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Abstract: Conventional leak detection techniques require improvements to detect small leakage
(<10%) in gas mixture pipelines under transient conditions. The current study is aimed to detect
leakage in gas mixture pipelines under pseudo-random boundary conditions with a zero percent
false alarm rate (FAR). Pressure and mass flow rate signals at the pipeline inlet were used to estimate
mass flow rate at the outlet under leak free conditions using Hammerstein model. These signals were
further used to define adaptive thresholds to separate leakage from normal conditions. Unlike past
studies, this work successfully detected leakage under transient conditions in an 80-km pipeline. The
leakage detection performance of the proposed methodology was evaluated for several leak locations,
varying leak sizes and, various signal to noise ratios (SNR). Leakage of 0.15 kg/s—3% of the nominal
flow—was successfully detected under transient boundary conditions with a F-score of 99.7%. Hence,
it can be concluded that the proposed methodology possesses a high potential to avoid false alarms
and detect small leaks under transient conditions. In the future, the current methodology may be
extended to locate and estimate the leakage point and size.

Keywords: OLGA simulator; data-driven leak detection; pipeline system identification; Hammerstein
model; adaptive thresholds; pseudo-random binary signals

1. Introduction

Piping systems have been found to be the fastest and economical means to transport oil and
gas [1]. Unfortunately, pipelines are not immune to faults such as leakage and blockage, which results
in huge losses [2,3]. For instance, in September 2010, San Bruno, California, an old aged gas pipeline
exploded due to leakage, resulted in 8 fatalities, 58 injuries and around 14 million-dollar losses [4].
Moreover, leakage in the natural gas pipelines is the largest anthropogenic source of CH4 emission
in the USA and the second-largest globally, which significantly contributes to global warming [5].
Therefore, timely and accurate fault detection and diagnostics (FDD) in pipelines is crucial to ensure
the safety of human, material, and environment.

According to the comprehensive review by Venkat et al. [6], various FDD techniques have been
reported in the previous literature. In Figure 1, an updated (brief) classification of leak detection
techniques is presented. Pipeline leak detection techniques can be mainly classified into hardware-based
and software-based methods [7–9]. Hardware-based methods require the installation of external sensors
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to monitor signals like acoustic [10], thermal [11] and electric [12], etc. for leak detection in pipelines.
Although hardware-based methods have high accuracy, these methods are not cost-effective [13]. While
software-based techniques monitor the signals from internally installed sensors for leak detection in
pipelines [9]. Soft techniques can be further divided into mechanistic model-based and data-driven
techniques. Model-based techniques solve the mathematical models to directly estimate the state of
a system [14,15]. Whereas, data-driven FDD techniques are based on measured process input and
output signals [16]. While dealing with the highly complex, nonlinear systems that are too difficult
to be modeled analytically, data based techniques are preferred [9]. Data-driven techniques can be
further divided into statistical, computational intelligence, system identification and, signal processing,
etc. as presented in Figure 1. Finally, the conventional techniques, which are also known as biologic
methods in which hearing, smelling and watching senses of human beings, animals or machines are
used to observe the leaks [8].
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Figure 1. Updated classification of fault detection and diagnostics techniques (FDD).

Various software-based techniques like fuzzy systems [17] support vector machine [18–21], neural
networks [22–25], statistical [26–28] and, transient models [29–31], etc. are applied in faults detection
studies. To draw a clear picture of current challenges in pipeline fault detection and diagnostics studies,
selected studies are summarized in Table 1. Four critical issues related to leak detection in gas mixture
pipelines are highlighted below.

1. Overall, it can be depicted that few studies incorporate pipeline dynamics due to transients in
leak detection studies. The studies which considered system transients relied on step transient
only [14,31,32]. However, for nonlinear systems, signals should exploit the full range of amplitude
and frequency in order to capture all possible system dynamics [33].

2. According to Pan et al. [14], most leak detection studies assume ideal gas conditions; similar
observation can be found in Table 1. For instance, Tiantian et al. [31] and Shouxi, Carroll [34]
considered gas as an incompressible fluid.

3. From Table 1, it can also be noted that most studies considered small pipelines, i.e., within a
length equal to or lesser than 10 km besides, gas pipelines usually have higher lengths [35,36].

4. Effects due to thermal changes is also ignored in previous studies; it can be seen in Table 1 that 3
out of 10 studies assumed constant temperature throughout the pipeline length.
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Table 1. Variations in the parameters used by previous studies on pipeline leak detection.

Fluid
Length

(km)

1 Fluid
Compr.

2 Temp.
Variation

Detection
Method

Noise
(%)

Leak in
Terms of

Fault Detection
References

Range/Value Accuracy
(%)

Liquid 10 Constant Constant SVM No Velocity (1–20)% 99 [19]

Gas Mix 10 Transient Transient Observer 0.5 Mass
Flow 0.7–1.5 - [14]

Gas Mix 0.014 Constant Constant RTTM Yes Opening 30 to 60
degree 94 [31]

Multiphase 20 Transient Transient ANN Yes Opening 0.5 inch 95 [24]

Liquid 0.0578 Constant Constant PCA Yes Mass
Flow (4–5)% - [27]

Gas Mix 35 Constant Constant Observer No Mass
Flow 4.1% - [34]

Liquid 37 Transient Constant Particle
Filter Yes Mass

Flow 10% - [37]

Gas Mix 0.6 Transient Constant RTTM No Mass
Flow 30% - [32]

Liquid 0.011 Constant Constant IRF Yes Opening (1–2) mm - [38]

Liquid 40 Constant Constant Distance Yes Mass
Flow 1% - [16]

Gas Mix 80 Transient Transient HM 0.0–0.5% Mass
Flow (2–5)% >95 This study

1 Fluid Compressibility, 2 Temperature Variation. Where, SVM = Support vector machines. RTTM = Real time
transient modeling. ANN = Artificial neural network. PCA = Principle component analysis. IRF = Impulse response
function HM = Hammerstein model.

In this work, the potential of system identification technique for leak detection in gas mixture
pipelines is tested. Two main attractive advantages of using system identification include; less amount
of data required for the training than black-box models [39], opposed to other data-driven techniques,
the physical meaning of a system can be easily interpreted [33] which is essential to implement a
proposed methodology in real systems. The core objective of this study is to improve the leak detection
system in gas mixture pipelines under transient conditions. Following can be claimed the main
contributions of this work:

1. The transient, compressible and non-isothermal flow of natural gas in a pipeline is modeled
using the OLGA simulator for the purpose of generating sufficient data needed for designing,
validating and testing the proposed leak detection system.

2. For leak detection study, the mass flow rate at the pipeline inlet is designed based on an amplitude
modulated pseudo-random binary signals. Inlet mass flow rate and pressure signals are used to
estimate outlet mass flow rate using the Hammerstein model.

3. Adaptive thresholds are defined to monitor pipeline outlet mass flow rate for leakage detection
under transient conditions.

4. Effects of different leak locations, varying leak size and, various signal to noise ratio on leak
detection performance are investigated using standard performance measures.

2. Proposed Leak Detection Methodology

The proposed architecture for leak detection is shown in Figure 2. It can be mainly divided into
four steps: case study, model identification, adaptive thresholds calculation and, leak detection. In the
case study, data for training, validation and testing are generated based on the design of Experiment
(DOE). The data are then used for model identification (training). After that, the identified model is
cross-validated against unseen boundary conditions. Finally, testing is performed using various sets
of leakage data. The following subsections address the details of all the steps involved in the leak
detection algorithm.
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2.1. Case Study for Data Generation

Data for training may be acquired through supervisory control and data acquisition (SCADA)
system (physical sensors) or from the mathematical models of the pipelines (virtual sensors) [19]. In
this study, OLGA simulator is used to generate pipeline data which is based on transient mathematical
models and used by several studies [24,40,41]. Transient conditions in actual pipelines are due to
various reasons such as varying customer demand, the compressibility of a gas mixture, changes in
atmospheric conditions, dynamic friction factor, line shutdown, start-up, compressor surges, etc. [42].
To study such systems, transients can be artificially generated through imposed transient signals at
pipeline boundaries XU, Karney [43]. These transients can be generated using step, impulse and,
pseudorandom signals. In this study, amplitude modulated pseudo-random binary signal (APRBS) of
mass flow at pipeline inlet is imposed at pipeline inlet to induce system transients as defined in the
paper by Deflorian, Zaglauer [44].

2.2. System Model Identification for Normal Conditions (Training)

Mass flow rate and pressure measurements at the pipeline inlet are used as input and outlet mass
flow rate values are used as an output for model identification using the Hammerstein model. The
model parameters are estimated using the least-squares method (LSM) in MATLAB 2019b®. Various
pipeline models are estimated using several numbers of parameters. The theoretical background of
Hammerstein model can be explained as in the following section.

2.2.1. Stochastic Hammerstein Model

Block diagram of single input and single output (SISO) Hammerstein model is mentioned in
Figure 3. Where u(k) and y(k) are measured input and measured output at a time step k. Hammerstein
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model is composed of nonlinear function followed by linear, as shown in Figure 3. The linear part
B
(
q−1

)
/A

(
q−1

)
can also be termed as memory because it utilizes the previous memory of the system to

predict the model parameters. While, the nonlinear part may be selected from a variety of available
functions, some examples of these functions are quadratic, cubic, sigmoid, wavelet, etc. For quadratic
function Hammerstein model can be written as Equation (1) [45],

A
(
q−1

)
y(k) = Co + B1

(
q−1

)
u(k) + B2

(
q−1

)
u2(k) (1)
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Here, A
(
q−1

)
and B

(
q−1

)
are referred to as the memory portions of output and input measurements,

respectively, and can be written as Equations (2)–(5),

A
(
q−1

)
= 1 + a1q−1 + · · ·+ anaq−na (2)

B1
(
q−1

)
= b11 + b12q−1 + · · ·+ b1nbq−1nb (3)

B2
(
q−1

)
= b21 + b22q−1 + · · ·+ b2nbq−2nb (4)

where,

a1, a2, . . . ana are output data parameters.
b11, b12, . . . b1nb, b21, b22, . . . b2nb are input data parameters.
q−na and q−nb are the nath and nbth past value of variables y and u, respectively.

The above model is nonlinear in parameters; thus, it requires nonlinear optimization. In order to
avoid it, a generalized form of Hammerstein model in prediction from can be written as Equation (5) [45],

ŷ(k) = go +
nb∑

i=1

g1iu(k− d− i) +
nb∑

i=1

g2iu2(k− d− i) (5)

here, go, g1i, g2i are the linearized parameters in Hammerstein model and ŷ(k) is presenting the
predicted output.

Above mentioned model is deterministic, as it did not consider any noise in the process. When
stochastic model is considered, a random noise function e(k) is added to the data (Equation (6)). A
common practice is to add white noise [46]. In this study, white noise of 0% to 0.5% will be added in
the mass flow rate and pressure signals.

ŷ(k) = go +
nb∑

i=1

g1iu(k− d− i) +
nb∑

i=1

g2iu2(k− d− i) + e(k) (6)

2.2.2. Parameter Estimation Using LSM

For multiple input (pressure Pin and mass flow rate Min at inlet) and single output (mass flow rate
Mout at outlet) Hammerstein model for a time step k can be written as Equation (7),

Mout(k) = go +
nb∑

i=1

g1iMin(k− i) +
nb∑

i=1

g2iM2
in(k− i) +

nb∑
i=1

g3iPin(k− i) +
nb∑

i=1

g4iP2
in(k− i) + e(k) (7)



Processes 2020, 8, 474 6 of 21

Above equation for various time steps can be written in matrix form as Equation (8),


Mout(1)
Mout(2)

...
Mout(k)

 =


1
1
...
1

go +


Min(0) Min(−1) · · · Min(−nb + 1)
Min(1) Min(0) · · · Min(−nb + 2)

...
...

. . .
...

Min(k− 1) Min(k− 2) · · · Min(k− nb)




g11

g12
...

g1nb


+


M2

in(0) M2
in(−1) · · · M2

in(−nb + 1)
M2

in(1) M2
in(0) · · · M2

in(−nb + 2)
...

...
. . .

...
M2

in(k− 1) M2
in(k− 2) · · · M2

in(k− nb)




g21

g22
...

g2nb


+


Pin(0) Pin(−1) · · · Pin(−nb + 1)
Pin(1) Pin(0) · · · Pin(−nb + 2)

...
...

. . .
...

Pin(k− 1) Pin(k− 2) · · · Pin(k− nb)




g31

g32
...

g3nb


+


P2

in(0) P2
in(−1) · · · P2

in(−nb + 1)
P2

in(1) P2
in(0) · · · P2

in(−nb + 2)
...

...
. . .

...
P2

in(k− 1) P2
in(k− 2) · · · P2

in(k− nb)




g41

g42
...

g4nb

+ e(k)

(8)

Here, go, g11, . . . , g1nb, g21, . . . , g2nb, g31, . . . , g3nb, g41, . . . g4nb are the linearized parameters in
Hammerstein model associated with inlet mass flow and pressure data. The memory points with
zero and the negative domain will be considered as zero. For simplicity, mass flow rate, pressure and
respective parameters can be represented as A, B, C, D, go, g1A, g1B, g1C, g1D then Equation (8) reduced
to Equation (9),

Mout(1)
Mout(2)

...
Mout(k)

 = [O]go + [A][g1A] + [B][g1B] + [C][g1C] + [D][g1D] + e(k) (9)

All the memory points and parameters are combined in Equation (10) to form an augmented matrix,


Mout(1)
Mout(2)

...
Mout(k)

 = [O | A | B | C | D]


go

g1A
g1B
g1C
g1D


+ e(k) (10)

Let, Y =


Mout(1)
Mout(2)

...
Mout(k)

 = Model output, U = [O | A | B | C | D] = Model input and,

G =


go

g1A
g1B
g1C
g1D


= Model parameters, then we can write as Equation (11),

[Y] = [U] [G] (11)
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According to Ljung [46], system parameters can be easily estimated from Equation (12) using least
square method (LSM). Equations (12) and (13) below are formulations used to estimate the parameters
by LSM.

[U] T[Y] = [U] T[U] [G] (12)

[G] =
(
[U] T[U]

)−1
[U] T[Y] (13)

2.3. Adaptive Thresholds-Based Leak Detection (ATBLD)

For cross-validation of the estimated model, new data points (unknown boundary conditions) are
arranged in the form of the augmented matrix using Equation (10); After that, the predicted output
mass flow rate is compared with the actual mass flow rate using modeling errors. Predicted mass flow
rate ŶNew can be determined as Equation (14),[

ŶNew
]
=

[
ÛNew

]
[G] (14)

Modeling estimation errors can be calculated as Equation (15),

[Error] =
[
ŶNew

]
− [YNew] (15)

Thresholding is the drawing of the boundary that separates normal conditions with faults. In
this case thresholds for the normal conditions are defined using model predictions of mass flow
rate. Thresholds are calculated based on the concept of standard deviation, in which the percentage
of acceptance region is defined for the variable to be monitored. As this study considers transient
behavior, fixed thresholds are modified to calculate adaptive thresholds. In adaptive thresholds, the
value of threshold updates at each data point according to input boundary conditions. The modified
equation for adaptive thresholds can be written as Equations (16) and (17) [47].

Th(k)(upper bound) = ŶNew(k) + tα,Nd−nθ−1

{
σ2

(
1 + ÛNew

[
UUT

]−1
ÛNew

T
)} 1

2
(16)

Th(k)(lower bound) = ŶNew(k) − tα,Nd−nθ−1

{
σ2

(
1 + ÛNew

[
UUT

]−1
ÛNew

T
)} 1

2
(17)

where,

tα,Nd−nθ−1 is the t-student distribution at α× 100% acceptance region
Nd is the total number of data points
nθ is the total number of parameters
U is the augmented matrix of input data
ÛNew is the augmented matrix of new/validation data
Th(k)(upper bound) is the upper limit of mass flow rate at the outlet
Th(k)(lower bound) is the lower limit of mass flow rate at the outlet
ŶNew(k) is the estimated value of mass flow rate at the outlet

Parameters from the training data are used to estimate mass flow rate at the outlet for leak
detection using Equation (14), given that mass flow rate and pressure is available at the pipeline inlet.
At the time of the leak, the actual mass flow rate at the outlet started violating thresholds limits thus,
leakage is detected. For each observation k violations can be of different amplitudes; these amplitudes
can be converted into binary signals using Equation (18),

Alarm(k) =
{

0, if YNew(k) ≤ Th(k)(upper bound) and YNew(k) ≥ Th(k)(lower bound)
1, if YNew(k) > Th(k)(upper bound) or YNew(k) < Th(k)(lower bound)

(18)

where,
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0 refers to normal conditions
1 refers to leakage conditions

2.4. Performance Measures

For fault detection studies using a model identification approach, calculation of leak detection
performance is essential. The performance of a proposed method to detect faulty and normal conditions
may vary due to model estimation errors, leak size, leak location and, signal to noise ratio. To test the
performance of leak detection system, various performance indicators are explained by the American
petroleum institute [48], these performance measures can be calculated according to the definitions by
Jiawei Han et al. [49]. In this study, accuracy (Ac) or recognition rate, error rate (ER), sensitivity (Se)
or recall, specificity (Sp), precision (Pr), False alarm rate (FAR), F-score (FS) and, leak detection time
(LDT) was calculated. Table 2 listed the mathematical definitions of the above-mentioned indices.

Table 2. Indicators used to evaluate the performance of leak detection system.

Performance Measure Formula

Accuracy (percentage of correct classification) TP+TN
P+N × 100

Error rate (percentage of incorrect classification) FP+FN
P+N × 100

Sensitivity to fault TP
P × 100

Specificity (true normal condition detection) TN
N × 100

False alarm rate 1− TN
N × 100

Precision (true fault detection) TP
TP+FP × 100

F-score 2×precision×recall
precision+recall × 100

Where, P = Total number of faulty samples/data points. N = Total number of fault-free/normal samples/data
points. TP = Number of correctly detected faulty samples/data points. TN = Number of correctly detected normal
samples/data points. FP = Number of incorrectly detected faulty samples/data points in fault free condition. FN =
Number of incorrectly detected normal samples/data points in the case of leak.

In this study, the performance of the proposed leak detection algorithm was tested for three
different leak locations: 10 km near pipeline inlet, 45 km close to the midpoint and, 70 km near to outlet
using various parameters (41 to 4801). The effect of increasing noise from 0% to 0.5% was also analyzed.
Additionally, 1% to 5% leakage in terms of nominal flow (0.01 kg/s to 0.05 kg/s) was also tested.

3. Results and Discussion

3.1. OLGA Model Validation

A transient, one-dimensional, non-isothermal and compressible flow was simulated to generate
data for gas mixture flow in pipelines using the OLGA simulator. Before the FDD study, experimental
data from the study by Taylor et al. [50] was used to validate the developed model. The benchmark
data were featured by a pipeline having a nominal diameter of 8.15 inches (0.20701 m), length of 44.9
miles (72,259.5 m) and pipeline roughness of 0.617 mm. Moreover, the gas mixture was proposed to
have a specific gravity of 0.6962 at 15 ◦C (288.15 K) is simulated. The OLGA model for the system was
simulated for 24 h assuming pipeline discretization of 371 nodes. The inlet pressure was maintained
constant at 4205 kPa while the outlet mass flow rate varied with time as per the trend in Figure 4.

The pipeline outlet pressure simulated from the OLGA model is mentioned in Figure 5. It can be
observed that the developed model is in good agreement with the experimental results [50] and other
simulated studies [51–53]. It can be observed that pressure at the outlet is maintained constant in the
start followed by constant increment while the mass flow rate was constantly decreased at the same
time. There was a delay of around 1.8 h between maximum pressure and minimum mass flow rate,
this difference was due to the inertia effect [53].
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Similarly, when the mass flow rate was increased to its maximum, pressure decreased and reached
to its lowest value in around 15.2 h. In contrast with the experimental data, our simulation results are
following a similar trend throughout. At around 8.5 h, both experimental and simulated pressure has
a maximum value of around 2550 kPa. After 16 h, numerical study is showing a gradual increment in
pressure while the measured pressure was almost constant. This discrepancy was due to the uncertainty
in the measured data after 16 h. As can be observed mass flow rate at the boundary (Figure 4) suddenly
becomes constant from 18 h to onwards which was very difficult to measure from sensors due to their
limited precision resulting in uncertain measurements of pressure.

3.2. Case Study

A case was developed to generate mass flow rate data required for model training, validation, and
testing. Amplitude modulated pseudo-random binary signals (APRBS) of mass flow rate are used as a
design of experiment (DOE) at pipeline inlet. Pressure, mass flow rate, and temperature measurements
are captured at inlet and outlet of a pipeline with an interval of 10 s. Simulations were run for 50 h, first
25 h are simulated under constant boundary conditions to attain stable conditions. The last 25 h are
simulated under a transient condition. For the testing case, a 5% leakage was introduced after 30 min.
Other parameters used in the study are mentioned in Table 3.

There are several aspects that needs to be considered for the application of proposed technique in
other pipelines. For instance, gas composition, pipeline boundary conditions, presence of system and
sensor noise, length of pipeline, pipeline roughness, etc. Results obtained in this study are specified
to the established conditions that are clearly mentioned above. If pipeline conditions and parameter
are varied then, there is a need to tune design of experiment, number of estimated parameters and
confidence interval of adaptive thresholds accordingly.
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Table 3. Boundary conditions and other parameters used in case study.

Parameters Case Study

Length, Diameter 80 km, 0.20701 m
Thickness of Wall 0.101 m (4 inches)

Pipe material Carbon Steel
Flowing fluid Natural Gas

Surface roughness 0.617 mm
Ambient temperature 283.15 K

Heat transfer coefficient 2.84 W
m2K

Inlet temperature 293.15 K
Inlet pressure -

Inlet mass flow APRBS
Outlet pressure 2 MPa

Outlet temperature 283 K
Outlet mass flow -

Friction factor Colebrook
Compressibility GERG-2008

3.3. Pipeline Model Identification and Validation

A training data set with 9000 measurements are used to estimate system parameters using LSM
(Equation (13)). These parameters are estimated offline. Then, these parameters are used to predict the
pipeline outlet mass flow rate using Equation (14). Figure 6 presents the pipeline model identification
results using 1201 parameters. Figure 6a shows the pipeline inlet mass flow rate and pressure under
transient conditions. These measurements are used as the model input. Figure 6b presents the actual
and estimated mass flow rate values at the pipeline (training); it can be noted that estimated flow
rates from the Hammerstein model are almost the same as that of actual measurements. Figure 6c
presents errors between actual and estimated mass flow rate at the pipeline outlet; it can be seen
that error fluctuates between −0.05 to 0.05 kg/s, with root mean square error (RMSE) of almost zero
(0.0147). Similarly, Figure 7 presents the cross-validation results of estimated model or parameters. It
can be observed that the trained model was accurately predicting the mass flow rate for new boundary
conditions with RMSE of 0.0129.

Processes 2020, 20, x FOR PEER REVIEW 10 of 20 

 

There are several aspects that needs to be considered for the application of proposed technique 

in other pipelines. For instance, gas composition, pipeline boundary conditions, presence of system 

and sensor noise, length of pipeline, pipeline roughness, etc. Results obtained in this study are 

specified to the established conditions that are clearly mentioned above. If pipeline conditions and 

parameter are varied then, there is a need to tune design of experiment, number of estimated 

parameters and confidence interval of adaptive thresholds accordingly. 

3.3. Pipeline Model Identification and Validation 

A training data set with 9000 measurements are used to estimate system parameters using LSM 

(Equation (13)). These parameters are estimated offline. Then, these parameters are used to predict 

the pipeline outlet mass flow rate using Equation (14). Figure 6 presents the pipeline model 

identification results using 1201 parameters. Figure 6a shows the pipeline inlet mass flow rate and 

pressure under transient conditions. These measurements are used as the model input. Figure 6b 

presents the actual and estimated mass flow rate values at the pipeline (training); it can be noted that 

estimated flow rates from the Hammerstein model are almost the same as that of actual 

measurements. Figure 6c presents errors between actual and estimated mass flow rate at the pipeline 

outlet; it can be seen that error fluctuates between −0.05 to 0.05 kg/s, with root mean square error 

(RMSE) of almost zero (0.0147). Similarly, Figure 7 presents the cross-validation results of estimated 

model or parameters. It can be observed that the trained model was accurately predicting the mass 

flow rate for new boundary conditions with RMSE of 0.0129. 

 

Figure 6. Hammerstein model identification results (training), (a) pressure and mass flow rate signals 

at inlet, used as a model input, (b) actual mass flow rate signals at outlet, used as a model output. 

Estimated mass flow rate sign for given input and output signals, (c) modeling errors between actual 

and estimated mass flow rate. 

  

Figure 6. Hammerstein model identification results (training), (a) pressure and mass flow rate signals
at inlet, used as a model input, (b) actual mass flow rate signals at outlet, used as a model output.
Estimated mass flow rate sign for given input and output signals, (c) modeling errors between actual
and estimated mass flow rate.
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Figure 7. Validation of Hammerstein model with 1201 parameters and noise ratio of 0.2%, (a) Pressure
and mass flow rate signals at inlet, used as a model input, (b) actual mass flow rate signals at outlet,
used as a model output. Estimated mass flow rate sign for given input and output signals, (c) Modeling
errors between actual and estimated mass flow rate.

3.4. Adaptive Threshold-Based Leak Detection

Figure 8 shows adaptive control limits to monitor the mass flow rate under transient conditions.
It can be observed that mass flow rate measurements are within upper and lower bounds of adaptive
thresholds, indicating normal conditions. However, these thresholds are violated after 30 h (time of
leak) thus, indicating a faulty state as shown in Figure 9. Leakage of 5% was introduced in a pipeline
and it can be observed that there was a significant violation of limits for 5% leakage. The smallest
detectable leak in the study was 1% but with very low accuracy.
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Figure 10 presents the binary signals for the leaking pipeline. It can be observed that from 27 to
approximately 30 h, signals are at 0 indicating normal conditions and, after 30 h (leak time) continuous
signals of 1 (alarm) was predicted, indicating the existence of leak after 30 h. It can also be noted that
some additional time of approximately 30.13 h was required to detect a first leaking signal, while, the
actual leak time is exactly 30 h as shown in Figure 9.
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3.5. Performance Evaluation of Fault Detection System

To test the performance of the proposed system, various performance indicators are calculated by
changing the number of parameters, leak location, leak size and, percentage noise as mentioned in
Section 2.4.

3.5.1. Effect of Several Parameters and Leakage Locations on Fault Detection

Fault detection performance indices are calculated for various number of parameters, i.e., 41, 81,
201, 401, 801, 1201, 1601, 2001, 2401, 2801, 3601 and 4801. To incorporate process noise, 0.2% white
noise was added in the signals and leakage of 0.05 kg/s (5% of nominal flow) was assumed for all
cases. Table 4 presents the performance of the proposed technique when there was a leak near the
inlet (10 km from inlet) using various parameters. Tables 5 and 6 show a leak at 45 km and 70 km,
respectively, which was near the outlet of a pipeline.



Processes 2020, 8, 474 13 of 21

Table 4. Leak detection system performance measures with several parameters at 10 km, leak size was
5% of the nominal flow and, noise ratio was 0.2%.

Number of
Parameters Ac (%) ER (%) Se (%) Sp (%) Pr (%) FS (%) LDT (min)

41 13.29 86.70 0.29 100 100 0.518 541.67
81 13.38 86.62 0.38 100 100 0.77 1083.20

201 18.59 81.40 6.38 100 100 12.00 62.83
401 83.48 16.51 81.00 100 100 89.50 12.00
801 92.36 7.63 91.22 100 100 95.41 20.67
1201 89.37 10.62 87.77 100 100 93.49 33.17
1601 85.98 14.02 83.87 100 100 91.23 36.00
2001 77.99 22.00 74.69 100 100 85.16 22.17
2401 64.13 35.86 58.75 100 100 74.02 76.33
2801 41.00 58.96 32.19 100 100 48.72 48.70
3601 18.35 81.64 6.17 99.53 99.88 11.63 16.67
4801 70.70 29.29 66.40 99.35 99.85 79.76 79.76

Table 5. Leak detection system performance measures with several parameters at 45 km, leak size was
5% of the nominal flow and, noise ratio was 0.2%.

Number of
Parameters Ac (%) ER (%) Se (%) Sp (%) Pr (%) FS (%) LDT (min)

41 20.86 79.13 8.99 100 100 16.51 121.50
81 20.73 79.26 8.84 100 100 16.25 113.67
201 21.10 78.89 9.27 100 100 16.97 103.33
401 35.38 64.61 25.69 100 100 40.87 26.00
801 58.24 41.75 51.97 100 100 68.40 14.67

1201 82.90 17.00 80.33 100 100 89.09 11.00
1601 94.28 5.71 93.43 100 100 96.60 9.50
2001 97.98 2.01 97.68 100 100 98.82 8.33
2401 98.65 1.34 98.45 100 100 99.22 7.33
2801 98.50 1.497 98.30 100 100 99.13 6.33
3601 98.45 1.547 98.26 99.72 99.95 99.10 12.00
4801 98.56 1.43 98.44 99.35 99.90 99.16 3.83

Table 6. Leak detection system performance measures with several parameters at 70 km, leak size was
5% of the nominal flow and, noise ratio was 0.2%.

Number of
Parameters Ac (%) ER (%) Se (%) Sp (%) Pr (%) FS (%) LDT (min)

41 56.65 43.34 50.15 100 100 66.80 91.50
81 62.34 37.65 56.70 100 100 72.36 80.00
201 94.08 5.91 93.19 100 100 96.47 10.33
601 99.42 0.58 99.33 100 100 99.66 5.50
801 99.68 0.314 99.63 100 100 99.81 4.00

1201 99.72 0.27 99.68 100 100 99.84 3.00
1601 99.78 0.21 99.75 100 100 99.87 2.83
2001 99.73 0.26 99.69 100 100 99.84 2.67
2401 99.79 0.20 99.76 100 100 99.88 2.50
2801 99.75 0.241 99.72 100 100 99.86 3.00
3601 99.78 0.217 99.75 100 100 99.87 3.00
4801 99.57 0.42 99.75 98.42 99.76 99.75 2.50

Overall, accuracy, sensitivity and F-score of leak detection increased by increasing the number
of parameters. This trend was true for the leakage at 45 km and 70 km, but for the leakage at 10 km
and parameters higher than 1000, accuracy of leak detection started to descend as the number of
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parameters are increased. The reason of this decrement in performance was due to the small leak size
and long-distance pipeline. When small leaks happened near the inlet, the weaker pressure signals are
received at the outlet (as pressure decreases with increase in length). With high number of parameters,
these weak fault signals are mixed with system transients and noise, thus reducing the performance of
leak detection. In contrast, the error ratio and LDT has the opposite trend, as compared to accuracy.
Specificity and precision of a system was 100% for the parameters up to 3601 (0% FAR), as the number
of parameters was increased from 3601, the specificity started decreasing from 100% thus, raising
false alarms.

3.5.2. Selection of Parameters

The decision on the number of parameters can be made by considering the attributes like leak
detection performance, leak detection time, computational time and FAR. To select the best possible
solution, one must do a trade-off among these attributes. First, for the leak detection performance,
the average F-score of parameters at different locations is compared in Figure 11. It can be noted
that the highest percentages of the average F-score (94.14% and 94.64%) was achieved with 1201 and
2001 parameters, respectively. Average F-score is calculated based on the individual F-score of leak
detection at 10 km, 40 km, and 70 km.
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The computational time required by 2001 was approximately double as compared to 1202
parameters but has almost the same F-score value. From the Tables 3–5, it can be observed that for the
higher number of parameters, the leak detection time was much smaller than the lower ones. In this
situation, there was a trade-off between computational time and detection time. If detection time was
at utmost priority one must go for higher parameters, and if there was a limitation of computation
power so low number of parameters are suggested. The average detection time difference for 1201 and
2001 parameters was found to be around 4.8 min.

3.5.3. Effect on Fault Detection by Increasing Noise

High noise in the signals notably increased leak detection time as compared to noise-free data.
It can be seen in Table 7 that, when noise was 0%, the leak detection time was less than a half
minute (10.2 s). When noise was increased to 0.1%, detection time suddenly increased to 3 min while
maintaining the F-score. Increasing noise in the signals up to 0.5% maintains F-score to more than
99.5% but, it takes much longer time to detect leakage as noise increases. When there was varying
noise from 0 to 0.5% in the system, then the average leak detection F-Score was around 99.8% and the
average detection time was around 2.8 min.
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Table 7. Leak detection system performance measures with increasing noise. Leak size was 5% of the
nominal flow; 1201 parameters are used for the mass flow rate estimation.

Noise (%) Ac (%) ER (%) Se (%) Sp (%) Pr (%) FS (%) LDT (min)

0.0 99.73 0.26 99.69 100 100 99.84 0.17
0.1 99.77 0.22 99.73 100 100 99.86 3.00
0.2 99.75 0.24 99.72 100 100 99.86 3.00
0.3 99.64 0.35 99.59 100 100 99.79 3.17
0.4 99.56 0.43 99.50 100 100 99.79 4.00
0.5 99.27 0.72 99.16 100 100 99.58 3.67

Average 99.62 0.37 99.565 100 100 99.78667 2.835

3.5.4. Effect on Fault Detection Performance by Varying Leak Size

The performance results of ATBLD for various leak sizes are mentioned in Table 8. Leakages of
size 3% and higher are detected with an F-score of more than 99.5% and for leaks smaller than 3%
F-score started to decrease while maintaining the specificity to 100% (same as 0% FAR). As leakage
size was increased, LDT was significantly reduced. For instance, 1% leak detection time was 73.3 min
whereas, leakage of 2% was detected in only 8.83 min and for the leakage of 5%, the detection time was
reduced to 3 min. As can be noted leakage of 0.05 kg/s (1%) was equal to the maximum modeling error
of the mass flow rate (Figure 6c). Thus, 1% leakage requires significantly higher detection time than
higher degree leaks.

Table 8. Leak detection system performance measures with ascending leak sizes, noise was kept 0.2%;
1201 parameters are used for the mass flow rate estimation.

Leak Size (%) Ac (%) ER (%) Se (%) Sp (%) Pr (%) FS (%) LDT (min)

1 32.99 67.00 22.94 100 100 37.32 73.33
2 95.95 4.06 95.32 100 100 97.60 8.83
3 99.48 0.51 99.40 100 100 99.70 4.67
4 99.70 0.33 99.61 100 100 99.80 4.17
5 99.75 0.24 99.72 100 100 99.86 3.00

3.6. Comparison between Proposed Methodology and Recent Studies

In Table 9, comparison is made between the proposed methodology and other reported literature.
Several advantages and disadvantages related to fault detection are mentioned for each technique.
The parameters that are important for fault detection studies are: type of fluid, length of a pipeline,
boundary conditions, amount of data required, computational time/cost, missed and false alarms, leak
detection time and accuracy.
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Table 9. Comparison between our work and recent leak detection studies.

Year Detection
Technique Advantage Disadvantage Best Performance Under Reference

2020 Model Identification
and ATBLD

- High accuracy under
transient conditions

- Less amount of data required
for training

- Low Cost
- Easily extended for leak

localization and size estimation
- Easy to make

physical interpretations

- Requires detailed study on
design of experiment and
selection of parameters

- Detailed tuning is required
for new system

Transient conditions This Study

2019 SVM
- Good classifier for high

dimensional faults
- Low Cost

- Detailed tuning is required
for new system

- Difficult to make
physical interpretations

- FAR in Transients

Steady state conditions [19]

2018 PCA - Low Cost
- Good for Multivariate systems

- Detailed tuning is required
for new system

- Requires addition effort to
combine with other
techniques, e.g., Q-Statistics

- FAR in Transients

Steady state conditions [27]

2018 IRF

- Less amount of data are
required for training

- Low Cost
- Easily extended for leak

localization and size estimation

- Requires detailed study on
design of experiment and
selection of parameters

- Detailed tuning is required
for new system

Transient conditions [38]
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Table 9. Cont.

Year Detection
Technique Advantage Disadvantage Best Performance Under Reference

2017 ANN
- Low Cost
- Once trained, then have

high speed

- Large data sets are required
for training

- Detailed tuning is required
for new system

- Very difficult to make
physical interpretations

- FAR in Transients

Steady state conditions [24]

2017 Observer

- High accuracy
- Generic: Easily applied to

any pipeline
- Easily extended for leak

localization and size estimation

- Advanced computational
facility is required

- Required complex
modeling for good results

Transient conditions [14]

2015 RTTM

- High accuracy
- Generic: Easily applied to

any pipeline
- Easily extended for leak

localization and size estimation

- Advanced computational
facility is required

- Required complex
modeling for good results

Transient conditions [31]

Where, ATBLD = Adaptive thresholds-based leak detection. SVM = Support vector machines. PCA = Principle component analysis. IRF = Impulse response function. ANN = Artificial
neural network. RTTM = Real time transient modeling.
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4. Conclusions

A modified methodology for leak detection in gas mixture pipelines under transient conditions
was proposed based on the monitoring of the outlet mass flow rate signals via adaptive thresholds.
Effectiveness of the proposed method was proved by evaluating its leak detection performance
under various leakage locations (Section 3.5.1), leakage sizes (Section 3.5.3), and signal to noise ratio
(Section 3.5.4). Based on detection accuracy, required computational effort, detection time and FAR, the
Hammerstein model structure with 1201 to 2001 parameters are found to be the most feasible choices
(Section 3.5.2). Leakage at various pipeline locations (10 km, 45 km and, 70 km) was successfully
detected with 0% FAR. Increasing the percentage of noise (up to 0.5%) in the data results in increased
leak detection time while maintaining the excellent performance of the detection. Smallest leak size of
1% was tested, which was detected with an F-score of 37.32% whereas, a 2% leak was detected with an
F-score of 97.6% and leaks above 2% are detected with an F-score of above 99.5% (Table 8). According
to our findings, ATBLD was proved to be a reliable, robust, and cost-effective methodology to detect
small leaks in long gas mixture pipelines under transient conditions.

The future research work is in progress to extend the current method to estimate leakage size and
location. Leak detection for higher dimensions leaks and multiphase flow is also in line.
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Nomenclature

FDD fault detection and diagnostics
SCADA supervisory control and data acquisition
ARX autoregressive exogenous
NARX nonlinear ARX
ARMAX autoregressive moving average exogenous
NARMAX nonlinear ARMAX
BJ Box–Jenkins
OE output error
HM Hammerstein model
WM Weiner model
VL Volterra model
HWM Hammerstein and Weiner model
ANN artificial neural network
SVM support vector machine
PCA principle component analysis (PCA)
RTTM real time transient modeling
IRF impulse response function
ITA inverse transient analysis
APRBS amplitude modulated pseudo-random binary signals
SNR signal to noise ratio
DOE design of experiment
LSM least square method
SISO single input single output
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FAR false alarm rate
LDT leak detection time
OLGA dynamic simulator
ATBLD adaptive thresholds-based leak detection
Ac accuracy
ER error rate
Se sensitivity
Sp specificity
Pr precision
FAR false alarm rate
FS F-score
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