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A B S T R A C T

The presence of healthy gut microbiota in the gastrointestinal tract of fish is important for the optimal function
of gut, which plays a significant role in the host growth and health. The aim of the present study was to in-
vestigate the effect of dietary stress worry free (SWF®) on growth, feed utilization and disease resistance of
hybrid sturgeon (Acipenser baerii x Acipenser schrenckii). Sturgeon were fed for three weeks with SWF® supple-
mented or basal diet. The weight gain and FCR of sturgeon fed on the diet supplemented with SWF® were
significantly improved (P<0.05). SWF® supplemented diet provoked an increase in the resistance of sturgeon
against A. veronii Hm091 (P=0.09). In terms of gut microbiota, the number of total bacteria, Fusobacteria,
Firmicutes, and Proteobacteria were increased significantly in the SWF® group (P<0.05), whereas significant
reduction of Actinobacteria was observed in the gut of the SWF® group compared with the control group
(P< 0.01). Moreover, at the end of the experiment the gut microbiota of sturgeon, were colonized to germ-free
(GF) zebrafish for three days. Results indicated that, the expression of growth promoter genes mTOR, MyoD and
Myogenin was significantly higher in GF zebrafish colonized with gut microbiota of SWF® group of sturgeon.
Furthermore, TGF-β was increased significantly in GF zebrafish colonized with gut microbiota from SWF® group
(P<0.01), whereas the expression of TNF-α was significantly decreased (P<0.05). The expression of non-
specific immune related genes DEFBL-1, C3a and Lysozyme was significantly increased in GF zebrafish colonized
with gut microbiota of sturgeon fed on SWF® (P<0.05). Group of GF zebrafish colonized with gut microbiota of
sturgeon fed on SWF® had significantly higher survival rate against A. veronii Hm091 (P<0.05). Our study
suggests that, the gut microbiota induced by SWF® played a great role in growth and disease resistance of
sturgeon using GF zebrafish model.
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1. Introduction

China is the leading country in aquaculture production in the world
with annual production of 69.96 million tons in 2017 (China fishery
statistical yearbook, 2018). Although aquaculture production in China
is growing faster, the cold water aquaculture production is not as fast as
like the other aquaculture types. Therefore, cold water aquaculture has
a lot of room for improvement in order to use the resource fully.
Sturgeon is one of the cold water fish species, most popular and eco-
nomically important fish in aquaculture due to its higher market price
(Li et al., 2009), fast growing (Luo et al., 2015), and tolerance to en-
vironmental change (Patterson et al., 2017). Moreover it has a re-
markably good nutritional value, especially in ‘caviar’ (Wang et al.,
2017). The hybrid sturgeon (Acipenser baerii x Acipenser schrenckii) is
one of the dominant farmed sturgeons in China (Wei et al., 2011).

Gut microbiota contributes a great role in activates of many com-
plex systems in the fish physiology. Studies showed that the gut mi-
crobiota of fish participate in several complex physiological system of
the fish including in metabolic homeostasis, digestive function, stimu-
lating the host immune response, life span, development of the GI tract,
and protection against infections (Burns et al., 2016; Li et al., 2019; Nie
et al., 2017; Palareti et al., 2016; Piazzon et al., 2017; Smith et al.,
2017; Wang et al., 2018; Yan et al., 2016). Plethora studies showed that
modulation of the gut microbiota using probiotics and postbiotics plays
significant role in the health and function of GI tract of the fish as well
as on the fitness of the fish (Aguilar-Toalá et al., 2018; Jaramillo-Torres
et al., 2019; Kanwal and Tayyeb, 2019; Kim et al., 2017; Liu et al.,
2017; Sanders et al., 2017). Application of Bacillus subtilis resulted sti-
mulation of the local and systemic immune system and promoted
growth and disease resistance in Nile tilapia (Galagarza et al., 2018; Yu
et al., 2019, 2017). Furthermore, B. subtilis and B. cereus promote in-
testinal colonization of tilapia (Garcia-marengoni and Menezes-albu-
querque, 2016). Currently, in addition to probiotics, postbiotics have
been applying in aquaculture (Biswas et al., 2013; Mahmoud A.O.
Dawood et al., 2015a; Panigrahi et al., 2010; Zheng et al., 2017).
Postbiotics are defined as “soluble products or metabolic byproducts
secreted by live bacteria or released after bacterial lysis and they pro-
vide physiological benefits to the host” (Aguilar-Toalá et al., 2018).
Nowadays, studies clarified that postbiotics have an advantage over
probiotics (Aguilar-Toalá et al., 2018; De Marco et al., 2018;
Shenderov, 2013). Therefore, it is crucial to increase our knowledge on
beneficial gut bacteria, their cell components and metabolites, which
colonize the GI tract of the fish, in the context of improved growth
performance and health of the fish.

The GF zebrafish (Danio rerio) model was successfully established in
2004 (Rawls et al., 2004). The GF zebrafish provides a number of ad-
vantages that simplify the generation of gnotobiotic organisms and
research the interaction between the host and microbiota and serve as
powerful models for revealing the functions of intestinal microbiota
(Brugman, 2016; Tan et al., 2019). In addition to this, zebrafish were
used as a model to evaluate many diets for aquaculture species (Ulloa
et al., 2011). In this study we used GF zebrafish model to evaluate the
effect of the dead probiotic bacteria (SWF®) on hybrid sturgeon. The gut
microbiota of hybrid sturgeon fed on either the SWF® supplemented or
basal diet were transferred to the GF zebrafish which provides the
possibility of understanding the influence on host biological processes
including gene expression, immunity and disease resistance. We se-
lected A. veronii for the challenge test, since A veronii is an emerging
pathogen causing severe pathology and mortalities in several aqua-
culture species (Hasan et al., 2019; Smyrli et al., 2019). Therefore,
presently modulation of the host gut microbiota using postbiotics has
been posited as a possible mechanism involved in the improvement of
fish growth, feed utilization, immune regulation, disease resistance
against pathogens, and generally the fitness of the fish and can be bio-
theraptic mechanism in aquaculture.

In this study, we examined the ability of postbiotics (SWF®) on

hybrid sturgeon growth, feeding conversion, survival and gut micro-
biota abundance of hybrid sturgeon. Furthermore, we evaluated the
effect of hybrid sturgeon gut microbiota on the expression of growth
promoter and immune regulation related genes, and disease resistance
against A. veronii Hm091 of GF zebrafish model.

2. Materials and methods

2.1. Stress worry free (SWF®) and experimental diets

Stress Worry Free (SWF®) provided by Beijing Sino-Norway Joint
Aquaculture Technology, Co., Ltd. SWF® is mainly composed of Bacillus
subtilis, Lactococcus lactis and Cetobacterium somerae without live bac-
teria. These microbial strains originate from the GI tract of fish and
stored in Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research
Institute of Chinese Academy of Agricultural Sciences, Beijing 100081,
China.

We prepared two types of diets, the basal diet and SWF® supple-
mented diet. The formulations of basal diet as well as its proximate
composition were as shown (Table 1). SWF® supplemented diet was
prepared by mixing of 5 g/kg of basal diet. Before adding of the SWF®
to the basal diet, it was mixed with appropriate amount of sterile water,
then added to the basal diet and mixed evenly. Then leave at room
temperature for 30 min before feeding.

2.2. Animals and treatments

All experimental and animal care procedures were conducted in
agreement with protocols approved by the Feed Research Institute of
the Chinese Academy of Agricultural Sciences Animal Care Committee,
under the auspices of the China Council for Animal Care (Assurance No.
2018-AF-FRI-CAAS-001). The experiment was conducted in Sino-
Norway Joint Lab on Fish Gut Microbiota, Feed Research Institute,
Beijing, China. This study consists of two experiments. The first ex-
periment was focused on the growth performance and modulation of
sturgeon gut microbiota by dietary SWF®. The second experiment was
conducted after the completion of experiment 1 and the main aims were
to evaluate the effect of SWF® induced gut microbiota of sturgeon on
the expression of growth promoter and immune regulatory genes, and
disease resistance of GF zebrafish.

Experiment 1. Juvenile hybrid sturgeons (Acipenserbaerii x
Acipenserschrenckii) were purchased from Beijing Fisheries Research

Table 1
Ingredient and nutrient composition of basal diet.

Ingredient (g/100 g diet) Basal feed

Fish meal 63.50
Soybean oil 18.50
Corn flour 12.00
Fish oil 4.00
Soybean phospholipid oil 1.1
Mono calcium phosphate 0.50
Vitamin premixa 0.20
Mineral premixb 0.20
Total 100.00
Crude protein 60.64
Crude fat 14.24

a Containing the following (g/kg vitamin premix): thia-
mine, 0.438; riboflavin, 0.632; pyridoxine⋅HCl, 0.908; dpan-
tothenic acid, 1.724; nicotinic acid, 4.583; biotin, 0.211; folic
acid, 0.549; vitamin B-12, 0.001; inositol, 21.053; menadione
sodium bisulfite, 0.889; retinyl acetate, 0.677; cholecalciferol,
0.116; dl-α-tocopherol-acetate, 12.632.

b Containing the following (g/kg mineral premix):
CoCl2⋅6H2O, 0.074; CuSO4⋅5H2O, 2.5; FeSO4⋅7H2O, 73.2;
NaCl, 40.0; MgSO4⋅7H2O, 284.0; MnSO4⋅H2O, 6.50; KI, 0.68;
Na2SeO3, 0.10; ZnSO4⋅7H2O, 131.93; Cellulose, 501.09.
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Institute and housed in 60 × 40 × 20 cm glass tank recirculating
system of Sino-Norway Joint Lab on Fish Gut Microbiota, Feed Research
Institute of Chinese Academy of Agricultural Sciences, Beijing, China.
Healthy and tidy fry with body size of 7−12 cm were selected and
randomly divided into the SWF® group and the control group. The
SWF® group was fed on SWF® supplemented diet, whereas the other
group fed the basal diet only (used as control) for three weeks. Six re-
plicate tanks were randomly assigned per treatment group within the
group 30 fry of hybrid sturgeon were assigned. Fish were fed four times
in a day at 4 h interval with 2.5 % of their body weight. During the
feeding period, the rearing temperature was 16 °C, the dissolved oxygen
was>6.0 mg/L, the pH was 7.0–7.2, the nitrogen content was<0.50
mg/L, and the nitrogen content (as NO2) was<0.02 mg/L. At the end
of the experiment the sturgeon were stocked in a MS-222 solution and
then scarified.

Experiment 2. GF zebrafish were prepared following established
protocols as described previously (Rawls et al., 2006; Ran et al., 2016).
The GF zebrafish were randomly divided in to two groups, each group
contain 6 replications. In each replication 30 GF zebrafish were housed.
Sturgeons were fed with SWF® diet or the basal diet for three weeks,
and then at 4 h post the last feeding, the gut content samples were
collected from three fish in each tank and pooled as a replicate. 100 μg
of the gut content of sturgeon fed on either experimental diet were
placed into 15 mL centrifuge tubes containing 6 mL of sterile phos-
phate-buffered saline (PBS). After gentle mixing of the gut content with
PBS solution and letting stand another 5 min, 200 μL suspensions were
added to each tank of 3 days post fertilization (dpf) GF zebrafish. One
group of GF zebrafish was cultured in the tank (T25 cell culture bottle,
NestBiotechnology, Wuxin, China) contains gut microbiota from the
sturgeon fed on the diet supplemented with SWF® and the other group
from sturgeon fed on control diet. GF zebrafish were cultured in the
tank for three days without feeding. During the culture time GF zeb-
rafish were taken the sturgeon’s gut microbiota from the water.

2.3. Growth and survival rate measurements

At end of the experimental period to evaluate the effects of SWF® on
weight gain and feeding performance, sturgeons from each group were
weighed and calculated according to previous reports (Guo et al.,
2017).

Weight gain (WG): [100 × (final body weight-initial body weight)/
initial body weight], feed conversion ratio (FCR): food intake (g)/
weight gain of fish (g); survival rate (SR) = (number of fish at the end
of the experiment/number of fish at the start of the experiment) ×100,
and daily feeding rate (%/d) = 100 × total feed consumed/[days ×
(initial body weight + Final body weight)/2]. The fish in each tank
were weighed to calculate WG.

2.4. Intestinal contents sampling and bacterial quantitative determination
by a 16S rRNA-based qRT-PCR analysis

Sturgeons were fed with SWF® diet or the basal diet for three weeks,
and then at 4 h post the last feeding, the gut content samples were
collected from six fish in each group and pooled as a replicate. DNA was
extracted from each pooled sample using a Fast DNA SPIN Kit for Soil
(TianGen, Beijing, China), according to the manufacturer’s instructions.
The number of total bacteria or a specific phylotype was quantified by
qRT-PCR (Ludwig and Schleifer, 2000). Primer sets for universal bac-
teria or specific bacterial groups targeted the 16S rRNA gene and are
listed in Table 2, as our previously described (Zhang et al., 2019). 16S
rRNA of the universal bacteria was cloned into the pLB vector (Tiangen,
Beijing, China) according to the manufacturer’s procedure as a copy
number standard. For the qRT-PCR standard, the copy number con-
centration was calculated based on the length of the PCR product and
the average mass of a DNA base pair. Results were expressed as copy
numbers of bacterial 16S rDNA per milligram of intestinal contents.

2.5. Quantitative real-time PCR analysis

Total RNA was isolated from zebrafish larvae and extracted with
TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). First-strand com-
plementary DNA synthesis (cDNA) was performed using the Superscript
First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA).
Quantitative real-time PCR reaction was performed using the SYBR
Green Supermix (TianGen, Beijing, China) on the Light Cycler 480
(Roche 480). The primer sequences were listed (Table 3).

2.6. Bacteria disease resistance

After 3 weeks feeding of sturgeon on either of the experimental
diets, 20 hybrid sturgeons from each treatment group with 6 replica-
tions were taken for resistance test of highly pathogenic A. veronii
Hm091. The source of the pathogenic A. veronii Hm091 was from Sino-
Norway Joint Aquaculture Technology, Co., Ltd, Feed research institute
of Chinese Academy of Agricultural Sciences, Beijing, China. For the
challenge we used a concentration of 2.14 × 108 CFU/mL A. veronii
Hm091 based on the previous study (Ran et al., 2018). Sturgeon were
challenged with the bacteria for 21 days and at the challenge period fish
were not fed. During the challenge period mortality were recorded in
every day.

Similarly, GF zebrafish were challenged after three days of colo-
nized with the gut microbiota from sturgeon fed on the SWF® or the
basal diet. 30 zebrafish from each treatment group with 6 replications
were taken for resistance test of highly pathogenic A. veronii Hm091
with the concentration of 2.14 × 108 CFU/mL (Ran et al., 2018).
Zebrafish were challenged with the bacteria for 2 days and similarly
with the sturgeon challenge, no fed were given for zebrafish during
challenge period and mortality were recorded at 2 h interval from each
treatment and replication tanks.

2.7. Statistical analysis

All the statistical data were presented as values mean with standard
deviation (mean± SEM). All statistical analyses were performed in
GraphPad Prism Version 6 software (GraphPad Software Inc. San Diego,
CA, USA). Paired t-tests were used to compare the differences between
the two groups of data. Differences were considered significant when
the p-value was less than 0.05, 0.01 or 0.001, P<0.05(*), P<0.01
(**) or P<0.001 (***).

3. Results

3.1. Growth performance and survival of the hybrid sturgeon

Growth performance and survival rate of sturgeon fed with control
diet group or SWF® supplemented diet group were shown (Figs. 1A-E).
The results revealed that the weight gain rate of the sturgeon fed on the
diet supplemented with SWF® was increased significantly (P<0.05;
Fig. 1C) and the FCR was also improved significantly (P<0.05;
Fig. 1D), compared with the fish fed on control group. The daily feeding
and survival rate of sturgeon were not significantly affected by feeding
on the SWF® supplemented diet.

3.2. The resistance of hybrid sturgeon against pathogenic Aeromonus
veronii

Fig. 2 presents the effects of dietary SWF® on the resistance of hy-
brid sturgeon against A.veronii Hm091. According to the results, each
group of hybrid sturgeon had the highest survival rate during the first
10 days and after 10 days SWF® supplemented diet provoked an in-
creasing trend in the resistance of the hybrid sturgeon against A. veronii
Hm091, although the difference compared with the control group were
not statistically significant (P = 0.09).
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3.3. SWF® supplemented diets alter the gut microbiota of sturgeon

Considering the potential of the gut microbiota to affect growth and
disease resistance, we investigated the effects of diet supplementation
with SWF® on the gut microbiota abundance of sturgeon, we analyzed
and compared the number of bacteria of the most abundance phyla and
total bacteria in the gut of hybrid sturgeon by taking gut content sample
from the two groups of hybrid sturgeon (Fig. 3A-F). The standard curve
developed in the qRT-PCR was showed (Supplemental Fig. 1). The R2

value was 0.996 and indicated that the regression was good. The result
showed that in the SWF® group the number of total bacteria, Fuso-
bacteria, Firmicutes, and Proteobacteria were increased significantly,

compared with the control group (P<0.05; Fig. 3A-D), whereas sig-
nificant reduction in the number of Actinobacteria were observed in the
gut of the SWF® group compared with the control group (P<0.01;
Fig. 3F).

3.4. Gut microbiota of sturgeon induced by SWF® increased the expression
of growth related genes of GF zebrafish

We assessed the expression of growth promoter genes in GF zebra-
fish model colonized by either of the gut microbiota of sturgeon. The
relative expression of growth promoter gene, mammalian target of ra-
pamycin (mTOR) was increased significantly (P<0.001) in the SWF®

Table 2
The primer sequences used in the qPCR quantitative analysis for the specific bacteria phyla and total bacteria of sturgeon fed on
either experimental diet.

Gene name Forward primer (5′-3′) Reverse primer (5′-3′)

Actinobacteria TACGGCCGCAAGGCTA TCRTCCCCACCTTCCTCCG
Bacteriodetes CRAACAGGATTAGATACCCT GGTAAGGTTCCTCGCGTAT
Firmicutes GGAGYATGTGGTTTAATTCGAAGCA AGCTGACGACAACCATGCAC
Fusobacteria KGGGCTCAACMCMGTATTGCGT TCGCGTTAGCTTGGGCGCTG
Proteobacteria TCGTCAGCTCGTGTYGTGA CGTAAGGGCCATGATG
Total bacteria CCTACGGGAGGCAGCAG ATTACCGCGGCTGCTGG

Table 3
The primer sequences of growth promoters and immune regulatory genes of zebrafish for qPCR quantitative analysis.

Gene Forward primer (5′–3′) Reverse primer (5′–3′)

mTOR TGGGAGCAGACAGGAATGAAGG TGCACCTGCTGGAAAAAGAATG
Myogenin CGCCGATAATTTCTTCCAGTC CGTTCACCTTCTTCAACCTCC
MYoD AGAGGAGGCGACTGAGCAAGGT CGGTACTGACAGCACGGGACAT
DEFBL1 AGGATGCAGCCTCATTCTCTTT TGAAGCCCCAGAGCATATTTATC
C3a ATGAGCTCCTGCAGAGGTGT AGTGGTTGTTGGAGGTCTGG
Lysozyme TGGAAGTGGTGTTTTTGTGT TCAAATCCATCAAGCCCTTC
TGF-β AGTTGCCTTGTGATTGTGGG CAATCATATTGGGCACCTGC
IL-1β GGCTGTGTGTTTGGGAATCT TGATAAACCAACCGGGACA
TNF-α GCGCTTTTCTGAATCCTACG TGCCCAGTCTGTCTCCTTCT

Fig. 1. Effects of SWF® supplemented diet on the weight gain, daily feeding rate, FCR and percentage survival rate of sturgeon.
Percentage weight gain, survival rate, FCR and daily feeding rate of fish fed on one of the two diet groups, data represents the means (± SEM) of six replicates of each
treatment, (n = 30/tank) a single asterisk representation of P-value< 0.05. (A) Intimal body weight; (B) Percentage weight gain, (C) survival rate; (D), FCR, feed
conversion ratio, (E) Daily feeding rate, SWF®, grow worry free.

T. Teame, et al. Aquaculture Reports 17 (2020) 100346

4



group. Similarly, the expression of myoblast determination protein
(MYoD) and Myogenin genes were increased significantly (P<0.05;
Fig. 4) in the SWF® group, compared with GF zebrafish group colonized
with gut microbiota of sturgeon fed on the basal diet.

3.5. Gut microbiota of sturgeon induced by SWF® increased the resistance of
GF zebrafish against pathogenic Aeromonus veronii

In order to further study the effects of gut microbiota taken from
hybrid sturgeon fed on either the SWF® supplemented diet or the con-
trol diet, GF zebrafish were challenged with highly pathogenic A. ver-
onii Hm091 for two days after colonizing with sturgeon gut microbiota
for three days. Mortality was counted and recorded in two hours in-
terval. The result revealed that the GF zebrafish model colonized with
gut microbiota of sturgeon fed on diet supplemented with SWF® had
increased the survival rate significantly against the pathogenic A. ver-
onii Hm091 (P<0.05; Fig. 5).

3.6. Gut microbiota of sturgeon induced by SWF® enhanced the expression
of inflammation and non-specific immunity related genes in GF zebrafish

We hypothesized that beneficial gut microbiota increased the re-
sistance of the fish against pathogenic bacteria might be associated with
the regulation of the immune system. Therefore, relative expressions of
inflammation and non-specific immunity related genes of GF zebrafish
model were assessed. The expression of anti-inflammatory gene TGF-β
was significantly increased (P<0.01; Fig. 6A) in GF zebrafish colo-
nized with gut microbiota from sturgeon fed on SWF® supplemented
diet, whereas the expression of TNF-α was significantly reduced
(P<0.05; Fig. 6A). No significant change where observed in the ex-
pression of pro-inflammatory gene IL-1β between the two groups. The

Fig. 2. The effects of SWF® supplemented diet on cumulative survival percen-
tage of sturgeon against pathogenic Aeromonus veronii.
Cumulative survival percentage of sturgeon fed on SWF® supplemented diet or
control diet when challenged with A. veronii Hm091 for 21 days. Each data
represents the mean of six replicate tanks (n = 20/tank).

Fig. 3. The effect of SWF® supplemented diet of the number of bacteria of the abundance phyla and total bacteria in the gut of sturgeon.
Data of some bacteria phyla, calculated using 16S rRNA gene copies/mg intestinal contents (A) Total number of bacteria, (B) Fusobacteria, (C) Firmicutes, (D)
Proteobacteria, (E) Bacteriodetes, (F) Actinobacteria, in the intestinal microbiota of hybrid sturgeon, a single and double asterisk representation of P-value< 0.05 and
P<0.01, respectively.

Fig. 4. The effect of SWF® induced gut microbiota of sturgeon on the growth
promoter genes of zebrafish.
The effects of gut microbiota of sturgeon on the expression of growth promoter
genes of zebrafish, Values are of six replicates of each treatment. The expression
levels of genes were assayed in the zebrafish larvae’ body after eliminating the
head and the viscera. Each data represents the means (± SEM) of six replicate
tanks (n = 20/tank), a single and triple asterisk representation of P-value<
0.05 and P<0.001, respectively.
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expression of non-specific immune related gene DEFBL-1 was sig-
nificantly increased in the GF zebrafish model colonized with the gut
microbiota of sturgeon fed with SWF® supplemented diet (P<0.01;
Fig. 6B). Furthermore, the expression of C3a and Lysozyme was also
increased significantly in the GF zebrafish colonized with gut micro-
biota from sturgeon fed on SWF® supplemented diet (P<0.05; Fig. 6B).

4. Discussions

The growth and feed utilization of hybrid sturgeon were improved
by supplementation of dietary SWF®. Several studies confirmed that
live probiotics, killed probiotics or probiotic cell parts and/or meta-
bolites were important to improved growth parameters and feed utili-
zation efficiency of fish by influencing on the gut microbiota (Galagarza
et al., 2018; Jaramillo-Torres et al., 2019; Tan et al., 2019). Similar
with this results, dietary heat-killed Lactobacillus plantarum and β-
glucan had a significant interaction on enhancing the growth, digest-
ibility and immune responses of red sea bream (Dawood et al., 2015b).
Nile tilapia fed on diet supplemented with B. pumilus and the com-
mercial probiotic product Organic Green (Hangpoong Industry Co. Ltd,
Korea) for 8 weeks improved weight gain (Mesalhy et al., 2008).

The enhanced growth performance and feed utilization of hybrid
sturgeon fed dietary SWF®might be also attributed to the modulation of

gut microbiota. In this study, we use the method of absolute quantifi-
cation of bacteria by a 16S rRNA-based qRT-PCR analysis, rather than
the 16S rRNA sequencing method. This is because, we can know the
change in the absolute amount of the bacteria by the absolute quanti-
tative method (Tkacz et al., 2018). This method also has its weaknesses
because of lacking bacterial diversity analysis. However, in this study,
we focuse on whether SWF® can alter the gut microbiota and whether
SWF® playes its role through gut microbiota. The cell parts and meta-
bolites of probiotic bacteria introduced by SWF® play significant role in
promoting the growth of beneficial bacteria in the gut of hybrid stur-
geon. Data on this study showed that the number of bacteria in the
phyla consists of beneficial bacteria showed significant increased,
whereas the number of harmful bacteria was significantly decreased in
the SWF® group compared with the control group. In agreement with
this result, heat-killed mixed probiotics (B. subtilis, Lactococcus lactis
and S. cerevisiae) significantly reduced the total heterotrophic bacterial
population in the intestine of Labeo rohita (Mohapatra et al., 2012). This
indicated that postbiotics (SWF®) are important to promote the growth
of beneficial bacteria and inhibit the pathogenic bacteria. Therefore,
SWF® played a great role in the modulation of the gut microbiota of
hybrid sturgeon.

Several studies showed that beneficial microbiota have a capacity to
modulate the gut microbiota of fish and this modulation results in
improvement of body weight via activation of the expression of growth
promoter genes (Dawood et al., 2016; Zheng et al., 2017). The me-
chanisms of the growth of muscle are regulated by the progressive ex-
pression of the myogenic regulatory factors family, which includes
MyoD, and mygonin (Kinoshita et al., 2011). In this study GF zebrafish
colonized with gut microbiota of hybrid sturgeon fed on the SWF®
supplemented diet were showed an increased in the expression of My-
gonin, MyoD and mTOR genes. L. vannamei fed on Poly-β-hydro-
xybutyrate short chain fatty acid had resulted activation of mTOR sig-
naling and modulated their gut microbiota (Duan et al., 2017).

SWF® supplemented diet provoked an increasing trend in the re-
sistance of the hybrid sturgeon against A. veronii Hm091, although the
difference compared with the control group were not statistically sig-
nificant, probably due to the effect of the sample size or short feeding
duration (three weeks), because probiotic feeding duration has an effect
on disease resistance of fish (Sharifuzzaman and Austin, 2009). More-
over, SWF® may suppress the growth of A. veronii Hm091, but did not
reduce the mortality of the fish. However, the survival rate of GF zeb-
rafish after challenging with A. veronii Hm091 was improved due to
colonization of gut microbiota from the hybrid sturgeon fed on the
SWF® supplemented diet. Because the immune system of GF zebrafish is

Fig. 5. The effects of SWF® induced gut microbiota of sturgeon on cumulative
survival percentage of GF zebrafish against pathogenic Aeromonus veronii.
Cumulative survival rates (%) of GF zebrafish colonized with the gut microbiota
of sturgeon fed on SWF® supplemented diet or in the control group when
challenged with A. veronii Hm091 for 2 days. Each data represents the mean of
six replicate tanks (n = 30/tank), a single asterisk representation of P-
value< 0.05.

Fig. 6. The effect of SWF® induced gut microbiota of sturgeon on the inflammatory and immune regulatory genes of GF zebrafish.
The effects of gut microbiota of sturgeon on the expression of (A) inflammatory related genes, (B) immune regulatory genes of GF zebrafish, values are of six replicate
tanks of each treatment (n = 20/tank). The expression levels of genes were assayed in the zebrafish larvae’ body after eliminating the head and the viscera. Each data
represents the means (± SEM) of six replicates, a single asterisk representation of P-value<0.05, double asterisk representation of P-value< 0.01.
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lower than the conventional fish, even though the GF zebrafish were
colonized with gut microbiota of hybrid sturgeon for short period of
time (three days). Because studies demonstrated that zebrafish innate
immune development is regulated by the presence of gut microbiota
(Galindo-Villegas et al., 2012). The increase in the expression of non-
specific immunity and some anti-inflammatory related genes may have
cumulatively resulted in higher survival against A. veronni Hm091 in
the SWF® compared to the control group. Supplementation with heat
killed probiotics or probiotic cell components have demonstrated in-
creased disease resistance against infectious S. iniae and Yersinia ruckeri
challenges in rainbow trout (Abbass et al., 2010; Brunt and Austin,
2005). Pan et al. (2008), also revealed dead or live Clostridium butyrium
CB2 improved immune response and enhanced disease resistance in
Chinese drum (Miichthys miiuy). The improvement of survival rate of
zebrafish to A. veronii Hm091 challenges can be attributed to better
immunological status the gut microbiota of the sturgeon fed on the
SWF® containing diet.

Furthermore, our finding showed that, the expression of non-spe-
cific immune related genes including DEFBL-1, Lysozyme and C3a were
increased in GF zebrafish group colonized with gut microbiota of hybrid
sturgeon fed on the SWF® amended diet. This indicated that the
modulated gut microbiota of sturgeon via the SWF®, was contribute for
the improvement of immune system of GF zebrafish model, since
normal gut microbiota contributes indispensable roles in regulating the
fish immune system, and vice versa. Consistent with this result,
Mohammadian et al. (2018), revealed that the activities of lysozyme
and C3 genes were significantly increased in Tor grypus fish fed on diet
supplemented with probiotics. In addition to this, C3a gene expression
was increased in zebrafish treated with L. casei BL23 after challenged
with A. hydrophila (Xie et al., 2018). TGF-β is a potent immune-de-
viating cytokine with pivotal roles in inducing active immune tolerance
in mucosal and peripheral tissues (Sanjabi et al., 2017). The expression
of anti-inflammatory related gene TGF-β was increased in GF zebrafish
colonized with the gut microbiota of sturgeon fed on the SWF® sup-
plemented diet. In agreement with this study, O. mykiss and hybrid ti-
lapia fed on different types of probiotics were resulted an increased the
expression of several cytokines genes including, TGF-β (He et al., 2017;
Panigrahi et al., 2011, 2007). Inactivated probiotic bacteria B. amylo-
liquefaciens FPTB16 and B. subtilis FPTB13 stimulate cellular immune
responses of Catla catla (Kamilya et al., 2015). The expression of pro-
inflammatory genes TNF-α and IL-1β were decreased in zebrafish co-
lonized with gut microbiota from SWF® group. In line with this study
(Wu, 2020) demonstrated that grass carp (Ctenopharyngodon idella) fed
on the diet supplemented with B. licheniformis FA6 exhibited a de-
creased mRNA expression of pro-inflammatory cytokines (IL-1β and
TNF-α).

5. Conclusions

In conclusion, beneficial bacteria play significant role in modulation
of the gut microbiota of the fish. Our fining showed that dietary SWF®
resulted in improvement of weight gain and feed conversion ratio.
There was an improvement in survival rate of hybrid sturgeon fed on
SWF® amended diet against A. veronii Hm091 (P= 0.09). Dietary SWF®
altered the gut bacteria of hybrid sturgeon. Besides, our result showed
the expression of grow promoter, inflammation and non-specific im-
mune regulation related genes was improved in the GF zebrafish model
colonized with the gut microbiota of sturgeon fed on the diet supple-
mented with SWF®. Likewise, the survival rate of zebrafish challenged
with highly pathogenic A. veronii Hm091 was improved in the group of
GF zebrafish colonized with gut microbiota of sturgeon fed on the diet
supplemented with SWF®. Taken together, our study indicated that
feeding fish with SWF® improved the growth, feed utilization and dis-
ease resistance of the hybrid sturgeon via modulation and stabilization
of the gut microbiota of the fish and could be considered as potent
therapeutic agents and play significant role in improvement of the

production and productivity of aquaculture in the post-antibiotic era.
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