a height map by the module (Height Mapping). The last module, Visual Integrator,

interpolates the heights for the vertices in 3D mesh with the given interpolation scale m and

integrates all visual layers into a visual 3D world. The final visualization combines the maps

related to temporal changes and the representative density field map density field map simul-

taneously. The following sections describe these modules.



CHAPTER 5. Temporal Topology Density Map (TTDM) 36

H1 A

D

C

B

H2H1 A

D

C

B

H2H1 A

D

C

B

H2

H1 A

D

C

B

H2H1 A

D

C

B

H2

H1 A

D

C

B

H2

BA C D H2H1

H1 A

D

C

B

H2

t1

H1 A

D

C

B

H2

t2

H1 A

D

C

B

H2

t3

H1 A

D

C

B

H2

BA C D H2H1t1

BA C D H2H1t2

BA C D H2H1t1

BA C D H2H1t2

t1

BA C D H2H1t3

BA C DH1t1

A CH1t2

BA C

D

H1t3

BA C DH1t4 D

H2

H2

H2

H2

D

D

C

C

C

C

B

B

D

DBAH1

H1

z

t4

Label Maps The POI labels for nodes (seed pixels)

Figure 5.8: An example of temporal variation mapping.

5.4.1 Network Color Mapping

The network color mapping aims the creation of a visual representation of the 1D road network

with colored nodes and tapered edges. Algorithm 4 outlines the key steps for network color

mapping. The first step is to draw all nodes with the associated POI color (Lines 2-6). The other

step is to draw all edges (Lines 7-19), which relies on computing the normalized cost values

along edges (function Nor m in the algorithm) of the path cost separately for the start and end

nodes first (Lines 8-16). After that, it finishes the drawing of the edge considering the different

width values along the edge (Lines 17-18). The color of the edge is the same as the start node
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Figure 5.9: Compute the Visual Representation pipeline.

color (Line 13).

Figure 5.10 presents the network color mapping with an example. Once finished the compu-

tation of the DrawNode function for all nodes, nodes A and B are blue, as their nearest POI

node is node H1. The red nodes C and D are closer to H2. Next, the edge is computed started

from e1(H1, A), e2(A, H1), . . . ,e11(H2,C ). For instance, e4(A,D) is blue because the start node D

is blue. The cost value for A is less than D from the POI node H1, which means A has higher

accessibility from POI node. Therefore the width of the line for e4 is decreasing from the start

node A to the end node D . Similarly, it is easy to follow the blue edge e6(B ,C ) and the red edge

e7(C ,B), a case of bi-directional edges with different colors.

H2H1 C

B

A

D

Figure 5.10: An example of network color mapping.

5.4.2 Density Field Color Mapping

Density field color mapping utilizes the density mapΛ and the label map L to create the output

color map Lc . Algorithm 5 outlines the key steps for density field color mapping calculation. For



CHAPTER 5. Temporal Topology Density Map (TTDM) 38

Algorithm 4: Network color mapping

1 Auxiliary Data functions: Norm() is a function to return linear normalization result of
given node path cost value in the cost set of Gcost . DrawNode() and DrawEdge() are two
functions to draw node and edge with given parameters on Network Map Gc .

Data: Accessibility data Gcost

Result: Network Map Gc includes colored 1D road network
2 foreach vertex v in V do
3 Set P ← v ;
4 Set cr ← the color of node P by Gcost ;
5 DrawNode(v,cr );
6 end
7 foreach edge e in E do
8 Set vx ← the start node of e;
9 Set vy ← the end node of e;

10 Set P1 ← vx ;
11 Set Fc (POInr ,P1) ← the path cost of node P1 from belonging POI node by Gcost ;
12 Set sP1 ← 1−Nor m(Fc (POInr ,P1));
13 Set clr ← the color of node P1 by Gcost ;
14 Set P2 ← vy ;
15 Set Fc (POInr ,P2) ← the path cost of node P2 from belonging POI node by Gcost ;
16 Set sP2 ← 1−Nor m(Fc (POInr ,P2));
17 Set the proper edge width scaling factor Kw (defaults to 1);
18 DrawEdge(e, sP1, sP2,clr,Kw );
19 end

each pixel in color map LC (Lines 2-6), the final color value (Lines 5) with transparency value

αcolor (Lines 4) is calculated by the density estimated value λ (Equation 2.1 [17]) and the closest

POI node color POICol or (Lines 3).

Figure 5.11 provides the only result of density field color mapping and the integration with net-

work color mapping. It is calculated on the average cost result among the timestamps. There-

fore, we could find the color consistency of 1D network (network color mapping) and 2D space

(density field color mapping). The region defined by ABC D is easily accessible through H1 and

H2 while the region (H1A) is only affected by H1.

5.4.3 Height Mapping

The TTDM algorithm may encode temporal variations related to the costs between the nodes

or the accessibility of nodes to the POIs. As discussed in Section 5.3, those temporal variations

are encoded in a change frequency map. If we choose the label maps as the input for encoding

the temporal changes, the change frequency map reflects the source POI label changes for each
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Algorithm 5: Density field color mapping

1 Auxiliary Data functions: Norm() is a function to return linear normalization result of
given density field value in the whole values set of Density MapΛ.

Data: Density MapΛ, Label Map L
Result: Color Map LC

2 foreach pixel p in LC do
3 Set POIColor ← the color of POI node L(p);
4 Set αcolor ← 1−Nor m(Λ(p));
5 Set LC (p) ← (POIcolor ,αcolor );
6 end

Top view Point of Interest

Nodes close to H1 based on distance

Edges close to H1 based on direction

Nodes close to H2 based on distance

Edges close to H2 based on direction

Top view

H2H1 C

B

A

D

Figure 5.11: An example of density field color mapping. The density field color mapping result
(left) and the integrated result with the network color mapping (right).

pixel. The height mapping module aims to compute a height value for each pixel p. This height

value of the pixel p is calculated based on its Euclidean distance to the nearest non-POI node

using Equation 5.2.

H(p) = K × T f (p)

1+Kpx ×
√

C (p)
(5.2)

where p is a pixel in the height map, K is the scaling factor, T f (p) is the change frequency map

value in the same pixel position p, C (p) is the cost map value for pixel p. In fact, Kpx ×
√

C (p) is

the distance d(Nnr ,P ) between the point P and the nearest non-POI node Nnr as Equation 4.6.

Algorithm 6 outlines the key steps.

Figure 5.12 is the height mapping result for the sample graph, with H1 and H2 representing the

POI nodes. The black marked circles represent the nodes with more frequent temporal changes.

The pixels closed to the nodes B (T f (B) = 2) and C (T f (C ) = 1) have the higher change frequency

map values, which are proportional to the elevations there. It also provides the visual effects

integrated with 1D network (network mapping) and 3D mesh (height mapping).
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Algorithm 6: Height Mapping

Data: Change Frequency Map T f , Cost Map C
Result: Height Map H

1 foreach pixel p in H do
2 Set the proper scaling factor K (defaults to 1000);

3 Set H(p) ← K × T f (p)

1+Kpx×
p

C (p)
(Eq. 5.2);

4 end

Side viewSide view
Nodes with larger elevations

H2H1 CA B D

Point of Interest

Nodes close to H1 based on distance

Edges close to H1 based on direction

Nodes close to H2 based on distance

Edges close to H2 based on direction

Figure 5.12: The height mapping result (left) and the integrated result with the network color
mapping (right).

5.4.4 Visual Integrator

The Visual Integrator module includes the encoding of height values in a higher resolution map

by mesh interpolation and the integration of the network and density field color mapping re-

sults. Mesh vertex contains x, y, and z coordinates and may contain a vector normal, a color

value, and texture coordinates in 3D space. In our computation, we use local 3D coordinates

(x, y, z) to represent a mesh vertex directly. Considering the most widely used coordinate sys-

tem, local 3D coordinates (x, y, z) is chosen to implement the design while y is the elevation,

x is the longitude, and z is the latitude. Mesh interpolation is a method to compute a new set

mesh vertices based on an existing 3D mesh associated with the height map. In the proposed

integration process, the scale of the final visual structure is defined by means of a parameter

m, referred to from now on as “interpolation scale.” The number of vertices in 3D mesh deter-

mines the complexity of calculation, which finally defines how much details are encoded in the

visualization.

For the existing 3D mesh, let Vor i g be a set of mesh vertices composed of sv rows and sv columns

mesh vertices, sv is the number of mesh vertices. The result after mesh interpolation is a new set

of mesh vertices W composed of sw rows and sw columns mesh vertices. The required 3D mesh

may be created by the W directly. The relation between sw and sv is defined in Equation 5.3
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Algorithm 7: Mesh interpolation

1 Auxiliary Data functions: the function i ndex() gets the vertex index in the vertices set;
Data: Original mesh vertices set Vor i g , interpolation scale m
Result: Interpolated mesh vertices set W

2 Set sw = sv + (m −1)× (sv −1);
3 initialize W with sw rows and columns;
4 foreach w in W do
5 Set ir ← i ndex(w)/sw , ic ← i ndex(w)%sw ;
6 Set i1r ← ir /m, i1c ← ic /m;
7 Set i2r ← i1r +1, i2c ← i1c +1;
8 Set v1 ←Vor i g (i1r , i1c ), v2 ←Vor i g (i1r , i2c ), v3 ←Vor i g (i2r , i2c ), v4 ←Vor i g (i2r , i1c )

considering the border condition sw ;

9 Set kr ← ir −mi1r
m ,kc ← ic−mi1c

m ,kh ←
p

(ir −mi1r )2+(ic−mi1c )2
p

2m
;

10 Set nz ← z value of (v4 − v1)×kr + v1;
11 Set nx ← x value of (v2 − v1)×kc + v1;
12 Set ny ← y value of (v3 − v1)×kh + v1;
13 Set w ← (nx ,ny ,nz)
14 end

sw = sv + (m −1)× (sv −1) (5.3)

where m is the interpolation scale.

Figure 5.13 provides an example of mesh interpolation. In this example, we assume the the

project area of this 3D mesh is a 2D map (one scalar field) that includes the sample graph in

step 1. In the example, Vor i g is composed of 100 mesh vertices (v1_1, v1_2, . . . , v10_10). They are

the white background points given according to map accuracy in step 2. This number of mesh

vertices is assumed as the highest default precision of the sample scalar field in our implemen-

tation, i.e., 10×10 is the highest grid size. After that, m is defined for mesh interpolation using

3D interpolation. The elevation value y of each mesh vertex is given by the height map H .

If m = 2, the total number of mesh vertices will increase to 361 according to the Equation 5.3,

(10+ (m −1)× (10−1))2 = 192 = 361. Then, the interpolated vertices set W , which includes 361

mesh vertices (261 mesh vertices are new, and they are highlighted in grey from step 3). These

mesh vertices are (w1_1, w1_2, . . . , w19_19). If we resample the cells, more cells could be included

in step 4. There are fewer area sizes of new cells after the finish of mesh interpolation. if m = 1,

W =Vor i g .

Algorithm 7 outlines the calculation progress of interpolation based on Figure 5.14. For each

loop, the mesh vertices v1, v2, v3, and v4 are found in Vor i g , and the mesh vertex w is the output



CHAPTER 5. Temporal Topology Density Map (TTDM) 42

V1_1

H1 A

D

C

B

H2

w1_1 w1_2

w19_1 w19_19

w1_19

Step 1. 

One Scalar field = continuous

Step 2. 

One Scalar field =  10x10 mesh vertices


= 100 mesh vertices (81 cells)

V1_2 V1_3 V1_4 V1_5 V1_10

V10_10V10_1

Step 3. 

One Scalar field =  19x19 mesh vertices


= 361 mesh vertices

Step 4.

One Scalar field =  19x19 mesh vertices


= 361 mesh vertices (324 cells)

Figure 5.13: An example of mesh interpolation. Mesh interpolation steps for m = 2 with chang-
ing mesh vertices in one sample scalar field.

with the calculated result based on these four mesh vertices and m (Lines 11-13).

Figure 5.15 presents the visual results of the module visual integrator for the sample graph. it

combines multiple 3D elements layers in one 3D space. For instance, we set 1D network layer,

2D space layer and 3D mesh layer correspondingly represents the visual effect of the modules

network color mapping, density field color mapping and height mapping. Furthermore, the
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Figure 5.14: Illustration of mesh interpolation procedures.
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Figure 5.15: The visual integrator example with the multiple layers.

visual integrator could also display some auxiliary information in other images layer like real

map.



Chapter 6

Validation

This chapter addresses the validation of the proposed algorithms: ITDM and TTDM. Section 6.1

introduces implementation aspects covering used technologies and developed prototypes. Sec-

tion 6.2 addresses research question 3, which concerns the performance (quantitative) and

qualitative assessment of TTDM. Section 6.3 focuses on research question 4, describing two

case studies that employ the developed algorithms in mobility-related analyses.

6.1 Implementation Aspects

This section overviews the main technologies employed in the implementation of the proposed

algorithms, as well as the prototypes created.

6.1.1 Overview of Used Technologies

Two prototypes were designed and implemented. The first one, a desktop software prototype,

aims to support the performance and qualitative assessment of TTDM. This prototype allows

algorithm computation analysis according to different parameter settings. The second one, a

web-based software prototype, aims to support the analyses of diverse visual layouts associated

with the two case studies considered in our study.

Figure 6.1 illustrates the main technologies employed in the implementation of these two soft-

ware prototypes. The Python programming language and the OSMnx package [54]1 were uti-

lized to download and export geospatial data from OpenStreetMap.2 The python module is re-

sponsible for encoding the target network obtained from OpenStreetMap (Label 1) to a comma-

1https://github.com/gboeing/osmnx (As of May 2022).
2https://www.openstreetmap.org/ (As of May 2022).
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Figure 6.1: Overview of the different technologies used in the implementation of the prototypes.

separated values (CSV) file. The alternative supporting format (Label 2) of network data is

GeoJSON3, which is a geospatial data interchange format based on JavaScript Object Notation

(JSON). The free Open Source software QGIS4 and the commercial software ArcGIS (Pro, On-

line)5 are the main popular tools to create and edit GeoJSON files. Similarly, there are also

two additional formats (CSV and JSON) used for loading weather data from two Norwegian

providers: Norwegian Climate Service Center6 (3 in the figure) and Meteorologisk Institutt –

Frost Application Programming Interface (API)7 (4).

The TTDM computation analysis tool (Desktop) (Label 5) is a software prototype that contains

an implementation of the TTDM algorithm in Unity8 with C# script and Mapbox Software Devel-

opment Kit (SDK).9 The input graph network is encoded into two file formats (CSV, GeoJSON).

This prototype computes edge costs based on weather data recorded in CSV and JSON. The

prototype also integrates an IFT Dynamic Link Library (DLL) implemented based on the IFT C

source code package.10 The software provides an approach to execute the TTDM algorithm on

selected datasets with customized parameters. It supports 3D visualization as well as saving the

algorithm computation result as a GeoJSON format file (Label 6).

TTDM visualization analysis tool (Web server) (Label 7) is a software prototype to visualize the

3https://geojson.org/ (As of May 2022).
4https://qgis.org/en/site/ (As of May 2022).
5https://www.arcgis.com/ (As of May 2022).
6https://seklima.met.no/ (As of May 2022).
7https://frost.met.no/ (As of May 2022).
8https://unity.com/ (As of May 2022).
9https://www.mapbox.com/unity (As of May 2022)

10https://github.com/tvspina/ift-demo (As of May 2022).

https://geojson.org/
https://qgis.org/en/site/
https://www.arcgis.com/
https://seklima.met.no/
https://frost.met.no/
https://unity.com/
https://www.mapbox.com/unity
https://github.com/tvspina/ift-demo
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TTDM computation results on the web. It is mainly implemented using Javascript, Mapbox

GLJS library,11 and Bootstrap.12 This prototype supports the assessment of generated visual

structures with a more user-friendly user interface (UI). Different kinds of web clients (Label 8)

are expected to access this web server. Those clients allow users to upload a TTDM GeoJSON

file (Label 6) and compare associated visual results.

6.1.2 Overview of Prototypes

This section describes the main features of the developed prototypes.

TTDM Computation Analysis

The software prototype TTDM computation analysis tool (Desktop) is designed to support com-

putation analysis. Its main functionalities are:

1. Integration of an IFT C source code package in the TTDM computation.

2. Execution of algorithms to support performance and qualitative assessment and down-

load of results.

3. Execution of the TTDM algorithm on a selected graph dataset with different parameters

and visualization of results in a 3D view.

4. Saving of TTDM computation results as a GeoJSON file for visualization assessment.

Figure 6.2 provides an overview of the implementation components. The external resources

include files or interfaces needed for the implementation. The functions are programmed in

C# script codes, and visual structures are created by means of visual objects in Unity. Mapbox

API (Label 1) is called by the Mapbox SDK (Label 4) to construct a Mapbox street map Layer

(Label 9). The network and weather data files (Label 2) are the data source for the core function

in the TTDM computation (Label 5). This algorithm needs to call the IFT algorithm available

in the created IFT DLL file. The TTDM computation module uses the configuration defined in

the user interface (Label 11) to update the TTDM Visual Layers (Label 10) (Section 5.4.4). Other

features refer to exporting TTDM .geojson file (Label 6) and performance assessment (Label 7).

Finally, label and density maps created during the computation can be exported (Label 8).

Figure 6.3 presents a screenshot of the User Interface of the TTDM computation analysis tool

(Desktop). On the left region, there is a menu composed of five panels (Labels 1-5). This menu

allows the definition of the configuration of the parameters before the TTDM computation. The

users may select the graph dataset, the method for encoding temporal changes, the weather

11https://www.mapbox.com/mapbox-gljs (As of May 2022).
12https://getbootstrap.com/ (As of May 2022).

https://www.mapbox.com/mapbox-gljs
https://getbootstrap.com/
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Figure 6.2: The implementation architecture of the TTDM computation analysis tool (Desktop).

dataset, and the daily data filter (e.g., “all days,” “weekdays,” “weekends”) in the first Panel (La-

bel 1). There are three choices in the drop-down menu for the temporal change encoding meth-

ods. Available options include to import predefined temporal changes, create random tempo-

ral changes, and compute the simulated temporal changes based on real weather data (e.g.,

in the current version, snow data). The second one (Label 2) provides three choices to esti-

mate density field on 2D planar surface TTDM with running TDM, ITDM option 1 and option 2

(Section 4.3). It is also possible to use a slider to select any timestamp ITDM as representative.

Another available option refers to the definition of the representative based on an average func-

tion (Section 5.2) on the third panel (Label 3). The fourth panel (Label 4) includes the parameter

configuration related to the computation of a change frequency heatmap (Section 5.3). It allows

to choose density or label maps as the input of the CFH algorithm, the change binary pattern,

and the time range (by the sliders). The TTDM computation (Label 5) will be started after the

choice of the interpolation scale. The top-right menu (Label 6) includes the display control of

the visualization components: loading and saving of the TTDM computation result, saving den-

sity maps and label maps as figures, and executing the performance test. In the center region

(Label 7), there is an area to display the 3D visualized results with the fly control camera by the

mouse. At the bottom (Label 8), it shows some hot keys information and one help button.

TTDM Visualization Analysis

The software prototype TTDM visualization analysis tool (Web server) is designed for the visu-

alization analysis. Its main functionalities are::

1. Decoding of the TTDM computation result (GeoJSON file) for the visualization analysis.

2. Filtering the temporal changes with customized parameters.

3. Visualizing all data in the geographic coordinates system.
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Figure 6.3: Screenshot of the TTDM computation analysis tool (Desktop) created for TTDM
computation analysis.

4. Providing a more user-friendly interface with some features, such as the object track func-

tion by mouse hover and click, the playback function of the ITDM for each timestamp, the

camera positions synchronization, etc.

Figure 6.4 shows an overview of its implementation. Mapbox API (Label 1) is accessed by the

Mapbox GLJS (Label 3) to create all visual layers (Label 5). The TTDM GeoJSON file (Label 2) is

uploaded for the temporal change customized filter (Label 4). This filter implements the main

functions based on the settings defined in user interface (Label 6) and exports the data to visual

layers by Mapbox GLJS.

Figure 6.5 presents a screenshot of the user interface of the TTDM visualization analysis tool

(Web server) accessed by a web browser. There is one toggle menu (Label 1) on the top-left. It

includes two main tab pages (Label 2) “Load” and “Layers.” The “Load” page (Label 3a) allows

the users to choose a remote TTDM GeoJSON file on the list directly or one local file to upload

before the visualization analysis. It also supports the playback function with the sliders for the

selected timestamp data and the waiting time for the load of each timestamp. Different options

are available for encoding temporal changes, such as the selection of CFH input data (density

map or label map), the optional metric functions (change, increase, decrease), the threshold
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Figure 6.4: The implementation architecture of the TTDM visualization analysis tool (Web
server).
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Figure 6.5: Screenshot of the TTDM visualization analysis tool (Web server) created for TTDM
visualization analysis.

for define binary maps, and the change binary pattern. The “Layers” page (Label 3b) provides

more options for advanced visualization analysis. It includes layers to control the different map

layer views provided by Mapbox GLJS, components of the visual integrator (Section 5.4.4). In

addition, some features like the camera position synchronization by clicking copy and paste

button and the transparency alpha adjustment are also provided on this page. The information

on the object information panel (Label 4) is updated when the mouse moves on the map in the

center main region (Label 5). This center main region displays the final visualization result on

the map, supporting pan and zoom operations with the mouse. The object screenshot panel

(Label 6) is activated after the left-click of the mouse. This panel makes it easier to compare

the data of one marked position with another one shown in the object information panel (Label

4). The snow depth data may also be shown with various charts styles if the user activates the

option "Graph XY (snow depth)" on the “Layers” page (Label 3b).
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Figure 6.6: Visual effects of the default example after the initialization.

Figure 6.6 illustrates the visual effects of one example with the default configuration. For in-

stance, the map style options include light (L), satellite (S), dark (D), street (E), and outdoor (O).

All of them are provided by Mapbox GLJS. The default configuration is the light map style. It also

supports the display of the terrain and building data as the additional features with selected map

style. Next, three data layers (POIs layer, intersections layer, and roads layer) will responsively

show POI nodes, intersections (nodes), and roads (edges). Here we used labels in the interface

of the mobility applications instead of the algorithm to support future user studies with domain

experts. At last, the three main modules (network color mapping, density color mapping, height

mapping) of the visual integrator can be configured. Also, it is possible to choose alternatives

to display the CFH result using height information. The center region of the figure contains the

visual result related to the integration of these selected multiple visual layers. Here, we used the

extrusion of polygon13 to create the 3D bars array instead of 3D mesh as an alternative approach

to visualize temporal changes. Compared with 3D mesh, it is easier to recognize the elevations

accurately in our designed aspect.

Figure 6.7 is one example of the object track function. It tracks and displays the object hov-

ered by the mouse. The priority from high to low is node, edge, and point. In TTDM GeoJSON

13https://docs.mapbox.com/mapbox-gl-js/example/3d-extrusion-floorplan/ (As of May 2022).

https://docs.mapbox.com/mapbox-gl-js/example/3d-extrusion-floorplan/
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Figure 6.7: Visual effects of the object track function for node (a), edge (b), and point (c).

file, all information is only saved in the geographic coordinates. TTDM visualization analysis

tool (Web server) is a prototype of visualizing and analyze the TTDM computation result using

GeoJSON format. It means it is also feasible to visualize the TTDM computation result by the

programming script in any software that supports GeoJSON.

6.2 Performance and Qualitative Assessment

This section addresses research question 3, which concerns the quantitative and qualitative as-

sessment of algorithms. To address this research question, two experiments were conducted:

1. Assessment of the efficiency of ITDM in terms of computation time;

2. Assessment of produced density maps and label maps when compared with the algorithm

proposed by Feng et al. [17].

Section 6.2.1 describes the evaluation protocols in detail, while Section 6.2.2 presents and dis-

cusses obtained results.

6.2.1 Evaluation Protocol

Evaluated methods: With regard the efficiency assessment, we compare the computational

time of three approaches: TDM [17] and our two formulations (ITDM option 1 and ITDM option

2) – see Section 4.3 for more details. Each algorithm was run five times and we report the average

time and the standard deviation. The assessment includes different scenarios, such as distinct

resolution scales, temporal changes for various time lengths, different networks, and diverse

number of POI nodes. The assessment refers to the computation of TTDMs.
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The qualitative assessment relies on the comparison of label and density maps with the ones

produced with the original algorithm [17]. For the label maps, we directly compute whether the

POI labels are different for each pixel when using ITDM or TDM [17].

For density maps, the indicator (Percentage difference) %D is used to compare ITDM results

with the TDM result. The percentage difference %D for any pixel p in the map is the absolute

value of the difference divided by the original value times 100 as Equation 6.1. ΛT DM andΛI T DM

are the density maps created by TDM and ITDM algorithms, respectively. The visual effects are

encoded into a PGM P5 image14. It displays the gray scale colors with the maximum value (white

color) and the minimum one (black color) for each pixel. The same format and method are also

suitable for the label maps.

%D(p) =
∣∣∣∣ΛT DM (p)−ΛI T DM (p)

ΛT DM (p)

∣∣∣∣×100 (6.1)

Datasets: Four topologies (road network) are utilized as in the performed assessments. Ta-

ble 6.1 presents their main attributes as well as a mini graph view.

Topology 1 is the simplest one and contains 6 nodes and 11 edges. This topology is also the

primary running example discussed in the previous chapters. Therefore, it has no correspond-

ing actual network type and geographic region coordinates. The other three topologies are real

networks with different numbers of nodes and edges. There are no predefined POI nodes in the

performance assessment. Topologies 2 and 3 refer to geographic regions associated with a walk-

able road in the Ålesund centre. Topology 4, in turn, is composed of the main drive roads and

intersections in the Ålesund municipality, Norway. Topology 1 was encoded as a default sample

using a Unity C# script. The other three graphs were downloaded from OpenStreetMap first and

encoded into a CSV file (Section 6.1).

Dataset Preprocessing: We implemented the dataset preprocessing using Python and OSMnx

package. The created script downloads the drive and walk network data for a given bounding

geographic regions. Each intersection includes the name, longitude, and latitude attributes.

Intersection points will be processed as one node of TTDM algorithm. Every road involves the

road length, max speed limitation, intersections, etc. A road will be processed as one edge.

Considering the ideal traffic condition and lack of real traffic data for most roads in Ålesund, we

assume that vehicles could reach the maximum speed limited by the roads. Recall that the edge

cost is the access time. For the drive network, the access time is defined as the shortest driving

time on the road, which is the max speed limitation divided by the road length. For the walk

road network, the edge cost is the pedestrian average walk speed (5 km/h) divided by the road

14http://netpbm.sourceforge.net/doc/pgm.html (As of May 2022).

http://netpbm.sourceforge.net/doc/pgm.html
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Table 6.1: The road networks considered in the conducted validation. Coordinates are encoded
in degrees.

Name and Topology Type # Nodes # Edgesa Mobility application
Geo region

(North, South,
East, West)

Topology 1

default 6 11 - -

Topology 2

real 35 74 walk

62.4772180◦,
62.4730731◦,
6.1866435◦,
6.1942393◦

Topology 3

real 130
320

(324)
walk

62.4736239◦,
62.4710819◦,
6.1582230◦,
6.1675138◦

Topology 4

real 1553
3383

(3427)
drive

62.5262490◦,
62.4526394◦,
6.0807169◦,
6.3748647◦

a The value with brackets is the edge number in the raw dataset.

length. Random temporal changes are used for the simulation of access time variations in the

experiments.

Configuration setting: To simplify the implementation with visual integrator, we set the vertex

number of the mesh on Mapbox SDK is the same as the image size in IFT calling. All parameters
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Table 6.2: The different resolution scales.

Scale m Mesh size Image size Number of pixels

1 36×27 37×28 1K
4 144×81 145×82 12K

10 360×270 361×271 98K
20 720×540 721×541 390K

related to the algorithm resolution scale m are defined as presented in Table 6.2.

Machine: The experiments runs on a Lenovo Xiaoxin Air 14 (2021) 2.4GHz i5-1135G7 with a

Nvidia GeForce MX450 graphs card and 16GB RAM memory.

6.2.2 Results and Discussion

Efficiency Assessment: Figure 6.8 shows the result running on the road network Topology

1(refer to Table 6.1 for the definition) with different resolution scale (Figure 6.8a) and different

timestamps (Figure 6.8b). Recall that computation time is represented in a logarithmic scale.

Topology 1 is the simplest network in Table 6.1. For this topology, TDM, ITDM option 1, and

ITDM option 2 spend similar computation time and have less deviation as the resolution scale

increases. ITDM option 1 and ITDM option 2 are a bit faster than TDM when the data time series

is longer. The resolution scale m is set to 4 for the remaining experiments.

Figure 6.9 presents the average computation time of TTDM with 20, 100, 500 timestamps with

random temporal changes. Reported results refer to the use of Topologies 2 (Figure 6.9a) and 3

(Figure 6.9b). The definition of Topology 2 and Topology 3 are found in Table 6.1. ITDM option 1

and ITDM option 2 are significantly faster than TDM for these two topologies. The worst case is

Topology 2 with 20 timestamps, and the computation time of ITDM options is at least 3.1 times

faster than the one of TDM.

To evaluate the performance of the algorithms for different numbers of POIs (from 3 to 100), we

compute TTDM on Topology 3 (130 nodes) and Topology 4 (1553 nodes)(refer to Table 6.1 for

their definitions) with 100 timestamps. Results are reported in Figure 6.10. ITDM option 1 (black

bars) and ITDM option 2 (brown bars) lead to stable and less computation time than TDM (blue

bars) for these two topologies. The number of non-POI nodes for Topology 3 is close to the

number of POIs for networks when we randomly select 50 and 100 POIs. Figure 6.10a shows

that the TDM (blue bars) is less costly when the number of POIs increases. However, when the

number of nodes is much larger than the number of POIs as in Topology 4, TDM in TTDM shows

the stable computation time for different numbers of POIs (see blue bars) in Figure 6.10b.
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(a)

(b)

Figure 6.8: TTDM computation time on Topology 1. Figure (a) is the result with the same four
timestamps and Figure (b) reflects the computation time for various timestamps in the same
resolution scale.

In summary, performed experiments show that:

1. The network complexity and the number of POI nodes greatly affect the computation

time.

2. ITDM option 1 and ITDM option 2 have similar efficiency, and ITDM option 2 is a bit

faster than ITDM option 1. For simple networks, computation time of the three options
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(a) (b)

Figure 6.9: TTDM computation time on Topology 2 and Topology 3 with different timestamps.

(a) (b)

Figure 6.10: TTDM computation time on the Topology 3 and Topology 4 with different numbers
of POIs.

are almost the same even for long data time series.

3. ITDM option 1 and ITDM option 2 are much faster (at least 3 times) for complex networks,

especially when long data time series are considered.

Qualitative Assessment: The label and density maps are the two main outputs for ITDM and

TDM. Again, the assessment considers the two variations of the proposed algorithm. Both ITDM

option 1 and ITDM option 2 use the IFT root map to compute the label map. ITDM option 2

computes the density map based on IFT cost map. The two simpler networks, Topology 1 and

Topology 2, are used in our assessment (Section 6.2.1) as they make it easier to visualize the

differences with the maps produced by the TDM algorithm [17].

Visual results are presented in Figure 6.11. As we can observe, there are four regions in the
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Figure 6.11: Value difference of label maps and density maps on Topology 1 and Topology 2 with
different resolution scales.

IFT root map for Topology 1 because there are four non-POI nodes (two were chosen as POI

nodes). For the label maps, there are less white color pixels (different label values for each pixel

position) with the increasing resolution scale. The difference of the results computed by m =
1 (column (a), highlighted with red borders) and m = 4 (column (b), blue borders) are much

obvious than the change between m = 4 and m = 10 (column (c), green borders). Meanwhile, the

visual results for TDM, ITDM option 1, and ITDM option 2 are almost the same. As our analysis

of the approximate position calculation for the nodes in Section 4.2.1, the value difference of

distance is larger for regions close to nodes. Since the density map value is computed based on

this distance, the changes also happen in the same area. For Topology 2, the results follow the

same trend.

In short, the qualitative assessment can be summarized as follows:

1. Changes in label maps are more frequent on the borders and around pixels closer to seed

regions.
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2. Differences in density maps are more evident in regions close to nodes.

3. Increasing the resolution scale leads to a decrease in the percentage difference. According

to the results, we recommend the use of a resolution scale equal to 4 (column (b), blue

borders in Figure 6.11), as no significant differences are observed when m ≥ 4.

6.3 Case Studies

This section presents compelling case studies concerning the use of TTDM in two different

mobility-based applications. Section 6.3.1 introduces the datasets used in the case studies. Sec-

tion 6.3.2 describes the first application, which refers to improve walkability of relevant regions

in Ålesund, Norway. The second one (Section 6.3.3) concerns to speedup response time of emer-

gency services.

6.3.1 Datasets

Real datasets: Topology 3, introduced in Table 6.1, is selected as our road network for Case

Study 1. We retrieve four public service places as the POI nodes: H1, H2, H3, H4 (for more

details refer to Table A.1).

For Case Study 2, we choose Topology 4 as the road network and three locations (H101, H102,

H103), associated with emergency services facilities in Ålesund, Norway, selected as POI nodes

(Table A.2).

For both cases, we used the snow depth history data at the Ørskog weather station (SN60800)

from the Norwegian Climate Service Center.15 It covers the time period from 01.01.2020 to

31.03.2022 and is separated into nine quarters (2020Q1-2022Q1). Any quarterly dataset can be

filtered according to weekdays (Monday, Tuesday, Wednesday, and Thursday), weekends (Fri-

day, Saturday, and Sunday), or all days (Monday - Sunday). By default, the data related to all

days in 2022Q1 works as our primary data source.

Simulated data: Our research assumes that the average moving speeds of the people and vehi-

cle vary linearly with the snow depth on the road, following the assumption of Wang et al. [55].

Therefore, when the snow depth is greater, the edge cost (time) will increase with the slower

average speed.

Among the nearby weather stations having snow data in Ålesund municipality, the Ørskog weather

station is the closest one to the Ålesund center. Therefore, we assume the snow depth linearly

15https://seklima.met.no/ (As of May 2022).

https://seklima.met.no/
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Figure 6.12: The assumption of the snow depth on the roads.

Table 6.3: Parameters for simulated temporal changes by snow depth.

Case name Network
Reference speed

(km/h)
Sr e f

Speed decreasing rate
(km/(h · cm))

kr

Min speed
(km/h)

Smi n

Case Study 1 walk 5 0.1 2
Case Study 2 drive 0.7×Smax_r oad 2.5 5

declines until 0 cm along the radius from the Ørskog weather station (highlighted as the white

color) to the coast (the grey color), as illustrated in Figure 6.12.

Let the ordered pair (vx , vy ) be an edge representing a road (the black solid line with the blue

point vx and the black one vy ). The vertex in the position of the Ørskog weather station is vr e f

(the green point) and the function d is the geographic distance between two positions. If the

snow depth at the Ørskog weather station is Dr e f , we could assume that the snow depth Dsnow

on this road will be computed as defined in Equation 6.2:

Dsnow = Dr e f ×
d(vx , vr e f )+d(vy , vr e f )

2R
(6.2)

The average moving speed on this road Sav g is calculated by Equation 6.3, where Sr e f is the

reference speed, kr is the speed decreasing rate assumed, and Smi n is the slowest speed.

Sav g = max(Sr e f −kr Dsnow ,Smi n) (6.3)

The affection radius R is set as 50km. Smax_r oad is the max vehicle speed allowed on each road.

Table 6.3 summarizes the parameter settings for the different case studies.
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The cost of a road will be computed by the distance divided by the average moving speed Sav g ,

which will construct the temporal changes of the network based on the snow data.

6.3.2 Case Study 1: Walkabaility Analysis

This case refers to mobility analyses towards improving walkability of relevant regions of a city.

Specifically in this case, we assess how weather conditions affect the walkability in different ar-

eas of the city. Walkability is a representation of how easy is move in a path and thus We assume

that the most walkable path is the one with the lowest access time, i.e., the path with the largest

values in density map. We proposed that people will choose shorter path witch is particular

important for people with reduce mobility such as elderly or mobility impaired persons.

Furthermore, the high temporal changing score for one location, which can be encoded in a

change frequency map (Algorithm 3), means that the walkability of that region changes very

frequently. In this case, people may change their destination frequently or at least they will

hesitate to choose the desired destination. In this scenario, urban planners would prefer to

keep the smaller values of change frequency map (less temporal changes) when looking for the

optimal position for a new shopping centre for example.

Figure 6.13 details the target area considered in the case. There are two existing indoor public

service places considered as POI nodes: H1 (highlighted in blue) and H2 (red). Planners may

decide to retrofit some malls to build a new public service center and try to select a suitable

location from two options. In the figure, they refer to H3 (green) and H4 (purple) as POI nodes.

Therefore, they will choose one solution from Solution 1 (H1, H2, H3) and Solution 2 (H1, H2,

H4). Furthermore, they are more concerned about the impact in the sample area (emphasized

with the blue dotted line border in the top-left corner). The three small regions in this area are

Region 1⃝ (N 2,N 3,N 4,N 5,N 1), Region 2⃝(N 2,N 6,N 7,N 3) and Region 3⃝(N 2,N 8,N 9,N 6). Re-

gions 1⃝ and 2⃝ are close to H1 and N 3. The geographic information about these marked nodes

N 1-N 9 are available in Table A.1.

The rest of this section is organized as below. The overall visual effects will be presented with all

POIs (H1, H2, H3, H4) at first. After that, we discuss the result of TTDM after computing the

representative ITDM (Section 5.2), which reflects the average walkability affected by the weather

condition in 2022 Quarter 1. Next, TTDM temporal change (Section 5.3) results with different

binary pattern string will be analyzed. Finally, we discuss different analysis scenarios related to

the comparison of the results after filtering the daily data or select different time periods.
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Figure 6.13: The interested sample regions in the Case Study 1. There are three small regions ( 1⃝
- 3⃝) separated by the node N 2 and neighbour nodes.

(a) Solution 1(H1, H2, H3) (b) Solution 2(H1, H2, H4)

Figure 6.14: Overall visual effects for the two solutions

Overall visual effects

Figure 6.14 presents the overall visual effects for the two solutions when using density maps

for temporal changes with the binary pattern string “01.” The differences in color and height

concentrate on the regions that are close to POI node H3 (green) and H4 (pink). For example,

the density values in Regions 1⃝, 2⃝, 3⃝ in Solution 1 (Figure 6.14a) are significant larger than

Solution 2 (Figure 6.14b). That means the population in these regions could have shorter access

time when the new center is built on H3 instead of H4. Therefore, Solution 1 is more suitable in

general.
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(a) solution 1(H1, H2, H3) (b) solution 2(H1, H2, H4)

Figure 6.15: The results of the sample regions after computing the representative ITDM for the
two solutions.

Computing a representative ITDM

Figure 6.15 shows the results of computing representative ITDM for the defined sample regions.

Region 3⃝, which has the most pixels highlighted in green, is only affected by H3. This means

the people in Region 3⃝ has the highest walkability to the new public service center in location

H3. Furthermore, the pixels and edges close to node N 2 has the green color in Solution 1, which

means people there will probably choose to walk to H3. These visual layouts further support

the claim that Solution 1⃝ is more suitable.

Encoding of temporal changes

Figure 6.16 presents the TTDM layouts for two binary string patterns (“010” and “01110”). Fig-

ures 6.16a and 6.16b show more frequent temporal changes of pattern “010” compared to Fig-

ures 6.16c and 6.16d. This means the weather changed the walkability more frequently in only

one day compared to three continuous days.

Suggestions for the decision maker – filtering by dates

With the use of filtering the daily data or comparing the results with different time periods,

TTDM could support the choice of time period to operate the new public service center. For in-

stance, the weekends in 2022Q1 have less temporal changes compared to the weekdays and all

days in Figure 6.17. As Figure 6.18 shows, there are more frequent temporal changes in 2022Q1

among all nine quarterly time periods. There are almost no impact on walkability in some quar-

ters caused by the weather data because there is nearly no snow in these quarters. In short,
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(a) Pattern “010”
Solution 1 (H1, H2, H3)

(b) Pattern “010”
Solution 2 (H1, H2, H4)

(c) Pattern “01110”
Solution 1 (H1, H2, H3)

(d) Pattern “01110”
Solution 2 (H1, H2, H4)

Figure 6.16: The TTDM results related to the encoding of temporal changes for two solutions
considering different binary patterns.

Figure 6.17: The comparison of filtering the daily data for different types of day.

according to this case, it is suggested to decide for H3 as new position of service center. If only

considering the snow depth’s impact, it is not a good idea to start the service in 2022Q1, espe-

cially for business days.

6.3.3 Case Study 2: Emergency Services

In this case, the objective is to speed up the response times in emergencies in Ålesund, Norway.

Ålesund, one of the most beautiful city in Norway, is often selected as a destination for big cruise

ships. These cruise ships stay in the city for one or two days and can bring from 2000 to 5000

passengers. During summer, Ålesund is visited often for more than one cruise and this number

are expected to increase in the next few years and extend to the winter season. This large amount

of visits have the potential to increase the demand of emergency services like ambulances, fire

departments and/or police. Since Ålesund is an small city, the emergency services are limited

and thus there is a risk of collapsing these services. Planning tools to arrange the tight resources

of emergency services are therefore critical to secure their response time.

In the study of this case, we choose an example of the ambulances services offers in the Sen-

trum area of Ålesund. Figure 6.19, shows three health services providing ambulances. They are

H101 (highlighted in blue), H102 (red) and H103 (green). H101 and H102 are close to the inter-

ested downtown area (latitude from 62.4691749◦ to 62.4729876◦ and longitude from 6.1496012◦
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Figure 6.18: The comparison of various quarterly time periods with the binary pattern “01.”

to 6.1605936◦). From a planning perspective, city planners and emergency coordinators would

need to know whether they should provide more resources at the time than one or more cruise

ships arrive in Ålesund. In this case, the chosen areas of interest include Region 4⃝ (N 101, N 102,

N 103) and Region 5⃝ (N 102, N 104, N 105). Region 4⃝ is the port position for the cruise ships and

Region 5⃝ is a bus terminal nearby. The decreasing pattern of density value directly reflects the

increasing access time. Therefore, discovering the recurring patterns of increasing access time

in the regions of interest means that the pattern decreases with density maps.The results are

presented as the same procedures as Case Study 1: overall visual effects, compute representa-

tive ITDM, encode temporal changes and suggestions for the decision maker.

Overall visual effects

Figure 6.20 presents the overall visual effects for the whole road network and the area of interest,

in this case the downtown area (zoom in), when using density maps for temporal changes with

the binary pattern string “01.” Even though the whole road network is large, we could selected

any small geographic area like downtown to compute the TTDM. It was not necessary to cover

the location of the POI nodes in our computation targeted area for the density field estimation.
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Figure 6.19: The interested sample regions in the Case Study 2. There are two small regions ( 4⃝,
5⃝) separated by the node N 102 and neighbour nodes.

(a) the whole road network (b) the downtown area of interest (zoom in)

Figure 6.20: Overall visual effects for Case Study 2.

Figure 6.20b shows that Region 4⃝ is closer to the emergency service center H102 with red color.

This represents that it is only necessary for H102 to arrange the resources in Region 4⃝. Further-

more, Region 5⃝ has more red pixels, and it means the access time from H102 to Region 5⃝ is

shorter than to Region 4⃝.

Computing a representative ITDM

For the defined sample regions, Figure 6.21 presents the default result (average) after computing

a representative ITDM as well as the ITDM result for the first five days. For all of them, Region 5⃝
has shorter access time from H102 than Region 4⃝ because Region 5⃝ has larger density value

with red color. If we compare the t1-t5 results, the density value for Region 4⃝ continuously

increases from t1 to t3, then keep the same at t4 and decreases at t5. Since the obvious temporal

changes of density values in these Regions happen among the timestamps, it is more valuable

for the encoding these variations before the further analysis.
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(a) average (b) t1 (01.01.2022) (c) t2 (02.01.2022)

(d) t3 (03.01.2022) (e) t4 (04.01.2022) (f) t5 (05.01.2022)

Figure 6.21: The results of computing a representative ITDM for the average and interested
timestamps (t1-t5) with different weighted computation (Section 5.2).

Encoding of temporal changes

Figure 6.22 shows the TTDM results for different binary patterns. The number of “1” in the bi-

nary pattern string means the number of the consecutive days with the increasing access time.

For example, “01110” represents the access time increasing pattern lasts three days. Figure 6.22c

has the highest elevations for the targeted regions. This means the weather increases the ac-

cess time more frequently on three successive days among all options (Pattern “010” - Pattern

“01111110”). Therefore, planners could be advised to prepare more ambulance resources to

speed up the response time during the 2022Q1 if the cruise ships stay for three days.

Suggestions for the decision maker – filtering by date

It is also feasible to select a time period for Case Study 2 by comparing TTDM with data filter

and various time period data like Case Study 1 (Section 6.3.2). Furthermore, there is also one

intuitive suggestion. Since Region 5⃝ is better than Region 4⃝, maybe it could be suggested to

decision makers to arrange or suggest the patient moving from Region 4⃝ to Region 5⃝ when

waiting for the coming of the ambulance.
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(a) Pattern “010” (b) Pattern “0110” (c) Pattern “01110”

(d) Pattern “011110” (e) Pattern “0111110” (f) Pattern “01111110”

Figure 6.22: The results of encoding temporal changes with different binary pattern strings.



Chapter 7

Conclusions

This chapter describes the main contributions of this research work considering the proposed

research questions (Section 7.1). Section 7.2 indicates directions for possible future work.

7.1 Contributions

The main objective of our research work is to encode and visualize temporal changes of topology

density maps. It includes the design, implementation and validation of the proposed solution.

We first introduced a new method, IFT-based Topology Density Map (ITDM) (Chapter 4), which

utilizes the Image-Foresting Transform (IFT) to compute Topology Density Map (TDM). The use

of IFT improves the efficiency of TDM in the access time computation and in the estimation of

density field. The analysis of the experiments in Section 6.2 provides more detailed evidence.

Based on IFT-based Topology Density Map (ITDM), we also proposed a new algorithm, Tempo-

ral Topology Density Map (TTDM) (Chapter 5), to intuitively encoding and representing tem-

poral variations associated with topology density map. The proposed solution explores Change

Frequency Heatmap (CFH) that registers the occurrence frequency of change patterns of inter-

est.

TTDM provides the possibility for the analysis of temporal changes associated with density

maps along the network, an open gap in the literature. It starts with a stack of graphs. Each

graph is a network with changing edge costs. After computing the representative ITDM, the

method encodes interested temporal variation and visualize all final results in a 3D space.

The developed algorithms were embedded in two software prototypes. One prototype focuses

on the TTDM computation analysis, including the support for the assessment of different con-

figuration settings. The other addresses the visualization analysis itself. Both of them served as
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the tools for the conducted validation, involving performance and qualitative assessments. The

proposed methods were also validated in two compelling case studies related to urban plan-

ning activities for the assessment of walkability and emergency services analysis on real road

networks. The source code could be downloaded here1,2.

In the following, we detail how each raised research question was addressed.

• RQ1: How to compute Topology Density Map (TDM) using the Image-Foresting Trans-

form (IFT)?

To compute Topology Density Map (TDM) using the Image-Foresting Transform (IFT), we

proposed a new method, IFT-based Topology Density Map (ITDM) (Chapter 4). It opti-

mizes the computation of access time to each POI with three steps (vertex mapping, IFT

computation, and access time computation). The outputs of the algorithm, density and

label maps, can then be utilized for the density field estimation with different options.

One main limitation of TDM implementation [17] refers to the its lack of efficiency. With

the increase of the network complexity, the most time-consuming step of TDM is to com-

pute the access time from each POI to an arbitrary point on a 2D planar surface, which

needs the iteration for all the nodes from each point position. The use of IFT provides

a completely reverse way for computing Euclidean distances. It computes the Euclidean

distance from the nodes, which are taken as input seeds, and finalizes with the partition

of the whole image according to their influence zones. The results can then be utilized

directly for the access time computation.

• RQ2: How to encode and visualize temporal changes on Topology Density Map (TDM)

using Change Frequency Heatmap (CFH)?

To encode and visualize temporal changes on Topology Density Map (TDM) using Change

Frequency Heatmap (CFH), we designed a new visualization method Temporal Topology

Density Map (TTDM) (Chapter 5). It is designed on the top of ITDM. The algorithm re-

ceives a sequence of graphs as input. Two main modules are designed to process these

graphs and produce the inputs for the final module, the visual integrator. One module,

compute representative ITDM, constructs a 1D network and 2D space visual layout. The

other module encodes the temporal changes for the density maps and label maps by com-

puting ITDMs. This result of this module is a height map, used to construct the final visual

effects in 3D space with mesh interpolation module.

The use of CFH allows the encoding of change binary patterns associated with changes

over time. The input of CFH could be the density or label maps. This means the output

1https://github.com/felando1984/WebTTDM (As of May 2022).
2https://github.com/felando1984/TTDM (As of May 2022).

https://github.com/felando1984/WebTTDM
https://github.com/felando1984/TTDM
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of CFH could reflect the temporal patterns for each geographic location according to dif-

ferent needs. Furthermore, the metric function and binary pattern string can be properly

defined depending on the target application.

• RQ3: Would the use of Image-Foresting Transform (IFT) lead to a more efficient compu-

tation of Topology Density Map (TDM)? To what extent is the ITDM different from the

TDM?

Experiments conducted in Section 6.2 addressed this question. Experiments considered

the performance and qualitative assessment with the comparison among TDM, ITDM op-

tion 1 and 2 from three aspects: computation time, map value difference, and computa-

tion result of the output file. Furthermore, the conducted experiments allowed the assess-

ment of different parameters, such as resolution scale, size of network, the length of time,

etc.

We simulated random temporal changes on different size of networks to explore the sug-

gested value of parameters. The resolutions scale m is advised to be equal to 4. Results

show that ITDM is at least 3 times faster than TDM for the complex network with 100

timestamps. Moreover, with the visualization of value difference and theoretical analysis,

it is more evident that the difference of visual affects between ITDM and TDM could be

ignored when resolutions scale m is larger than 4.

• RQ4: Would the use of Temporal Topology Density Map (TTDM) be effective for analyzing

changes over time in mobility-related applications?

The proposed algorithms were validated in the context of two case studies related to mobility-

related applications (discussed in Section 6.3). One referred to the walkability analysis

on a walk network (small region, slower speed), while the other concerned the analysis

of emergency service response time on a drive network (large region, faster speed). The

weather condition was utilized to simulate the temporal change of access time with the

assumed relation between moving speed and snow depth. In all cases, the use of TTDM is

illustrated in the context of analyzing changes over time. The analysis included the overall

visual effects, the encoding of temporal changes, and the impact of different date filtering

schemes.

Furthermore, we embedded the developed algorithms into two software prototypes. Those

prototypes served as a toolbox to support our performance analysis of algorithms and case

studies. One prototype focuses on the computation analysis of TTDM, while the other em-

phasizes the visualization analysis. GeoJSON3 format is a standard for exchanging geospa-

tial data. Both prototypes utilize this format to save/load the TTDM computation result,

3https://geojson.org/ (As of May 2022).

https://geojson.org/
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which provides more flexibility.

7.2 Future Work

The conducted research opens up opportunities for future work in several directions. This sec-

tion covers some of the envisioned research venues.

• Wrap-up the software prototype as a package or data service: In our research, the visual-

ization analysis explores the computation resources of the local browser. If the algorithm

could be wrapped up as a package for further development or provided as a data ser-

vice, most of computation work could be realized in the server end point. In this case,

only computation results would be sent to the browser (the client end point). The envi-

sioned implementation could rely on technologies, such as ArcGIS API for Python,4, Map-

box tiling service 5 Python library for QGIS,6 etc.

• Explore more applications of TTDM for diverse analysis scenarios involving topological

structure: One promising application would be the construction of sensor monitoring sys-

tems whose spatial distribution relies on a wired or wireless communication network. In

this kind of system, the network includes data collection points, such as sensors, which

are connected to the data centers. The sensors represent the non-POI nodes while the

data centers serve as the POIs. The edge cost can be the communication delay time. In

this application, the goal may be set to find out an appropriate configuration with sug-

gested geographic positions of these data centers to minimize the access time of the sen-

sor data. The temporal changes of delay time may reflect the stability of data communi-

cation within the network. These sensor networks could be time delay-sensitive scenarios

like underwater acoustic sensor networks [56], smart grid-connected power system [57],

nonlinear time-delay system [58], etc.

• Investigation on suitable domain-specific CFH configuration: Since the configuration of

CFH, including the definition of the metric function and interested binary patterns, is

application-dependent, it would be worthy to save or package them as libraries, such as

NetworkX7 and OSMnx [54]8 for future use. For instance, the configuration used in the

two case studies provided in this research could serve as the first two templates for mo-

bility applications. The users could benefit from them in the assessment of the impact of

using different metric functions and patterns. Furthermore, once we have enough tem-

4https://developers.arcgis.com/python/ (As of May 2022).
5https://www.mapbox.com/mts (As of May 2022).
6https://docs.qgis.org/2.8/en/docs/pyqgis_developer_cookbook/intro.html (As of May 2022).
7https://networkx.org/ (As of May 2022).
8https://github.com/gboeing/osmnx (As of May 2022).

https://developers.arcgis.com/python/
https://www.mapbox.com/mts
https://docs.qgis.org/2.8/en/docs/pyqgis_developer_cookbook/intro.html
https://networkx.org/
https://github.com/gboeing/osmnx
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plates, they could be use to create training data sets. Machine learning methods, such as

convolutional neural network (CNN) [59], could then be used to predict the ideal binary

patterns for the related applications. It could greatly save the time to automatically deter-

mine patterns of interest and relevant behavior patterns, especially for less experienced

users.

• Improvement of prototypes based on user studies: There are two software prototypes im-

plemented for the computation and visualization analysis. Due to the time constraints,

our validation only includes performance and qualitative assessment as well as discus-

sion regarding the use of algorithms in two case studies. User studies, involving relevant

stakeholders (e.g., urban planners), would contribute to collect expectations, suggestions,

and impressions regarding algorithms and prototypes. Lessons learned could be explored

in the inclusion of new features in the developed tools.

• More accurate density estimation with temporal changes in big cities: We used weather

snow data to simulate the temporal changes based on the Ålesund’s road networks in our

case studies. In our case studies, the snow depth in one available weather station is the

only aspect we assumed to affect the temporal changes in average moving speed on the

roads. In the real world, it is possible to use the historical traffic data of roads and vehicles

directly as real temporal changes once the data of sensors are ready. Until June 2022, there

are limited historical traffic data of roads open to the public in Norway, which only covered

some main roads in big cities.9 In the future, it will be feasible to cover most of the roads in

some cities. If we could consider more weather factors (like wind, temperature, etc) and

have access to more data from more weather stations, temporal topology density maps

could be assessed in more complex analysis scenarios.

9https://www.vegvesen.no/trafikkdata/start/kart (As of May 2022).

https://www.vegvesen.no/trafikkdata/start/kart


Appendix A

The detailed information of the nodes in

case studies

Table A.1: The information of the nodes in the Case Study 1

Short name Type Description Geo position (Latitude, Longitude)

H1 POI node
Ålesund Storsenter1,

Intersection 278087398
62.4723013◦, 6.1589338◦

H2 POI node
Bybadet2,

Intersection 7204337168
62.4726449◦, 6.1644474◦

H3 POI node
Hole Kjøtt AS3,

Intersection 8714559173
62.4714755◦, 6.1596182◦

H4 POI node
Master Mat4,

Intersection 7379970801
62.4711440◦, 6.1657920◦

N1 non-POI node Intersection 278085830 62.4724539◦, 6.1593316◦

N2 non-POI node Intersection 7379970863 62.4719770◦, 6.1599410◦

N3 non-POI node Intersection 7379970513 62.4720850◦, 6.1619762◦

N4 non-POI node Intersection 6286725867 62.4725801◦, 6.1617773◦

N5 non-POI node Intersection 7379971301 62.4728340◦, 6.1589430◦

N6 non-POI node Intersection 277936275 62.4715250◦, 6.1602270◦

N7 non-POI node Intersection 7379970517 62.4716450◦, 6.1621000◦

N8 non-POI node Intersection 6286725881 62.4715435◦, 6.1585261◦

N9 non-POI node Intersection 6286725882 62.4714036◦, 6.1585932◦

1https://alesundstorsenter.no/ (As of May 2022).
2https://bybadet.no/ (As of May 2022).
3http://www.xn--holekjtt-b5a.no/ (As of May 2022).
4https://mastermat.no/ (As of May 2022).
5https://www.aleris.no/alesund/ (As of May 2022).
6https://statensbarnehus.no/ (As of May 2022).
7https://helse-mr.no/ (As of May 2022).
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Table A.2: The information of the nodes in the Case Study 2

Short name Type Description Geo position (Latitude, Longitude)

H101 POI node
Aleris Ålesund5,

Intersection 7379970095
62.4706440◦, 6.1678710◦

H102 POI node
Barnehuset Ålesund6,

Intersection 278085706
62.4723160◦, 6.1587080◦

H103 POI node
Ålesund Sykehus AS7,

Intersection 7389963213
62.4626490◦, 6.3070280◦

N101 non-POI node Intersection 275605058 62.4707690◦, 6.1522390◦

N102 non-POI node Intersection 7379970425 62.4704970◦, 6.1527830◦

N103 non-POI node Intersection 7379971152 62.4711012◦, 6.1531716◦

N104 non-POI node Intersection 7379971028 62.4702331◦, 6.1522363◦

N105 non-POI node Intersection 282272324 62.4700806◦, 6.1534794◦
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