
future internet

Article

PACER: Platform for Android Malware Classification,
Performance Evaluation and Threat Reporting †

Ajit Kumar 1,*, Vinti Agarwal 2, Shishir Kumar Shandilya 1, Andrii Shalaginov 2,
Saket Upadhyay 1 and Bhawna Yadav 1

1 School of Computing Science and Engineering, VIT University Bhopal, Bhopal 466114, India;
shishir.sam@gmail.com (S.K.S.); saketupadhya@gmail.com (S.U.); bhawna.yadav2018@vitbhopal.ac.in (B.Y.)

2 Department of Information Security and Communication Technology (IIK), Norwegian University of Science
and Technology, 2815 Gjøvik, Norway; vinti.agarwal3@gmail.com (V.A.); andrii.shalaginov@ntnu.no (A.S.)

* Correspondence: ajitkumar.pu@gmail.com
† This paper is an extended work from earlier work “PACE: Platform for Android Malware Classification and

Performance Evaluation”.

Received: 15 January 2020; Accepted: 7 April 2020; Published: 12 April 2020

Abstract: Android malware has become the topmost threat for the ubiquitous and useful Android
ecosystem. Multiple solutions leveraging big data and machine-learning capabilities to detect
Android malware are being constantly developed. Too often, these solutions are either limited to
research output or remain isolated and incapable of reaching end users or malware researchers.
An earlier work named PACE (Platform for Android Malware Classification and Performance
Evaluation), was introduced as a unified solution to offer open and easy implementation access
to several machine-learning-based Android malware detection techniques, that makes most of the
research reproducible in this domain. The benefits of PACE are offered through three interfaces:
Representational State Transfer (REST) Application Programming Interface (API), Web Interface,
and Android Debug Bridge (ADB) interface. These multiple interfaces enable users with different
expertise such as IT administrators, security practitioners, malware researchers, etc. to use their
offered services. In this paper, we propose PACER (Platform for Android Malware Classification,
Performance Evaluation, and Threat Reporting), which extends PACE by adding threat intelligence
and reporting functionality for the end-user device through the ADB interface. A prototype of the
proposed platform is introduced, and our vision is that it will help malware analysts and end users
to tackle challenges and reduce the amount of manual work.

Keywords: android malware; machine learning; static and dynamic features; cyber threat intelligence;
threat report generation; reproducible research

1. Introduction

Malware binary is a compiled “set of instructions” or a “computer program” written intentionally
to perform malicious activities that range from simple pop-up display to unauthorized access of the
device [1]. In last two decades, malicious software has been targeting almost all kinds of computing
platforms. Over a decade ago, the Android platform gained the majority market share of smartphone
operating systems (OS) (see Figure 1—For 2020 only January data is used while for other years
an average of 12 months data is used.)and has become the de-facto OS for smartphones (https://gs.
statcounter.com/os-market-share/mobile/worldwide/2015). This popularity has attracted attackers
and malware writers alike and resulted in exponential growth in Android malware (malware specially
written for Android OS as the target is called Android malware). Figure 2 depicts Android malware
growth from 2012–2019. Recent security threat reports from McAfee (https://www.mcafee.com/
enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf) and Quickheal (https://www.

Future Internet 2020, 12, 66; doi:10.3390/fi12040066 www.mdpi.com/journal/futureinternet

http://www.mdpi.com/journal/futureinternet
http://www.mdpi.com
https://orcid.org/0000-0003-0574-7843
https://gs.statcounter.com/os-market-share/mobile/worldwide/2015
https://gs.statcounter.com/os-market-share/mobile/worldwide/2015
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2019.pdf
https://www.quickheal.co.in/documents/threat-report/QH-Annual-Threat-Report-2019.pdf
https://www.quickheal.co.in/documents/threat-report/QH-Annual-Threat-Report-2019.pdf
http://dx.doi.org/10.3390/fi12040066
http://www.mdpi.com/journal/futureinternet
https://www.quickheal.co.in/documents/threat-report/QH-Annual-Threat-Report-2019.pdf


Future Internet 2020, 12, 66 2 of 19

quickheal.co.in/documents/threat-report/QH-Annual-Threat-Report-2019.pdf) stated not only a rise
in Android malware, but also a significant rise in its complexity and scope, e.g., McAfee’s highlighted
that the creation of recent mobile malware involves broader groups than an individual attacker who is
simply spying, or sending premium SMS from the victim’s mobile phone.

Figure 1. Smartphone Market Share 2015–20 [statcounter.com].

Figure 2. Android Malware Growth 2012–19 [AV-test.org].

Typically, malware detection techniques are grouped into two main classes i.e., signature-based
and non-signature-based [2]. Signature-based detection determines signature, i.e., “a specially arranged
sequence of bytes” by scanning a program and matching it with known signatures database to
decide whether the program is malicious or not. Non-signature-based detection creates the behavioral
profile of a program by executing it in a safe environment and measures its deviation from known
behaviors to identify whether the program is malicious or benign. The traditional signature-based
techniques have limitations of a time gap between sample detection in the wild to signature update
of the end-user client, which hinders their capabilities of detecting “unknown” and “zero-day”
malware [3]. These techniques also demand high computational resources that burden the end-user
device. To address these limitations and bottlenecks, non-signature-based techniques have been
extensively used in recent decades [4].

In addition to the above, smartphones (as well as other smart devices) pose extra challenges
for malware detection techniques in terms of low computation, memory, and power availability.
These resource limitations make the use of signature-based techniques very challenging for Android
device security. The small and touch-sensitive smartphone screen also poses challenges (unnoticed

https://www.quickheal.co.in/documents/threat-report/QH-Annual-Threat-Report-2019.pdf
https://www.quickheal.co.in/documents/threat-report/QH-Annual-Threat-Report-2019.pdf
https://www.quickheal.co.in/documents/threat-report/QH-Annual-Threat-Report-2019.pdf


Future Internet 2020, 12, 66 3 of 19

touch, in which, often, attackers take advantage of the small and touch-sensitive screen and hide
a button from the plain sight of end users. Unaware and naive users touch (click) on the hidden
button which provides a way to perform many malicious activities by attacker, reporting, etc.) for
anti-malware solutions. For example, in a recent work, authors have discussed the human factors
(misconfiguration of various features such as permissions, network access etc.) for Android security
threats and proposed solutions to minimize human roles by analyzing the granted security at runtime
and revoking them as required; many of these misconfigurations are also caused by the physical
appearance of the smartphone [5].

There exists a large piece of prior work related to malware detection, and authors have
proposed solutions specifically for detecting malware in Android. Kimberly et al. [6] and many
recent studies [7–11] have presented an in-depth analysis of Android malware detection techniques.
For example, Junyang Qiu et al. [9] reviewed the code analysis and ML-based Android malware
detection techniques and listed future challenges in Android malware analysis and detection research.

The following research works have been done in the direction of providing online services
and platforms to perform analysis and classification of Android malware, quite similar to what we
proposed in this article. In [12], the author developed a web-based Android malware detection and
classification application following client–server architecture which helps users to submit and analyze
apps based on static analysis. In Table 1, a summary of the key features of various similar platforms is
presented. After a thorough study of these platforms, we observe that “most of these platforms are
focused only on malware static or/and dynamic feature analysis and many of them are either not
functional or not updated according to a recent version of Android OS”. To the best of our knowledge,
no online or offline tool exists that offers ML-based Android malware detection and classification
services. However, we came across a few works where implementation code and dataset are publicly
available [1,13,14]. These isolated studies motivated us to propose a platform which can reproduce
distributed Android malware research on one platform and make it available to users holding different
responsibilities and domain expertise.

Our earlier proposed work [15] i.e., a Platform for Android malware Classification and
performance Evaluation (PACE) is built upon state-of-art in Android malware detection, in particular,
ML-based and non-signature-based techniques. The reproducible research is one of the main
motivations of our work using research contributions from many authors and building an end-user
product which serves the need for multiple stakeholders in the security community. The core idea was
presented in [15] and this proposed work is a substantial improvement over PACE. In this proposed
work (Platform for Android Malware Classification, Performance Evaluation and Threat Reporting
(PACER)), we have extended the functionality of PACE by enhancing threat intelligence functionality
and providing a proper reporting module for the end-user device. The new threat intelligence module
uses PACE for malware scanning and also scans the device against various published Common
Vulnerabilities and Exposures (CVEs) for Android platform and apps and uses app metadata to
find other threat actors like outdated apps, apps with negative reviews, etc. The reporting module
aims to simplify the threat and vulnerability reporting by providing an in-depth report (PDF format)
on malicious apps, vulnerable apps (app versions with known CVEs), outdated apps, etc. for any
Android smartphone.

The major contributions of PACER are:

1. Reproducible and transparent research;
2. Improved Android malware detection;
3. Multi-application integration;
4. Triaging and fast incident response;
5. Android threat intelligence;
6. Simple, descriptive and readable in-device threat report.



Future Internet 2020, 12, 66 4 of 19

The performance gain and differentiated points regarding the proposed work PACER lies in its
capabilities to provide an easy research platform for Android malware detection, generating threat
intelligence and effective reporting. It must be noted that the PACER does not improve the performance
of any individual Android malware detection techniques, but collectively it will help to design, develop,
and share detection techniques to the users (researchers, end users, and product developers).

Table 1. Online Platform Related to Android Malware.

Platform Features Open-Source ML-Based Status

VirusTotal
(https://www.
virustotal.com/)

Scan with Commercial
AV No No Active

Apkdetect (https://
www.apkdetect.com)

Android malware
analysis and
classification

No No Limited Access

AndroZoo (https:
//androzoo.uni.lu/)

Android Dataset and
Analysis No No Only Dataset

Access

Mobile-Sandbox (http:
//mobilesandbox.
org)

Analysis and Forensic
Features extraction

Yes (https://
github.com/
mspreitz/
mobile-
sandbox)

No Outdated

NVISO
ApkScan (https://
apkscan.nviso.be/)

Static and Dynamic
Scanning No No

Going
Offline (https:
//blog.nviso.be/
2019/10/01/
sunsetting-nviso-
apkscan/)

JoeSandbox (https:
//www.joesandbox.
com/#android)

Analysis and Detection No No Limited Access

MobSF (https://
github.com/MobSF/
Mobile-Security-
Framework-MobSF)

Static and Dynamic
Analysis Yes No Active (Local

Machine)

SandDroid (http:
//sanddroid.xjtu.
edu.cn)

Static and Dynamic
Analysis No No Active

AMAaaS (https:
//amaaas.com)

Static and Dynamic
Analysis No No Active

AVC UnDroid (https:
//undroid.av-
comparatives.org/
about.php)

Static Analysis No No Active

PACE Analysis and Detection Yes Yes Active

The remainder of this paper is organized as follows. In Section 2, we describe the related literature
and summarize research gaps. In Section 3, we describe the architecture and other components of the
proposed framework. A detailed description of the original system PACE is presented in Section 4,
upon which we build substantially improved PACER. The experimental setup and implementation
details are elaborated in Section 5. Finally, the paper is concluded in Section 6.

https://www.virustotal.com/
https://www.virustotal.com/
https://www.apkdetect.com
https://www.apkdetect.com
https://androzoo.uni.lu/
https://androzoo.uni.lu/
http://mobilesandbox.org
http://mobilesandbox.org
http://mobilesandbox.org
https://github.com/mspreitz/mobile-sandbox
https://github.com/mspreitz/mobile-sandbox
https://github.com/mspreitz/mobile-sandbox
https://github.com/mspreitz/mobile-sandbox
https://github.com/mspreitz/mobile-sandbox
https://apkscan.nviso.be/
https://apkscan.nviso.be/
https://blog.nviso.be/2019/10/01/sunsetting-nviso-apkscan/
https://blog.nviso.be/2019/10/01/sunsetting-nviso-apkscan/
https://blog.nviso.be/2019/10/01/sunsetting-nviso-apkscan/
https://blog.nviso.be/2019/10/01/sunsetting-nviso-apkscan/
https://blog.nviso.be/2019/10/01/sunsetting-nviso-apkscan/
https://www.joesandbox.com/#android
https://www.joesandbox.com/#android
https://www.joesandbox.com/#android
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
http://sanddroid.xjtu.edu.cn
http://sanddroid.xjtu.edu.cn
http://sanddroid.xjtu.edu.cn
https://amaaas.com
https://amaaas.com
https://undroid.av-comparatives.org/about.php
https://undroid.av-comparatives.org/about.php
https://undroid.av-comparatives.org/about.php
https://undroid.av-comparatives.org/about.php


Future Internet 2020, 12, 66 5 of 19

2. Background

The popularity and storage capacity (personal and financial informational) of Android devices
have made them a prime target for attackers. There have been many previous works which have
proposed solutions to detect and prevent malware attacks on Android devices. Machine Learning
(ML)-based solutions are addressing bottlenecks such as the inability to detect “unknown” and
“zero-day” malware and regular signature updates of traditional signature-based detection. In 2012,
Google integrated Bouncer (http://googlemobile.blogspot.com/2012/02/android-and-security.html)
into the Google Play Store which scans every application and developer account before allowing them to
appear in the store, and then keeps a regular check on in-device apps through Google Play Protect (https://
support.google.com/accounts/answer/2812853?hl=en). This work is based on machine-learning algorithms
and scanning devices in real time. Over time, it has been demonstrated that Google’s Bouncer is
not perfect at detecting malicious Android applications and specially crafted malware can evade
detection (https://jon.oberheide.org/blog/?p=1004).

In the literature, ML-based Android detection is either considered to be a binary-class or multi-class
classification problem. In the case of binary classification, malware and benign software are considered
to be two classes. However, in multi-class classification, Android malware is grouped into various
malware families [16–20]. Currently, the proposed work is focused on binary classification and does
not support multi-class classification, which is mostly used for finding malware families i.e., variants
of known malware. Based on the type of feature extraction method, the ML-based Android malware
detection is grouped into two main categories i.e., static and dynamic detection. Static detection works
with features that are extracted through static analysis, and the dynamic detection techniques are based
on features that are extracted through dynamic analysis. The Section 2.1 summarizes and presents
solutions proposed in the literature related to static and dynamic feature-based detection (Sections 2.1.1
and 2.1.2, respectively). The generation of a report based on the various OS and app activities on
Android devices is a key area of research that attempts to fulfill different requirements such as legal
requirements, security analysis, and threat intelligence through monitoring, observing, extracting,
and analyzing apps to OS interactions and vice versa. Section 2.1.3 provides a brief introduction of the
literature related to different types of the reporting system for Android devices.

2.1. Machine-Learning-Based Android Malware Detection

In the last decade, various ML methods have been developed for detecting and classifying
Android malware. Mostly, these methods are non-signature-based and are capable of handling
some of the common bottlenecks of traditional signature-based detection methods, such as the
detection of “unknown” and “zero-day” malware. Based on the feature extraction method, ML-based
techniques are grouped as static, dynamic and hybrid [12]. In the static method, the Android app is
not executed, while the dynamic method executes samples in a controlled environment. The hybrid
method is a combination of static and dynamic methods. In the subsequent Sections 2.1.1 and 2.1.2,
literature works related to the static and dynamic method are presented and discussed in detail.
Hybrid features are not considered in the proposed work and are normally the combination of static
and dynamic methods, thus not considered in this work.

2.1.1. Static Features-Based Detection

In the static method, features are extracted from the Android application package, i.e., .apk without
installing or executing them. The static analysis focuses mainly on the structure and static features of
apps, thus the static analysis is simple and faster than the dynamic analysis. There have been many
research works based on static features such as permissions, metadata, API calls, intent, and various
other information obtained from the manifest file. Table 2 lists and summarizes some of the popular
works based on static features and ML-based Android malware detection (False Positive Rate (FPR),
True Positive Rate (TPR), Not Available (NA), Support Vector Machine (SVM)). The permissions

http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://support.google.com/accounts/answer/2812853?hl=en
https://support.google.com/accounts/answer/2812853?hl=en
https://jon.oberheide.org/blog/?p=1004


Future Internet 2020, 12, 66 6 of 19

requested by Android applications have been the major static feature and are used in many research
works to train machine-learning models [1,21–27]. Most of the earlier works have used all permissions
as a feature vector (in a few of the works, feature selection is applied later) while a recent work
SigPID [28] applies three levels of pruning to identify the most significant permissions (22 permissions)
to address the scaling issues of earlier works and make scanning faster. The authors achieved 93.62%
accuracy in 4–32 times less analysis time. Besides permission features, other static features such as
API calls [29], intents, app metadata [21] and other values from the manifest file are used. The static
features are also extracted from the source code performing reverse engineering using various tools of
the Android application [27]. These static features are used either individually or in combination with
other static features [30].

Table 2. Android Malware Detection Using Static Features.

Authors Features Performance Metrics Dataset Best Model
Accuracy FPR TPR

Di Cerbo et al. [21]
Permission and
Metadata NA NA NA Not Available Apriori

Sanz et al. [22] Permission 86.41 0.19 0.91 Not Available Random forest

Sanz et at. [31] Manifest 94.83 0.05 0.94 Not Available Random Forest

Ghorbanzadeh et el. [23] Permission 0.65 0.65 0.65 Not Available
Neural
Network

Yerima et al. [24] Permission 92.1 0.06 0.90 Available Bayesian

Peiravian et al. [29]
Permission
and API 93.60 0.92 0.88 Available Bagging

Daniel et al. [30]
Manifest and
Source code 93.90 NA NA Available SVM

Ajit et al. [1] Permission 94.84 0.95 0.95 Available Random Forest

Milosevic et al. [27] Permission 89 NA NA Available Ensemble

Milosevic et al. [27] Source Code 95.1 NA NA Available Ensemble

Jin Li et al. [28] Permission 93.62 NA NA Not available SVM

2.1.2. Dynamic Features-Based Detection

Dynamic features are extracted from the Android application package, i.e., .apk after installing or
executing them in a controlled environment (emulator, virtual machine, etc.). The dynamic analysis
focuses mainly on running time and interactive features of apps, therefore it is more complex and
slower than the static analysis. The usability of dynamic analysis, in fact, lies in the ability to
detect “obfuscated” and “polymorphic” malware which mostly escapes under static analysis [4].
Finding optimum running time for dynamic analysis is also difficult, as the start of malicious
activities can vary from sample to sample [32]. The dynamic features are extracted through system
calls, network activities, user interaction, Central Processing Unit (CPU) consumption, and other
phone activities [4]. Table 3 lists and summarizes some of the popular works related to dynamic
analysis using dynamic features and ML-based Android Malware detection (Input/Output (I/O),
Read/Write (R/W)).



Future Internet 2020, 12, 66 7 of 19

Table 3. Android Malware Detection Using Dynamic Features.

Authors Features Performance Metrics Best Model
Accuracy FPR TPR

BrandonAmos et al. [33] App traces 94.53 14.85 97.66 Random Forest

Burguera et al. [34]
User’s trace
(Crowdsourcing) NA NA NA Clustering

Vaibhav et al. [35] Only Dynamic analysis NA NA NA NA

Chieh Wu et al. [32] Network, File I/O etc. 86.1 0.857 NA SVM

Alam et al. [36]
Features based on CPU,
Memory, Battery etc. 99 NA NA Random Forest

Dai et al. [37]
API and corresponding
arguments NA NA NA NA

Zhenlong Yuan et al. [38] Static and Dynamic 96.5 NA NA
Deep Learning
(DBN)

DroidDetector [39] Static and Dynamic 96.76 NA NA
Deep Learning
(DBN)

Shabtai et al. [40]
Network and Device
Activities NA NA NA Anomaly-Based

Jang et al. [41] Integrated system logs 98 NA NA Profiling

Chang et al. [42]
Network activities, and File
R/W 97 3 97.1 Random Forest

2.1.3. Threat Intelligence Reporting

A report is an organized representation of data that helps to understand data easily and is helpful
in sharing the information with others. The two main attributes of any report are that it must be
for a specific audience and for a specific purpose (https://en.wikipedia.org/wiki/Report). In this
regard, a technical report becomes time-consuming and tedious to write and demands a specific set of
skills for both the creator and the reader. For example, presenting the security analysis report of an
Android device that includes various threats posed by installed applications and the Android OS is
very complex and requires high technical skills. Thus, the automatic generation of a report based on
the various OS and app activities on Android devices is a key area of research that makes attempts
to fulfill different requirements such as legal requirements, security analysis, and threat intelligence
through monitoring, observing, extracting, and analyzing apps to OS interactions and vice versa.
Kevin et al. have presented an automated crash reporting system name CRASHSCOPE [43]. The main
task of CRASHSCOPE is to generate an automated augmented report after the occurrence of a crash in
an Android device by any app. The report includes screenshots, crash reproduction steps, and script,
and stack trace. The author Justin Grover has proposed a reporting system for forensic purposes
that automatically collects system activities and provides a report for various stakeholders such as
incident responders, security auditors, proactive security monitors, and forensic investigators [44].
This reporting system provides system traces as a dataset, but similar reporting can be also used for
threat intelligence reporting. The ANANAS [45] also has a reporting module that generates a readable
report by applying various filters on the stored raw data in the database. The raw data (various log
files) are collected and stored in the database after performing the analysis through other modules
of ANANAS. Moran et al. presented their work FUSION which helps in the automation of bug
reproduction and reporting for mobile apps [46]. In this paper, we propose PACER, which extends
PACE by adding threat intelligence and reporting (pdf) for the end-user device through ADB interface.

https://en.wikipedia.org/wiki/Report


Future Internet 2020, 12, 66 8 of 19

3. PACER: Platform for Android Malware Classification, Performance Evaluation,
and Threat Reporting

After going through the aforementioned literature on ML-based Android malware detection,
and studied the working of various platform related to Android malware and automated reporting
systems, our observations are summarized as follows:

• There are many quality studies on Android malware detection using both static and dynamic
features, but they all are up to academic research level and are not available to end users or
researchers in a usable form. Our earlier work PACE is an attempt to fill this gap between
academic research and the end user.

• The comparison of various detection techniques is complex and difficult because of varying
datasets and the unavailability of implementation of the earlier works. With PACE we offer
a common platform to compare the results of multiple methods on the same dataset and
evaluate performance.

• The reproducibility and transparency is an important concern of the applied research domain.
PACE provides a platform for conducting reproducible and transparent research.

• The implementation of many earlier studies and datasets are either closed source or available on
request. As research work grows older, keeping pace with contact and project becomes difficult,
as the research contact (i.e., website, link, email) became obsolete.

• Very often, research works are not available in a usable format, with various interface options
such as REST API, Web Interface, ADB, etc. PACE is a solution that makes research available to
different kinds of users i.e., from end users to security practitioners.

• With a centralized submission system, PACE would be very helpful for Android threat intelligence
by analyzing the sample daily and sharing the intelligence through the dashboard.

• Automatically generating a simple, meaningful, and readable threat intelligence report for the
user device is very important for convincing and making the naive and non-technical user
understand about security risks. With the extended work PACER, we try to address the issue of
threat accessibility and understandability for the naive user by providing a simple, meaningful
and readable report that has PACE scanning results along with other threat results such as CVE
matching, outdated apps, etc.

The proposed work PACER is an extension of our previous work PACE. It extends the functionality
of PACE and provides mechanisms to generate an automated threat intelligence report of an end-user
device. The Threat Intelligence Reporting (TIR) module can be developed in two ways either as
a plugin for existing PACE (can use ADB interface to access device) or as an independent system,
and can access PACE scanning through an API interface. With such open architecture, it is possible to
include other malware classification tools (which have interfaces to accept apk as input and provides
classification results as ‘malware’ or ‘benign’) into PACER along with PACE or by replacing it.

Currently, we have developed TIR as PACER, which is an independent system and uses PACE for
malware scanning results. Figure 3 depicts the architecture of PACER, which has PACE as a module.
PACER is mainly divided into three modules: Data Processing, Threat Analyzer, and Report Generator.
Each of these modules are explained in detail in the following sections.



Future Internet 2020, 12, 66 9 of 19

Figure 3. Block Representation of PACER.

3.1. Data Processing

Data processing has two main components: App Extractor and Pre-Processing. The App Extractor
component uses the ADB interface to extract all the installed apps on the attached smartphone. It is
very similar to the ADB interface of PACE, so adding a reporting module to PACE would be very simple,
but currently PACER is implemented as a separate tool for simplicity and ease of use. The Pre-Processing
component performs functions like extracting app name, version, etc. which can be used in the Threat
Analyzer module for vulnerability matching, outdated app detection, or getting a malware classification
result from PACE.

3.2. Threat Analyzer

The Threat Analyzer module is divided into three components: Outdated App Detector, Vulnerability
Matcher, and PACE. Each of these components provides threat intelligence such as threats due to
outdated, vulnerable, and malicious apps, respectively.

3.2.1. Outdated App Detector

An outdated app poses a serious threat for a smartphone because there are possibilities of existing
known vulnerabilities in the outdated version and attackers are often well versed with attacking
methods and target devices with such apps. The Outdated App Detector components takes the app
name and version as input and matches them with gathered information (metadata from app stores
such Google Play etc.). The output (such as whether app is outdated or not, and new version of app)
of Outdated App Detector is stored in a database that is used for report generation. This component is
important because many times only a popular app gets attacker attention and hence has a known CVE
number, while other apps, despite vulnerabilities, do not have a popular CVE number or a publicly
available patch. Hence such outdated apps pose a security risk in the case of a targeted attack because
only the original developer can make the patch available, through updated versions.

3.2.2. Vulnerability Matcher

Software vulnerabilities also known as bugs are coding errors that cause the system to make
an unwanted action [47]. The Common Vulnerabilities and Exposures (CVE) is the code prefix with
a unique number, which all known vulnerabilities get assigned. Each of these vulnerabilities are
reported by security practitioners and have a unique number. For most of these CVEs, proof-of-concept
(PoC) exploits are publicly available, so devices with app version with published CVEs are an easy
target [48,49]. The purpose of ethical disclosure and publication of vulnerability is to force the
maintainer of an application to release a patch for each CVE. Due to the lack of information and
knowledge, often naive users do not update their vulnerable apps. The Vulnerability Matcher component



Future Internet 2020, 12, 66 10 of 19

will match all the installed apps with known CVE databases and highlight the vulnerable apps
in the report. The vulnerability matching is a one-to-many problem, i.e., one app can have more
than one known CVE, so the Vulnerability Matcher must find all the CVEs and include them in the
report. As the CVE database contains all the reported vulnerabilities of the applications, so over time
there are many CVEs. By December 2019, CVE Database contained 5725 Android vulnerabilities.
Thus, each installed app on the device must search among these 5725 Android vulnerabilities,
which increases the space and time complexity. To reduce searching complexity, the best of three
string-search algorithms—Boyer–Moore string-search, Knuth–Morris–Pratt and Naive string-search
algorithm—is used. Table 4 shows that space requirement and time required for pre-processing and
string match of each algorithm.

Table 4. Comparison of String-Matching Algorithms.

Algorithms Pre-Processing Matching Space

Naive String-Search None θ(nm) None
Knuth–Morris–Pratt θ(m) θ(n) θ(m)
Boyer–Moore θ(m + k) O(mn) θ(k)

Boyer–Moore String algorithm is well suited for applications in which the pattern is much shorter
than the text or where it persists across multiple searches. The Boyer–Moore algorithm uses information
gathered during the pre-processing step to skip sections of the text, resulting in a lower constant factor
than many other string-search algorithms. Thus, the best result is shown by Boyer–Moore string
algorithm, and PACER uses this for CVE matching.

3.2.3. PACE: Platform for Android Malware Classification and Performance Evaluation

PACE is an online platform for the analysis and classification of Android malware using
machine-learning techniques. The overall workflow of PACE is divided into four components: (1) Model
Building (2) PACE Architecture (3) Interface and (4) Target Users. For content clarity and maintaining the
reading flow, a detailed discussion of various components of PACE is presented further in Section 4.

3.3. Report Generator

The Report Generator has a database and PDF generator components. The PDF generator takes
values from the database which has output of threat analyzer modules. Currently, the Report Generator
module provides a report of all installed apps upon a three-threat vector which includes outdated
apps, vulnerable apps, and malicious apps. The report of each app also includes suggestions such as
the app’s need to update or be removed, or if a new version is available. This threat vector can be
increased by adding more components to the threat analyzer module. This way, the customization of
the generated report is easy, and researcher can add/remove information into the report by adding
new modules for a new threat vector, or can restrict the information by applying a filter into a report
generator module. It is also worth mentioning that currently the PACER is only able to generate
a report in the PDF format, but as the analysis results are stored in a database, that can be exported to
other useful formats such as JSON and XML by developing suitable modules for respective formats.
The sample report of two devices are added into Supplementary Materials.

4. PACE: Platform for Android Malware Classification and Performance Evaluation

PACE provides malware classification results to PACER’s for creating simple, useful, and readable
reports. This section provides an in-depth explanation of all four components of PACE, namely Model
Building, PACE Architecture, Interface, and Target Users. Model Building is an offline process and
under this, various machine-learning models are trained. The PACE architecture is the core part
of the workflow and it offers analysis and classification services to users via multiple interfaces,



Future Internet 2020, 12, 66 11 of 19

i.e., REST API, Web Interface, and ADB. A user can interact with PACE by using any of these
interfaces. The different interface enables users with different expertise (such as non-technical users,
IT administrators, and security practitioners and malware researchers) to use offered services as
per demand. Figure 4 depicts the overall workflow of PACE and the interaction among different
components. In the following subsections, all four components of PACE are described in detail.

Figure 4. Workflow and Architecture of PACE. [M-Malware; B-Benign; SM-Static Model; DM-Dynamic Model].

4.1. Model Building

Model Building is a compulsory part of the platform. It performs all steps of the machine-learning
process such as data collection, pre-processing, feature extraction, training, testing, and saving the
trained and tested model. Model Building is an offline process, where models are trained separately
from the running instance of PACE and are added incrementally to PACE on a completion basis.
The selection and addition of a model depend upon the author’s permission and legal boundary to
reproduce the selected research works. Currently, for testing and demo purposes, we have trained
two models based on Random Forest and Support Vector Machine. These models are based on static
features (permissions) and have accuracy of 68% and 93% without any feature engineering or parameter
tuning of algorithms, respectively. In Figure 4, the first vertical layer depicts the Model-Building process
from dataset collection to the saved trained model.

The Figure 5 depicts the output of both trained models; in similar ways, the result of other models
will be displayed after they are added to the PACE.

Figure 5. Output of Trained models.

The dataset used for training models is the same and collected from AndroZoo
project (https://androzoo.uni.lu/). During the pre-processing phase, depending on the features

https://androzoo.uni.lu/


Future Internet 2020, 12, 66 12 of 19

a model is using, several operations are performed on each sample from the collected dataset. These
are given below:

1. File Type Detection: As a first step, it is very important to detect the file type of each sample since
further steps are file type-dependent.

2. Duplicate Removal: The same sample in the dataset can be present with a different file name.
To have only a unique sample in the dataset, file hash is used to filter duplicate samples.

3. Class Labeling: Since PACE is used to perform binary classification, the dataset should have
samples from both classes. Class labels are decided based on VirusTotal result. We considered
a sample as benign if the VirusTotal’s engine shows that the sample is clean, otherwise the sample
is considered to be malware.

4. Sample Reversal: Each sample is reversed as per the demand of the feature type of a model.
For example, if the underlying model is using permissions-based features for training, the manifest
file will be extracted from each sample by simply unzipping the .apk file. On the other hand,
if the model is dependent upon features extracted from the source code, the sample would be
reverse engineered using tools like apktool, etc. Likewise, various methods will be applied to
extract respective features.

The pre-processed dataset will be passed to the next stage for feature extraction, and depending
upon the required feature, the respective feature extractor module will be executed on the dataset.
For example, to build a permission feature set, a permissions extractor will be executed on the
pre-processed dataset and the result in the set structure will be saved with proper class label,
i.e., for malicious application CLASS TYPE 1 and for benign CLASS TYPE 0. After processing all
the samples and converting features in the required format, the feature set would be input to the
machine-learning algorithm, which is referenced from respective research papers to create a malware
classifier. Once the training and testing of the model are completed as per the description given in
respective research work, then the tested model would be saved (making model persistence) to be
used in the PACE. The model building is a one-time process and will be done for all selected research
work. The end user or the interface of PACE has no direct connection with this module and can only
access if the model is added to the PACE.

In Section 4.2 the PACE architecture is explained in detail and the subsequent sections explain the
interface and user type in detail.

4.2. PACE: Architecture

The core of PACE workflow is the PACE architecture, which comprises trained models, extracted
features, analysis, and pre-processing. The PACE architecture offers its services via an interface layer,
and a user can only interact with PACE via the defined interface’s options. In “Figure 4” the central
part depicts the main PACE architecture which is embedded between the Model-Building and
Interface layers.

4.2.1. Models

The first component of the PACE architecture is the trained models which is the collection of all
trained models added to or set to be added to PACE; the process is explained in Section 4.1. The Static
Model (SM) is a model trained with static features and the Dynamic Model (DM) is a model trained
with dynamic features. All the models that are trained and tested are saved in the directories and
integrated into PACE. The PACEngine is the module that is used to integrate the various models into
PACE. The PACEngine submits the feature set to the models as per their configuration and receives
the prediction and confidence calls from each model, and passes the result to the interface layer.
The PACEngine allows maintenance of the models in a systematic way and makes the architecture
extensible, i.e., adding a new model becomes very simple.



Future Internet 2020, 12, 66 13 of 19

4.2.2. Feature Set

The feature set is the collection of similar types of features, e.g., for a permission feature set all the
features will the extracted permissions. As discussed earlier, there are two ways of extracting features
from Android, i.e., static and dynamic, and there are different types of static and dynamic features.
Under static feature permissions, metadata, intents, API calls, and source code are mostly used and
dynamic features are network activities, activities related to File I/O, Memory R/W, and CPU and
battery usage, Inter Process Communication (IPC), and system call. This difference between static and
dynamic is represented as Static Feature 1-n and the Dynamic Feature 1-n in the Figure 4. The type of
feature depends upon the selected research works present in PACE, and so features are extracted and
processed accordingly. The user can select the models for scanning their sample and so, according to
the selected models, the features will be extracted, or features for all available models will be extracted.

4.2.3. Pre-Processing

This pre-processing module is similar to the Model-Building module, except this pre-processing
is performed online. The submitted Android app under inspection is passed to the processing module,
which will then prepare the sample for feature extraction by performing various processing such as the
removal of any irrelevant information, converting the app into a different format, i.e., .dex, .smali, etc.
During the pre-processing, the submitted app reversed code is also packed in a zip file and attached to
the main interface so that the user can download the source code of the submitted application and use
that further in the analysis. The data generated during the pre-processing along with the predicted
classification label is also saved in the database, which can later be used for re-training and testing.
The saved result can act as a cache and can be used to fasten the response by not performing all steps
repeatedly for known app submission. The pre-processing module has also passed information to the
analysis and logging module. The analysis and logging module is explained in further Section 4.2.4.

4.2.4. Analysis and Logging

The analysis and logging module is an important module and provides useful insights about the
submitted application and shows the correlation pattern with malicious and benign class. The output
of the analysis and logging module serves as threat intelligence and helps to understand the trend of
Android malware, e.g., listing the permissions and showing the permission trend helps to understand
the kind of attacks. This module is extensible and different analysis engines can be added over time.
Currently, it shows permissions and entropy. Later dynamic analysis results such as CPU, battery and
memory usage, system call graph, etc. will be added to the PACE panel.

4.3. PACE: Interface

The PACE is designed to keep it extensible, so it has adopted a layered approach. The interface is
separate from the core PACE architecture, which makes it easy to add and remove new ways of access
to the PACE. In Figure 4, the interface is at the right end of the workflow and different types of users
interact with PACE through the Interface layer. The services of PACE can be accessed by a set of methods
that are defined in the interface module. Such separation helps to choose the method according to
need and offers the option to integrate PACE services into other services seamlessly. The three main
methods under the Interface module are REST API, Web Interface and ADB Interface.

4.3.1. REST API

The REST API makes it easy to offer PACE services via various applications such as Android
Application and Browser Extension, and as Scripts. For example, the scripting method makes it easy
to integrate PACE into the Android app store, which is very important, as much Android malware
is pushed to the user device via a third-party app store. Google Play Protect is Google’s in-built
anti-malware solution which uses an ML-based engine to scan apps in real time (https://www.

https://www.android.com/intl/en_in/play-protect/
https://www.android.com/intl/en_in/play-protect/
https://www.android.com/intl/en_in/play-protect/


Future Internet 2020, 12, 66 14 of 19

android.com/intl/en_in/play-protect/). Even then, many times, malicious Android applications have
evaded detection and stayed in the Play Store for a long time (https://thenextweb.com/apps/2019/
10/01/google-play-android-malware-2/). The current implementation of the proposed work PACER
uses REST API to get malware classification results for all installed apps of the device and include
them in the threat intelligence report.

4.3.2. Web Interface

The web interface can be accessed by running PACE on a Local Machine individually or accessed
the offering of PACE through our hosted Remote Machine. The local interface differs slightly as it
is targeting security practitioners and researchers. The local interface provides options to pass the
path of the local directory as input to PACE and the result will return in desired output structured
formats (JavaScript Object Notation (JSON), Comma Separated Values (CSV), and Extensible Markup
Language (XML)). This helps to perform research and test many samples which will not be possible
with the online version. The online web interface only allows the submission of one sample at a time
and the provision of a result for the same.

4.3.3. ADB and Memory Dump

The ADB is a client–server program used in Android application development. The Android
Debug Bridge is part of the Android Software Development Kit (SDK) and is made up of three
components: a client, a daemon, and a server. It is used to manage either an emulator instance or
an actual Android device. The ADB method of PACE interface is also required to run PACE as a local
instance on the same machine on which the Android device is connected or the emulator is running.
Thus, the application installed on the device can be scanned with PACE models. This option is similar
to our previous work FAMOUS [1], in which the Android device was scanned with the best performing
model, which was trained with weighted permissions. This method is especially for forensic and
security analysts and helps them to triage the applications and help them to prioritize the app for
manual analysis and make the scanning process faster. The ADB Connection is used by the current
implementation of the proposed work PACER for extracting apps from a device and submitting them
to PACE for malware classification results.

4.4. Targeted Users

The targeted users are divided into three main groups i.e., General User, IT Personnel and
Cybersecurity Professional, and Android malware researcher. Each group of users can be served by
different methods available in the interface module. The grouping of users is purely based on ease of
use and their preferred method; for example, the general user can access PACE services via the online
web interface or through the Android application, which is very simple, and user will be comfortable,
while on the other hand, the researcher can use a local web interface or ADB-based method to speed
up their research work by bulk analysis and scanning.

5. Experimental Setup and Implementation

The proposed work PACER is developed as a tool (written in Python) and run on Windows
OS. The earlier work PACE is experimented and implemented locally and an online instance is also
available with limited features. This section provides details about the dataset and implementation of
PACER and PACE.

5.1. Dataset

During the literature review, it was observed that most researchers use their own datasets,
and very few of them are available publicly, which makes comparing detection techniques difficult.
It was also observed that some of the datasets are now obsolete and research based on that dataset

https://www.android.com/intl/en_in/play-protect/
https://www.android.com/intl/en_in/play-protect/
https://www.android.com/intl/en_in/play-protect/
https://thenextweb.com/apps/2019/10/01/google-play-android-malware-2/
https://thenextweb.com/apps/2019/10/01/google-play-android-malware-2/


Future Internet 2020, 12, 66 15 of 19

cannot be reproduced hence cannot be compared with the new method. Keeping these challenges in
mind, we are going to keep a common dataset for all models. The sample for current working models
was downloaded from AndroZoo [50] project, which has a large collection of benign and malware
Android applications (The API key was requested and obtained from AndroZoo maintainer and we
are following all the given instructions for dataset use.).

As per the AndroZoo guidelines, we are not free to share the sample, but the pre-processing and
feature extraction scripts will be open source and available for public usage, which will enable us to
reproduce various research.

5.2. Implementation

The PACER is implemented as a set of Python scripts on a Windows 10 Home (64 bits OS) running
with Intel (R) Core (TM) i5-7200U processor and 4 GB RAM and tested with different smartphones with
Android, and threat reports are generated as a PDF file for each device (Supplementary Files represent
two sample reports of two different devices). Each of the components of PACER are implemented with
the help of various Python modules like reportlab, subprocess, regex, etc. The PACE is implemented using
a Python stack i.e., using various modules and frameworks of Python. For example, Scikit-learn [51] is
used for machine-learning models and Flask is used to design a web interface. The current version of
PACE is being developed on a computer with basic configuration and minimum memory requirement,
i.e., 8 GB RAM and 60 GB hard disk (HDD, 5200 RPM) with i7 8th generation Intel processor with
8 cores. Figure 6 presents the flow of various actions and the interaction of various components of the
PACER. Each of these tasks was implemented as a Python script and was integrated with each other
within PACER.

Figure 6. Flowchart of PACER.

6. Discussion and Conclusions

The proposed work PACER is an attempt to broaden Android malware research by making earlier
research reproducible, transparent, and accessible to targeted users. Although through PACE interface
it will be easy to get the various analysis results and compare with different detection methods,
PACER will help to make these detection results along with other threats result available to naive users
in a simple, useful, and readable format. The main limitation of the PACE is the author’s confirmation
and the legal scope. Research work can be added to the PACE only after getting due permission from
the author that is possible within the legal scope of the work. This will make the growth of PACE slow
but over time more authors will participate and will enrich and strengthen PACE. The proposed report
format of PACER is limited in number of threat types, but can be extended by adding more scripts as
the system is open, and so new scripts can be added easily.

The proposed work PACER is novel in its purpose and application. In this work, only limited
use cases of PACER and PACE are listed and described but due to its extensible and open architecture,



Future Internet 2020, 12, 66 16 of 19

there would be various other usages and accordingly required functions that can be added to both
platforms. The PACE implementation will help to improve research in Android malware detection
by making it reproducible, transparent, and simple, and the PACER reporting mechanism makes this
research available to naive users by taking off the complex technical requirements. The PACE will help
to improve the anti-malware applications for the Android platform by making many classification
engines available via REST API, which can be easily integrated with the products. The PACER will also
help to strengthen the Android security awareness by reporting and educating users about vulnerable
and outdated apps along with other threats inputs. The PACER and PACE both will serve as supportive
tools for cybersecurity and forensic practitioners by helping them to scan the end-user devices or
memory dump of seized devices for prioritizing apps for in-depth analysis or finding the rouge
application. The paper consists of the following major contributions:

a. A unique framework to standardize the existing studies for comparative analysis. This certainly
reduces the programming efforts and code duplicity while providing a facility to compare, create,
verify, and deploy new malware detection techniques.

b. Its availability in public domain under GNU General Public License allows it to run, study,
share, and modify the techniques. Also, due to regular additions of newly published methods,
it will be easy and quick to deliver those techniques to the end user via various available interfaces
(API, App, etc.).

c. The proposed work will assist malware analysts in triaging the new sample and help to filter
out samples quickly, which requires manual analysis.

d. Due to multiple machine-learning-based methods, the detection will be more accurate and the
threat reporting and sharing (along with scanning result, Exif information, Permissions Ranks and a nicely
Decompiled Source Code of the submitted sample ready to download, all in one place) will be fast.

For example, recently, we used a local version of PACE to analyze a recent piece of Android
malware that was targeting Indian Android users, scamming them under the promise of offering Jio
Prime Membership and 25 GB of internet daily (full report is available at https://github.com/Saket-
Upadhyay/MalwareReports).

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-5903/12/4/66/s1.

Author Contributions: Conceptualization, A.K. and S.U.; Data curation, B.Y.; Funding acquisition, V.A.;
Investigation, B.Y. and S.U.; Methodology, A.K.; Project administration, A.S.; Software, B.Y.; Supervision, S.K.S.;
Visualization, A.K.; Writing—original draft, A.K.; Writing—review & editing, V.A., S.K.S., A.S. and S.U. All
authors have read and agreed to the published version of the manuscript.

Funding: This research is sponsored by the Department of Information Security and Communication Technology
(IIK), NTNU Norway.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kumar, A.; Kuppusamy, K.; Aghila, G. FAMOUS: Forensic Analysis of MObile devices Using Scoring of
application permissions. Future Gener. Comput. Syst. 2018, 83, 158–172. [CrossRef]

2. Suarez-Tangil, G.; Tapiador, J.E.; Peris-Lopez, P.; Ribagorda, A. Evolution, detection and analysis of malware
for smart devices. IEEE Commun. Surv. Tutor. 2013, 16, 961–987. [CrossRef]

3. Faruki, P.; Ganmoor, V.; Laxmi, V.; Gaur, M.S.; Bharmal, A. AndroSimilar: Robust statistical feature
signature for Android malware detection. In Proceedings of the 6th International Conference on Security of
Information and Networks, Aksaray, Turkey, 26–28 November 2013; pp. 152–159.

4. Qamar, A.; Karim, A.; Chang, V. Mobile malware attacks: Review, taxonomy & future directions. Future Gener.
Comput. Syst. 2019, 97, 887–909.

5. Gupta, S.; Buriro, A.; Crispo, B. A Risk-Driven Model to Minimize the Effects of Human Factors on Smart
Devices. In Proceedings of the International Workshop on Emerging Technologies for Authorization
and Authentication, Luxembourg City, Luxembourg, 27 September 2019, doi:10.13140/RG.2.2.22525.92649.
[CrossRef]

https://github.com/Saket-Upadhyay/MalwareReports
https://github.com/Saket-Upadhyay/MalwareReports
http://www.mdpi.com/1999-5903/12/4/66/s1
http://dx.doi.org/10.1016/j.future.2018.02.001
http://dx.doi.org/10.1109/SURV.2013.101613.00077
https://doi.org/10.13140/RG.2.2.22525.92649
http://dx.doi.org/10.13140/RG.2.2.22525.92649


Future Internet 2020, 12, 66 17 of 19

6. Tam, K.; Feizollah, A.; Anuar, N.B.; Salleh, R.; Cavallaro, L. The evolution of android malware and android
analysis techniques. ACM Comput. Surv. (CSUR) 2017, 49, 76. [CrossRef]

7. Yan, P.; Yan, Z. A survey on dynamic mobile malware detection. Softw. Qual. J. 2018, 26, 891–919. [CrossRef]
8. Felt, A.P.; Finifter, M.; Chin, E.; Hanna, S.; Wagner, D. A survey of mobile malware in the wild. In Proceedings

of the 1st ACM workshop on Security and privacy in smartphones and mobile devices, Chicago, IL, USA,
17 October 2011; pp. 3–14.

9. Qiu, J.; Nepal, S.; Luo, W.; Pan, L.; Tai, Y.; Zhang, J.; Xiang, Y. Data-Driven Android Malware Intelligence:
A Survey. In Proceedings of the International Conference on Machine Learning for Cyber Security, Xi’an,
China, 19–22 September 2019; pp. 183–202.

10. Samra, A.A.A.; Qunoo, H.N.; Al-Rubaie, F.; El-Talli, H. A survey of Static Android Malware Detection
Techniques. In Proceedings of the 2019 IEEE 7th Palestinian International Conference on Electrical and
Computer Engineering (PICECE), Gaza, Palestine, 26–27 March 2019; pp. 1–6.

11. Sahay, S.K.; Sharma, A. A Survey on the Detection of Android Malicious Apps. In Advances in Computer
Communication and Computational Sciences; Springer: Berlin/Heidelberg, Germany, 2019; pp. 437–446.

12. Doğru, İ.; KİRAZ, Ö. Web-based android malicious software detection and classification system. Appl. Sci.
2018, 8, 1622. [CrossRef]

13. Au, K.W.Y.; Zhou, Y.F.; Huang, Z.; Lie, D. Pscout: Analyzing the android permission specification.
In Proceedings of the 2012 ACM conference on Computer and communications security, Raleigh, NC,
USA, 16–18 October 2012; pp. 217–228.

14. McLaughlin, N.; Martinez del Rincon, J.; Kang, B.; Yerima, S.; Miller, P.; Sezer, S.; Safaei, Y.; Trickel, E.;
Zhao, Z.; Doupé, A.; et al. Deep Android Malware Detection. In Proceedings of the Seventh ACM
on Conference on Data and Application Security and Privacy, Scottsdale, AZ, USA, 22–24 March 2017;
pp. 301–308. doi:10.1145/3029806.3029823. [CrossRef]

15. Kumar, A.; Agarwal, V.; Shandilya, S.K.; Shalaginov, A.; Upadhyay, S.; Yadav, B. PACE: Platform for
Android Malware Classification and Performance Evaluation. In Proceedings of the 2019 IEEE International
Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4280–4288.

16. Zhang, L.; Thing, V.L.; Cheng, Y. A scalable and extensible framework for android malware detection and
family attribution. Comput. Secur. 2019, 80, 120–133. [CrossRef]

17. Kim, H.M.; Song, H.M.; Seo, J.W.; Kim, H.K. Andro-Simnet: Android Malware Family Classification using
Social Network Analysis. In Proceedings of the 2018 16th Annual Conference on Privacy, Security and Trust
(PST), Belfast, UK, 28–30 August 2018. doi:10.1109/pst.2018.8514216. [CrossRef]

18. Le Thanh, H. Analysis of malware families on android mobiles: detection characteristics recognizable by
ordinary phone users and how to fix it. J. Inf. Secur. 2013, 4, 213–224. [CrossRef]

19. Xie, N.; Wang, X.; Wang, W.; Liu, J. Fingerprinting Android malware families. Front. Comput. Sci. 2019,
13, 637–646. [CrossRef]

20. Massarelli, L.; Aniello, L.; Ciccotelli, C.; Querzoni, L.; Ucci, D.; Baldoni, R. Android malware family
classification based on resource consumption over time. In Proceedings of the 2017 12th International
Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 11–14 October 2017;
pp. 31–38.

21. Di Cerbo, F.; Girardello, A.; Michahelles, F.; Voronkova, S. Detection of malicious applications on android os.
In Computational Forensics; Springer: Berlin/Heidelberg, Germany, 2010; pp. 138–149.

22. Sanz, B.; Santos, I.; Laorden, C.; Ugarte-Pedrero, X.; Bringas, P.G.; Álvarez, G. Puma: Permission usage to
detect malware in android. In International Joint Conference CISIS’12-ICEUTE 12-SOCO 12 Special Sessions;
Springer: Berlin/Heidelberg, Germany, 2013; pp. 289–298.

23. Ghorbanzadeh, M.; Chen, Y.; Ma, Z.; Clancy, T.C.; McGwier, R. A neural network approach to category
validation of android applications. In Proceedings of the 2013 International Conference on Computing,
Networking and Communications (ICNC), San Diego, CA, USA, 28–31 January 2013; pp. 740–744.

24. Yerima, S.Y.; Sezer, S.; McWilliams, G.; Muttik, I. A new android malware detection approach using bayesian
classification. In Proceedings of the 2013 IEEE 27th International Conference on Advanced Information
Networking and Applications (AINA), Barcelona, Spain, 25–28 March 2013; pp. 121–128.

25. Talha, K.A.; Alper, D.I.; Aydin, C. APK Auditor: Permission-based Android malware detection system.
Digit. Investig. 2015, 13, 1–14. [CrossRef]

http://dx.doi.org/10.1145/3017427
http://dx.doi.org/10.1007/s11219-017-9368-4
http://dx.doi.org/10.3390/app8091622
https://doi.org/10.1145/3029806.3029823
http://dx.doi.org/10.1145/3029806.3029823
http://dx.doi.org/10.1016/j.cose.2018.10.001
https://doi.org/10.1109/pst.2018.8514216
http://dx.doi.org/10.1109/pst.2018.8514216
http://dx.doi.org/10.4236/jis.2013.44024
http://dx.doi.org/10.1007/s11704-017-6493-y
http://dx.doi.org/10.1016/j.diin.2015.01.001


Future Internet 2020, 12, 66 18 of 19

26. Geneiatakis, D.; Fovino, I.N.; Kounelis, I.; Stirparo, P. A Permission verification approach for android mobile
applications. Comput. Secur. 2015, 49, 192–205. [CrossRef]

27. Milosevic, N.; Dehghantanha, A.; Choo, K.K.R. Machine learning aided Android malware classification.
Comput. Electr. Eng. 2017, 61, 266–274. [CrossRef]

28. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-an, W.; Ye, H. Significant permission identification for machine-learning-
based android malware detection. IEEE Trans. Ind. Inform. 2018, 14, 3216–3225. [CrossRef]

29. Peiravian, N.; Zhu, X. Machine learning for android malware detection using permission and api calls.
In Proceedings of the 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, Herndon,
VA, USA, 4–6 November 2013; pp. 300–305.

30. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K. DREBIN: Effective and Explainable Detection
of Android Malware in Your Pocket. In Proceedings of the 21th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA, 23–26 February 2014.

31. Sanz, B.; Santos, I.; Laorden, C.; Ugarte-Pedrero, X.; Nieves, J.; Bringas, P.G.; Álvarez Marañón, G.
MAMA: Manifest analysis for malware detection in android. Cybern. Syst. 2013, 44, 469–488. [CrossRef]

32. Wu, W.C.; Hung, S.H. DroidDolphin: A dynamic Android malware detection framework using big data and
machine learning. In Proceedings of the 2014 Conference on Research in Adaptive and Convergent Systems,
Towson, MD, USA, 5–8 October 2014; pp. 247–252.

33. Amos, B.; Turner, H.; White, J. Applying machine learning classifiers to dynamic android malware detection
at scale. In Proceedings of the 2013 9th International Wireless Communications and Mobile Computing
Conference (IWCMC), Sardinia, Italy, 1–5 July 2013; pp. 1666–1671.

34. Burguera, I.; Zurutuza, U.; Nadjm-Tehrani, S. Crowdroid: Behavior-based malware detection system for
android. In Proceedings of the 1st ACM workshop on Security and privacy in smartphones and mobile
devices, Chicago, IL, USA, 17 October 2011; pp. 15–26.

35. Rastogi, V.; Chen, Y.; Enck, W. AppsPlayground: Automatic security analysis of smartphone applications.
In Proceedings of the third ACM conference on Data and application security and privacy, San Antonio, TX,
USA, 18–20 February 2013; pp. 209–220.

36. Alam, M.S.; Vuong, S.T. Random forest classification for detecting android malware. In Proceedings of the
2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, Beijing, China, 20–23 August 2013; pp. 663–669.

37. Dai, S.; Wei, T.; Zou, W. DroidLogger: Reveal suspicious behavior of Android applications via
instrumentation. In Proceedings of the 2012 7th International Conference on Computing and Convergence
Technology (ICCCT), Seoul, Korea, 3–5 December 2012; pp. 550–555.

38. Yuan, Z.; Lu, Y.; Wang, Z.; Xue, Y. Droid-sec: Deep learning in android malware detection. In Proceedings of
the ACM SIGCOMM Computer Communication Review, Chicago, IL, USA, 17–22 August 2014; pp. 371–372.

39. Yuan, Z.; Lu, Y.; Xue, Y. Droiddetector: android malware characterization and detection using deep learning.
Tsinghua Sci. Technol. 2016, 21, 114–123. [CrossRef]

40. Shabtai, A.; Tenenboim-Chekina, L.; Mimran, D.; Rokach, L.; Shapira, B.; Elovici, Y. Mobile malware
detection through analysis of deviations in application network behavior. Comput. Secur. 2014, 43, 1–18.
[CrossRef]

41. Jang, J.W.; Yun, J.; Mohaisen, A.; Woo, J.; Kim, H.K. Detecting and classifying method based on similarity
matching of Android malware behavior with profile. SpringerPlus 2016, 5, 273. [CrossRef] [PubMed]

42. Chang, W.L.; Sun, H.M.; Wu, W. An Android Behavior-Based Malware Detection Method using Machine
Learning. In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications
and Computing (ICSPCC), Hong Kong, China, 5–8 August 2016; pp. 1–4.

43. Moran, K.; Linares-Vásquez, M.; Bernal-Cárdenas, C.; Vendome, C.; Poshyvanyk, D. Automatically
discovering, reporting and reproducing android application crashes. In Proceedings of the 2016 IEEE
International Conference on Software Testing, Verification and Validation (ICST), Chicago, IL, USA, 11–15
April 2016; pp. 33–44.

44. Grover, J. Android forensics: Automated data collection and reporting from a mobile device. Digit. Investig.
2013, 10, S12–S20. [CrossRef]

45. Eder, T.; Rodler, M.; Vymazal, D.; Zeilinger, M. Ananas-a framework for analyzing android applications.
In Proceedings of the 2013 International Conference on Availability, Reliability and Security, Regensburg,
Germany, 2–6 September 2013; pp. 711–719.

http://dx.doi.org/10.1016/j.cose.2014.10.005
http://dx.doi.org/10.1016/j.compeleceng.2017.02.013
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1080/01969722.2013.803889
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1016/j.cose.2014.02.009
http://dx.doi.org/10.1186/s40064-016-1861-x
http://www.ncbi.nlm.nih.gov/pubmed/27006882
http://dx.doi.org/10.1016/j.diin.2013.06.002


Future Internet 2020, 12, 66 19 of 19

46. Moran, K.; Linares-Vásquez, M.; Bernal-Cárdenas, C.; Poshyvanyk, D. Auto-completing bug reports for
android applications. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,
Bergamo, Italy, 30 August–4 September 2015; pp. 673–686.

47. Winkler, I.; Gomes, A.T. Advanced Persistent Security: A Cyberwarfare Approach to Implementing Adaptive
Enterprise Protection, Detection, and Reaction Strategies; Syngress: Rockland, MA, USA, 2016.

48. Mitra, J.; Ranganath, V.P. Ghera: A repository of android app vulnerability benchmarks. In Proceedings
of the 13th International Conference on Predictive Models and Data Analytics in Software Engineering,
Toronto, ON, Canada, 8 November 2017; pp. 43–52.

49. Zhang, M.; Yin, H. AppSealer: Automatic Generation of Vulnerability-Specific Patches for Preventing
Component Hijacking Attacks in Android Applications. Available online: http://lilicoding.github.io/
SA3Repo/papers/2014_zhang2014appsealer.pdf (accessed on 8 April 2020).

50. Allix, K.; Bissyandé, T.F.; Klein, J.; Le Traon, Y. AndroZoo: Collecting Millions of Android Apps for the
Research Community. In Proceedings of the 13th International Conference on Mining Software Repositories,
Austin, TX, USA, 14–15 May 2016; pp. 468–471. doi:10.1145/2901739.2903508. [CrossRef]

51. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.;
Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learning Res. 2011,
12, 2825–2830.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://lilicoding.github.io/SA3Repo/papers/2014_zhang2014appsealer.pdf
http://lilicoding.github.io/SA3Repo/papers/2014_zhang2014appsealer.pdf
https://doi.org/10.1145/2901739.2903508
http://dx.doi.org/10.1145/2901739.2903508
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Machine-Learning-Based Android Malware Detection
	Static Features-Based Detection
	Dynamic Features-Based Detection
	Threat Intelligence Reporting


	PACER: Platform for Android Malware Classification, Performance Evaluation, and Threat Reporting
	Data Processing
	Threat Analyzer
	Outdated App Detector
	Vulnerability Matcher
	PACE: Platform for Android Malware Classification and Performance Evaluation

	Report Generator

	PACE: Platform for Android Malware Classification and Performance Evaluation
	Model Building
	PACE: Architecture
	Models
	Feature Set
	Pre-Processing
	Analysis and Logging

	PACE: Interface
	REST API
	Web Interface
	ADB and Memory Dump

	Targeted Users

	Experimental Setup and Implementation
	Dataset
	Implementation

	Discussion and Conclusions
	References

