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ABSTRACT Recently, small-signal stability of the modular multilevel converter (MMC) based high-voltage
direct current (HVDC) transmission for wind farm integration has attracted great attentions. The
impedance-based frequency-domain method is an effective tool for such studies, in which the accuracy
of the impedance model is of significant importance. Currently, the decoupled single-input single-output
(SISO) sequence impedance of the MMC-HVDC system with wind farm is commonly used due to the
simplicity in stability analysis. However, since both the MMC and wind farm exhibit frequency coupling
behaviors, the decoupled SISO sequence impedance model may lead to inaccurate stability conclusion
under certain conditions. In order to improve the model accuracy, based on the harmonic state-space
(HSS) modeling approach, this paper proposes a generalized multi-input multi-output (MIMO) sequence
impedance model of the MMC-wind farm system. The proposed MIMO impedance model can effectively
capture the frequency couplings in the interconnected system, based on which the coupling mechanism of
multi-frequency components within the MMC is then revealed. To facilitate the interconnection analysis,
the model truncation criteria is proposed and validated by comparing the accuracy of the MIMO model
with different truncated dimensions. In addition, this paper considers the internal impedance network of the
wind farm when developing the aggregated wind farm impedance model for interaction stability analysis.
Finally, the proposed MIMO sequence impedance model is applied to accurately predict the instability of
the MMC-HVDC connected wind farm system.

INDEX TERMS Wind farm, modular multilevel converter, frequency coupling, sequence impedance,
stability.

I. INTRODUCTION
Modular Multilevel Converter (MMC) [1] -based high volt-
age direct current (HVDC) transmission is the preferred
scheme for grid integration of large-scale long-distance off-
shore wind farms, as shown in Figure 1, thanks to its mod-
ularity, scalability, high efficiency, [2], [3], etc. In the last
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ten years, more than ten MMC-HVDC projects have been
commissioned all over the world, especially in China and
Germany. However, frequent occurrences of wide-band oscil-
lations in the actual MMC-HVDC systems greatly hinder
the project development. Therefore, for practical application,
it is very important to accurately predict the small-signal
instability of such interconnected system.

To study such small-signal stability problems, both the
state space-based [4] and the impedance-based methods
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FIGURE 1. Structure diagram of wind farm integration via MMC-HVDC.

can be applied. In this work, the impedance-based method
is preferred, since most of the oscillations are caused by
port-interactions between source and load subsystem, for
which the input-output characteristic is analyzed. The sub-
synchronous oscillation phenomenon in a real MMC-HVDC
connected with wind farm was first reported in [5], where
the impedance-based method was applied to investigate the
interaction mechanism. However, the Ref [5] does not con-
sider the effect of the submodule capacitor voltage ripples
on the MMC impedance. This flaw is remedied in Ref [6],
where the three-phase phase-domain controller in abc sta-
tionary frame is adopted. Based on the model of MMC in
Ref [6], the stabilization control and the controller param-
eter optimal design were proposed in [7] and [8] respec-
tively to improve the stability of the interconnected system.
The [9] analyzed the stability of a self-synchronization-based
wind farm withMMC-HVDC. The low-frequency oscillation
around the fundamental frequency in the doubly-fed induc-
tion generator (DFIG) based wind farm with MMC-HVDC
was studied in [10]. However, most of the interconnected
stability analysis were based on the decoupled single-input-
single-output (SISO) sequence impedances. The frequency
couplings inside the MMC and its influence imposed on the
interconnected system have not been studied deeply.

Due to the unique characteristics of the MMC’s multi-
frequency responses, the accurate characterization of non-
negligible frequency couplings is the first key issue for
the MMC modeling. Recently, several methods, such as
multi-harmonic linearization [11] and harmonic state-space
(HSS) [12], [13], have so far been proposed for the MMC
impedance modeling. In [12], the HSS method was applied
in the MMC impedance modeling considering the internal
dynamics effects. And the [11] utilized the multi-harmonic
linearization method to include the d-q current loop and
phase-lock loop (PLL). However, the above resulting models
for analysis are still based on the conventional definition
of sequence impedance, which are actually decoupled SISO
models focusing on the input and output relationship at the
same frequency. In [13], a two-by-two impedance matrix
is derived to incorporate the influence of frequency cou-
plings, in which, however, the MMC is used for feeding a
linear system that does not exhibit the frequency coupling
behavior. For this paper, the MMC is used for integrating
the wind farm where the frequency couplings exist in both
systems, thus the resulting frequency coupling behavior is
worth being clarified. The second key issue is how to capture
the dominant frequency couplings and reduce the dimension
of the MIMO impedance model for the sake of complex

interaction analysis. According to [12], at least the third har-
monic needs to be considered to ensure the accuracy of the
MMC impedance model. Alternatively, this paper aims at a
truncation method by exploiting the property of frequency
couplings of the MMC-wind farm system.

The third issue is to improve the accuracy of wind farm
aggregationmodel, rather than adopting the simplified single-
machine aggregationmodel as in the past researches [5]–[10],
which is not able to reflect the internal characteristics of
the wind farm. The detailed internal electrical network of
the wind farm will be considered in this paper when imple-
menting the interaction stability analysis of the MMC-wind
farm system. The impedance modeling of the wind turbine
is well-established such as Type IV [14] and Type III [15]
wind turbine. Nevertheless, careful attention should be paid to
the reference frame transformation of individual impedances
when formulating the final wind farm impedance. This issue
has been well-discussed in [16]–[18] to acquire an accurate
impedance aggregation model.

The main contribution of this paper includes: 1) the more
accurate and generalized MIMO impedance model of the
MMC is proposed, and the frequency couplings within the
MMC are clarified not only considering the mirror frequency
coupling effect but also the sequence coupling effect; 2) a fea-
sible model truncation criterion is proven, which is sufficient
for the interaction stability assessment of the MMC-wind
farm interconnected system under balanced three-phase con-
ditions; 3) the impedance network based wind farm aggre-
gated model is adopted to improve the accuracy of the
interaction stability analysis.

The rest of the paper is organized as below. In Section II,
the generalized MIMO sequence impedance model of the
MMC is established using the HSS modeling method.
In Section III, the frequency coupling mechanism inside the
MMC is illustrated, based on which a reasonable truncated
sequence impedance matrix is extracted. Besides, the accu-
racy of the proposed MIMO impedance models with differ-
ent truncated dimensions is also compared. In Section IV,
a case study on the MMC-HVDC connected wind farm sys-
tem is carried out to show the effectiveness and accuracy
of the derived sequence impedance model considering the
frequency couplings. Section V concludes the paper.

II. MIMO SEQUENCE IMPEDANCE MODEL OF THE MMC
Since this paper is mainly focused on the interconnected
systemwithwind farm andwind farm sideMMC (WFMMC),
the grid-side MMC (GSMMC) shown in Figure 1 can be
represented by a dc voltage source and the detailed intercon-
nected system is shown in Figure 2. In this section, theMIMO
sequence impedance of the MMC is developed consider-
ing multiple harmonics couplings. Compared with [11], the
derivation process in this paper is more straightforward and
the obtained sequence impedance model not only considers
the input/output relationship at the same frequency, but also
incorporates other frequency components. Different from the
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FIGURE 2. Topology of the wind-farm MMC interconnected system.

Ref [6] and Ref [12], the commonly-used double-loop control
is also incorporated into the MMC modeling.

A. LINEARIZED THREE-PHASE STATE-SPACE
MODEL OF THE MMC
The topology of the MMC is given in Figure 2. The modeling
of the main circuit of the MMC in abc frame [19] is briefly
summarized in Eq. (1).
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where icx , vcux , vclx , igx , vgx (x = a, b, c) represent the
time-periodic circulating current, upper arm voltage, lower
arm voltage and ac-side current, respectively. For a nonlinear
system in Eq. (1), the linearization needs to be applied to
acquire its linear model.
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FIGURE 3. Block diagram of the ac voltage control loop of WFMMC.

where the superscript s represents the periodic steady-state
value of state variables. Since the WFMMC operates at the
ac voltage control mode, only fundamental-frequency com-
ponent will exist in the modulation indices, whose linearized
form is 

1nux = −
1vrefgx

Vdc

1nlx =
1vrefgx

Vdc

(3)

Now the linearized three-phase state-space model of the
MMC main circuit is established, then the next step is to
calculate the modulation signal 1νrefgx of the control part.
The commonly-used double-loop d-q control scheme [10] is
considered in this paper as shown in Figure 3.

The outer loop can be descripted like

irefgdq = Kpv

(
U ref

dq − vgdq
)
+ Kivxdq1 + Kfvgdq

d
dt
xdq1 = U ref

dq − vgdq (4)

where the xdq1 represents the output of the outer loop inte-
grator and the Kf is the feedforward gain. The inner loop is
like

vrefgdq = Kpi

(
irefgdq − igdq

)
+ Kiixdq2 + Kidigqd

d
dt
xdq2 = irefgdq − igdq (5)
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where the xdq2 represents the output of the inner loop integra-
tor and the Kid is the decoupling gain equaling to ωL.
To connect with the three-phase model of the MMC main

circuit, the state variables of the control part in d-q frame
(Eq. (4) & Eq. (5)) need to be transformed into those in abc
frame. The transformation of the Eq. (4) is expanded here as
an example. The algebraic equation in Eq. (4) is expanded as:

T θ
dq/abc

[
irefgd
irefgq

]
=T θ

dq/abc

(
Kpv

([
U ref
d

U ref
q

]
−

[
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vgq

])
+Kiv

[
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]
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])
(6) irefga

irefgb
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=T θdq/abc
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U ref
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U ref
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−
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The differential equation in Eq. (4) is expanded as:
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(8)

The vector form of the Eq. (7) and Eq (8) is given below:

irefgx = T θ
dq/abc

(
T θ
abc/dq

(
Kpv

(
U ref

gx

−vgx
)
− Kfvgx + Kivx1x

) )
(9)

dx1x
dt
= ω0

d
dθ

(
T θ
abc/dq

)
· T θ

abc/dq
x1x + T θdq/abc · T

θ
abc/dq

×

(
U ref

gx − vgx
)

(10)

where the x1x represents the three-phase form of the xdq1.
The transformation of the inner loop can be derived similarly,
which is like:

vrefgx = T θ
dq/abc

(
T θ
abc/dq

(
Kpi

(
irefgx − igx

)
+ Kiix2x

)
+T θ

abc/qd
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d
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(
T θ
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T θ
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)
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The park and the inverse park transformation used above is
given in Appendix A, including T θdq/abc, T

θ
abc/dq and T

θ
abc/qd .

The linearized form of the Eq. (9) ∼ Eq. (12) is like

1irefgx

=T θ
dq/abc

(
T θ
abc/dq

(
−
(
Kpv + Kf

)
·1vgx + Kiv ·1x1x
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dt
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d
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(
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T θ
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(
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)
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It is noticed that the multiplication terms originating from
the park and inverse park transformation are constant matri-
ces defined as k1, k2 in Eq. (15) and (16), whose values are
listed in Appendix. A.

k1 = T θ
dq/abc
· T θ

abc/dq
(15)

k2 = T θ
dq/abc

T θ
abc/qd
= −

d
dθ

(
T θ
abc/dq

)
T θ
abc/dq

(16)

Now, by integrating Eq. (13) and (14) into Eq. (2) and (3),
the linearized three-phase state-space model of the MMC can
be obtained in Eq. (17).

d
dt
X (t)18×1=A (t)18×18 ·X (t)18×1+B (t)18×18 ·U (t)18×1

(17)

where the X(t) are state vectors including1icx ,1vcux ,1vclx ,
1igx , 1vgx , 1x1x , 1x2x , totally 18 variables. U(t) are input
vectors containing 1vgx . A(t) is the state-space matrix and
B(t) is the input-space matrix, whose explicit expressions are
given in Appendix E.

B. HARMONIC STATE-SPACE MODEL OF THE MMC
The state-space model of the MMC in Eq. (17) is still time-
periodic, which needs to be converted into the harmonic state-
space (HSS) model in frequency domain. In HSS, variables
are transformed from time domain into the frequency domain,
presented by Fourier coefficients as:

x (t) =
∑
k∈Z

Xkejkω1t (18)

By expanding Eq. (17) into the Fourier series, we get

1ẋ (t)=
∑

Anejnω1t1x +
∑

Bnejnω1t1u (19)

in which An and Bn are the Fourier coefficients of A(t) and
B(t) respectively andω1 is the fundamental frequency. Taking
Laplace transform on Eq (19), we have

s1x (s) =
∑

An1x (s− jnω1)+
∑

Bn1u (s− jnω1)

(20)
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The Eq. (20) can be written in matrix form as

sX = (A− N) · X + B · U (21)

The Equation (21) can be rewritten as (22). It is pointed out
that the matrix (A-Np) should be full rank [12].

Xp = −
(
A− Np

)−1 B · Up
(
Np = sI + N

)
(22)

According to [12], the harmonic order of the HSS is set as
three to guarantee the enough accuracy. The Xp and Np are
defined in Eq. (23) and Eq. (24).

Xp =

[
X(ωp−3ω1) · · · X(ωp) · · · X(ωp+3ω1)

]T
X(ωp±hω1)

=

([
1icx 1vcux 1vclx 1igx 1x1x 1x2x

])(ωp±hω1)
1×18

(23)

Np =



j
(
ωp − 3ω1

)
I
. . .

jωpI
. . .

j
(
ωp + 3ω1

)
I


(24)

The Toeplitz matrix of the Fourier coefficients of the
system matrix A(t) is shown in Eq. (25). The form of the
Toeplitz matrix B is the same as the A. It is pointed out that
there mainly exists dc, fundamental, and double-frequency
components in the capacitor voltages and arm currents of the
MMC under normal conditions. Therefore, those harmonics
above double-frequency can be ignored.

A126×126=



A0 A−1 A−2

A1 A0 A−1
. . .

A2 A1
. . .

. . .
. . .

. . .
. . .

. . . A−1 A−2
. . . A1 A0 A−1

A2 A1 A0


(25)

The perturbation voltage Up can be either positive- or
negative-sequence. To acquire a n × n impedance matrix,
n perturbations at different frequencies need to be injected.
If the perturbation is injected at ωp, the Up is like:Up =

[
U(ωp−3ω1) · · · U(ωp) · · · U(ωp+3ω1)

]T
U(ωp) =

[
03×1 03×1 03×1 1ν

ωp
gx 03×1 03×1

] (26)

The essence of the impedance calculation is to establish
the relationship between the perturbation voltage and the
resulting current. The perturbation voltage and the feedback
ac current need to be extracted from the Xp as:

Vgx =

[
1ν

ωp−3ω1
gx · · · 1ν

ωp
gx · · · 1ν

ωp+3ω1
gx

]T
Igx =

[
1i

ωp−3ω1
gx · · · 1i

ωp
gx · · · 1i

ωp+3ω1
gx

]T
(27)

C. DERIVATION OF THE MIMO SEQUENCE
IMPEDANCE OF THE MMC
The linear symmetric transformation [20] is applied here to
transform state variables in abc domain to those in sequence
domain. The zero-sequence is omitted because there are no
paths for zero-sequence currents. The symmetric transform
is extended as:

E=diag (. . . , e, e, e, . . .) , e=
1
3

[
1 e j

2π
3 e−j

2π
3

1 e−j
2π
3 e j

2π
3

]
(28)

The sequence component of the ac-side voltage Ugabc and
current Igabc can be gotten as.

Igpn=E · Igx=
[
1i

ωp−3ω1
gpn · · · 1i

ωp
gpn · · · 1i

ωp+3ω1
gpn

]T
Vgpn=E · Vgx

=
[
1ν

ωp−3ω1
gpn · · · 1ν

ωp
gpn · · · 1ν

ωp+3ω1
gpn

]T
(29)

Therefore, the MIMO sequence impedance can be derived
as:

Zpn14×14 = Vgpn ·
(
Igpn

)−1 (30)

III. FREQEUNCY COUPLING ANALYSIS AND TRUNCATION
OF THE MMC MIMO SEQUENCE IMPEDANCE
The developed MMC sequence impedance above is of large
dimension which is not suitable for numeric stability assess-
ment. In order to derive an appropriate model order for
efficient stability analysis, the harmonics coupling inside the
MMC especially the frequency couplings should be first ana-
lyzed and elucidated. The parameters of the interconnected
system are listed in Appendix. B.

A. THE MULTI-FREQUENCY RESPONSE
CHARACTERISTICS OF THE MMC
This part will discuss the multi-frequency response charac-
teristics of the LTP system like MMC. The Eq. (22) could be
rewritten as:

Xp = −
(
A− Np

)−1 B︸ ︷︷ ︸
<

·Up (31)

whose matrix form is like:

...

1x (s−1)
1x (s0)
1x (s+1)

...

=


. . . . .
.

R0 (s−1) R−1 (s0) R−2 (s+1)
R1 (s−1) R0 (s0) R−1 (s+1)
R2 (s−1) R1 (s0) R0 (s+1)

. .
. . . .



·



...

1u (s−1)
1u (s0)
1u (s+1)

...

 (32)

55606 VOLUME 8, 2020



H. Zong et al.: Generalized MIMO Sequence Impedance Modeling and Stability Analysis of MMC-HVDC

FIGURE 4. Multi-frequency response characteristics of the MMC.

To see the multi-frequency response characteristics rep-
resented by the HSS matrix, the 1x(s0) is extracted from
Eq. (32) with s = jω.

1x (jω)=
h∑
−h

(R−n (jω + jnω1) ·1u (jω + jnω1)) (33)

Supposing that the input1u only has single frequency ωp,
i.e., 1u = Uejωpt , which could be expressed in frequency
domain as:

1u (jω) = Uδ
(
ω − ωp

)
(34)

The corresponding output spectrum is:

1x (jω)=
h∑
−h

(
R−n (jω+jnω1)·Uδ

(
ω+nω1 − ωp

))
(35)

where δω is the Dirac function. It’s clear from Eq. (35) that
multiple frequencies ωp + nω1 appear in the output spec-
trum under single-frequency input which is summarized in
Figure.4. Therefore, to acquire a n× n dimensional matrix, n
perturbations need to be injected.

B. ANALYSIS OF THE FREQUENCY COUPLING
INSIDE THE MMC
Usually, two main types of couplings exist in the impedance
of the converter-based power electronic systems, i.e., fre-
quency coupling and sequence coupling. For the frequency
coupling between two different frequencies, it should be
defined at the same sequence domain, either positive- or
negative-sequence. For the sequence coupling between the
positive- and negative-sequence impedances, it should be
defined at the same frequency [20].

Thanks to various types of impedance models proposed in
recent years, the couplings inside the converters are under-
stood gradually. Divided by the reference frame, there are
d-q impedance [21], modified sequence impedance [22],
α-β impedance [23] and traditional sequence impedance [24].
Divided by the dimension, there are SISO impedance and
MIMO impedance. The above-mentioned impedance models
have illustrated the frequency coupling mechanism of the
VSC very well, which is mainly originated from the asym-
metric d-q control [22] generated by PLL, outer control loop,
etc. However, the frequency coupling within the MMC needs
further discussions.

As shown in Figure 5 and Figure 6, the injected small-
signal perturbation current at 35 Hz will trigger another per-
turbation current at mirror coupling frequency (65 Hz) either
under open-loop control or close-loop control. The frequency
couplings exist even under the open-loop control which is
totally different from the VSC. In addition to the asymmetric
d-q control [22], another important factor producing the fre-
quency coupling within the MMC is the internal double-
frequency harmonics, which will interact with the injected
frequency making the ac-side exhibiting the frequency cou-
pling characteristics. Therefore, the frequency couplings of
the MMC could not be ignored under any control modes as
long as the double-frequency harmonics existing. Another
noteworthy phenomenon is that, there exist some small har-
monics at 1 Hz, 79 Hz, 100 Hz and 121 Hz either under
steady-state or small-signal perturbation. These inherent

FIGURE 5. Harmonic components of the ac-side current of MMC under open loop control, (a) steady state;
(b) small-signal perturbation.
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FIGURE 6. Harmonic components of the ac-side current of MMC under closed loop control, (a) steady state;
(b) small-signal perturbation.

harmonics are caused by the internal dynamics discussed
in [12], that’s why the HSS model needs to incorporate the
third harmonics.

The distribution of theMIMO sequence impedance derived
from the HSS is given in Eq. (36).

...

V+1p
V+1n
V 0
p
V 0
n

V−1p
V−1n
V−2p
V−2n
...



=



. . .
. . .

Z0
11 0 Z0

12
0 Z+222

Z−111 0 Z−112
0 Z1

22
. . . Z−211 0

. . .

Z0
21 0 Z0

22
Z−311 0

Z−121 0 Z−122
. . .

. . .



×



...

I+1p
I+1n
I0p
I0n
I−1p
I−1n
I−2p
I−2n
...


(36)

FIGURE 7. Modified distribution of the frequency coupling in positive-
and negative-sequence impedances.

According to Ref [25] and [26], when extending
the frequency coupling of MIMO impedance matrix, the
symmetrical transformation needs to be modified to avoid the
frequency coupling happening between sequences. The mod-
ified coupling propagation path in positive/negative sequence
is given in Figure 7. The arrows represent the coupling
between two frequencies. The frequencies in orange color
belong to the positive sequence, while the frequencies in blue
color belong to the negative sequence. The dotted line means
that the frequency coupling will not appear in this truncated
frequency range. Taking one pair of the coupled frequency
(s + jω1, s − jω1) for example, the frequency coupling
appears in the positive-sequence, while it doesn’t show up
in the negative-sequence. But the frequency couplings in the
negative-sequence appears in the third harmonic (s + 3jω1),
and the positive-sequence will not exhibit the frequency
couplings this time. Therefore, for any given two coupled
frequencies, there will only exist one pair of frequency
couplings either in positive- or negative-sequence. And the
frequency coupling will appear alternately in positive- and
negative-sequence impedances.
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FIGURE 8. Positive-sequence impedance of the MMC (amplitudes).

The positive- and negative- sequence is split as:

V+3p
V+2p
V+1p
V 0
p

V−1p
V−2p
V−3p


=



Z+422
Z+322

Z0
11 Z0

12
Z−111 Z−112

Z0
21 Z0

22
Z−121 Z−122

Z−411



×



I+3p
I+2p
I+1p
I0p
I−1p
I−2p
I−3p


(37)



V+3n
V+2n
V+1n
V 0
n

V−1n
V−2n
V−3n


=



Z+211 Z+212
Z+111 Z+112

Z+221 Z+322
Z+121 Z1

22
Z−211 Z−212

Z−311
Z−221 Z−222



×



I+3n
I+2n
I+1n
I0n
I−1n
I−2n
I−3n


(38)

The frequency scanning results are given to verify the
correctness of the extracted impedance model in Eq. (37)
and Eq. (38). As shown in Figure 8, amplitudes of the ana-
lytical positive sequence impedance fit well with the results
of the frequency scanning. It can be observed that there
exist frequency couplings in two set of frequencies: s + jω1
and s − jω1; s + 2jω1 and s. Correspondingly, the negative
sequence impedance and its frequency scanning results are
given in Figure 9, which also shows a good conformity.
Similarly, there exist frequency couplings in three set of
frequencies: s − jω1 and the s − 3jω1, s and s + 2jω1,
s + jω1 and s + 3jω1. Unlike the VSC-based wind farm,
the off-diagonal terms of the frequency coupling inMMCwill
decline rapidly in the medium- and high-frequency range,
where the frequency couplings in MMC can be ignored.
Therefore, the frequency coupling depicts the coupling

at two different frequencies but in the same sequence. The
sequence coupling depicts the coupling between positive-
and negative-sequence but at the same frequency. In three-
phase balanced system, only the frequency coupling needs
to be taken into account. And for the MMC, the frequency
couplings cannot be ignored, which is the foundation of the
model truncation in the following part.

C. TRUNCATION OF THE MMC MIMO SEQUENCE
IMPEDANCE MODEL
Actually, the modified sequence impedance [22] reflects the
frequency coupling very well. In this section, it’s found that
the derived MIMO sequence impedance matrix will exhibit
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FIGURE 9. Negative-sequence impedance of the MMC (amplitudes).

a more compact distribution in modified sequence domain,
which is very helpful for estimating the truncation criteria.
Therefore, the MIMO sequence impedance (p/n) matrix is
transformed into the MIMO modified sequence impedance
(Mp/Mn) matrix by using the relationship as:[

Vp
Vn

]
=

[
e−jω1t 0
0 ejω1t

]
︸ ︷︷ ︸

P

·

[
VMp
VMn

]
(39)

Therefore, the modified sequence impedance could be
obtained as:

ZMpn = P−1h ZpnPh (40)

where the Toeplitz matrix of the Ph is like:

Ph =



. . .

0 0
. . . 0 1

1 0 0 0
0 0 0 1

1 0
. . .

0 0
. . .


(41)

By integrating Eq. (36) into the Eq. (40), the MIMO mod-
ified sequence impedance could be obtained as:

...

V+1Mp

V+1Mn
V 0
Mp
V 0
Mn

V−1Mp

V−1Mn
...



=



. . .

Z+111 Z+112
Z+121 Z+122

Z0
11 Z0

12
Z0
21 Z0

22
Z−111 Z−112
Z−121 Z−122

. . .





...

I+1Mp

I+1Mn
I0Mp
I0Mn
I−1Mp

I−1Mn
...


(42)

It can be observed from Eq. (42) that under the fun-
damental frequency rotating frame, the frequency coupling
could be rearranged in a more compact form, i.e., diago-
nal block matrix without decentralized couplings. Therefore,
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FIGURE 10. Accuracy comparison of the truncated models with different dimensions.

one two-by-two impedance matrix could include all essential
information of Eq. (42) or Eq. (36) since the other entries can
be gotten by shifting s to sn (n = 1;−1; 2;−2; . . .). In partic-
ular, if s is shifted to s−1, the same model as the one proposed
in [22] could be obtained, which has been recognized as a
modified sequence impedance in the stationary frame.[

Vp (0)
Vn (−2)

]
=

[
Z0
11 (s− jω1) Z0

12 (s− jω1)

Z0
21 (s− jω1) Z0

22 (s− jω1)

] [
Ip (0)
In (−2)

]
(43)

Thus, one two-by-two impedance matrix containing a pair
of frequency coupling is enough for stability analysis. The
information of the seven-by-seven impedance matrix is dupli-
cated in stability judgement, because it’s just the frequency
shift of one two-by-two impedance matrix. This conclusion is
only valid when MMC operates under three-phase balanced
condition. If the MMC went into three-phase unbalanced
condition, the order of the MIMO model needs to be raised
to incorporate the sequence coupling.

D. ACCURACY COMPARISON OF THE TRUNCATED
MODELS WITH DIFFERENT DIMENSIONS
To make the model truncation more persuasive, the accuracy
of the model with different dimensions are compared by
transforming them into the SISO impedance model (a method
introduced in Ref [27]). Here, the four-by-four, two-by-two
and one-by-one positive-sequence impedances are compared,
whose expressions are like:

V+1p
V 0
p

V−1p
V−2p

 =

Z0
11 Z0

12
Z−111 Z−112

Z0
21 Z0

22
Z−121 Z−122


4×4


I+1p
I0p
I−1p
I−2p

 (44)

[
V+1p
V−1p

]
=

[
Z0
11 Z0

12
Z0
21 Z0

22

]
2×2

[
I+1p
I−1p

]
(45)

FIGURE 11. Impedance validation of the ZWF p.

V+1p =

[
Z0
11

]
1×1

I+1p , V−1p =

[
Z0
22

]
1×1

I−1p (46)

The above three truncated models are compared in
Figure 10 via the SISO equivalent impedances [27]. It can be
observed that the truncated two-by-two sequence impedance
in Eq. (45) could guarantee the sufficient accuracy, which is
rewritten as

ZMMC
P =

[
ZMMC
P_11 ZMMC

P_12

ZMMC
P_21 ZMMC

P_22

]
(47)

where the subscript P denotes the positive-sequence. The
phase verification of one pair of coupled frequencies in
positive and negative sequence are listed in Appendix C.
The decoupled sequence impedance adopted in the past
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FIGURE 12. Stability analysis considering frequency couplings.

research [5]–[9] ignoring the off-diagonal components is like:

ZMMC
P =

[
ZMMC
P_11 0
0 ZMMC

P_22

]
(48)

IV. STABILITY ANALYSIS OF THE
INTERCONNECTED SYSTEM
In this section, the truncated two-by-two sequence impedance
of the MMC will be used for stability analysis of the inter-
connected system. Also, the impedance network-based wind
farm aggregation model is also validated.

A. IMPEDANCE VALIDATION OF THE WIND FARM
The impedance network-based wind farmmodel is adopted in
this paper. The accuracy of the model is guaranteed by con-
sidering the detailed doubly-fed induction generator-based
wind turbine model [14], collection network model, trans-
formers and filter branches. The topology of the wind farm
has been given in Figure 2, which contains twenty-five DFIG-
based wind turbines, 0.69/35kV transformers and three filter
branches. The positive-sequence impedance of the wind farm
considering frequency couplings is derived in Appendix D.
To match with the truncated MMC positive-sequence
impedance, one pair of coupled frequencies is considered
which is like[

Vp (s)
Vp (s− 2jω1)

]
= ZWF

P (s) ·
[

Ip (s)
Ip (s− 2jω1)

]
(49)

where

ZWF
P (s) =

[
ZWF
P_11 ZWF

P_12

ZWF
P_21 ZWF

P_22

]
(50)

The impedance validation of the positive-sequence
impedance of the wind farm is given in Figure 11. It can be
seen that both the amplitude and phase of the analytical model
fit well with the frequency scanning results. The decoupled

FIGURE 13. Time domain verifications.

FIGURE 14. FFT analysis of the PCC current.

wind farm sequence impedance is like:

ZWF
P (s) =

[
ZWF
P_11 0
0 ZWF

P_22

]
(51)
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FIGURE 15. Stability analysis without considering frequency couplings.

B. STABILITY ANALYSIS CONSIDERING
FREQUENCY COUPLINGS
Actually, the MMC-HVDC connected wind farm is a type
‘Z+Y’ interconnected system as stated in [28]. According
to [28], there will not exist right-half-plane (RHP) poles
when the subsystem is stable in stand-alone mode. If the
interconnected system can operate normally, the wind farm
and MMC-HVDC system will work stably when connected
to the ideal voltage or current source in stand-alone mode.
Based on this, the effects of the RHP can be excluded.
The impedance ratio considering frequency couplings is like

L1 = ZMMC
p (s) · inv

(
ZWF
p (s)

)
(52)

Because L1 does not contain any right RHP pole,
the closed-loop system is stable if and only if the eigen-loci
of L1 does not encircle the critical point (−1, 0j). The Nyquist
plots are shown in Figure 12. When the output active power
of the wind farm approaches 88% of the rated power, the sta-
bility margin is small and close to the critical state. When
two more wind turbines are put into service (96% of the rated
power), the eigen-loci of the L1 encircles the (−1,0j). The
theoretical analysis is verified by the time-domain simula-
tions and FFT analysis, as shown in Figure 13 and Figure 14.
Under the stable state, the PCC current mainly consists of the
fundamental component. Under the unstable state, the oscilla-
tion appears at 22 Hz and the coupled term happens at 78 Hz.
Therefore, the accuracy of the sequence impedance model
considering the frequency couplings has been verified.

C. STABILITY ANALYSIS IGNORING FREQUENCY
COUPLINGS
The stability judgement of the same interconnected system
based on the decoupled sequence impedance model [5]–[10]
is also given in this part. The impedance ratio L2 without
considering frequency couplings is like

L2 = ZMMC
P (s) · inv(ZWF

p ) (53)

As shown in Figure 15, the critical state is indicated when
the wind farm output power reaches 96% of the rated power,

which is contradictable with the time-domain somulation
results in Figure 13. And when the wind farm output power
reaches 100% of the rated power, the unstable state is pre-
dicted by the conventional stability judgement. Therefore,
for the studied system, an optimistic stabilty result is given
by the conventional stability judgement without considering
the frequency couplings. Worth mentioning that there exist
many other cases where the SISO model fails in the stability
assessement, this points to the necessity of using a more
detailed model for analysis.

V. CONCLUSION
This paper proposes a generalized MIMO sequence
impedance model of the MMC, aiming at accurately predict-
ing instabilities of the interconnected wind farm-MMC sys-
tem. The established MIMO sequence impedance model of
theMMC is verified by the frequency scanning. Based on this
modeling process, a better understanding of the frequency
couplings inside theMMC is achieved. And this knowledge is
useful formodel truncation since the distribution of frequency
couplings is closely related to the model dimension. By com-
paring the accuracy of the truncated impedance models with
different dimensions, the MMC impedance model including
one pair of coupled frequency components is proven to be
sufficient for the stability analysis under balanced three-phase
systems. Finally, the accuracy of the proposed impedance
models has been confirmed by both the frequency-domain
analysis and time-domain simulations of the MMC-HVDC
connected wind farm system. In addition, it is noted that the
proposedMMCMIMO impedance model can also be applied
for the stability analysis under unbalanced three-phase sys-
tems, which will be further discussed in the future work.

APPENDIX
A. SYMBOLS DEFINITION
The park transformation is given in Eq. (A1). The inverse park
transformation is given in Eq. (A2). The park transformation
when q axis leads d axis is given in Eq. (A3). The constant
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TABLE 1. Parameters of the wind farm.

TABLE 2. Parameters of the MMC.

k1 and k2 are defined in Eq. (A4).

T θ
abc/dq
=

2
3
·

 cos θ cos
(
θ −

2
3
π

)
cos

(
θ +

2
3
π

)
− sin θ − sin

(
θ −

2
3
π

)
− sin

(
θ +

2
3
π

)


(A1)

T θ
dq/abc
=

 cos θ cos
(
θ −

2
3
π

)
cos

(
θ +

2
3
π

)
− sin θ − sin

(
θ −

2
3
π

)
− sin

(
θ +

2
3
π

)

T

(A2)

T θ
abc/qd

=
2
3
·

sin θ sin
(
θ −

2
3
π

)
sin
(
θ +

2
3
π

)
cos θ cos

(
θ −

2
3
π

)
cos

(
θ +

2
3
π

)
 (A3)

k1 =
2
3
·


1 −

1
2
−
1
2

−
1
2

1 −
1
2

−
1
2
−
1
2

1



k2 =
2
3
·


0 −

√
3
2

√
3
2√

3
2

0 −

√
3
2

−

√
3
2

√
3
2

0

 (A4)

B. SYSTEM PARAMETERS
The parameters of the wind farm are listed in Table 1 and the
parameters of the MMC station is given in Table 2.

C. SUPPLEMENTARY VALIDATION
The phase verification of the positive-sequence impedance is
given in Figure 16, taking one pair of coupled frequencies

FIGURE 16. Impedance validation of the MMC negative- sequence
impedance (Phase).

FIGURE 17. Impedance validation of the MMC positive-sequence
impedance (Phase).

FIGURE 18. Impedance network of the DFIG-based wind farm.

(s, s − 2jω1) for example. The phase verification of the
negative-sequence impedance is given in Figure 17, taking
one pair of coupled frequencies (s+ 2jω1, s) for example.

D. IMPEDANC NETWORK-BASED MODELING
OF THE WIND FARM
Firstly, the detailed impedance model [16] of the DFIG-based
wind turbine is adopted, which considers the dynamics of
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the induction generator, rotor-side converter (RSC), grid-side
converter (GSC) and dc-link. The whole impedance of the
DFIG-basedwind turbine contains three parts, i.e., GSC, RSC
and equivalent dc-side, which is expressed as

ZWdq = Zgscdq + Z
rsc
dq + Z

dc
dq (D1)

The next step is to establish the impedance network of
the wind farm, which shows higher accuracy in stability
analysis [16]. The basic idea is to integrate the impedances
of the wind turbines, transformers and cables into a circuit
network as shown in Figure 18. Since the impedances of the
wind turbines are modeled locally, they need to be reoriented
to the global reference frame defined at the point of common
coupling (PCC). Taking the wind turbine located in the first
row and first column for example, a rotation matrix is applied
according to the deviation angle of the local voltage, which is
like Eq. (D2) and Eq. (D3).

ZW11 = T11
dqZ

W
dq

(
T11
dq

)−1
(D2)

T11
dq =

[
cos θ11 sin θ11
− sin θ11 cos θ11

]
(D3)

After unifying the d-q frame of all wind turbines, the cir-
cuit operation could be applied to simplify the impedance
network. For example, the accurate output impedance of the
feeder 1 of the wind farm is like
Z1W_1 =

(
(ZW11 + Z

T
1ow + ZL)

−1
+ (ZW12 + Z

T
1ow)

−1
)−1

...

Z1W_4 =

(
(Z1W_3 + ZL)

−1
+ (ZW15 + Z

T
1ow)

−1
)−1
+ ZL

(D4)

where ZTlow represents the impedance of the step-up trans-
former of wind turbine.

Hence, the total impedance of the wind farm is shown
below.

ZWF
dq =

((
Z1W_4

)−1
+· · ·+

(
Z5W_4

)−1
+ZF3+ZF5+ZF7

)−1
+ZThigh (D5)

where the ZThigh represents the impedance of the step-up trans-
former of wind farm. ZF3, ZF5, ZF7 represents the impedance
of the 3rd order, 5th order and 7th order filter branches.
The d-q impedance can be transformed to the modified

sequence domain using (D5).

ZWF
Mpn (s) = AZZWF

dq A
−1
Z (D6)

AZ =
1
√
2

[
1 j

1 −j

]
, A−1Z =

1
√
2

[
1 1

−j j

]
(D7)

The 2 × 2 positive-sequence impedance of the wind farm
is like

ZWF
P (s) = ZWF

Mpn (s) (D8)

The 2× 2 negative-sequence impedance of the wind farm
is like

ZWF
N (s) = ZWF

Mpn (s+ 2jω1) (D9)

E. SYMBOL DEFINITION
Equations are shown at the pages 14–17.

A (t) =



−
R
L

0 0 −
nsua
2L

0 0 −
nsla
2L

0 0 A [1, 10] A [1, 11] A [1, 12] A [1, 13] 0 0 A [1, 16] 0 0

0 −
R
L

0 0 −
nsub
2L

0 0 −
nslb
2L

0 A [2, 10] A [2, 11] A [2, 12] 0 A [2, 14] 0 0 A [2, 17] 0

0 0 −
R
L

0 0 −
nsuc
2L

0 0 −
nslc
2L

A [3, 10] A [3, 11] A [3, 12] 0 0 A [3, 15] 0 0 A [3, 18]
nsua
Carm

0 0 0 0 0 0 0 0 A [4, 10] A [4, 11] A [4, 12] A [4, 13] 0 0 A [4, 16] 0 0

0
nsub
Carm

0 0 0 0 0 0 0 A [5, 10] A [5, 11] A [5, 12] 0 A [5, 14] 0 0 A [5, 17] 0

0 0
nsuc
Carm

0 0 0 0 0 0 A [6, 10] A [6, 11] A [6, 12] 0 0 A [6, 15] 0 0 A [6, 18]

nsla
Carm

0 0 0 0 0 0 0 0 A [7, 10] A [7, 11] A [7, 12] A [7, 13] 0 0 A [7, 16] 0 0

0
nslb
Carm

0 0 0 0 0 0 0 A [8, 10] A [8, 11] A [8, 12] 0 A [8, 14] 0 0 A [8, 17] 0

0 0
nslc
Carm

0 0 0 0 0 0 A [9, 10] A [9, 11] A [9, 12] 0 0 A [9, 15] 0 0 A [9, 18]

0 0 0
nsua
L

0 0 0 0 0 A [10, 10] A [10, 11] A [10, 12] A [10, 13] 0 0 A [10, 16] 0 0

0 0 0 0
nsub
L

0 0 0 0 A [11, 10] A [11, 11] A [11, 12] 0 A [11, 14] 0 0 A [11, 17] 0

0 0 0 0 0
nsuc
L

0 0 0 A [12, 10] A [12, 11] A [12, 12] 0 0 A [12, 15] 0 0 A [12, 18]

0 0 0 0 0 0 0 0 0 T1 0 0 0 −
2π · f0
√
3

2π · f0
√
3

Kiv 0 0

0 0 0 0 0 0 0 0 0 0 T1 0
2π · f0
√
3

0 −
2π · f0
√
3

0 Kiv 0

0 0 0 0 0 0 0 0 0 0 0 T1 0 −
2π · f0
√
3

2π · f0
√
3

0 0 Kiv

0 0 0 0 0 0 0 0 0 −ZL 0 0 0 0 0 0 −
2π · f0
√
3

2π · f0
√
3

0 0 0 0 0 0 0 0 0 0 −ZL 0 0 0 0
2π · f0
√
3

0 −
2π · f0
√
3

0 0 0 0 0 0 0 0 0 0 0 −ZL 0 0 0 0 −
2π · f0
√
3

2π · f0
√
3
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