
fu
nc
ti
on

�g
et

�()ui
nt

() �p
ub
li
c

�v
ie
w

�r
et
ur
ns

function

�get

�(

)

uint

()

�public

�view

�returns

6HFXUH�6P
DUW�&RQWUDFW�&RGH�6\QWKHVLV

$QGU«�6WRUKDXJ

1
71

8
1
RU
Z
HJ
LD
Q�
8
QL
YH
UV
LW\
�R
I�6
FL
HQ

FH
�D
QG

�7
HF
KQ

RO
RJ
\

)D
FX
OW\
�R
I�Ζ
QI
RU
P
DW
LR
Q�
7H
FK
QR

OR
J\
�D
QG

�(
OH
FW
ULF
DO
�(
QJ
LQ
HH
ULQ

J
'
HS

DU
WP

HQ
W�R

I�&
RP

SX
WH
U�6

FL
HQ

FH

$QGU«�6WRUKDXJ

6HFXUH�6PDUW�&RQWUDFW�&RGH
6\QWKHVLV�ZLWK�7UDQVIRUPHU�0RGHOV

0DVWHUȇV�WKHVLV�LQ�&RPSXWHU�6FLHQFH
6XSHUYLVRU��-LQJ\XH�/L
-XO\�����

6\QWKHWLF�LPDJH�RI�WUDQVIRUPHU�DWWHQWLRQ�ZHLJKWV��6RXUFH��$QGU«�6WRUKDXJ

0
DV
WH
UȇV

�WK
HV
LV

$QGU«�6WRUKDXJ

6HFXUH�6PDUW�&RQWUDFW�&RGH�6\QWKHVLV
ZLWK�7UDQVIRUPHU�0RGHOV

0DVWHUȇV�WKHVLV�LQ�&RPSXWHU�6FLHQFH
6XSHUYLVRU��-LQJ\XH�/L
-XO\�����

1RUZHJLDQ�8QLYHUVLW\�RI�6FLHQFH�DQG�7HFKQRORJ\
)DFXOW\�RI�ΖQIRUPDWLRQ�7HFKQRORJ\�DQG�(OHFWULFDO�(QJLQHHULQJ
'HSDUWPHQW�RI�&RPSXWHU�6FLHQFH

Abstract

Writing Smart Contracts (SCs) Smart Contracts are hard. Writing secure SCs is
even harder. Automatic code generation is by many considered the ”holy grail” in
the field of computer science. Recent advances in transformer models have shown
great potential in the area of synthesizing code from code comments. However, it
is just as important how these models are best put to use. In this thesis, it is in-
vestigated: how to automatically generate Smart Contract code with transformer-
based language models, by inputting comments to guide the code generation? Due
to the monetary and immutable nature of blockchain, security in SCs is of utter-
most importance. This thesis also investigates: how to generate secure Smart Con-
tract code with transformer-based language models? A design science research
approach is adopted for answering these research questions. For automatically
synthesizing SC code, the 6 billion parameter model GPT-J by EleutherAI is fine-
tuned on SC code. For this task, the currently largest dataset of real SC code is con-
structed, containing 186,397 contracts. To evaluate the comment-aid approach to
generate code, the original code was used as the ground truth. This code was
then compared with the generated code, and their differences were measured
using the BiLingual Evaluation Understudy (BLEU) score. Results of the evalua-
tion show that this approach results in a BLEU score of 0.557, which is beyond
the state-of-the-art. For generating secure Smart Contract code with transformer-
based language models, a novel method named security conditioning is proposed.
From both automatic and manual evaluation of the technique, the evaluation re-
sults show that security conditioning produced secure code.

vii

Sammendrag

Å skrive smart kontrakter (SK) er vanskelig. Å lage dem sikre er enda vanske-
ligere. Automatisk kodegenerering regnes av mange som den "hellige gral" innen
datavitenskap. Nylige fremskritt innen transformer modeller har vist stort poten-
siale innen syntese av kode fra kodekommentarer. Imidlertid er det mist like viktig
å vite hvordan disse modellene best kan brukes. I denne oppgaven undersøkes det:
hvordan generere SK kode automatisk med transformerbaserte språkmodeller, ved
bruke kommentarer for å veilede kodegenereringen? På grunn av den økonomiske
og uforanderlige naturen til blokkjede teknologi, er sikkerhet i SKer av ytterste vik-
tighet. Denne oppgaven undersøker også: hvordan generere sikker SK-kode med
transformatorbaserte språkmodeller? En designvitenskapelig forskningstilnærm-
ing brukes for å besvare disse forskningsspørsmålene. For automatisk syntetiser-
ing av SK-kode er 6 milliarder parametermodellen GPT-J av EleutherAI finjustert
på SK-koden. For denne oppgaven er det for øyeblikket største datasettet med
ekte SC-kode konstruert, som inneholder hele 186,397 kontrakter. For å evaluere
tilnærmingen til kommentarhjelp for å generere kode, ble den opprinnelige ko-
den brukt som fasit. Denne ble deretter sammenlignet med den genererte ko-
den, og forskjellene deres ble målt ved å bruke BiLingual Evaluation Understudy
(BLEU)-skåren. Resultatene av evalueringen viser at denne tilnærmingen resul-
terer i en BLEU-skår på 0,557, som er bedre enn nåværende sate-of-the-art. For å
generere sikker SK-kode med transformatorbaserte språkmodeller, foreslås en ny
metode kalt security conditioning. Fra både automatisk og manuell evaluering av
teknikken viser evalueringsresultatene at security conditioning produserte sikker
kode.

viii

Acknowledgement

I wish to express my deepest gratitude to my supervisor, Professor Jingyue Li, for
all the help and guidance throughout the entire project. I also want to acknowl-
edge Ms. Tianyuan Hu for her help with vulnerability analysis. Finally, I want to
acknowledge all the love and support from my family - my parents, Synnøve and
Ove; and my sisters, Maria, Viktoria and Helene. This work would not have been
possible without them.

This work is supported by the Research Council of Norway (No.309494).

André Storhaug, Trondheim 19.05.2022

ix

Contents

Abstract . vii
Sammendrag . viii
Acknowledgement . ix
Contents . x
Figures . xiii
Tables . xv
Code Listings . xvi
Acronyms . xvii
Glossary . xix
1 Introduction . 1
2 Background . 3

2.1 Transformer . 3
2.1.1 Architecture . 3

2.1.1.1 Tokenization . 5
2.1.1.2 Embedding and Positional Encoding 5
2.1.1.3 Encoder and decoder stacks 6
2.1.1.4 Scaled dot-product attention 6
2.1.1.5 Multi-head attention 7

2.1.2 Training . 7
2.1.3 Inference . 8

2.2 Relevant Metrics . 8
2.2.1 Machine learning performance metric 8

2.2.1.1 Accuracy . 8
2.2.1.2 Perplexity . 8

2.2.2 Machine translation performance metrics 9
2.2.2.1 BLEU . 9

2.2.3 String metric . 10
2.2.3.1 Jaccard index . 10

2.3 Blockchain . 10
2.4 Smart Contract . 10

2.4.1 Smart Contract Security Vulnerabilities 11
2.4.1.1 Integer Overflow and Underflow 11
2.4.1.2 Transaction-Ordering Dependence 11
2.4.1.3 Broken Access Control 11

x

Contents xi

2.4.1.4 Timestamp Dependency 12
2.4.1.5 Reentrancy . 13

3 Related work . 14
3.1 Code synthesis . 14

3.1.1 Code synthesis based on code semantics 14
3.1.2 Code synthesis based on transformers 15

3.2 Bias in language models . 16
4 Research Methodology . 18

4.1 Research Motivation . 18
4.2 Research Questions . 19
4.3 Research Method and Design . 19
4.4 Design for RQ1 . 20

4.4.1 Code comments analysis . 20
4.4.2 Language Model to use . 20

4.4.2.1 The Pile . 21
4.4.2.2 Model architecture . 22
4.4.2.3 Requirements . 22
4.4.2.4 Pre-training . 24

4.4.3 Fine-tuning design . 24
4.5 Design for RQ2 . 24

4.5.1 Security Conditioning . 24
4.5.2 Fine-tuning design . 25

4.6 Technology . 25
4.6.1 Software . 25

DeepSpeed. 25
4.6.2 Hardware resources . 26

5 Research Implementation and Results . 27
5.1 Implementation of RQ1 . 27

5.1.1 Data collection . 28
5.1.1.1 Smart contract downloader 28

Normalization of smart contract files. 28
Filter smart contracts for uniqueness. 29

5.1.1.2 Verified Smart Contracts 29
Raw. 30
Flattened. 30
Inflated. 30
Plain text. 32

5.1.2 Code comment analysis . 33
5.1.2.1 Universal Solidity parser 33
5.1.2.2 Verified Smart Contract Code Comments 35
5.1.2.3 Comment clustering 35

5.1.3 Language Modeling . 41
5.1.3.1 Pre-training . 41
5.1.3.2 Fine-tuning . 42

Contents xii

5.2 Implementation of RQ2 . 48
5.2.1 Data preparation . 48

5.2.1.1 Vulnerability labeling 48
5.2.1.2 Verified Smart Contracts Audit dataset 48

Embedded. 50
5.2.2 Language Modeling . 50

5.2.2.1 Tokenizer . 50
5.2.2.2 Fine-tuning . 53

6 Evaluation . 55
6.1 Evaluation of RQ1 . 55

6.1.1 Evaluation Method . 55
6.1.2 Evaluation metrics . 56
6.1.3 Comment only evaluation . 57
6.1.4 Comment + code context evaluation 58

6.2 Evaluation of RQ2 . 61
6.2.1 Performance degradation evaluation 61
6.2.2 Security evaluation method . 61
6.2.3 Comment + code context evaluation 62
6.2.4 Manual evaluation . 64

Experiments related to integer overflow vulnerability. 64
Experiments related to reentrancy vulnerability. . . . 64
Experiments related to unchecked send vulnerability. 65

7 Discussion . 67
7.1 Discussion of RQ1 Results . 67

7.1.1 Comparison with related work 67
7.1.2 Implication to academia and industry 68
7.1.3 Threats to validity . 69
7.1.4 Discussion of RQ2 results . 69
7.1.5 Comparison with related work 69
7.1.6 Implication to academia and industry 70
7.1.7 Threats to validity . 70

8 Conclusion and Future Work . 72
8.1 Conclusion . 72
8.2 Future work . 73

Bibliography . 74

Figures

2.1 Architecture of a standard Transformer Vaswani et al. [6] 4
2.2 The 64-dimensional positional encoding for a sentence with the

maximum length of 512. Each row represents an positional encod-
ing vector. 5

2.3 Multi-Head Attention module in Transformer architecture Vaswani
et al. [6] . 7

2.4 Gradient for interpreting BLEU score Lavie [14]. 9

4.1 Treemap of the Pile components by effective size. Source: [46] . . . 21
4.2 Diagram of GPT-J model architecture. 23
4.3 Image of IDUN todo: add ref https://www.hpc.ntnu.no/idun/ . . 26

5.1 Railroad diagrams of main code comment alteration to Solidity
grammar. 34

5.2 Elbow method for determining the optimal number of clusters. . . . 38
5.3 Scree Plot for the PCA dimensionality reduction 38
5.4 2D plot of the comment clusters. 39
5.5 Screenshot of nvidia-smi program showing 100% GPU utilization. . 45
5.6 Screenshot of htop program showing host CPU and memory activity

during optimizer computation. 46
5.7 Training and evaluation loss during model training. 47
5.8 Evaluation accuracy during model training. 47
5.9 Screenshot from the vulnerability labeling process with SolDetector. 49
5.10 Doughnut chart over the distribution of the vulnerability severities

in the flattened dataset at different granularity levels, where each
level occurs at least once in the SC. 51

5.11 Distribution of vulnerabilities in the flattened dataset. 51
5.12 Doughnut chart over the distribution of the vulnerability severities

in the inflated dataset at different granularity levels, where each
level occurs at least once in the SC. 52

5.13 Distribution of vulnerabilities in the inflated dataset. 52
5.14 Training and evaluation loss during training of model with security

conditioning. 54

xiii

https://www.hpc.ntnu.no/idun/

Figures xiv

5.15 Evaluation plot of accuracy during training of model with security
conditioning. 54

6.1 BLEU score frequency distribution of generated functions grouped
by model and comment cluster, using only comments as model input. 59

6.2 BLEU score frequency distribution of 10.000 generated functions
with pre-trained model using comment-aided approach. 60

6.3 BLEU score frequency distribution of 10.000 generated functions
with fine-tuned model using comment-aided approach. 60

6.4 BLEU score frequency distribution of 10.000 generated functions
with fine-tuned model with security conditioning using comment-
aided approach. 61

6.5 Count of vulnerabilities. 63
6.6 Difference in count of vulnerabilities compared to fine-tuned model

without security conditioning. 63

Tables

3.1 Existing language models. 16

5.1 Verified Smart Contracts Metrics . 30
5.3 GPT-J-6B model details. 41
5.5 Hyperparameters for GPT-J model . 43
5.7 DeepSpeed Zero configuration. 44

6.1 Average BLEU score of only comment generation. 58

xv

Code Listings

2.1 Access control vulnerable Solidity Smart Contract code 12
2.2 Timestamp Dependency vulnerable Solidity Smart Contract code . . 12
2.3 Reentrancy vulnerable Solidity Smart Contract code 13

4.1 Example of a NatSpec comment. 20

5.1 Google BigQuery query for selecting all Smart Contract addresses
on Ethereum that has at least one transaction. 28

5.2 Solidity standard JSON Input format. 29
5.3 Example data instance from the flattened dataset. 31
5.4 Example data instance from the inflated dataset. 32
5.5 Example data instance from the plain-text version of the inflated

dataset. 33
5.6 Example data instance from the inflated dataset. 36
5.7 NatSpec single-line comment in cluster 0. 37
5.8 Single-line comment in cluster 1. 37
5.9 NatSpec multi-line comment in cluster 2. 37
5.10 Custom comment style from cluster 3 40
5.11 Command for running the HuggingFace CLM training script with

DeepSpeed. 42
5.12 Example data instance from the audited inflated dataset. 49

6.1 Different contract parts. 56
6.2 Integer overflow vulnerability evaluation example. 64
6.3 Reentrancy vulnerability evaluation example. 65
6.4 Unchecked send vulnerability evaluation example. 65

xvi

Acronyms

API Application Programming Interface. 28

AST Abstract Syntax Tree. 14, 15, 56

BERT Bidirectional Encoder Representations from Transformers. 3, 15

bfloat16 Brain Floating Point. 22, 26, 42

BLEU BiLingual Evaluation Understudy. vii, viii, xiv, xv, xvii, 9, 15, 16, 56–61,
67–69, 72, Glossary: BiLingual Evaluation Understudy

BPE Byte-Pair Encoding. 41

CLM Casual Language Modeling. xvi, 24, 42, 43, 50

DAO Decentralized Autonomous Organization. 19

DSR Design Science Research. 19

ELMo Embeddings from Language Models. 15

EVM Ethereum Virtual Machine. xvii, 57, Glossary: Ethereum Virtual Machine

float16 Half-precision Floating-Point. 26

GPT General Pre-trained Transformer. 3, 15

IR Intermediate Representation. xvii, Glossary: Intermediate Representation

LoC Lines of Source Code. 30

LSTM Long Short-Term Memory. 15

ML Machine Learning. 2

NFT Non Fungible Tokens. xvii, 10, Glossary: Non Fungible Tokens

xvii

Tables xviii

NLTK Natural Language Toolkit. 35

NVMe Non-Volatile Memory Express. xviii, 26, Glossary: Non-Volatile Memory Ex-
press

OOM Out of Memory. xviii, 42, Glossary: Out of Memory

PCA Principal Component Analysis. 37

PCFG Probabilistic context-free grammar. 14

RNN Recurrent Neural Network. 3

RoPE Rotary Position Embedding. 22, 41

SC Smart Contract. vii, viii, xiii, xvi, 2, 3, 10–13, 16, 19–21, 24, 25, 28, 29, 33,
41, 42, 48–52, 55–58, 67–73

SMT Satisfiability Modulo Theories. xviii, Glossary: Satisfiability Modulo Theories

TFIDF Term Frequency–Inverse Document Frequency. 35

WoS Web of Science. xviii, Glossary: Web of Science

ZeRO Zero Redundancy Optimizer. 25, 26, 42

Glossary

BiLingual Evaluation Understudy Metric for automatically evaluating machine-
translated text. vii, viii, xiv, xv, 9, 15, 16, 56–61, 67–69, 72

docstring Python function documentation strings. 15

Ethereum Virtual Machine The runtime environment for transaction execution
in Ethereum. 57

F1 Harmonic mean of precision and recall. 14

Non Fungible Tokens A type of token that is unique. 10

Non-Volatile Memory Express A standard hardware interface for solid state drives
(SSDs) that uses the PCI Express (PCIe) bus. 26

Out of Memory An often undesired state of computer operation where no addi-
tional memory can be allocated. 42

xix

Chapter 1

Introduction

The art of computer programming is an ever-evolving field. The field has trans-
formed from punchcards to writing assembly code. With the introduction of the C
programming language, the field sky-rocketed. Since then, many new languages
have been introduced, and the art of programming has become a complex and
ever-changing field. Today, computer systems are all around us and permeate ev-
ery aspect of our lives. However, constructing such systems is a hard and time-
consuming task. Several tools and methods have been developed to increase the
productivity of programmers, as well as to make programming more accessible to
everyone.

Recent advancements in large-scale transformer-based language models have
successfully been used for generating code. Automatic code generation is a new
and exciting technology that opens up a new world of possibilities for software
developers. One example is GitHub Copilot [1]. Copilot uses these models to gen-
erate code for a given programming language. The tool is based on a deep learning
model, named Codex [2] by OpenAI, that has been trained on a large corpus of
code. This enables developers to significantly speed up productivity. In addition,
it makes programming more accessible to everyone by significantly reducing the
threshold for using various programming languages and libraries. Another recent
contribution is AlphaCode [3], a code generation tool for generating novel code
solutions to programming competitions.

The language models are getting larger and better by the day. However, it is
just as important how these models are best put to use. Describing functionality
is easy. Implementing it in code is hard. Almost every coding language supports
some form of code comment. These are normally created to explain the imple-
mented code after the code is written. Recent works [2, 4] have leveraged the
power of transformers to automatically generate code from comments. This has
the potential to greatly lower the threshold for non-developers to leverage pro-
gramming, while also increasing efficiency due to a simpler developing process.
However, none of these works investigates how to best write these comments for
guiding code generation. Further, for evaluating these systems, they only con-
sider generating code from comments in isolation. This is rarely the case in a

1

Chapter 1: Introduction 2

real-world setting because developers write code and use comments to explain
the code. This thesis investigates a comment-aided approach to generating code,
meaning the use of the existing code and comments as the input. For generating
code, this work does not exclude the opportunity for developers to type in code
and comments in combination with the automatically generated code.

A machine learning model is only as good as the data it is fed. These large-
scale transformers need huge amounts of data to be trained. Normally, this data
is collected from all available open source code. A problem with this is that a lot
of this code contains security problems. This can be everything from exposed API
keys, to exploitable vulnerabilities. Autocomplete tools like GitHub Copilot must
therefore be used with caution [2].

To better secure automatic code generation, this thesis also purposes a novel
approach for use of ML models in large-scale transformer-based code generation
pipelines to ensure secure generated code. To demonstrate the approach, this the-
sis will focus on generating secure code for Smart Contracts (SCs) (Solidity).
Smart Contracts (SCs) have an exceptionally high demand for security, as vul-
nerabilities can not be fixed after a contract is deployed. Due to most blockchains’
monetary and anonymous nature, they pose as a desirable target for adversaries
and manipulators [5]. Further, SCs tends to be rather short and simple, making
it a good fit for generated code. The main research questions addressed in this
thesis are:

• How to automatically generate Smart Contract code with transformer-based
language models, by inputting comments to guide the code generation?
• How to generate secure Smart Contract code with transformer-based lan-

guage models?

The specific contributions of this thesis are as follows:

• The currently largest Smart Contract (SC) dataset.
• Novel comment-aided code generation using the fine-tuned transformer-

based language model to generate Smart Contract code.
• Novel method to secure code generation.
• Identification of open issues, possible solutions to mitigate these issues, and

future directions to advance the state of research in the domain.

The rest of this paper is organized as follows. Chapter 2 describes the back-
ground of the project. The research related to this document is commented in
Chapter 3. Chapter 4 describes the research methodology employed for imple-
menting the research questions. The implementation and the results are presented
in Chapter 5. The implementations are then evaluated in Chapter 6. The findings
and results from the implementation and evaluation are discussed in Chapter 7.
Finally, Chapter 8 concludes the thesis, presenting final remarks and future works.

Chapter 2

Background

This chapter introduces the necessary background information for this study. First,
a thorough description of the Transformer model is provided in Section 2.1. Sec-
tion 2.2 explain the different metrics used in this thesis, followed by a brief in-
troduction to blockchain technology in Section 2.3. Then, the concept of Smart
Contracts (SCs) and the most popular SC vulnerabilities are described in Sec-
tion 2.4.

2.1 Transformer

A transformer is a deep learning model. It is designed to process sequential data
and adopts the mechanism of self-attention. The Transformer model architecture
was introduced in 2017 by Vaswani et al. [6]. Unlike more traditional attention-
based models such as Recurrent Neural Networks (RNNs), transformers do not
include any recurrence or convolutions. This allows the model to process the en-
tire input all at once, solely relying on attention. It solves the vanishing gradient
problem of recurrent models, where long-range dependencies within the input
are not accurately captured. It also allows the model to be significantly more par-
allelized, making training on huge datasets feasible. Because of this, pre-trained
systems such as Bidirectional Encoder Representations from Transformers (BERT)
[7] and GPT [8] were developed. These models are pre-trained on a large corpus
of text, such as Wikipedia Corpus and Common Crawl, and effectively predict the
next word in a sentence. Further, the models can be fine-tuned on a new dataset
to improve their performance on more specialized tasks.

2.1.1 Architecture

The standard Transformer architecture, as described by Vaswani et al. [6] in 2017,
is shown in Figure 2.1. The following subsections describe the architecture of the
standard Transformer model.

3

Chapter 2: Background 4

Feed
Forward

Layer Norm

Linear

Softmax

Multi-Head
Attention

Masked
Multi-Head
Attention

Layer Norm

Output
Probabilities

Layer Norm

Output
Embedding

Outputs
(shifted right)

Feed
Forward

Layer Norm

Multi-Head
Attention

Layer Norm

Positional
Encoding

Input
Embedding

Inputs

Positional
Encoding

N×

N×

Figure 2.1: Architecture of a standard Transformer Vaswani et al. [6]

Chapter 2: Background 5

2.1.1.1 Tokenization

For a Transformer to process the text input, the text is first tokenized. Tokeniza-
tion is the process of breaking a sequence of text into a sequence of tokens. For
example, the sentence I am a sentence. is tokenized into the words "I", "am", "a",
"sentence", and ".". The tokenization process is usually done by a tokenizer. Specif-
ically, the transformer uses a byte pair encoding tokenizer.

2.1.1.2 Embedding and Positional Encoding

After the input text is tokenized, the next step for the model is to understand the
meaning and position of the token (word) in the sequence. This is achieved by an
Embedding layer and a Positional encoding layer. The results of these two layers
are combined.

Two embedding layers are used. The Input Embedding layer is fed the input
sequence. The Output Embedding layer accepts the target sequence after shift-
ing the target to the right by one position and inserting a start token at the first
position. The embedding layers produce a numerical representation of the input
sequence, mapping each token to an embedding vector.

0 10 20 30 40 50 60
Depth

0

100

200

300

400

500

Po
si

ti
on

−1.0

−0.5

0.0

0.5

1.0

Figure 2.2: The 64-dimensional positional encoding for a sentence with the max-
imum length of 512. Each row represents an positional encoding vector.

The positional encoding is generated by a sinusoidal positional encoding layer.
This layer is fed the sequence length and produces a sinusoidal positional encoding
vector. This is illustrated in Figure 2.2, where each row corresponds to one sinu-
soidal positional encoding vector. The positional encoding vector is then added to
the embedding vector.

Chapter 2: Background 6

2.1.1.3 Encoder and decoder stacks

A Transformer is comprised of two main parts: the encoder and the decoder. The
encoder is responsible for encoding the input sequence into a sequence of vectors.
It tries to capture information about which parts of the inputs are relevant to
each other. The decoder is responsible for decoding the output sequence from the
encoder. Along with other inputs, the decoder is optimized for generating outputs.
In Figure 2.1, the left and right halves represent the Transformer encoder and
decoder, respectively.

The encoder and decoder are both composed of a stack of self-attention layers.
This layer allows the model to pay more or less attention to certain words in the
input sentence as it is handling a specific word. Each decoder layer has an addi-
tional attention mechanism that draws information from the outputs of previous
decoders, before the decoder layer draws information from the encodings. Both
the encoder and decoder layers contain a feed-forward layer for further processing
of the outputs, as well as layer normalization and residual connections.

The transformer architecture allows for auto-regressive text generation. This
is achieved by re-feeding the decoder the encoder outputs. The decoder then gen-
erates the next word in a loop until the end of the sentence is reached. For this
to work, the Transformer must not be able to use the current or future output to
predict an output. The use of a look-ahead mask solves this. The final output from
the transformer is generated by feeding the decoder output through a linear layer
and a softmax layer. This produces probabilities for each token in the vocabulary
and can be used to predict the next token (word).

The encoder and decoder can also be used independently or in combination.
The original transformer model described by Vaswani et al. [6] used an encoder-
decoder structure. These models are used for generative tasks that also require in-
put, for example, language translation or text summarization. Encoder-only mod-
els are used for tasks that are centered around understanding the input, such as
sentence classification and named entity recognition. Decoder-only models excel
at generative tasks such as text generation.

2.1.1.4 Scaled dot-product attention

The self-attention layer used in each Transformer block is named "Scaled Dot-
Product Attention". An overview of the attention layer is shown in Figure 2.3a. The
layer learns three weight matrices, query weights WQ, key weights WK , and value
weights WV . Each input word embedding is multiplied with each weight matrix,
producing a query vector, key vector, and value vector. Self-attention scores are
then generated by calculating the dot products of the query vector with the key
vector of the respective word (query) that is calculated.

In order to stabilize the gradients during training, the attention weights are
divided by the square root of the dimension of the key vectors,

p

dk. A softmax
function is then applied, normalizing the scores to be positive and adding up to 1.
Each value vector is then multiplied by the softmax score. The resulting weighted

Chapter 2: Background 7

Concat

Mask (opt.)

Softmax

Q VK

MatMul

MatMul

(a) Scaled Dot-Product Attention.

Scaled Dot-Product
Attention

Linear

Concat

Linear

Linear Linear

V K Q

h

(b) Multi-Head Attention consists of several
attention layers running in parallel.

Figure 2.3: Multi-Head Attention module in Transformer architecture Vaswani et
al. [6]

value vectors are then summed up and serve as output from the attention layer.
In practice, the attention calculation for all tokens can be expressed as one

large matrix calculation, as shown in Figure 2.3a. This significantly speeds up
the training process. The queries, keys, and values are packed into the separate
matrices Q, K , and V , respectively. The output matrix can be described as:

Attention(Q, K , V) = softmax(
QK T

p

dk

)V (2.1)

where the superscript T represent the transpose operation.

2.1.1.5 Multi-head attention

By splitting the query, key, and value parameters in N-ways (logically), each with
its separate weight matrix, the performance of the Transformer is increased. This
is called multi-head attention, illustrated in Figure 2.3b. It gives the Transformer
greater power to encode multiple relationships and nuances for each word. The
final attention outputs for the feed-forward network are calculated by concate-
nating the matrixes for each attention head.

2.1.2 Training

A Transformer model typically undergoes something called self-supervised learn-
ing. This is an intermediary between both unsupervised- and supervised learning.
This normally conforms to unsupervised pre-training the model on a large set of
data. Then, the model is fine-tuned on a (usually) smaller dataset of labeled data.

In contrast to the unsupervised training, where the target sequence comprises
the predicted transformer output, the supervised training is done by feeding the

Chapter 2: Background 8

complete input- and target language sequence directly into the Transformer. The
input sequence is fed to the encoder, while the target sequence is fed to the de-
coder.

2.1.3 Inference

For making inference, the Transformer is only fed the input sequence. The encoder
is run on the input sequence, and the encoder output is fed to the decoder. Since
no encoder output is available at the first timestep, the decoder is fed a special
"<start>" token. The decoder output is then fed back into the decoder again. This
process is repeated until the decoder output encounters a special "<stop>" token.

2.2 Relevant Metrics

2.2.1 Machine learning performance metric

2.2.1.1 Accuracy

Accuracy is the proportion of correct predictions among the total number of cases
processed [9]. Accuracy is formally defined as the proportion of correct predictions
among the total number of cases processed, as seen in Equation (2.2).

Accuracy=
T P + T N

T P + T N + F P + FN
(2.2)

where T P is the number of true positives, T N is the number of true negatives, F P
is the number of false positives, and FN is the number of false negatives.

It is a very common metric used for evaluating the performance of a machine
learning model. However, it has to be used with caution, as an overfitted model
would report high accuracy.

2.2.1.2 Perplexity

Perplexity is one of the most common metrics for evaluating language models
[10]. It is a measure of how variable a prediction model is, and can be defined as
the normalized inverse probability of the test set [11]. For a test set with words
W = w1, w2, . . . , wN , the perplexity of the model on the test set is:

PP(W) = N

√

√ 1
p(w1, w2, ..., wN)

(2.3)

Perplexity can be interpreted as the weighted branching factor. If we have a
perplexity of 10, it means that whenever the model tries to guess the next word, it
is as confused as if it had to pick between 10 words. Models with lower perplexity
have probability values that are more varied. Meaning, the lower perplexity, the
better model [11].

Chapter 2: Background 9

Figure 2.4: Gradient for interpreting BLEU score Lavie [14].

2.2.2 Machine translation performance metrics

2.2.2.1 BLEU

BLEU (BiLingual Evaluation Understudy) by Papineni et al. [12] is a metric for
automatically evaluating machine-translated text. BLEU scores are between 0 and
1. A value of 0 means there is no overlap with the reference translation, while a
value of 1 means that the translation perfectly overlaps. A score of 0.6 or 0.7 is
considered the best a human can achieve [12, 13]. The color gradient in Figure 2.4
from [14] can be used as a general scale interpretation of the BLEU score.

The method is based on n-gram matching, where n-grams in the reference
translation are matched against n-grams in the translation. The matches are position-
independent. The more matches, the higher the score.

For example, consider the following two translations:

Candidate: on the mat the cat sat.
Reference: The cat is on the mat.

The unigram precision (p1) = 5/6

However, machine translations tend to generate an abundance of reasonable words,
which could result in an inaccurately high precision. To combat this, BLEU uses
something called modified precision[12]. The modification consists of clipping the
occurrence of an n-gram to the maximum number the n-gram occurs in the ref-
erence. These clipped precision scores (pn) are then calculated for n-grams up to
length N , normally 1-grams through 4-grams. They are then combined by com-
puting the geometric average precision, as shown in Equation (2.4). In addition,
positive weights wn are used, normally set to wn = 1/N .

Geometric Average Precision (N) = exp

� N
∑

n=1

wn log pn

�

(2.4)

BLEU also introduces a brevity penalty for penalizing translations that are shorter
than the reference:

Brevity Penalty=

¨

1 if c > r

e(1−r/c) if c ≤ r
(2.5)

The final BLEU score is then computed as:

Chapter 2: Background 10

BLEU = Brevity Penalty ·Geometric Average Precision Scores (N) (2.6)

2.2.3 String metric

2.2.3.1 Jaccard index

The Jaccard index [15] is also known as the Jaccard similarity coefficient. It is a
statistic used for gauging the similarity of sample sets. It is defined as the size of the
intersection divided by the size of the union of the sets, as shown in Equation (2.7).

J(A, B) =
|A∩ B|
|A∪ B|

(2.7)

The Jaccard index ranges from 0 to 1. The higher the number, the more similar
the two sets are.

The Jaccard index can for example be used as a measure of how similar two
text strings are. For this, the strings are simply converted into sets of n-grams. The
n-grams are then compared using the Jaccard index.

2.3 Blockchain

Blockchain technology was popularized by Satoshi Nakamoto in 2008 with his
publication of the article "Bitcoin: A Peer-to-Peer Electronic Cash System". He
introduced the formal idea of a peer-to-peer electronic cash system based on
blockchain. This made it possible for users to conduct transactions without any
need for a central authority. A blockchain is a growing list of records linked to-
gether with the help of a cryptographic hash. Each of these records is called a
block. The blocks contain a cryptographic hash of the previous block, transac-
tional data, and a timestamp. Since all blocks contain the hash of the previous
block, they end up forming a chain. To tamper with a block in the chain, this also
requires altering all subsequent blocks. Because of this, Blockchains are resistant
to modification. The longer the chain, the more secure it is.

2.4 Smart Contract

The term "Smart Contract" was introduced with the Ethereum platform in 2014 . A Add ref
Smart Contract (SC) is a program that is executed on a blockchain. This enables
non-trusting parties to create an agreement. SCs have enabled several interest-
ing new concepts, such as Non Fungible Tokens (NFT) and entirely new business
models. Ever since Ethereum’s introduction of SCs, the platform has kept its po-
sition as one of the most popular SC blockchain platforms. Ethereum is an open,
decentralized platform that allows users to create, store, and transfer digital as-
sets. Solidity is the primary programming language that is used to write these SCs

Chapter 2: Background 11

for Ethereum. Solidity is compiled down to bytecode, which is then deployed and
stored on the blockchain. Ethereum also introduces the concept of gas. Ethereum
describes gas as follows: “It is the fuel that allows it to operate, in the same way
that a car needs gasoline to run [16]”. The gas is used to pay for the cost of execut-
ing a SC. This also protects against malicious actors spamming the network [16].
The gas is paid in Wei, which is the smallest denomination of Ether. Due to the
immutable nature of blockchain technology, once a smart contract is deployed,
it cannot be changed. This can have serious security implications, as vulnerable
contracts can not be updated.

2.4.1 Smart Contract Security Vulnerabilities

There are many vulnerabilities in Smart Contracts (SCs) that can be exploited by
malicious actors. Throughout the last years, an increase in the use of the Ethereum
network has led to the development of SCs that are vulnerable to attacks. Due to
the nature of blockchain technology, the attack surface of SCs is somewhat dif-
ferent from that of traditional computing systems. The Smart Contract Weakness
Classification (SWC) Registry 1 collects information about various vulnerabilities.
Following is a list of the most common vulnerabilities in Smart Contracts:

2.4.1.1 Integer Overflow and Underflow

When an arithmetic operation reaches the maximum or minimum size of a certain
data type, an integer overflow or underflow occurs. For example, adding or multi-
plying two integers may result in a value that is unexpectedly small. Considering
the opposite, subtracting from a small integer may result in an unexpectedly large
positive value. For example, an 8-bit integer addition 255 + 2 might result in 1.

2.4.1.2 Transaction-Ordering Dependence

There is no guarantee on the execution order of transactions in blockchain sys-
tems. A miner can influence the outcome of a transaction due to its own reordering
criteria. For example, a transaction that is dependent on another transaction to
be executed first may not be executed. This can be exploited by malicious actors,
and is called transaction-ordering dependence, or TOD.

2.4.1.3 Broken Access Control

Access Control issues are common in most computer systems, not just smart con-
tracts. However, because of the monetary nature and transparency of SCs, prop-
erly enforcing access controls are essential. Broken access control can for example
occur due to wrong visibility settings of functions. This gives attackers a rela-
tively straightforward way to access contracts’ private assets. However, the by-
pass methods are sometimes more subtle. For example, in Solidity, reckless use

1https://swcregistry.io

https://swcregistry.io

Chapter 2: Background 12

of delegatecall in proxy libraries, or use of the deprecated tx.origin might result
in broken access control. Code listing 2.1 shows a simple Solidity contract where
anyone can trigger the contract’s self-destruct, which makes the code vulnerable.
Due to its severity, unprotected self-destructs are also recognized as a separate
vulnerability, named unprotected suicide.

Code listing 2.1: Access control vulnerable Solidity Smart Contract code

1 contract SimpleSuicide {

2 function sudicideAnyone() {

3 selfdestruct(msg.sender);

4 }

5 }

2.4.1.4 Timestamp Dependency

If a Smart Contract is dependent on the timestamp of a transaction, it is vulnerable
to attack. A miner has full control over the execution environment for a SC. If the
SC platform allows for SCs to use the time defined by the execution environment,
this may result in a vulnerability. An example of vulnerable use is a timestamp used
as part of the conditions to perform any critical operation (e.g., sending ether) or
as the source of entropy to generate random numbers. Hence, a malicious miner
could gain an advantage by choosing a suitable timestamp for a block he is mining.
Code listing 2.2 shows an example Solidity SC that contains this vulnerability.
Here, the timestamp (the now keyword on line 10) is used as a source of entropy
to generate a random number.

Code listing 2.2: Timestamp Dependency vulnerable Solidity Smart Contract
code

1 contract Roulette {

2 uint public prevBlockTime; // One bet per block

3 constructor() external payable {} // Initially fund contract

4

5 // Fallback function used to make a bet

6 function () external payable {

7 require(msg.value == 5 ether); // Require 5 ether to play

8 require(now != prevBlockTime); // Only 1 transaction per block

9 prevBlockTime = now;

10 if(now % 15 == 0) { // winner

11 msg.sender.transfer(this.balance);

12 }

13 }

14 }

Chapter 2: Background 13

2.4.1.5 Reentrancy

Reentrancy is a vulnerability that occurs when a SC calls an external contract. Most
blockchain platforms that implement SCs provide a way to make external contract
calls. In Ethereum, an attacker may carefully construct a SC at an external address
that contains malicious code in its fallback function. Then, when a contract sends
funds to the address, it will invoke the malicious code. Usually, the malicious
code triggers a function in the vulnerable contract, performing operations not
expected by the developer. The name "reentrancy" comes from the fact that the
external malicious contract calls a function on the vulnerable contract and the
code execution then "reenters" it. Code listing 5.1 shows a Solidity SC function
where a user can withdraw all the user’s funds from a contract. If a malicious
actor creates a contract that calls the withdrawal function several times before
completing, the actor would successfully withdraw more funds than the current
available balance. This vulnerability could easily be eliminated by moving the
updating of the balance on line 4 to above the transferring of funds on line 3.

Code listing 2.3: Reentrancy vulnerable Solidity Smart Contract code

1 function withdraw() external {

2 uint256 amount = balances[msg.sender];

3 require(msg.sender.call.value(amount)());

4 balances[msg.sender] = 0;

5 }

Chapter 3

Related work

This chapter presents related research in the field of source code synthesis. Sec-
tion 3.1 presents various techniques for code synthesis. The section begins with
presenting some of the earlier techniques, followed by surveying more recent and
state-of-the-art code synthesis techniques. In Section 3.2 works related to bias in
language models are presented.

3.1 Code synthesis

Code synthesis is the task of generating code from a given specification. One of
the earlier classical works used a probabilistic Probabilistic context-free grammar
(PCFG) [17]. Hindle et al. [18] investigated whether code could be modeled by
statistical language models. In particular, the authors used an n-gram model. They
argue that "programs that real people actually write are mostly simple and rather
repetitive, and thus they have usefully predictable statistical properties". They
found that code is more predictable than natural languages. DeepCoder by Ba-
log et al. [19] focused on solving programming competition-style problems. They
trained a neural network for predicting properties of source code, which could be
used for guiding program search.

3.1.1 Code synthesis based on code semantics

Programs can also be synthesized by leveraging the semantics of the code. Alon
et al. [20] purposes a tool named code2vec. It is a neural network model for
representing snippets of code as continuously distributed vectors, or "code em-
beddings". The authors leverage the semantic structure of code by passing seri-
alized Abstract Syntax Trees (ASTs) into a neural network. Code2seq [21] builds
on the works of Alon et al. [20] which focuses on natural language sequence gen-
eration from code snippets. The authors use an encoder-decoder LSTM model
and rely on ASTs for code snippets. The model is trained on three Java corpuses
small, medium, and large, achieving a F1 score of 50.64, 53.23, and 59.19, re-
spectively. However, the model is limited to only considering the immediately sur-

14

Chapter 3: Related work 15

rounding context. Pythia by Svyatkovskiy et al. [22] is able to generate ranked
lists of method and API recommendations to be used by software developers at
edit time. The code completion system is based on ASTs and uses Word2vec for
producing code embeddings of Python code. These code embeddings are then
used to train a Long Short-Term Memory (LSTM) model. The model is evaluated
on a dataset of 15.8 million method calls extracted from real-world source code,
achieving an accuracy of 92%.

3.1.2 Code synthesis based on transformers

Inspired by the success of large natural language models such as ELMo (Embed-
dings from Language Models) [23], GPT (General Pre-trained Transformer) [8],
BERT (Bidirectional Encoder Representations from Transformers) [7], XLNet [24],
and RoBERTa [25], large-scale Transformer models have been applied in the do-
mains of code synthesis. Feng et al. [26] proposes a new approach to code syn-
thesis by training the BERT transformer model on Python docstring paired with
functions. The resulting 125M parameter transformer model, named CodeBERT
[26], achieves strong results on code-search and code-to-text generation. The au-
thors also observe that models that leverage code semantics (ASTs) can produce
slightly better results. PyMT5 Clement et al. [4] is based on the T5 model. The
model can predict whole methods from natural language documentation strings
(docstrings) and summarize code into docstrings of any common style. For method
generation, PyMT5 achieves a BiLingual Evaluation Understudy (BLEU) score of
0.0859 and a F-score of 24.8 on the CodeSearchNet [27] test set. GPT-C by Svy-
atkovskiy et al. [28] is a model based on GPT-2. The 366M parameter-sized model
is trained on a code corpus consisting of 1.2 billion lines of source code in Python,
C#, JavaScript and TypeScript programming languages. The Python-only model
reportedly achieves a ROUGE-L precision of 0.80 and recall of 0.86.

The model complexity of transformers has recently sky-rocketed, with model
sizes growing to several tens of billions of parameters. GPT-J is a 6 billion parame-
ter model trained on The Pile, which is an 825GB dataset. The pre-trained version
of GPT-J is also publicly available. Codex by Chen et al. [2] is a 12 billion param-
eter model based on GPT. It was trained on 54 million GitHub repositories, and a
production version of Codex powers GitHub Copilot [1]. The model solves 28.8%
of the problems in the HumanEval dataset [2], while GPT-3 solves 0% and GPT-J
solves 11.4%. Google DeepMind’s AlphaCode [3] is 41.4 billion parameters and is
the first AI to reach a competitive level in programming competitions. AlphaCode
was tested against challenges curated by Codeforces [29], a competitive coding
platform. It achieved an average ranking of 54.3% across 10 contests. The au-
thors found that repeated sampling on the same problem significantly increased
the probability of a correct solution.

Chapter 3: Related work 16

Table 3.1: Existing language models.

Refs. Year Model Metrics Languages Input Output

[26] 2020 CodeBERT BLEU Python Code Docstring

[4] 2020 PyMT5 BLEU Python Docstring Code

[28] 2020 GPT-C BLEU Python, C#,
JavaScript,
TypeScript

[2] 2021 Codex Functional
correctness

Python Docstring Code

[3] 2022 AlphaCode Functional
correctness

Python,
C++, Java

Problem
description

Code

As can be seen from Table 3.1, most of the models are concerned with Python
code. However, none have attempted to generate Smart Contracts (SCs) code. SC
code is quite different from most of the other popular languages such as Python,
JavaScript, and Java. Investigating how transformer models perform on SC code
would give valuable insight into the future of code synthesis. Further, all of the
works listed in Table 3.1 that are concerned with text-to-code generation, only
consider using comments in isolation. There is therefore a need for an investiga-
tion of a code generation approach that uses both comments and code for gener-
ating functions.

3.2 Bias in language models

One of the main problems with language models is that they often contain bias
[30]. This can be everything from producing gender-specific jobs to favoring a
certain race. There have been several works related to mitigating this in language
models. However, with varying success. Silva et al. [31] tried to mitigate soci-
etal bias in text generation using a loss regularizer to “de-bias” a RoBERTa model.
However, their approach was not successful and conclude there is a need for more
robust bias testing in transformers. Several works are devoted to using adversar-
ial methods to reduce bias. Madras et al. [32] propose LAFTER, an adversarial
method to modify the training objective based on a desired fairness measure.
Zhang et al. [33] also tries to reduce bias using adversarial training. However, [33]
states that the adversarial training method is hard to get right and is often touchy.
Hofstätter et al. [34] investigates bias in visual transformer models, as they find
existing approaches such as LAFTR unable to maintain high performance. They
propose TADeT, a targeted alignment strategy for debasing transformers that aims
to discover and remove bias primarily from query matrix features.

In the area of code synthesis, vulnerabilities can be considered a form of bias
in language models. However, there seems to be very little research on the security

Chapter 3: Related work 17

of synthesized code using transformers. [2] provide a brief discussion of insecure
code generated by Codex. However, this investigation was limited to the explo-
ration of the generation of cryptographic functions. Pearce et al. [35] acknowledge
this gap in research and conduct a vulnerability analysis of GitHub Copilot (based
on Codex). They construct a manual dataset of incomplete python and C code that
may produce a vulnerability. From their analysis of 1689 synthesized Python and
C programs, they conclude with approximately 40% are vulnerable. This shows
there is a dire need for reducing the number of vulnerabilities generated with
language models.

Chapter 4

Research Methodology

This chapter presents the research methodology used in this thesis. Firstly, the
research motivation is presented in Section 4.1, followed by the research ques-
tions defined for this thesis in Section 4.2. The research method and design are
explained in Section 4.3. Then, Sections 4.4 and 4.5 presents the research design
for RQ1 and RQ2, respectively. Finally, Section 4.6 presents the various software
libraries and hardware used in this thesis.

4.1 Research Motivation

Writing Smart Contracts are hard. Writing secure Smart Contracts is even harder.
Automatic code generation is by many considered the ”holy grail” in the field of
computer science [36]. Ever since OpenAI introduced its first transformer model
in the GPT series, this class of transformers has been touted as the state-of-the-art
for text generation. Recent works have applied transformers for code generation
and program synthesis, achieving state-of-the-art results. For example, Codex by
Chen et al. [2] fine-tunes GPT-3 [37] on code data from GitHub. The results are
impressive. However, while the models are improving at a staggering rate, it is
also important to consider how the models should be used. Works such as [2, 4]
only consider code synthesis from comments. This is clearly problematic, as users
of these systems, developers, do not normally develop code in isolation.

These systems also face many other problems, especially in regards to differ-
ent biases, for example, gender and security biases. Chen et al. [2] describes that
because their model (Codex) is trained on open-source code, including "Public
code may contain insecure coding patterns, bugs, or references to outdated APIs
or idioms.", the model might "synthesize code that contains these undesirable pat-
terns introduce vulnerabilities" [1]. An empirical study by Pearce et al. [38] found
that almost approximately 40% of the generated code by GitHub Copilot is vulner-
able. Security flaws in software can have dire consequences. According to Smith
et al. [39] the estimated cost of cybercrime for 2020 is over $1 trillion dollars.
Due to the monetary nature of blockchain, security flaws are often very severe,
as exploits of vulnerabilities often directly result in the loss of funds. One of the

18

Chapter 4: Research Methodology 19

most infamous blockchain attacks was the crowdfunding project Decentralized
Autonomous Organization (DAO) hack. This hack resulted in an economic loss
worth about 60 million dollars at the time [40]. Further, the immutable nature
prevents the possibility of correcting vulnerable code after being deployed.

This thesis tries to address the problems and limitations described above, by
answering the research questions defined in Section 4.2.

4.2 Research Questions

The research questions addressed in this thesis are:

RQ1. How to automatically generate Smart Contract code with transformer-
based language models, by inputting comments to guide the code gen-
eration?

RQ2. How to generate secure Smart Contract code with transformer-based
language models?

4.3 Research Method and Design

To best facilitate the answering of the research questions defined in Section 4.2,
an Design Science Research (DSR) was selected as the research approach. A DSR
focuses on the development and performance of artifacts. For this to be considered
research, the work needs to demonstrate academic qualities such as analysis, ex-
planation, argument, justification, and critical evaluation. Further, the work needs
to contribute to knowledge in some way [41]. DSR is typically an iterative process
that involves five steps [42]: Awareness of Problem, Suggestion, Development,
Evaluation, and Conclusion.

• Awareness of Problem: is the recognition and formulation of a problem.
This might come from multiple sources, such as areas identified by authors
for further research, reading about new developments in the industry, from
other disciplines, new technological developments, etc. The output of this
phase is a proposal for a new research effort, either formal or informal.
• Suggestion: directly follows the development of a proposal based on an

awareness of a problem. This is the creative step where a tentative idea of
how to solve such a problem in a novel way is suggested.
• Development: is the actual implementation of the suggested idea. This is

the step where the tentative design idea is implemented and produces an
artifact. The techniques used for implementation vary with the type of arti-
fact, which could be anything from algorithms to models.
• Evaluation: is the evaluation of the artifact. In this step, the artifact’s worth

is assessed, as well as potential deviations from expectations.
• Conclusion: is the final step where the results from the design process are

determined to be "good enough". The results are written up. The knowledge

Chapter 4: Research Methodology 20

gained is identified, along with any loose ends that might serve as subjects
for future research.

For this thesis, Section 4.1 clearly describes the awareness of the problems this the-
sis aims to solve. This is the motivation behind the new research effort proposed
in this thesis, conveyed as research questions defined in Section 4.2. Section 4.4
and Section 4.5 describe a suggestion for how to answer these research questions.
Chapter 5 describes the implementation of the suggested solution for the research
questions, while Chapter 6 presents an evaluation of the implementation results.
Finally, the findings and results are discussed in Chapter 7, and areas suitable for
further research are presented in Chapter 8.

4.4 Design for RQ1

This section describes the design for research question 1. For constructing a comment-
aided system for automatically generating smart contract code, multiple design
steps are needed. First, the design for a code comment analysis is described in Sec-
tion 4.4.1. Then the following Section 4.4.2 describes the language model selected
for use in this thesis. Finally, the design of the fine-tuning process is described in
Section 4.4.3

4.4.1 Code comments analysis

Code comments come in different shapes and styles. Solidity, the primary SC lan-
guage of Ethereum, has no less than 4 different standard comment types. For
example, one can use single- or multi-line NatSpec comments. These are com-
ments that can provide rich documentation for functions, return variables and
more [43]. An example of this is shown in Code listing 4.1. To provide some in-
sight into how a user can formulate a comment for guiding the code synthesis, a
comment analysis is conducted of how these look like in real SC code. Specifically,
a clustering analysis of the comments is conducted. Such an analysis can also be
used for providing insight into the performance of the models developed in this
project.

Code listing 4.1: Example of a NatSpec comment.

1 /// @title A token implementation

2 /// @author André Storhaug

3 /// @notice This is an example implementation

4 /// @dev All function calls are currently implemented without side effects

4.4.2 Language Model to use

As discussed in Section 3.1.2, there are several available transformer models.
However, only a few of them have open-sourced pre-trained weights. Of these,

Chapter 4: Research Methodology 21

GPT-J [44] is the largest model that includes code in its pre-training dataset "The
Pile", described in Section 4.4.2.1. The research community has found these mod-
els to outperform existing open-source GPT systems in qualitative programming
evaluations [45]. These findings are further backed by [2]. Because of this, the
state-of-the-art generative pre-trained transformer model GPT-J is the language
model used in this thesis.

4.4.2.1 The Pile

The Pile [46] is an 825 GiB open source dataset for language modeling. The
Pile features many disparate domains, including books, GitHub repositories, web-
pages, chat logs, and medical, physics, math, computer science, and philosophy
papers, making it one of the most extensive and diverse datasets available. Fig-
ure 4.1 shows a treemap of the different parts of the dataset. Especially interesting
is that 7.59% (about 95.16 GiB) of the Pile is made up code from GitHub. Code
from around 192K GitHub repositories are included, all with more than 100 stars
and smaller than a gigabyte [47]. Unfortunately, as of February 2022, less than
10 repositories on GitHub contain Solidity code and have over 100 stars 1. Hence
there is a need for a dataset made up of SCs.

Figure 4.1: Treemap of the Pile components by effective size. Source: [46]

1https://github.com/search?o=desc&q=language%3ASolidity&type=Repositories

https://github.com/search?o=desc&q=language%3ASolidity&type=Repositories

Chapter 4: Research Methodology 22

4.4.2.2 Model architecture

Ever since OpenAI introduced its first transformer model in the GPT series, this
class of transformers has been touted as the state-of-the-art for text generation.
Their latest model, GPT-3 [37], is their best performing model with 175 billion pa-
rameters. However, the model is not openly available at the current time. GPT-J
[44]with 6 billion parameters (GPT-J-6B) is currently one of the best open-source
alternatives to OpenAI’s GPT-3. GPT-J was released in June 2021 by EleutherAI
[48], a grassroots collection of researchers working to open-source AI research.
The model is trained on the Pile, an 825 GiB diverse, open-source language mod-
eling data set that consists of 22 smaller, high-quality datasets combined together.
See section Section 4.4.2.1 for a more detailed description of the Pile.

Being a GPT class transformer, GPT-J uses a decoder-only architecture, as can
be seen in Figure 4.2. The GPT-J introduces some notable differences from stan-
dard transformer models. Firstly, instead of computing attention and feed-forward
layers in sequential order, they are computed in parallel and the results are added
together. This decreases communication during distributed training, resulting in
increased throughput. Secondly, GPT-J uses Rotary Position Embedding (RoPE)
[49] for position encoding. Opposite to sinusoidal encoding used in standard
transformer models (see Section 2.1.1.2), this is shown to result in better model
quality in tasks with long text [49].

4.4.2.3 Requirements

To load the GPT-J model in float32 precision, one would need at least 2x the model
size of CPU RAM: 1x for the initial weights and another 1x to load the checkpoint.
So for just loading the GPT-J model, it would require at least 48GB of CPU RAM.
To reduce the memory footprint, one can load the model in half-precision.

GPU needs around 40GB of GPU memory to load the model. For training/fine-
tuning the model, it would require significantly more GPU RAM. For example, the
Adam optimizer makes four copies of the model: model, gradients, average and
the squared average of gradients. Hence, it would take 4x model size GPU memory,
even with mixed precision as gradient updates are in fp32. Further, this doesn’t
include the activations and data batches which would require some more GPU
RAM. Hence, solutions like DeepSpeed [50] needs to be used for training/fine-
tuning such large models.

If a GPU with mixed precision capabilities (architecture Pascal or more recent)
is available, one can use mixed precision training with PyTorch 1.6.0 or later, or
by installing the Apex library for previous versions. If using an NVIDIA “Ampere”
GPU architecture, the Brain Floating Point (bfloat16) floating-point format can
be used. Using mixed precision training usually results in 2x-speedup for training
with the same final results.

Chapter 4: Research Methodology 23

Feed
Forward

Layer Norm

Linear

Softmax

Masked
Multi-Head
Attention

Layer Norm

Output
Probabilities

Input
Embedding

Inputs

Rotary
Positional

Embedding N×

Figure 4.2: Diagram of GPT-J model architecture.

Chapter 4: Research Methodology 24

4.4.2.4 Pre-training

Pre-training is defined as "Training in advance". By first training the model on a
huge dataset, the model can then be fine-tuned on a much smaller dataset. This is
so-called transfer learning. The pre-training procedure used for GPT class models
is called Casual Language Modeling (CLM) [8]. The model reads the text input
in order and then tries to predict the next word. The model is fed a complete
text element (input sequence) all at once, and then internal masking is applied to
prevent the model from cheating by looking at future tokens. For more details on
the inner workings of the training procedure, see Section 2.1.2.

4.4.3 Fine-tuning design

To refine the pre-trained GPT-J-6B model for generating SC code, the model needs
to be fine-tuned on SCs. This should allow the model to adapt its existing knowl-
edge gained from the pre-training procedure to produce high-quality SC code. The
fine-tuning procedure used is similar to that of the pre-training procedure. How-
ever, instead of using the Pile, a custom dataset of SCs needs to be constructed
for use. The dataset then needs to be shuffled, before SCs are fed to the model
for training. To ensure the validity of the model’s performance, the dataset used
needs to be split into separate sets for training, validation and testing. In this the-
sis, 80% of the data will be used for testing, 10% for validation, and 10% for
testing. After the model is fine-tuned, it should be able to auto-regressively gen-
erate SCs code. Due to the share size of the selected model (see Section 4.4.2.3),
no hyper-parameter optimization was performed. All hyper-parameters were set
to their default values, as used for pre-training.

4.5 Design for RQ2

This section describes the design for research question 2. The proposed method for
generating secure SC code with transformer models is described in Section 4.5.1.
Then, the design of the fine-tuning process is described in Section 4.4.3.

4.5.1 Security Conditioning

When training a large language model on several gigabytes of open-source code,
it is safe to assume that large portions of this code are not safe and contains vul-
nerabilities. For example, Durieux et al. [51] analyzed 47.587 real SCs with 9 au-
tomatic analysis tools. From these, 97% of the contracts are tagged as vulnerable.
This can result in a biased model that may produce a lot of vulnerable code. The
idea of this thesis is to use a technique, named security conditioning, to reduce
and mitigate this problem.

The security conditioning is done by prepending a special security label to each
of the records in the training data. This way, the model can learn to associate these
tokens with either secure or vulnerable code. This way, by also using the labels

Chapter 4: Research Methodology 25

when generating code, the model may be able to condition whether to produce
safe or vulnerable code.

4.5.2 Fine-tuning design

For fine-tuning the pre-trained model with security conditioning, much of the
same procedure as in Section 4.4.3 is used. This makes it possible to validate
the technique, by comparing the secured model with the "unsecured" model de-
veloped in RQ1. The primary difference is that the dataset records need to be
labeled as secure or vulnerable. Before training, the dataset is shuffled and the
SCs are fed to the model for training. To ensure the validity of the model’s perfor-
mance, the dataset needs to be split into separate sets for training, validation and
testing. In this thesis, 80% of the data will be used for testing, 10% for validation,
and 10% for testing. To be able to The same hyperparameters used for as in Sec-
tion 4.4.3 no hyper-parameter optimization was performed. All hyper-parameters
were set to their default values, as used for pre-training.

After the model is fine-tuned, it should be able to auto-regressively generate
SCs code. To invoke the security conditioning, one only needs to prepend the
security label to the input text.

4.6 Technology

Following is an overview of the different technologies applied in this project, both
software and hardware.

4.6.1 Software

During the selection of the language modeling library for use in this project, sev-
eral considerations were made. Firstly, due to the huge size of the model, the
library needed to support distributed GPU training. It had to be flexible and scal-
able, without sacrificing too much on speed. The transformers [52] library by Hug-
ging Face [53] fulfilled these conditions. The library provides flexible and easy-to-
use solutions. It also supports integration with DeepSpeed [50], a deep learning
optimization library by Microsoft [54] that makes distributed training and infer-
ence easy, efficient, and effective. The Hugging Face ecosystem also provides the
Datasets and Tokenizers libraries, streamlining and significantly simplifying the
use of large datasets.

DeepSpeed. The deep learning optimization library DeepSpeed [50] is used for
training. It facilitates both distributed training, mixed precision and gradient ac-
cumulation, providing significant speedup of the training process while still being
able to fit the model into the GPU memory available. The main workhorse of
DeepSpeed is the Zero Redundancy Optimizer (ZeRO) [55]. ZeRO comes with

Chapter 4: Research Methodology 26

three incremental optimization stages: stage 1 (ZeRO-1), stage 2(ZeRO-2) and
stage 3(ZeRO-3).

• Stage 1: partitions the optimizer states across the processes, so each process
only updates its partition.
• Stage 2: partitions the reduced gradients for updating the model weights,

so that each process only retains the gradients corresponding to its own
portion of the optimizer states.
• Stage 3: partitions the model parameters across the processes. They are au-

tomatically collected and partitioned during forward and backward passes.

For training exceptionally large models, DeepSpeed also provides heterogeneous
memory technologies based on ZeRO. This includes ZeRO-Offload for ZeRO-2 and
ZeRO-Infinity [56] for ZeRO-3. ZeRO-Offload offloads the optimizer memory and
computation from the GPU to the host CPU. ZeRO-Infinity is an upgraded version
of ZeRO-Offload that also allows for offloading to Non-Volatile Memory Express
(NVMe) memory. DeepSpeed ZeRO makes it possible to train trillion parameter
models [56]. However, each optimization stage comes with a performance cost,
slowing down the training process. DeepSpeed also provides support for mixed-
precision training [57]. Mixed-precision training is the use of lower-precision op-
erations (float16 and bfloat16) in a model during training. This both makes it run
faster and uses less memory.

4.6.2 Hardware resources

The High Performance Computing Platform IDUN [58] is used for a lot of the
tasks in this thesis, especially for the training of the model. IDUN full-fills the
requirements defined in Section 4.4.2.3.

Figure 4.3: Image of IDUN todo: add ref https://www.hpc.ntnu.no/idun/

https://www.hpc.ntnu.no/idun/

Chapter 5

Research Implementation and
Results

This chapter presents the research implementation and results of the research
questions. The chapter is divided into two parts. First, the implementation of re-
search question 1 is described, concerning automatic smart contract code synthe-
sis. The part of the chapter describes the implementation of research question 2,
regarding generating secure smart contract code.

5.1 Implementation of RQ1

This section presents the implementation of research question 1. The implemen-
tation is done with the following steps:

1. Create verified smart contract source code dataset.

a. Scrape verified smart contracts from the Ethereum blockchain.
b. Normalize the smart contract files.
c. Filter the smart contracts for uniqueness.

2. Code comment analysis.

a. Create a parser that can parse all contract versions.
b. Parse verified smart contract source code.
c. Create a parsed dataset containing "comment, function" pairs.
d. Cluster comments.

3. Language modeling

a. Fine-tune a transformer model on the verified smart contracts dataset.

27

Chapter 5: Research Implementation and Results 28

5.1.1 Data collection

5.1.1.1 Smart contract downloader

The largest provider of verified SCs is Etherscan. At https://etherscan.io/ users
can upload the source code for their deployed SC. Etherscan will then compile
this source code and verify that it matches the bytecode of the deployed SC on
the Ethereum blockchain. This way, other people can verify the functionality of
a SC before using it. Etherscan provides a simple API for downloading verified
Smart Contracts. The API is available at https://api.etherscan.io/api. From
this endpoint, one can ask for the verified source code of a specific SC address.
However, it is not guaranteed that the contract has been verified.

The following code snippet is a Google BigQuery query. It selects all SCs ad-
dresses on the Ethereum blockchain that has at least one transaction. This query
was run on the 1st of April 2022, and the result was downloaded as a CSV file,
available on request at https://huggingface.co/datasets/andstor/smart_contracts/
blob/main/contract_addresses.csv. The CSV file is then used to download the
SCs from Etherscan.

Code listing 5.1: Google BigQuery query for selecting all Smart Contract ad-
dresses on Ethereum that has at least one transaction.

1 SELECT contracts.address, COUNT(1) AS tx_count

2 FROM ‘bigquery-public-data.crypto_ethereum.contracts‘ AS contracts

3 JOIN ‘bigquery-public-data.crypto_ethereum.transactions‘ AS transactions

4 ON (transactions.to_address = contracts.address)

5 GROUP BY contracts.address

6 ORDER BY tx_count DESC

The total number of files generated by the downloading program (https:
//github.com/andstor/smart-contract-downloader) was 5,810,042. In order
to efficiently process these, all files were combined into a tarfile. A processing
script was then created for filtering out all "empty" files. These correspond to a
contract address on Ethereum that has not been verified on Etherscan.io. A total
of 3,592,350 files were empty, making the source code of 38,17% of the deployed
contracts on Ethereum available. Each non-empty file is then parsed and the con-
tract data is extracted. This extraction process is rather complicated, as smart
contract sources come in a wide variety of flavors and formats.

Normalization of smart contract files. SCs come in multiple flavors. To avoid
confusing the machine learning model, all training data should use the same for-
mat. Hence, all contract files are normalized. The most common format is a con-
tract written the Solidity language with a single contract entry in the file. However,
a single contract file can contain multiple contracts, making use of properties like
inheritance etc. The source code contracts can also be split over multiple files,
a format referred to as "Multi file". When compiling these, the source code files
are "flattened" into a single contract file before compilation. Another flavor is the

https://etherscan.io/
https://api.etherscan.io/api
https://huggingface.co/datasets/andstor/smart_contracts/blob/main/contract_addresses.csv
https://huggingface.co/datasets/andstor/smart_contracts/blob/main/contract_addresses.csv
https://github.com/andstor/smart-contract-downloader
https://github.com/andstor/smart-contract-downloader

Chapter 5: Research Implementation and Results 29

JSON format, which is a language that is used to describe the SCs. As can be seen
in Code listing 5.2, here the source code is structured inside JSON code. Smart
contracts can also be written in the Vyper language. Vyper is Pythonic program-
ming language. Compared to Solidity, it has deliberately fewer features, making
contracts more secure and easier to edit [59]. However, it is much less popular
than Solidity.

Code listing 5.2: Solidity standard JSON Input format.

1 {

2 "sources": {/* ... */},

3 "settings": {

4 "optimizer": {/* ... */},

5 "evmVersion": "<VERSION>"

6 }

7 }

All of the above formats are processed by the processing script, normalizing
the contract source code to a single "flattened" contract file. The source code,
along with the contract metadata, is then saved across multiple Parquet files, each
consisting of 30000 "flattened" contracts. A total of 2,217,692 smart contracts
were successfully parsed and normalized.

Filter smart contracts for uniqueness. A large quantity of Smart Contracts con-
tains duplicated code. Primarily, this is due to the frequent use of library code,
such as SafeMath [60] by OpenZeppelin [61]. Etherscan requires the library code
used in a contract to be embedded in the source code. Filtering is applied to pro-
duce a dataset with a mostly unique contract source code to mitigate this. This
is very important when used for model training. Failure to produce a sufficiently
unique dataset would result in poor performance of a machine learning model,
as it would overfit on similar data. The filtering is done by calculating the string
distance between the source code. Due to the rather large amount of contracts (2̃
million), the comparison is only made within groups of contracts. These groups
are defined by grouping on the "contract_name" for the flattened dataset, and by
"file_name" for the inflated dataset. These datasets will be discussed in detail in
the following sections.

The actual code filtering is done by applying a token-based similarity algo-
rithm named Jacard Index, described in Section 2.2.3.1. The algorithm is com-
putationally efficient and can be used to filter out SCs that are not similar to the
query.

5.1.1.2 Verified Smart Contracts

The Verified Smart Contracts dataset is a dataset consisting of verified Smart Con-
tracts from Etherscan.io. These are real SCs that are deployed to the Ethereum

Chapter 5: Research Implementation and Results 30

Table 5.1: Verified Smart Contracts Metrics

Component Size Num rows LoC

Raw 0.80 GiB 2,217,692 839,665,295

Flattened 1.16 GiB 136,969 97,529,473

Inflated 0.76 GiB 186,397 53,843,305

blockchain, containing primarily Solidity and a very small fraction Vyper code.
The dataset contains multiple subsets. In the following paragraphs, these subsets
are described in detail. It consists of every deployed Ethereum Smart Contract as of
1st of April 2022, whose been verified on Etherescan.io and has a least one trans-
action. Table 5.1 shows the metrics of the various subsets. All processing scripts
are available at https://github.com/andstor/verified-smart-contracts. The
dataset is available on request at https://huggingface.co/datasets/andstor/
verified-smart-contracts.

Raw. The raw dataset contains mostly the raw data from Etherscan, downloaded
with the smart-contract-downlader tool, as described in Section 5.1.1.1. All differ-
ent contract formats (JSON, multi-file, etc.) are normalized to a flattened source
code structure, as described in Section 5.1.1.1.

Flattened. The flattened dataset is a filtered version of the Raw dataset. It con-
tains smart contracts, where every contract contains all required library code. Each
"file" is marked in the source code with a comment stating the original file path:
//File: path/to/file.sol. These are then filtered for uniqueness with a similarity
threshold of 0.9, calculated using the Jacard index. This means that all contracts
whose code shares more than 90% of the tokens will be discarded. The low unique-
ness requirement is due to the often large amount of embedded library code. If the
requirement is set to high, the actual contract code will be negligible compared to
the library code. Most contracts will be discarded, and the resulting dataset would
contain mostly unique library code. However, the dataset as a whole will have a
large amount of duplicated library code. From the 2,217,692 contracts, 2,080,723
duplications are found, giving a duplication percentage of 93.82%. The resulting
dataset consists of 136,969 contracts. Code listing 5.3 shows an example data in-
stance from the dataset. The dataset is then split 80%, 10%, 10% into a training,
validation and test set, respectively.

Inflated. The inflated dataset is also based on the raw dataset. Each contract file
in the dataset is split into its original representative files and hence "inflated". This

https://github.com/andstor/verified-smart-contracts
https://huggingface.co/datasets/andstor/verified-smart-contracts
https://huggingface.co/datasets/andstor/verified-smart-contracts

Chapter 5: Research Implementation and Results 31

Code listing 5.3: Example data instance from the flattened dataset.

1 {

2 'contract_name': 'MiaKhalifaDAO',

3 'contract_address': '0xb3862ca215d5ed2de22734ed001d701adf0a30b4',

4 'language': 'Solidity',

5 'source_code': '// File: @openzeppelin/contracts/utils/Strings.sol\r\n\r\n\r\n//

,→ OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)\r\n\r\npragma solidity ^0

,→ .8.0;\r\n\r\n/**\r\n * @dev String operations.\r\n */\r\nlibrary Strings {\

,→ r\n...',

6 'abi': '[{"inputs":[{"internalType":"uint256","name":"maxBatchSize_","type":"

,→ uint256"}...]',

7 'compiler_version': 'v0.8.7+commit.e28d00a7',

8 'optimization_used': False,

9 'runs': 200,

10 'constructor_arguments': '000

,→ 00000000a000...',

11 'evm_version': 'Default',

12 'library': '',

13 'license_type': 'MIT',

14 'proxy': False,

15 'implementation': '',

16 'swarm_source': 'ipfs://e490df69bd9ca50e1831a1ac82177e826fee459b0b085a00bd7a727c8

,→ 0d74089'

17 }

Chapter 5: Research Implementation and Results 32

Code listing 5.4: Example data instance from the inflated dataset.

1 {

2 'contract_name': 'PinkLemonade',

3 'file_path': 'PinkLemonade.sol',

4 'contract_address': '0x9a5be3cc368f01a0566a613aad7183783cff7eec',

5 'language': 'Solidity',

6 'source_code': '/**\r\n\r\nt.me/pinklemonadecoin\r\n*/\r\n\r\n// SPDX-License-

,→ Identifier: MIT\r\npragma solidity ^0.8.0;\r\n\r\n\r\n/*\r\n * @dev

,→ Provides information about the current execution context, including the\r\n

,→ * sender of the transaction and its data. While these are generally

,→ available...',

7 'abi': '[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"}...]

,→ ',

8 'compiler_version': 'v0.8.4+commit.c7e474f2',

9 'optimization_used': False,

10 'runs': 200,

11 'constructor_arguments': '',

12 'evm_version': 'Default',

13 'library': '',

14 'license_type': 'MIT',

15 'proxy': False,

16 'implementation': '',

17 'swarm_source': 'ipfs://eb0ac9491a04e7a196280fd27ce355a85d79b34c7b0a83ab606d279

,→ 72a06050c'

18 }

mitigates a lot of the problems of the flattened dataset in terms of duplicated li-
brary code. The library code is, along with other imported contract files, split (read
inflated) into separate contract records. The 2,217,692 "raw" smart contracts are
inflated to a total of 5,403,136 separate contract files. These are then grouped
by "file_name" and filtered for uniqueness with a similarity threshold of 0.9. This
should produce a dataset with a large amount of unique source code, with low
quantities of library code. A total of 5,216,739 duplications are found, giving a
duplication percentage of 96.56%. The resulting dataset consists of 186,397 con-
tracts. Code listing 5.4 shows an example data instance from the inflated dataset.
The dataset is then split 80%, 10%, 10% into a training, validation and test set,
respectively.

Plain text. For easy use of the dataset for casual language modeling training
with HuggingFace, a "plain_text" version of both the raw, the flattened, and the
inflated dataset is made available. This is done through a custom builder script

Chapter 5: Research Implementation and Results 33

for the dataset, a feature of the Dataset library by Hugging Face. Code listing 5.5
shows an example data instance of the "plain_text" version.

Code listing 5.5: Example data instance from the plain-text version of the inflated
dataset.

1 {

2 'language': 'Solidity',

3 'text': 'pragma solidity =0.5.16;\r\n\r\n// a library for performing overflow-

,→ safe math...'

4 }

5.1.2 Code comment analysis

To provide some insight into how a user can best formulate a comment for guid-
ing the code synthesis, a cluster analysis of the comments in the smart contract
dataset is conducted. First, a universal Solidity parser is constructed for parsing
the Solidity code and extracting "code, comment" pairs. These results are then
packaged into a dataset, and a clustering analysis is conducted. The results from
this analysis are then later used in the evaluation of the code synthesis in Chapter 6
to shedd some light on which commenting style is the best to use.

5.1.2.1 Universal Solidity parser

To parse the Solidity SC, a Solidity parser is constructed. This parser has to be
universally compatible with all Solidity versions, hence the grammar used needs
to be a lot less restrictive than the current official Solidity grammar available from
Ethereum [62]. ANTLR4 [63] is used for constructing the parser. ANTLR is a parser
generator. By providing ANTLR with a formal language description called gram-
mar, it can generate a complete parser that can automatically build parse trees.
Parse trees are data structures representing how the grammar matches the input.
Specifically, ANTLR4 generates a LL(*) (Left-to-right, leftmost derivation) parser
[64]. ANTLR is primarily a Java application. However, several code generation tar-
gets are available, including Java, C#, Python, JavaScript, Go, C++, Swift, PHP
and Dart [65]. In this project, the Python target is used.

Most programming language grammars available do not devote much effort
to the handling of code comments. Comments are seen as unnecessary clutter
and are normally discarded during lexing. For extracting the comments from the
Solidity SC code, the original source [66] for the official Solidity grammar [62]
is used. This old version is less restrictive and serves as a better starting point
for ensuring support for all Solidity versions. This grammar is then simplified
and made less restrictive, as well as adapted to support comments. Figure 5.1
shows a railroad diagram of a subset of the main grammar rules altered for sup-
porting comments. The complete universal Solidity parser is made available at
https://github.com/andstor/solidity-universal-parser.

Chapter 5: Research Implementation and Results 34

spdxLicenseIdentifier natSpec

pragmaDirective

importDirective

contractDefinition

functionDefinition

constantVariableDeclaration

structDefinition

enumDefinition

EOF

LicenseIdentifier

'// SPDX-License-Identifier: ' [a-zA-Z0-9 ()+.-]

natSpec 'abstract' 'contract'

'interface'

'library'

identifier

'is' inheritanceSpecifier ',' inheritanceSpecifier '{' contractPart '}'

natSpec 'function'

'receive'

'fallback'

identifier parameterList modifierList returnParameters ';'

block

NatSpecSingleLine

NatSpecMultiLine

[\t\r\n\u000C]

'///' not [\r\n]

'/**' any char '*/'

'//' not [\r\n]

'/*' any char '*/'

Figure 5.1: Railroad diagrams of main code comment alteration to Solidity gram-
mar.

Chapter 5: Research Implementation and Results 35

5.1.2.2 Verified Smart Contract Code Comments

For doing the actual extraction of the "code, comment" pairs from the inflated ver-
sion of the Verified Smart Contracts dataset (see Section 5.1.1.2), the well-known
visitor pattern [67] is used for visiting the parse tree generated by the univer-
sal Solidity parser. ANTLER provides basic infrastructure for implementing such a
visitor. The full implementation of the visitor is available at https://github.com/
andstor/verified-smart-contracts/blob/main/script/comment_visitor.py.
A script leveraging multiprocessing is used to parallelize the parsing of the dataset.
See https://github.com/andstor/verified-smart-contracts for instructions
on how to use this script. The resulting data is then filtered for functions that
do not have code comments. These are simply removed and the result is then
packaged as a new dataset named Verified Smart Contract Code Comments. A
total of 1.541.370 functions are extracted. Code listing 5.6 shows an example
data instance from the dataset. The dataset is available on request at https:
//huggingface.co/datasets/andstor/smart_contract_comments.

5.1.2.3 Comment clustering

This section is devoted to the clustering of the comments in the parsed dataset.
The comments in the dataset are first preprocessed. In contrast to normal code,
code comments are of a more natural language style. Normal natural language
text preprocessing is therefore employed. First, the comments are lowercased and
tokenized. The default English configuration of the word_tokenize function from
the popular Natural Language Toolkit (NLTK) [68] python library is used for tok-
enization. Stemming is applied to the tokenized words, using the Porter Stemmer
algorithm.

For converting the tokenized comments into word embeddings, both the word2vec
algorithm [69] and Term Frequency–Inverse Document Frequency (TFIDF) is used.
The word2vec is able to capture some semantic similarities between the words. In
particular, the implementation provided by the gensim library [70] is used. The
algorithm is configured to produce 100-dimensional vectors, using a window size
of 5, and a minimum count of 5.

To weed out the most frequent words TFIDF is also applied. For example, the
different commenting types all start each line with a special word, such as "//",
"///" or "*". By using TFIDF, it is possible to get more insights into the different
ways of writing comments, beyond just the formatting style of the comments. The
resulting word embeddings from the word2vec and TFIDF are multiplied. For each
comment, the resulting word embeddings are averaged to form a final comment
(or document) embedding.

The comment embeddings are clustered using the K-means algorithm. The
number of clusters k is determined by using the Elbow method for deciding the
optimal number of clusters. The results from the Elbow method are presented in
Figure 5.2. From the curve, it is not entirely obvious where the "elbow" is. How-
ever, a k of 4 is selected. For visually inspecting the clustered comments result, the

https://github.com/andstor/verified-smart-contracts/blob/main/script/comment_visitor.py
https://github.com/andstor/verified-smart-contracts/blob/main/script/comment_visitor.py
https://github.com/andstor/verified-smart-contracts
https://huggingface.co/datasets/andstor/smart_contract_comments
https://huggingface.co/datasets/andstor/smart_contract_comments

Chapter 5: Research Implementation and Results 36

Code listing 5.6: Example data instance from the inflated dataset.

1 {

2 'contract_name': 'BondedECDSAKeep',

3 'file_path': '@keep-network/keep-core/contracts/StakeDelegatable.sol',

4 'contract_address': '0x61935dc4ffc5c5f1d141ac060c0eef04a792d8ee',

5 'language': 'Solidity',

6 'class_name': 'StakeDelegatable',

7 'class_code': 'contract StakeDelegatable {\n using OperatorParams for uint25

,→ 6;\n\n mapping(address => Operator) internal operators;\n\n struct

,→ Operator {\n uint256 packedParams;\n address owner;\n

,→ address payable beneficiary;\n address authorizer;\n }\n\n...',

8 'class_documentation': '/// @title Stake Delegatable\n/// @notice A base

,→ contract to allow stake delegation for staking contracts.',

9 'class_documentation_type': 'NatSpecSingleLine',

10 'func_name': 'balanceOf',

11 'func_code': 'function balanceOf(address _address) public view returns (uint256

,→ balance) {\n return operators[_address].packedParams.getAmount();\n

,→ }',

12 'func_documentation': '/// @notice Gets the stake balance of the specified

,→ address.\n/// @param _address The address to query the balance of.\n///

,→ @return An uint256 representing the amount staked by the passed address.',

13 'func_documentation_type': 'NatSpecSingleLine',

14 'compiler_version': 'v0.5.17+commit.d19bba13',

15 'license_type': 'MIT',

16 'swarm_source': 'bzzr://63a152bdeccda501f3e5b77f97918c5500bb7ae07637beba7fae76

,→ dbe818bda4'

17 }

Chapter 5: Research Implementation and Results 37

100-dimensional vectors are reduced to 2D using Principal Component Analysis
(PCA). The explained variance captured in the 2D plot is approximately 0.64, as
shown in the Scree Plot in Figure 5.3. The clustering result is shown in Figure 5.4.

Code listings 5.7 to 5.10 shows an example from each of the four clusters.
Upon manual inspection of the different clusters, several patterns emerge. Cluster
0 is mainly composed of comments that is almost exclusively made up of NatSpec
comments with only NatSpec fields, for example the "@parameter" and "@return"
fields. Most comments also start with a brief description of the function, as for
example line 1 in Code listing 5.7. Next, cluster 1 consists of one-liners, briefly
describing what the function. Cluster 2 contains more lengthy comments that de-
scribe the function in detail. It is similar to cluster 1 but does not make significant
use of the NatSpec fields. Several of these comments are from some implementa-
tion of common libraries. For example, Code listing 5.9 shows a comment for the
implementation of a transfer function in a contract implementation of a ERC20
token. Compared to the base implementation by the OpenZeppelin library [61],
this version adds 1.7% tax if the sender or recipient is an exchange (lines 8-10).
Finally, cluster 3 contains that presents a more "artistic" nature. For example, Code
listing 5.10 marks the start and end of the comments with many dashes.

Code listing 5.7: NatSpec single-line comment in cluster 0.

1 /// @dev Executes the next transaction only if the cooldown has passed and the

transaction has not expired

2 /// @param to Destination address of module transaction

3 /// @param value Ether value of module transaction

4 /// @param data Data payload of module transaction

5 /// @param operation Operation type of module transaction

6 /// @notice The txIndex used by this function is always 0

Code listing 5.8: Single-line comment in cluster 1.

1 // Allow the owner to cash out the holdings of this contract.

Code listing 5.9: NatSpec multi-line comment in cluster 2.

1 /**

2 * @dev See {IERC20-transfer}.

3 *

4 * Requirements:

5 *

6 * - ‘recipient‘ cannot be the zero address.

7 * - the caller must have a balance of at least ‘amount‘.

8 *

9 * If recipient or sender is exchange, transaction will be taxed 1.7%

10 * Tax is sent to our taxAddress

11 */

Chapter 5: Research Implementation and Results 38

1 2 3 4 5 6 7 8 9
k

0.8

1.0

1.2

1.4

1.6

1.8

In
er

ti
a

×1010 Elbow Method for Optimal k

Figure 5.2: Elbow method for determining the optimal number of clusters.

0 10 20 30 40 50 60 70 80 90 100
Principal Components

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ex
pl

ai
ne

d
Va

ri
an

ce

Explained Variance Ratio

Figure 5.3: Scree Plot for the PCA dimensionality reduction

Chapter 5: Research Implementation and Results 39

−100 0 100 200 300 400
PC1

−200

−150

−100

−50

0

50

100

150

200

PC
2

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Centroid

Figure 5.4: 2D plot of the comment clusters.

Chapter 5: Research Implementation and Results 40

Code listing 5.10: Custom comment style from cluster 3

1 // --

2 // Returns the amount of tokens approved by the owner that can be

3 // transferred to the spender’s account

4 //

5 // THIS TOKENS ARE NOT TRANSFERRABLE.

6 //

7 // --

Chapter 5: Research Implementation and Results 41

Table 5.3: GPT-J-6B model details.

Hyperparameter Value

n_parameters 6,053,381,344

n_layers 28

d_model 4,096

d_ff 16,384

n_heads 16

d_head 256

n_ctx 2,048

n_vocab 50,257 (same tokenizer as GPT-2/3)

position & encoding Rotary Position Embeddings (RoPEs)

RoPE dimensions 64

5.1.3 Language Modeling

This section presents a detailed overview of the system architecture for generating
Smart Contract code. The first section describes the specific configuration of the
pre-trained model used. Following is a section that describes the fine-tuning pro-
cess on the inflated Verified Smart Contract dataset presented in Section 5.1.1.2.

5.1.3.1 Pre-training

In this project, pre-trained weights for GPT-J-6B from EleutherAI are used. See
Section 4.4.2.2 for a description of the model architecture. The pre-training by
EleutherAI is done on the dataset The Pile, described in Section 4.4.2.1. Of the
roughly 825GiB, 95.16 GiB (7.59%) of The Pile is code from GitHub. Compared
to many other open-source models, GPT-J-6B is one of the most promising models
for the task of code generation.

The specific GPT-J model configuration can be seen in Table 5.3. In detail, GPT-
J-6B consists of 28 layers with a model dimension of 4096, and a feedforward
dimension of 16384. The model dimension is split into 16 heads, each with a
dimension of 256. Rotary Position Embedding (RoPE) is applied to 64 dimensions
of each head. The model is trained with a tokenization vocabulary of 50257, using
the same set of Byte-Pair Encodings (BPEs) as GPT-2 and GPT-3. The weights of
GPT-J-6B are licensed under version 2.0 of the Apache License. When assessed on
the validation split of the inflated Verified Smart Contract dataset Section 5.1.1.2,
the model achieves an accuracy of 0.800 and a perplexity of 2.600.

Chapter 5: Research Implementation and Results 42

5.1.3.2 Fine-tuning

To improve the pre-trained GPT-J-6B model’s smart contract code generation per-
formance, the model is fine-tuned on a dataset only containing real Ethereum
Smart Contract code. Specifically, the model is fine-tuned on the training split
of the plain-text Section 5.1.1.2 version of the inflated Verified Smart Contracts
dataset Section 5.1.1.2. The fine-tuning task used is the same as for the pre-
training task, namely Casual Language Modeling (CLM). The model is fed a com-
plete SC all at once, and then internal masking is applied to prevent the model
from cheating by looking at future tokens. For more details on the inner work-
ings of the training procedure, see Section 2.1.2. Before training, the dataset is
randomly shuffled. For running the training process, the CLM script 1 provided by
HuggingFace is used.

Due to the huge size of the GPT-J-6B model, the deep learning optimization
library DeepSpeed [50] is used as a wrapper around the HuggingFace library.
See Section 4.6.1 for more details of the DeepSpeed library. While DeepSpeed
enables the training of virtually arbitrary-sized models, there is a tradeoff between
model size and training speed. In this project, several DeepSpeed configurations
were tried out to successfully load and train the model without encountering an
Out of Memory (OOM) error, while still maintaining adequate training speed.
Using ZeRO-2 with CPU offloading (ZeRO-Offload), mixed-precision (bfloat16),
a batch size of 1, and 16 gradient accumulation steps, it is possible to load and
efficiently train the model using 10 x NVIDIA A100 GPUs with 40GB memory
2. The computing node used for training has 48 CPUs available, along with 1.47
terabytes of RAM. Figure 5.5 shows a screenshot of the nvidia-smi program during
the training of the model. As can be seen from the figure, all GPUs are at 100%
utilization. Figure 5.6 presents a screenshot of the htop program showing host CPU
and memory activity during optimizer computation. The command for running the
HuggingFace training script while using DeepSpeed is shown in Code listing 5.11.
A complete list of the hyperparameters used for training the model is available
in Table 5.5, along with the DeepSpeed configuration in Table 5.7. All training
scripts and configurations used are available at https://github.com/andstor/
smart-contract-code-generation.

The training process is run for two epochs. At every 5 steps, the model is eval-
uated on 256 samples from the validation split of the Verified Smart Contracts
dataset. Figure 5.7 shows a graph over the training and evaluation loss during
training. Figure 5.8 shows a graph over the evaluation accuracy during training.
The training is completed after 7 days and 4s hours. After completion of the train-
ing, the model is evaluated on the entire validation split, achieving a total accuracy
of 0.917 and perplexity of 1.510. The fine-tuned model is available on request at
https://huggingface.co/andstor/gpt-j-6B-smart-contract.

1https://github.com/huggingface/transformers/blob/v4.19.0/examples/pytorch/
language-modeling/run_clm.py

2https://www.nvidia.com/en-us/data-center/a100/

https://github.com/andstor/smart-contract-code-generation
https://github.com/andstor/smart-contract-code-generation
https://huggingface.co/andstor/gpt-j-6B-smart-contract
https://github.com/huggingface/transformers/blob/v4.19.0/examples/pytorch/language-modeling/run_clm.py
https://github.com/huggingface/transformers/blob/v4.19.0/examples/pytorch/language-modeling/run_clm.py
https://www.nvidia.com/en-us/data-center/a100/

Chapter 5: Research Implementation and Results 43

Table 5.5: Hyperparameters for GPT-J model

Hyperparameter

learning_rate 5e-05

train_batch_size 1

eval_batch_size 1

seed 42

distributed_type multi-GPU

num_devices 10

gradient_accumulation_steps 16

total_train_batch_size 160

total_eval_batch_size 10

optimizer Adam with betas=(0.9,0.999) and epsilon=1e-08

lr_scheduler_type linear

num_epochs 2.0

Code listing 5.11: Command for running the HuggingFace CLM training script
with DeepSpeed.

1 deepspeed --hostfile=hostfile run_clm.py \

2 --deepspeed ds_zero2_bf16.json \

3 --model_name_or_path EleutherAI/gpt-j-6B \

4 --dataset_name andstor/smart_contracts \

5 --dataset_config_name plain_text \

6 --output_dir ./out \

7 --report_to wandb \

8 --validation_split_percentage 20 \

9 --save_steps 250 \

10 --do_train --do_eval \

11 --logging_first_step --logging_steps 1 \

12 --num_train_epochs 2 \

13 --evaluation_strategy steps --eval_steps 5 \

14 --max_eval_samples 256 \

15 --block_size 1024 \

16 --bf16 \

17 --gradient_accumulation_steps 16 --eval_accumulation_steps 16 \

18 --per_device_train_batch_size 1 --per_device_eval_batch_size 1

Chapter 5: Research Implementation and Results 44

Table 5.7: DeepSpeed Zero configuration.

Hyperparameter

stage 2

contiguous_gradients true

reduce_scatter true

reduce_bucket_size 2.000000e+08

allgather_partitions true

allgather_bucket_size 2.000000e+08

overlap_comm true

load_from_fp32_weights true

elastic_checkpoint false

cpu_offload true

sub_group_size 1.000000e+09

prefetch_bucket_size 5.000000e+07

param_persistence_threshold 1.000000e+05

max_live_parameters 1.000000e+09

max_reuse_distance 1.000000e+09

gather_16bit_weights_on_model_save false

ignore_unused_parameters true

round_robin_gradients false

legacy_stage1 false

Chapter 5: Research Implementation and Results 45

Figure 5.5: Screenshot of nvidia-smi program showing 100% GPU utilization.

Chapter 5: Research Implementation and Results 46

Figure 5.6: Screenshot of htop program showing host CPU and memory activity
during optimizer computation.

Chapter 5: Research Implementation and Results 47

Figure 5.7: Training and evaluation loss during model training.

Figure 5.8: Evaluation accuracy during model training.

Chapter 5: Research Implementation and Results 48

5.2 Implementation of RQ2

This section presents the implementation of research question 2. Primarily, this
section describes the implementation of the new technique named security con-
ditioning, described in Section 4.5.1. In security conditioning, the training data
is augmented with security labels, stating either secure or vulnerable. The main
alteration needed is in the training data. The implementation is done with the
following steps:

1. Create an audited version of the smart contract dataset

a. Label the smart contracts with a vulnerability detection tool.

2. Language modeling

a. Fine-tune a transformer model on the audited verified smart contract
dataset, employing security conditioning.

5.2.1 Data preparation

5.2.1.1 Vulnerability labeling

For labeling the SCs as vulnerable or secure, the Java program SolDetector by
Tianyuan Hu [71] is used. The choice of using SolDetector is due for two reasons.
Firstly, as SolDetector is ontology-based, it does not need a complete contract file
with all code dependencies. This makes it possible to use the inflated dataset ver-
sion (see Section 5.1.1.2). Other vulnerability detection tools such as (Oyente)
[72] that for example use symbolic analysis, would only work on the flattened
dataset version (see Section 5.1.1.2). SolDetector works on both. Secondly, Sol-
Detector works with any Solidity version.

SolDetector takes in a SC file and outputs the vulnerability analysis results
as a text file. In this text file, the detected vulnerability type(s) and the offend-
ing line(s) are reported. The paper [71] of SolDetector also classifies the differ-
ent vulnerabilities according to risk level. Due to the large number of contracts
needed to be labeled in this project, SolDetector is run in parallel. A python script
is created that leverages multiprocessing to run SolDetector in parallel. Since Sol-
Detector is a Java program, it is run as a child process and controlled with the
help of the python module Pexpect [73]. Since starting and stopping Java ap-
plications are time-consuming, extra care is taken to ensure that each instan-
tiated Solidity process is kept alive for as long as possible and only restarted
when necessary. Figure 5.9 shows a screenshot from running the processing script
using 40 processes. The vulnerability processing scripts are available at https:
//github.com/andstor/verified-smart-contracts-audit.

5.2.1.2 Verified Smart Contracts Audit dataset

The results of the vulnerability labeling are packed as subsets into a dataset named
Verified Smart Contracts Audit. This is done for both the flattened and inflated

https://github.com/andstor/verified-smart-contracts-audit
https://github.com/andstor/verified-smart-contracts-audit

Chapter 5: Research Implementation and Results 49

Figure 5.9: Screenshot from the vulnerability labeling process with SolDetector.

dataset versions. The finished dataset is available on request at https://huggingface.
co/datasets/andstor/smart_contracts_audit. Both dataset versions keep the
original split into a training, validation and test set (80%, 10%, 10%). Code list-
ing 5.12 shows an example data instance from the audited inflated dataset.

Code listing 5.12: Example data instance from the audited inflated dataset.

1 {

2 'contract_name': 'OceanWorld',

3 'file_path': 'OceanWorld.sol',

4 'contract_address': '0xe19c5ea08f26af53bf7da7da5e727bb2c5c69f95',

5 'language': 'Solidity',

6 'source_code': 'pragma solidity ^0.8.0; contract OceanWorld is ERC721Enumerable

,→ ...',

7 'defects': '[{"defect": "Nest_Call", "type": "Business_logic", "severity": "

,→ High", "lines": ["193", "125", "165"]}, {"defect": "Frozen_Ether", "type":

,→ "Code_specification", "severity": "Medium", "lines": ["3"]}, {"defect": "

,→ Exceed_authority_access", "type": "Access_control", "severity": "Medium", "

,→ lines": ["31"]}]',

8 'compiler_version': 'v0.8.7+commit.e28d00a7',

9 'license_type': 'MIT',

10 'swarm_source': 'ipfs://36f4cbcbeca01a804a52ae73931c970301e46d79022cdf26e6e6158

,→ d9105fe83'

11 }

Figure 5.10 shows a doughnut chart over the distribution of the vulnerabil-
ity severities in the flattened dataset at different granularity levels, where each
level occurs at least once in the SC. The outer ring shows the additional security
levels for each contract. For example, "HML" means that the contract has at least

https://huggingface.co/datasets/andstor/smart_contracts_audit
https://huggingface.co/datasets/andstor/smart_contracts_audit

Chapter 5: Research Implementation and Results 50

three vulnerabilities with the corresponding "High", "Medium", and "Low" secu-
rity levels. As can be seen in the figure, almost three-quarters of the contracts
contain at least one high-risk vulnerability. Figure 5.11 shows the distribution of
the different types of vulnerabilities in the flattened dataset, categorized by sever-
ity level. Notably, a significant portion of the high-severity vulnerabilities is integer
overflow and underflow vulnerabilities. Figures 5.12 and 5.13 presents the same
vulnerability distribution chart for the audited contracts in the inflated dataset.
The distribution of vulnerability types follows the same characteristics as for the
flattened dataset. However, only around half of the contracts contain at least one
high-risk vulnerability. As described in Section 5.1.1.2, the main intention behind
the inflated dataset is to reduce the amount of library. Hence, one can deduce that
a significant portion of the vulnerabilities come from various SC libraries.

Embedded. For easy use of the labeled dataset for Casual Language Modeling
(CLM) training, an "embedded" version of both the flattened and the inflated
dataset is made available. This is done through a custom builder script for the
dataset, a feature of the Dataset library by Hugging Face. The builder script parses
the contract audit and determines whether the contract is secure or vulnerable.
Based on this analysis, it then prepends "<|secure|>" or "<|vulnerable|>" to the
top of the contract source code. In this project, a contract is considered secure if it
does not contain any high-risk vulnerabilities. Otherwise, the contract is consid-
ered vulnerable. This also makes the inflated dataset balanced, as about 50% of
the contracts are secure and 50% are vulnerable (see Figure 5.12).

5.2.2 Language Modeling

This section presents the language modeling procedure using the security condi-
tioning technique proposed in Section 4.5.1 for generating secure Smart Contract
code. In security conditioning, the training data is augmented with security labels,
stating either secure or vulnerable. This data augmentation is implemented by the
embedded version of the Verified Smart Contracts Audit dataset Section 5.2.1.2,
by adding "<|secure|>" or "<|vulnerable|>" to secure or vulnerable contracts.
To make the most use of the security labels, a small alteration to the tokenizer
is made, as described in the following section. Otherwise, the language modeling
procedure is more or less identical to the one used for RQ1 Section 5.1.3.

5.2.2.1 Tokenizer

Depending on the security labels and the type of tokenizer used, the tokenizer
might decide to split the security label into multiple, already pre-trained, tokens.
For example, the "<|secure|>" label is tokenized into five different tokens: ’<’,
’|’, ’secure’, ’|’, ’>’ with corresponding ids: 27, 91, 22390, 91, 29. These tokens
might also be part of making up other words. This might confuse the model during
training, making it harder for it to successfully condition on the labels. To mitigate

Chapter 5: Research Implementation and Results 51

H

M
L

S

E
H

HM
HML

HL
M ML

L

S

E

High
Medium

Low
Secure

Error

Figure 5.10: Doughnut chart over the distribution of the vulnerability severities
in the flattened dataset at different granularity levels, where each level occurs at
least once in the SC.

102 103 104

Count

Useless assignment
Unused state variable

Redefine variable
Missing return statement

Uninitialized storage
TxOrigin

Transaction order dependency
Leaking to arbitary address

Frozen Ether
Exceed authority access

Erroneous constructor name
Dependency of timestamp

Balance manipulation
Bad randomness

Unprotected Suicide
Unchecked send

Reentrancy
Nest Call

Integer overflow and underflow
DelegateCall

High Medium Low

Figure 5.11: Distribution of vulnerabilities in the flattened dataset.

Chapter 5: Research Implementation and Results 52

H

M

L
S

E
H

HM

HML

HL

M

ML
L

S

E

High
Medium

Low
Secure

Error

Figure 5.12: Doughnut chart over the distribution of the vulnerability severities
in the inflated dataset at different granularity levels, where each level occurs at
least once in the SC.

102 103 104

Count

Useless assignment
Unused state variable

Redefine variable
Missing return statement

Uninitialized storage
TxOrigin

Transaction order dependency
Leaking to arbitary address

Frozen Ether
Exceed authority access

Erroneous constructor name
Dependency of timestamp

Balance manipulation
Bad randomness

Unprotected Suicide
Unchecked send

Reentrancy
Nest Call

Integer overflow and underflow
DelegateCall

High Medium Low

Figure 5.13: Distribution of vulnerabilities in the inflated dataset.

Chapter 5: Research Implementation and Results 53

this, the security labels "<|secure|>" and "<|vulnerable|>" are added as special
tokens to the tokenizer, effectively expanding the vocabulary. The "<|secure|>"
label is now instead tokenized as "<|secure|>" with id 50400. This change also
requires resizing the model’s embedding matrix. The two added embeddings are
randomly initialized.

5.2.2.2 Fine-tuning

For fine-tuning the model on the embedded version of the Verified Smart Con-
tracts Audit dataset Section 5.2.1.2, the same procedure and hyperparameters as
in RQ1 are used. The training process is run for two epochs. At every 5 steps,
the model is evaluated on 256 samples from the validation split of the Verified
Smart Contracts Audit dataset. Figure 5.14 shows a graph of the training and
evaluation loss during training. Figure 5.15 shows a graph over the evaluation
accuracy during training. The training is completed after 7 days and 4 hours.
After completion of the training, the model is evaluated on the entire valida-
tion split, achieving a total accuracy of 0.917 and perplexity of 1.510. Compared
to the fine-tuned model without security conditioning (see Section 5.2.2.2), the
technique does not introduce any significant performance decrease in terms of
neither accuracy nor perplexity. The fine-tuned model is available on request at
https://huggingface.co/andstor/gpt-j-6B-smart-contract-audit.

https://huggingface.co/andstor/gpt-j-6B-smart-contract-audit

Chapter 5: Research Implementation and Results 54

Figure 5.14: Training and evaluation loss during training of model with security
conditioning.

Figure 5.15: Evaluation plot of accuracy during training of model with security
conditioning.

Chapter 6

Evaluation

This chapter presents the evaluation of the research questions. First, RQ1 is pre-
sented in Section 6.1. The evaluation of RQ2 is presented in Section 6.2.

6.1 Evaluation of RQ1

This section evaluates the performance of the implementation developed for re-
search question 1. First, the evaluation method is presented, followed by a de-
scription of the metrics used. Finally, the evaluation results are presented. We
evaluate two scenarios. In the first scenario, only comments are used as input to
the model. Then, the model is evaluated using a comment-aided approach, using
both comments and code as input.

6.1.1 Evaluation Method

The evaluation strategy employed is to measure the similarity between gener-
ated code and original code. This evaluation strategy captures how such a system
would perform in real life. The conceptual evaluation strategy consists of four
steps:

1. Some code from a real SC is extracted.
2. The extract is split into two parts.
3. The first part is fed as input to the model, while the second part (original

code) is used as the target value.
4. The generated output is then compared to the target value to calculate their

similarities.

As RQ1 is concerned with the use of a comment-aided approach for gener-
ating code, all evaluation runs include the use of comments as the primary in-
put. Hence, the split is done between a function and its comment. However, the
amount of context (supporting code) is varied. Code listing 6.1 demonstrates how
the different parts of a contract are used in the evaluation. Lines 1-11 are used as
the code context, while lines 13-14 are the comment. The target code is in lines

55

Chapter 6: Evaluation 56

15-20. All consecutive lines of code are discarded. In Code listing 6.1, this would
only be line 21. First, an evaluation run is done in Section 6.1.3 using the normal
way of generating functions from comments, meaning only comments are used as
input. Section 6.1.4 runs an evaluation utilizing all the available code context, the
core of the comment-aided approach. Since the model is auto-regressive, a cus-
tom stopping strategy based on matching braces is implemented for generating
well-formed functions. Further, all code generations use the default temperature
of 1.

Code listing 6.1: Different contract parts.

1 // SPDX-License-Identifier: GPL-3.0

2 pragma solidity >= 0.7.0;

3

4 contract Coin {

5 // Sends an amount of newly created coins to an address

6 // Can only be called by the contract creator

7 function mint(address receiver, uint amount) public {

8 require(msg.sender == minter);

9 require(amount < 1e60);

10 balances[receiver] += amount;

11 }

13 // Sends an amount of existing coins

14 // from any caller to an address

15 function send(address receiver, uint amount) public {

16 require(amount <= balances[msg.sender], "Insufficient balance.");

17 balances[msg.sender] -= amount;

18 balances[receiver] += amount;

19 emit Sent(msg.sender, receiver, amount);

20 }

15 }

6.1.2 Evaluation metrics

For comparing the generated code to the original code as described in Section 6.1.1,
the BLEU score is used. The metric is described in detail in Section 2.2.2.1. BLEU is
a commonly used evaluation metric within the area of code synthesis [74]. How-
ever, as the metric was originally designed for evaluating natural language, it does
have its shortcomings when applied for automatic evaluation of code synthesis.
In particular, it neglects important syntactic and semantic features of codes [74].
Because of this, adaptations such as CodeBLEU by Ren et al. [74] have emerged,
incorporating ASTs and data-flow analysis. However, there is currently no readily
available implementation, especially for SC code. Recent works such as [2, 3, 75]

Chapter 6: Evaluation 57

have turned to using functional correctness for evaluation, where the generated
code is evaluated by unit testing. However, this approach requires the curation
of testing datasets, such as the hand-written Python evaluation set HumanEval 1.
Further, unit testing Solidity code is not a straightforward approach, as it normally
involves the EVM. Because of this, this project settles with using BLEU score for
evaluation and leaves alternative evaluation methods for SC code synthesis for
future research.

6.1.3 Comment only evaluation

To provide some insights into how to best formulate the comments for the model,
an evaluation run is done using only comments as input, without any supporting
code context. First, the testing split of the Verified Smart Contract Code Comments
dataset is filtered according to the four clusters identified in Section 5.1.2.3. From
each of these clusters, a total of 10.000 random samples are drawn. However, only
4000 samples from cluster 3 (zero-indexed) were available in the testing split.
From the samples, only the function comment is fed into the model as input. The
function from the sample is then compared to the generated function by calcu-
lating the BLEU score. This evaluation procedure is done for both the pre-trained
model and the fine-tuned model.

Figure 6.1 shows a density histogram of the BLEU score results of the evalua-
tion. The left column of plots shows the BLEU score distribution of the pre-trained
model, while the right column shows the BLEU score distribution of the fine-tuned
model. The first row of plots shows the results from cluster 0, the second row from
cluster 1, the third row from cluster 2, and the fourth row from cluster 3. Gen-
erating function code using only comments is an exceptionally hard task as the
search area for a potential solution is extremely large. It is therefore expected to
see a lot of BLEU scores of 0. Indeed, this is the case in all of the plots. However,
from the plots, it is clear that the fine-tuned model performs significantly better
than the pre-trained model, as the pre-trained model is almost not able to produce
any scores above 0.025. The averaged BLEU scores of each cluster can be seen in
Table 6.1.

The performance for the fine-tuned model is ranked from worst to best as fol-
lows: cluster 1, cluster 0, cluster 3 and cluster 2. For the fine-tuned model, Cluster
0 and cluster 1 show similar distribution characteristics, with Cluster 1 perform-
ing a bit better. A large part of the comments in cluster 0 is devoted to function
parameter descriptions (see Code listing 5.7). These parameter description results
in about a 55% increase of the BLEU score. However, both cluster 2 and cluster
3 significantly outperform cluster 0, as can be seen from Table 6.1. Cluster 2 is
the best performing of all the clusters. As discovered in Section 5.1.2.3, this clus-
ter contains a lot of library code implementations. Therefore, it is reasonable to
assume that the model excels in generating code for the implementation of pop-
ular libraries, as it might have memorized parts of these libraries. Cluster 3 also

1https://github.com/openai/human-eval

https://github.com/openai/human-eval

Chapter 6: Evaluation 58

Table 6.1: Average BLEU score of only comment generation.

Pre-trained model Cluster 0 Cluster 1 Cluster 2 Cluster 3

Pre-trained model 0.065 0.002 0.009 0.019

Fine-tuned model 0.282 0.167 0.456 0.397

performs rather well. However, it presents a rather interesting distribution with
some large peaks to the far right. Upon manual inspection, it is clear that most
of these spikes are part of a popular ERC20 2 token implementation from an old
tutorial [76] from 2017. This is also the case for the pre-training plot. As there are
multiple forks of this code available on GitHub, it is most likely included in The
Pile (see Section 4.4.2.1).

6.1.4 Comment + code context evaluation

Normally, during the inference of transformer models, the longer the input se-
quence (context) - the better the performance. For evaluating the "optimal-case"
performance of the model, an evaluation run is done by providing extensive code
context to the input. This is a typical use-case scenario of the system, where a user
already has written some code and wants to extend it. The user can then simply
write a new comment describing the desired new functionality, and then ask the
model to suggest some automatically generated code, using everything the user
has typed so far as input.

A total of 10.000 random samples are drawn from the test split of the Veri-
fied Smart Contract Code Comments dataset. Each drawn sample contains func-
tion "code, comment" pairs, as well as the complete contract code from which the
function was extracted. The original contract code is then cut at the end of the
sampled function comment. This is then fed into the model as input to generate
code, and the BLEU score is calculated by comparing the generated code against
the actual function. This evaluation procedure is done for both the pre-trained
model and the fine-tuned model.

Figures 6.2 and 6.3 shows a histogram of the BLEU score results of the eval-
uation. Comparing the two figures, it is clear that the fine-tuned model performs
much better than the pre-trained model. The distribution of the BLEU scores of the
pre-trined model (Figure 6.2) shows two interesting characteristics. First, almost
half of the 10.000 samples achieve a BLEU score close to 0. This means that the
generated output is completely different from the target code. Second, the rest of
the histogram presents a rather uniform distribution of low BLEU scores. Hence,
the pre-trained model does not perform well for generating SCs. The results from

2https://eips.ethereum.org/EIPS/eip-20

https://eips.ethereum.org/EIPS/eip-20

Chapter 6: Evaluation 59

0.0 0.2 0.4 0.6 0.8 1.0

Model = pre-trained

0

5

10

15

20

Fr
eq

ue
nc

y
de

ns
it

y

0.0 0.2 0.4 0.6 0.8 1.0

Model = fine-tuned

0.0

2.5

5.0

7.5

10.0

C
lu

st
er
=

0

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

Fr
eq

ue
nc

y
de

ns
it

y

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

C
lu

st
er
=

1

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

Fr
eq

ue
nc

y
de

ns
it

y

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

C
lu

st
er
=

2

0.0 0.2 0.4 0.6 0.8 1.0
BLEU score

0

5

10

15

20

Fr
eq

ue
nc

y
de

ns
it

y

0.0 0.2 0.4 0.6 0.8 1.0
BLEU score

0.0

2.5

5.0

7.5

10.0

C
lu

st
er
=

3

Figure 6.1: BLEU score frequency distribution of generated functions grouped by
model and comment cluster, using only comments as model input.

Chapter 6: Evaluation 60

the fine-tuned model (Figure 6.3) are much better. The number of samples with
a BLEU score close to 0 is more than half compared to the pre-trained model. The
rest of the scores resemble a normal distribution skewed towards the far right,
peaking around a score of 0.85. This is a very good sign that the fine-tuned model
performs well. Averaging the BLEU scores for each of the two models, the pre-
trained model achieves a score of 0.258, while the fine-tuned model achieves
0.557. This is over a 100% improvement from the pre-trained model.

0.0 0.2 0.4 0.6 0.8 1.0
BLEU score

0

1000

2000

3000

4000

Fr
eq

ue
nc

y

Pre-trained model performance

Figure 6.2: BLEU score frequency distribution of 10.000 generated functions with
pre-trained model using comment-aided approach.

0.0 0.2 0.4 0.6 0.8 1.0
BLEU score

0

1000

2000

Fr
eq

ue
nc

y

Fine-tuned model performance

Figure 6.3: BLEU score frequency distribution of 10.000 generated functions with
fine-tuned model using comment-aided approach.

Chapter 6: Evaluation 61

6.2 Evaluation of RQ2

For evaluating the implementation for research question 2, it is analyzed how se-
cure the generated code is. This is done by comparing the security of a fine-tuned
model with and without utilizing security conditioning purposed in Section 4.5.1.
However, first an evaluation of potential performance degradation is done in Sec-
tion 6.2.1. Then the method used for the security evaluation is described in detail
in Section 6.2.2. Finally, the results are presented in Sections 6.2.3 and 6.2.4.

6.2.1 Performance degradation evaluation

For ensuring the security conditioning method does not affect the performance of
the code generation, the same evaluation procedure as for the fine-tuned model in
Section 6.1.4 is done. The "<|secure|>" label is prepended to the input, and fed
to the model for code generation. The result can be seen in Figure 6.4. Compared
to Figure 6.3, there is no significant difference in the distribution of the BLEU
score. Further, the average BLEU score is also very close to that of the pre-trained
model, measuring 0.554 instead of 0.557. This is a negligible difference, meaning
the security conditioning method does not degrade the model performance.

0.0 0.2 0.4 0.6 0.8 1.0
BLEU score

0

1000

2000

Fr
eq

ue
nc

y

Security conditioning model performance

Figure 6.4: BLEU score frequency distribution of 10.000 generated functions with
fine-tuned model with security conditioning using comment-aided approach.

6.2.2 Security evaluation method

For evaluating how secure the generated outputs are, this project use counting as
the evaluation metric. The number of vulnerabilities introduced by the generated
code is simply counted and compared to the number of vulnerabilities in the orig-
inal code. The conceptual method builds upon the one used for evaluating RQ1
(see Section 6.1.1), and is as follows: Comment + code context is sampled from Add

figure
of the
method

a contract. The code for the next function is then generated with both the fine-
tuned model developed for RQ1 and the fine-tuned model with security condition-
ing developed for RQ2. Since security conditioning uses two labels "<|secure|>"

Chapter 6: Evaluation 62

and "<|vulnerable|>" for distinguishing secure and vulnerable code, the model
should technically also be capable of generating vulnerable code. Hence, for eval-
uation, both configurations are tested. The model w/ security conditioning using
"<|secure|>" will be addressed as the "secure" model, and the model w/o secu-
rity conditioning using "<|vulnerable|>" will be addressed as the "vulnerable"
model. The three results are then run through SolDetector [71] for vulnerability
analysis, and the results are compared.

Section 6.2.3 presents the evaluation results using the method above on real
contracts from the test split of the Verified Smart Contract Code Comments dataset,
using all available code context (supporting code). In addition, a manual evalu-
ation is performed in Section 6.2.4, using much of the same method as above to
further validate the results.

6.2.3 Comment + code context evaluation

For evaluating the security conditioning method, a total of 10.000 random sam-
ples are drawn from the test split of the Verified Smart Contract Code Comments
dataset. The samples are then evaluated according to the method described in
Section 6.2.2. Figure 6.5 shows the number of vulnerabilities from the evalua-
tion, grouped by vulnerability severity. As can be seen from the figure, the num-
ber of vulnerabilities is very high. Comparing the fine-tuned model with the secure
model, one can see a tiny reduction of vulnerabilities using the model w/ secu-
rity conditioning. Comparing the fine-tuned model with the vulnerable model, a
tiny increase in the number of vulnerabilities can be seen. Figure 6.6 shows the
difference in the number of vulnerabilities produced by the secure and vulnerable
models, relative to those produced by the fine-tuned model. The secure model
produces 13 fewer high-risk vulnerabilities than the fine-tuned model, while the
vulnerable model produces 23 more. Compared to the actual count of vulnerabil-
ities, the difference is not significant. However, as discovered in Section 5.2.1.2,
almost 50% of the contracts used for evaluation contain high-risk vulnerabilities.
Depending on the amount of code context used as input for code generation, it
may be hard for the model to avoid introducing vulnerabilities, as the code con-
text is heavily biased. For example, the generated function might (have to) make
use of a function that is vulnerable.

Since the security conditioning model only labels high-risk vulnerabilities as
vulnerable, it is not expected to see much difference in the number of vulnera-
bilities for medium- and low-risk vulnerabilities. However, as can be seen from
Figure 6.6, there are some differences here. Especially for medium-risk vulnera-
bilities, the vulnerable model produces 87 more vulnerabilities compared to the
fine-tuned model. This might be due to the fact that many of the contracts with
high-risk vulnerabilities also contain a lot of medium- and low-risk vulnerabilities,
as can be seen in Figure 5.12.

Chapter 6: Evaluation 63

High Medium Low
Vulnerability severity level

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r

of
vu

ln
er

ab
ili

ti
es

fine-tuned
secure
vulnerable

Figure 6.5: Count of vulnerabilities.

High Medium Low
Vulnerability severity level

−20

0

20

40

60

80

D
if

f.
in

nu
m

be
r

of
vu

ln
er

ab
ili

ti
es

secure
vulnerable

Figure 6.6: Difference in count of vulnerabilities compared to fine-tuned model
without security conditioning.

Chapter 6: Evaluation 64

6.2.4 Manual evaluation

A manual analysis of the performance of the security conditioning is performed.
Several different prompts are tested. This includes code snippets and comments,
both in combination and in isolation. All prompts are rather short to account for
the narrow search space of long contracts, as discussed in Section 6.2.3. Further,
the prompts are designed to potentially produce vulnerabilities. This way, one can
get some insights into whether or not the trend seen in Figure 6.6 is in fact due
to the use of security conditioning. The prompts are fed to both the fine-tuned
model and the secure model.

Following are some of the most interesting code examples presented as list-
ings. The listing is separated into two parts. The first part is the provided prompt
to the two models, and the second part shows the generated code in the form of
a code diff. The code from the fine-tuned model serves as the original code in the
diff, and code from the secure model is shown as the code change. Removals are
shown with red background, additions are shown with green background.

Experiments related to integer overflow vulnerability. Code listing 6.2 shows
the diff between the fine-tuned model and the secure model generated output. As
can be seen, the fine-tuned model blindly does an arithmetic addition operation
on the "potential" state variable amount on line 5, resulting in a potential integer
overflow vulnerability. The secure model avoids this by using an add function in
line 6. This function is most likely taken from the popular SafeMath library, a
library that provides that provide functions for doing safe arithmetic operations.
25 different prompts were tested. About half of the generated code contained
a potential integer overflow or underflow when using the fine-tuned model. In
contrast, the secure model had almost eliminated this vulnerability.

Code listing 6.2: Integer overflow vulnerability evaluation example.

1 /**

2 * @dev Increment amount by ’amt’.

3 */

4 function incAmount(uint256 amt) public {

5 - amount += amt;

6 + amount = amount.add(amt);

7 }

Experiments related to reentrancy vulnerability. Code listing 6.3 shows the
diff between the fine-tuned model and the secure model generated output that
looks like a potential reentrancy vulnerability. While the generated code is mostly
identical, the order of one line of code concerned with updating the balance of the
user is different. As can be seen from the listing, the fine-tuned model adds this
line after the transfer of Ether in line 5, whereas the secure model does this before

Chapter 6: Evaluation 65

in line 3. Updating the balance of the user is a critical operation, as it is used
to determine the amount of Ether that can be transferred. If this is done after
a transfer has been made, the caller could be able to issue a reentrancy attack.
However, doing the balance update before the transfer resolves this problem. This
ordering of state updates is observed multiple times. However, most of the time
both models use the transfer function instead of the call function in line 4. The
transfer function imposes a gas limit of 2300 units, which is usually enough to
block the caller from issuing a reentrancy attack.

Code listing 6.3: Reentrancy vulnerability evaluation example.

1 function withdrawFunds (uint256 _weiToWithdraw) public {

2 require(balances[msg.sender] >= _weiToWithdraw);

3 + balances[msg.sender] = balances[msg.sender].sub(_weiToWithdraw);

4 msg.sender.call.value(_weiToWithdraw);

5 - balances[msg.sender] = balances[msg.sender].sub(_weiToWithdraw);

6

7 }

Experiments related to unchecked send vulnerability. Send calls do not re-
vert if an exception occurs during the execution of the transfer of Ether. Instead,
they return a boolean value indicating whether it is completed successfully or not.
Hence, the return value of these calls should always be checked before updating
state values. For checking how the system handles unchecked send calls, the gen-
eration is forced to include the word "send" in the generated code. This requires
using a beam search for the generation and is set to use 5 beams. The upper half of
Code listing 6.4 shows a rather large part of a "Lottery" contract is used as input to
the models. The input contains the start of a function, forcing it to complete it. The
lower part of the listing shows the diff. As can be seen on line 17, the fine-tuned
model uses the send function for withdrawing the contract balance. As the secure
model circumvents the using the send function requirement by combining "send"
with "er", resulting in being able to use the much safer transfer function on line 19,
avoiding the unchecked send vulnerability all together. The same characteristics
are seen for several other input variations.

Code listing 6.4: Unchecked send vulnerability evaluation example.

1 contract Lottery {

2 bool public payedOut = false;

3 address public winner;

4 uint public winAmount;

5

6 /// @dev Transfer winAmount to winner

7 function payWinner() public {

8 require(!payedOut);

Chapter 6: Evaluation 66

9 winner.transfer(winAmount);

10 payedOut = true;

11 }s

12

13 /// @dev Empty leftover funds.

14 function withdrawLeftOver() public {

15 require(payedOut);

16 - require(winner!= address(0));

17 - winner.send(address(this).balance);

18 + require(msg.sender == winner);

19 + msg.sender.transfer(address(this).balance);

20 winAmount = 0;

21 }

22 }

Chapter 7

Discussion

In this chapter, the results of the implementation and evaluation given in Chap-
ters 5 and 6 are discussed. First, the transformer model fine-tuned fine-tuned for
SC code generation is discussed in Section 7.1. Then, the security conditioning ap-
proach developed for answering research question 2 is discussed in Section 7.1.4.

7.1 Discussion of RQ1 Results

According to research question 1, this thesis has investigated how to automati-
cally generate Smart Contract code with transformer-based language models, by
inputting comments to guide the code generation. In the following sections, the
results of the implementation and evaluation of research question 1 are discussed.

7.1.1 Comparison with related work

For answering the first part of the research question, one of the largest open-
source transformer models was fine-tuned on real Ethereum SCs. The implemen-
tation achieves an accuracy of 0.917 and perplexity of 1.510. This is a significant
improvement compared to the pre-trained model, which achieves an accuracy
of 0.800 and a perplexity of 2.600. The rather high accuracy from pre-training is
most likely due to the high percentage of comments in the dataset, many of which
are written in natural language.

A side product of the fine-tuned model is the construction of the currently
largest dataset of real SC ever created, consisting of 186.397. The largest compet-
ing dataset [77] contains 45,622 real-world SCs, filtered down from 1.5 million
contracts by comparing the MD5 hash of the contracts. However, since they fail
to inflate the contracts to remove library code, it is unfit for use in deep learning
applications.

The pre-trained model and the fine-tuned model were then evaluated in Chap-
ter 6. In Section 6.1.4, the comment-aided approach was evaluated. Firstly, the
fine-tuning process of the GPT-J-6B from EleutherAI results in a BLEU score of

67

Chapter 7: Discussion 68

0.557, an increase of over 100%, up from 0.258. This is a significant improve-
ment and can provide developers with substantial help for constructing SCs. In
Section 6.1.3, the standard approach used by e.g. [2, 4] was evaluated, using
only comments for generating code. As discovered, the best performing clusters
(2 and 3) contained a lot of library code. As a lot of smart contract code is the
implementation of libraries, the fine-tuned model could be a valuable resource
for SC developers. For comparing the two approaches, the average BLEU score
from clusters 0 and 1 is used. This results in an average score of 0.034 for the pre-
trained model, and 0.2245 for the fine-tuned model. Comparing the results from
the two approaches, the comment-aided approach produces significantly better
results. The pre-trained model reports a staggering 770% increase in the BLEU
score, and a fine-tuned model reports a 248% increase. This clearly shows the
power of the comment-aided code generation approach.

Compared to other works reporting BLEU score as metric, the results from this
thesis outperform the state-of-the-art. For example, PyMT5 achieves a bleu score
of 0.0859 [4]. Unfortunately, more recent works like Codex and AlphaCode do
not evaluate their model using BLEU score but use functional correctness instead
(discussed in Section 6.1.2). Codex evaluates the functional correctness perfor-
mance of the pre-trained GPT-J-6B model. They report GPT-J solves 11.6% Python
problems [2], while Codex solves 28.8% [2]. As this work achieves over 100% im-
provement in the BLEU score from the pre-trained model, it is not unreasonable
to expect at least similar results to Codex, a 12 Billion parameter model (twice
the size of GPT-J).

7.1.2 Implication to academia and industry

Several of the results from research question 1 can have a major impact on both
academia and industry. First, the transformer model fine-tuned for SC code gen-
eration can rather accurately generate SC code. Using this model in an industry
setting has the potential to greatly reduce the efforts needed for creating SCs. It
can also help reduce the expertise level required for the development of SCs, as
the contract can in large parts be generated from natural language comment de-
scription. As a lot of smart contract code is the implementation of libraries, the
fine-tuned model could be a valuable resource for SC developers.

As code-synthesis using transformers is a rather new area, not a lot of attention
has been devoted to exploring how to best make use of these systems. This thesis
proposes a novel comment-aided approach for guiding the code generation. As
discussed in Section 7.1.1, using this approach greatly increase the performance
of the model. This method can most likely also be applied to other programming
languages and models, greatly increasing the performance of such solutions. Fur-
ther, these results are a great motivate further research, investigating other ways
to guide code generation.

Chapter 7: Discussion 69

7.1.3 Threats to validity

Considering internal threats to validity, the main threat is cross-contamination
between the splits of the datasets. this applies to both the performance of the
fine-tuned model, as well as the evaluation of the comment-aided code gener-
ation approach. As described in Section 5.1.1, a lot of the SCs contains dupli-
cated code. If these duplications make up a too large percentage of the dataset,
this would lead to overly-optimistic estimates of the model’s performance. To re-
duce the likelihood of this, several counter measurements are taken. Primarily,
extensive filtering of the contracts based on similarity is done in Section 5.1.1.1.
To further aid this filtering, the contract files were inflated, as described in Sec-
tion 5.1.1.2. As over 5 million contracts are filtered down to 186.397 contracts, it
can be assumed that the risk of cross-contamination is rather low.

Concerning the external validity of the comment-aided code generation ap-
proach, it is likely that the approach can be used for other programming languages
as well as other models. The approach does not rely on any specifics of SC lan-
guage. However, the approach requires the code context used to be relevant to
the comment. As SCs are smaller and less complex than other languages, there
might be some restrictions on the generalizability of the approach. For example,
trying to use the approach to generate a Python function from a comment using
a completely unrelated function as code context will probably not work well.

7.1.4 Discussion of RQ2 results

According to research question 2, this thesis has investigated how to automatically
generate secure Smart Contract code with transformer-based language models.
For answering this, a novel security conditioning technique was developed. In the
following sections, the results of the implementation and evaluation of research
question 2 are discussed.

7.1.5 Comparison with related work

For testing the technique, the pre-trained model used in RQ1 was fine-tuned using
security conditioning. The implementation achieves similar scores to that achieved
in RQ1, with an accuracy of 0.917 and perplexity of 1.510. Further, the code gen-
eration performance of the fine-tuned model using the security conditioning tech-
nique is compared to that of the fine-tuned model in Section 6.2.1. As reported,
the variations in BLEU score are negligible, with a difference of 0.003. Hence, the
technique introduces no performance degradation.

The security of the code generated using the security conditioning technique
is evaluated in Section 6.2.3. First, the technique is automatically evaluated using
the comment-aided approach. The results of the evaluation indicate that the secu-
rity conditioning technique does work. However, the reduction of vulnerabilities
compared to the total number of vulnerabilities is rather low. As described in Sec-
tion 6.2.3, this might be because the code used as context already contains a lot

Chapter 7: Discussion 70

of vulnerabilities. Therefore, some manual tests were performed in Section 6.2.4.
The manual testing further strengthens the findings from the automatic evalu-
ation. For example, the model with security conditioning produces significantly
fewer "integer overflow and underflow" vulnerabilities. As shown in Figure 5.13,
this is also by far the most common SC vulnerability. For the less common vulnera-
bilities such as "reentrancy" and "unchecked send" vulnerabilities, the differences
are more subtle. It is rather hard to make any of the models generate one of
these less common high-risk vulnerabilities. However, when sufficiently provoked
to generate a vulnerability, the model with security conditioning almost always
generates a safe alternative.

As presented in Section 3.2, works in other domains have tried to reduce
bias in language models. However, with mixed results. In contrast, the security
conditioning technique does seem to work, without introducing any performance
degradation.

7.1.6 Implication to academia and industry

As reported by Pearce et al. [35], existing code synthesis solutions based on trans-
formers produce a lot of vulnerabilities. Being able to reduce this number would
be of great value to the industry. This applies especially to the creation of SCs, as
vulnerabilities can not be fixed after it has been deployed to the blockchain. From
the evaluation in Section 6.2, the model with security conditioning can be used
to generate mostly SCs code.

The security conditioning technique can also serve as the basis for a lot of
further research. Not only for vulnerability analysis but also in other areas. As
discussed in Section 3.2 vulnerabilities can be considered as a form of bias in lan-
guage models. Hence, the technique could maybe be generalized to handle other
types of biases, for example, gender bias. Since the technique primarily relies on
augmenting the dataset, the method should also be transferable to other models
as well.

From the results of the vulnerability analysis of the SC datasets in Section 5.2.1.2,
a very large percentage of the SCs contracts are vulnerable. This is a very interest-
ing finding and can both aid and motivate future research on SC vulnerabilities.

7.1.7 Threats to validity

As seen from the evaluation of Sections 6.2.3 and 6.2.4, evaluating the security
of the model is very hard. In most of the manual generation examples, except for
"integer overflow and underflow" vulnerabilities, neither of the two models pro-
duces any vulnerabilities. This could either be that the prompts are not sufficiently
complex, or that the model is already secure. Pearce et al. [35] is one of very few
works that investigate the security of transformer-based code generation. They
conduct a vulnerability analysis of GitHub Copilot (based on Codex), reporting
approximately 40% of 1689 synthesized Python and C programs to be vulnera-
ble. It is therefore not very likely that the fine-tuned developed for RQ1 mostly

Chapter 7: Discussion 71

produces secure code. To evaluate the security conditioning technique more thor-
oughly, one could adopt the same approach as used by [35]. This would require
the creation of a manual dataset, where the code is carefully crafted so that it may
produce a vulnerability.

Another potential threat is the quality of the labeled data. The security con-
ditioning technique is only as good as the labeled data. For labeling the SCs, Sol-
Detector was the only vulnerability detection tool used. If SolDetector incorrectly
labels a SCs as vulnerable, this could confuse the model.

Chapter 8

Conclusion and Future Work

In this thesis, ways for generating Smart Contract (SC) code with transformer
models have been explored. This includes both how to guide the code generation
by inputting comments, as well as how to generate secure SC code. In this chapter,
the results and findings from the thesis are concluded in Section 8.1, along with
potential future works in Section 8.2.

8.1 Conclusion

To generate Smart Contract (SC) code with a transformer model, this thesis fine-
tunes a state-of-the-art open-source 6 billion parameter transformer model on SC
code. To facilitate the training of this large model, the currently largest dataset of
SCs is constructed, containing over 186,397 real verified SCs. Further, this thesis
proposes a novel comment-aided approach to guide the code synthesis. From eval-
uating the approach by generating 10.000 functions with the fine-tuned model, a
BLEU score of 0.557 is achieved, outperforming the state-of-the-art.

In order to produce secure SC code with a transformer model, this thesis pro-
poses a novel security technique named security conditioning. By using special
tokens as labels during the training of a transformer model, it can condition on
secure or vulnerable code. As this technique requires the SCs to be labeled as se-
cure or vulnerable, the 186,397 SC are labeled with a vulnerability detection tool
named SolDetector, resulting in the currently largest audited SC dataset. In this
thesis, the effectiveness of security conditioning is demonstrated by fine-tuning a
transformer model using security conditioning. From both automatic and manual
evaluation of the technique, there are good indications that security conditioning
does produce fewer vulnerabilities without performance degradation. Especially
improvement is seen for common vulnerabilities, such as integer overflows and
underflows.

To summarize, this thesis is the first to generate SC code with transformer-
based language models. Further, the code generation is improved by using a novel
comment-aided approach, achieving state-of-the-art results. Finally, the security
of the generated code is improved by a novel security conditioning technique.

72

Chapter 8: Conclusion and Future Work 73

8.2 Future work

There are several interesting ideas and observations arising from this thesis. Fol-
lowing are some potential improvements and suggestions of topics for future
work:

• Conduct a user study on the effects of using the comment-aided approach
for code generation.
• Evaluate how hyperparameter tuning affects security conditioning.
• Use multiple vulnerability detection tools for labeling SC and study how it

affects performance.
• How to automatically evaluate potential security vulnerabilities in synthe-

sized code.

Bibliography

[1] GitHub. “Your ai pair programmer.” (2022), [Online]. Available: https:
//github.com/features/copilot (visited on 07/07/2022).

[2] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M.
Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M.
Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D.
Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W.
Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B.
McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, Evalu-
ating large language models trained on code, 2021. DOI: 10.48550/ARXIV.
2107.03374. [Online]. Available: https://arxiv.org/abs/2107.03374.

[3] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles,
J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy, C. d. M. d’Autume,
I. Babuschkin, X. Chen, P.-S. Huang, J. Welbl, S. Gowal, A. Cherepanov, J.
Molloy, D. J. Mankowitz, E. S. Robson, P. Kohli, N. de Freitas, K. Kavukcuoglu,
and O. Vinyals, Competition-level code generation with alphacode, 2022. DOI:
10.48550/ARXIV.2203.07814. [Online]. Available: https://arxiv.org/
abs/2203.07814.

[4] C. B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sundare-
san, “Pymt5: Multi-mode translation of natural language and python code
with transformers,” CoRR, vol. abs/2010.03150, 2020. arXiv: 2010.03150.
[Online]. Available: https://arxiv.org/abs/2010.03150.

[5] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of security
and trust, Springer, 2017, pp. 164–186.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.
Kaiser, and I. Polosukhin, Attention is all you need, 2017. DOI: 10.48550/
ARXIV.1706.03762. [Online]. Available: https://arxiv.org/abs/1706.
03762.

74

https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.48550/ARXIV.2107.03374
https://doi.org/10.48550/ARXIV.2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/ARXIV.2203.07814
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2010.03150
https://arxiv.org/abs/2010.03150
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

Bibliography 75

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding, 2018. DOI: 10.
48550/ARXIV.1810.04805. [Online]. Available: https://arxiv.org/abs/
1810.04805.

[8] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving lan-
guage understanding by generative pre-training,” 2018.

[9] HuggingFace. “Accuracy.” (Apr. 2022), [Online]. Available: https://huggingface.
co/spaces/evaluate-metric/accuracy (visited on 06/22/2022).

[10] HuggingFace. “Perplexity of fixed-length models.” (Apr. 2022), [Online].
Available: https://huggingface.co/docs/transformers/perplexity
(visited on 06/22/2022).

[11] S. Goyalm. “Perplexity of fixed-length models.” (Sep. 2019), [Online]. Avail-
able: https://medium.com/analytics-vidhya/no-need-to-be-perplexed-
by-perplexity-cd4cb71ac97b (visited on 06/22/2022).

[12] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for auto-
matic evaluation of machine translation,” in Proceedings of the 40th Annual
Meeting on Association for Computational Linguistics, ser. ACL ’02, Philadel-
phia, Pennsylvania: Association for Computational Linguistics, 2002, pp. 311–
318. DOI: 10.3115/1073083.1073135. [Online]. Available: https://doi.
org/10.3115/1073083.1073135.

[13] Google. “Understanding the bleu score.” (Jul. 2022), [Online]. Available:
https://cloud.google.com/translate/automl/docs/evaluate#bleu
(visited on 07/14/2022).

[14] A. Lavie. “Evaluating the output of machine translation systems.” (Sep.
2011), [Online]. Available: https://www.cs.cmu.edu/~alavie/Presentations/
MT-Evaluation-MT-Summit-Tutorial-19Sep11.pdf (visited on 07/14/2022).

[15] DeepAi. “What is the jaccard index?” (Apr. 2022), [Online]. Available: https:
//deepai.org/machine-learning-glossary-and-terms/jaccard-index
(visited on 06/28/2022).

[16] Ethereum. “Gas and fees.” (Dec. 2021), [Online]. Available: https : / /
ethereum.org/en/developers/docs/gas/ (visited on 01/04/2022).

[17] M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei, “Bimodal modelling of
source code and natural language,” in International Conference on Machine
Learning, Aug. 2015, pp. 2123–3132. [Online]. Available: https://www.
microsoft.com/en-us/research/publication/bimodal-modelling-of-
source-code-and-natural-language/.

[18] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the naturalness
of software,” in Proceedings of the 34th International Conference on Software
Engineering, ser. ICSE ’12, Zurich, Switzerland: IEEE Press, 2012, pp. 837–
847, ISBN: 9781467310673.

https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://huggingface.co/spaces/evaluate-metric/accuracy
https://huggingface.co/spaces/evaluate-metric/accuracy
https://huggingface.co/docs/transformers/perplexity
https://medium.com/analytics-vidhya/no-need-to-be-perplexed-by-perplexity-cd4cb71ac97b
https://medium.com/analytics-vidhya/no-need-to-be-perplexed-by-perplexity-cd4cb71ac97b
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://cloud.google.com/translate/automl/docs/evaluate#bleu
https://www.cs.cmu.edu/~alavie/Presentations/MT-Evaluation-MT-Summit-Tutorial-19Sep11.pdf
https://www.cs.cmu.edu/~alavie/Presentations/MT-Evaluation-MT-Summit-Tutorial-19Sep11.pdf
https://deepai.org/machine-learning-glossary-and-terms/jaccard-index
https://deepai.org/machine-learning-glossary-and-terms/jaccard-index
https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://www.microsoft.com/en-us/research/publication/bimodal-modelling-of-source-code-and-natural-language/
https://www.microsoft.com/en-us/research/publication/bimodal-modelling-of-source-code-and-natural-language/
https://www.microsoft.com/en-us/research/publication/bimodal-modelling-of-source-code-and-natural-language/

Bibliography 76

[19] M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow, “Deep-
coder: Learning to write programs,” in Proceedings of ICLR’17, Mar. 2017.
[Online]. Available: https://www.microsoft.com/en- us/research/
publication/deepcoder-learning-write-programs/.

[20] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, Code2vec: Learning distributed
representations of code, 2018. DOI: 10.48550/ARXIV.1803.09473. [Online].
Available: https://arxiv.org/abs/1803.09473.

[21] U. Alon, O. Levy, and E. Yahav, “Code2seq: Generating sequences from
structured representations of code,” CoRR, vol. abs/1808.01400, 2018. arXiv:
1808.01400. [Online]. Available: http://arxiv.org/abs/1808.01400.

[22] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan, “Pythia: AI-assisted
code completion system,” in Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, ACM, Jul. 2019.
DOI: 10.1145/3292500.3330699. [Online]. Available: https://doi.org/
10.1145%2F3292500.3330699.

[23] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, Deep contextualized word representations, 2018. DOI: 10.
48550/ARXIV.1802.05365. [Online]. Available: https://arxiv.org/abs/
1802.05365.

[24] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, Xlnet:
Generalized autoregressive pretraining for language understanding, 2019.
DOI: 10.48550/ARXIV.1906.08237. [Online]. Available: https://arxiv.
org/abs/1906.08237.

[25] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L.
Zettlemoyer, and V. Stoyanov, Roberta: A robustly optimized bert pretraining
approach, 2019. DOI: 10.48550/ARXIV.1907.11692. [Online]. Available:
https://arxiv.org/abs/1907.11692.

[26] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin, T.
Liu, D. Jiang, and M. Zhou, Codebert: A pre-trained model for programming
and natural languages, 2020. DOI: 10.48550/ARXIV.2002.08155. [Online].
Available: https://arxiv.org/abs/2002.08155.

[27] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt, Code-
searchnet challenge: Evaluating the state of semantic code search, 2019. DOI:
10.48550/ARXIV.1909.09436. [Online]. Available: https://arxiv.org/
abs/1909.09436.

[28] A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, Intellicode compose:
Code generation using transformer, 2020. DOI: 10.48550/ARXIV.2005.
08025. [Online]. Available: https://arxiv.org/abs/2005.08025.

[29] Codeforces. “Codeforces.” (), [Online]. Available: https://codeforces.
com/ (visited on 05/01/2022).

https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-write-programs/
https://doi.org/10.48550/ARXIV.1803.09473
https://arxiv.org/abs/1803.09473
https://arxiv.org/abs/1808.01400
http://arxiv.org/abs/1808.01400
https://doi.org/10.1145/3292500.3330699
https://doi.org/10.1145%2F3292500.3330699
https://doi.org/10.1145%2F3292500.3330699
https://doi.org/10.48550/ARXIV.1802.05365
https://doi.org/10.48550/ARXIV.1802.05365
https://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1802.05365
https://doi.org/10.48550/ARXIV.1906.08237
https://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1906.08237
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.48550/ARXIV.2002.08155
https://arxiv.org/abs/2002.08155
https://doi.org/10.48550/ARXIV.1909.09436
https://arxiv.org/abs/1909.09436
https://arxiv.org/abs/1909.09436
https://doi.org/10.48550/ARXIV.2005.08025
https://doi.org/10.48550/ARXIV.2005.08025
https://arxiv.org/abs/2005.08025
https://codeforces.com/
https://codeforces.com/

Bibliography 77

[30] B. Li, H. Peng, R. Sainju, J. Yang, L. Yang, Y. Liang, W. Jiang, B. Wang,
H. Liu, and C. Ding, Detecting gender bias in transformer-based models: A
case study on bert, 2021. DOI: 10.48550/ARXIV.2110.15733. [Online].
Available: https://arxiv.org/abs/2110.15733.

[31] A. Silva, P. Tambwekar, and M. C. Gombolay, “Towards a comprehensive un-
derstanding and accurate evaluation of societal biases in pre-trained trans-
formers,” in NAACL, 2021.

[32] D. Madras, E. Creager, T. Pitassi, and R. Zemel, “Learning adversarially fair
and transferable representations,” Feb. 2018.

[33] B. H. Zhang, B. Lemoine, and M. Mitchell, Mitigating unwanted biases with
adversarial learning, 2018. DOI: 10.48550/ARXIV.1801.07593. [Online].
Available: https://arxiv.org/abs/1801.07593.

[34] S. Hofstätter, A. Lipani, S. Althammer, M. Zlabinger, and A. Hanbury, Mit-
igating the position bias of transformer models in passage re-ranking, 2021.
DOI: 10.48550/ARXIV.2101.06980. [Online]. Available: https://arxiv.
org/abs/2101.06980.

[35] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, Asleep at the
keyboard? assessing the security of github copilot’s code contributions, 2021.
DOI: 10.48550/ARXIV.2108.09293. [Online]. Available: https://arxiv.
org/abs/2108.09293.

[36] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Foundations
and Trends® in Programming Languages, vol. 4, no. 1-2, pp. 1–119, 2017,
ISSN: 2325-1107. DOI: 10.1561/2500000010. [Online]. Available: http:
//dx.doi.org/10.1561/2500000010.

[37] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G.
Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Win-
ter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C.
Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, Language
models are few-shot learners, 2020. DOI: 10.48550/ARXIV.2005.14165.
[Online]. Available: https://arxiv.org/abs/2005.14165.

[38] H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and R. Karri, Asleep at the
keyboard? assessing the security of github copilot’s code contributions, 2021.
DOI: 10.48550/ARXIV.2108.09293. [Online]. Available: https://arxiv.
org/abs/2108.09293.

[39] Z. Smith, E. Lostri, and M. (Firm), The hidden costs of cybercrime, 2020.
[Online]. Available: https://www.csis.org/analysis/hidden-costs-
cybercrime.

https://doi.org/10.48550/ARXIV.2110.15733
https://arxiv.org/abs/2110.15733
https://doi.org/10.48550/ARXIV.1801.07593
https://arxiv.org/abs/1801.07593
https://doi.org/10.48550/ARXIV.2101.06980
https://arxiv.org/abs/2101.06980
https://arxiv.org/abs/2101.06980
https://doi.org/10.48550/ARXIV.2108.09293
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2108.09293
https://doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
http://dx.doi.org/10.1561/2500000010
https://doi.org/10.48550/ARXIV.2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.48550/ARXIV.2108.09293
https://arxiv.org/abs/2108.09293
https://arxiv.org/abs/2108.09293
https://www.csis.org/analysis/hidden-costs-cybercrime
https://www.csis.org/analysis/hidden-costs-cybercrime

Bibliography 78

[40] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust, M. Maffei and M.
Ryan, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 164–
186, ISBN: 978-3-662-54455-6.

[41] B. J. Oates, Researching Information Systems and Computing. Sage Publica-
tions Ltd., 2006, ISBN: 1412902231.

[42] V. K. Vaishnavi and W. L. Kuechler, “Design Science Research in Information
Systems,” Ais, pp. 1–45, 2004, ISSN: 02767783. DOI: 10.1007/978- 1-
4419-5653-8. [Online]. Available: http://www.desrist.org/design-
research-in-information-systems/.

[43] Ethereum. “Natspec format.” (Feb. 2022), [Online]. Available: https://
docs.soliditylang.org/en/v0.8.15/natspec-format.html (visited on
05/10/2022).

[44] B. Wang and A. Komatsuzaki, GPT-J-6B: A 6 Billion Parameter Autoregressive
Language Model, https://github.com/kingoflolz/mesh-transformer-
jax, May 2021.

[45] M. Woolf. “Fun and dystopia with ai-based code generation using gpt-j-6b.”
(Jun. 2021), [Online]. Available: https://minimaxir.com/2021/06/gpt-
j-6b/.

[46] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang, H.
He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy, The pile: An 800gb
dataset of diverse text for language modeling, 2021. DOI: 10.48550/ARXIV.
2101.00027. [Online]. Available: https://arxiv.org/abs/2101.00027.

[47] EleutherAI, Download all github repositories, 2020. [Online]. Available: https:
//github.com/EleutherAI/github-downloader (visited on 03/10/2022).

[48] EleutherAI. “Eleutherai.” (Apr. 2022), [Online]. Available: https://www.
eleuther.ai (visited on 06/28/2022).

[49] J. Su, Y. Lu, S. Pan, B. Wen, and Y. Liu, Roformer: Enhanced transformer
with rotary position embedding, 2021. DOI: 10.48550/ARXIV.2104.09864.
[Online]. Available: https://arxiv.org/abs/2104.09864.

[50] Microsoft, Deepspeed, version 0.6.4, 2022. [Online]. Available: https://
www.deepspeed.ai/ (visited on 05/06/2022).

[51] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of au-
tomated analysis tools on 47,587 ethereum smart contracts,” in Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing, ser. ICSE ’20, Seoul, South Korea: Association for Computing Machin-
ery, 2020, pp. 530–541, ISBN: 9781450371216. DOI: 10.1145/3377811.
3380364. [Online]. Available: https : / / doi . org / 10 . 1145 / 3377811 .
3380364.

[52] H. Face, Transformers, version 4.19.0.dev0, 2022. [Online]. Available: https:
//www.antlr.org/index.html (visited on 06/10/2022).

https://doi.org/10.1007/978-1-4419-5653-8
https://doi.org/10.1007/978-1-4419-5653-8
http://www.desrist.org/design-research-in-information-systems/
http://www.desrist.org/design-research-in-information-systems/
https://docs.soliditylang.org/en/v0.8.15/natspec-format.html
https://docs.soliditylang.org/en/v0.8.15/natspec-format.html
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://minimaxir.com/2021/06/gpt-j-6b/
https://minimaxir.com/2021/06/gpt-j-6b/
https://doi.org/10.48550/ARXIV.2101.00027
https://doi.org/10.48550/ARXIV.2101.00027
https://arxiv.org/abs/2101.00027
https://github.com/EleutherAI/github-downloader
https://github.com/EleutherAI/github-downloader
https://www.eleuther.ai
https://www.eleuther.ai
https://doi.org/10.48550/ARXIV.2104.09864
https://arxiv.org/abs/2104.09864
https://www.deepspeed.ai/
https://www.deepspeed.ai/
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://www.antlr.org/index.html
https://www.antlr.org/index.html

Bibliography 79

[53] H. Face. “Hugging face - the ai community building the future.” (Jun. 2022),
[Online]. Available: https://huggingface.co/ (visited on 07/10/2022).

[54] Microsoft. “Microsoft.” (Jun. 2022), [Online]. Available: https://www.
microsoft.com/about (visited on 07/10/2022).

[55] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, Zero: Memory optimizations
toward training trillion parameter models, 2019. DOI: 10.48550/ARXIV.
1910.02054. [Online]. Available: https://arxiv.org/abs/1910.02054.

[56] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, Zero-infinity:
Breaking the gpu memory wall for extreme scale deep learning, 2021. DOI:
10.48550/ARXIV.2104.07857. [Online]. Available: https://arxiv.org/
abs/2104.07857.

[57] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Gins-
burg, M. Houston, O. Kuchaiev, G. Venkatesh, and H. Wu, Mixed precision
training, 2017. DOI: 10.48550/ARXIV.1710.03740. [Online]. Available:
https://arxiv.org/abs/1710.03740.

[58] M. Själander, M. Jahre, G. Tufte, and N. Reissmann, Epic: An energy-efficient,
high-performance gpgpu computing research infrastructure, 2019. DOI: 10.
48550/ARXIV.1912.05848. [Online]. Available: https://arxiv.org/abs/
1912.05848.

[59] Ethereum. “Vyper.” (Sep. 2022), [Online]. Available: https://ethereum.
org/en/developers/docs/smart-contracts/languages/#vyper (visited
on 06/14/2022).

[60] SafeMath, Safemath, 2022. [Online]. Available: https://docs.openzeppelin.
com/contracts/3.x/utilities#math (visited on 06/01/2022).

[61] OpenZeppelin, Openzeppelin, 2022. [Online]. Available: https://www.
openzeppelin.com (visited on 06/01/2022).

[62] Ethereum, Solidity grammar, 2022. [Online]. Available: https://github.
com/ethereum/solidity/tree/develop/docs/grammar (visited on 04/01/2022).

[63] T. Parr, Antlr 4, version 4.10.1, 2022. [Online]. Available: https://www.
antlr.org/index.html (visited on 04/15/2022).

[64] T. Parr and K. Fisher, “Ll(*): The foundation of the antlr parser generator,”
SIGPLAN Not., vol. 46, no. 6, pp. 425–436, Jun. 2011, ISSN: 0362-1340.
DOI: 10.1145/1993316.1993548. [Online]. Available: https://doi.org/
10.1145/1993316.1993548.

[65] ANTLR. “Runtime libraries and code generation targets.” (), [Online]. Avail-
able: https://github.com/antlr/antlr4/blob/master/doc/targets.md
(visited on 07/07/2022).

[66] F. Bond, Solidity-antlr4, 2019. [Online]. Available: https://github.com/
solidityj/solidity-antlr4 (visited on 05/10/2022).

https://huggingface.co/
https://www.microsoft.com/about
https://www.microsoft.com/about
https://doi.org/10.48550/ARXIV.1910.02054
https://doi.org/10.48550/ARXIV.1910.02054
https://arxiv.org/abs/1910.02054
https://doi.org/10.48550/ARXIV.2104.07857
https://arxiv.org/abs/2104.07857
https://arxiv.org/abs/2104.07857
https://doi.org/10.48550/ARXIV.1710.03740
https://arxiv.org/abs/1710.03740
https://doi.org/10.48550/ARXIV.1912.05848
https://doi.org/10.48550/ARXIV.1912.05848
https://arxiv.org/abs/1912.05848
https://arxiv.org/abs/1912.05848
https://ethereum.org/en/developers/docs/smart-contracts/languages/#vyper
https://ethereum.org/en/developers/docs/smart-contracts/languages/#vyper
https://docs.openzeppelin.com/contracts/3.x/utilities#math
https://docs.openzeppelin.com/contracts/3.x/utilities#math
https://www.openzeppelin.com
https://www.openzeppelin.com
https://github.com/ethereum/solidity/tree/develop/docs/grammar
https://github.com/ethereum/solidity/tree/develop/docs/grammar
https://www.antlr.org/index.html
https://www.antlr.org/index.html
https://doi.org/10.1145/1993316.1993548
https://doi.org/10.1145/1993316.1993548
https://doi.org/10.1145/1993316.1993548
https://github.com/antlr/antlr4/blob/master/doc/targets.md
https://github.com/solidityj/solidity-antlr4
https://github.com/solidityj/solidity-antlr4

Bibliography 80

[67] ANTLR. “Visitor pattern.” (), [Online]. Available: https://en.wikipedia.
org/wiki/Visitor_pattern (visited on 07/07/2022).

[68] NLTK, Nltk, version 3.7, 2022. [Online]. Available: https://www.nltk.org
(visited on 05/27/2022).

[69] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word
representations in vector space, 2013. DOI: 10.48550/ARXIV.1301.3781.
[Online]. Available: https://arxiv.org/abs/1301.3781.

[70] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling with
Large Corpora,” ser. Proceedings of LREC 2010 workshop New Challenges
for NLP Frameworks, Valetta, MT: University of Malta, May 2010, pp. 45–
50. [Online]. Available: http://is.muni.cz/publication/884893/en.

[71] B. L. Tianyuan Hu Zhenyu Pan, “Soldetector: Detect defects based on knowl-
edge graph of solidity smart contract,” in Proceedings of the 32rd Interna-
tional Conference on Software Engineering and Knowledge Engineering SEKE,
2021, pp. 423–428.

[72] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making Smart
Contracts Smarter,” English, in CCS’16: PROCEEDINGS OF THE 2016 ACM
SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY,
23rd ACM Conference on Computer and Communications Security (CCS),
Vienna, AUSTRIA, OCT 24-28, 2016, Assoc Comp Machinery; ACM Spe-
cial Interest Grp Secur Audit & Control, 1515 BROADWAY, NEW YORK,
NY 10036-9998 USA: ASSOC COMPUTING MACHINERY, 2016, 254–269,
ISBN: 978-1-4503-4139-4. DOI: {10.1145/2976749.2978309}.

[73] Pexpect, Pexpect, version 4.8.0, 2022. [Online]. Available: https://github.
com/pexpect/pexpect (visited on 07/10/2022).

[74] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou,
A. Blanco, and S. Ma, Codebleu: A method for automatic evaluation of code
synthesis, 2020. DOI: 10.48550/ARXIV.2009.10297. [Online]. Available:
https://arxiv.org/abs/2009.10297.

[75] M.-A. Lachaux, B. Roziere, L. Chanussot, and G. Lample, Unsupervised trans-
lation of programming languages, 2020. DOI: 10.48550/ARXIV.2006.03511.
[Online]. Available: https://arxiv.org/abs/2006.03511.

[76] M. Neto. “How to issue your own token on ethereum in less than 20 min-
utes.” (Dec. 2017), [Online]. Available: https://medium.com/bitfwd/
how- to- issue- your- own- token- on- ethereum- in- less- than- 20-
minutes-ac1f8f022793 (visited on 07/13/2022).

[77] M. Ren, Z. Yin, F. Ma, Z. Xu, Y. Jiang, C. Sun, H. Li, and Y. Cai, “Empiri-
cal evaluation of smart contract testing: What is the best choice?” In Pro-
ceedings of the 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, ser. ISSTA 2021, Virtual, Denmark: Association for
Computing Machinery, 2021, pp. 566–579, ISBN: 9781450384599. DOI:

https://en.wikipedia.org/wiki/Visitor_pattern
https://en.wikipedia.org/wiki/Visitor_pattern
https://www.nltk.org
https://doi.org/10.48550/ARXIV.1301.3781
https://arxiv.org/abs/1301.3781
http://is.muni.cz/publication/884893/en
https://doi.org/{10.1145/2976749.2978309}
https://github.com/pexpect/pexpect
https://github.com/pexpect/pexpect
https://doi.org/10.48550/ARXIV.2009.10297
https://arxiv.org/abs/2009.10297
https://doi.org/10.48550/ARXIV.2006.03511
https://arxiv.org/abs/2006.03511
https://medium.com/bitfwd/how-to-issue-your-own-token-on-ethereum-in-less-than-20-minutes-ac1f8f022793
https://medium.com/bitfwd/how-to-issue-your-own-token-on-ethereum-in-less-than-20-minutes-ac1f8f022793
https://medium.com/bitfwd/how-to-issue-your-own-token-on-ethereum-in-less-than-20-minutes-ac1f8f022793

Bibliography 81

10.1145/3460319.3464837. [Online]. Available: https://doi.org/10.
1145/3460319.3464837.

https://doi.org/10.1145/3460319.3464837
https://doi.org/10.1145/3460319.3464837
https://doi.org/10.1145/3460319.3464837

6HFXUH�6P
DUW�&RQWUDFW�&RGH�6\QWKHVLV

$QGU«�6WRUKDXJ

1
71

8
1
RU
Z
HJ
LD
Q�
8
QL
YH
UV
LW\
�R
I�6
FL
HQ

FH
�D
QG

�7
HF
KQ

RO
RJ
\

)D
FX
OW\
�R
I�Ζ
QI
RU
P
DW
LR
Q�
7H
FK
QR

OR
J\
�D
QG

�(
OH
FW
ULF
DO
�(
QJ
LQ
HH
ULQ

J
'
HS

DU
WP

HQ
W�R

I�&
RP

SX
WH
U�6

FL
HQ

FH

$QGU«�6WRUKDXJ

6HFXUH�6PDUW�&RQWUDFW�&RGH
6\QWKHVLV

0DVWHUȇV�WKHVLV�LQ�&RPSXWHU�6FLHQFH
6XSHUYLVRU��-LQJ\XH�/L
-XO\�����

$QGU«�6WRUKDXJ

0
DV
WH
UȇV

�WK
HV
LV

	Abstract
	Sammendrag
	Acknowledgement
	Contents
	Figures
	Tables
	Code Listings
	Acronyms
	Glossary
	Introduction
	Background
	Transformer
	Architecture
	Tokenization
	Embedding and Positional Encoding
	Encoder and decoder stacks
	Scaled dot-product attention
	Multi-head attention

	Training
	Inference

	Relevant Metrics
	Machine learning performance metric
	Accuracy
	Perplexity

	Machine translation performance metrics
	Bleu

	String metric
	Jaccard index

	Blockchain
	Smart Contract
	Smart Contract Security Vulnerabilities
	Integer Overflow and Underflow
	Transaction-Ordering Dependence
	Broken Access Control
	Timestamp Dependency
	Reentrancy

	Related work
	Code synthesis
	Code synthesis based on code semantics
	Code synthesis based on transformers

	Bias in language models

	Research Methodology
	Research Motivation
	Research Questions
	Research Method and Design
	Design for RQ1
	Code comments analysis
	Language Model to use
	The Pile
	Model architecture
	Requirements
	Pre-training

	Fine-tuning design

	Design for RQ2
	Security Conditioning
	Fine-tuning design

	Technology
	Software
	DeepSpeed.

	Hardware resources

	Research Implementation and Results
	Implementation of RQ1
	Data collection
	Smart contract downloader
	Normalization of smart contract files.
	Filter smart contracts for uniqueness.

	Verified Smart Contracts
	Raw.
	Flattened.
	Inflated.
	Plain text.

	Code comment analysis
	Universal Solidity parser
	Verified Smart Contract Code Comments
	Comment clustering

	Language Modeling
	Pre-training
	Fine-tuning

	Implementation of RQ2
	Data preparation
	Vulnerability labeling
	Verified Smart Contracts Audit dataset
	Embedded.

	Language Modeling
	Tokenizer
	Fine-tuning

	Evaluation
	Evaluation of RQ1
	Evaluation Method
	Evaluation metrics
	Comment only evaluation
	Comment + code context evaluation

	Evaluation of RQ2
	Performance degradation evaluation
	Security evaluation method
	Comment + code context evaluation
	Manual evaluation
	Experiments related to integer overflow vulnerability.
	Experiments related to reentrancy vulnerability.
	Experiments related to unchecked send vulnerability.

	Discussion
	Discussion of RQ1 Results
	Comparison with related work
	Implication to academia and industry
	Threats to validity
	Discussion of RQ2 results
	Comparison with related work
	Implication to academia and industry
	Threats to validity

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

