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A B S T R A C T

One promising qubit implementation for the physical realization of quantum
processors is spin qubits, where the qubit is encoded in the spins of electrons
confined in semiconductor quantum dots. Despite considerable progress
during the past decades the information stored in spin qubits is fragile
and easily lost in interactions with its environment. To construct a robust
spin qubit it is therefore essential to understand the details of how these
interactions affect the confined electron spins, and explore approaches to
mitigate the harmful interactions.

The first two papers examine potential solutions to mitigate the harmful
interaction between the electron spins and the spinful nuclei in III-V semicon-
ductors. The first paper proposes an implementation of a singlet-only qubit in
a triple quantum dot with a highly tunable qubit splitting and superior coher-
ence properties due to its singlet-only nature. The second paper shows how
the harmful interaction can be quenched by applying a DC electric current
through a multi-electron spin qubit tuned to the Pauli spin blockade regime,
where an interplay between the hyperfine interaction and the spin dynamics
effectively suppresses the harmful nuclear field gradients in the qubit.

The third paper investigates the manifestation of the anisotropic effective
mass and effective g-tensor of heavy holes in two-dimensional hole gases
and lateral quantum dots in group-IV semiconductors. We present a general
expression for the anisotropic g-tensor, and present a straightforward way to
calculate corrections to this g-tensor for localized holes due to various types
of spin–orbit interaction.

The final paper develops a detailed connection between the leakage current
of a double quantum dot tuned to the Pauli spin blockade regime and the
underlying spin–orbit interaction in the system. We present a general analytic
expression for the leakage current, allowing us to connect experimentally
observable features to both the magnitude and orientation of the effective
spin–orbit interaction acting on the moving carriers.
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1
I N T R O D U C T I O N

1.1 the quantum computer

The exponential progress of microelectronics during the past decades [5] has
enabled radical advances in derivative technologies that make use of the large
amount of now available computing power. Every year microprocessors are
getting increasingly better and more powerful. However, despite this remark-
able progress, there are still some problems that remain computationally hard
or unsolvable, even for a supercomputer with millions of cores. The textbook
example of a problem that is computationally hard to solve is factorizing
the product of two prime numbers. Because the computational time scales
exponentially with the number of digits [6], factorizing the product of two
large prime numbers takes a very long time, and is therefore an essential
part of some important cryptographic algorithms [7]. Another problem that
computers are not able to tackle efficiently is simulating quantum mechanical
systems, which could be of great use for drug and material development [8,
9], but is computationally expensive due to its exponential scaling with the
number of particles [8].

A potential solution to some of these computationally challenging problems
is the quantum computer. A quantum computer is not superior to classical
computers in performing arbitrary tasks, but by exploiting quantum mechani-
cal features such as superposition and entanglement, the quantum computer
can vastly outperform a classical computer in certain tasks [6, 10–15]. Because
a quantum computer operates according to the laws of quantum mechan-
ics, they appear to be an effective tool for simulating quantum mechanical
systems [8, 13, 16]. Furthermore, there are some specialized algorithms that
can leverage the quantum mechanical properties of a quantum computer.
Examples of such algorithms are Grover’s algorithm [6, 17, 18] for efficient
search in unsorted databases, and Shor’s algorithm [6, 12, 19] for effectively
factorizing the product of two large prime numbers.
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2 introduction

Figure 1.1: Illustration of the Bloch sphere used to represent qubit states. Any qubit
state |Ψ⟩ can be represented as a point on the sphere in terms of the polar
angle θ and azimuthal angle ϕ of the Bloch sphere.

1.2 qubits

Like the classical bit is the building block of a classical computer, the quantum
bit (qubit) is the fundamental building block of a quantum computer. In
contrast to the classical bit, which can only take a value of either 0 or 1, the
qubit is realized in a quantum mechanical two-level system, and can thus be
in any superposition of these two states |Ψ⟩ = α |0⟩+β |1⟩ [6]. A common way
of visualizing the qubit is by using the Bloch sphere, as depicted in Fig. 1.1.
The surface of the Bloch sphere consists of every possible qubit state, and one
particular qubit state can conveniently be expressed in terms of the spherical
angles of the Bloch sphere,

|Ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (1.1)

where θ and ϕ are the polar and azimuthal angles, respectively. The poles
of the Bloch sphere then define the two basis states |0⟩ and |1⟩, and any
superposition of the two basis states can be obtained given control over two
linearly-independent axes of rotation on the Bloch sphere [6].

To achieve a fully functioning quantum computer, the underlying qubit
has to satisfy a given set of requirements. First stated by DiVincenzo [20],
these requirements are that the qubit: (i) is encoded in a scalable two-level
system, (ii) can be initiated in a fiducial state, (iii) has coherence times much
longer than the operation times of the logic gates, (iv) has a universal set of
logic gates from which any qubit operation can be expressed, and (v) can
be readout. At present, there are several proposed physical realizations for
qubits that partly satisfy the five DiVincenzo requirements.
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One prominent qubit implementation at the current date is based on su-
perconducting qubits, where the qubit is encoded in the two lowest-energy
states of an anharmonic oscillator constructed from superconducting circuit
elements [21, 22]. In addition to being vastly researched in academia, super-
conducting qubits have also gained a lot of interest from industry during the
past decades, with several major technology companies developing their own
superconducting quantum computers. The most noteworthy companies are
Google, which claimed they demonstrated quantum supremacy for a very
specific task on their 53 qubit device in 2019 [23], and IBM which provides
public access to quantum computers with up to 127 qubits for testing and
development of quantum algorithms [24–26]. However, despite the recent
progress and interest in superconducting qubits, they suffer from being hard
to scale due to their large size ∼ 300− 500 µm [27]. Given that a fully working
quantum computer likely requires at least one million qubits [28], it will
still be some time until we can experience a fully working superconducting
quantum computer.

Another popular qubit implementation is spin qubits [29–33], where the
qubit is encoded in the spin of electrons confined in small ∼ 100 nm semicon-
ductor structures [33]. Despite not being as developed as superconducting
qubits, spin qubits could leverage the advantage of already developed semi-
conductor production technology and equipment [34, 35]. These commercial
mass chip-manufacturing techniques, combined with the small qubit size, can
enable rapid scaling and commercialization of spin qubits, superior to that of
superconducting spin qubits. However, despite the promising scalability of
spin qubits, there are still some challenges remaining to be solved.

1.3 spin qubits

The electron spin degree of freedom naturally provides a two-level system
consisting of spin up and spin down. Originally proposed over two decades
ago [36], this two-level system can be used to host a qubit by trapping a single
electron in a zero-dimensional semiconductor structure called a quantum dot.
Despite showing rapid experimental success with initialization, manipulation
and readout [37–39], two main challenges limited further progress: (i) Manip-
ulation of a single spin requires highly located magnetic fields, which are hard
to realize in practice, and (ii) the spinful nuclei of the semiconductor couple
to the electron spin as a random effective magnetic field, causing decoherence
[40, 41] and relaxation [42] of the qubit.

One proposal to overcome the requirement of highly located magnetic
fields was to encode the qubit in a multi-electron spin state, allowing for qubit
control through gate-tunable exchange interactions [43]. With two electrons
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in a double quantum dot, a spin qubit can be defined in the unpolarized
singlet-triplet subspace. This so-called singlet-triplet (ST) qubit enables elec-
tric control of rotations along one axis of the Bloch sphere [38, 44], partly
solving the requirement for localized magnetic fields. To obtain full electric
control over rotations along two independent axes of the Bloch sphere an-
other electron and quantum dot was added. The resulting exchange-only
(XO) qubit is hosted in two three-electron spin states in a triple quantum dot
and can be fully controlled through exchange interactions [45–47]. Despite
solving the requirement for localized magnetic fields, it came at the cost of
increased sensitivity to electric noise both from the gate voltages and from
environmental charge fluctuations. Luckily, recent work has shown that the
sensitivity to electric noise can be greatly reduced by symmetric operation of
the qubit [48–50].

High-quality III-V semiconductors, and especially GaAs, have propelled
the spin qubit field forward in the past decades, being the go-to materials for
hosting spin qubits due to their simple fabrication and favorable electronic
properties [51]. Unfortunately, these semiconductors also have a large number
of spinful nuclei, making nuclear noise a significant challenge [52–54]. Ap-
proaches to mitigate the harmful nuclear noise in GaAs-based devices have
therefore been extensively explored, and have been important for the progress
of the spin qubit field.

An alternative solution to the nuclear noise challenge is to host spin qubits
in group-IV semiconductors such as Si and Ge. These semiconductors have
only a small fraction of spinful nuclei and can be further purified to nearly
nuclear-spin-free [55–59], removing the nuclear noise altogether. However, in
contrast to GaAs which has a direct band-gap, Ge and Si have an indirect band-
gap. When confining electrons in low-dimensional semiconductor structures
this indirect band-gap gives rise to an extra valley degree of freedom [33, 60],
which is both hard to control and provides an additional channel for qubit
dephasing and leakage out of the qubit subspace [60, 61].

Lately, there has been substantial progress with Si- and Ge-based spin qubits
that use the spin of valence band holes instead of the electron spin [62–70].
These holes provide the same protection against nuclear noise as the electrons,
but without the complicating valley degrees of freedom. Because the valence
band of semiconductors is of p-type [71], the corresponding hole states have
a total sixfold angular momentum degree of freedom. This can lead to highly
anisotropic dynamics, which again gives rise to several interesting anisotropic
properties such as a highly anisotropic and tunable g-tensor [3, 72–82], and a
strong effective spin-orbit coupling that allows for fast qubit operation [83–89].

In this thesis, we explore possible ways forward for spin qubits. The first
two chapters give a general introduction to spin qubits and their properties,
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focusing on GaAs for simplicity to make the presentation as pedagogical
as possible. We begin in Chapter 2 by giving a general presentation of
relevant models used to describe electrons confined in quantum dots, the
relevant qubits, and interactions experienced by the localized spins. In Chapter
3 we introduce interactions between the confined electrons and the leads
surrounding the quantum dots, enabling dissipation and transport through
quantum dots. This allows us to take a deeper look at Pauli spin blockade
in double quantum dots in Chapter 4, where we focus on how spin–orbit
interaction affects the leakage current. We then present two possible solutions
to the nuclear noise challenge in GaAs-based devices in Chapter 5. In Chapter
6 we go beyond GaAs and look into models for describing the dynamics of
group-IV semiconductors, with a special focus on valence band holes, which
we then use to investigate some anisotropic properties of valence band holes
in Chapter 7.





2
M U LT I - E L E C T R O N S P I N Q U B I T S

Multi-electron spin qubits hosted in semiconductor quantum dots form an
attractive qubit implementation that can be controlled through exchange
interactions and promises easily scalable quantum processors [30, 34, 60]. In
this chapter, we present a general introduction to spin qubits, where we focus
on GaAs-based devices for simplicity. We begin, in Sec. 2.1, by introducing the
building block of spin qubits, namely the quantum dot. In Sec. 2.2 we present
the relevant models for describing devices consisting of multiple quantum
dots. The two most common multi-electron spin qubits, i.e. the singlet-triplet
qubit and the exchange-only qubit, are then presented in Secs. 2.3 and 2.4,
respectively. Finally, in Sec. 2.5 we investigate some common interactions
between the localized spins of the qubit and their environment.

2.1 the quantum dot

A quantum dot is an approximately zero-dimensional semiconductor structure
in which electrons can be confined, and thus provides an excellent platform
for creating quantum devices [33]. One common quantum dot implementation
is nanowires, which are one-dimensional semiconductor structures that can
be further confined into quantum dots using local gates [60]. However, the
most common technique for implementing quantum dots in semiconductors,
and the one we will focus on in this section, are lateral quantum dots [47],
where a two-dimensional electron gas is further confined by electrostatic
potentials provided by metallic gates placed above/below the semiconductor
heterostructure.

2.1.1 Two-dimensional electron gases

A common platform for creating low-dimensional semiconductor structures,
such as quantum dots, is the two-dimensional electron gas (2DEG). In a 2DEG
electrons are confined along one spatial direction while being free to move in

7



8 multi-electron spin qubits

Figure 2.1: Illustration of a 2DEG in GaAs. The 2DEG is created on the GaAs side
of the GaAS/AlAs interface in the region where the conduction band, as
a function of the stacking direction z, drops below the Fermi level. The
electrons are then confined along the stacking direction while moving freely
along the interface.

the other two directions. Typically, a 2DEG is created by stacking layers of
semiconductors, e.g. layers of GaAs and AlAs or Si and SiGe, where advances
in semiconductor fabrication allow for atomically precise layer interfaces.
By stacking semiconductors with different band structures one can create a
structure where the conduction band crosses the Fermi level at one of the
interfaces. This creates a quantum well (QW) along the stacking direction
that confines the electrons in a ∼ 10 nm thick sheet, accumulating electrons
along the interface in a so-called two-dimensional electron gas. In Fig. 2.1 we
illustrate how a 2DEG is created in a GaAs device by stacking layers of GaAs
and AlAs, where the electrons are confined on the GaAs side of the interface,
in the region where the conduction band drops below the Fermi level.

An effective Hamiltonian describing the confined electrons can be obtained
by integrating out the direction of confinement, which we label z, from the
bulk Hamiltonian. In most semiconductor structures, the global minimum of
the conduction band is usually very parabolic and simple1, and the dynamics
of the electrons can be described fairly accurately by a simple effective-mass
Hamiltonian. Integrating out the direction of confinement then yields an
effective in-plane Hamiltonian,

Hc = Ez,0 +
 h2k2∥
2m∗ , (2.1)

where k2∥ = k2x + k2y, and m∗ is the effective mass of the electrons. Here, the
first term parameterizes the confinement energy Ez,0 of the 2DEG, which

1 In some semiconductors, so-called indirect-gap semiconductors, the conduction band minimum
is not centered around the Γ -point k = 0, giving rise to additional degrees of freedom. The
effects of these additional degrees of freedom are discussed in more detail in Sec. 6.2.2.
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Figure 2.2: A double quantum dot is created by further confining a two-dimensional
electron/hole gas using metallic gates. (a) Electrostatic gates are placed
on top of the heterostructure such that the electrostatic potential creates
two small islands in the two-dimensional gas where a small number of
electrons/holes are confined. (b) Illustration of the gates used in (a) shown
from above. Tuning the different gate voltages used to confine the quantum
dots allows for control over the electrostatic potential on the dots (VL(R)),
as well as the tunneling barrier between the two dots (Gt) and the dots
and leads (GL(R)).

for an infinite-well-type confinement of width d reads Ez,0 =  h2π2/2m∗d2,
whereas the second term governs the isotropic in-plane dynamics of the
electrons confined in the electron gas.

2.1.2 Lateral quantum dots

A semiconductor quantum dot is a small island, often formed inside a two-
dimensional electron gas, where a few electrons are trapped. The most
common implementation of quantum dots is lateral quantum dots, which
are created by further confining a 2DEG using electrostatic potentials. The
potentials used to confine the 2DEG are usually provided by metallic gates
placed on top of (and/or underneath) the heterostructure. The electrostatic
potentials deplete2 the 2DEG creating a small two-dimensional island where
electrons can be trapped. An illustration of how a quantum dot can be made
from a 2DEG is shown in Fig. 2.2(a).

The same gates that are used to define the quantum dot also provide
tunable control over the potential landscape on and around the quantum dots.
This allows for electric control over several quantum dot properties such as

2 In some heterostructures, like undoped Si/SiGe, the 2DEG is typically empty in absence of gate
voltages [47]. In such systems, the gate voltages are used to accumulate electrons in the 2DEG,
not deplete electrons from the 2DEG.
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electrochemical potential and tunneling barriers, making the quantum dot a
perfect host for creating spin-based qubits. We illustrate this control by using
the example of Fig. 2.2(b), where we illustrate a possible gate configuration
that can be used to confine a double quantum dot. Here, the gates labeled
Gi create depletion zones in the 2DEG, giving rise to two quantum dots. By
tuning the gate between the two dots Gt, one can control the tunneling barrier
between the dots. Similarly, by tuning the two outer gates GL(R), one can
control the tunneling barrier between the left(right) dot and the left(right) lead.
Finally, the gates VL(R) can be used to control the electrochemical potential
on the two dots.

To describe the electrons confined in a quantum dot we start with the
2DEG Hamiltonian in Eq. (2.1). By adding a circularly symmetric parabolic
confinement potential V(r) = λ(x2 + y2), the in-plane component of the
effective mass Hamiltonian reads

H0 =
p2

2m∗ +
m∗

2
ω2

0(x
2 + y2), (2.2)

where ω0 =
√
2λ/m∗ defines the strength of the in-plane confinement, such

that σ0 =
√

 h/(m∗ω0) gives the effective radius of the dot in the absence
of a magnetic field, and p = −i h∂r + eA(r) is the canonical momentum,
with A(r) = Bz(−y/2, x/2, 0) being the vector potential for which we use
the circular gauge and neglect in-plane components of the magnetic field,
assuming strong confinement along z.

The Hamiltonian in Eq. (2.2) describes an isotropic two-dimensional har-
monic oscillator in the presence of a magnetic field. This Hamiltonian can be
diagonalized in many different ways, straightforwardly resulting in a Hamil-
tonian that can be written in terms of two independent harmonic oscillators,

H0 =  hω+

(
n+ +

1

2

)
+  hω−

(
n− +

1

2

)
, (2.3)

with ni = a
†
iai, where a(†)± are bosonic creation and annihilation operators,

and the oscillator frequencies are defined through

ω± =

√
ω2

0 + 2ω2
c ± 2ωc

√
ω2

0 +ω2
c, (2.4)

with the cyclotron frequency ωc = eBz/4m
∗. From the Hamiltonian in

Eq. (2.3) we find that the ground state energy of an electron confined in a
quantum dot is E0 =  h(ω+ +ω−)/2, with the two closest excited states being
separated from the ground state by an energy of ω±, respectively.
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2.2 multi quantum dot devices

Above we showed that the confined electrons in a circular quantum dot
can be described in terms of two harmonic oscillators, where the oscillator
frequencies ω± are highly dependent on the size of the quantum dot. Because
quantum dots are usually small, the excitation energies ω± between the
ground and excited states (typically ∼ meV) are much larger than other
relevant energy scales. For quantum dots in the low-electron regime hosting
two electrons or less, which is most relevant for this thesis, it is therefore
often a good approximation to disregard excited states and only consider
the ground state3. The Pauli-exclusion principle then dictates that the only
way two electrons can occupy the quantum dot is if their spins form a singlet.
Furthermore, we also assume that all quantum dots in a device have the same
size so that we can subtract the ground state energy Eg =  h(ω+ +ω−)/2,
making the quantum dots effective single-levels located at zero energy.

2.2.1 The exchange interaction

So far we have only considered the internal dynamics of electrons confined in
a quantum dot. To model spin qubits we will now have to consider systems
of tunnel-coupled quantum dots, where we also have to take into account
how the electrostatic potentials from the gates used to create the quantum
dots affect the confined electrons. Assuming that all quantum dots in the
qubit have the same ground-state energy, and thus also the same size, we
can model the system as a series of tunnel-coupled single-levels (lattice sites)
using a Hubbard-like Hamiltonian

HHub =
∑
i

[
U

2
ni(ni − 1) − Vini

]
+
∑
⟨i,j⟩

Uc

2
ninj+

∑
⟨i,j⟩,η

tij√
2
c
†
i,ηcj,η, (2.5)

where the operator ni =
∑

η c
†
i,ηci,η accounts for the number of electrons on

dot i, with c†i,η(ci,η) being the creation(annihilation) operator for an electron
with spin-projection η ∈ {↑, ↓} on dot i. Here, Vi describes the electrochemical
potential on dot i and tij governs the tunneling coupling between dots i and
j, both of which can be tuned by changing the electric fields created by the
electrostatic gates. Further, U and Uc account phenomenologically for the
Coulomb potential between two electrons on the same dot and neighboring
dots, respectively, where Uc is typically smaller than the on-site interaction U.

3 In Sec. 5.2.1 we will consider multi-electron quantum dots where we also take into account higher
orbital states.



12 multi-electron spin qubits

0

Figure 2.3: The charge stability diagram of a double quantum dot, obtained by plot-
ting the ground state charge configuration of the electrostatic part of the
Hubbard model as given in Eq. (2.5) with Uc = U/5.

The number of electrons in the quantum dots can be tuned by changing the
voltage applied to the electrostatic gates. In general, there are 3n available
charge configurations in a system consisting of n quantum dots that contain
0, 1 or 2 electrons. Because the number of configurations grows exponentially
with n, we will consider the simplest case of n = 2 quantum dots as an
example, where there are 32 = 9 different charge configurations, which we
label (nL,nR). To see how the occupation of the double quantum dot depends
on the gate voltages it is useful to investigate the electrostatic properties of
the Hubbard model (i.e. we set tij = 0). We can do this by plotting the charge
configuration of the ground state as a function of the electrostatic potentials
VL,R, which gives the so-called charge stability diagram as shown in Fig. 2.3,
where we used the parameters Uc = U/5.

2.2.2 The Zeeman interaction

As we showed above, the gate voltages can be tuned to change the charge
configuration of a quantum dot system. However, different spin states with
the same charge configuration can not be separated using the electrostatic
gates alone. An applied magnetic field is therefore often used to separate
states with different spin-projections. The coupling between the magnetic field
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and the spin of the electron can be described using the Zeeman Hamiltonian4,

HZ =
1

2
gµB

∑
i

Bzi
(
ni,↑ −ni,↓

)
, (2.6)

where g is the effective g-factor, µB is the Bohr magneton, and Bi is the
magnetic field on dot iwhich we assume to be pointing along the z-coordinate.
Throughout the thesis we will see that the Zeeman interaction between a
magnetic field and the spin of an electron is essential for both defining the
qubit states, as well as for many of the qubits’ properties.

2.3 singlet-triplet qubit

The first qubit we consider is the singlet-triplet (ST) qubit, which is hosted
by two electrons residing in a double quantum dot as shown in Fig. 2.4(a).
By using the gate voltages, the double quantum dot is tuned close to the
transition between the (1, 1) and (0, 2) charge configurations, see the red
line in Fig. 2.4(b). Since we are only considering the low-energy part of the
spectrum, i.e. only a single level on each dot, the two charge regions (1, 1)
and (0, 2) consist of a total of five states. In the (1, 1) charge configuration all
four states are available,

|T+⟩ = |↑, ↑⟩ , (2.7)

|T0⟩ = 1√
2
(|↑, ↓⟩+ |↓, ↑⟩) , (2.8)

|T−⟩ = |↓, ↓⟩ , (2.9)

|S⟩ = 1√
2
(|↑, ↓⟩− |↓, ↑⟩) , (2.10)

whereas in the (0, 2) charge configuration the Pauli exclusion principle dictates
that only the doubly-occupied singlet is accessible,

|S02⟩ = |0, ↑↓⟩ . (2.11)

4 The Zeeman Hamiltonian describing valence band holes may be highly anisotropic, depending
on details of the confinement of the quantum dots. An anisotropic Zeeman Hamiltonian should
therefore be used to describe the coupling between a magnetic field and the spin of valence band
holes, see Chapter 7 for more details.
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Figure 2.4: (a) Sketch of a tunnel coupled double quantum dot hosting two electrons.
(b) Charge stability diagram of the double dot in the region close to the
(1, 1)-(0, 2) transition, where the singlet-triplet qubit is defined.

To describe this five-level subspace we use the Hubbard and Zeeman models
described above. Writing the total Hamiltonian H = HHub +HZ in the basis
of the five relevant states we get

H = −ϵ |S02⟩ ⟨S02|+ t
(
|S⟩ ⟨S02|+ |S02⟩ ⟨S|

)

+
1

2
gµB (BzL +BzR)

(
|T+⟩ ⟨T+|− |T−⟩ ⟨T−|

)

+
1

2
gµB (BzL −BzR)

(
|S⟩ ⟨T0|+ |T0⟩ ⟨S|

)
, (2.12)

where we have subtracted a constant energy of VL+VR+Uc, and ϵ = VR−VL
is the detuning of the electrostatic potential between the two dots, which we
have shifted by U−Uc for a simpler notation. Here, the first term accounts
for the potential difference between the two dots, which can be tuned via the
electrostatic gates. The second term governs the tunneling between the two
dots, and the third term describes the splitting of the polarized spin states
due to the external magnetic field. Finally, the last term shows how the two
unpolarized states are mixed by a magnetic field gradient ∆Bz = BzL −BzR. In
Fig. 2.5 we plot a typical spectrum of H as a function of ϵ, where we have
used ∆Bz = 0, t = 0.6|gµBBz| and g < 0.

The ST qubit is defined in the two two-particle spin states with spin
projection Sz = 0. Close to the transition between the two charge con-
figurations (around ϵ = 0) the tunnel coupling t between the two singlet
states makes them hybridize. The effective singlet states can be written
as |S1⟩ = cos θ

2 |S02⟩ + sin θ
2 |S⟩ and |S2⟩ = cos θ

2 |S⟩ − sin θ
2 |S02⟩, where

tan θ = 2t/ϵ. The two qubit states of the ST qubit are shown as stippled
lines in Fig. 2.5, and consist of the unpolarized triplet |1⟩ = |T0⟩ and the lower
of the two hybridized singlet states |0⟩ = |S1⟩. Projecting the Hamiltonian
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Figure 2.5: Typical energy spectrum of the five relevant states of the double quantum
dot plotted as a function of the detuning between the two dots ϵ. The
red(blue) lines correspond to spin singlet(triplet) states and the stippled
lines indicate the two qubit states.

in Eq. (2.12) to the subspace of the two qubit states we obtain the qubit
Hamiltonian of the ST qubit

Hqb =
1

2
ωqσ

z +
1

2
gµB∆B

z sin
θ

2
σx, (2.13)

where the qubit splitting ωq = ϵ/2 +
√
(ϵ/2)2 + t2 is determined by the

detuning of the two singlet states and the exchange interaction. Because the
qubit splitting ωq can be tuned via the gates VL,R, the ST qubit provides
electric control over the z-axis of the Bloch sphere. Rotation over the x-axis,
however, requires control over the localized magnetic field gradient ∆Bz

between the two dots, which is hard to do in practice. Because the ST qubit
only provides electric control over one of the axes of the Bloch sphere, the
exchange-only qubit is often preferred as it provides full electric control over
the Bloch sphere, despite having a more complicated design.

2.4 exchange-only qubit

The exchange-only (XO) qubit is usually hosted in a linear triple quantum dot,
containing one electron on each dot, as illustrated in Fig. 2.6(a). Unlike the ST
qubit, which had to be defined close to the transition between the (1, 1)-(0, 2)
charge configurations, the XO qubit can be defined at several regions of the
charge stability diagram. The most common regions to operate the XO qubit
are the resonant-exchange (RX) regime which provides fast operation times
and the sweet spot (SS) which offers less sensitivity to charge noise, both of
which are marked in the charge stability diagram in Fig. 2.6(b). For simplicity
we will here focus on the lower RX regime close to the (1, 1, 1)-(2, 0, 1)-(1, 0, 2)
triple point, where the central electron can be delocalized between all three
dots, yielding strong exchange interactions.
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SS

RX

RX

Figure 2.6: (a) Sketch of a tunnel coupled triple quantum dot hosting three elec-
trons. (b) Charge stability diagram of the triple dot in the region where
the exchange-only qubit is defined, where we have marked the resonant-
exchange (RX) regimes and the sweet spot (SS).

Tuning the triple dot to the (1, 1, 1) regime there are a total of 23 = 8

available states, consisting of one spin quadruplet |Q⟩ and two spin doublets
|D1,2⟩,

|Q+3/2⟩ = |↑, ↑, ↑⟩ , (2.14)

|Q+1/2⟩ = 1√
3

(
|↑, ↑, ↓⟩+ |↓, ↑, ↑⟩+ |↑, ↓, ↑⟩

)
, (2.15)

|Q−1/2⟩ = 1√
3

(
|↓, ↓, ↑⟩+ |↑, ↓, ↓⟩+ |↓, ↑, ↓⟩

)
, (2.16)

|Q−3/2⟩ = |↓, ↓, ↓⟩ , (2.17)

|D+
2 ⟩ =

1√
2

(
|↑, ↑, ↓⟩− |↓, ↑, ↑⟩

)
, (2.18)

|D−
2 ⟩ =

1√
2

(
|↓, ↓, ↑⟩− |↑, ↓, ↓⟩

)
, (2.19)

|D+
1 ⟩ =

1√
6

(
|↑, ↑, ↓⟩+ |↓, ↑, ↑⟩− 2 |↑, ↓, ↑⟩

)
, (2.20)

|D−
1 ⟩ =

1√
6

(
|↓, ↓, ↑⟩+ |↑, ↓, ↓⟩− 2 |↓, ↑, ↓⟩

)
. (2.21)

where we have used the simplified notation |D±
i ⟩ = |D

±1/2
i ⟩. In the RX

regime close to the (1, 1, 1)-(2, 0, 1)-(1, 0, 2) triple point we also have to take
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into account the neighboring charge configurations (2, 0, 1) and (1, 0, 2), which
are made up of the two doublets |DL⟩ and |DR⟩, respectively,

|D+
L ⟩ = |↑↓, 0, ↑⟩ , |D+

R ⟩ = |↑, 0, ↑↓⟩ , (2.22)

|D−
L ⟩ = |↑↓, 0, ↓⟩ , |D−

R ⟩ = |↓, 0, ↑↓⟩ . (2.23)

As for the ST qubit, we describe this 12-level system using the Hubbard and
Zeeman model such that the total Hamiltonian of the triple dot reads H =

HHub +HZ. In the basis of the twelve states defined above the contribution
from the Hubbard model reads

HHub =
∑
±

{
(ϵM + ϵ) |D±

L ⟩ ⟨D±
L |+ (ϵM − ϵ) |D±

R ⟩ ⟨D±
R |

}
+
t

2

∑
±

±
{√
3 |D±

1 ⟩
[
⟨D±

R |− ⟨D±
L |
]
+ |D±

2 ⟩
[
⟨D±

R |+ ⟨D±
L |
]}

+ h.c.,

(2.24)

where we again subtracted an energy offset of VL + VC + VR + 2Uc, and
assumed the two tunnel couplings to be equal t = tL = tR. Furthermore,
ϵ = (VR − VL)/2 and ϵM = VC − (VR + VL)/2 are the detunings5 of the
electrostatic potentials, with VL,C,R denoting the gate-induced potentials on
the left, central, and right dot, respectively. In the same basis, we find the
Zeeman Hamiltonian

HZ = gµBB
z
∑
±

{
± 3

2
|Q±3/2⟩ ⟨Q±3/2|± 1

2

[
|Q±1/2⟩ ⟨Q±1/2|

+ |D±
1 ⟩ ⟨D±

1 |+ |D±
2 ⟩ ⟨D±

2 |+ |D±
L ⟩ ⟨D±

L |+ |D±
R ⟩ ⟨D±

R |
]}

, (2.25)

where we have assumed that the magnetic field is homogeneous over the
three dots, i.e. no magnetic field gradients6. The spectrum of H is plotted in
Fig. 2.7 as a function of ϵ in the RX regime, corresponding to the red stippled
line in Fig. 2.6(b), where we set t = 3|gµBBz| and g < 0.

The qubit states of the XO qubit are defined in the two doublet states having
the same spin projection, |0±⟩ = |D±

1 ⟩ and |1±⟩ = |D±
2 ⟩. Because there are

four available doublet states, two with Sz = +1/2 and two with Sz = −1/2,
the qubit states can be defined in either subspace. In this text we will use |0+⟩
and |1+⟩ as qubit states, which are shown as the stippled lines in the spectrum

5 Like for the ST qubit, we have here shifted the gradient ϵM by 2Uc −U for a simpler and more
convenient notation.

6 In Sec. 5.1.2 we use a more general Zeeman Hamiltonian, that also includes magnetic field
gradients, to describe the XO qubit.
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Figure 2.7: Typical energy spectrum of the triple quantum dot tuned to the RX regime
plotted as a function of the detuning between the two outer dots ϵ. The
red(blue) lines correspond to spin doublet(quadruplet) states and the
stippled lines indicate the two qubit states.

in Fig. 2.7. To describe the interactions of the two qubit states we only have to
consider the eight doublet states as there is no coupling between the two qubit
states and the quadruplet. Furthermore, since the tunnel coupling t conserves
spin, we can also neglect the Sz = −1/2 doublet states. Then, we can write
an effective 4× 4 Hamiltonian describing the four Sz = +1/2 doublet states
{|0+⟩ , |1+⟩ , |D+

L ⟩ , |D+
R ⟩},

H+
D =




0 0 −
√
3
2 t

√
3
2 t

0 0 1
2t

1
2t

−
√
3
2 t

1
2t ϵM + ϵ 0√

3
2 t

1
2t 0 ϵM − ϵ




. (2.26)

From the Hamiltonian we can see how both of the qubit states hybridize
with the two doublets with different charge configurations, D+

L,R. Because the
couplings between the two qubit states and D+

L,R are different, the exchange
energies provided by the hybridization splits the two qubit states. If the
tunnel coupling is not too large t ≪ ϵ, ϵM, we can evaluate the exchange
interactions perturbatively. To lowest order in t we then find an effective qubit
Hamiltonian,

Hqb =
1

2
Jσz −

√
3

2
jσx, (2.27)

with J = (JL + JR)/2 and j = (JL − JR)/2, where the exchange energies
associated with virtual tunneling to the left or right dot read JL,R = t2/(ϵM ±
ϵ), respectively. From the qubit Hamiltonian one can see that the XO qubit
allows for full electric control of rotations around the Block sphere by tuning
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J and j through ϵ and ϵM, which is in contrast to the ST qubit which only
offered electric control over one axis.

2.5 interactions of localized spins with its environment

So far we have only described the basics of the ST and XO spin qubits using
the Hubbard and Zeeman models, which is accurate if the confined electrons
are only affected by electrostatic potentials and external magnetic fields. In
reality, however, the confined electrons experience additional interactions that
need to be considered to get an accurate description of spin qubits. Here we
will consider the two most important interactions that affect spin qubits, both
of which will play important roles later in the thesis. We begin by briefly
explaining the concept of decoherence, focusing on the two common cases of
relaxation and dephasing. Then, we investigate how the spin–orbit interaction
changes the properties of the tunnel coupling between the quantum dots,
allowing for spin-flip processes during a tunneling event which drastically
changes the dynamics of spin qubits. Finally, we consider the hyperfine
interaction between the nuclear and electronic spins, which is an important
source of decoherence in spin qubits hosted in semiconductors with non-zero
nuclear spin.

2.5.1 Decoherence

The information stored in a qubit is fragile, and is easily lost in interactions
with its environment. The process of losing the stored information is often
called decoherence, and can happen in many ways. To illustrate how the
random noise of the environment affects a qubit we use the simple model
Hamiltonian,

H =
1

2
ωqσ

z +σ · δ(t), (2.28)

describing a qubit with a qubit splitting ωq, with σ being the vector of Pauli
spin matrices, and δ(t) representing how the time-dependent noise of the
fluctuating environment degrees of freedom couple to the qubit. In general,
any random noise δ(t) coupling to the qubit will be a source of decoherence
through random rotations on the Bloch sphere.

To exemplify how qubit information is lost due to noise in the environment
we here consider two common cases of decoherence, namely relaxation and
depashing. If the qubit is coupled to a dissipative environment the qubit will
at some point relax to its ground state, which we here assume to be |0⟩, by
exchanging energy to the environment via e.g. phonons. This process is called
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Figure 2.8: Two common cases of decoherence of a qubit. (a) Relaxation from |Ψ⟩ to
the ground state |0⟩. (b) Dephasing, losing the phase information ϕ of |Ψ⟩.

relaxation, and results in a loss of qubit information as depicted in Fig. 2.8(a).
The time scale on which an arbitrary qubit state relaxes to its ground state is
often denoted T1. In the process of dephasing, on the other hand, only the
phase information ϕ is lost, see Fig. 2.8(b). In contrast to relaxation, energy is
conserved during dephasing. To explain the process of dephasing we consider
the simple model Hamiltonian in Eq. (2.28) with noise coupling to σz only.
The qubit state |Ψ⟩ will then precess with a time-dependent and fluctuating
frequency ωq+ 2δz(t) around the z-axis. The randomly fluctuating frequency
leads to an unpredictable offset in the phase ϕ, typically with a magnitude
∼ δz, and the phase information is completely lost on a time scale T2 ∼ h/2δz,
corresponding to a random phase change of ∼ π.

2.5.2 Spin–orbit interaction

Spin–orbit interaction (SOI) is an important ingredient in condensed matter
physics, and couples the motion of the electron to its spin degree of freedom.
It enters as a relativistic correction to the non-relativistic Pauli-Schrödiger
equation [90], giving rise to the Pauli spin–orbit Hamiltonian,

HSO =
 h

4m2
0c

2
p ·σ× (∇V), (2.29)

where m0 is the rest mass of the electron, c is the velocity of light, and V is
the effective electric field created by the gradient of the Coulomb potential V
of the atomic core.

For electrons confined in a semiconductor 2DEG, there are two main con-
tributions to this electric field ∇V [71]: (i) If the lattice of the semiconductor
lacks inversion symmetry, e.g. like the Zinc-Blende lattice of GaAs, the elec-
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trons experience a local electric field created by the atoms in the lattice, giving
rise to the so-called Dresselhaus SOI. (ii) The electrons can also experience the
electric field caused by an asymmetric confinement potential of the quantum
well, known as the Rashba SOI. Assuming the confinement of the 2DEG to
be along the z-coordinate, the electrons of the 2DEG can only move in-plane,
and the SOI Hamiltonian takes the form of

Hso = α (pxσ
y − pyσ

x) +β (−pxσ
x + pyσ

y) , (2.30)

where the first term describes the Rashba SOI, the second term describes the
Dresselhaus SOI, and α and β are the Rashba and Dresselhaus SOI coefficients,
respectively. From Eq. (2.30) one can see that spin–orbit coupling affects the
electrons moving through the 2DEG by rotating their spin, with the speed of
the rotation proportional to their momentum.

Further confining the electrons in quantum dots, where the electrons are
localized in a small region of space, the average motion of the electrons ⟨p⟩
vanishes. However, despite this, SOI still affects the confined electrons in
several ways. Most importantly for this thesis are: (i) Small inhomogeneities
in the confining potentials on different quantum dots can result in different
effective g-factors on the dots, and (ii) the finite momentum due to the
displacement of the electron associated with tunneling between different
quantum dots can induce a spin–orbit assisted spin-flip.

By changing the effective g-tensors on the dots, SOI also changes the
magnetic properties of the system. To model how the magnetic properties are
changed, we replace the Zeeman Hamiltonian in Eq. (2.6) of Sec. 2.2.2 with a
Zeeman Hamiltonian that allows for different g-factors,

HZ =
1

2
µB

∑
i

giB
z
i (ni,↑ −ni,↓). (2.31)

Applying the same magnetic field over several quantum dots can then poten-
tially lead to different Zeeman fields on the different dots. Most importantly
for spin qubits, this can give rise to field gradients over neighboring dots that
effectively change the dynamics of the qubits.

The spin–orbit induced spin-flip tunneling will become an important part
of the discussion when we investigate transport and spin-blockade in ST
qubits in Chapter. 3. To model this effect we replace the tunneling term in
the Hubbard model in Eq. (2.5) with a general non-spin-conserving tunneling
Hamiltonian that also parametrizes the effect of spin–orbit interaction on the
interdot tunneling, effectively yielding spin-non-conserving tunneling terms,

Ht =
1√
2
ĉ
†
i,α[ts1 + itso ·σ]αβĉj,β + h.c., (2.32)
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Figure 2.9: Spin–orbit induced spin-flip tunneling. The charge tunneling between
the two quantum dots is accompanied by a 2η spin rotation around the
spin–orbit vector tso.

where ts is the magnitude of the spin-conserved tunnel coupling between
dot i and j, and the magnitude and orientation of the vector tso depend
on microscopic details of the spin–orbit interaction. With the z-axis ori-
ented along tso we see that this tunneling Hamiltonian reduces to Ht =
1√
2
ĉ
†
i,α[t e

iησz ]αβĉj,β + h.c., which describes charge tunneling with ampli-
tude t that is accompanied by a z-rotation of the spin over an angle of ±2η
depending on the direction of tunneling, as illustrated in Fig. 2.9. Project-
ing the Hamiltonian in Eq. (2.32) to the five-level basis of the ST qubit, the
Hamiltonian reads as

Hso = itso · |T ⟩ ⟨S02| , (2.33)

where |T ⟩ = {|Tx⟩ , |Ty⟩ , |Tz⟩} is the vector of unpolarized triplet states along
the three orthogonal coordinate axes [91], with |Tx,y⟩ = i1/2∓1/2(|T−⟩ ∓
|T+⟩)/

√
2 and |Tz⟩ = |T0⟩.

2.5.3 Hyperfine interaction

In many semiconductor systems, especially in devices based on III-V materials
such as GaAs and InAs, but also in some Si- and Ge-based systems, atoms
that carry finite nuclear spin set up a small magnetic field usually of the
order ∼ mT. This magnetic field, often called the Overhauser field, acts on
the localized electron spins through the hyperfine interaction as illustrated
in Fig. 2.10, and is an important source of decoherence in spin-based qubits.
The dominating contribution from the hyperfine interaction in spin qubits is
the contact interaction, described by the Hamiltonian

Hhf =
∑
i,k

AkSi · Ii,k, (2.34)

where Si is the electron spin operator on dot i, Ii,k the nuclear spin operator
for nucleus k on dot i, and Ak = Av0|ψ(rk)|

2 is the coupling constant between
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Figure 2.10: Illustration of hyperfine interaction in a quantum dot. In semiconductors
with non-zero nuclear spins the small magnetic moment of the nuclear
spins couple to the spin of the confined electrons.

the electrons and nucleus k, written in terms of the hyperfine coupling energy,
typically A ∼ 100 µeV, the density of spinful nuclei 1/v0, and the electron
density of the envelope function at the position of the nucleus |ψ(rk)|

2.
Because of the small nuclear magnetic moment, the nuclear spin ensemble

is in a fully mixed state in equilibrium at typical dilution fridge temperatures.
Within a mean-field approximation we can therefore write

Hhf,mf =
∑
i

Ki ·Si, (2.35)

where the nuclear fields Ki, also called Overhauser fields, are random with
a root mean square (rms) value ∼ A/

√
N, where N is the number of spinful

nuclei on a dot, typically N ∼ 105 − 106 when there is a significant fraction
of spinful nuclei. These fields are thus usually of the order ∼ mT when
translated to an effective magnetic field. Within this approximation, the
hyperfine interaction takes the same form as the Zeeman interaction with an
external magnetic field, which we discussed in Sec. 7.1. It can therefore often
be useful to define a total Zeeman field Bi, containing both the externally
applied field Bext

i and the random nuclear field Ki.
To investigate how hyperfine interaction affects a spin qubit it is often useful

to project the Hamiltonian to the qubit subspace. Projecting the mean-field
hyperfine Hamiltonian in Eq. (2.35) to the ST qubit subspace yields

Hhf,ST = δKz sin
θ

2
σx, (2.36)

where δKz = 1
2 (K

z
L −Kz

R) is a quasistatic random field gradient between the
two quantum dots. In general this field gradient presents a main source of
decoherence in ST qubits due to its random nature, but it can also be used for
initialization along the ±x-axis of the Bloch sphere [92].
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Similarly, the hyperfine Hamiltonian can also be projected onto the XO
qubit subspace,

Ĥhf,XO = −
2

3
δKz

Mσ̂z −
1√
3
δKz

LRσ̂x, (2.37)

where δKz
M = −1

2 (δK
z
LC − δKz

CR) and δKz
LR = 1

2

(
Kz
L −Kz

R

)
, in terms of the

field gradients δKz
ij =

1
2 (K

z
i − K

z
j ) over neighboring dots. We thus see that,

also for the XO qubit, the random nuclear fields can be an important source of
qubit decoherence. In addition, the two gradients δKz

M and δKz
LR also couple

the qubit states |0⟩ and |1⟩ to the quadruplet state |Q+1/2⟩ that cannot be split
off by increasing the external field Bext, making the hyperfine interaction a
source of leakage out of the qubit subspace.



3
T R A N S P O RT I N Q UA N T U M D O T S Y S T E M S

So far we have only considered quantum dot systems where a given number
of electrons is confined. The electrons have been restricted to only be able
to tunnel between different quantum dots, i.e. we have assumed that the
quantum dots are not coupled to the reservoirs of the 2DEG. By now allowing
electrons to also tunnel between the reservoirs of the 2DEG, often called
leads, and the quantum dots, new interesting dynamics are introduced to the
quantum dots.

There are several approaches that can be used to describe electrons confined
in a dissipative quantum dot system. What approach is applicable depends on
the complexity of the system and on what properties one wants to calculate.
In this chapter we present two different approaches. In Sec. 3.1 we describe
a confined electron using a single-particle Green function [93], which gives
an accurate description of the interaction between the confined electron and
the lead. From this approach we are able to analytically calculate the finite
lifetime of the confined electron. However, this approach quickly becomes
complicated when introducing several electrons and quantum dots, and fails
to predict the internal spin dynamics within the quantum dots. The second
approach solves this problem, and is presented in Sec. 3.2. This approach is
based on a Lindblad master equation [94, 95], where the coupling between the
quantum dot and lead is included as an effective decay rate using a so-called
superoperator. Despite simplifying the details of the leads, this approach has
the advantage that it is not limited by the dynamics and interactions of the
quantum dots.

3.1 dissipation and decay rates

Green functions are a powerful tool in condensed matter physics, providing a
framework that allows for calculating many observables of interest. The single-
particle Green function is often defined as a correlation function between two

25
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annihilation operators, with the most common type of Green function, and
the only one we will encounter here, being the retarded Green function [93],

GR(ν, t;ν ′, t ′) = −iθ(t− t ′)
〈{
cν(t), c

†
ν ′(t

′)
}〉

, (3.1)

describing the two-point correlation between having an electron in state ν
at time t and in state ν ′ at t ′. Here, θ(t) is the Heaviside step function, and
{A,B} = AB+BA is the anti-commutator.

In order to evaluate the retarded Green functions it is necessary to find
their equation of motion, which can be obtained by differentiating Eq. (3.1)
with respect to t. For a non-interacting Hamiltonian,

H0 =
∑
νν ′

tν ′νc
†
ν ′cν, (3.2)

which can include both kinetic terms and single-particle potentials, the equa-
tion of motion becomes∑

ν ′′
(iδνν ′′∂t − tνν ′′)GR(ν ′′,ν ′, t− t ′) = δ(t− t ′)δνν ′ . (3.3)

Although writing the Green functions in time domain is useful to understand
some of the Green functions’ properties, it is often more useful to represent
them in frequency space. Taking the Fourier transform of Eq. (3.3) gives∑

ν ′′
(δνν ′′(ω+ iη) − tνν ′′)GR(ν ′′,ν ′;ω) = δνν ′ , (3.4)

where the small imaginary part η = 0+ is added to ensure proper convergence.
The process of calculating the retarded Green function from the equation of

motion is as follows: By applying the equation of motion to several different
Green functions, one obtains a set of coupled differential equations that can
be solved for the relevant Green function. We will show a simple example
of this approach below when we calculate the Green function of an electron
confined in a quantum dot.

3.1.1 Single quantum dot and lead

Using the simple framework of Green functions presented above, we can
now explore how the coupling between quantum dots and leads affects the
electrons confined on the quantum dot. We start by considering the simplest
case of a single quantum dot connected to a lead, as illustrated in Fig. 3.1.
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Figure 3.1: The single level of a quantum dot with energy ϵd is tunnel coupled to the
states of the lead. This coupling is here illustrated for one of the states ν
with energy ϵν (marked in red).

This system can be described by the quadratic Hamiltonian (assuming no
spin for simplicity)

H = ϵdc
†
dcd +

∑
ν

(ϵν − µ)c†νcν +
∑
ν

(
t∗νc

†
νcd + tνc

†
dcν

)
, (3.5)

where the first term gives the energy ϵd of the single level of the quantum
dot, the second term governs the energies of all states ν of the lead relative to
the chemical potential µ, and the last term describes the tunneling between
the quantum dot and the states of the lead.

To describe an electron confined on the quantum dot, we need to calculate
the retarded Green function that is diagonal in the label d of the single level
of the quantum dot. To do so we will use the equation of motion, as given
by Eq. (3.4), on the two Green functions GR(d,d;ω) and GR(ν,d;ω). This is
done by simply substituting {ν,ν ′} → {d,d} and {ν,ν ′} → {ν,d} in Eq. (3.4),
giving two coupled equations,

(ω+ iη− ϵd)G
R(d,d;ω) −

∑
ν

tνG
R(ν,d;ω) = 1, (3.6)

(ω+ iη− ϵν + µ)GR(ν,d;ω) − t∗νG
R(d,d;ω) = 0. (3.7)

Solving the two coupled equations for GR(d,d;ω) then yields the retarded
Green function describing the single level of the quantum dot,

GR(d,d;ω) =
1

ω− ϵd + iη− ΣR(ω)
, (3.8)
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where

ΣR(ω) =
∑
ν

|tν|
2

ω− ϵν + µ+ iη
, (3.9)

is the so-called self-energy which contains all information about how the lead
affects the confined electron. The self-energy changes the Green function by
shifting the pole of the Green function GR(d,d;ω). This affects the dynamics
of the confined electron in two ways: (i) The real part of ΣR(ω) changes
the energy of the single level state d from ϵd to ϵd + Re[ΣR], and (ii) the
imaginary part gives rise to an effective decay rate of the state which in the
time domain translates into a finite lifetime.

To evaluate the self-energy we replace the sum over the states ν in the lead
with an integral over the density of states d(ϵ). Assuming that the tunneling
couplings tν only depend on ν through the energies ϵν [93] the self-energy
then reads

ΣR(ω) =

∫D
−D

dϵ d(ϵ)
|t(ϵ)|2

ω− ϵ+ µ+ iη
(3.10)

where ±D are the band limits of the lead (see Fig. 3.1). By further assuming
that d(ϵ)|t(ϵ)|2 changes slowly in the region of interest, we define

2πd(ϵ)|t(ϵ)|2 =

Γ , ϵ ∈ [−D,D],

0, |ϵ| > D.
(3.11)

This allows us to solve the integral in Eq. (3.10), giving

ΣR(ω) = −
Γ

π
ln
∣∣∣∣
D+ω+ µ

D−ω− µ

∣∣∣∣− i
Γ

2
. (3.12)

For all quantum dot systems considered in this thesis we will haveD≫ ω+µ,
and we can therefore safely neglect the real part of ΣR(ω). Inserting the self-
energy back into the Green function in Eq. (3.8) then gives

GR(d,d;ω) =
1

ω− ϵd + iΓ/2
, (3.13)

showing how the coupling between the quantum dot and the lead effectively
induces an effective decay rate Γ , and thus also a lifetime broadening, of the
quantum dot single level. Note also that we would have obtained the same
Green function by replacing the Hamiltonian in Eq. (3.5) by the non-hermitian
Hamiltonian H = (ϵd − iΓ/2)c†dcd.
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Quantum dots
Leads

Figure 3.2: A double quantum dot coupled to two leads. The subsystem of the quan-
tum dots belongs to a larger total system that also contains the leads.
Integrating out the environment (leads) degrees of freedom enables the
dynamics of the quantum dots to be described by a master equation.

3.2 the lindblad master equation

Green functions give a detailed description of how a single electron inter-
acts with leads. However, when considering multi-dot systems with many
electrons and many states the approach quickly becomes tedious and falls
apart. For such multi-dot systems a master equation approach is very useful,
where the dynamics within the quantum dots are described accurately and
transitions to and from the leads are considered probabilistic through a tran-
sition rate matrix. In this section we will focus solely on the Lindblad master
equation, which is especially useful for describing quantum dot systems.

The Lindblad master equation is a differential equation for the density
matrix ρ(t) describing a subsystem that belongs to a more complicated total
system. In our case the subsystem we want to describe is the quantum dots
and the environment is the leads, together they make up the total system as
illustrated in Fig. 3.2. The derivation of the Lindblad equation starts with the
time-evolution of the total system given by the von Neumann equation, and
is obtained by tracing out the environment’s degrees of freedom. We will
not go into details on the derivation here, but more details can be found in
Ref. [94]. In the high bias limit [94], where all relevant states lie well within
the chemical potential of the leads, all Fermi functions take a value of either 0
or 1. Then, the resulting Lindblad equation that describes the time-evolution
of the quantum dot system can be written as

∂tρ = −i[H, ρ] +
∑
j,η

{
Γout
j D[c†j,η](ρ) + Γ

in
j D[cj,η](ρ)

}
, (3.14)
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where H is the Hamiltonian governing the quantum dot subsystem, j labels
the quantum dots that are coupled to the leads, η is the spin-projection, and

D[O](ρ) = O†ρO−
1

2

(
ρOO† +OO†ρ

)
, (3.15)

is a superoperator, i.e. an operator that acts on an operator. The first term in
Eq. (3.14) governs the coherent time-evolution of the quantum dots according
to the von Neumann equation1, whereas the second term describes transitions
between different quantum dot states induced by interactions with the leads.

The rate Γj is here the effective rate between quantum dot j and a neigh-
boring lead, which we derived using the Green function formalism in the
previous section. However, because the explicit dependence on the leads
has been traced out in the Lindblad master equation, the effective rates are
separated into in-going and out-going rates, which are determined manually
depending on the system at hand. Considering the example of a single quan-
tum dot coupled to a lead studied in the previous section, a natural choice
would be to use

Γ
in(out)
j = ΓjΘ(∓{ϵd − µ}), (3.16)

where an electron can only tunnel into(out of) the quantum dot if the single
level is below(above) the chemical potential.

The Lindblad master equation is a powerful tool when investigating dis-
sipative systems where the internal dynamics within the quantum dots are
important. An example of such a system, which we will encounter later in the
thesis, is a double quantum dot tuned to the regime of Pauli spin blockade,
where the current through the system is determined mainly by spin dynamics
within the double dot.

3.3 coulomb blockade

In the above, we showed that the tunnel coupling between a quantum dot
and a lead introduces an effective decay rate to the level of the quantum
dot. In the framework of the Lindblad master equation, the occupancy of
the single-level of the spinless quantum dot can then be determined simply
from the relative position of the level and the lead. By now introducing spin,
a second electron is allowed to tunnel into the quantum dot if the relative
detuning of the level and the lead is larger than the Coulomb repulsion U.
Any further occupancy of the quantum dot, above two electrons, relies on

1 Note that for a quantum dot system in absence of leads the Lindblad equation is simply reduced
to the von Neumann equation.
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Figure 3.3: Illustration of Coulomb blockade in a single quantum dot. (a) The bias
voltage from the left drain to the right drain allows a current to run through
the quantum dot if there is an available level within the bias window. (b) If
there is no level within the bias window the current is blocked in Coulomb
blockade.

occupying higher orbitals. Thus, changing the relative energy of the quantum
dot levels and the lead, e.g. through the electrochemical potential V , provides
a practical way to tune the occupancy of the quantum dot.

In most quantum dot devices there is usually more than one lead. If all
the leads have the same Fermi level, the system is qualitatively identical to
the single lead system discussed above. However, if the leads have different
Fermi levels, this allows a current to run from one lead to another through
the quantum dot. For a quantum dot coupled to two leads, as depicted in
Fig. 3.3(a), a current can run through the quantum dot if there is an available
level within the bias window between the chemical potentials µL and µR
of the two leads. However, if there is no available level in the bias window,
the current is blocked in the so-called Coulomb blockade, as illustrated in
Fig. 3.3(b). This can be observed in experiments by measuring the current as a
function of V , where for a very small bias voltage the current peaks when the
levels of the quantum dot cross the bias window. The distance between these
so-called Coulomb peaks can then be used to determine the level structure of
the quantum dot.

The current through the single quantum dot depicted in Fig. 3.3(a) follows
the simple transport cycle (1) → (2) → (1), where (n) labels the charge
configuration of the quantum dot. For a system consisting of several quantum
dots, the transport cycle is more complex and involves more than two different
charge configurations. The slightly more complicated double quantum dot
illustrated in Fig. 3.4, for instance, follows the transport cycle (1, 1) → (2, 1) →
(1, 2) → (1, 1). Because of the larger number of charge configurations involved,
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Figure 3.4: Illustration of Coulomb blockade in a double quantum dot. The current
is only allowed to run through the double quantum dot when all levels
involved in the transport cycle lie within the bias window.

there are more configurations for which the system is stuck in Coulomb
blockade. In general, if any of the levels involved in the transport cycle lies
outside the bias window, electrons can not tunnel from one lead to the other,
and the system is stuck in Coulomb blockade.

3.4 pauli spin blockade

In multi-dot structures the current also relies on the internal spin dynamics
during tunneling events between different quantum dots, which introduce
additional mechanisms that can block the current. An important exchange
effect that affects the current through multi-quantum dot structures is the Pauli
spin blockade, which in addition to being important for the understanding of
the current through multi-quantum dot systems, also is an essential tool for
spin qubits, enabling spin-to-charge conversion for qubit initialization and
readout.

In the simplest case of a double quantum dot connected to two leads,
Pauli spin blockade arises when the double dot is tuned to the so-called
Pauli spin blockade regime, where electron transport follows the transport
cycle (0.1) → (1, 1) → (0, 2) → (0, 1); the energy level of the left dot satisfies
µL > ϵL > ϵR, whereas the energy level on the right dot is tuned to the
Coulomb blockade ϵR +U > µR > ϵR, assuring that there is always one
electron on the right dot (see Fig. 3.5). When an electron tunnels into the left
dot the double dot can be in either of the four (1, 1) spin states |S⟩ or |T±,0⟩.
In the (0, 2) charge configuration only the singlet state |S02⟩ is accessible, any
(0, 2) triplet state requires occupation of a higher orbital state at a much higher
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Figure 3.5: Illustration of Pauli spin-blockade in a double quantum dot. The bias
voltage from the left drain to the right drain allows a current to run
through the double dot. However, because the two electrons on the two
dots (black dots) form a |T+⟩ spin state, which is not coupled to |S02⟩ (grey
dot) through the spin-conserved tunneling ts, the current is blocked.

energy. Assuming no SOI, where only the (1, 1) singlet state |S⟩ is coupled to
the energetically favorable |S02⟩, we then have two different situations: (i) If
the two (1, 1) electrons form a singlet state, the left electron can tunnel to the
right dot, thereby contributing to the current. (ii) If the two electrons form a
triplet state, the left electron is not allowed to tunnel to the right dot, and the
current is blocked in the Pauli spin blockade, as illustrated in Fig. 3.5.

Assuming that the double quantum dot is in the open regime where the
transport rates ΓL,R are the largest relevant energy scales, ensures that the
transitions (0, 2) → (0, 1) → (1, 1) are effectively instantaneous, and all the
interesting dynamics happen during the (1, 1) → (0, 2) process. This allows
us to model the tunneling to and from the leads using an effective rate
Γ = Γ in

L = Γout
R which characterizes the decay of |S02⟩ and the subsequent

reloading of one of the (1, 1) states. We can then describe the dynamics of the
double dot by considering only the basis of the ST qubit, which we discussed
in detail in Sec. 2.3. Like before, we describe the five-level system of the ST
qubit using a simple model Hamiltonian containing contributions from the
Hubbard and Zeeman models,

H = HHub +HB, (3.17)

where we for simplicity assume no SOI,

HHub = −ϵ |S02⟩ ⟨S02|+ ts |S⟩ ⟨S02|+ h.c. (3.18)

and a homogeneous magnetic field pointing along the z-coordinate,

HB = Bz
[
|T+⟩ ⟨T+|− |T−⟩ ⟨T−|

]
. (3.19)
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The dynamics of the double dot can then be described using the Lindblad
master equation in Eq. (3.14), which in the basis of the ST qubit reads

∂tρ = −i[H, ρ] + Γ(ρ), (3.20)

where ρ is the five-level density matrix, and Γ(ρ) = −1
2Γ {P02, ρ}+ 1

4Γ(1 −

P02)ρ02,02 is the superoperator describing the tunneling processes to and
from the reservoirs, with P02 = |S02⟩ ⟨S02| being the projector onto state
|S02⟩. By solving Eq. (3.20) for the steady-state density matrix ρss, the current
through the double dot can be calculated from the expression I = eΓρss

02,02.
Since only the (1, 1) singlet |S⟩ is in this case coupled to |S02⟩, there is no
way for the system to transition from the triplet states |T±,0⟩ to |S02⟩, and the
system is trapped in Pauli spin blockade, resulting in zero leakage current.

In general, any spin-mixing mechanism can break the spin-blockade by
introducing a finite coupling between the blocked triplet states and |S02⟩. In
this thesis we include two such mechanisms: (i) Allowing the Zeeman fields
to be different on the two dots BL,R, the Zeeman interaction mixes the four
(1, 1) spin states. These fields can originate from externally applied magnetic
fields, nearby on-chip micromagnets, or the hyperfine interaction coupling the
localized electronic spins and the nuclear spins of the host material. (ii) Strong
spin–orbit coupling can result in spin-flip tunneling, effectively coupling the
three triplet states directly to |S02⟩. In addition, SOI can also renormalize the
g-tensors on the two dots, contributing to making the Zeeman fields different.
In the next chapter we will consider a model where all the above-mentioned
spin-mixing mechanisms are included, making the current through the double
dot, and thus the degree of spin-blockade, dependent on a complex interplay
between the non-spin-conserved tunneling Hamiltonian, which couples the
(1, 1) subspace to |S02⟩, and the effective Zeeman Hamiltonian that mixes the
four (1, 1) states.
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PAU L I S P I N B L O C K A D E A N D S P I N – O R B I T I N T E R A C T I O N

The complex connection between the leakage current and the internal spin-
dynamics of quantum dots enables current-measurements to probe spin
properties of quantum dot systems [96–99]. Knowing the details of how
the spin-blocked current behaves is therefore essential to uncovering new
measurement techniques. In Paper IV we presented an analytical model for the
leakage current through a double quantum dot with arbitrary Zeeman fields
and strong spin–orbit coupling. Based on our model we proposed a method
for characterizing both the magnitude and orientation of the spin–orbit vector
tso by simply measuring the current as a function of the orientation of the
external magnetic fields.

4.1 leakage current

Like in the previous chapter, we describe the spin blocked double quantum
dot in the basis of the ST qubit, using the model Hamiltonian,

H = HHub +HB. (4.1)

In contrast to the prior chapter, we now include both SOI and two arbitrary
oriented Zeeman fields on the two dots. The Hubbard-like Hamiltonian then
takes the form of

HHub = −ϵ |S02⟩ ⟨S02|+ ts |S⟩ ⟨S02|+ itso · |T ⟩ ⟨S02|+ h.c., (4.2)

where the effect of spin–orbit interaction on the interdot tunneling is added
as described in Sec. 2.5.2. Because of the singlet nature of |S02⟩, the magnetic
interactions only act within the (1, 1) subspace, described by the Zeeman
Hamiltonian

HB =
1

2
[(BL ·σL)⊗ 1R + 1L ⊗ (BR ·σR)] , (4.3)

with σL(R) being the vector of Pauli matrices acting on the left(right) spin,
and BL(R) being the total Zeeman field on the left(right) dot. As discussed in

35



36 pauli spin blockade and spin–orbit interaction

Sec. 2.5.3, these fields can contain contributions from externally applied mag-
netic fields as well as the Overhauser fields due to the hyperfine interaction
with the nuclear spins in the quantum dots.

Because of the complexity of our model, containing three arbitrary vectors
tso and BL,R, it will be convenient to perform a basis transformation which
makes the Hamiltonian take a simple form, from which the current can be
calculated analytically. The first step is to define the z-direction of our coordi-
nate system to point along tso, which rotates the Hubbard-like Hamiltonian
into

HHub = −ϵ |S02⟩ ⟨S02|+ ts |S⟩ ⟨S02|+ itso |T0⟩ ⟨S02|+ h.c., (4.4)

where tso is the magnitude of the spin–orbit vector tso.
We then introduce a dimensionless parameter η = arctan [tso/ts] that pa-

rameterizes the relative strength of the spin–orbit-induced tunnel coupling
and apply a basis transformation to all (1, 1) states

|ψ̃⟩ = eiη
2 (σ

z
L−σz

R) |ψ⟩ . (4.5)

In this new basis we find that |B⟩ = cosη |S⟩+ i sinη |T0⟩ is a “bright” state
that is coupled to |S02⟩ with strength t ≡

√
t2s + t2so, and |D⟩ = i sinη |S⟩+

cosη |T0⟩ is a “dark” state that is not coupled; the polarized triplet states
|T̃±⟩ = |T±⟩ are unchanged by the transformation. Thus, only one (1, 1) state
is coupled to |S02⟩ in the new basis, with the cost being that the transformed
Zeeman Hamiltonian e−iη

2 (σ
z
L−σz

R)HBe
iη
2 (σ

z
L−σz

R) acquired an η-dependence
and now incorporates all spin–orbit effects included in our model.

By further introducing the (anti)symmetric magnetic fields B± = 1
2 (BL ±

BR), we define the auxiliary fields E± = {Bx± cosη − By∓ sinη,By± cosη +
Bx∓ sinη,Bz±} that incorporate the η-dependence of the Zeeman Hamiltonian.
In terms of these new auxiliary fields, the Zeeman Hamiltonian can be written
as

HB =
1√
2

∑
±

[
(Ex+ ± iEy+) |T̃0⟩ ⟨T̃±|+ (∓Ex− − iEy−) |S̃⟩ ⟨T̃±|+ h.c.

]

+ Ez+
{
|T̃+⟩ ⟨T̃+|− |T̃−⟩ ⟨T̃−|

}
+ Ez−

{
|S̃⟩ ⟨T̃0|+ |T̃0⟩ ⟨S̃|

}
, (4.6)

which has the exact same form as the usual (1, 1) Zeeman Hamiltonian (4.3)
when written in a singlet-triplet basis [100], under the substitution B± → E±.
The transformation thus gauges away the spin–orbit interaction, yielding
a Hamiltonian that can be mapped exactly to the case without spin–orbit
coupling (tso = 0), simply by redefining the two effective Zeeman fields.

The 3× 3 block of the Hamiltonian governing the subspace {|T̃+⟩ , |T̃0⟩ , |T̃−⟩}
describes a spin-1 system coupled to the spin–orbit-rotated effective field E+.
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We can diagonalize this block by applying the appropriate spin-1 rotation
exp(iαJ · n̂), where J is the vector of spin-1 matrices and n̂ is the unit vector
of rotation, such that the full five-level Hamiltonian becomes

H =




E+ 0 0 c 0

0 0 0 −d 0

0 0 −E+ −c 0

c −d −c 0 t

0 0 0 t −δ




, (4.7)

where t =
√
t2s + t2so, and the (real) couplings between the triplets and the

bright state |S̃⟩ read

c =
E−√
2

{
[cos θ+ sin θ− cos(ϕ+ −ϕ−) − cos θ− sin θ+]

2

+ sin2 θ− sin2(ϕ+ −ϕ−)
}1/2, (4.8)

d = E− [cos θ− cos θ+ + sin θ− sin θ+ cos(ϕ+ −ϕ−)] , (4.9)

with

θ± = arccos
[
Ez±
E±

]
, ϕ± = arg

[
Ex± + iEy±

]
, (4.10)

being the angles that define the orientation of the fields E±. Having the
Hamiltonian on this form reduces the number of independent parameters
from eight to five, and is thus advantageous when calculating the current
analytically.

To obtain an analytical expression for the current through the system we
then solve the steady-state master equation

∂ρ̂

∂t
= −i[H, ρ̂] + Γ(ρ̂) = 0, (4.11)

where again ρ̂ is the five-level density matrix and Γ(ρ̂) = −1
2Γ {P̂02, ρ̂}+ 1

4Γ(1−

P̂02)ρ̂02,02 the superoperator describing the fast tunneling processes to and
from the reservoirs. By solving Eq. (4.11) for the steady-state density matrix
ρ̂ss, the leakage current follows from I = eΓ ρ̂ss

02,02, giving in the Γ ≫ ϵ, t,BL,R
limit the relatively compact expression

I

eΓs
=

|e2iηB−RB
z
L −B−LB

z
R|

2 + Im{e2iηB−RB
+
L }

2

Γ2sQ
2
+

[
3+

16Q2
+Q2

−

(B2
L−B2

R)
2

]
+B2LB

2
R

, (4.12)
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(i) (ii) (iii) (iv)

Figure 4.1: Illustration of the four stopping points. The leakage current vanishes when:
(i) The magnitudes of the two Zeeman fields are equal. (ii) Either of the
two fields is zero. (iii) Both fields are aligned with t̂so. (iv) The two fields
have the same polar angle but a relative azimuthal angle of δϕ = 2η.

where BL,R = |BL,R| and we introduced the rate Γs ≡ t2/Γ , which sets the
scale of the effective decay rate of the (1, 1) states. We here also introduced
the notations B± = Bx ± iBy and

Q2
± = Re{12e

iη(B+L ±B−R )}2 + Im{12e
iη(B+L ∓B−R )}2 + 1

4 (B
z
L ±BzR)2. (4.13)

The expression in Eq. (4.12) thus describes the current through a double
quantum dot in the spin-blockade regime, including the effect of spin–orbit
coupling and two possibly different Zeeman fields on the two dots (and thus
generalizes the result presented in [101]).

4.1.1 Stopping points

Having an analytic expression for the current allows us to identify special
configurations of BL,R for which the current vanishes, so-called “stopping
points” [100, 101]. These points are of interest as they enable the characteriza-
tion of some double dot properties through simple current measurements, as
we will show below.

From Eq. (4.12) we find four stopping points, all of which are illustrated
in Fig. 4.1. (i) The first arises when the magnitude of the two Zeeman fields
is equal, BL = BR, where the term 16Q2

+Q
2
−/(B

2
L −B2R)

2 in the denominator
diverge. At this point, the blockade can be understood by considering the four
(1, 1) states in the basis of spin up and down along the local fields on the two
dots. In this basis the two states |↑↓⟩ and |↓↑⟩ are both eigenstates of HB with
zero total Zeeman energy. This means that the two states can be rearranged
into a bright and dark state, and the system will thus be blocked in the dark
state. (ii) The three other points are obtained for field configurations where
the numerator in Eq. (4.12) vanishes. One of these configurations is when
either of the two fields is zero, BL,R = 0, resulting in two doubly degenerate
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a) b)

Figure 4.2: (a) For two Zeeman fields with the same orientation b = B/B but different
magnitudes the current only vanishes when the two fields are parallel to
the spin–orbit vector marked in orange. (b) Orienting the Zeeman fields
away from the spin–orbit vector, the current vanishes along the orange lines
on the sphere where the relative orientation of the two Zeeman vectors
bL,R satisfy δϕ = 2η.

subspaces which can again be rearranged in dark and bright states. (iii) The
numerator also vanishes when both fields are parallel or antiparallel to the
spin–orbit vector tso, i.e. when B±L,R = 0. In this case the two triplets |T±⟩
are eigenstates of HB that are not coupled to |S02⟩, resulting in a blockade
of the current. (iv) The last stopping point occurs when e2iη = B−LB

z
R/B

−
RB

z
L.

To better understand this stopping point it is useful to write the two fields
in spherical coordinates {B, θ,ϕ}, where θ = 0 corresponds to the z-direction
which is aligned with tso, as illustrated in Fig. 4.2(a). In this coordinate
system the condition corresponds to having ϕR −ϕL = 2η if θL = θR and
ϕR −ϕL = 2η+π if θL = π− θR, i.e. the two fields having the same “latitude”
but a relative azimuthal angle of δϕ = 2η, as illustrated in Fig. 4.2(b). For
these configurations the eigenstates of HB, where both spins are aligned with
the two local fields with a relative azimuthal angle of 2η, will evolve during
the interdot tunneling into a fully polarized spin-1 state, which has no overlap
with |S02⟩.

4.2 characterizing spin–orbit coupling

The collection of stopping points we identified above provides a potentially
useful tool for characterizing properties of a double quantum dot, one of
which is the spin–orbit interaction [96–99]. Assuming that one has full control
over the two Zeeman fields on the two dots, all of the above stopping points
can in principle be mapped out. This allows identifying both the orientation
and magnitude of the spin–orbit tunneling vector tso.

The procedure works as follows. By making sure that the two Zeeman
fields are both non-zero and have different magnitudes, we ensure that only
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b)a) c)

Figure 4.3: (a,b) Calculated current as a function of the magnitude of a uniform
external field Bext assuming different g-tensors on the two dots, where
we used BL = {0.76, 0.32, 0.34}Bext and BR = {1, 0, 0}Bext. The blue lines
show the case with no nuclear spins present, and the red lines show how
the behaviour of the double dot is drastically changed at small fields
when adding two small random nuclear fields KL,R, drawn from a normal
distribution with an r.m.s. value of 0.1 µeV. (c) Current as a function of ϕR

with ϕL = 0, BL = 0.9BR, and θL = θR = 3π/8. In the absence of nuclear
fields (blue line) the current vanishes when the relative azimuthal angle δϕ
of two fields of different magnitude is equal to 2η. Averaging the current
over random nuclear fields (red line) with the same distribution as used in
(a,b), the current still has a minimum at δϕ = 2η.

the two last stopping points will be probed. The orientation of the spin–orbit
vector can then be identified by making the two Zeeman fields parallel to
each other and finding the field orientation for which the current vanishes,
i.e. by probing stopping point (iii). Knowing the orientation of the spin–orbit
vector, its magnitude can then be found by probing stopping points of type
(iv). Tilting both fields away from tso and then rotating one of the fields along
tso, the leakage current vanishes when the relative orientation of the two
fields satisfy δϕ = 2η, see Fig. 4.2(b), from which the magnitude of the SOI
can be calculated. Although the procedure relies on our assumption that the
two fields have different magnitudes, the stopping points related to tso are
also detectable as minima of the current if the fields are equal in magnitude,
given that there is still a sizable leakage current due to e.g. spin relaxation
processes.

In the above we assumed accurate control over the two Zeeman fields BL,R
separately. However, as we discussed in Sec. 2.5.3, the Overhauser field can in
many systems give rise to a sizable random effective magnetic field that adds
to the total Zeeman field, making it uncontrollable. Luckily, there are several
ways to circumvent this problem: (i) Since only the orientation of the total
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Zeeman fields matters for the procedure presented above, the random effects
of the Overhauser fields can be suppressed by working in the large-field limit
Bext
L,R ≫ K. We illustrate this by exemplifying the effect of one single static

configuration of nuclear fields on the leakage current in Fig. 4.3(a,b), where
the blue lines show the current as given by Eq. (4.12) as a function of the
applied magnetic field Bext in the absence nuclear fields. For the red lines
we added a random two random nuclear field configurations drawn from a
normal distribution with ⟨K2

L,R⟩1/2 = 0.1 µeV. The figures show a substantial
difference in the current at small applied fields which indeed vanishes at
larger fields. (ii) Because in typical experiments the total measurement time
exceeds the correlation time of the nuclear fields, the details depending on
the specific configuration of the nuclear fields average out. This averaging
removes all sharp features, allowing to locate the current minimum related
to the spin–orbit coupling in the same way as in the case without nuclear
fields. We illustrate this in Fig. 4.3(c) by plotting the current as a function
of the angle ϕR with ϕL = 0 in the absence of nuclear fields (blue line) and
after averaging over many (finite) nuclear field configurations (red line), both
showing the same minimum located at δϕ = 2η.





5
M I T I G AT I N G N U C L E A R N O I S E I N G A A S - B A S E D Q U B I T S

GaAs-based devices have propelled the spin qubit field forward for more than
a decade, yielding many encouraging features such as full electric control and
fast operation times [20, 47, 102–105]. However, despite the popularity and
ease of use of GaAs-devices, their coherence times are intrinsically limited
due to the hyperfine coupling between the electron spins and the nuclear spin
bath of the host material [52–54]. We saw examples of this in Sec. 2.5.3 where
we, by projecting the hyperfine Hamiltonian onto the qubit subspace, found
that the random nuclear field gradients are a main source of decoherence in
both the double dot ST qubit and the triple dot XO qubit.

Because the nuclear noise is one of the largest challenges for spin qubit
implementations in GaAs-devices, several approaches to reduce its harmful
effects have been explored. Such approaches can be roughly divided into two
types: (i) Protocols for actively mitigate the nuclear noise through protocols to
control or suppress the harmful nuclear field gradient δKz, and (ii) encoding
the qubit in a singlet-only subspace which is intrinsically insensitive to the
fluctuating nuclear fields [1, 106–109]. In Papers II and I we proposed two
approaches belonging to the former and latter types, respectively. The main
ideas and findings of these papers are presented in this chapter.

5.1 transport-induced suppression of nuclear field fluctua-
tions

One approach to mitigate the nuclear noise in spin qubits that has been ex-
plored during the past years is active noise mitigation. By actively controlling
the spin dynamics of the qubit one can use the hyperfine interaction to sup-
press the effects of the nuclear spins. Such methods can be roughly divided
into two types: (i) By actively manipulating the spin qubit one can average
out the effects of the semistatic nuclear field, e.g. by applying complex spin-
echo-like pulse sequences that effectively filter out all peaks from the noise
spectrum [110]. (ii) Exploiting the interplay between the electron dynamics

43
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and hyperfine interaction one can create an active feedback cycle where one
uses the electron dynamics to manipulate the nuclear fields [111–115].

In this section we explore an approach that falls into the second category but
is simpler to implement than other methods. A few years ago, experiments
on a double quantum dot hosted in an InAs nanowire suggested that when
running a DC electric current through the system in the regime of a Pauli
spin blockade, an interplay between the hyperfine interaction and strong
spin-orbit interaction (SOI) in InAs can give rise to a process of dynamical
nuclear polarization that effectively quenches the total Zeeman gradient over
the two dots [46]. In Paper II we investigated this idea in more detail, and
showed how it not only works for double quantum dots with strong SOI,
but also in the absence of SOI. In addition, and maybe more importantly, we
showed that the idea can be implemented in a similar way in a linear triple
quantum dot, where it results in a suppression of the harmful nuclear field
gradients between neighboring dots.

5.1.1 Singlet-triplet qubit

In the previous chapter we investigated how the nuclear spins of the host
material in an ST qubit affected the electron spin dynamics, and thus also
the current, via the hyperfine interaction. However, this is not the full story.
The flow of electrons through the qubit also induces dynamic nuclear spin
polarization (DNP) that changes the nuclear spin polarizations on the dots,
creating an effective feedback cycle. It turns out that in materials with a
negative g-factor like e.g. GaAs, this feedback cycle tends to suppress the
harmful nuclear field gradients over the two dots.

We describe the ST qubit using a similar model as in the previous chapter,
i.e. the electron spin dynamics is described by a Lindblad master equation

∂tρ = −i[H, ρ] + Γ(ρ) (5.1)

with H = HHub +HB, where the Hubbard-like Hamiltonian reads as

HHub = −ϵ |S02⟩ ⟨S02|+ ts |S⟩ ⟨S02|+ itso · |T ⟩ ⟨S02|+ h.c.. (5.2)

In contrast to the last chapter, we will here use a less general Zeeman Hamil-
tonian. By assuming that the external magnetic field is homogeneous and
applied along our z-coordinate, and allowing for different g-tensors on the
two dots as a result of the strong SOI, the Zeeman Hamiltonian reads as

HB = EZ
(
|T+⟩ ⟨T+|− |T−⟩ ⟨T−|

)
+∆so

(
|S⟩ ⟨T0|+ |T0⟩ ⟨S|

)
, (5.3)

where EZ = 1
2µB (gL + gR)B

z is the Zeeman splitting, and ∆so = 1
2µB (gL − gR)B

z

is the spin–orbit induced Zeeman gradient.
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We did not consider the effects of the Overhauser fields in the Zeeman
Hamiltonian above as we are interested in studying the dynamic coupling
between the electron and nuclear spins in detail. The hyperfine Hamiltonian
is therefore treated separately,

Hhf =
∑
i,k

Ak

2

(
2Szi I

z
i,k + S+i I

−
i,k + S−i I

+
i,k

)
, (5.4)

here written in terms of the ladder operators O± = Ox ± iOy, O ∈ {S, I}.
The first term couples the z-components of the electron and nuclear spins,
and adds to the Zeeman splitting and gradient in Eq. (5.3) as the Overhauser
field Kz

i =
∑

kAkI
z
i,k. The two last terms can give rise to so-called spin

flip-flop processes, where the electron on dot i exchanges one unit of angular
momentum with one of the nuclei in the dot. In this way, a non-equilibrium
electron spin polarization on the dots can slowly be transferred to the nuclear
spin ensemble which, in turn, influences the electron dynamics yielding an
intricate feedback cycle.

Before presenting analytic expressions it will be useful to develop a qual-
itative understanding of how this feedback cycle affects the nuclear spin
polarizations. We start by investigating the simplest case without spin–orbit
coupling, where only the (1, 1) singlet state is coupled to |S02⟩, and the system
is stuck in spin-blockade in either of the three triplet states |T±,0⟩ with equal
occupation probabilities. A non-zero Zeeman gradient ∆ = ∆so + δK

z, where
δKz = (Kz

L − Kz
R)/2, can lift the spin-blockade of |T0⟩, leaving the system

stuck in either of the polarized triplets |T±⟩ as illustrated in the spectrum in
Fig. 5.1(a), where the thickness of the lines indicates the relative occupation
probabilities. The only mechanisms that can then lift the blockade of the
polarized triplets are the spin flip-flop processes, which couple the polarized
states to the decaying unpolarized states through exchanging angular mo-
mentum with the nuclear spins ensemble, effectively changing the nuclear
spin polarization.

By investigating the spin structure of the electronic states, we can then
say something about the preferred direction of nuclear spin polarization.
For a positive gradient ∆ > 0, the triplet state |T0⟩ evolves into state with
a slightly stronger |↓, ↑⟩ component, whereas the singlet state |S⟩ acquires a
slight |↑, ↓⟩ character. Furthermore, because of the stronger coupling of |S⟩
to |S02⟩ compared to |T0⟩ close to ∆ = 0, transitions to |S⟩ are favored for
lifting the spin-blockade. This makes flip-flop processes involving S+LK

−
L and

S−RK
+
R more likely than the opposite ones, as illustrated by the grey lines in

Fig. 5.1(a). This results in a net negative(positive) pumping of nuclear spin in
the left(right) dot, effectively driving δKz, and thus also ∆, towards smaller
values. Similarly, for a negative gradient ∆ < 0, |T0⟩ and |S⟩ acquire a slight
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Figure 5.1: Energy spectrum of the four (1, 1) states as a function of ∆ (a) without
and (b) with spin-orbit coupling. The thickness of the lines indicates the
occupation probability of the eigenstates, and the grey arrows indicate
preferred electron-nuclear spin-flip rates close to ∆ = 0. We have here set
t = 0.6EZ, and in (b) we used t = {0.4, 0.4, 0.4}ts.

|↑, ↓⟩ and |↓, ↑⟩ character, respectively, resulting in a net positive pumping of
δKz and ∆. We thus see that independent of the sign of ∆, the nuclear field
gradient δKz is pumped towards ∆ = 0.

Similarly, we can develop a qualitative understanding for finite spin–orbit
interaction. Including spin–orbit interaction lifts also the blockade of the
two polarized triplets |T±⟩. However, if the total gradient ∆ vanishes, the
two unpolarized states can again be combined into a bright state |B⟩ =

cosη |S⟩+ i sinη |T0⟩ that is coupled to |S02⟩ with strength t =
√
t2s + (tzso)

2

and a dark state |D⟩ = i sinη |S⟩+ cosη |T0⟩ that is uncoupled and thus spin-
blocked, see the spectrum in Fig 5.1(b). To escape spin blockade, spin flip-flop
processes couple the blocked dark state |D⟩ and the two polarized triplets |T±⟩
which are now coupled to |S02⟩ due to the finite spin–orbit interaction. We can
thus develop a similar picture as for the spin–orbit free case by considering
how |D⟩ qualitatively changes for a non-zero ∆. Making ∆ larger(smaller)
than zero, |D⟩ acquires a slightly larger |↓, ↑⟩(|↑, ↓⟩) component. This in turn
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favors spin flip-flop processes that drives the gradient ∆ towards zero, as
illustrated by the grey arrows in Fig. 5.1(b).

Now that we have a brief understanding of the process behind the nu-
clear spin pumping, we can investigate the dynamics of the nuclear spin
polarization analytically. We will do this by first calculating the occupancy
and effective decay rates of the electronic states, which we in turn use to
calculate the spin-flip rates of the nuclear spins perturbatively using Fermi’s
golden rule. Assuming that the decay rate Γ is the largest energy scale in the
Lindblad master equation, we can separate the timescales of ρ involving |S02⟩
and the (1, 1) subspace, and describe the system using an effective model
for the (1, 1) subspace. To include the effects of the decay rate Γ of |S02⟩ we
add the term − i

2Γ |S02⟩ ⟨S02| to the Hamiltonian H. Then, projecting the now
non-hermitian Hamiltonian H onto the (1, 1) subspace yields exchange terms
on the form (Hex)ij = 4ϵTij/(4ϵ

4 + Γ2), with

Tij = ⟨i|HHub |S02⟩ ⟨S02|HHub |j⟩ . (5.5)

Further assuming that the Zeeman splitting EZ is much larger than these
exchange energies, we only need to consider the exchange energy EB =

4ϵ(t2s + t
z2)/(4ϵ2 + Γ2), yielding an effective Hamiltonian for the (1, 1) sub-

space,

H(1,1) =




EZ 0 0 0

0 EB ∆ 0

0 ∆ 0 0

0 0 0 −EZ




, (5.6)

written in the basis {|T+⟩ , |B⟩ , |D⟩ , |T−⟩}. In addition to the exchange energies,
the projection also gives the (1, 1) state effective decay rates Γi = 4ΓTii/(4ϵ2 +
Γ2), where we denote ΓT± = Γt. Using the effective Hamiltonian in Eq. (5.6)
together with the effective decay rates, we write a time-evolution equation
for the density matrix of the (1, 1) subspace ρ(1,1) similar to the Lindblad
master equation in Eq. (5.1). Solving for steady-state ∂tρ(1,1) = 0 we find
the equilibrium density matrix ρ(1,1)

eq , which by diagoalization yields the
occupation probabilities pi of the eigenstates |i⟩.

The occupation probabilities and decay rates describe the dynamics of the
four relevant (1, 1) spin states including the z-component of the quasistatic
nuclear spins. We now add the in-plane contributions described by the flip-
flop terms in Eq. (5.4) perturbatively to investigate how the electron spin
dynamics affect the polarization of the nuclear spins. Assuming for simplicity
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nuclear spin 1/2, we express the flip rates of the nuclear spins on dot d using
Fermi’s golden rule

γ±d =
A2

4N2
N∓

d

∑
i,j

pi
Γj

E2Z

∣∣⟨j|S∓d |i⟩
∣∣2 + γN∓

d , (5.7)

where N±
d is the number of spinful nuclei on dot d, and we have assumed

that all nuclei are coupled equally strong to the electron spin, Ak = A/N, for
simplicity. Here, the factor Γj/E2Z accounts for the lifetime broadening of the
final state |j⟩, assuming a Lorentzian level broadening in the limit EZ ≫ Γj.
Furthermore, we also added a term that describes random nuclear spin flips
with a rate γ to account phenomenologically for the slow relaxation of the
nuclear spins to their fully mixed equilibrium state.

The flip rates can be translated into evolution equations for the dot polar-
izations Pd = (N+

d −N−
d )/N. For the polarization gradient P∆ = (PL − PR)/2

and the average polarization PΣ = (PL+PR)/2we find the nonlinear evolution
equations

∂tP∆ = −

[
F(∆) +

1

τ

]
P∆ −

2F(∆)EB∆

E2B + Γ2B/4+ 4∆
2

, (5.8)

∂tPΣ = −

[
F(∆) +

1

τ

]
PΣ, (5.9)

with

F(∆) =
A2

4N2E2Z

Γ2t (4E
2
B + Γ2B + 16∆2) + 4Γ2B∆

2

Γt(4E2B + Γ2B + 16∆2) + 8ΓB∆2
, (5.10)

and 1/τ = 2γ/N being the phenomenological relaxation rate of the polariza-
tions, usually τ ∼ 1−10 s. The evolution equations show how the polarizations
acquire an enhanced relaxation rate τ−1 → τ−1 + F(∆) as a result of the elec-
tron dynamics, with ∂tP∆ having an additional term that drives the gradient
towards ∆ = 0, which for typical parameters where EB ∼ ΓB ≪ A dominates.

To illustrate these results we plot the pumping curves for the polarization
gradient and average polarization in Fig. 5.2 for three different magnitudes
of SOI, where we used as parameters A = 250 µeV, EZ = −5 µeV, N = 45,
and τ = 5 s. For the curve without SOI (green) we used EB = 0.5 µeV,
ΓB = 0.25 µeV, and Γt = ∆so = 0. The other two curves have Γt = 0.01 µeV,
∆so = 0.5 µeV (red) and Γt = 0.0625 µeV, ∆so = 1 µeV (blue). The plots indeed
show that the polarization gradient is pumped towards δKz = −∆so, and the
average polarization is pumped towards zero.
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Figure 5.2: Pumping curves for the polarization gradient and the average polarization
as given by (5.8) and (5.9). (a) ∂tP∆ as a function of P∆ and (b) PΣ as a
function of PΣ. Both plots show three curves corresponding to no SOI
(green), intermediate SOI (red), and strong SOI (blue), compared to a
reference without any spin pumping (orange dashed line).
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5.1.2 Exchange-only qubit

Above we showed that running an electric current through a double quantum
dot can drive the harmful nuclear field gradient in the ST qubit towards zero,
resulting in an effective reduction of the nuclear noise fluctuations. We here
show that we can implement a similar approach in a linear triple quantum
dot which suppresses both of the two nuclear field gradients of the XO qubit.

Like for the ST qubit, we model the XO qubit using the model Hamiltonian

H = HHub +HB, (5.11)

where we use the same Hubbard-like and Zeeman Hamiltonian that we used
to describe the XO qubit in Sec. 2.4, which explicitly read

HHub =
∑
α=±

{
(ϵM + ϵ) |Dα

L ⟩ ⟨Dα
L |+ (ϵM − ϵ) |Dα

R⟩ ⟨Dα
R |

}
+
t

2

∑
α=±

α
{√
3 |Dα

1 ⟩
[
⟨Dα

R |− ⟨Dα
L |
]
+ |Dα

2 ⟩
[
⟨Dα

R |+ ⟨Dα
L |
]}

+ h.c.,

(5.12)

and

HZ = gµBB
z
∑
α=±

{
α
3

2
|Qα3/2⟩ ⟨Qα3/2|+α

1

2

[
|Qα1/2⟩ ⟨Qα1/2|

+ |Dα
1 ⟩ ⟨Dα

1 |+ |Dα
2 ⟩ ⟨Dα

2 |+ |Dα
L ⟩ ⟨Dα

L |+ |Dα
R⟩ ⟨Dα

R |
]}

, (5.13)

respectively. For the XO qubit we will neglect SOI because a finite SOI always
lifts the spin blockade and thus competes with the flip-flop terms in the
hyperfine interaction, thereby reducing the efficiency of the spin pumping.

We add the effects of hyperfine interaction using the Hamiltonian in
Eq. (5.4), where we again assume that the average nuclear polarization over
the dots KΣ is much smaller than the Zeeman energy EZ and can be ne-
glected. The hyperfine interaction then affects the XO qubit in two ways: (i)
The flip-flop terms S±i I

∓
i,k exchange angular momentum between the con-

fined electrons and the nuclei on the same dot, and (ii) the two nuclear
field gradients δKz

M = (δKz
LC − δKz

CR)/2 and δKz
LR = (Kz

L − Kz
R)/2, where

δKz
ij = (Kz

i −K
z
j )/2, couple states with the same spin projection, which effect

can be described by the Hamiltonian

H
±1/2
hf = ±




0 −
√
2
3 δKM

√
2
3δKLR

−
√
2
3 δKM −1

3δKM − 1√
3
δKLR√

2
3δKLR − 1√

3
δKLR

1
3δKM


 (5.14)
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S

DD

Figure 5.3: The triple quantum dot of the XO qubit with the central dot connected to a
source and the two outer dots connected to drains. An applied bias voltage
enables electrons to flow from the source to either of the drains.

acting on the two Sz = ±1/2 subspaces {|Q±1/2, |D±1/2
1 ⟩ , |D±1/2

2 ⟩⟩}.
Adding the effects of the three leads, we apply a source-drain bias voltage

as shown in Fig. 5.3, enabling a current to flow from the center lead to the two
outer leads. The current through the linear triple dot can follow one of the
two possible transport cycles (1, 1, 1) → (2, 0, 1)/(1, 0, 2) → (1, 0, 1) → (1, 1, 1).
By again assuming that the system is in the open regime, where the rates
Γ = Γ in

C = Γout
L,R are the largest energy scales, the interesting dynamics happen

during the (1, 1, 1) → (2, 0, 1)/(1, 0, 2) transition, which involves the 12 states
discussed above. We can then describe the dynamics of these 12 states using
the Lindblad master equation as before,

∂tρ = −i[H, ρ] + Γ(ρ), (5.15)

where the superoperator reads Γ(ρ) = −1
2Γ {Pdec, ρ}+ 1

8Γ(1 − Pdec)ρdec, with
the projection operator Pdec =

∑
i=Dα

L,R
|i⟩ ⟨i| projecting on the subspace

{DL,DR} that that can decay by having an electron tunnel to the drain leads,
and ρdec =

∑
i=Dα

L,R
ρi,i.

Like for the ST qubit, it will be useful to first develop a qualitative un-
derstanding of how the feedback cycle affects the nuclear spin polarizations
in the XO qubit, before presenting analytic expressions. When the gradi-
ents ∆LR = δKLR and ∆M = δKM are zero, the electrons are trapped in
one of the four quadruplet states. A non-zero gradient mixes states with
equal spin polarization, giving all states with Sz = ±1/2 a finite coupling to
|DL,R⟩, leaving the electrons trapped in the fully polarized quadruplet states
|Q±3/2⟩. For small gradients, the doublets have a much stronger coupling to
|DL,R⟩ than |Q±1/2⟩, making the spin-flip processes dominated by transitions
from |Q±3/2⟩ to a doublet states. It turns out that transitions to |D2⟩ do
not contribute strongly to spin-pumping as the transitions to |D±

2 ⟩ cancel
out. Transitions to |D1⟩, however, which have the largest coupling to |DL,R⟩,
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Figure 5.4: Energy spectrum of the eight (1, 1, 1) states as a function of (a) ∆LR and (b)
∆M, where the thickness of the lines indicates the occupation probability
of the eigenstates, and the grey arrows indicate preferred electron-nuclear
spin-flip rates.
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effectively pump the two gradients towards zero in a similar way as for the
ST qubit, as illustrated in Fig. 5.4.

To derive analytic expressions describing the dynamics of the polarization
gradients we again assume that Γ is the largest energy scale, and project
the Hamiltonian onto the (1, 1, 1) subspace. The projection introduces an
exchange energy E1,2 = (2± 1)ζDϵM and decay rate Γ1,2 = (2± 1)ζDΓ to the
doublet states |D1,2⟩, respectively, where the unit-less parameter,

ζD =
2t2

4ϵ2M + Γ2
, (5.16)

characterizes the relative strength of the coupling to |DL,R⟩. By further
assuming that the exchange energies E1,2 are much larger than the gradients
ϵ and ϵM, the Hamiltonian H is diagonalized using second-order perturbation
theory. The resulting eigenstates and their respective decay rates can then be
inserted into Fermi’s golden rule in Eq. (5.7) to obtain the hyperfine-induced
flip-flop rates to lowest order in the field gradients ϵ and ϵM. Translating the
flip-flop rates into evolution equations for the average polarization PΣ and
the polarization gradients PLR = (PL − PR)/2 and PM = (PL + PR)/2− PC
then yields

∂tPLR = −

[
G+

1

τ

]
PLR −

Γ

ϵM
∆LR, (5.17)

∂tPM = −

[
5

3
G+

1

τ

]
PM −GPΣ −

2Γ

3ϵM
∆M, (5.18)

∂tPΣ = −

[
4

3
G+

1

τ

]
−
2

9
GPM, (5.19)

with G = A2ζDΓ/4N
2E2Z, where we have again assumed equal N on all dots,

for simplicity.
The evolution equations show that, similar to in the double dot, the polar-

ization gradients acquire an effectively enhanced relaxation rate. In addition,
we find that the polarization dynamics of the two gradients are coupled,
which is a result of the geometry of the source and drains. However, for
typical parameters the last terms in Eqs. (5.17) and (5.18) dominate, effectively
suppressing both nuclear field gradients of the XO qubit. In Fig. 5.5 we
plot the nuclear polarization gradients (a) ∂tPLR and (b) ∂tPM calculated
numerically using Eq. (5.7), where the black lines represent the vector field
(∂tPM, ∂tPLR), showing how both polarization gradients are pumped to-
wards 0. Furthermore, the indents show line cuts along the red dashed lines,
where the orange lines show the slope of ∂tP as predicted by Eqs. (5.17) and
(5.18), thus confirming the validity of our analytic expressions at small fields.
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Figure 5.5: (a) ∂tPLR and (b) ∂tPM as a function of PLR and PM, calculated numer-
ically using Eq. (5.7). The indents show line cuts along the red dashed
lines, where the orange dashed lines show the slope of ∂tP as predicted by
Eqs. (5.17) and (5.18). In both plots we include the black arrows represent-
ing the same vector field (∂tPM, ∂tPLR).

As parameters we used PΣ = 0, A = 125 µeV, EZ = 12.5 µeV, N = 4× 105 ,
τ = 5 s, ϵM = 100 µeV, ϵ = 0, Γ = 75 µeV, and t = 7.5 µeV.

5.2 highly tunable triple dot singlet-only qubit

The second approach we will explore that aims to mitigate nuclear noise in
spin qubits are the so-called singlet-only (SO) qubits [1, 108, 109]. The idea
behind the SO qubit is simple; by encoding the qubit in a decoherence-free
subspace consisting of two singlet states, the qubit states will not be coupled to
each other via the hyperfine interaction. The first SO qubit that was proposed
was the exchange-only singlet-only (XOSO) spin qubit [108], where the two
singlet states were created using four electrons in a quadruple quantum dot
formed in a T-shape. By tuning one of the tunnel barriers unequal to the two
other barriers, the two singlets acquire different exchange energies, making
them a good basis for a fully-controllable spin qubit.

Despite promising drastically improved coherence times compared to the
XO qubit, the XOSO qubit had the drawbacks of a relatively small qubit
splitting and requiring a new four-quantum dot device for realization. In
Paper I we sought to solve both these drawbacks by creating a SO qubit with
a tunable qubit splitting hosted in a triple quantum dot that can straightfor-
wardly be implemented in already existing triple-dot devices. The qubit is
constructed by tuning the three quantum dots to the (1, 4, 1) charge configura-
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Figure 5.6: Sketch of the linear triple quantum dot tuned to the (1, 4, 1) charge config-
uration with a perpendicular applied magnetic field.

tion, see Fig. 5.6, where an interplay between an external magnetic field and
the Coulomb interaction results in a magnetic-field-dependent singlet-triplet
crossing on the center dot. Coupling the four-electron states on the center dot
to the two spins on the outer dots then creates two singlet states that form the
basis of our SO qubit. Before presenting the details of the qubit in Sec. 5.2.2
we briefly explore the multi-electron states used to create it.

5.2.1 Multi-electron quantum dots

So far we have only considered the ground state orbital in quantum dots due
to the large excitation energy. For multi-electron (above 2) quantum dots we
will now have to include the orbital effects of higher-lying orbitals. In addition
to the added orbital effects, we also need to take the Coulomb interaction
between the electrons seriously in multi-electron quantum dots.

To calculate an approximate spectrum for the multi-electron states we start
by describing a single electron (labeled i) using the single-particle Hamilto-
nian,

H
(i)
0 =

1

2m∗ [pi + eA(ri)]
2 +

1

2
m∗ω2

0r
2
i +

1

2
gµBBσ

z
i , (5.20)

where A(r) = 1
2B(xŷ− yx̂) is the vector potential, ω0 sets the effective radius

of the dot in the absence of a magnetic field σ0 =
√

 h/m∗ω0, g is the g-factor
of the host material, σz is the third Pauli matrix, and we assumed parabolic
confinement. The eigenstates of H(i)

0 are the well-known Fock-Darwin states,

ψn,l,η(ri) =

√
n!

πσ2(n+ |l|)!
ρ
|l|
i e

−ρ2
i /2L

|l|
n

(
ρ2i

)
e−ilθi , (5.21)

written in terms of the dimensionless polar coordinates ρ = r/σ and θ,
where Lba(x) is the associated Laguerre polynomial, and σ =

√
 h/m∗Ω, with

Ω =
√
ω2

0 +ω2
c/4 and ωc = eB/m∗. Here, the quantum numbers n ∈ N0,
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Figure 5.7: (a) Low-energy part of the four-electron spectrum as a function of the
applied magnetic field with κ = 0.5 and g = −0.4, where the dots(lines)
represent the numerical(perturbative) results. (b) The numerically calcu-
lated energy of the lowest singlet |Sα⟩ relative to the unpolarized triplet
|T0β⟩ for κ = 0.5 and κ = 1.5.

l ∈ Z, and η = ±1 label the radial state, orbital angular momentum, and
spin of the electron, respectively. The eigenenergies corresponding to the
Fock-Darwin states are

E
(i)
n,l,η = Ω(2n+ |l|+ 1) −

1

2
ωcl+

1

4
g
m∗

me
ωcη, (5.22)

where the first term gives the regular two-dimensional harmonic-oscillator
energies, but with a magnetic-field-dependent oscillator frequency Ω, the
second term describes the coupling between the angular momentum l and
the external magnetic field, and the third term accounts for the Zeeman effect.

From the lowest energetic Fock-Darwin states, with quantum numbers
n ⩽ 1 and |l| ⩽ 3, we create antisymmterized product states that we use as
basis for our many-particle states. In the new many-particle basis we then
evaluate all matrix elements of the Coulomb interaction Hamiltonian

V =
∑
i<j

e2

4πϵr|ri − rj|
, (5.23)

with ϵr being the effective dielectric constant of the surroundings of the
quantum dot. The eigenstates and -energies of the many-particle states are
then obtained by diagonalizing the full Hamiltonian H1 =

∑
iH

(i)
0 +V , which

can be done numerically or, in the weak-interaction limit characterized by
κ ≡ e2/4πϵrσ0ω0 ≪ 1, using perturbation theory in κ.

In Fig. 5.7(a) we present a typical spectrum for the lowest six multi-electron
states of a quantum dot hosting four interacting electrons, where we used
κ = 0.5 and g = −0.4, and the blue and green lines label the singlet and
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triplet states, respectively. The three triplet states labeled |T±,0
β ⟩ live mostly

in the orbital configuration (0, 0)2(0, 1)1(0,−1)1, where (n, l)m denotes m
electrons in orbital state (n, l). The three singlet states |Sα,β,γ⟩ have the largest
weight in the orbital configurations (0, 0)2(0, 1)2, (0, 0)2(0, 1)1(0,−1)1 and
(0, 0)2(0,−1)2, respectively. Furthermore, the solid lines are the perturbative
results, which are in good agreement with the dots indicating the numerical
results.

To create our singlet-only qubit we will utilize the lowest energy singlet |Sα⟩
and the unpolarized triplet |T0β⟩. We therefore plot the numerically calculated
energy of |Sα⟩ relative to |T0β⟩ as a function of ωc = eB/m∗ in Fig. 5.7(b)
for κ = 0.5 and κ = 1.5. For both values of κ the singlet-triplet splitting
EST = ET0

β
− ESα

is to good approximation linear in ωc in the region of

interest, and becomes zero around ωc/ω0 ∼ 0.1. Both of these features are
key ingredients for our singlet-only qubit. Finally, for small κ ≲ 0.5 we find a
short and compact expression for the singlet-triplet splitting1,

EST ≈ γ0ω0 +ωc, (5.24)

with γ0 = −0.235 κ+ 0.128 κ2.

5.2.2 The qubit

As above-mentioned, the qubit is defined in two six-electron singlet states
hosted in a linear triple quantum dot with a perpendicular magnetic field.
Like for the XO qubit presented in Sec. 2.4, we describe the triple quantum
dot using a Hubbard-like Hamiltonian,

H =

3∑
i=1

(
H

(i)
1 − Vini

)
+

∑
⟨i,j⟩

Uc

2
ninj −

∑
⟨i,j⟩,η

tij√
2
c
†
iηcjη, (5.25)

where the on-site Coulomb interaction that we previously described by the
charging energy U has been replaced by the many-particle Hamiltonian
H

(i)
1 for dot i as described above. By using a Hubbard-like Hamiltonian

like Eq. (5.25) we effectively assume that: (i) The separation between the
dots is large enough to allow us to treat the interdot electrostatic energy
as being independent of the exact orbital configuration of the electrons on
neighboring dots. (ii) All tunneling processes we will consider mostly involve
the same orbital structures allowing us to use tunneling coefficients tij that are
independent of the exact electronic orbitals involved. (iii) The gate-induced

1 See supplementary material for Paper I for all derivations and an explicit expression for γ0.
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Figure 5.8: Six-electron charge stability diagram around the (1, 4, 1) region, as a func-
tion of the two detuning potentials ϵM and ϵ.

potentials are smooth enough so that all electronic orbitals are affected in the
same way.

Neglecting the tunneling term in the Hamiltonian, we study the electrostatic
properties by diagonalizing the first two terms in Eq. (5.25). The resulting
charge stability diagram, showing the charge configuration of the ground state,
is shown Fig. 5.8 as a function of the two detuning potentials ϵM = (V1 +

V3)/2−V2 and ϵ = (V3−V1)/2, where we fixed V1+4V2+V3 = −ESα
−8Uc

to focus on the regime around (1, 4, 1). We here assumed different dot sizes,
σ0 = 30 nm for the central dot and σ0 = 20 nm for the outer dots, and further
used Uc = 0.2ω0, ωc/ω0 = 0.1, κ = 0 and m∗/me = 0.067 with ω0 being
the bare level splitting on the central dot.

Within the (1, 4, 1) charge region the four lowest-energy singlet states that
can be written as

|0⟩ = |SαS(13)⟩ , (5.26)

|1⟩ = 1√
3

[
|T0βT

0
(13)⟩− |T−β T

+
(13)

⟩− |T+β T
−
(13)

⟩
]

, (5.27)

|2⟩ = |SβS(13)⟩ , (5.28)

|3⟩ = |SγS(13)⟩ , (5.29)

where |S(13)⟩ and |T(13)⟩ indicate that the two electrons in the outer dots are
paired in a singlet and triplet state, respectively. By tuning the central dot
close to the singlet-triplet crossing, which for a central dot of σ0 = 30 nm
happens at B ≈ 75 mT, the two lowest-energy singlet states |0⟩ and |1⟩ can be
used as qubit states, with the two other singlets |2⟩ and |3⟩ being split off by
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Figure 5.9: Low-energy part of the spectrum of the Hubbard-like Hamiltonian in
Eq. (5.25) as a function of (a) ϵ at ϵM/ω0 = 0.27 and (b) δt at the SS. The
green and blue lines show the singlet qubit states |0⟩ and |1⟩, respectively,
and the grey lines show the close-lying triplet and quintuplet states.

an energy much larger than the qubit splitting as shown by the spectrum in
Fig. 5.7(a).

We then investigate the low-energy spectrum of the Hamiltonian in
Eq. (5.25) for the two regions of interest: (i) In the RX regime, close to the top
and bottom of the (1, 4, 1) region, the strong exchange interaction provides
fast qubit control through ϵ. Here the low-energy spectrum is plotted in
Fig. 5.9(a) as a function of ϵ along the red line in Fig. 5.8, corresponding to
ϵM/ω0 = 0.27, where we ignored the Zeeman splitting for clarity and used
the same parameters as in Fig. 5.8 with t12 = t23 = 25 µeV. (ii) At the SS in
the center of the (1, 4, 1) region the qubit is to linear order in the potentials
Vi protected from charge noise. Using as parameters ϵ = ϵM = 0 and
t = (t12 + t23)/2 = 25 µeV we plot the low-energy spectrum as a function of
δt = t12 − t23 in Fig. 5.9(b).

Assuming that the tunnel couplings tij, which are typically tij ∼ 10 µeV,
are much smaller than the width of the (1, 4, 1) region 2∆ as defined in
Fig. 5.8, we treat the tunnel couplings perturbatively and project the full
Hamiltonian in Eq. (5.25) onto the qubit subspace by means of a Schrieffer-
Wolff transformation [116]. To second order in tij this yields the qubit
Hamiltonian

Hqb =
1

2
(EST + Jz)σ

z + Jxσ
x, (5.30)

where the qubit splitting is dominated by the magnetic-field-dependent
singlet-triplet splitting EST as given by Eq. (5.24). We emphasize that this
magnetic field dependence arises due to the coupling between the magnetic
field and the orbital degrees of freedom of the electrons; the singlet-only qubit
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subspace remains insensitive to the coupling of magnetic fields to the spin of
the electrons. For approximately symmetric tunnel couplings t12 ≈ t23 and
close to the line where ϵ = 0, the two exchange terms read as

Jz ≈ − t2

[
∆

∆2 − ϵ2M
+

3(∆+ωc)

(∆+ωc)2 − ϵ2M

]
, (5.31)

Jx ≈
√
6t∆

∆2 − ϵ2M

[
δt+

2tϵM

∆2 − ϵ2M
ϵ

]
. (5.32)

The Jz term provides a small tuning-dependent correction to the qubit split-
ting, which is mainly determined by EST , whereas the Jx provides a coupling
to σx that is linear in ϵ and δt, which can be used to drive Rabi oscillations in
the RX regime and at the SS, respectively.

5.2.3 Qubit manipulation and decoherence

Single-qubit rotations can be performed via resonant Rabi driving using a
sinusoidal modulation q(t) = q0+ q̃ sin(ωt) of a tuning parameter q = {ϵ, δt}.
For small enough amplitudes q̃ the qubit Hamiltonian in Eq. (5.30) can be
approximated as

Hqb =
1

2
(EST + Jz)σ

z +Aq sin(ωt)σx, (5.33)

where Aq = q̃ (dJx/dq)q=q0
. Resonantly driving the qubit with frequency

ω = EST + Jz then induces Rabi oscillations with a frequency Aq, providing
single-qubit manipulation. By picking the right tuning parameter we can
obtain fast qubit operation at both the RX regime and at the SS. At the RX
regime we can use q = ϵ as tuning parameter, which for an amplitude of
ϵ̃ = 5− 10 µeV gives a Rabi period of TRabi ≈ 20− 40 ns. At the SS, the tuning
parameter q = δt is more efficient, yielding a Rabi period of TRabi = 20 ns for
an amplitude of δ̃t = 2 µeV.

Finally, we investigate the coherence properties of the qubit. Because
both qubit states are singlets, there is no direct coupling between the qubit
states via the hyperfine interaction to lowest order. Couplings to other states,
however, can give rise to energy shifts in the qubit splitting that are of a
higher order in the hyperfine coupling, potentially leading to dephasing. To
get a rough estimate for the scale of this dephasing we consider their effect on
Rabi oscillations during resonant driving, and find an estimated dephasing
time of T∗2 ∼ Aq(E0 − ET0

1
)2/σ4K, where σK = A/

√
N and Ei is the energy

of state |i⟩ with |T01 ⟩ = |SαT
0
(13)⟩ being the closest lying triplet state. Based
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Figure 5.10: Time-dependent return probability ⟨P1(τ)⟩ after averaging over 2500 nu-
clear configurations with zero mean and σK = 0.07, (a) in the RX regime
with ϵ̄ = 10 µeV and (b) at the SS with δt̄ = 2 µeV.

on the low-energy spectra in Fig. 5.9 we therefore expect less nuclear noise
induced dephasing at the RX regime than at the SS, a result of the larger
exchange interaction that determines the splitting of |0⟩ and |T01 ⟩. To illustrate
the coherence properties we plot the probability ⟨P1(τ)⟩ of finding the qubit
in |1⟩ after initializing in |0⟩ and resonantly driving for a time τ. In Fig. 5.10

we show the resulting time-dependent probabilities for (a) driving ϵ in the RX
regime and (b) driving δt at the SS, after averaging over 2500 random nuclear
configurations with gµBKx,y,z each taken from a normal distribution with
zero mean and σK = 0.07 µeV, where we used the same parameters as above
with driving amplitudes ϵ̃ = 10 µeV and δ̃t = 2 µeV. The plots indeed agree
with our rough estimate, showing that the qubit is less sensitive to nuclear
noise in the RX regime than at the SS.





6
G R O U P - I V S E M I C O N D U C T O R S A N D VA L E N C E B A N D
H O L E S

Although GaAs-based devices have propelled the spin qubit field forward for
more than a decade, their coherence times are intrinsically limited by the nu-
clear noise [52–54]. A potential solution to this problem is to host the qubits in
group-IV materials, such as Si or Ge, which can be made almost nuclear-spin-
free by isotopic purification [55–59], removing the nuclear noise altogether.
There has therefore been a lot of interest recently in Si- and Ge-based spin
qubits, where Si also has the advantage of leveraging already developed
commercial mass chip-manufacturing techniques. However, using group-IV
semiconductors also comes with the complication of extra valley degrees of
freedom, providing additional channels for leakage and dephasing [60, 61].

Lately, there has been substantial progress with Si- and Ge-based spin
qubits that use the spin of valence-band holes instead of the electron spin [62–
70]. These holes do not have the complicating valley degree of freedom of the
electrons while still benefiting from the protection against nuclear noise due to
the absence of nuclear spins in purified samples. Moreover, since the orbitals
that make up the valence band are of p type [71], the valence band holes have
the additional advantage of weaker coupling to any residual nuclear spins
due to the wave function vanishing at the atomic site [117]. However, since the
orbitals that constitute the valence band are of p-type [71], the corresponding
states have a total six-fold angular momentum degree of freedom, possibly
leading to highly anisotropic dynamics. Compared to the valley mixing of
the electronic states, however, these dynamics are relatively predictable, and
the built-in mixing of orbital and spin degrees of freedom can yield strong
effective spin–orbit coupling that allows for fast qubit operation [83–89].

In this chapter, we investigate the properties of group-IV semiconductors in
more detail. We start by presenting the very useful framework of k · p theory
which is often used to describe the band structure of semiconductors. Based
on this framework we briefly explore the dynamics of confined electrons in
Sec. 6.2, including the origin and properties of the valley degrees of freedom.

63
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Finally, in Sec. 6.3 we use k · p theory to derive the Luttinger Hamiltonian
describing the valence band holes in confined semiconductor structures.

6.1 bulk semiconductors and k · p theory

To get a good grasp of the origin of the properties of confined electrons and
holes we will in this chapter derive a series of Hamiltonians that describes the
dynamics of electrons and holes in confined semiconductors structures. Our
derivations are based on the framework of k · p theory [71], which serves as a
starting point to obtain smaller k · p models describing the confined carriers.

The derivation of the k · p dispersion relation is given in Appendix A, and
can be briefly summarized as follows: We start from the Schrödinger equation
for the lattice periodic part of the Bloch function |νk⟩ in a lattice-periodic
crystal potential V(r), to which we add Pauli SOI, which makes |νk⟩ a spinor
|nk⟩ with n accounting for both the spin degree of freedom and the orbital
motion of the electron. By then expanding the set of spinors {|nk⟩} in terms
of the eigenfunctions of the lattice-periodic functions at the Γ -point {|ν0⟩} we
obtain an algebraic expression for the dispersion relation of the bands En(k),

∑
ν ′,σ ′

{[
Eν ′(0) +

 h2k2

2m0

]
δνν ′δσσ ′ +

 h

m0
k ·Pνν ′

σσ ′ +∆νν ′
σσ ′

}
cnν ′σ ′(k)

= En(k)cnνσ(k), (6.1)

where cnν ′σ ′ are the expansion coefficients, and

Pνν ′
σσ ′ ≡ ⟨νσ|π|ν ′σ ′⟩, (6.2)

∆νν ′
σσ ′ ≡

 h

4m2
0c

2
⟨νσ|p ·σ× (∇V)|ν ′σ ′⟩. (6.3)

Here, the diagonal terms Eν ′(0) +  h2k2/2m0 determine the energies of the
bands edge states |ν0⟩, and the off-diagonal terms ( h/m0)k ·Pνν ′

σσ ′ give rise
to a k-dependent mixing of the different |ν0⟩ states. We can also see that
by choosing to expand in the basis without SOI {ν0}, the SOI can be treated
as a small perturbation. When treating the SOI as a small perturbation it is
often a good approximation to neglect the SOI contribution in π and write
π = p [71]. Finally, the SOI terms ∆νν ′

σσ ′ generally split the degenerate energy
levels Eν(k), even at k = 0. We will see an example of this below when we
investigate the properties of confined holes, where SOI splits the threefold
degenerate l = 1 band into a fourfold degenerate j = 3/2 band and a doubly
degenerate j = 1/2 band when we include spin.
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Figure 6.1: Schematic illustration of the bands included in the extended Kane model.
(a) The included bands are the uppermost l = 1 valence band and the two
lowermost l = 0 and l = 1 conduction bands. (b) Adding spin splits both
of the two triply degenerate l = 1 bands into a doubly degenerate j = 1/2
band and a fourfold degenerate j = 3/2 band, separated by the spin–orbit
splitting ∆0. Redrawn after [71].

Diagonalizing Eq. (6.1) yields the exact dispersion relation for all wave
vectors k and band indices n. However, we are often only interested in
the dispersion relation for a finite number of adjacent bands close to the
expansion point k0 = 0, e.g. the lowermost conduction band for electrons or
the uppermost valence band for holes. By fully taking into account the k ·p
and spin–orbit interactions between those N bands of interest, and including
all interactions to remote band perturbatively, one obtains a N dimensional
Hamiltonian containing higher-order terms in k that describes the N bands.
We will use this approach in Secs. 6.2.1 and 6.3.3 to obtain Hamiltonians
describing two-dimensional electron and holes gases, respectively.

Before we go into detail on the properties of confined electrons and holes
we take a broader look at the closest lying bands around the fundamental
gap in semiconductors. To do so we take a look at the 14× 14 extended Kane
model, which includes the uppermost bonding p-like valence band and the
antibonding s- and p-like conduction bands, as illustrated in Fig. 6.1(a). By
including spin the three bands are split into five bands; the l = 0 band is
transformed into a doubly degenerate j = 1/2 band denoted Γc6 , whereas
the triply degenerate l = 1 conduction(valence) band is split into a fourfold
degenerate j = 3/2 band Γc(v)8 and a doubly degenerate j = 1/2 band Γc(v)7 ,
see Fig. 6.1(b). As already mentioned above, the splitting between the j = 1/2
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and j = 3/2 bands is determined by the Pauli SOI ∆νν ′
σσ ′ caused by the strong

Coulomb potential close to the atomic cores, effectively coupling the l = 1

states. This splitting is usually large enough that one can treat the Γc(v)8

band as isolated1, and the split-of j = 1/2 band is therefore often called the
spin–orbit split-off band.

The dispersion relation for the extended Kane model is obtained by using
the approach presented above, where we include all k · p and spin–orbit
interactions between the 14 bands exactly, and add all interactions with
remote bands using second-order perturbation theory. The extended Kane
model is a convenient tool for describing the neighbourhood around our
bands of interest: The lowermost conduction band Γc6 and the uppermost
valence band Γv8 . The Γc6 band has an almost parabolic and isotropic dispersion
relation E(k) as it originates from the l = 0 band. Because of this parabolicity,
electrons in the Γc6 band can be described fairly accurately by an effective-mass
Hamiltonian. The dispersion relation for holes in Γv8 on the other hand is
highly nonparabolic and anisotropic because of the effective spin j = 3/2. This
complexity gives rise to several interesting and anisotropic properties when
the holes are confined, among other highly anisotropic masses and g-tensor,
as we will show in Chapter 7.

Although the extended Kane model provides an accurate description of
the 14 bands close to the fundamental gap, it is often convenient to consider
smaller k ·p models. In the two next sections we will use two such smaller
models to explore two different types of two-dimensional semiconductor
structures. First, we use the k ·p model for the lowermost conduction band
Γc6 to describe electrons confined in a two-dimensional electron gas, which
turns out can be approximated fairly accurate by a simple effective-mass
Hamiltonian. Then, we use a k · p model for the uppermost valence band
Γv8 to describe a two-dimensional hole gas, which in contrast to the 2DEG is
complex and anisotropic.

6.2 confined conduction band electrons and valley states

In most semiconductors the global minimum of the conduction band Γc6 is
usually very parabolic and simple, and the in-plane dynamics of the electrons
can be described fairly accurately by a simple effective-mass Hamiltonian.
However, in some semiconductors, so-called indirect-gap semiconductors, the
conduction band minimum is not centered around the Γ -point k = 0, giving
rise to additional degrees of freedom. This is shown in Fig. 6.2, where we

1 This is especially relevant for holes, where Γv
8 is the uppermost valence band with Γv

7 as its
closest neighbour.
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Figure 6.2: Band structure of GaAs, Ge and Si [118] with the global minimum of the
conduction band marked in red. The relative position of the conduction
band minimum and the valence band maximum shows that GaAs has a
direct band-gap whereas Ge and Si have indirect band-gaps.

depict the band structure of the direct-gap semiconductor GaAs and the two
indirect-gap semiconductors Si and Ge, where the global minima are marked
in red. In this section, we derive the effective-mass Hamiltonian of direct
band-gap semiconductors which we introduced already back in Sec. 2.1.1.
Then, we briefly explore the origin and properties of the valley states that
arise in indirect band-gap semiconductors.

6.2.1 Direct-gap semiconductors

In a direct band-gap semiconductor, e.g. GaAs or InAs , the conduction band
minimum is centered around k = 0. This allows us to use use the k ·p results
as presented above. The dispersion relation for the conduction band Γc6 is
obtained from Eq. (A.8) by only taking into account the conduction band
ν = c, where all couplings to remote bands are included using second-order
perturbation theory,

Ec(k) = Ec(0) +
 h2k2

2m0
+

 h2k2

m2
0

∑
ν ′

P2cν ′

Ec(0) − Eν ′(0)
, (6.4)

with the matrix elements Pcν ′ = ⟨c|p|ν ′⟩ governing the contributions from
remote bands. By rewriting Eq. (6.4) we can describe the electrons in the con-



68 group-iv semiconductors and valence band holes

duction band using an effective mass Hamiltonian with a parabolic dispersion
relation,

Hc =
 h2k2

2m∗ (6.5)

where we removed the constant energy offset Ec(0), and the effective mass
reads

m0

m∗ = 1+
2

m0

∑
ν ′

P2cν ′

Ec(0) − Eν ′(0)
. (6.6)

Usually, the dominating contribution to the sum over ν ′ in direct-gap semi-
conductors is the coupling to the closest lying valence band ν ′ = v. It is
therefore often a good approximation to write

m0

m∗ ≈ 2

m0

P2cv
Eg

(6.7)

where Eg = Ec−Ev is the fundamental band gap, suggesting that the effective
mass has a close to linear dependence on the band-gap.

To obtain an effective in-plane Hamiltonian that describes the electrons in
the 2DEG we integrate out the coordinate along the direction of confinement,
which we will label z. Because the Hamiltonian in Eq. (6.5) is spherically
symmetric, the resulting in-plane Hamiltonian will be independent of the
actual orientation of the confinement. Integrating over the ground state in z
then yields

Hc = Ez,0 +
 h2k2∥
2m∗ , (6.8)

where k2∥ = k2x + k2y, and Ez,0 =  h2⟨k2z⟩/2m∗ parameterizes the confinement

energy of the 2DEG. The expectation value ⟨k2z⟩ is here averaged over the
ground state in z, and depends on the strength and shape of the 2DEG
confinement. For example, for an infinite-well-type of confinement we have
⟨k2z⟩ = π2/d2, with d being the width of the well, giving a confinement energy
of Ez,0 =  h2π2/2m∗d2. Finally, the second term in Eq. (6.8) governs the in-
plane dynamics of the electrons confined in the two-dimensional electron
gas.

The 2DEG described by Eq. (6.8) can be further confined into a quantum
dot by adding a circularly symmetric confinement potential V(r) = λ(x2+y2),
as we showed back in Sec. 2.1 where we found that the resulting diagonal
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quantum dot Hamiltonian could be written in terms of two independent
Harmonic oscillators,

H0 =  hω+

(
n+ +

1

2

)
+  hω−

(
n− +

1

2

)
, (6.9)

with ω0 =
√
2λ/m∗ defining the strength of the in-plane confinement such

that σ0 =
√

 h/(m∗ω0) gives the effective radius of the quantum dot. Thus,
the orbital ground state of the quantum dot has an energy of E0 =  h(ω+ +

ω−)/2, and is separated from the lowest energetic excited states by an energy
of ω±, respectively, typically on the order ∼ meV.

6.2.2 Indirect-gap semiconductors

In contrast, in an indirect band-gap semiconductor the conduction band
is centered around k = k0 ̸= 0. The most common indirect band-gap
semiconductors for use in quantum devices are Si and Ge, both of which have
diamond cubic lattice structures, and whose band structures are depicted in
Fig. 6.2. The combination of an indirect band-gap and the cubic symmetry
gives rise to six equivalent minima in the conduction band, referred to as
“valleys”, located at different points in k-space [33, 60]. Each of the six minima
has a spheroidal constant energy surface which is oriented along a ⟨001⟩(⟨111⟩)
crystal axis in Si(Ge), as illustrated for Si in Fig. 6.3(a).

Because the band edges are not centered around k = 0 in an indirect
semiconductor, we can not use our results in Eq. (6.1) directly to obtain the
band structure; to calculate band structure we need to expand around the
correct minimum k0 ̸= 0. In this way the dispersion relation for each of the
spheroids, expanded around different k0, can be written as an effective mass
Hamiltonian. Using one of the z-valleys in Si as an example, see Fig. 6.3(a),
the effective mass Hamiltonian reads

Ec(k) = Ec(k0) +
 h2

2m∗
t

[
(kx − k0,x)

2 + (ky − k0,y)
2
]

+
 h2

2m∗
l

(kz − k0,z)
2, (6.10)

where m∗
l,t are the longitudinal and transverse effective masses of the

spheroid, respectively.
Confining an indirect band-gap semiconductor into a 2DEG breaks the

sixfold degeneracy of the conduction band [60]. Focusing especially on Si
for simplicity, the strain in Si/SiGe quantum wells raises the four in-plane
valleys ∆ about ∼ 200 meV above the two out-of-plane valleys Γ [33, 60, 119],
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Bulk 2DEG

a) b)

4-fold

2-fold

6-fold

Figure 6.3: (a) Illustration of the constant energy ellipsoids centered around the global
minima of the conduction band in Si. (b) The sixfold degeneracy of the
bulk is split into the two Γ levels and four ∆ levels by the large in-plane
strain in the quantum well. The electric field and details of the confinement
further splits the Γ levels by the valley splitting Ev. Redrawn after [60].

see Fig. 6.3(b). The degeneracy of the two Γ valleys is further split by details
of the heterointerfaces, resulting in a valley splitting of order ∼ 0.1− 1 meV,
usually smaller than the orbital level splitting of quantum dots. Because the
valley splitting has a complex dependence on structural and environmental
conditions it is hard to control, and complicates the dynamics of confined
electrons. In spin qubit devices the additional degrees of freedom also provide
extra channels for leakage and dephasing [60, 61]. We will not go into more
detail on how to describe such confined electrons in indirect semiconductors
as it is beyond the scope of this thesis, we instead refer to [33, 60] for more
details.

6.3 confined valence band holes

Because of the complexity of the valley states there has been a massive effort
with Si- and Ge-based devices that use the spin of valence-band holes instead
of the electrons. These holes provide similar protection against magnetic
noise as the electrons in purified samples, but without the complicating valley
degrees of freedom. However, the valence band has a complex and anisotropic
structure that is highly dependent on the details of the confinement. This is
a result of the upper valence band having angular momentum l = 1, which
makes the Γ8v band total spin j = 3/2 and fourfold degenerate. Based on
k ·p theory and the Luttinger Hamiltonian we here discuss the dynamics of
confined holes, with a special focus on the orientation of the confinement.
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6.3.1 The Luttinger Hamiltonian

Despite having a more complicated dynamics than confined electrons, the
framework of k ·p theory presented in Sec. 6.1 can be used to obtain a Hamil-
tonian that describes the dynamics of the Γ8v band. The simplest model to
describe this band is the 4× 4 Luttinger Hamiltonian, which is obtained from
Eq. (A.8) by taking into account all interactions between the four Γv8 states,
and including interactions to remote bands using second-order perturbation
theory. This corresponds to an infinite large splitting ∆0 to the spin–orbit split-
off band, and is accurate for low-energy dynamics as the spin–orbit splitting
is usually of the order ∼ 100 meV. In the cubic approximation, where terms
with tetrahedral symmetries are neglected [71], the Luttinger Hamiltonian
reads

HL =
p2

2m0

(
γ1 +

5

2
γ2

)
−
γ2
m0

(
p2xJ

2
x + c.p.

)

−
2γ3
m0

(
{px,py} {Jx, Jy}+ c.p.

)
, (6.11)

where Ji are the three spin-32 matrices, and c.p. denotes cyclic permuta-
tion. Furthermore, the dimensionless constants γ1,2,3 are the three so-called
Luttinger parameters, and are given in Tab. 6.1 for Si, Ge, GaAs and InAs.

In (6.11) it is assumed that the coordinate system {x,y, z} is aligned with
the main crystallographic axes. This is important because the two terms
proportional to γ2,3 are not spherically symmetric, and the structure of
these two terms thus depends on the choice of coordinate system. In many
common semiconductors such as GaAs, Ge, and InAs the difference δ ≡
γ3 − γ2 is much smaller than the (weighted) average 2γ2 + 3γ3 (see Tab. 6.1).
For such materials the terms with cubic symmetry, which are all ∝ δ (see
Appendix B of Paper III), can be neglected. Then, the remaining Hamiltonian
becomes spherically symmetric and no longer depends on the orientation

Table 6.1: Luttinger parameters γ1,2,3 in for selected semiconductors [71].

Si Ge GaAs InAs

γ1 4.285 13.38 6.85 20.40

γ2 0.339 4.24 2.10 8.30

γ3 1.446 5.69 2.90 9.10
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Figure 6.4: Illustration of the rotation of the coordinate system using the two Euler
angles α and β. The crystallographic axes are shown in blue and the
rotated coordinate system (x,y, z) is shown in red.

of the coordinate system with respect to the crystal structure. This is the
so-called spherical approximation, which we discuss in more detail below.

Like for the 2DEG we will need to integrate out the coordinate along
the direction of confinement to find an effective in-plane two-dimensional
Hamiltonian for the 2DHG. However, since the Hamiltonian that governs
valence band holes depends on the actual orientation of the coordinate system,
we first need to rotate the Hamiltonian to the correct coordinate system if the
confinement axis does not point along with one of the main crystallographic
axes. The detailed derivation is shown in Appendix B and can be summarized
as follows: (i) We separate the original Luttinger Hamiltonian in Eq. (6.11) in
a spherically symmetric part, which is invariant under rotations, and a cubic
part, which is decomposed into the 0 and ±4 components of the rank-4 part
of the tensor product of the two irreducible rank-2 tensors that can be formed
from the elements Kij = 3

2 (pipj + pjpi) − δijp
2 and Lij = 3

2 (JiJj + JjJi) −

δijJ
2 [120]. (ii) We rotate the cubic contribution to the new coordinate system

by applying the rotation matrix for j = 4 angular-momentum eigenfunctions
D(4)(α,β,γ) to the components of the rank-4 tensor mentioned above, where
{α,β,γ} are the Euler angles of the rotation [121]. Because any plane of
confinement can be defined by two angles only, we fix γ = 0 to simplify
our analytic expressions. The new coordinate system then results from a
rotation by α about [001] followed by a rotation by β about the new y-axis, as
illustrated in Fig. 6.4.
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The resulting rotated Hamiltonian can always be written in the following
form,

H(α,β) =




P−Q −S R 0

−S† P+Q 0 R

R† 0 P+Q S

0 R† S† P−Q




, (6.12)

in the basis of the eigenstates {|32 ⟩ , |12 ⟩ , |−1
2 ⟩ , |−3

2 ⟩} of Jz with its quantization
axis along the new z-direction. The matrix elements P, Q, R and S can be
expressed in terms of dimensionless symmetric tensors Mij,

M =
1

2m0

∑
i,j

Mij{pi,pj}, (6.13)

where M ∈ {P,Q,R,S} and i, j ∈ {x,y, z}. The diagonal element P is invariant
under rotations and follows from Pij = δijγ1; the other elements are more
involved and explicit expressions for their Mij as a function of α and β are
given in Appendix B of Paper III.

6.3.2 Strain and the Bir-Pikus Hamiltonian

Strain is not an important topic in this thesis, however, we will here briefly
explain how one can add strain effects to the rotated Luttinger Hamiltonian by
using the same procedure as for the Luttinger Hamiltonian. While the physics
of strain is fundamental, the origin of strain is highly device dependent, and
can result from e.g. lattice-mistmatched growth in epitaxial heterostructures,
intrinsic stress in deposited thin films, phonon-induced lattice vibrations in
homogeneous semiconductors, or applied external stress [122]. For the j = 3/2
valence band holes strain is governed by the 4x4 Bir-Pikus Hamiltonian, which
in the regular coordinate system aligned with the crystallographic axes reads
[122]

HBP =

(
−a+

5

4
b

)
(ϵxx + c.p.) − b

(
ϵxxJ

2
x + c.p.

)

−
2d√
3

(
ϵxy {Jx, Jy}+ c.p.

)
, (6.14)

where ϵij is the strain tensor, a is the Bir-Pikus hydrostatic deformation
potential, and b and d are two Bir-Pikus shear deformation potentials [122],
and are given in Tab. 6.2 for Si, Ge, GaAs and InAs. Because this Hamiltonian
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has the same structure as the Luttinger Hamiltonian (6.11), it allows for
straightforward inclusion of strain into the rotated Luttinger Hamiltonian.
Using the notation of Eq. (6.12) we add a similar contribution to the tensor
elements M→M+

∑
i,jM

BP
ij ϵij, where the Bir-Pikus elements MBP

ij can be
obtained from the Luttinger elements Mij by the substitution {γ1,γ2,γ3} →
{−a, 12b, 1

2
√
3
d}.

6.3.3 Two-dimensional hole gases

The in-plane Hamiltonian for the confined holes in the 2DHG can now
be obtained by integrating out the coordinate along with the direction of
confinement, which we again label z. By assuming no strain and an infinite-
well type of confinement for simplicity, all terms in the Luttinger Hamiltonian
H that are linear in pz vanish2 and the terms quadratic in pz integrate out
to contributions Mzzuz, where the confinement energy scale uz = ⟨p2z⟩/2m0

will be assumed much larger than the in-plane kinetic energy of the holes.
We can then diagonalize the part of the Hamiltonian that is proportional to
uz, which in general leads to a basis that no longer consists of pure mj = ±3

2

and mj = ±1
2 states. The two resulting pairs of spin-mixed eigenstates are

the heavy and light holes (HHs and LHs), where the terms “heavy” and
“light” refer to the large and small, respectively, masses along the direction
of confinement. Note that for in-plane motion, this relation is reversed; the
heavy holes have a smaller in-plane mass than the light holes, as shown
in the illustration of the dispersion relation for the heavy and light holes
in Fig. 6.5. The heavy and light holes are splitt off by an energy ∆HL =

2uz
√
Q2

zz + |Rzz|2 + |Szz|2, but can become mixed by an applied magnetic
field or in-plane confinement.

Before we investigate the anisotropic dynamics of the 2DHG, we briefly
explore the well-known Luttinger Hamiltonian in the spherical approximation,

2 This is also the case in presence of a finite magnetic field [71].

Table 6.2: Deformation potentials for selected semiconductors (eV) [122].

Si Ge GaAs InAs

a −2.5 −1.2 −1.2 −1.0

b −2.1 −2.9 −2.0 −1.8

d −4.8 −5.3 −4.8 −3.6
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Figure 6.5: Illustration of the HH-LH anti-crossing. Confining the valence band holes
in a 2DHG splits the fourfold degenerate j = 3/2 states, giving rise to the
heavy and light hole states. Redrawn after [71].

which is obtained by neglecting all terms proportional to δ = γ3 − γ2. Then,
the HH and LH states at the band edge where k∥ = 0 are pure mj = ±3

2 and
mj = ±1

2 states, and we find S = 0 and

Q =
4γ2 + 6γ3

5
uz −

1

10m0
(2γ2 + 3γ3)(p

2
x + p2y), (6.15)

R = −

√
3

10m0
(2γ2 + 3γ3)(px − ipy)

2, (6.16)

so that ∆HL = 4
5 (2γ2 + 3γ3)uz. We see that the Hamiltonian is indeed

spherically symmetric in this limit and irrespective of the crystallographic
orientation of the 2DHG the in-plane dynamics can be to leading order in 1/uz
described using an effective-mass Hamiltonian HH(L)

L,∥ = p2/2mH(L), where the
in-plane effective masses read as

mH(L) = m0/

[
γ1 ± 1

5
(2γ2 + 3γ3)

]
, (6.17)

for the HHs and LHs, respectively.
The spherical approximation is good in materials where δ/(2γ2 + 3γ3)

is very small. However, in some materials the spherical approximation is
not particularly good, like in Si where δ/(2γ2 + 3γ3) ≈ 0.22 which is not
negligible. Because we want to specifically include Si in our consideration
when investigating the g-tensor of confined holes in Chapter 7, we will go
beyond the spherical approximation and not neglect δ, and we will take the
actual crystal orientation into account. In general this results in a mixing of the
mj = ±3

2 and mj = ±1
2 states, except for confinement along high-symmetry
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directions, such as [001] and [111], where the Hamiltonian becomes isotropic
again.

Because of the strong confinement along z, the terms ∝ uz in the Luttinger
Hamiltonian dominate. To find an analytic expression for the effective in-
plane Hamiltonian we therefore diagonalize the part of the Hamiltonian that
is ∝ uz. Doing so we find that the in-plane dynamics of the holes can be
modeled by an elliptical effective mass Hamiltonian,

H
H(L)
L,∥ =

p2x̃

2m
H(L)
−

+
p2ỹ

2m
H(L)
+

(6.18)

where the two in-plane masses follow from m
H(L)
− = mH(L)(ζ) and mH(L)

+ =

mH(L)(ζ+ π/2), with

mH(L)(θ) =
2m0

2γ1 + sH(L) + rH(L) cos(2θ− 2ζ)
. (6.19)

Here, θ is the angle between the x-axis and the direction of motion of the hole,
and

sH(L) = ∓ Re[nzz · (vxx + vyy)
∗],

rH(L) = ±
√

Re[nzz · (vxx − vyy)∗]2 + Re[nzz · v∗xy]2,

where we introduced the vectors vαβ ≡ {Qαβ,Rαβ,Sαβ} and nαβ ≡
vαβ/|vαβ|, and the new in-plane coordinate system {x̃, ỹ} is rotated over
an angle

ζ =
1

2
arctan

(
Re[nzz · v∗xy]

2Re[nzz · (vyy − vxx)∗]

)
(6.20)

along z with respect to the original system {x,y}. ζ then determines what
θ gives the smallest(largest) effective heavy(light) hole mass, while the
largest(smallest) effective mass is always obtained when θ is an angle π

2 off
from ζ. Inserting the tensor elements given in Appendix B of Paper III reveals
the explicit dependence of mH,L(θ) on the Euler angles that were used to
rotate the Hamiltonian.

In Fig. 6.6 we illustrate how the effective HH masses in Si depend on the two
Euler angles α and β. (a) and (b) show the magnitudes of the smallest effective
mass mH(ζ)/m0 and the largest effective mass mH(ζ+ π

2 )/m0, respectively.
In (c) we plot the anisotropy of the effective masses mH(ζ+ π

2 )/m
H(ζ), while

(d) shows how the angle ζ depends on α and β. Because most experiments
use samples grown along the common directions [001] and [110], with the
confinement created along the growth direction, the respective directions are
marked by the red circle and cross.
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a) b)

c) d)

Figure 6.6: The effective hole masses of Si as predicted by Eq. (6.19), plotted against the
direction of confinement. (a) and (b) show the smallest and largest effective
mass mH(ζ) and mH(ζ+ π/2), respectively, (c) shows the anisotropy of the
effective masses mH(ζ+ π/2)/mH(ζ), and (d) shows the angle ζ.

6.3.4 Quantum dots

In contrast to electrons, which have a circularly symmetric effective mass,
holes may have elliptic effective masses depending on the details of the
confinement, as we showed in the previous section. This has to be taken into
account when further confining the 2DHG into quantum dots, and we will
see how the anisotropic dynamics of the holes give rise to a confinement-
dependent level structure.

The Luttinger Hamiltonian that governs the in-plane motion of the effective
heavy holes was in Sec. 6.3.1 obtained by transforming the in-plane part
of H in Eq. (6.12) to the basis where the part of H proportional to uz is
diagonal. To confine the holes in a quantum dot, we now add additional
in-plane confinement, assuming the corresponding orbital energy scale to
be much smaller than the out-of-plane orbital energy. Further assuming
the confinement potential to be symmetric parabolic V(r) = λ(x2 + y2),
we describe the confinement of heavy holes in a quantum dot by adding
confinement terms to the 2DHG Hamiltonian in Eq. (6.18),

HH
L,∥ =

p2x̃
2m−

+
p2ỹ

2m+
+
m−

2
ω2

xx̃
2 +

m+

2
ω2

yỹ
2, (6.21)
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where again m− = mH(ζ) and m+ = mH(ζ+ π/2) are the minimum and
maximum HH effective masses, as given by Eq. (6.19), and the new in-plane
coordinate system {x̃, ỹ} is thus rotated over an angle ζ along z with respect
to the original system {x,y}. Further, the frequencies ωx =

√
2λ/m− and

ωy =
√
2λ/m+ determine the strength of the in-plane confinement and

we use the same vector potential as above A(r̃) = Bz(−ỹ/2, x̃/2, 0) in the
canonical momentum p = −i h∂r + eA(r). Although we assume a circularly
symmetric confining potential, the anisotropic effective hole mass makes the
confinement effectively elliptic.

The eigenstates and -energies of such an anisotropic two-dimensional oscil-
lator in the presence of a magnetic field can be found in different ways, see
e.g. Refs. [81, 123, 124]. We follow the procedure presented in [125], resulting
in a Hamiltonian that can be written in terms of two independent harmonic
oscillators,

HH
L,∥ =  hω+

(
n+ +

1

2

)
+  hω−

(
n− +

1

2

)
, (6.22)

where the oscillator frequencies read as

ω± =

√
1

2
ω2

x +
1

2
ω2

y + 2ω2
c ± 1

2

√
(ω2

x −ω2
y)

2 + 8
(
ω2

x +ω2
y + 2ω2

c

)
ω2

c,

(6.23)

with ω2
c = e2B2z/4m+m−. Because the confinement of the 2DHG is usually

much stronger than the in-plane confinement of the quantum dot, we will
assume that the oscillator energies  hω± are much smaller than the energy uz
associated with the transverse confinement.

Since the masses m± depend on the orientation of the plane of the 2DHG
through the angles α and β, the level splitting in the dot will also vary as
a function of that orientation. This can be shown explicitly by inserting the
maximum and minimum masses as given by Eq. (6.19), yielding

ω2
± =

λ

m0

(
2γ1 + s+ 2χ2c ± η

)
, (6.24)

where we introduced the notation

η =
√
b2 + 4χ2c(2γ1 + s+ χ2c), (6.25)

and used the dimensionless parameter

χc =
eBz

4
√
λm0

√
(2γ1 + s)2 − r2, (6.26)
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a) b)

Figure 6.7: Asymmetry in the confinement energy ω+/ω− as given by Eq. (6.24). (a)
ω+/ω− as a function of the direction of confinement in the absence of
a vector potential. (b) ω+/ω− as a function of the angle β and applied
magnetic field eBz/

√
λm0, setting α = π/4 (which corresponds to focusing

on confinement directions [nnm]). In both plots we used parameters for Si.

characterizing the magnitude of the cyclotron frequency compared to the
harmonic oscillator frequencies. We used the same notation as in Sec. 6.3.3,
where we omitted the superscript H from the coefficients r and s.

To illustrate the dependence of the confinement energies on the orientation
of the 2DHG explicitly, we plot in Fig. 6.7(a) the anisotropy of the level
splitting ω+/ω− as a function of the angles α and β in the absence of a
vector potential, where we used parameters for Si. Naturally, since this
anisotropy stems from the orientation dependence of the effective mass, it
strongly resembles the results shown in Fig. 6.6(c). Fig. 6.7(b) shows how a
non-zero vector potential affects the anisotropy. We plot ω+/ω− as a function
of eBz/

√
λm0 and the angle β, fixing α = π/4, which captures all confinement

directions of the form [nnm]. We see that, as expected, the magnetic field
increases the anisotropy, while retaining some of the orientation dependence.
As we will see in Sec. 7.2, this magnetic field dependence becomes important
when we investigate the g-tensor of holes confined in quantum dots.
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A N I S O T R O P I C P R O P E RT I E S O F C O N F I N E D
S E M I C O N D U C T O R H O L E S

In the previous chapter we showed how terms in the Luttinger Hamiltonian
that broke spherical symmetry allowed the confinement of the 2DHG to mix
states with different angular momentum along the out-of-plane direction. This
mixing introduces an interesting anisotropy into many of the effective hole
parameters. Indeed, recent experiments on two-dimensional hole quantum
wells and quantum dots have shown wildly varying and anisotropic effective
hole masses [126–128] and g-factors [72–76, 78–80, 129–132], depending on
choice of material, hole densities, and on the details of the confinement.

In Paper III we theoretically investigated the anisotropic properties of the
g-tensor of confined holes in detail, again with a focus on the role of the
precise orientation of the confinement potentials with respect to the crystal
orientation, where we paid special attention to the case of Si, which has
particularly strong anisotropic properties as compared to most other common
materials, such as Ge, GaAs and InAs [71]. Here, we present our main findings
from the paper, and further discuss how these anisotropic properties affects
the leakage current. In Sec. 7.1 we present the main findings on the g-tensor
arising from rotating the Zeeman Hamiltonian to the “eigenbasis” defined
by the transverse confinement of the holes. Then, in Sec. 7.2 we add in-plane
confinement into quantum dots which induces SOI corrections to the g-tensor
of holes localized in quantum dots. Finally, in Sec. 7.3 we investigate how
this highly anisotropic g-tensor affects the leakage current of holes through a
double quantum dot.

7.1 heavy-hole zeeman effect in 2dhgs

In Sec. 6.3.1 we showed that the dynamics of holes confined in a 2DHG is
governed by a rotated Luttinger Hamiltonian as given in Eq. (6.12). We will
now add an external magnetic field, and investigate how it couples to the
angular momentum of the heavy holes (HH) through the Zeeman effect. We

81
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do this by transforming the Zeeman Hamiltonian to the basis where the
Luttinger Hamiltonian is diagonal, from which we can then find the HH
g-tensor. The Zeeman Hamiltonian that describes the coupling of the four
j = 3

2 states in the upper valence band due to the external magnetic field
reads as [71, 133]

HZ = 2κB · J+ 2qB · J, (7.1)

where κ is the effective g-factor of the isotropic coupling, B is the applied
magnetic field, q sets the strength of the anisotropic coupling, J =

{
J3x, J3y, J3z

}
,

and we use units where the Bohr magneton µB = 1. Since κ is usually two
orders of magnitude larger than q (see Tab. 7.1) we neglect the anisotropic
contribution to HZ.

The goal of this section is to derive an effective g-tensor ḡ for the HH
subspace, such that the linear Zeeman Hamiltonian (7.1) for the HHs can be
written as

HH
Z =

1

2
σ · ḡ ·B, (7.2)

where σ = {σx,σy,σz} is the vector of Pauli matrices, acting in the HH
subspace. We start by deriving the g-tensor obtained for the spherical approx-
imation discussed in Sec. 7.1.1. Then, by also including the cubic terms of the
Luttinger Hamiltonian we investigate the full orientation-dependence of the
g-tensor in Sec. 7.1.2.

7.1.1 Spherical approximation, δ = 0

Like when investigating the anisotropic dynamics of the valence band holes,
we first review the case of the spherical approximation, which we in Sec. 6.3.1
obtained by neglecting all terms proportional to δ = γ3 − γ2. We found that
at the top of the valence band, i.e. where kx = ky = 0 and R = 0, the HH

Table 7.1: Bare effective g-factors κ and q for selected semiconductors [71].

Si Ge GaAs InAs

κ −0.42 3.41 1.20 7.60

q 0.01 0.06 0.01 0.39
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and LH states are the pure mj = ±3
2 and mj = ±1

2 states. This makes the
effective HH Zeeman, to leading order in 1/uz,

HH
Z = 3κBzσz, (7.3)

with the coupling to the in-plane components of the magnetic field Bx,y
being a higher-order effect via the LH states, and thus being proportional
to B3x,y/u

2
z. In terms of the g-tensor this means that gzz = 6κ and all other

elements are much smaller.
Away from the top of the valence band, i.e. for a 2DHG with a finite

density, also the holes with non-zero in-plane momentum have a non-zero
matrix element R [see Eq. (6.16)]. Thus, close to the Fermi level the HH-LH
mixing adds a finite coupling to the in-plane field which yields an effective
direction-dependent g-tensor

ḡ =



g∥ cos 2φ −g∥ sin 2φ 0

g∥ sin 2φ g∥ cos 2φ 0

0 0 g⊥


 , (7.4)

with g⊥ = 6κ and g∥ = 6κp2F/2m0uz, again up to order O(1/uz), where pF is
the Fermi momentum and φ is the direction of propagation of the hole under
consideration.

Finally, by using that uz = ⟨p2z⟩/2m0, we find an elegant expression for
the ratio of the magnitudes of the in-plane and out-of-plane g-factors in the
spherical approximation [71, 77],

g∥
g⊥

=
p2F
⟨p2z⟩

. (7.5)

By further assuming parabolic dispersion for the range of energies of interest,
we can consider a finite two-dimensional density of HHs ρ in the valence
band and thus write for the ratio of g-factors at the Fermi level

g∥
g⊥

=
2πρ

⟨k2z⟩
=
2

π
ρd2, (7.6)

where we again used our assumption of an infinite-well type of confinement
along z such that ⟨k2z⟩ = π2/d2, where d is the width of the well.

7.1.2 Anisotropic Hamiltonian, δ ̸= 0

Going beyond the spherical approximation, which is especially relevant for
Si, all HHs and LHs are mixtures of the mj = ±3

2 and mj = ±1
2 states.
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This results in general in a finite coupling to Bx,y within the HH subspace,
also in the absence of finite in-plane momentum. Transforming the Zeeman
Hamiltonian in Eq. (7.1) to the basis where the part of H proportional to uz is
diagonal, which we then project to the HH subspace, we find to leading order
in 1/uz the relatively compactly expression for the g-tensor,

gzz

κ
= 2

Qzz

ν
+ 4

ν

µ
, (7.7)

gzx − igzy
κ

= 2
√
3
Szz

ν
− 2

RzzS
∗
zz

µν
, (7.8)

gxz + igyz
κ

= 2
RzzSzz

µν
, (7.9)

gxx − igxy = g−+ + g++, (7.10)

gyy + igyx = g−+ − g++, (7.11)

with

g−+

κ
= −

√
3
R∗zz
µ

(
1+

Qzz

ν

)
−

(S∗zz)
2

|Szz|2

(
1−

Qzz

ν

)(
1+

ν

µ

)
,

g++

κ
=

√
3
Rzz

µ

S2zz
|Szz|2

(
1−

Qzz

ν

)
+

R2zz
|Rzz|2

(
1+

Qzz

ν

)(
1−

ν

µ

)
,

where we introduced the shorthand notation µ =
√
Q2

zz + |Szz|2 + |Rzz|2 and
ν =

√
Q2

zz + |Szz|2. Note that Eqs. (7.7-7.11) successfully reproduce the result
of the spherical approximation where Szz = Rzz = 0, yielding gzz = 6κ as the
only non-zero element, as expected.

In Fig. 7.1 we plot the magnitude of all nine components of the HH g-tensor
at the band edge as a function of the two confinement angles α and β, as
given by Eqs. (7.7)–(7.11), where we again used parameters for Si. The plots
show that by controlling the orientation of the confining potential one can
design the qualitative form of the g-tensor, ranging from purely diagonal for
high-symmetry directions like [001] to highly anisotropic for less common
directions.

Although we here focused on the leading order terms ∝ 1/uz, we note that
the expressions in Eqs. (7.7)-(7.11) can be generalized to describe the g-tensor
of any heavy hole governed by a Hamiltonian in the form of Eq. (6.12) by
simply substituting {Qzz,Rzz,Szz} → {Q,R,S}. By doing so the g-tensor be-
comes valid also including e.g. in-plane momenta and strain. The contribution
from in-plane momenta typically becomes important and comparable to the
∝ 1/uz contribution when k∥d ∼ 1, however, the exact number is highly
material-dependent.
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Figure 7.1: The nine components of the heavy hole g-tensor given by Eqs. (7.7)-(7.11)
plotted against the direction of confinement, where we used parameters
for Si, see Tab. 6.1.

7.2 g-tensor corrections in quantum dots

In the previous section we investigated the effects of confinement along the
z-direction on the g-tensor in a 2DHG. Further confinement along the in-plane
coordinates x and y into quantum dots can give rise to SOI that affects the
effective g-tensor of the localized holes [134]. Such SOI-induced corrections to
the g-tensor are interesting for the spin qubit field as they can be used for fast
spin manipulation through electrical g-tensor modulation [76, 130, 135, 136].
It is therefore crucial to understand the detailed interplay of SOI, confinement,
and applied magnetic fields [137–139].

We here restrict ourselves to a general linear Rashba-type SOI, which could
be caused by e.g. the 2DHG confinement potential [140, 141], and neglect all
other sources of SOI. This choice is not meant to indicate that this type of SOI
is dominant most often in realistic systems, but it makes the presentation as
pedagogical as possible: the straightforward derivation that follows below
can serve as a clear blueprint for how the approach can be adapted to other,
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possibly more complex types of SOI1. The Hamiltonian describing the linear
Rashba-type SOI for the j = 3

2 states in the upper valence band reads as [71,
142, 143]

Hso = βso(pyJx − pxJy), (7.12)

where we neglected the contribution proportional to J, which is usually
much weaker, and we assumed the electric field associated with the confining
potential to point along z. The parameter βso is material-dependent and
depends also in an intricate way on the exact shape of the transverse confining
potential.

In Sec. 6.3.4 we showed that the Hamiltonian that governs the in-plane
motion of the heavy holes confined in a circularly symmetric quantum dot
can be written in terms of two independent harmonic oscillators. Knowing
the level structure of the holes allows us to project the spin–orbit Hamiltonian
in Eq. (7.12) to this basis of the localized heavy-hole states. By then expressing
the hole momentum operators in terms of the ladder operators of the level
structure allows for a straightforward and versatile perturbative evaluation of
the effect of spin–orbit interaction (SOI) on the dynamics of the confined holes,
from which we can calculate the SOI-induced corrections to the g-tensor,

gso
ij =

1

16κ2
l20
l2so

[
cos2 ζ

(
gixgjx

L3−
+
giygjy

L3+

)
+ sin2 ζ

(
gixgjx

L3+
+
giygjy

L3−

)

+ sin(2ζ)
L+ + L−

L2+L
2
−

ϵiklgkxglyδjz

]
, (7.13)

where

L± =
√
2γ1 + s± r, (7.14)

and we used the length scales l0 = ( h2/m0λ)
1
4 (characterizing the in-plane

confinement) and lso =  h/m0βso (the spin–orbit length). The first two terms
in (7.13) arise due to the Zeeman shift of the ground and excited spin states,
whereas the last term contains the contribution linear in ωc and couples
therefore only to Bz.

In Fig. 7.2 we show an example of the orientation dependence of the
elements gso

ij as given by Eq. (7.13), where we used parameters for Si for
consistency. The nine elements are plotted in units of the dimensionless
ratio l0/lso which characterizes the effect of the spin–orbit interaction in

1 Depending on the details of the material and confinement potential of the hole gas, other types
of SOI than the linear Rashba type could be dominating, such as an effectively cubic Rashba
interaction ∝ p3

+σ− −p3
−σ+.
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Figure 7.2: The nine elements of the spin–orbit correction to the g-tensor, as given
by Eq. (7.13), plotted against the direction of the confinement plane. The
correction is shown in units of l0/lso, and we again used parameters for Si.

the quantum dots. We emphasize that the elements gso
ix and gso

iy are solely
determined by the first two terms in Eq. (7.13), whereas the elements gso

iz also
include contributions from the last term. Similar to the unperturbed g-tensor
as investigated in Sec. 7.1.2, many elements of the spin–orbit correction ḡso

also vanish for high-symmetry confinement directions such as [001].

7.3 leakage current

In the previous sections we have seen how the anisotropic dynamics of con-
fined valence band holes give rise to highly anisotropic magnetic properties.
Using this knowledge we can predict how the Zeeman fields will manifest
in multi-quantum dot devices, which is important when investigating the
leakage current through a double quantum dot. Here, we present an analytic
expression for the hole current through a double quantum dot, which results
are included in Paper IV.
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Figure 7.3: Illustration of the orientation of the fields used for the analytical derivation.
The spin-orbit vector tso and the Overhauser fields Ki are assumed to be
pointing along ẑ, whereas the orientation of the external Zeeman field Bext
is the same on the two dots, and depend on the orientation of the external
magnetic field and on the details of the g-tensor.

In Sec. 4.1 we presented a general expression for the current through a
double quantum dot for a given realization of Zeeman fields BL,R,

I

eΓs
=

|e2iηB−RB
z
L −B−LB

z
R|

2 + Im{e2iηB−RB
+
L }

2

Γ2sQ
2
+

[
3+

16Q2
+Q2

−

(B2
L−B2

R)
2

]
+B2LB

2
R

, (7.15)

where

Q2
± = Re{12e

iη(B+L ±B−R )}2 + Im{12e
iη(B+L ∓B−R )}2 + 1

4 (B
z
L ±BzR)2. (7.16)

Assuming that one can only control a homogeneous external magnetic field,
the Zeeman fields are more or less equal on the two dots. In order to then
avoid the stopping point BL = BR (which we discussed back in Sec. 4.1) and
obtain a non-zero leakage current, finite nuclear fields are required. In a
typical experiment, the total measurement time exceeds the correlation time
of the nuclear fields, and details depending on the specific configurations of
KL,R average out. Calculating the leakage current that would be measured in
a typical experiment can therefore be done by averaging Eq. (7.15) over the
random fields nuclear fields KL,R.

For valence band holes that are strongly confined, the HH-LH splitting can
become significant, making the heavy holes almost purely the ±3

2 angular
momentum states. Because these states are not coupled by the in-plane
angular momentum operators J±, hyperfine interaction with the residual
nuclear spins could become effectively almost purely Ising-like2 [117, 146–
148], and also spin–orbit coupling inside the HH subspace will in general

2 Although some experiments and theories suggest that a significant d-shell state admixture can
result in a much less anisotropic coupling than naively expected [144, 145].
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be more efficient along Jz. We can thus assume that the two nuclear fields
are purely out-of-plane and the spin–orbit vector tso is also most likely to be
out-of-plane. In that case, the current (4.12) becomes a function of the fields
BL,R = Bext + K

z
L,Rẑ, as illustrated in Fig. 7.3, where Bext includes also the

effects of the anisotropic g-tensor.
The leakage current then follows from averaging Eq. (7.15) over Kz

L,R,

Iav =

∫
dKz

LdK
z
R

e−[(Kz
L)

2+(Kz
R)

2]/2K2

4πK2
I(BL,BR), (7.17)

where we have assumed the nuclear-field distributions to be Gaussian with
mean zero and variance K2. Signatures of the hyperfine interaction that
survive this averaging are again expected to be most prominent at small fields
where Bext ≲ K. We will thus focus on the small-field limit, Γs ≫ K,Bext,
where we find the approximate analytic result

IavΓs

eK2
= 2f (α+ ibz)

{
1+ 6f

(
1
2β
)
β2

}
− f
(
1
2α+ ibz

){
2+ 3f

(
1
2β
)
β2

}
, (7.18)

where we have used the function

f(x) =

√
π

3
Re {x}Re

{
ex

2
erfc (x)

}
−
1

3
, (7.19)

with erfc(x) being the complementary error function. Furthermore, we
introduced α = b∥ cosη and β = b∥ sinη, where bz = Bzext/K and b∥ =√
(Bxext)

2 + (Byext)
2/K give the out-of-plane and in-plane component of the

external Zeeman field, respectively, in units of K, and η = arctan(tso/ts)

parameterize the relative strength of the spin–orbit induced tunnel coupling.
In Fig. 7.4 we plot the current given by Eq. (7.18) as a function of the

magnitude of the external magnetic field, for different orientations of the
external magnetic field and different strengths of spin–orbit coupling. The
four plots (a–d) show the current for different magnitudes of spin–orbit
coupling (η = 0, η = 0.02, η = 0.1 and η = 0.5, respectively) and each plot
contains four traces that assume a different orientation of Bext, the angle
θ being the polar angle of the applied field (see Fig. 7.3). In all plots we
used as parameters Γs = 15 µeV and K = 0.1 µeV. From the plots we can
observe three main features: (i) The nuclear field peak, with width ∼ K, that
is split into a double peak by the stopping point at Bext = 0, (ii) the current
converges towards a direction-dependent limiting value at large fields, still
smaller than Γs, and (iii) finite spin–orbit coupling introduces a characteristic
spin–orbit-induced low-field current dip on top of the narrow current peaks
caused by the nuclear fields.
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a) b)

d)c)

Figure 7.4: Plots of the current as given by Eq. (7.15) as function of the magnitude
of the Zeeman field Es for four different orientations of the Zeeman field
where the same colors represent the same orientations in all plots. (a)
- (d) show current profiles for four different magnitudes of spin–orbit
interaction, η = 0, η = 0.02, η = 0.1 and η = 0.5, respectively.



A
k · p T H E O RY

A very useful framework to describe the band structure of semiconductors is
the k · p theory. In this appendix we derive a general k · p dispersion relation
that is used as a starting point to obtain smaller k · p models in chapter 6.

The derivation of the k · p framework is based on the time-independent
Schrödinger equation, which for a free particle in a position-dependent poten-
tial V(r) reads

[
−
p2

2m0
+ V(r)

]
Ψν(r) = Eν(r)Ψν(r), (A.1)

where m0 is the free electron mass, ν is the band index, and p = ||p||, with
p being the momentum operator. For a periodic potential V(r+ T ) = V(r),
with T being a translation vector between different lattice sites, the solution to
the Schrödinger equation is the Bloch function Ψν(r) = e

ik·ruνk(r), where
k is the wave vector, in which the wave-function takes the form of a plane
wave eik·r modulated by a periodic function uνk(r) = ⟨r|νk⟩ with the same
periodicity as the potential V(r). Inserting the Bloch function into Eq. (A.1),
the Schrödinger equation for the Bloch function is

[
−
p2

2m0
+ V(r)

]
eik·ruνk(r) = Eν(k)e

ik·ruνk(r). (A.2)

Because it is easy to evaluate the effect of the momentum operator p on the
plane-wave part of the Bloch function we can obtain a Schrödinger equation
for the lattice-periodic part of the Bloch function |νk⟩,

[
−
p2

2m0
+ V +

 h2k2

2m0
+

 h

m0
k ·p

]
|νk⟩ = Eν(k)|νk⟩. (A.3)

Since we also want to include the effects of Pauli SOI (first presented in
Sec. 2.5.2), we add to Eq. (A.2) the Pauli spin–orbit term,

HSO =
 h

4m2
0c

2
p ·σ× (∇V). (A.4)
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The Pauli SOI couples to both the momentum p and the wave vector k, and
the Schrödinger equation reads

[
−
p2

2m0
+ V +

 h2k2

2m0
+

 h

m0
k ·π+

 h

4m2
0c

2
p ·σ× (∇V)

]
|nk⟩

= En(k)|nk⟩, (A.5)

where

π ≡ p+
 h

4m0c2
σ× (∇V), (A.6)

and the spin-dependence makes the lattice-periodic part of the Bloch function
a spinor |nk⟩, where the index n accounts for both the spin degree of freedom
and the orbital motion of the electron.

Because the set of lattice-periodic functions {|nk0⟩} provide a complete and
orthonormal basis for a given wave vector k0, we can expand {|nk⟩} in terms
of the eigenfunctions {|ν0⟩}1 of the Hamiltonian without SOI,

|nk⟩ =
∑
ν ′,σ ′

cnν ′σ ′(k)|ν ′σ ′⟩, (A.7)

where |ν ′σ ′⟩ ≡ |ν ′0⟩ ⊗ |σ ′⟩, and cnν ′σ ′ are the expansion coefficients. Mul-
tiplying by ⟨νσ| from the left we obtain an algebraic expression for the
dispersion relation of the bands En(k),

∑
ν ′,σ ′

{[
Eν ′(0) +

 h2k2

2m0

]
δνν ′δσσ ′ +

 h

m0
k ·Pνν ′

σσ ′ +∆νν ′
σσ ′

}
cnν ′σ ′(k)

= En(k)cnνσ(k), (A.8)

where

Pνν ′
σσ ′ ≡ ⟨νσ|π|ν ′σ ′⟩, (A.9a)

∆νν ′
σσ ′ ≡

 h

4m2
0c

2
⟨νσ|p ·σ× (∇V)|ν ′σ ′⟩. (A.9b)

Here we can see that by choosing to expand in the basis {ν0} without SOI, the
SOI can now be treated as a small perturbation. The diagonal terms Eν ′(0) +
 h2k2/2m0 in Eq. (A.8) determine the energies of the bands edge states |ν0⟩,
and the off-diagonal terms ( h/m0)k ·Pνν ′

σσ ′ give rise to a k-dependent mixing
of the different |ν0⟩ states.

1 Note that this expansion can be done around any k0, which is especially relevant when in-
vestigating electrons in indirect band-gap semiconductors where the global minimum of the
conduction band is not centered around k = 0.
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T H E R O TAT E D L U T T I N G E R H A M I LT O N I A N

In this appendix we show how to write the Luttinger Hamiltonian presented
in Sec. 6.3.1 in terms of products of rank-2 spherical tensors. The resulting
Hamiltonian is then rotated to an arbitrary coordinate system using the
rotation matrix for the j = 4 angular-momentum eigenfunctions.

b.1 second-rank tensor operators

A tensor that is a vector product of two vectors ui and vi can be written as a
sum over terms that behave differently under rotation [149],

Tij = uivj =
u · v
3
δij+

1

2

(
uivj − ujvi

)
+

[
1

2

(
uivj + ujvi

)
−

u · v
3
δij

]
. (B.1)

Here, the first term behaves as a scalar, the second term is anti-symmetric and
behaves as a vector, while the third term is a second-rank tensor

Ξij =
3

2

(
ΞiΞj + ΞjΞi

)
− δijΞ

2, (B.2)

which is both symmetric and has zero trace. The second-rank tensor can
be decomposed further into irreducible spherical tensors of rank 0, 1 and 2,
denoted Ξ(0), Ξ(1) and Ξ(2), respectively, where Ξ(0) has one component, Ξ(1)

has three components and Ξ(2) has five components. Because the second-rank
tensor Ξij is symmetric and has zero trace, both Ξ(0) and Ξ(1) are zero. Ξij
can therefore be decomposed into the five second-rank spherical tensors only,
which explicitly read

Ξ
(2)
0 =

√
3

2
Ξzz, (B.3)

Ξ
(2)
±1 =∓ (Ξxz ± iΞyz) , (B.4)

Ξ
(2)
±2 =

1

2
(Ξxx − Ξyy ± 2iΞxy) . (B.5)
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We now use the relations above to calculate the products of the two tensors
pij and Jij that appear in the Luttinger Hamiltonian in Eq. (6.11) in Sec. 6.3.1,

HL =
p2

2m0

(
γ1 +

5

2
γ2

)
−
γ2
m0

(
p2xJ

2
x + c.p.

)

−
2γ3
m0

(
{px,py} {Jx, Jy}+ c.p.

)
, (B.6)

so that we can write the Hamiltonian in terms of second-rank tensor operators.
We start by using Eq. (B.2) to write the second-rank tensor operators of pi
and Ji,

pij =3pipj − δijp
2, (B.7)

Jij =
3

2

(
JiJj + JjJi

)
− δijJ

2, (B.8)

where we used that [pi,pj] = 0 and [Ji, Jj] = iJz. Further, by inserting these
second-rank tensor operators into the definition of the second-rank spherical
tensors in Eqs. (B.3-B.5), we find the second-rank spherical tensors of pij and
Jij,

p
(2)
0 =

√
3

2

(
3p2z − p2

)
, J

(2)
0 =

√
3

2

(
3JzJz − J

2
)

, (B.9)

p
(2)
±1 =∓ 3p±pz, J

(2)
±1 = ∓3

2
{JxJz + JzJx ± i (JyJz + JzJy)} ,

(B.10)

p
(2)
±2 =

3

2
p2±, J

(2)
±2 =

3

2

{
J2x − J2y ± i (JxJy + JyJx)

}
, (B.11)

where we defined p± ≡ px ± ipy.

b.2 products of tensor operators

Now that we know how the second-rank spherical tensors of pij and Jij
look, we can investigate their products. Here we calculate all products of
the spherical tensor operators of pij and Jij that we will need to rewrite the
Luttinger Hamiltonian. The first product we need is the scalar product, which
reads

p(2) · J(2) = p(2)0 J
(2)
0 −

(
p
(2)
1 J

(2)
−1 + p

(2)
−1J

(2)
1

)
+ p

(2)
2 J

(2)
−2 + p

(2)
−2J

(2)
2 . (B.12)
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Secondly, we need all nine components of the tensor product [p(2) ⊗ J(2)](4),
where we will use the following short-hand notation TM = [p(2) ⊗ J(2)](4)M ,
and the pre-factors are simply the Clebsch–Gordan coefficients [150],

T0 =
1√
70

(
p
(2)
2 J

(2)
−2 + 4p

(2)
1 J

(2)
−1 + 6p

(2)
0 J

(2)
0 + 4p

(2)
−1J

(2)
1 + p

(2)
−2J

(2)
2

)
,

(B.13)

T±1 =
1√
7

(
1√
2
p
(2)
±2J

(2)
∓1 +

√
3p

(2)
±1J

(2)
0 +

√
3p

(2)
0 J

(2)
±1

1√
2
p
(2)
∓1J

(2)
±2

)
,

(B.14)

T±2 =
1√
7

(√
3

2
p
(2)
±2J

(2)
0 + 2p

(2)
±1J

(2)
±1 +

√
3

2
p
(2)
0 J

(2)
±2

)
, (B.15)

T±3 =
1√
2

(
p
(2)
±2J

(2)
±1 + p

(2)
±1J

(2)
±2

)
, (B.16)

T±4 = p
(2)
±2J

(2)
±2 . (B.17)

Using these products we can now rewrite the terms in the Luttinger Hamil-
tonian in Eq. (B.6) that are not spherically symmetric (second and third terms)
in terms of second-rank spherical tensor operators, which are much easier
to rotate than the Cartesian tensors. Doing so we find that the second term
reads

p2xJ
2
x + c.p. =

1

3
p2J2 +

2

45
p(2) · J(2) + 1

18

(
T4 +

√
70

5
T0 + T−4

)
, (B.18)

while the third term becomes

pxpy (JxJy + JyJx)+ c.p. =
1

15
p(2) · J(2)− 1

18

(
T4 +

√
70

5
T0 + T−4

)
. (B.19)

Note here that we only need the rank 4 spherical tensor product, in addition
to the scalar product, to represent the cubic Luttinger Hamiltonian when the
coordinate system is aligned with the crystallographic axes. Although it might
be hard to see how to get from the left-hand side of Eqs. (B.18) and (B.19) to
the right-hand side without doing the calculation explicitly, the equations can
easily be verified by inserting for the second-rank spherical tensors.
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b.3 the rotated luttinger hamiltonian

By inserting the relations in Eqs. (B.18) and (B.19) into the Luttinger Hamilto-
nian in Eq. (B.6) we obtain

HL[001] =
p2

2m0
γ1 −

1

45
(2γ2 + 3γ3) k

(2) · J(2)

+
δ

18

(
T4 +

√
70

5
T0 + T−4

)
, (B.20)

where δ = γ3 −γ2. Here, the first two terms have axial symmetry (spherically
symmetric) and behave as a scalar, while the last term has cubic symmetry
and behaves as a rank 4 spherical tensor. Note that by setting δ = 0 here,
one effectively removes all cubic terms from the Hamiltonian, resulting in the
spherical approximation as discussed in Sec. 6.3.1.

Because only the last term in Eq. (B.20) depends on the actual orientation
of the coordinate system, the whole Hamiltonian can be rotated by simply
rotating the spherical tensor operators T0 and T±4. We do this using the
rotation matrix for j = 4 angular-momentum eigenfunctions [121],

D(j)(α,β,γ)m ′,m = e−im ′αe−imγ
∞∑

κ=0

C(j,m ′,m, κ)

×
(

cos
β

2

)2j−2κ−m ′+m(
− sin

β

2

)2κ+m ′−m

, (B.21)

where

C(j,m ′,m, κ) =
(−1)κ

√
(j+m)!(j−m)!(j+m ′)!(j−m ′)!

κ!(j+m− κ)!(j−m ′ − κ)!(κ+m ′ +m)!
, (B.22)

such that the rotated tensor operators are written as

TM[001] =

4∑
M ′=−4

TM ′D
(4)
MM ′(−α,−β,−γ), (B.23)

where {α,β,γ} are the Euler angles of the rotation [121]. Since any plane
of confinement can be defined by two angles only, we fix γ = 0 to simplify
our analytic expressions. The new coordinate system then results from a
rotation by α about [001] followed by a rotation by β about the new y-axis, as
illustrated in Fig. B.1. In this thesis we will explore the full range of possible
confinement planes and thus not restrict ourselves to the common crystal
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Figure B.1: Illustration of the rotation using the two Euler angles α and β. The
crystallographic axes are shown in blue, the rotated coordinate system
(x,y, z) is shown in red.

growth directions such as [nnm], as investigated in [71, 120], which can be
obtained by simply setting α = π/4.

The resulting rotated Hamiltonian, as given in Eq. (6.12) of the main text,
can always be written in the following form,

H(α,β) =




P−Q −S R 0

−S† P+Q 0 R

R† 0 P+Q S

0 R† S† P−Q




, (B.24)

in the basis of the eigenstates {|32 ⟩ , |12 ⟩ , |−1
2 ⟩ , |−3

2 ⟩} of Jz with its quantization
axis along the new z-direction. The matrix elements P, Q, R and S can be
written in terms of the dimensionless symmetric tensors Mij,

M =
1

2m0

∑
i,j

Mij{pi,pj}, (B.25)

with M ∈ {P,Q,R,S} and i, j ∈ {x,y, z}. The diagonal element P is invariant
under rotations and follows from Pij = δijγ1. The other elements are more
involved and are given in Appendix B of Paper III.
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b.4 the bir-pikus hamiltonian

The Bir-Pikus Hamiltonian can also easily be obtained from the tensor ele-
ments above. The matrix elements of the Hamiltonian takes the form

M =
∑
i,j

MBP
ij ϵij, (B.26)

where ϵ̄ is the strain tensor, and MBP
ij can be obtained from Mij by the

substitution {γ1,γ2,γ3} → {−a, 1
2b, 1

2
√
3
d}. Adding the Bir-Pikus matrix

elements to the Luttinger Hamiltonian is then done by substituting M →
M+

∑
i,jM

BP
ij ϵij.
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We propose an implementation of a singlet-only spin qubit in a GaAs-based triple quantum dot with a (1,
4, 1) charge occupation. In the central multielectron dot, the interplay between Coulomb interaction and an
out-of-plane magnetic field creates an energy spectrum with a tunable singlet-triplet splitting, which can be
exploited to create a six-particle singlet-only qubit with a qubit splitting that can straightforwardly be tuned over
tens of μeV by adjusting the external magnetic field. We confirm the full exchange-based electric control of the
qubit and demonstrate its superior coherence properties due to its singlet-only nature.

DOI: 10.1103/PhysRevResearch.2.012062

Introduction. Semiconductor spin qubits are among the
most promising candidates for the physical realization of
quantum processors [1,2]. Multispin exchange-only (XO)
qubits, in particular, have drawn much attention in recent
years since they offer fast qubit manipulation and full electric
control [3–10]. However, rapid decoherence of the qubit—due
to magnetic noise from randomly fluctuating nuclear spins
[11,12], electric noise in the qubit’s environment [13–15],
electron-phonon coupling [16–18], and other spin-mixing
mechanisms [19–22]—still causes the usable operation time
of most XO qubits to be too short for scaling up. Besides, the
typically small qubit splitting [4,8] hinders the long-distance
coupling of XO qubits via, e.g, microwave resonators, where
a large qubit splitting is required for fast two-qubit gates
[23–25].

There have been several proposals put forward to increase
the coherence time of quantum-dot-based XO qubits while
retaining their conceptual simplicity and ease of manipulation.
Of special interest are (i) proposals to suppress the effects of
charge noise and electron-phonon interaction, via a symmetric
operation of the qubit or operating at a sweet spot (SS) [17,26–
28], and (ii) proposals to reduce magnetic noise or suppress
its effects, either by isotope purification or by constructing
decoherence-free qubit subspaces [9,29–32].

In the exchange-only singlet-only (XOSO) spin qubit pro-
posed in Ref. [31], the leading effects of magnetic noise are
suppressed by encoding the qubit states in a four-electron
singlet-only subspace, while electric noise can be mitigated
by operating the system symmetrically at a SS. However,
the exceptionally long coherence time of the qubit comes at
the cost of an increase in device complexity (a quadruple
quantum dot in a T geometry) and the proposal suffers from
the common problem with XO qubits of having a relatively
small qubit splitting.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Here, we propose a GaAs-based implementation of the
XOSO qubit that overcomes both drawbacks and, further-
more, has a qubit splitting that is straightforwardly tunable
over a large range of energies. The reason why the XOSO
qubit of Ref. [31] used a fourth quantum dot is that the qubit
splitting scales with the singlet-triplet splitting of the “central”
two electrons: Implementing the same qubit in a linear triple
dot in a (1, 2, 1) charge configuration is in principle possible
but results in a qubit with a splitting of the order of the orbital
level splitting on the central dot (∼ meV), which is too large
for practical purposes. In Ref. [32], it was pointed out that
one can implement the same qubit in a Si-based triple dot,
where the on-site singlet-triplet splitting is typically set by the
valley splitting, which can be 20–200 μeV. The drawback of
this proposal is that (i) the magnitude of the valley splitting is
hard to control or predict in practice [2] and (ii) uncontrollable
phase differences between valley couplings on different dots
can severely affect the exchange effects used to define and
operate the qubit [33]. Besides, Si can be purified to be almost
nuclear spin free, which eradicates the need for a singlet-only
qubit [9].

The solution is to tune the triple quantum dot to a (1, 4, 1)
charge configuration and apply an out-of-plane magnetic field.
On the central dot, the interplay between the magnetic field
and the Coulomb interaction between the electrons results
in an energy spectrum with many crossings between levels
with different total spin and orbital angular momentum. For
the case of four electrons, the ground state changes from a
triplet to a singlet character, typically at a moderate field of
≈ 100 mT [34]. Tuning close to this crossing and adding the
singly occupied outer dots to the picture yields a XOSO qubit
where the singlet-triplet splitting on the central dot, and thus
the qubit splitting, can be tuned by adjusting the external mag-
netic field. This yields a superior GaAs-based XOSO qubit
that is not more complicated to create or operate than existing
spin qubits and has a qubit splitting that is straightforwardly
tunable from zero to tens of μeV [35]. This high degree of
tunability could also be beneficial for a Si-based version of
this qubit.

Multielectron dot. The single-particle Hamiltonian of an
electron labeled i in a two-dimensional planar quantum dot,

2643-1564/2020/2(1)/012062(6) 012062-1 Published by the American Physical Society
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assuming a parabolic confinement and an external magnetic
field perpendicular to the plane, is

H (i)
0 = [pi + eA(ri )]2

2m∗ + 1

2
m∗ω2

0r2
i + 1

2
gμBBσ z

i , (1)

where A(r) = 1
2 B(xŷ − yx̂) is the vector potential, ω0 sets the

effective radius of the dot in the absence of a magnetic field
σ0 = √

h̄/m∗ω0, g is the g factor of the host material, and σ z

is the third Pauli matrix. The eigenstates of this Hamiltonian
are the Fock-Darwin states

ψn,l,η(r) =
√

n!

πσ 2(n + |l|)!ρ
|l|e−ρ2/2L|l|

n (ρ2)e−ilθ , (2)

in terms of the dimensionless polar coordinates ρ = r/σ and

θ . We used σ =
√

h̄/m∗	, with 	 =
√

ω2
0 + ω2

c/4 and ωc =
eB/m∗, and Lb

a(x) is the associated Laguerre polynomial. The
quantum numbers n ∈ N0, l ∈ Z, and η = ±1 label the radial
state, orbital angular momentum, and spin of the electron,
respectively. The corresponding eigenenergies are (we will set
h̄ = 1 from now on)

En,l,η = 	(2n + |l| + 1) − 1

2
ωcl + 1

4
gωc

m∗

me
η. (3)

In order to find the approximate eigenenergies and
spin structure of multielectron states in the presence of
electron-electron interactions, we follow the method used in
Refs. [34,36]; see the Supplemental Material [37] for the
details. We create a many-particle basis of antisymmetrized
products of single-particle states (2), where we restrict our-
selves to the states with n � 1 and |l| � 3, which corresponds
to including all single-particle levels up to ≈ 4 	 at small
fields. In the thusly constructed basis, we evaluate all matrix
elements of the interaction Hamiltonian

V =
∑
i< j

e2

4πε|ri − r j | , (4)

and the eigenstates and eigenenergies of the full many-particle
Hamiltonian H1 = ∑

i H (i)
0 + V can then be found from nu-

merical diagonalization or, in the weak-interaction limit char-
acterized by κ ≡ e2/4πεσ0ω0 � 1, from perturbation theory
in κ . For few particles and not too large κ (we consider
up to five electrons and κ � 1.5), the low-energy part of
the spectrum of H1 will resemble the exact many-particle
spectrum fairly accurately [34,44].

In Fig. 1(a), we present typical results for the lowest few
levels for the case of four electrons, where we set κ = 0.5 and
g = −0.4. The dots show the numerically calculated lowest
five eigenenergies, where green (blue) dots indicate a state
with a four-particle spin singlet (triplet) structure. The three
triplet states are labeled |Tβ〉 and have the largest weight in
the orbital configuration (0, 0)2(0, 1)1(0,−1)1, where (n, l )m

means m electrons in the orbital state (n, l ) [34]. The three
lowest singlet states, labeled |Sα,β,γ 〉, live mostly in the or-
bital configurations (0, 0)2(0, 1)2, (0, 0)2(0, 1)1(0,−1)1, and
(0, 0)2(0,−1)2, respectively.

For small κ , these lowest eigenenergies can also be ap-
proximated through perturbation theory in the interaction
Hamiltonian V . Up to second order in κ , this yields for the

FIG. 1. (a) Field-dependent low-energy part of the spectrum of a
four-electron quantum dot with κ = 0.5 and g = −0.4. Dots present
numerical results and solid lines show the perturbative results of (5).
(b) The numerically evaluated energy of the state |Sα〉 (green lines)
relative to |T 0

β 〉 for two values of κ .

lowest six states the generic expression

Eν = 6	− L

2
ωc + S

2
gωc

m∗

me
+ c(ν)

1 κ
√

	ω0 + c(ν)
2 κ2ω0, (5)

where L and S denote the total orbital and spin angular
momentum along ẑ of the four electrons. The coefficients
c(ν)

1,2 ∼ 1 differ per state |ν〉 but can be found explicitly; see
Ref. [37] for their exact values. The resulting energies Eν are
plotted in Fig. 1(a) as solid lines and show good agreement
with the numerics. For larger κ , the perturbation theory breaks
down, but the low-energy part of the spectrum is qualitatively
the same. This suggests that one can use Eq. (5) to describe
the Eν if one treats the coefficients c(ν)

1,2 as fit parameters to
the numerical data. As illustrated in Ref. [37] for the case
κ = 1.5, this still leads to excellent agreement. In Fig. 1(b),
we show the numerically evaluated energy of the state |Sα〉
relative to |T 0

β 〉 as a function of ωc, for κ = 0.5 and κ =
1.5. In both cases, the splitting between |Sα〉 and |T 0

β 〉 is to
good approximation linear in ωc in the regime of interest,
and the ground state changes from a spin triplet to a singlet
around ωc/ω0 ∼ 0.1. These two generic features are the key
ingredients for our qubit proposal.

Triple-dot six-electron states. We will construct our qubit in
two six-electron states hosted in a linear arrangement of three
quantum dots with a perpendicular magnetic field applied,
such as sketched in Fig. 2(a), where the effective on-site
potentials Vi and the interdot tunnel couplings ti j can be
controlled through nearby gate electrodes, as schematically

-0.4

 0

 0.4

-0.4 0  0.4

FIG. 2. (a) Sketch of the linear triple-dot setup in a (1, 4, 1)
charge configuration with a perpendicular magnetic field applied.
(b) Six-electron charge stability diagram around the (1, 4, 1) ground
state, as a function of Vm and Vd .
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indicated. We describe this system using a simple Hubbard-
like Hamiltonian [16,31,45],

H =
3∑

i=1

(
H (i)

1 − Vini
) +

∑
〈i, j〉

Ucnin j −
∑

〈i, j〉,η

ti j√
2

c†
iηc jη, (6)

where ni = ∑
η c†

iηciη is the number operator for dot i, ciη

annihilates an electron on dot i with spin η, Uc accounts for the
cross capacitance between neighboring dots, and H (i)

1 is the
single-dot many-particle Hamiltonian for dot i as described
above. We thus made several simplifying assumptions: (i) The
gate-induced potentials are smooth enough so that they affect
all electronic orbitals in the same way. (ii) The separation
between the dots is large enough to allow us to treat the
interdot electrostatic energy as being dependent only on the
ni and not on the exact orbital configuration of the electrons
on the neighboring dots. (iii) All tunneling processes we will
consider below mostly involve a (0, 0) orbital on a lateral
dot and a (0,±1) orbital on the central dot; since all (0,±1)
orbitals have the same radial structure, we assume that this
allows us to use tunneling coefficients ti j that are independent
of the exact electronic orbitals involved.

We first study the electrostatic properties of H by diago-
nalizing the first two terms in Eq. (6). The charge stability
diagram in Fig. 2(b) shows the resulting six-electron ground-
state charge configuration (n1, n2, n3), where ni is the number
of electrons on dot i, as a function of the detuning parameters
Vd = 1

2 (V3 − V1) and Vm = 1
2 (V1 + V3) − V2. We fixed V1 +

4V2 + V3 and focused on the regime around the (1, 4, 1) state.
As indicated in Fig. 2(a), we assumed different dot sizes,
σ0 = 30 nm for the central dot and σ0 = 20 nm for the lateral
dots, which results in a good ratio between the orbital splitting
on the outer dots and the splitting of the many-electron states
in the middle dot [46]. Furthermore, we used Uc = 0.2 ω0

(where ω0 is the bare level splitting on the central dot) and
set ωc/ω0 = 0.1, κ = 0.5, and m∗/me = 0.067.

In the (1, 4, 1) region, the four lowest-energy six-particle
states with S2 = 0 can be written as

|0〉 = |SαS(13)〉, (7)

|1〉 = 1√
3

[∣∣T 0
β T 0

(13)

〉 − |T −
β T +

(13)〉 − |T +
β T −

(13)〉
]
, (8)

|2〉 = |SβS(13)〉, (9)

|3〉 = |Sγ S(13)〉, (10)

where |S(13)〉 and |T(13)〉 indicate pairing in a singlet or triplet
state of the two electrons in the outer dots, and |Sα,β,γ 〉 and
|Tβ〉 are the lowest four-particle singlets and triplet on the
central dot, see above.

The qubit. We propose to tune close to the degeneracy
of |Sα〉 and |Tβ〉 on the central dot, which for σ0 = 30 nm
happens at B ≈ 75 mT. The two lowest-energy singlet states
|0〉 and |1〉 can then be used as qubit basis, and the singlets
|2〉 and |3〉 will be split off by an energy much larger than the
qubit splitting.

We assume that t/� � 1, with t the magnitude of the
tunnel couplings (typically t ∼ 10 μeV) and 2� the width of
the (1, 4, 1) region; see its definition in Fig. 2(b). Then we can

treat the tunnel coupling perturbatively for most of the (1, 4, 1)
region, and we thus project the full Hamiltonian (6) onto the
qubit subspace by means of a Schrieffer-Wolff transformation
[37], yielding to order t2

Hqb = 1
2 (EST + Jz )σz + Jxσx, (11)

where σx,z are Pauli matrices. The qubit splitting is dominated
by the singlet-triplet splitting on the central dot EST = ET 0

β
−

ESα
[see Fig. 1(b)], which follows to good approximation from

the expressions given in Eq. (5),

EST ≈ γ0ω0 + ωc, (12)

with γ0 = −0.235 κ + 0.128 κ2, accurate for κ � 0.5 (see
Ref. [37] for all derivations and an explicit expression for
γ0). We wrote EST here up to linear order in ωc/ω0; the
next correction is smaller by a factor ≈10−2κωc/ω0. Through
ωc ∝ B, this term, and thus the qubit splitting, can be easily
tuned over tens of μeV. We emphasize that this magnetic field
dependence arises through coupling of the field to the orbital
degrees of freedom of the electrons; the (singlet-only) qubit
subspace is insensitive to the coupling of magnetic fields to
the spin of the electrons.

Close to the line where Vd = 0 and assuming approx-
imately symmetric tunnel couplings t12 ≈ t23, the two ex-
change terms read as [37]

Jz ≈ − t2

[
�

�2 − V 2
m

+ 3(� + ωc)

(� + ωc)2 − V 2
m

]
, (13)

Jx ≈
√

6t�

�2 − V 2
m

[
δt + 2tVm

�2 − V 2
m

Vd

]
, (14)

for � as defined in Fig. 2(b) and with t = 1
2 (t12 + t23) and

δt = t12 − t23. We see that Jz in general presents a small
tuning-dependent correction to the qubit splitting, which is
dominated by EST , whereas Jx provides a coupling to σx linear
in δt and/or Vd (depending on tuning), which can be used to
drive Rabi oscillations.

We now discuss two regimes of special interest in the
charge stability diagram shown in Fig. 2(b): (i) In the
resonant-exchange (RX) regime, close to the top and bottom
of the (1, 4, 1) region, the strong coupling to the other charge
states offers fast qubit control through Vd [8]. In Fig. 3(a),
we show the lowest-lying states as a function of Vd along the
horizontal dashed line in Fig. 2(b) (Vm/ω0 = 0.27) calculated
from the Hamiltonian as given in (6), where we ignored the
Zeeman splitting for clarity. We used the same parameters as
in Fig. 2(b) and further set t = 25 μeV and δt = 0. We labeled
the two qubit states |0〉 and |1〉, three spin triplets |T1,2,3〉,
and a spin quintuplet |Q〉; including the Zeeman effect, a
triplet (quintuplet) acquires an additional threefold (fivefold)
splitting of 1.7 μeV for ωc/ω0 = 0.1. (ii) In the center of the
(1, 4, 1) region, we find a SS where the qubit is to linear order
insensitive to fluctuations of the potentials Vi, offering some
protection against charge noise. In Fig. 3(b), we show the
spectrum at the SS for the same parameters as in Fig. 3(a), now
as a function of δt while setting Vd = 0. At the SS exchange
effects are much smaller and thus the qubit splitting is closer
to EST (≈18.3 μeV for ωc/ω0 = 0.1), but apart from that the
spectrum looks similar to the RX regime.

012062-3



SALA, QVIST, AND DANON PHYSICAL REVIEW RESEARCH 2, 012062(R) (2020)

FIG. 3. Low-energy part of the spectrum of the Hamiltonian (6)
(a) as a function of Vd at Vm/ω0 = 0.27 and (b) as a function of δt at
the SS, Vd = Vm = 0. The green and blue lines show the spin-singlet
qubit states |0〉 and |1〉 respectively; the gray lines show the spin
triplet and quintuplet states. (c) The qubit splitting as a function of
the magnetic field, where ωc/ω0 = 0.1 corresponds to B ≈ 75 mT.
(d) The derivative dJx/dq for q ∈ {δt,Vd} as a function of Vm and at
Vd = 0.

In Fig. 3(c), we plot the qubit splitting ωqb as a function
of the magnetic field, in the RX regime (Vm = 0.27, Vd = 0,
yellow line) and at the SS (purple line). This confirms the
high degree of tunability of our qubit. We further note how
the spectra in Figs. 3(a) and 3(b) strongly resemble those in
the XOSO spin-qubit proposals of Refs. [31,32], the main
difference being the large and straightforwardly tunable qubit
splitting ωqb ∝ B in our proposal. This permits an efficient
and adaptable coupling to other systems such as microwave
cavities which can be used to couple distant qubits [47–50].

Qubit operation. Single-qubit rotations can be performed
via resonant Rabi driving, using a sinusoidal modula-
tion of a tuning parameter q = {Vd ,Vm, t, δt} with a small
amplitude q̃ and frequency ω, i.e., q(t ) = q0 + q̃ sin(ωt ).
For small enough q̃, the qubit Hamiltonian (11) can be
approximated as

Hqb = 1
2ωqbσz + Aq sin(ωt )σx, (15)

where Aq = q̃ (dJx/dq)q=q0 . Driving the qubit resonantly,
ω = ωqb, then induces Rabi oscillations with a frequency Aq.
At the RX regime, where we can use Vd as the driving pa-
rameter, an amplitude of Ṽd = 5–10 μeV gives a Rabi period
of TRabi ≈ 20–40 ns. At the SS, Rabi rotations are much more
efficient via a driving of δt , which gives a period of TRabi ≈
20 ns for an amplitude δt̃ = 2 μeV. Fast qubit rotations can
therefore be achieved both in the RX regime and at the SS. In
Fig. 3(d), we plot the “efficiency” dJx/dq of the two driving
parameters q ∈ {δt,Vd} as a function of Vm, along the line
Vd,0 = 0. We see that at the SS the sensitivity to Vd vanishes, in
accordance with Eq. (14), whereas driving of δt stays effective
all the way down to Vm = 0.

Qubit initialization and readout can be accomplished by
standard spin-to-charge conversion, i.e., pulsing the qubit to
one of the neighboring charge configurations that has only
one low-lying six-particle singlet state. For example, when
tuning into the (1, 3, 2)/(2, 3, 1) charge regions, only the
qubit state |0〉 is adiabatically connected to the new ground-
state charge configuration. This allows for initialization in
|0〉 as well as readout of the qubit by means of charge
detection.

Decoherence. In most GaAs-based spin qubits, the main
source of decoherence is the fluctuating bath of nuclear spins
that couples to the electron spins via contact hyperfine inter-
action. On a mean-field level, the effect of this interaction can
be described by the Hamiltonian Hhf = 1

2 gμB
∑

i Ki · σ i, with
Ki being a random effective nuclear field acting on electron i,
typically of the order of a few mT. In the device we propose
in this paper, both qubit states are singlets and therefore the
qubit splitting is not directly influenced by any intrinsic or
external (gradient) of Zeeman fields acting on the electrons,
thereby reducing the hyperfine-induced decoherence dramati-
cally [31,32]. We estimate the coupling between the nuclear
magnetic moments and the orbital degrees of freedom of
the electrons to be negligible and dominated by hyperfine
coupling of the qubit states to nearby triplet states, which leads
to random higher order shifts of the qubit levels [31]. The
timescale of this residual hyperfine-induced dephasing can
be estimated as T ∗

2 ∼ Aqh̄(δε)2/σ 4
K , where δε is the energy

splitting between |0〉 and |T1〉; see Figs. 3(a) and 3(b) [37].
For the range of parameters considered here, we find T ∗

2 ∼
0.5–5 μs [37], giving a number of visible, coherent Rabi
oscillations of ncoh = T ∗

2 /TRabi ∼ 25–250.
Another source of decoherence for exchange-based qubits

are low-frequency fluctuations in the electrostatic environ-
ment of the system. A common way to mitigate such charge
noise is to operate the qubit at the SS [Fig. 3(b)], where the
qubit splitting is insensitive to fluctuations in the potentials
Vi to leading order; there we find a dephasing time of T ∗

2 �
10 μs. Away from the SS, the effects of charge noise are
larger. At the RX regime [Fig. 3(a)], far away from the SS, the
contribution from charge noise to dephasing becomes similar
to that of nuclear noise, with a dephasing time of T ∗

2 ∼ 0.5 μs
[37].

Finally, qubit relaxation via electron-phonon coupling
causes qubit decoherence. The relaxation rate can be esti-
mated using Fermi’s golden rule and depends on the qubit
splitting and on the strength of the exchange interaction [31].
In the RX regime, where the qubit splitting can be extensively
tuned through ωc, we estimate relaxation rates from �rel ∼
1 GHz for ωqb ∼ 50 μeV to �rel ∼ 1 MHz for ωqb ∼ 10 μeV.
And, as is common in exchange-based qubits [18,31], the
relaxation rate is strongly suppressed as we approach the SS.

Conclusions. We propose a six-electron exchange-only
singlet-only spin qubit hosted in a GaAs linear triple quan-
tum dot. Its singlet-only nature makes the qubit intrinsically
insensitive to randomly fluctuating nuclear fields. The qubit
can be operated fully electrically, either in an RX regime
which enables fast qubit operations or at a SS where the
qubit is better protected against charge noise. Furthermore,
the fact that the qubit splitting is highly tunable over a large
range of energies allows for efficient and adaptable coupling

012062-4



HIGHLY TUNABLE EXCHANGE-ONLY SINGLET-ONLY … PHYSICAL REVIEW RESEARCH 2, 012062(R) (2020)

to microwave resonators, enabling coupling of distant qubits.
The only ingredient on which this tunability relies is the
appearance of a ground-state singlet-triplet transition at finite
magnetic field in the multiparticle spectrum of the central dot.
This is a very commonly observed feature in quantum dots of
various shapes and sizes.
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Highly tunable exchange-only singlet-only qubit in a GaAs triple quantum dot:
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In this supplemental material we complement the results presented in the main text with several more detailed
discussions. We included (i) a detailed explanation of how to construct the many-electron Hamiltonian and the
derivation of analytical approximate expressions for the energy spectrum of a multi-electron quantum dot; (ii) the
derivation of the qubit Hamiltonian via a Schrieffer-Wolff transformation; and (iii) an estimate of the residual effects
of the hyperfine coupling to the fluctuating nuclear spin baths on the qubit’s coherence properties.

ELECTRONIC STATES IN A MULTI-ELECTRON QUANTUM DOT

Single-particle states in the presence of a perpendicular magnetic field

In this section we investigate the spectrum of a multi-electron quantum dot in the presence of a magnetic field
perpendicular to the plane of the dot, where we will largely follow the method used in Ref. 1. We assume strong
confinement of the electrons along the z-direction, perpendicular to the plane, and a circularly symmetric parabolic
in-plane confinement. Under these assumptions we write a single-particle Hamiltonian in the xy-plane for electron i:

H
(i)
0 =

1

2m∗
[pi + eA(ri)]

2 +
1

2
m∗ω2

0r
2
i +

1

2
gµBBσ

z
i , (S1)

where A(r) = 1
2B(xŷ − yx̂) is the vector potential describing the magnetic field B = Bẑ, m∗ is the effective mass

of the electrons, ω0 defines the strength of the in-plane confinement, such that σ0 =
√

~/(m∗ω0) gives the effective
radius of the dot in the absence of a magnetic field, and g is the effective g-factor of the host material.

The eigenstates of this Hamiltonian are the Fock-Darwin states,

ψn,l,η(ri) =

√
n!

πσ2(n+ |l|)! ρ
|l|
i e
−ρ2i /2L|l|n

(
ρ2i
)
e−ilθi , (S2)

written in terms of polar coordinates ρi = ri/σ and θi. Here, σ =
√

~/m∗Ω is the magnetic-field-dependent effective

dot radius, with Ω =
√
ω2
0 + ω2

c/4 and ωc = eB/m∗, and Lba (x) is the associated Laguerre polynomial. The quantum
number n = 0, 1, 2, . . . labels the radial orbital degree of freedom, the quantum number l ∈ Z the orbital angular
momentum, and η = ±1 the spin of the electron. The corresponding eigenenergies are

E
(i)
n,l,η = ~Ω(2n+ |l|+ 1)− 1

2
~ωcl +

1

4
g
m∗

me
~ωcη, (S3)

where me is the bare electron rest mass. The first term contributes the regular two-dimensional harmonic-oscillator
energies, but with a magnetic-field-dependent oscillator frequency Ω, the second term adds the direct coupling of
the angular momentum l to the perpendicular magnetic field, and the last term accounts for the Zeeman effect. In
Fig. 1 we show this spectrum as a function of ωc, where the boxed labels indicate the quantum numbers (n, l) of the
lowest few states. For clarity we omitted the Zeeman effect, i.e., we set g = 0, meaning that all lines are still twofold
degenerate. The levels plotted in red are the ones we used to construct the many-particles states that formed the
basis for our analytic and numerical calculations, see below.

Many-particle Hamiltonian including interactions

In a quantum dot with more than one electron one has to account for electron-electron interactions as well, which
we describe by the Hamiltonian

V =
∑

i<j

e2

4πε|ri − rj |
, (S4)
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FIG. 1. The Fock-Darwin spectrum as a function of ωc = eB/m∗ for g = 0, see Eq. (S3), where the boxed labels indicate the
orbital and angular momentum quantum numbers (n, l). The levels plotted in red are the ones we included in constructing the
many-particle states that we used as a basis for our calculations.

where ε is the effective dielectric constant of the surroundings of the quantum dot. For a system with two electrons

analytical diagonalization of the Hamiltonian
∑
iH

(i)
0 + V is possible [2], but for more than two electrons there is no

obvious solution. We thus treat this many-body problem by working in a restricted configuration space, where we
construct a basis of many-particle states from products of single-particle states and impose a cutoff on the quantum
numbers n and l as was done in Ref. [1]. In this basis, we can write explicit expressions for the matrix elements of the
interaction Hamiltonian (S4). We then proceed by (i) numerical diagonalization of the resulting Hamiltonian matrix
and (ii) applying perturbation theory in the interaction Hamiltonian V , which works best in the weak-coupling limit,
where e2/4πεσ0 � ~ω0 [3].

We start by constructing a basis of many-particle states from antisymmetrized products of Fock-Darwin states.
For a system of M electrons one such product state, which we denote |s〉, is characterized by a set of quantum
numbers s = {ns1 , ls1 , ηs1 ;ns2 , ls2 , ηs2 ; . . . ;nsM , lsM , ηsM }. The antisymmetrized wave function in position space
〈r1, r2, . . . rM |s〉 = φs(r1, r2, . . . rM ) can then be written as

φs(r1, r2, . . . rM ) = A[ψns1 ,ls1 ,ηs1 (r1)ψns2 ,ls2 ,ηs2 (r2) . . . ψnsM ,lsM ,ηsM
(rM )], (S5)

where A is the antisymmetrization operator.

Since
∑
iH

(i)
0 is diagonal in the basis of these product states, we can write the full Hamiltonian as

H =
∑

s

[
~Ω(2Ns +Ks +M)− 1

2
~ωcLs +

1

2
g
m∗

me
~ωcSs + Vss

]
|s〉〈s|+

∑

s6=r
Vsr|s〉〈r|, (S6)

where Ns =
∑
i nsi , Ks =

∑
i |lsi |, Ls =

∑
i lsi , Ss = 1

2

∑
i ηsi , and Vsr = 〈s|V |r〉. To write an explicit matrix form

of this Hamiltonian we therefore need to evaluate the integrals

Vsr =

M∑

i<j

∫
dr1 · · · drM φ∗s(r1, . . . rM )

e2

4πε|ri − rj |
φr(r1, . . . rM ) (S7)

for all sets of quantum numbers s and r. Since the Coulomb potential couples electrons pairwise, we only need to
evaluate integrals of the form

vn1,l1;n2,l2;n3,l3;n4,l4 ≡
∫
dr1dr2 ψ

∗
n1,l1,η(r1)ψ∗n2,l2,η′(r2)ψn3,l3,η′(r2)ψn4,l4,η(r1)

e2

4πε|r1 − r2|
. (S8)
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FIG. 2. The lowest few four-electron levels in a single planar quantum dot as a function of the applied perpendicular magnetic
field ωc = eB/m∗ with g = −0.4, for three different interaction parameters: (a) κ = 0.2, (b) κ = 0.5, and (c) κ = 1.5. The dots
are the result of numerical diagonalization of the Hamiltonian (S6) written in the basis of antisymmetrized product states of
the 28 single-particle states with n ∈ {0, 1}, l ∈ {0,±1,±2,±3}, and η = ±1. States that have a singlet spin configuration are
plotted in green and states with a triplet spin configuration are plotted in blue. The solid lines show the analytic expressions
for the field-dependent energies (S10–S15) as found from second-order perturbation theory in κ. The thin red dashed lines
in (c) show the result of fitting the numerical data to Eqs. (S18) and (S19), which have the same algebraic structure as the
perturbative results given in (S10) and (S12).

Using the Fock-Darwin states as given in Eq. (S2) the result of the integral can be written in a closed form [4],

vn1,l1;n2,l2;n3,l3;n4,l4 =
e2

4
√

2πεσ
δl1+l2,l3+l4

√√√√
4∏

i=1

ni!

2|li|(ni + |li|)!

n1∑

j1=0

n2∑

j2=0

n3∑

j3=0

n4∑

j4=0

[
4∏

k=1

(− 1
2 )jk

jk!

(
nk + |lk|
nk − jk

)]

×
α1∑

λ1=0

α2∑

λ2=0

α3∑

λ3=0

α4∑

λ4=0

δλ1+λ2,λ3+λ4

[
4∏

t=1

(
αt
λt

)]
(−1)α2+α3−λ2−λ3 Γ

(
Λ + 2

2

)
Γ

(
A− Λ + 1

2

)
,

(S9)

where αi = ji + j5−i + 1
2 (|li| + li + |l5−i| − l5−i), Λ =

∑4
i=1 λi, and A =

∑4
i=1 αi. This allows us to find analytic

expressions for all Vsr in (S6) and thus to write H in a closed matrix form.

Numerical results

We will investigate many-particle states with up to 5 electrons in a single quantum dot, assuming relatively small
applied magnetic fields, ωc/ω0 ≤ 0.3, and not too strong interactions, characterized by the dimensionless parameter
κ = e2/4πεσ0~ω0 . 1. Since we are only interested in finding the lowest few levels for M ≤ 5, the 28 single-particle
states with n ∈ {0, 1}, l ∈ {0,±1,±2,±3} and η = ±1 (the levels plotted in red in Fig. 1, which all still have a twofold
spin degeneracy) form in this case a reasonable set to construct our basis of many-particle states from.

We now focus on the case of four electrons and proceed by diagonalizing the Hamiltonian numerically to obtain
the eigenstates and -energies of the lowest electronic states in the multi-electron quantum dot. The results are shown
as dots in Fig. 2, where we used (a) κ = 0.2, (b) κ = 0.5, and (c) κ = 1.5, and we set g = −0.4. Green dots
correspond to eigenstates that have a many-particle spin-singlet structure and blue dots to states with a spin-triplet
structure. Under the simplest assumptions that the surroundings of the dot are made of pure GaAs and that there
are no additional screening effects, we use ε = 12.9 ε0 and m∗ = 0.067me to estimate the dot size and orbital level
splitting corresponding to these two values of κ, giving Eorb ≈ 40 meV for κ = 0.5 and Eorb ≈ 5 meV for κ = 1.5. For
the most common gate-defined dots κ = 1.5 seems thus to be more realistic, although we note that the actual value
of ε is probably hard to predict since it can be affected severely by structural inhomogeneities, screening effects due
to nearby metallic gates, or the underlying three-dimensional nature of the electronic wave function [5].

The overall structure of the low-field part of the spectra shown in Fig. 2 is, however, the same for all values of κ:
At zero field, exchange effects arising from the Coulomb interaction favor a spin triplet ground state, which for small
κ has the orbital configuration (0, 0)2(0, 1)1(0,−1)1, where the superscript denotes the number of electrons in the
state (n, l) [1]. The first excited states are two spin singlets with the configurations (0, 0)2(0, 1)2 and (0, 0)2(0,−1)2,
and the next excited state is the singlet with the configuration (0, 0)2(0, 1)1(0,−1)1. When the field is increased, the
most pronounced effects are: (i) all orbital energies increase due to the magnetic compression of the wave functions,
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i.e., the dependence of Ω on ωc, (ii) the first two excited singlets split in energy due to their total projected orbital
angular momentum of Lz = ±2~, and (iii) the three triplet states split due to the Zeeman effect.

All together, this leads to a singlet-triplet crossing at ωc/ω0 ∼ 0.1 after which a four-particle singlet becomes the
ground state. Close to this degeneracy the next excited state is typically ∼ 0.2 ~ω0 higher in energy, which is far
enough to treat the lowest four levels to first approximation as a well-separated subsystem. The magnitude of the
magnetic field, through ωc, that forces a singlet-triplet crossing also depends on κ. Therefore, for larger quantum
dots, with a smaller Eorb = ~ω0, a smaller ωc will be needed.

One could alternatively use levels that cross in this subsystem to construct a singlet-triplet qubit [6], but in this case
qubit control would still rely on modulation of the magnetic field. If, instead, we add two more quantum dots with a
single electron on each, then we can create a triple-dot exchange-only singlet-only qubit similar to the quadruple-dot
qubit proposed in Ref. 7, where the tunability of the singlet-triplet splitting of the two central electrons, through
the detuning and coupling between the two central dots, is now replaced by tunability of the splitting through the
external magnetic field.

Analytic results

Since we have closed-form expressions for all elements of the interaction Hamiltonian, we can do perturbation theory
in small κ to arrive at analytic expressions for the lowest few eigenenergies in a multi-electron quantum dot [8]. For
the four-electrons case studied above we find for the three lowest triplet levels

E
T

(S)
β

= 6~Ω +
S

2
g
m∗

me
~ωc + γ

(1)
T κ~

√
Ωω0 + γ

(2)
T κ2~ω0, (S10)

where S ∈ {−1, 0, 1} labels the total spin projection of the triplet and we used the coefficients

γ
(1)
T = 2

√
2π, γ

(2)
T = −195893509π

805306368
≈ −0.764, (S11)

that determine the prefactor of the first- and second-order correction, respectively. The two lowest singlet levels have

ESα,γ = 6~Ω− L

2
~ωc + γ

(1)
S1 κ~

√
Ωω0 + γ

(2)
S1 κ

2~ω0, (S12)

where L labels the total orbital angular momentum projection of the state, i.e., L = 2 for the lowest singlet |Sα〉 and
L = −2 for the first excited singlet |Sγ〉. Further,

γ
(1)
S1 =

67

16

√
π

2
, γ

(2)
S1 = −38109479π

134217728
≈ −0.892. (S13)

Finally, for the singlet |Sβ〉 that lives in the same combination of orbital states as the lowest triplet we find

ESβ = 6~Ω + γ
(1)
S2 κ~

√
Ωω0 + γ

(2)
S2 κ

2~ω0, (S14)

with

γ
(1)
S2 =

35

8

√
π

2
, γ

(2)
S2 = −1391260025π

4294967296
≈ −1.02. (S15)

These results are shown as solid lines in Fig. 2(a,b) and match the numerical data reasonably well—better for smaller
values of κ—but for κ = 1.5 the perturbative results are off by ∼ 5%. Using these results, we can also easily write
down an expression for the singlet-triplet splitting denoted EST in the main text,

ET 0
β
− ESα = ~ωc −

3

16

√
π

2
κ~
√

Ωω0 +
32763365π

805306368
κ2~ω0, (S16)

which for small ωc/ω0 can be very well approximated by

ET 0
β
− ESα ≈ ~ωc +

(
− 3

16

√
π

2
κ+

32763365π

805306368
κ2
)
~ω0 ≈ ~ωc +

(
−0.235κ+ 0.128κ2

)
~ω0. (S17)
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For larger κ, such as κ = 1.5, the level structure of the low-energy part of the spectrum still looks qualitatively
very similar to the small-κ case, which suggests that we can use the same type of algebraic expression to describe the
energies. If we write for the lowest four levels

E
T

(S)
β

= 6~Ω +
S

2
g
m∗

me
~ωc + a1~

√
Ωω0 + b1~ω0, (S18)

ESα = 6~Ω− ~ωc + a2~
√

Ωω0 + b2~ω0, (S19)

then we can use a least-square fit to the numerical data shown in Fig. 2(b) to extract the four parameters

a1 = 7.383, b1 = −1.146, a2 = 7.123, b2 = −1.037, (S20)

resulting in the red dashed curves shown in the Figure, which agree very well with the numerically calculated results.

SINGLET BASIS STATES AND SCHRIEFFER-WOLFF TRANSFORMATION

As explained in the main text, the system is modeled using a Hubbard-like Hamiltonian,

H =
3∑

i

(
H

(i)
1 − Vini

)
+
∑

〈i,j〉
Ucninj −

∑

〈i,j〉,η

tij√
2
c†i,ηcj,η, (S21)

where H
(i)
1 is the many-particle Hamiltonian in Eq. (S6) acting on the electrons in dot i, the Vi describe the gate-

tunable offset voltages on the three dots, ni =
∑
η c
†
i,ηci,η is the electron number operator for dot i, Uc characterizes

the interdot electrostatic coupling between the electrons, the tij describe tunneling between neighboring dots i and
j, and ci,η annihilates an electron on dot i with spin η.

We assume six electrons occupying a linear array of three quantum dots. Our qubit is defined in the singlet subspace
of the (1,4,1) charge configuration, the lowest four singlet states being

|0〉 = |SαS(13)〉, (S22)

|1〉 =
1√
3

[
|T 0
βT

0
(13)〉 − |T−β T+

(13)〉 − |T+
β T
−
(13)〉

]
, (S23)

|2〉 = |SβS(13)〉, (S24)

|3〉 = |SγS(13)〉, (S25)

where |S(13)〉 and |T(13)〉 indicate pairing in a singlet or triplet state of the two electrons in the outer dots, and |Sα,β,γ〉
and |Tβ〉 are the lowest four-particle singlets and triplet on the central dot, see the main text and above. In the
absence of interdot tunneling, i.e., for t12 = t23 = 0, the energies of these four states are

E0 = 2E
D

(1,1)
0

+ E
S

(4,2)
α
− V1 − 4V2 − V3 + 8Uc, (S26)

E1 = 2E
D

(1,1)
0

+ E
T

(4,2)
β

− V1 − 4V2 − V3 + 8Uc, (S27)

E2 = 2E
D

(1,1)
0

+ E
S

(4,2)
β

− V1 − 4V2 − V3 + 8Uc, (S28)

E3 = 2E
D

(1,1)
0

+ E
S

(4,2)
γ
− V1 − 4V2 − V3 + 8Uc. (S29)

Here, E
D

(n,i)
0

denotes the lowest doublet eigenenergy of the many-particle Hamiltonian (S6) for the case of n electrons

on dot i, where we assumed that dots 1 and 3 are identical. Note that these energies do not include the Zeeman energy,

i.e., they represent the case EZ = 0 [9]. Since the corresponding state |D(1,1)
0 〉 has the exact orbital configuration

(0, 0)1 this means that we simply have E
D

(1,1)
0

= ~Ω(1), where the superscript (1) indicates that we have to use the

orbital energy of dot 1 (we assume the lateral dots to have a slightly smaller size than the central one). Similarly,
E
S

(4,2)
α

is the eigenenergy of the lowest four-particle singlet state on the central dot, such as investigated above, etc.

We would now like to introduce the effect of the tunnel coupling between the dots, to leading order in the coupling
parameters tl,r denoting the tunneling coupling between the leftmost and rightmost two dots, respectively. For that
purpose, we need to consider virtual transitions to the neighboring charge configurations (1,3,2), (2,3,1), (1,5,0), and
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(0,5,1). (The charge states (2,2,2) and (0,6,0) also border the (1,4,1) region, but a transition to one of these requires
two tunneling events.) The states that are directly coupled to the four basis states (S22–S25) are

|4〉 = |{D(1,1)
0 D

(3,2)
0 }SS(2,3)

0 〉, (S30)

|5〉 = |{D(1,1)
0 D

(3,2)
1 }SS(2,3)

0 〉, (S31)

|6〉 = |{D(1,1)
0 D

(5,2)
0 }S〉, (S32)

|7〉 = |{D(1,1)
0 D

(5,2)
1 }S〉, (S33)

where we used the same notation as above, i.e., |S(2,3)
0 〉 denotes the ground state singlet formed by two electrons in

dot 3, in addition to which we used |{DaDb}S〉 to denote the spin singlet formed by the two doublets |Da〉 and |Db〉.
We see that states |4〉 and |5〉 are (1,3,2) states and |6〉 and |7〉 (1,5,0) states, and there are thus four more states,
|8〉–|11〉, that are exactly the same but with the dot indices 1 and 3 interchanged. The three- and five-particle doublet

ground states |D(3,2)
0 〉 and |D(5,2)

0 〉 have a dominating orbital configuration of (0, 0)2(0, 1)1 and (0, 0)2(0, 1)2(0,−1)1,
respectively, and since the splitting to the first excited doublet states with main configurations (0, 0)2(0,−1)1 and
(0, 0)2(0, 1)1(0,−1)2 is relatively small we included them in the perturbation theory; these first excited doublets
are indicated with a subscript 1. Using the same notation as before, the energies of these virtual states follow
straightforwardly as

E4 = E
D

(1,1)
0

+ E
D

(3,2)
0

+ E
S

(2,3)
0
− V1 − 3V2 − 2V3 + 9Uc, (S34)

E5 = E
D

(1,1)
0

+ E
D

(3,2)
1

+ E
S

(2,3)
0
− V1 − 3V2 − 2V3 + 9Uc, (S35)

E6 = E
D

(1,1)
0

+ E
D

(5,2)
0
− V1 − 5V2 + 5Uc, (S36)

E7 = E
D

(1,1)
0

+ E
D

(5,2)
1
− V1 − 5V2 + 5Uc, (S37)

and the energies E8,9,10,11 again by interchanging the dot indices 1 and 3.

We now include the tunnel couplings t12 ≡ tl and t23 ≡ tr, and assuming that we are deep enough in the (1,4,1)
region so that the energy differences to the other four charge states is much larger than the tunnel couplings we can
evaluate the exchange effects perturbatively in tl,r. This is done using a Schrieffer-Wolff transformation, and gives up
to second order in tl,r the effective (1,4,1) Hamiltonian

H(1,4,1) =




0 Jx J0,2 0
Jx EST + J1 − J0 J1,2 J1,3
J2,0 J2,1 E

S
(4,2)
β

− E
S

(4,2)
α

+ J2 − J0 J2,3

0 J3,1 J3,2 E
S

(4,2)
γ
− E

S
(4,2)
α

+ J3 − J0


 , (S38)

where we subtracted E0 + J0 as a constant and defined EST ≡ E
T

(4,2)
β

− E
S

(4,2)
α

. The qubit regime we consider is

where (E
S

(4,2)
β,γ

− E
S

(4,2)
α

)� EST : the magnetic field is tuned not too far from the SαT
0
β -crossing in the four-electron

central dot, so that the splitting between |Sα〉 and |T 0
β 〉 (∼ 10 µeV) is much smaller than the distance to the other two

singlets |Sβ〉 and |Sγ〉 (∼ 0.5 meV). Since typical exchange energies are J ∼ 1 µeV, we can, to first approximation,
neglect the exchange-induced coupling of the qubit to the states |2〉 and |3〉; they would lead to small corrections of
the order ∼ J2/(E

S
(4,2)
β,γ

−E
S

(4,2)
α

). A second (more practical) reason to neglect these couplings is that these corrections

are ∝ J2 ∝ t4, and for consistency one would then also have to perform the original Schrieffer-Wolff transformation
to order t4, now including the charge states (2,2,2) and (0,6,0) as well.

We then arrive at the effective qubit Hamiltonian

Hqb =
1

2
(EST + Jz)σz + Jxσx, (S39)
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where

Jz =
3t2r
4

(
1

E1 − E4
+

1

E1 − E5
+

1

E1 − E6
+

1

E1 − E7

)

+
3t2l
4

(
1

E1 − E8
+

1

E1 − E9
+

1

E1 − E10
+

1

E1 − E11

)

− t2r
2

(
1

E0 − E4
+

1

E0 − E6

)
− t2l

2

(
1

E0 − E8
+

1

E0 − E10

)
, (S40)

Jx =

√
3t2r

4
√

2

(
1

E0 − E6
+

1

E0 − E4
+

1

E1 − E6
+

1

E1 − E4

)

−
√

3t2l
4
√

2

(
1

E0 − E8
+

1

E0 − E10
+

1

E1 − E8
+

1

E1 − E10

)
. (S41)

The largest term in the Hamiltonian (S39) is

EST = ~ωc + (a1 − a2)~
√

Ω(2)ω
(2)
0 + (b1 − b2)~ω(2)

0 , (S42)

in terms of the notation of Eqs. (S18–S19), where Ω(2) and ω
(2)
0 are the oscillator frequencies (with and without

magnetic field) of the central dot. Here one can use a1 = κγ
(1)
T , b1 = κ2γ

(2)
T , a2 = κγ

(1)
S1 , and b2 = κ2γ

(2)
S1 for κ . 0.5.

The exchange terms are relatively small and their approximate magnitude can be related to the width (and “height”)
2∆ of the stable (1,4,1) region in terms of the tuning parameters Vd = 1

2 (V3 − V1) and Vm = 1
2 (V1 + V3) − V2,

respectively. We assume that we can neglect the difference between E0 and E1 compared to the splitting to the other
eight states. For a given tuning (Vm, Vd) the splitting to the states |4〉, |6〉, |8〉, and |10〉 then equals the distance to
the corresponding excited charge state in the charge stability diagram. The energies of the four states that involve
one excited orbital state, |5〉, |7〉, |9〉, and |11〉, are higher in energy by ~ωc. Assuming that the stable (1,4,1) region
is roughly symmetric in Vd and Vm, we then arrive at the approximate expressions

E0,1 − E4 = −∆ + Vd + Vm, (S43)

E0,1 − E5 = −∆ + Vd + Vm − ~ωc, (S44)

E0,1 − E6 = −∆− Vd − Vm, (S45)

E0,1 − E7 = −∆− Vd − Vm − ~ωc, (S46)

E0,1 − E8 = −∆− Vd + Vm, (S47)

E0,1 − E9 = −∆− Vd + Vm − ~ωc, (S48)

E0,1 − E10 = −∆ + Vd − Vm, (S49)

E0,1 − E11 = −∆ + Vd − Vm − ~ωc, (S50)

With these approximations we find

Jz =
1

2

(
t2l∆

(Vd − Vm)2 −∆2
+

t2r∆

(Vd + Vm)2 −∆2
+

3t2l (∆ + ωc)

(Vd − Vm)2 − (∆ + ωc)2
+

3t2r(∆ + ωc)

(Vd + Vm)2 − (∆ + ωc)2

)
, (S51)

Jx =

√
3

2

(
t2r∆

(Vd + Vm)2 −∆2
− t2l∆

(Vd − Vm)2 −∆2

)
. (S52)

Assuming approximately equal tunnel couplings tl,r and qubit operation near the “line” where Vd = 0, we define
t = 1

2 (tl + tr) and δt = tl − tr, and expand the exchange energies to leading order in δt and Vd,

Jz ≈ − t2
[

∆

∆2 − V 2
m

+
3(∆ + ~ωc)

(∆ + ~ωc)2 − V 2
m

]
, (S53)

Jx ≈
√

6t∆

∆2 − V 2
m

[
δt+

2tVm
∆2 − V 2

m

Vd

]
. (S54)
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HIGHER-ORDER HYPERFINE INTERACTION AND DEPHASING

Hosting the qubit in singlet states only results in having no direct coupling between the qubit states via the hyperfine
interaction to lowest order. Higher-order effects, however, can give rise to energy shifts of the qubit splitting that
may lead to qubit dephasing.

We treat the hyperfine interaction between the electron spins and the spins of the many nuclei on a mean-field
level, resulting in a Zeeman-like Hamiltonian

Hhf =
gµB

2

∑

i

Ki · σi, (S55)

where Ki is the effective nuclear field acting on electron i and (~/2)σi is the spin operator for electron i. Due to
the tiny nuclear magnetic moments, the nuclear-spin density matrix will be in a high-temperature mixed state for all
experimentally relevant temperatures. This results in random nuclear fields Ki that have zero mean and a standard
deviation σK ∼ A/

√
N , where A is an effective material-dependent hyperfine coupling parameter and N the number

of nuclear spins the electron is coupled to. For typical GaAs-based quantum dots σK ∼ 1–5 mT.
The main contribution to higher-order hyperfine terms in the qubit subspace comes from other (non-qubit) spin

states that are close in energy. There are three triplets that are energetically close to the qubit states (labeled |T 0
1,2,3〉

in Fig. 3 in the main text), one lying below |0〉 and two in between |1〉 and the quintuplet |Q〉. The energy splitting
between the qubit states and the triplets are governed by exchange effects, where the splitting between |0〉 and |T 0

1 〉
goes as ∼ t4/∆3 [10] and the splitting between |1〉 and |T 0

2 〉 and |T 0
3 〉 as ∼ t2/∆. Thus, the hyperfine-induced shift in

the qubit splitting is dominated by the coupling between |0〉 and the triplet states

|T+
1 〉 = |SαT+

(13)〉, (S56)

|T 0
1 〉 = |SαT 0

(13)〉, (S57)

|T−1 〉 = |SαT−(13)〉. (S58)

We project the hyperfine Hamiltonian (S55) to the subspace {|0〉, |T+
1 〉, |T 0

1 〉, |T−1 〉}, yielding

Hhf =




0 ι−13 κ13 ι+13
ι+13 0 0 0
κ13 0 0 0
ι−13 0 0 0


 , (S59)

where we defined the gradients

κ13 =
gµB

2
(Kz

1 −Kz
3 ) , (S60)

ι±13 =
gµB

2
√

2

(
K±1 −K±3

)
=
gµB

2
√

2
(Kx

1 ± iKy
1 −Kx

3 ∓ iKy
3 ) . (S61)

Using perturbation theory, we find that, to leading order in Kx,y,z
i the energy shift of |0〉 is

δE0 =
κ213

E0 − ET 0
1

+
ι+13ι
−
13

E0 − ET+
1

+
ι+13ι
−
13

E0 − ET−1
, (S62)

where the Eν are the unperturbed energy levels. Due to the larger separation between |1〉 and |T 0
2,3〉, the hyperfine-

induced shift of |1〉 is much smaller. The shifts caused by the coupling to the polarized triplets |T±1 〉, i.e. the two last
terms, can be reduced by tuning the Zeeman energy, which can be done independently from ωc by tilting the total
externally applied field. The energy of |T 0

1 〉 is not affected by the Zeeman effect, and the shift caused by the coupling
to this state is thus solely determined by exchange effects.

To obtain a very rough estimate for the scale of the dephasing time caused by these higher-order hyperfine fields, we
consider their effect on the Rabi oscillations when the system is driven resonantly. Following the approach of Ref. [7]
we find the estimate T ∗2 ∼ Aq~(E0 − ET 0

1
)2/σ4

K , which indeed predicts a shorter dephasing time the closer the state

|T 0
1 〉 is to |0〉, i.e., a shorter hyperfine-induced T ∗2 at the sweet spot than in the resonant-exchange regime.
To illustrate, we calculate numerically the probability 〈P1(τ)〉 of finding the qubit in |1〉 after initializing in |0〉 and

resonantly driving either Vd or δt for a time τ , focusing on the two cases illustrated in Fig. 3(a,b) in the main text.
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FIG. 3. Time dependent probability 〈P1(τ)〉 after averaging over 2500 random nuclear field configurations, (a) in the resonant-

exchange regime and (b) at the sweet-spot. We used the same parameters as in the main text, with Ṽd = 10 µeV, δt̃ = 2 µeV,
and gµBK

x,y,z
i taken from a normal distribution with zero mean and σK = 0.07 µeV.

In Fig. 3 we show the resulting time-dependent probabilities for (a) driving Vd in the resonant-exchange regime, and
(b) driving δt at the sweet spot, after averaging over 2500 random nuclear configurations with gµBK

x,y,z
i each taken

from a normal distribution with mean zero and σK = 0.07 µeV (corresponding to 3 mT for |g| = 0.4). We used the
same parameters as in the main text, with driving amplitudes Ṽd = 10 µeV and δt̃ = 2 µeV. The results show that
the hyperfine-induced dephasing, even at the sweet spot, is small compared to the Rabi period.

We finally compare this with the rough estimate T ∗2 ∼ Aq~(E0 −ET 0
1
)2/σ4

K . Using the fact that the Rabi period is
given by TRabi = h/Aq, we find for the approximate number of coherent Rabi oscillations that should be visible

ncoh ≡
T ∗2
TRabi

∼ 1

2π

A2
q(E0 − ET 0

1
)2

σ4
K

=
1

2π

h2(E0 − ET 0
1
)2

T 2
Rabiσ

4
K

. (S63)

For the resonant-exchange regime of Fig. 3(a) we read off TRabi ≈ 25 ns and we find E0 − ET 0
1
≈ 0.80 µeV which

yields ncoh ∼ 120, whereas at the sweet spot, see Fig. 3(b), we have TRabi ≈ 19 ns and E0 − ET 0
1
≈ 0.32 µeV giving

ncoh ∼ 30. We see that these estimates are indeed roughly agreeing with the dephasing observed in Fig. 3.
We perform a similar analysis for the dephasing caused by charge noise affecting the gate potentials. In the RX

regime (along Vd = 0) we find a shift in the qubit splitting given by the first-order derivatives of Jz with respect to
the gate potentials Vi:

~δωq =
√

6t2VmδV

[
− ∆

(V 2
m −∆2)2

− 3(∆ + ωc)

(V 2
m − (∆ + ωc)2)2

]
, (S64)

where δV is a (Gaussian) random fluctuation in the gates, with a standard deviation σe typically of the order of µeV.
The charge noise induced dephasing can be estimated as

T ∗2 '
Aq~

6t4V 2
mσ

2
e

[
∆

(V 2
m −∆2)2

+
3(∆ + ωc)

(V 2
m − (∆ + ωc)2)2

]−2
. (S65)

At the RX regime, with T ∗2 ∼ 0.5 µeV, the effects of charge noise can be comparable to those of the nuclear spin
bath, but as we approach the SS, where the first derivative of Jz vanishes, the coherence time increases substantially.
A similar analysis yields T ∗2 � 10 µs, suggesting that the higher-order effects of the nuclear spin noise become the
dominant source of decoherence at the SS.
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Magnetic noise from randomly fluctuating nuclear spin ensembles is the dominating source of decoherence
for many multi-quantum-dot multielectron spin qubits. Here, we investigate in detail the effect of a DC electric
current on the coupled electron-nuclear spin dynamics in double and triple quantum dots tuned to the regime of a
Pauli spin blockade. We consider both systems with and without significant spin-orbit coupling and find that in all
cases the flow of electrons can induce a process of dynamical nuclear spin polarization that effectively suppresses
the nuclear polarization gradients over neighboring dots. Since exactly these gradients are the components of the
nuclear fields that act harmfully in the qubit subspace, we believe that this presents a straightforward way to
extend coherence times in multielectron spin qubits by at least one order of magnitude.

DOI: 10.1103/PhysRevB.101.165308

I. INTRODUCTION

Spin qubits hosted in semiconductor quantum dots form an
attractive qubit implementation that promises easily scalable
quantum processors [1–3]. One drawback of the originally
proposed single-spin single-quantum-dot qubit is that it re-
quires highly localized magnetic fields for qubit control [4,5].
To overcome the practical challenge of creating such fields,
qubits can also be encoded in a multielectron spin state hosted
in a multi-quantum-dot structure. If one defines a qubit in the
unpolarized singlet-triplet subspace of two spins in a double
quantum dot, then the field along one axis of the Bloch sphere
can be controlled fully electrically, but the second control axis
is still set by the magnetic field gradient over the two dots
[6,7]. Adding one more spin to the setup, one can create a
three-electron double-dot hybrid qubit [8,9] or a triple-dot
exchange-only qubit [10–14], offering electric control over
the full Bloch sphere through exchange interactions [15,16].

An important remaining challenge for many multispin
qubit implementations is their rapid decoherence. Its two main
sources are (i) hyperfine coupling of the electronic spins to
the randomly fluctuating nuclear spin baths in the quantum
dots [17–20] and (ii) charge fluctuations in the environment
that interfere with exchange-based qubit control [21,22]. The
latter could be mitigated by enhancing the device quality or
operating the qubit at a (higher-order) sweet spot [23–27],
which leaves the nuclear spin noise as an important intrinsic
obstacle for further progress.

Several approaches to reducing the harmful effects of
nuclear spin fluctuations in exchange-only qubits are being
explored: (i) One can host the qubits in quantum dots created
in isotopically purified 28Si, which can be made nearly nuclear
spin free [2,28–31]. However, silicon comes with the compli-
cation of the extra valley degree of freedom [2], which is hard
to control [32–34] and provides an extra channel for leakage
and dephasing [35,36]. (ii) It is possible to encode the qubit in
a four-electron singlet-only subspace [37–39], which makes
it intrinsically insensitive to the fluctuating nuclear fields.

This, however, presents significant complications for device
design and tuning. (iii) One can actively mitigate the nuclear
spin noise, e.g., by applying complex spin-echo-like pulse
sequences that effectively filter out all peaks from the noise
spectrum [40] or with an active feedback cycle exploiting
an interplay between the electron dynamics and hyperfine
interaction [41–45].

In this paper, we propose another approach that falls in the
last category but is much simpler to implement. A few years
ago, experiments on a double quantum dot hosted in an InAs
nanowire suggested that when running a DC electric current
through the system in the regime of a Pauli spin blockade,
an interplay between the hyperfine interaction and strong
spin-orbit interaction (SOI) in InAs can give rise to a process
of dynamical nuclear polarization that effectively quenches
the total Zeeman gradient over the two dots [46]. Here, we
investigate this idea in more detail, and we show how it not
only works for double quantum dots with strong SOI, but also
in the absence of SOI and—maybe more importantly—can be
implemented in a similar way in a linear triple quantum dot,
where it results in a suppression of both nuclear field gradients
between neighboring dots. For all mechanisms we investigate,
we present a simple intuitive picture as well as analytic
and numerical results that support this picture and predict a
suppression of the fluctuations of the nuclear field gradients of
one to two orders of magnitude. Since the hyperfine-induced
decoherence of both singlet-triplet and exchange-only qubits
originates mainly from these gradients, we believe that this
current-induced suppression mechanisms yields a straight-
forward way to significantly extend the coherence time of
multielectron qubits.

The rest of this paper is separated into two main parts, Secs.
II and III, which discuss the double-dot and triple-dot setup,
respectively. Both parts are organized as follows: In Secs. II A
and III A we briefly review the definition of the respective
qubit and present a description of the system in terms of a sim-
ple model Hamiltonian. In Secs. II B and III B we then present
an intuitive picture of the mechanism behind the suppression

2469-9950/2020/101(16)/165308(12) 165308-1 ©2020 American Physical Society
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FIG. 1. (a) Typical charge stability diagram of a double quantum
dot, showing the ground-state charge configuration of the system as a
function of the local dot potentials VL and VR. (b) Sketch of the double
quantum dot. If the system is in a (0,2) charge state, the two electrons
must have opposite spin. (c) Energy spectrum along the detuning axis
indicated in (a) showing the relevant (1,1) and (0,2) states, where a
finite interdot tunnel coupling and Zeeman splitting were included.
The blue (red) lines correspond to spin triplet (singlet) states.

of the gradients. Sections II C and III C contain approximate
analytic expressions for the current-induced dynamics of the
nuclear polarizations, which we corroborate in Secs. II D and
III D with numerical simulations of the stochastic nuclear spin
dynamics. Sections II E and III E contain a short conclusion,
and a final general conclusion is presented in Sec. IV.

II. SINGLET-TRIPLET QUBIT

A. The qubit

The singlet-triplet qubit is usually hosted by two electrons
residing in a double quantum dot and is defined in two two-
particle spin states with total spin projection Sz = 0. Using
gate voltages, the double dot is tuned close to the (1,1)-(0,2)
charge transition [the gray line in the charge stability diagram
shown in Fig. 1(a)]. Here, the low-energy part of the spectrum
consists of five states: The large orbital level splitting on the
dots (typically ∼meV) allows us to disregard states involving
excited orbital states; the Pauli exclusion principle then dic-
tates that the two electrons in the (0,2) configuration must be
in a spin-singlet state |S02〉. In the (1,1) charge configuration
all four spin states are accessible: one singlet state |S〉, and
three triplet states |T±〉 and |T0〉.

We describe this five-level subspace with a simple model
Hamiltonian,

Ĥ0 = Ĥe + Ĥt + ĤZ. (1)

Here,

Ĥe = −ε|S02〉〈S02| (2)

describes the relative energy detuning of the (1,1) and (0,2)
charge states as a function of the detuning parameter ε (see
Fig. 1). Further,

Ĥt = ts[|S〉〈S02| + |S02〉〈S|] (3)

accounts for spin-conserving interdot tunneling, and

ĤZ = gμBB[|T+〉〈T+| − |T−〉〈T−|] (4)

describes the Zeeman effect due to a homogeneous magnetic
field. A typical spectrum of Ĥ0 as a function of ε is shown in
Fig. 1(c), where we have set ts = 0.6EZ with EZ = |gμBB| the
Zeeman splitting, and we assumed g < 0.

The qubit is defined in an unpolarized subspace consisting
of a triplet, |1〉 = |T0〉, and the lower of the two singlet
branches, |0〉 = |S2〉 = cos θ

2 |S02〉 + sin θ
2 |S〉 [dashed levels

in Fig. 1(c)] where tan θ = 2ts/ε. From the projected qubit
Hamiltonian

Ĥq = ωq

2
σ̂z, (5)

with ωq = ε/2 + √
(ε/2)2 + t2

s , we see that the qubit has a
splitting that is tunable electrically via VL,R, presenting an
advantage over the single-spin qubit, which requires magnetic
control.

In semiconductors with nonzero nuclear spin, such as
GaAs and InAs, an important source of decoherence for such
a qubit is the hyperfine interaction between the nuclear and
electronic spins. The dominating term is the contact interac-
tion, described by

Ĥhf =
∑
d,k

Ak

2

(
2Ŝz

d Î z
d,k + Ŝ+

d Î−
d,k + Ŝ−

d Î+
d,k

)
, (6)

where Ŝd is the electron spin operator on dot d , Îd,k the nuclear
spin operator for nucleus k on dot d , and Ak = Av0|ψ (rk )|2 is
the coupling constant between the electrons and nucleus k,
written in terms of the hyperfine coupling energy, typically
A ∼ 100 μeV, the density of spinful nuclei 1/v0, and the
electron density at the position of the nucleus. Due to the
small nuclear magnetic moment, the nuclear spin ensemble is
in a fully mixed state in equilibrium at typical dilution fridge
temperatures, and within a mean-field approximation we can
then write

Ĥhf,mf = KL · ŜL + KR · ŜR, (7)

where the nuclear fields KL,R are random with an rms value
∼A/

√
N , where N is the number of spinful nuclei on a dot,

typically N ∼ 105−106. These fields are thus usually of the
order ∼mT when translated to an effective magnetic field.
Projecting this Hamiltonian to the qubit subspace yields

Ĥhf,q = δKz sin
θ

2
σ̂x, (8)

where δKz = 1
2 (Kz

L − Kz
R) is a quasistatic random field gra-

dient. For the singlet-triplet qubit this gradient can be used
for initialization along the ±x̂ axis of the Bloch sphere [6],
but in general its random nature presents a main source of
qubit decoherence. Protocols how to control or suppress the
gradient δKz could lead to significant improvement of the
qubit coherence time.

165308-2



TRANSPORT-INDUCED SUPPRESSION OF NUCLEAR … PHYSICAL REVIEW B 101, 165308 (2020)

FIG. 2. (a) The double quantum dot is tunnel coupled to source
and drain reservoirs, and in the presence of a bias voltage electrons
can flow from source to drain. Energy spectrum as a function of �

for the (1,1) spin states: (b) with and (c) without spin-orbit coupling.
The thickness of the lines indicates the occupation probability of the
eigenstates as given by Eqs. (15)–(17). Preferred electron-nuclear
spin-flip rates close to � = 0 are indicated by the gray arrows.

B. Transport-induced nuclear spin pumping:
Qualitative picture

In Ref. [46] it was shown how such a gradient can get
suppressed naturally in the presence of a strong spin-orbit
interaction, when the double dot is embedded in a transport
setup. We will first review here the intuitive picture of the
underlying mechanism, as outlined in Ref. [46], and then show
how it also works in the absence of a spin-orbit interaction. In
the next sections we will support this with an analytic inves-
tigation and numerical simulations of the coupled electron-
nuclear spin dynamics.

We assume the double dot to be connected in a linear
arrangement to source and drain reservoirs, as sketched in
Fig. 2(a), and to be tuned close to the so-called “triple point”
(where three stable charge regions meet) indicated by the red
dot in Fig. 1(a). Then, a finite bias voltage over the source
and drain can give rise to a current through the system,
via the transport cycle (0, 1) → (1, 1) → (0, 2) → (0, 1). We
assume that the system is tuned to the open regime, where the
couplings to the reservoirs, characterized by the rates 	in,out,
are the largest relevant energy scales. This ensures that the
tunneling processes (0, 2) → (0, 1) → (1, 1) are effectively
instantaneous, and the interesting dynamics happen during the

transition (1, 1) → (0, 2) which involves the same five levels
as before, {|T±,0〉, |S〉, |S02〉}.

In the absence of spin-mixing processes, the only available
transport path is (0, 1) → |S〉 → |S02〉 → (0, 1) and popula-
tion of one of the (1,1) triplet states results in a spin blockade
of the current. The effect of SOI in this context is twofold:
(i) Small inhomogeneities in the confining potential can result
in different effective g-factors gL,R on the two dots, and (ii)
tunneling from one dot to the other can now be accompanied
by a spin flip [47]. These two effects can be described by the
Hamiltonian

Ĥso = it+|T−〉〈S02| − it−|T+〉〈S02|
+ itz|T0〉〈S02| + �so|T0〉〈S| + H.c., (9)

where t± = 1√
2
(tx ± ity), with the real vector t characterizing

the spin-orbit-induced spin-flip tunnel coupling, and �so =
1
2 (gL − gR)μBB accounting for the difference in g-factors on
the dots. The magnitude of the vector t can be estimated as
∼(d/lso)ts, where d is the distance between the two dots and
lso the spin-orbit length in the direction of the interdot axis.

We see that SOI can lift the blockade of the polarized
states |T±〉. But if the total Zeeman gradient � vanishes, � =
�so + δKz = 0, the two unpolarized (1,1) states can still be
combined into a bright state |B〉 = [ts|S〉 + itz|T0〉]/

√
t2
s + t2

z

(that is coupled to |S02〉 with strength
√

t2
s + t2

z ) and a dark
state |D〉 = [itz|S〉 + ts|T0〉]/

√
t2
s + t2

z (that is not coupled). So
in this case there is still one spin-blocked state left, |D〉, which,
as a consequence, will be populated with high probability,
whereas the other three states |T±〉 and |B〉 have a vanishing
population. Adding a finite Zeeman gradient � �= 0 mixes
the states |T0〉 and |S〉, and thus |B〉 and |D〉, lifting the
blockade of |D〉 which results in a more evenly distributed
population of the levels. These observations are illustrated in
Fig. 2(b), where we show the energy spectrum of the four
(1,1) states as a function of �: The thickness of the lines
indicates the relative occupation probabilities of the four states
when embedded in a transport setup. We have set ts = 0.6EZ

and t = {0.4, 0.4, 0.4}ts, and we assumed the escape rates of
every state to be proportional to the modulo square of its total
coupling to |S02〉 given by Ĥt + Ĥso, which is valid in the limit
of large 	out.

Based on this, we can now develop a qualitative under-
standing of the resulting coupled electron-nuclear spin dy-
namics. The hyperfine Hamiltonian (6) contains terms Ŝ±

d Î∓
d,k

which can give rise to so-called spin flip-flop processes in
which the electron on dot d exchanges one unit of angular
momentum with one of the nuclei in the dot, which changes
the value of the effective nuclear field Kz

d by a small amount. A
nonequilibrium electron spin polarization on the dots can thus
be slowly transferred to the nuclear spin ensemble which, in
turn, can influence the electron dynamics, potentially yielding
an intricate feedback cycle.

To see if there is a preferred direction of nuclear spin polar-
ization, we investigate the spin structure of the most strongly
occupied electronic state: At � = 0 the state |D〉 contains
equally large components of |↑↓〉 and |↓↑〉, i.e., | 〈D|↑↓〉 |2 =
| 〈D|↓↑〉 |2 = 1

2 , where |αβ〉 denotes the (1,1) state with a
spin-α electron on the left dot and a spin-β electron on the
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right dot. Due to these equal weights, all possible hyperfine-
induced flip-flop processes are to first approximation equally
likely, and the net nuclear spin-flip rates on both dots thus
vanish. However, when � > 0 the most strongly occupied
state acquires a slightly ↓↑-polarized character [see Fig. 2(b)]
and then the flip-flop processes caused by Ŝ+

L Î−
L,k and Ŝ−

R Î+
R,k

(illustrated by the gray arrows in the figure) are more likely
than the opposite ones. This results in a net negative (positive)
nuclear spin pumping rate in the left (right) dot, which reduces
δKz and thus �. Similarly, we see that when � < 0, the small
polarization of the most strongly occupied state will drive δKz

and thus � to larger values. All together, this indeed suggests
that the specific manifestation of spin blockade in the presence
of strong SOI can result in a self-quenching of the Zeeman
gradient over the dots. The experimental results presented in
Ref. [46] were consistent with this picture.

Let us now turn to the limit of very weak SOI, where
we set t = �so = 0. In that case we see that at � = 0 there
are three spin-blocked states, the (1,1) triplet states |T±,0〉.
At this special point one thus finds an occupation probability
of 1

3 for each of the triplet states and zero for the coupled
state |S〉. But again, due to the symmetric polarization of
all four states, there will be no net nuclear spin pumping at
this point. Away from the special point � = 0, the Zeeman
gradient mixes the states |S〉 and |T0〉 and both unpolarized
eigenstates end up having a finite coupling to |S02〉, whereas
the polarized triplets remain uncoupled. This results in an
occupation probability of approximately 1

2 for |T+〉 and |T−〉
and zero for the two unpolarized states. We first focus on the
case � > 0, where |D〉 evolves into a state with a slightly
stronger ↓↑ component, whereas |B〉 acquires a slight ↑↓
character [see Fig. 2(c)]. Flip flops from the blocked states
can cause transitions to both unpolarized states, but due to
its stronger coupling to |S02〉 transitions to the state |B〉 at
� = 0 are favored. This means that the flip-flop processes
caused by Ŝ+

L Î−
L,k and Ŝ−

R Î+
R,k are most likely, which again

result in a pumping of δKz toward smaller values of �. At
� < 0 a similar reasoning results in positive pumping of δKz

toward higher values of �. So, we see that also in the case
of vanishing SOI a naive qualitative investigation of the spin
dynamics predicts a transport-induced self-quenching of the
Zeeman gradient.

In the next two sections we will present analytic and
numerical investigations that support the simple picture pre-
sented above.

C. Analytic results

We start by deriving evolution equations for the nuclear
polarizations in the two dots, similar to those derived in
Ref. [46] but now including the effect of the strong couplings
	in,out in a more general way and not solely focusing on the
case of strong SOI. From the flip-flop rates we thus find,
we derive an expression for the fluctuations around the stable
point at � = 0 using a Fokker-Planck equation to describe the
stochastic dynamics of the nuclear fields Kz

L,R.
We start from a time-evolution equation for the electronic

density matrix (we use h̄ = 1),

d ρ̂

dt
= −i[Ĥ , ρ̂] + �ρ̂, (10)

where Ĥ = Ĥ0 + Ĥso + δKz[|T0〉〈S| + |S〉〈T0|]. We neglect
all other components of KL,R since they lead to small correc-
tions that are of the order K/EZ, where K is the typical mag-
nitude of the nuclear fields. The term �ρ̂ = − 1

2	{P̂02, ρ̂} +
1
4	(1 − P̂02)ρ02,02 describes the transitions |S02〉 → (0, 1) →
(1, 1), using the projector onto the (0,2) singlet state P̂02 =
|S02〉〈S02|, where 	 = 	out and we assume that tunneling into
the system is instantaneous.

Assuming that the rate 	 is the largest energy scale in
Eq. (10), we can separate the timescales of the part of ρ̂

involving |S02〉 and the part describing the dynamics in the
(1,1) subspace. This yields an effective Hamiltonian for that
subspace,

Ĥ (1,1) =

⎛
⎜⎝

EZ 0 0 0
0 EB � 0
0 � 0 0
0 0 0 −EZ

⎞
⎟⎠, (11)

written in the basis {|T−〉, |B〉, |D〉, |T+〉}, where we assumed
g < 0 and B > 0. The projection onto the (1,1) subspace re-
sulted in exchange terms of the form (Ĥex)i j = 4εTi j/(4ε2 +
	2), with

Ti j = 〈i|(Ĥt + Ĥso)|S02〉〈S02|(Ĥt + Ĥso)| j〉, (12)

and thus EB = 4ε(t2
s + t2

z )/(4ε2 + 	2), where i, j can repre-
sent any of the four basis states. Assuming that EZ is much
larger than all exchange corrections, we neglected the terms
coupling |T±〉 to |B, D〉. The four (1,1) states also acquire a
finite lifetime that can be characterized by the four decay rates
	i = 4	Tii/(4ε2 + 	2), where we note that 	+ = 	− ≡ 	t

and 	B = 4	(t2
s + t2

z )/(4ε2 + 	2).
Using Eq. (11) and the decay rates 	i, we can write

a time-evolution equation for ρ̂ (1,1) similar to Eq. (10).
Solving d ρ̂ (1,1)/dt = 0 we find the equilibrium density ma-
trix, which can be written ρ̂ (1,1)

eq = ∑
i pi|i〉〈i| in the basis

{|T+〉, |1〉, |2〉, |T−〉}, where

|1〉 = cos
θ

2
|D〉 + eiϕ sin

θ

2
|B〉, (13)

|2〉 = cos
θ

2
|B〉 − e−iϕ sin

θ

2
|D〉, (14)

in terms of the angles ϕ = arg(−i	B� − 2EB�) and θ =
arctan(4|�|/

√
	2

B + 4E2
B ). The occupation probabilities pi of

the four states read

p± = 4	B�2

	t E2
2 + 8	B�2

, (15)

p1 = 1

2
−

4	B�2 − 1
2	t

√(
4E2

B + 	2
B

)
E2

2

	t E2
2 + 8	B�2

, (16)

p2 = 1

2
−

4	B�2 + 1
2	t

√(
4E2

B + 	2
B

)
E2

2

	t E2
2 + 8	B�2

, (17)

with E2 =
√

4E2
B + 	2

B + 16�2 . In contrast to Ref. [46], we
included the effect 	out here, resulting in a different basis of
unpolarized states |1, 2〉.

We now add the flip-flop terms in Eq. (6) in a perturbative
way where we use Fermi’s golden rule to calculate the rates
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for the resulting nuclear spin flips. Assuming for simplicity
nuclear spin 1

2 [48], we write for the flip rates up and down on
dot d ,

γ ±
d = A2

4N2
N∓

d

∑
i, j

pi
	 j

E2
Z

|〈 j|Ŝ∓
d |i〉|2 + γ N∓

d , (18)

where N±
d is the number of nuclei with spin ± 1

2 on the dot, and
we assumed for simplicity that all nuclei in a dot are coupled
equally strong to the electron spin, Ak = A/N . The factor
	 j/E2

Z accounts for the finite lifetime of the final electronic
state | j〉, assuming a Lorentzian level broadening in the limit
EZ � 	 j . We also added a term that describes random nuclear
spin flips with a rate γ to account phenomenologically for
the slow relaxation of the nuclear spins to their fully mixed
equilibrium state. Typically, this process is dominated by
diffusion of nuclear spin polarization out of the quantum dots,
resulting in relaxation of the nuclear spin polarization on a
timescale of 1–10 s [49].

We can translate these flip rates to evolution equations for
the dot polarizations Pd = (N+

d − N−
d )/N . For the polarization

gradient P� = 1
2 (PL − PR) and the average polarization P� =

1
2 (PL + PR) we find

dP�

dt
= −

[
F (�) + 1

τ

]
P� − 2F (�)EB�

E2
B + 1

4	2
B + 4�2

, (19)

dP�

dt
= −

[
F (�) + 1

τ

]
P�, (20)

with

F (�) = A2

4N2E2
Z

	2
t

(
4E2

B + 	2
B + 16�2

) + 4	2
B�2

	t
(
4E2

B + 	2
B + 16�2

) + 8	B�2
,

and 1/τ = 2γ /N the phenomenological relaxation rate of the
polarizations, usually τ ∼ 1−10 s. We note that these equa-
tions are nonlinear, since � = �so + δKz = �so + (A/2)P�.

From Eqs. (19) and (20) we see that both polarizations
acquire effectively an enhanced relaxation rate, τ−1 → τ−1 +
F (�), which does depend on P� but always drives the polar-
izations toward zero. Furthermore, Eq. (19) has an extra term
that pumps the polarization gradient to the point where the
total Zeeman gradient � is zero. For typical parameters,
where EB ∼ 	B 
 A, this term dominates and the result is a
stable polarization close to � = 0. In the limit of vanishing
SOI, we can set 	t → 0 and then find F (�) = A2	B/8N2E2

Z.
These results are illustrated in Fig. 3, where in Fig. 3(a) we
plot dP�/dt as a function of P� and in Fig. 3(b) we plot
dP�/dt as a function of P� for three different strengths of
SOI (green, red, and blue lines) as well as without any spin
pumping (orange dashed line). We used A = 250 μeV, EZ =
5 μeV, N = 4 × 105, and τ = 5 s. For the curve without SOI
(green) we used EB = 0.5 μeV, 	B = 0.25 μeV, and 	t =
�so = 0. The other two curves have 	t = 0.01 μeV, �so =
0.5 μeV (red) and 	t = 0.0625 μeV, �so = 1 μeV (blue). In
these two cases, we adjusted 	B and EB such that the total
coupling

√
t2
s + |t|2 remains constant; this amounts to assum-

ing that the SOI “converts” part of the tunnel coupling to a
non-spin-conserving coupling but it does not affect the total
coupling energy. In the next section, we will show that these

FIG. 3. Pumping curves for the polarization gradient and average
polarization, as given by Eqs. (19) and (20). (a) dP�/dt as a function
of P�. (b) dP�/dt as a function of P� . In both plots we show three
curves: without SOI (green), with intermediate SOI (red), and with
strong SOI (blue); see the main text for the parameters used. As a
reference, we also added the result without any spin pumping, i.e.,
with F (�) = 0 (orange dashed line).

analytic results also agree well with numerical simulations of
the dynamics of the polarizations [see Fig. 5(a)].

Finally, we investigate the stochastic fluctuations of the
polarization gradient around the stable point using a Fokker-
Planck equation to describe the (time-dependent) probabil-
ity distribution function P (n, t ), where the integer n = NP�

labels the allowed polarization gradients [50,51]. Going to
the continuum limit, we can find the equilibrium distribution

FIG. 4. Suppression of the fluctuations of the nuclear field gra-
dient, as given in Eq. (22), as a function of ε and η, where η

characterizes the strength of the SOI. See the main text for the
parameters used and the exact definition of η.
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FIG. 5. Simulation of the polarization gradient P�(t ) without
SOI (red solid lines), strong SOI (yellow solid lines), and without
hyperfine-induced spin pumping (A = 0, green solid lines). The
dashed lines show the solution of Eq. (19) using the same param-
eters. (a) Short-time evolution. Note that we used different initial
conditions for clarity: P�(0) = 0.0025 for the red and green lines
and P�(0) = −0.0025 for the yellow line; we always set P� (0) = 0.
(b) Long-time evolution for A = 0. The horizontal black lines indi-
cate ±σ0. (c) Long-time evolution in the presence of spin pumping.
The horizontal black lines now show ±σ as found from Eq. (22) (see
inset). See the main text for all other parameters used.

function to be

P (P�) = exp

{∫ P�

dP′
� 2N

γ +
� − γ −

�

γ +
� + γ −

�

}
, (21)

where γ ±
� = 1

2 (γ ±
L − γ ±

R ) in terms of the flip rates as written
in Eq. (18). The slope of the integrand close to the points
where γ +

� − γ −
� = 0 can thus be used to estimate the equi-

librium rms deviation of P� from those stable points. In the
absence of pumping, i.e., for F (�) → 0, we find a peak
in the distribution around the point P� = 0 with a variance
σ 2

0 = 1/2N . Including pumping, and assuming that the second
term in Eq. (19) dominates around the stable point, we find a
peak in P (P�) at P� ≈ −2�so/A, where

σ 2 ≈ σ 2
0

E2
B + 1

4	2
B

AEB

(
1 + 8

E2
ZN2

A2τ

	B + 2	t

	2
B + 4	2

t

)
. (22)

In Fig. 4 we show the resulting suppression of the fluctuations
σ 2/σ 2

0 as a function of detuning ε and strength of the SOI,
parametrized by η, where we fixed the total tunnel coupling to
t = 7.5 μeV and then used t2

x + t2
y = t2 sin2 η and t2

z + t2
s =

t2 cos2 η. In this way, η = 0 corresponds to having no SOI
and η ∼ π/4 to strong SOI. We further used A = 250 μeV,
EZ = 12.5 μeV, 	 = 75 μeV, N = 4 × 105, and τ = 5 s. For
these parameters we observe a significant suppression of the
fluctuations in the whole range we plotted. We see that the
suppression is most effective for strong SOI (where η →
π/4), but still of the same order of magnitude in the absence
of SOI (where η = 0).

D. Numerical simulations

We complement our analytic results with a numerical simu-
lation of the electron-nuclear spin dynamics, discretizing time
in small steps of �t . We start with two initial polarizations
PL(0) and PR(0) on the two dots and then solve for the
eigenvalues εi and eigenmodes ρ̂i of the superoperator � that
describes the coherent evolution and decay of the density
matrix,

�ρ̂ = −i[Ĥ , ρ̂] − 1
2 {	̂, ρ̂}, (23)

where 	̂ is a diagonal matrix containing the decay rates of the
five basis states [52]. Each of the 25 eigenmodes of � can then
be written as ρ̂i = |n〉〈m|, where |n〉 and |m〉 are picked from
a (new) five-dimensional basis. The corresponding eigenvalue
εi has the form εi = −i(En − Em) − 1

2 (γn + γm), where En,m

and γn,m give the effective energies and decay rates of the two
states |n〉 and |m〉. From knowing all εi and ρ̂i we can thus
derive the appropriate basis states, their effective energies,
and their decay rates. To find the steady-state occupation
probabilities for these five states, we evaluate their weight
in the (1,1) subspace, wn = 〈n|(1 − P̂02)|n〉, from which the
occupation probabilities follow as pn = wnγ

−1
n /

∑
i wiγ

−1
i .

Now we have all ingredients we need to evaluate the spin-
flip rates on both dots. We rewrite Eq. (18) including the
detailed dependence on all energy differences and decay rates,

γ ±
d = A2

N2

∑
i, j

pi(γi + γ j )|〈 j|Ŝ∓
d |i〉|2

4(Ei − Ej )2 + (γi + γ j )2
N∓

d + γ N∓
d , (24)

where i, j now run over the actual eigenstates found nu-
merically as outlined above. Then we pick random numbers
of spin-flip events k±

d on both dots and in both directions,

using a Poisson distribution (γ ±
d �t )k±

d eγ ±
d �t/(k±

d )!, and we
update the polarizations Pd (�t ) = Pd (0) + (2/N )(k+

d − k−
d ).

This process can then be repeated as many times as desired to
simulate the evolution of PL,R(t ) over longer times. We note
that we make sure that �t is small enough so that most of the
k±

d turn out 0 or 1.
We show the results of our simulations as solid lines in

Fig. 5, where we plot P�(t ) for three different cases: (i)
strong SOI, where tx,y,z = 3.12 μeV and t = 5.21 μeV (yel-
low), (ii) no SOI, with tx,y,z = 0 and t = 7.5 μeV (red), and
(iii) no hyperfine interaction (green). The other parameters
used were A = 125 μeV, EZ = 12.5 μeV, δ = 100 μeV, 	 =
75 μeV, N = 4 × 105, τ = 5 s, and �t = 10 μs. We used as
initial conditions P�(0) = 0.0025 (red and green), P�(0) =
−0.0025 (yellow), and P� (0) = 0 (always). We note that, in
order to make the comparison more straightforward, we set
�so = 0 in all cases, including the case of strong SOI.

In Fig. 5(a) we show the first 0.1 s of the evolution. We
see that the hyperfine interaction accelerates the dynamics of
the polarizations and tends to suppress the gradient to zero.
We added dashed lines that show time-dependent solutions
of Eq. (19), which indeed seems to predict the average dy-
namics of the polarization gradient to reasonable accuracy. In
Figs. 5(b) and 5(c) we show longer time traces to illustrate
the magnitude of the fluctuations around the stable point
P� = 0. In Fig. 5(b) the fluctuations are clearly much larger
than in Fig. 5(c), which is what we expected. The horizontal
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lines show the magnitude of the fluctuations as predicted by
Eq. (22): For the parameters used we find σ0 = 1.1 × 10−3 (to
be compared with the green trace), and σ = 7.8 × 10−5 (red
trace) and σ = 7.5 × 10−5 (yellow trace).

In both simulations that include spin pumping (red and
yellow lines) the average polarization P� tends to drift to neg-
ative values, stabilizing at ∼ − 0.02. This can be understood
in qualitative terms from Figs. 2(b) and 2(c): With strong SOI
[Fig. 2(b)] the state |T+〉 decays more efficiently than |T−〉
since it is closer in energy to |S02〉 and 	 is finite. This makes
in general spin flips from |D〉 slightly more likely to happen
to |T+〉, resulting in a net average transfer of negative angular
momentum to the nuclear spins. Without SOI [Fig. 2(c)], the
bright state |B〉 is closer in energy to |T−〉 than to |T+〉 (assum-
ing δ > 0), resulting in the flip rate |T−〉 → |B〉 to be larger
than |T+〉 → |B〉. This should indeed also result in a small net
negative pumping of the average polarization. These effects
are not reflected in Eq. (20) since in that section we neglected
all energy differences in the (1,1) subspace compared to EZ,
which, in turn, was assumed negligible compared to 	.

E. Conclusion

We found that embedding a double quantum dot in the
spin-blockade regime in a transport setup, the flow of elec-
trons induces dynamic nuclear spin polarization that tends
to suppress the polarization gradient over the two dots. This
mechanism not only works in the case of strong SOI, but also
with weak SOI or in the absence of SOI. We derived simple
analytic equations to describe the dynamics of the polarization
gradient (which we corroborated with numerical simulations),
and we found that, over a large range of parameters, the rms
value of the random polarization gradient can be suppressed
by one to two orders of magnitude. This could present a
straightforward way to extend the coherence time of double-
dot-based spin qubits.

III. EXCHANGE-ONLY QUBIT

A. The qubit

Exchange-only qubits are usually hosted in a linear triple
quantum dot, with one electron in each dot. The eight-
dimensional (1,1,1) subspace consists of one spin quadruplet
|Q〉 and two doublets |D1〉 and |D2〉. An external magnetic
field lifts the degeneracy of states with different total Sz, and
when the system is then tuned close to the border of the (1,1,1)
region, exchange effects due to finite interdot tunneling can
lift the remaining degeneracies. The qubit is then commonly
defined in the two doublet states with spin projection Sz =
+ 1

2 , and turns out to be fully controllable via electric fields
only.

In Fig. 6(a) we sketch the charge stability diagram close
to the (1,1,1)-(1,0,2)-(2,0,1) triple point, as a function of
the two tuning parameters ε = 1

2 (VR − VL ) and εM = VC −
1
2 (VL + VR), where VL,C,R denote the gate-induced potentials
on the left, central, and right dot, respectively. We include
energy offsets such that the triple point is defined to be at
(εM, ε) = (0, 0). In this regime, the low-energy part of the
spectrum consists of 12 states: In addition to the eight (1,1,1)
states mentioned above, we also need to include a doublet

FIG. 6. (a) Sketch of the charge stability diagram of a linear triple
quantum dot tuned close to the (1,1,1)-(1,0,2)-(2,0,1) triple point.
(b) Cartoon of the setup. (c), (d) Lowest part of the spectrum along
the horizontal and vertical dashed line, respectively.

|DL〉 in a (2,0,1) configuration and a doublet |DR〉 in a (1,0,2)
configuration.

We can then write a similar Hamiltonian as before,

Ĥ0 = Ĥe + Ĥt + ĤZ. (25)

Now we have

Ĥe =
∑
α=±

{ − (εM + ε)
∣∣Dα

L

〉〈
Dα

L

∣∣ − (εM − ε)
∣∣Dα

R

〉〈
Dα

R

∣∣},
(26)

where α = ± labels the spin projection Sz = ± 1
2 of the dou-

blet state. The tunneling Hamiltonian is

Ĥt = t

2

∑
α=±

α
{√

3
∣∣Dα

1

〉[〈
Dα

R

∣∣ − 〈
Dα

L

∣∣]
+ ∣∣Dα

2

〉[〈
Dα

R

∣∣ + 〈
Dα

L

∣∣]} + H.c., (27)

where we assumed the left and right tunneling couplings to be
equal, for simplicity. The Zeeman term is

ĤZ = gμBBŜtot
z , (28)

in terms of the total spin-z projection operator for the three
electrons.

In the region marked “RX” in Fig. 6(a) the central electron
can become delocalized over the three dots [see Fig. 6(b)],
yielding relatively strong exchange effects. To illustrate, we
sketch in Fig. 6(c) the spectrum of Ĥ0 along the dotted line in
(a), where we set t = 3EZ. The two dashed lines (the lowest
doublet states with Stot

z = + 1
2 ) form the qubit subspace, where

|1〉 = |D+
2 〉 and |0〉 = |D+

1 〉 at ε = 0. Close to that point, the
projected qubit Hamiltonian is

Ĥq = J

2
σ̂z −

√
3 j

2
σ̂x, (29)
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with J = 1
2 (JL + JR) and j = 1

2 (JL − JR), in terms of the
exchange energies JL,R associated with virtual tunneling to
the left or right dot, respectively. To lowest order in t [valid
not too close to the borders of the (1,1,1) region] we have
JL,R = −t2/(εM ± ε). From this it is clear that the exchange-
only qubit allows for electric control of rotations around two
different axes of the Bloch sphere, by tuning J and j through
ε and εM , whereas the singlet-triplet qubit offered electric
control over only one axis.

As in the double-dot system, the main effect of the hyper-
fine interaction with the nuclear spin bath can be described on
a mean-field level using three random effective nuclear fields,

Ĥhf,mf = KL · ŜL + KC · ŜC + KR · ŜR. (30)

Projected onto the qubit subspace, this yields

Ĥhf,q = −2

3
δKz

M σ̂z − 1√
3
δKz

LRσ̂x, (31)

where δKz
M = − 1

2 (δKz
LC − δKz

CR) and δKz
LR = 1

2 (Kz
L − Kz

R), in
terms of the field gradients δKz

i j = 1
2 (Kz

i − Kz
j ) over neigh-

boring dots. We thus see that, also in this case, the random
nuclear fields can be an important source of qubit decoher-
ence. Besides, the quadruplet state |Q+1/2〉 that cannot be split
off by increasing the external field B is coupled to the states
|0〉 and |1〉 through the same gradients δKz

M and δKz
LR, which

can thus cause leakage out of the qubit subspace. To be able
to control or suppress the field gradients could therefore again
dramatically increase the qubit quality.

B. Transport-induced nuclear spin pumping:
Qualitative picture

Inspired by our findings for the double dot, we now in-
vestigate possibilities to suppress the nuclear field gradients
by running a current through the system while tuning it to
some sort of spin-blockade regime. In contrast to the double-
dot setup, there are several different types of spin blockade
in a linear triple dot [53], which differ in the geometry of
drains and sources and relative detuning of the three dots. In
a simplest setup where the source and drain are attached to
the outer dots, all regimes of spin blockade effectively behave
as a double dot connected to one isolated dot containing one
“inert” spin. Transport through such a setup would thus only
suppress the field gradient between the two interacting dots.

To address both field gradients we use a setup where the
source is connected to the central dot and both of the outer
dots are connected to a drain [see Fig. 7(a)]. Applying a
source-drain bias voltage in vicinity of the triple point shown
in Fig. 6(a) can then give rise to a current through the system
via the two transport cycles (1, 1, 1) → (2, 0, 1)/(1, 0, 2) →
(1, 0, 1) → (1, 1, 1). Again we will assume that the system is
in the open regime where the rates 	in,out are the largest en-
ergy scales, such that the interesting dynamics happen during
the (1, 1, 1) → (2, 0, 1)/(1, 0, 2) transitions, which involves
the 12 spin states discussed above. For simplicity, we will
assume a symmetric situation, where ε = 0 and εM > 0 [see
Fig. 6(d)], tl = tr , and 	out,l = 	out,r .

In the absence of spin-mixing processes, the only (1,1,1)
states that couple to |DL〉 and |DR〉 are the doublets |D1,2〉,
and the current is spin blocked in either of the four quadruplet

FIG. 7. (a) The central dot is connected to a source and the two
outer dots are connected to drains; an applied bias voltage then
enables electrons to flow through the system to either of the drains.
(b), (c) Spectrum of the (1,1,1) states in the absence of SOI, as a
function of the gradients (b) �LR and (c) �M , where the thickness
of the lines indicates the occupation probabilities. Preferred spin-flip
rates are indicated by gray arrows.

states. This blockade may be lifted by SOI, which affects the
system in the same way as before: (i) Variations in the ef-
fective g-factor over the dots yield spin-orbit-induced Zeeman
gradients �so,i j = 1

2 (gi − g j )μBB and (ii) tunneling between
dots can be accompanied by a spin flip. It is easy to show
that, in contrast to the double-dot case, in the presence of SOI
there are no dark states, even when all total Zeeman gradients
�i j = �so,i j + δKz

i j are zero. SOI thus always fully lifts the
spin blockade and competes with the flip-flop terms in the
hyperfine interaction, thereby reducing the efficiency of spin
pumping. Below we will only focus on the case without SOI,
which is experimentally also most relevant since with strong
SOI there is no spin blockade that can be used for initialization
or read-out.
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Let us now develop an intuitive picture of the electron-
nuclear spin dynamics in this spin-blockade situation, similar
to the discussion in Sec. II B. When the gradients �LR and �M

are zero, the electrons are trapped in one of the four quadruplet
states with equal probability 1

4 . As before, due to the symmet-
ric spin structure of all states at this point there will be no net
spin pumping. A nonzero gradient mixes states with the same
total Stot

z , giving all six states with Stot
z = ± 1

2 a finite coupling
to |D±

L,R〉, whereas the two fully polarized quadruplets remain
spin blocked, each with occupation probability 1

2 . For small
gradients, the doublets have a much larger coupling to |D±

L,R〉
than |Q±1/2〉 and spin-flip processes are thus dominated by
transitions from |Q±3/2〉 to a doublet state.

We first show that transitions to |D±
2 〉 do not contribute

strongly to spin pumping. When �LR �= 0, the states |D±
2 〉

develop a dominating ↑↓↑ and ↓↑↓ character, respectively
[see Fig. 7(b)]. This results in an increased spin-flip rate γ +

C
from transitions |Q+3/2〉 → |D+

2 〉 as well as an increased rate
γ −

C from |Q−3/2〉 → |D−
2 〉. One thus does not expect a strong

net effect. For �M �= 0 the situation is similar: |D+
2 〉 (|D−

2 〉)
gains a larger weight of ↑↑↓ and ↓↑↑ (↓↓↑ and ↑↓↓). The
spin-flip rates from |Q+3/2〉 → |D+

2 〉 and |Q−3/2〉 → |D−
2 〉 are

thus affected in a symmetric way and there is no net spin
pumping.

The doublet states |D±
1 〉, however, have the largest coupling

to the outgoing states |D±
L,R〉, and effectively pump the field

gradients toward zero. For a positive gradient �LR > 0, the
state |D+

1 〉 (|D−
1 〉) evolves into a state with a slight ↑↑↓

(↑↓↓) character [see Fig. 7(b)]. This increases γ +
R (γ −

L ) and
thus drives �LR toward lower values. For a negative gradient
�LR < 0, the situation is exactly opposite, again driving �LR

to zero. A similar argument holds for the other gradient �M :
When �M > 0, the state |D−

1 〉 gets a slight ↓↑↓ character
and |D+

1 〉 obtains stronger ↓↓↑ and ↑↓↓ components [see
Fig. 7(c)]. This increases the rates γ +

L , γ −
C , and γ +

R , thereby
effectively reducing �M . For �M < 0 the situation is again
opposite, yielding a positive pumping of �M .

C. Analytic results

We now use the same approach as in Sec. II C to derive
time-evolution equations for the three nuclear polarizations,
valid for small Pd . The time-evolution equation for the elec-
tronic density matrix in the triple dot reads

d ρ̂

dt
= −i[Ĥ , ρ̂] + �ρ̂, (32)

with Ĥ = Ĥ0 + Ĥhf,mf . We describe the transitions
(2, 0, 1)/(1, 0, 2) → (1, 0, 1) → (1, 1, 1) with the term
�ρ̂ = − 1

2	{P̂dec, ρ̂} + 1
8	(1 − P̂dec)ρdec, where the operator

Pdec = ∑
i=Dα

L,R
|i〉〈i| projects to the subspace that is coupled

to the drain leads and ρdec = ∑
i=Dα

L,R
ρi,i.

Assuming that 	 is the largest energy scale involved,
we again separate timescales and write the effective (1,1,1)
Hamiltonian

Ĥ (1,1,1) =
∑
α=±

−α
3

2
EZ|Qα3/2〉〈Qα3/2| + Ĥα

1
2
, (33)

using the two 3 × 3 blocks

Ĥα
1
2

= −α
1

2
EZ + 3ED

∣∣Dα
1

〉〈
Dα

1

∣∣ + ED

∣∣Dα
2

〉〈
Dα

2

∣∣

+α

⎛
⎜⎜⎜⎝

0 −
√

2
3 �M

√
2
3�LR

−
√

2
3 �M − 1

3�M − 1√
3
�LR√

2
3�LR − 1√

3
�LR

1
3�M

⎞
⎟⎟⎟⎠, (34)

acting on the subspaces {|Qα1/2〉, |Dα
1 〉, |Dα

2 〉}. Here, EZ con-
tains the contribution 1

3 (Kz
L + Kz

C + Kz
R) from the average

nuclear spin polarization. We assumed EZ to be large enough
that we can neglect the transverse components Kx,y

d that
couple states with different Stot

z . The projection to the (1,1,1)
subspace introduced the exchange energy

ED = 2t2εM

4ε2
M + 	2

, (35)

and makes the states |D±
1 〉 and |D±

2 〉 decay with rates 	1 =
3	D and 	2 = 	D, respectively, where

	D = 2t2	

4ε2
M + 	2

. (36)

Assuming that the exchange energy ED is much larger than
the gradients �LR and �M , we diagonalize Ĥ±

1
2

using pertur-

bation theory and thusly find expressions for the eigenstates
and their decay rates valid to lowest order in the gradients
[54]. For nonzero gradients, the occupation probabilities are
approximately 1

2 for |Q±3/2〉 and zero for the remaining six
states. As for the double dot, we then calculate the hyperfine-
induced flip-flop rates perturbatively using Fermi’s golden
rule (18), and translate the resulting flip rates to evolution
equations for the average polarization P� = 1

3 (PL + PC + PR),
and the two polarization gradients PLR = 1

2 (PL − PR) and
PM = PC − 1

2 (PL + PR). This gives, to lowest order in the field
gradients �LR and �M ,

dPLR

dt
= −

[
G + 1

τ

]
PLR − G

ED
�LR, (37)

dPM

dt
= −

[
5

3
G + 1

τ

]
PM − GP� − 2G

3ED
�M, (38)

dP�

dt
= −

[
4

3
G + 1

τ

]
P� − 2

9
GPM , (39)

with G = A2	D/4N2E2
Z, where we again assumed equal N on

all dots, for simplicity.
As in the double dot, all polarization gradients thus acquire

an effectively enhanced relaxation rate. We further find that
the polarization dynamics of PM and P� are coupled, which is
a result of the geometry of the source and drains. However,
for typical parameters the last terms in Eqs. (37) and (38)
dominate, predicting an efficient suppression of both gradi-
ents, similar to the double-dot case.

Using these results, we can again investigate the stochas-
tic fluctuations around stable points, using a linear Fokker-
Planck equation that describes the time-dependent probability
distribution P (n, m, l, t ), where n = 3

2 NP� , m = NPLR, and
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l = 2
3 NPM . In the continuous limit, and to lowest order in the

gradients, we find a covariance matrix that reads

σ 2
LR = 1

2N

2ED

2ED + A
, (40)

σ 2
M = 3

2N

ED(81ED + 10A)

81E2
D + 27AED + 2A2

, (41)

σ 2
� = 1

3N

[
1 − AED

81E2
D + 27AED + 2A2

]
, (42)

σ 2
LR,M = 2

N

AED

81E2
D + 27AED + 2A2

. (43)

Realistically A � ED, so the rms of the fluctuations of the
two gradients are suppressed by a factor ∼√

ED/A, whereas
the fluctuations of P� are barely affected, similar to what we
found for the double dot.

D. Numerical simulations

Using the same method as in Sec. II D we performed
numerical simulations to corroborate our analytic results. In
Figs. 8(a) and 8(b) we first illustrate the coupled dynamics of
PLR and PM . We set P� = 0, A = 125 μeV, EZ = 12.5 μeV,
N = 4 × 105, τ = 5 s, εM = 100 μeV, ε = 0, 	 = 75 μeV,
and t = 7.5 μeV, and then we plot in color the rates of
change dPLR/dt [Fig. 8(a)] and dPM/dt [Fig. 8(b)] as a
function of PLR and PM as found using Eq. (24). In both plots
we also included the (same) vector field (dPM/dt, dPLR/dt ),
represented by the black arrows, illustrating how both field
gradients are indeed pumped toward zero. The insets show
line cuts along the red dotted lines, i.e., they show the rate
of change of each polarization gradient as a function of the
same gradient, where the other one is set to zero. The dashed
orange lines indicate the slope of the pumping curve at the
stable point, as predicted by Eqs. (37)–(39), showing indeed
good agreement with the numerical results.

In Figs. 8(c) and 8(d) we then show simulations of the
stochastic dynamics of the two polarization gradients, per-
formed in the same way as we did in Sec. II D for the dou-
ble dot. We started with initial polarizations PLR(0) = 0.001,
PM (0) = 0.002, and P� = 0 and performed a simulation with
the parameters given above (red lines) and one without spin
pumping (A = 0, green lines). Panels (i) show the short-time
dynamics, where the dashed lines correspond to the result
predicted by Eqs. (37)–(39), and panels (ii) and (iii) show the
long-time dynamics, where the horizontal solid lines indicate
the rms value of the fluctuations as predicted from Eqs. (40)–
(43). We see that in all cases our analytic expressions agree
reasonably well with the simulated dynamics of the gradients.
We further note that, for similar reasons as in the double
dot, the average polarization P� drifts toward negative values,
stabilizing around ∼ − 0.004. Due to the way the dynamics of
PM depend on P� [see Eq. (38)] one expects that the long-time
stable polarization of PM is not at zero but at a small positive
value; a careful look at Fig. 8(d)(iii) shows that this is indeed
the case in our simulations.

FIG. 8. (a) dPLR/dt and (b) dPM/dt as a function of PLR and
PM (color plots), calculated numerically using Eq. (24). The insets
show line cuts along the red dashed lines, where the orange dashed
lines indicate the slope of dP/dt at the stable point as predicted
by Eqs. (37) and (38). In both plots we also included the (same)
vector field (dPM/dt, dPLR/dt ), represented by the black arrows. See
the main text for all parameters used. (c), (d) Simulated stochastic
dynamics of (c) PLR and (d) PM with initial conditions PLR(0) =
0.001, PM (0) = 0.002, and P� = 0. For the red lines we used the
same parameters as in (a) and (b); the green lines show the dynamics
in the absence of spin pumping (for A = 0). Panels (i) show the
short-time suppression toward zero gradients, where the dashed lines
show the dynamics predicted by Eqs. (37)–(39). Panels (ii) and (iii)
illustrate the fluctuations around the stable gradients at longer times.

E. Conclusion

We found that electron transport through a linear triple
quantum dot—with a source connected to the central dot and
drains connected to the outer dots—tuned to the regime of
a Pauli spin blockade can yield a hyperfine-induced feedback
cycle that dynamically suppresses the two nuclear polarization
gradients in the triple dot. To find the approximate magnitude
of the rms value of the remaining nuclear-field fluctuations,
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we derived simple perturbative analytical expressions to de-
scribe the coupled dynamics of the polarization gradients.
This predicts a similar suppression of the fluctuations of the
gradients as in the double-dot case, i.e., a suppression of one
to two orders of magnitude. We corroborated these analytic
results with numerical simulations of the coupled electron-
nuclear spin dynamics, finding good agreement between the
two.

IV. CONCLUSION

In multielectron qubits, such as the double-dot-based
two-electron singlet-triplet qubit and triple-dot-based three-
electron exchange-only qubits, the main source of decoher-
ence is usually the fluctuating nuclear-spin polarization gradi-
ents over neighboring dots. These random gradients couple to
the spins of the electrons in the dots and can thereby add to
the qubit splitting or couple the two qubit states to each other
as well as to other nearby states outside of the computational
basis.

In this paper, we investigated the effect of running a DC
current through such systems on the nuclear polarization
gradients, while tuning to a regime of a Pauli spin blockade.
We found that transport through the dots can give rise to a

dynamical feedback cycle between the electronic and nuclear
spins that results in an active suppression of the nuclear
polarization gradients.

We considered a double-dot setup with and without a
significant spin-orbit interaction as well as a triple-dot setup
without a spin-orbit interaction. For all cases we derived
approximate analytical evolution equations for the nuclear
polarization gradients, which all predict the possibility of a
significant suppression of the fluctuations of the gradients. We
corroborated these results with numerical simulations of the
stochastic coupled electron-nuclear spin dynamics which con-
firmed a reduction in the random fluctuations of the nuclear
polarization gradients by one to two orders of magnitude.
These suppression mechanisms could thus present a straight-
forward way to significantly reduce the hyperfine-induced
decoherence in multielectron qubits.
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Qubits encoded in the spin state of heavy holes confined in Si- and Ge-based semiconductor quantum dots
are currently leading the efforts toward spin-based quantum information processing. The virtual absence of
spinful nuclei in purified samples yields long qubit coherence times and the intricate coupling between spin
and momentum in the valence band can provide very fast spin-orbit-based qubit control, e.g., via electrically
induced modulations of the heavy-hole g-tensor. A thorough understanding of all aspects of the interplay between
spin-orbit coupling, the confining potentials, and applied magnetic fields is thus essential for the development of
the optimal hole-spin-based qubit platform. Here we theoretically investigate the manifestation of the effective
g-tensor and effective mass of heavy holes in two-dimensional hole gases as well as in lateral quantum dots. We
include the effects of the anisotropy of the effective Luttinger Hamiltonian (particularly relevant for Si-based
systems) and we focus on the detailed role of the orientation of the transverse confining potential. We derive
general analytic expressions for the anisotropic g-tensor and we present a general and straightforward way
to calculate corrections to this g-tensor for localized holes due to various types of spin-orbit interaction,
exemplifying the approach by including a simple linear Rashba-like term. Our results thus contribute to the
understanding needed to find optimal points in parameter space for hole-spin qubits, where confinement is
effective and spin-orbit-mediated electric control over the spin states is efficient.

DOI: 10.1103/PhysRevB.105.075303

I. INTRODUCTION

Electron-spin-based qubits hosted in gate-defined semicon-
ductor quantum dot structures have long been a promising
candidate for easily scalable quantum information processors
[1–3]. Although GaAs-based devices have propelled the field
forward for more than a decade, yielding many encouraging
features such as full electric control and fast operation times
[4–9], their coherence times are intrinsically limited due to
the coupling between the electron spins and the nuclear spin
bath of the host material [10–12]. A potential solution to this
problem is to host the qubits in group-IV materials, such as
Si or Ge, which can be made almost nuclear spin free by
isotopic purification [13–17]. However, this approach comes
with the complication of an extra valley degree of freedom for
confined electrons, which is hard to control and provides an
extra channel for leakage and dephasing [18,19].

Lately there has been dramatic progress with Si- and Ge-
based spin qubits that use instead of electron spin the spin
of valence-band holes [20–28]. These holes provide a similar
protection against magnetic noise as the electrons, due to
the virtual absence of nuclear spins in purified samples, but
they do not have the complicating valley degree of freedom.
However, since the orbitals that constitute the valence band
are of p type [29], the corresponding states have a total sixfold
angular momentum degree of freedom, possibly leading to
highly anisotropic dynamics. Compared to the valley mixing
of the electronic states, however, these dynamics are relatively
predictable, and the built-in mixing of orbital and spin degrees
of freedom can yield strong effective spin-orbit coupling that
allows for fast qubit operation [30–36]. Moreover, the p-type

orbital nature of the valence band has the additional advantage
of weaker effective hyperfine coupling to any residual spinful
nuclei, due to the wave function having a node at the atomic
site [37].

Recent experiments on two-dimensional hole quantum
wells and quantum dots have indeed shown wildly varying
and anisotropic effective hole masses [38–40] and g-factors
[41–52], depending on choice of material, hole densities, and
on the details of the confinement. In this paper we theoreti-
cally investigate these anisotropic properties of confined holes
in detail, with a focus on the role of the precise orientation of
the confinement potentials with respect to the crystal orienta-
tion. We will pay special attention to the case of Si, which has
particularly strong anisotropic properties as compared to most
other common materials, such as Ge, GaAs, and InAs [29].

We assume a semiconductor heterostructure containing a
thin layer to which a two-dimensional hole gas (2DHG) is
confined. Further in-plane confinement into quantum dots can
then be realized using electrostatic top gates. We do not re-
strict our analysis to confinement planes along the common
crystal growth directions, but investigate the more general
case where the 2DHG can be oriented along any arbitrary
direction. Although from a fabricational point of view it is
maybe not straightforward to realize arbitrary confinement
directions (or directions that are incommensurate with the
primitive lattice vectors), exploring the fully general case
will allow us to identify orientations with optimally tuned
parameters for spin-qubit implementations in different ma-
terials, such as minimal effective masses, maximal in-plane
g-factors, and maximal electrical tunability of the g-tensor.
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Apart from revealing analytical insights in the relation be-
tween the orientation of the 2DHG and the most important
effective parameters of the resulting quantum dots, our results
could thus also serve as inspiration for exploring possibilities
to create confinement planes in less common crystallographic
directions.

In Sec. II we present the effective 4 × 4 Luttinger Hamil-
tonian we use to describe the hole dynamics in the top part of
the valence band. We then write the Hamiltonian as a function
of two Euler (rotation) angles such that the z direction can be
made to point in any desired direction.

In Sec. III we add a strong confinement potential along the
(arbitrary) z direction, assuming that the corresponding con-
finement energy scale dominates all other relevant scales in
the system. The terms in the Luttinger Hamiltonian that break
spherical symmetry allow the confinement to mix states with
different angular momentum along the out-of-plane direction,
thereby introducing anisotropy in the effective hole parame-
ters. Under the assumption of strong confinement we thus di-
agonalize the dominating part of the Hamiltonian and extract
analytic expressions for the in-plane effective hole masses.
Then we add a Zeeman Hamiltonian describing the coupling
of the hole spins to an applied magnetic field. We transform
this Hamiltonian to the same eigenbasis defined by the trans-
verse confinement and extract analytic expressions for the full
anisotropic g-tensor for the lowest two-hole spin states, as a
function of the two Euler angles. We map out the full orienta-
tion dependence of the g-tensor for the case of Si, showing a
great variation of magnitude and sign in its components.

Finally, in Sec. IV, we add in-plane confinement into quan-
tum dots, assuming the corresponding orbital energy scale
to be much smaller than the out-of-plane orbital energy. Al-
though we assume a circularly symmetric confining potential,
the anisotropic effective hole mass makes the confinement
effectively elliptic. We add the effect of the out-of-plane
component of the applied magnetic field and use a diagonal-
ized version of a single quantum-dot Hamiltonian in terms
of bosonic ladder operators. Expressing the hole momentum
operators in terms of the same ladder operators allows for
a straightforward and versatile perturbative evaluation of the
effect of spin-orbit interaction (SOI) on the dynamics of the
confined holes. We exemplify this approach by including a
simple linear Rashba-like SOI that can result from the out-
of-plane confinement, and we derive analytic expressions for
the resulting corrections to the g-tensor for the confined holes.
As we point out below, including other types of SOI that
might dominate depending on choice of material and details
of confinement is simple in our approach, and our results
can straightforwardly be used to produce analytic expressions
for the g-tensor corrections due to any desired type of SOI.
The SOI-induced corrections to the g-tensor of localized holes
can used for fast spin manipulation through electrical g-tensor
modulation [42,47,53,54], and developing a thorough under-
standing of the detailed interplay of SOI, confinement, and
applied magnetic fields is thus crucial [55–57].

II. HAMILTONIAN

In semiconductors with diamond or zinc-blende structure
the states in the valence band are comprised of atomic orbitals

TABLE I. Luttinger parameters γ1,2,3 and bare effective g-factors
κ and q in Si, Ge, GaAs, and InAs [29].

Si Ge GaAs InAs

γ1 4.285 13.38 6.85 20.40
γ2 0.339 4.24 2.10 8.30
γ3 1.446 5.69 2.90 9.10
κ −0.42 3.41 1.20 7.60
q 0.01 0.06 0.01 0.39

with angular momentum l = 1 and spin s = 1
2 . The band thus

has a sixfold degree of freedom that can be classified in terms
of total angular momentum j = l + s. Spin-orbit interaction
splits off the two states with j = 1

2 from the other four by
an energy of the order ∼100 meV, and for the low-energy
dynamics one can thus focus on the four j = 3

2 states. Using
k · p theory, one can derive an effective 4 × 4 Hamiltonian for
this subspace, which reads in the cubic approximation

HL = p2

2m0

(
γ1 + 5

2
γ2

)
− γ2

m0

(
p2

xJ2
x + c.p.

)
− 2γ3

m0
({px, py}{Jx, Jy} + c.p.), (1)

where {A, B} = 1
2 (AB + BA), m0 is the electron rest mass,

pi are the momentum operators, with i ∈ {x, y, x}, Ji are the
three spin- 3

2 matrices, and c.p. denotes cyclic permutation.
Furthermore, the dimensionless constants γ1,2,3 are the three
so-called Luttinger parameters, and are given in Table I for Si,
Ge, GaAs, and InAs.

Although we will mainly focus on the dynamics gov-
erned by the Luttinger Hamiltonian (1), the effect of strain
could easily be added by including the so-called Bir-Pikus
Hamiltonian [58],

HBP =
(

−a + 5

4
b

)
(εxx + c.p.) − b

(
εxxJ2

x + c.p.
)

− 2d√
3

(εxy{Jx, Jy} + c.p.), (2)

where ε̄ is the strain tensor, a is the Bir-Pikus hydrostatic
deformation potential, and b and d are two Bir-Pikus shear
deformation potentials [58]. This Hamiltonian has the same
structure as the Luttinger Hamiltonian (1), which in principle
allows for a straightforward inclusion of strain into the results
we will report below.

In both Hamiltonians (1) and (2) it is assumed that the
coordinate system {x, y, z} is aligned with the main crystal-
lographic axes. This is important since the terms proportional
to γ2,3, b, and d are not spherically symmetric, i.e., the struc-
ture of these two terms depends on the choice of coordinate
system. In many common semiconductors such as GaAs,
Ge, and InAs the difference δ ≡ γ3 − γ2 is smaller than the
(weighted) average 2γ2 + 3γ3 (see Table I), which makes
neglecting terms proportional to δ a good approximation. In
that case, the Hamiltonian becomes spherically symmetric
and no longer depends on the orientation of the coordinate
system with respect to the crystal structure. However, since we
specifically want to include Si in our consideration, for which
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FIG. 1. Illustration of the rotation using the two Euler angles
α and β. The crystallographic axes are shown in blue, the rotated
coordinate system (x, y, z) is shown in red.

the spherical approximation is not particularly good, we will
not neglect δ, and will take the actual crystal orientation into
account.

A 2DHG is created by applying strong confinement along
one direction. To find an effective in-plane two-dimensional
Hamiltonian for the 2DHG we need to integrate out the coor-
dinate along the direction of confinement, which we will call
z. If z does not point along one of the main crystallographic
axes, we first need to rotate the Hamiltonian to the correct
coordinate system. This can be done as follows: (i) The origi-
nal Hamiltonian is separated in a spherically symmetric part,
which is invariant under rotations, and a cubic part that is com-
prised of the 0 and ±4 components of the rank-4 part of the
tensor product of the two irreducible rank-2 tensors that can be
formed from the elements Ki j = 3

2 (pi p j + p j pi ) − δi j p2 and
Li j = 3

2 (JiJj + JjJi ) − δi jJ2 [59]. (ii) The cubic contribution
can be rotated to the new coordinate system by applying the
rotation matrix for j = 4 angular-momentum eigenfunctions
D(4)(α, β, γ ) to the components of the rank-4 tensor men-
tioned above, where {α, β, γ } are the Euler angles of the
rotation [60]. In this work we will explore the full range of
possible confinement planes and thus not restrict ourselves to
the common crystal growth directions such as [nnm].

Since any plane of confinement can be defined by two
angles only, we fix γ = 0 to simplify our analytic expressions.
The new coordinate system then results from a rotation by α

about [001] followed by a rotation by β about the new y axis,
as illustrated in Fig. 1. In that way the [nnm] directions, as
investigated in Refs. [29,59], can be obtained by simply set-
ting α = π/4. Most experiments use samples grown along the
[001] and [110] directions, with the confinement created along
the growth direction, and when presenting explicit results we
will thus consider these highly used confinement directions.
However, since we can obtain results for any general direc-
tion of confinement, it is straightforward to also explore less
common directions, which could result in a 2DHG with more
interesting or useful properties. There is no fundamental prob-
lem with growing structures along less common directions
and by investigating all possible confinement orientations our

text might identify new attractive orientations that motivate
the production of the more exotic substrates required.

The resulting rotated Hamiltonian can always be written in
the following form:

H (α, β ) =

⎛
⎜⎜⎝

P − Q −S R 0
−S† P + Q 0 R
R† 0 P + Q S
0 R† S† P − Q

⎞
⎟⎟⎠, (3)

in the basis of the eigenstates {| 3
2 〉, | 1

2 〉, |− 1
2 〉, |− 3

2 〉} of Jz with
its quantization axis along the new z direction. The matrix
elements P, Q, R, and S can be expressed in terms of dimen-
sionless symmetric tensors Mi j ,

M = 1

2m0

∑
i, j

Mi j{pi, p j}, (4)

where M ∈ {P, Q, R, S} and i, j ∈ {x, y, z}. The diagonal el-
ement P is invariant under rotations and follows from Pi j =
δi jγ1; the other elements are more involved and explicit ex-
pressions for their Mi j as a function of α and β are given
in Appendix A. The Bir-Pikus contribution to the Hamil-
tonian can easily be included in this notation, by adding a
similar contribution M → M + ∑

i, j MBP
i j εi j , where the ele-

ments MBP
i j can be obtained from Mi j by the substitution

{γ1, γ2, γ3} → {−a, 1
2 b, 1

2
√

3
d}.

III. TWO-DIMENSIONAL HOLE GAS

In this section we investigate the dynamics of the holes in
a 2DHG, and calculate their effective masses and g-tensor.
The in-plane Hamiltonian for the confined holes is obtained
by integrating out the coordinate along the direction of con-
finement, which we labeled z. Assuming no strain and an
infinite-well-type of confinement for simplicity, one finds that
all terms in H that are linear in pz vanish, also in the presence
of a finite magnetic field [29], and the terms quadratic in pz

integrate out to contributions Mzzuz, where the confinement
energy scale uz = 〈p2

z〉/2m0 will be assumed much larger than
the in-plane kinetic energy of the holes.

The next step is to diagonalize the part of the Hamiltonian
that is proportional to uz, which in general leads to a basis that
no longer consists of pure mj = ± 3

2 and mj = ± 1
2 states. The

two resulting pairs of spin-mixed eigenstates are the heavy
and light holes (HHs and LHs), where the heavy holes are the
ones with the lowest excitation energy. The light holes are split
off by an energy 	HL = 2uz

√
Q2

zz + |Rzz|2 + |Szz|2, but can
become mixed with the heavy holes by in-plane confinement
or an applied magnetic field.

A. Effective masses

1. Spherical approximation, δ = 0

Before investigating the anisotropic dynamics of the
2DHG, we briefly repeat the well-known results for the spher-
ical approximation, which follows from neglecting all terms
in the Hamiltonian proportional to δ = γ3 − γ2. Then, the
HH and LH states at the band edge are pure mj = ± 3

2 and
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mj = ± 1
2 states, and one finds S = 0 and

Q = 4γ2 + 6γ3

5
uz − 1

10m0
(2γ2 + 3γ3)

(
p2

x + p2
y

)
, (5)

R = −
√

3

10m0
(2γ2 + 3γ3)(px − ipy)2, (6)

so that 	HL = 4
5 (2γ2 + 3γ3)uz. We see that the Hamiltonian

is indeed spherically symmetric in this limit and irrespective
of the crystallographic orientation of the 2DHG the in-plane
effective masses read to leading order in 1/uz as mH(L) =
m0/[γ1 ± 1

5 (2γ2 + 3γ3)] for the HHs and LHs, respectively.

2. Anisotropic Hamiltonian, δ �= 0

The spherical approximation is good in materials where
δ/(2γ2 + 3γ3) is very small. For the case of Si, however, we
have δ/(2γ2 + 3γ3) ≈ 0.22, which is not negligible, and we
thus need to include the terms proportional to δ as well. In
general this results in the HHs and LHs becoming mixtures
of the mj = ± 3

2 and mj = ± 1
2 states, except for confinement

along high-symmetry directions, such as [001] and [111],
where Rzz = Szz = 0 and the Hamiltonian becomes isotropic
again.

Most generally, we find for the in-plane effective masses to
leading order in 1/uz, cf. [29]

mH,L(θ ) = 2m0

2γ1 + s + r cos(2θ − 2ζ )
, (7)

where θ is the angle between the x axis and the direction of
motion of the hole. The parameters s and r are different for
the HHs and LHs,

sH,L = ∓ Re[nzz · (vxx + vyy)∗],

rH,L = ±
√

Re[nzz · (vxx − vyy)∗]2 + Re[nzz · v∗
xy]2,

where we introduced the vectors vαβ ≡ {Qαβ, Rαβ, Sαβ} and
nαβ ≡ vαβ/|vαβ |, and the upper (lower) sign corresponds to
the heavy (light) holes. The angle

ζ = 1

2
arctan

(
Re[nzz · v∗

xy]

2Re[nzz · (vyy − vxx )∗]

)
(8)

determines what θ gives the smallest (largest) effective heavy
(light) hole mass, while the largest (smallest) effective mass
is always obtained when θ is an angle π

2 off from ζ . Insert-
ing the expressions given in Appendix A reveals the explicit
dependence of mH,L(θ ) on the Euler angles that were used to
rotate the Hamiltonian.

In Fig. 2 we illustrate how the effective HH masses in Si
depend on the two Euler angles α and β. Figures 2(a) and 2(b)
show the magnitudes of the smallest effective mass mH(ζ )/m0

and the largest effective mass mH(ζ + π
2 )/m0, respectively.

In Fig. 2(c) we plot the anisotropy of the effective masses
mH(ζ + π

2 )/mH(ζ ), while Fig. 2(d) shows how the angle ζ

depends on α and β.
The three symbols in Fig. 2 mark three common con-

finement directions: [001] (circle), [110] (cross), and [112]
(star). For the high-symmetry direction [001] the effective
masses are isotropic, as expected. Inserting zero for α and β

in Eq. (7) we find mH,L
[001](θ ) = m0/(γ1 ± γ2), which is indeed
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0.17

0.20

0.23

0.14

0
0

0
0 1.00

1.25

1.50

(a) (b)

(c) (d)

FIG. 2. The effective hole masses of Si as predicted by Eq. (7),
plotted against the direction of confinement. (a) and (b) show the
smallest and largest effective mass mH(ζ ) and mH(ζ + π/2), re-
spectively; (c) shows the anisotropy of the effective masses mH(ζ +
π/2)/mH(ζ ); and (d) shows the angle ζ .

independent of θ since rH,L
[001] = 0. The largest anisotropy of the

effective masses is obtained when the 2DHG is confined along
[110], where mH(ζ + π

2 )/mH(ζ ) > 1.5. Here, the parameter
rH,L in Eq. (7) is at its maximum, making the masses highly
dependent on θ ,

mH,L
[110](θ ) = 2m0

2γ1 ±
√

γ 2
2 + 3γ 2

3 ± 3 |γ 2
3 −γ 2

2 |√
γ 2

2 +3γ 2
3

cos(2θ )
. (9)

We find a similar expression for the [112] direction,

mH,L
[112](θ ) = 2m0

2γ1 ±
√

γ 2
2 + 3γ 2

3 ∓ |γ 2
3 −γ 2

2 |√
γ 2

2 +3γ 2
3

cos(2θ )
. (10)

which has less anisotropy and opposite directions where the
masses are largest and smallest, as compared to [110].

B. Heavy-hole Zeeman effect

We will now add a magnetic field and consider its coupling
to the angular momentum of the HHs in a 2DHG through
the Zeeman effect. The Hamiltonian describing this coupling
for the four j = 3

2 states in the upper valence band reads
as [29,61]

HZ = 2κB · J + 2qB · J , (11)

where κ is the effective g-factor of the isotropic coupling,
B is the applied magnetic field, q sets the strength of the
anisotropic coupling, J = {J3

x , J3
y , J3

z }, and we use units
where the Bohr magneton μB = 1. Since κ is usually two
orders of magnitude larger than q (see Table I) we will neglect
the anisotropic contribution to HZ. The goal of this section is
to derive an effective g-tensor ḡ for the HH subspace, such
that the linear Zeeman Hamiltonian (11) for the HHs can be
written as

HH
Z = 1

2σ · ḡ · B, (12)
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where σ = {σx, σy, σz} is the vector of Pauli matrices, acting
in the HH subspace.

1. Spherical approximation, δ = 0

Let us again first review the case where the spherical
approximation δ → 0 is reasonable, such as for Ge. At the
edge of the valence band, i.e., where px = py = 0, we have
R = S = 0 and the two HH states are thus pure mj = ± 3

2
states. In that case, the effective HH Zeeman Hamiltonian
becomes to leading order in 1/uz

HH
Z = 3κBzσz. (13)

At the edge of the valence band, the coupling to the in-plane
components of the magnetic field Bx,y is a higher-order effect
via the LH states and is thus proportional to B3

x,y/u2
z . In terms

of the g-tensor this means that gzz = 6κ and all other elements
are much smaller.

For a 2DHG with a finite density, the holes with nonzero
in-plane momentum have a nonzero matrix element R, see
Eq. (6). This means that for holes close to the Fermi level the
resulting HH-LH mixing adds a finite coupling to the in-plane
field, yielding an effective direction-dependent g-tensor

ḡ =
⎛
⎝g‖ cos 2ϕ −g‖ sin 2ϕ 0

g‖ sin 2ϕ g‖ cos 2ϕ 0
0 0 g⊥

⎞
⎠, (14)

with g⊥ = 6κ and g‖ = 6κ p2
F/2m0uz, again up to order

O(1/uz ). Here pF is the Fermi momentum and ϕ is the di-
rection of propagation of the hole under consideration.

Using that we defined uz = 〈p2
z〉/2m0, we arrive at

an elegant expression for the ratio of the magnitudes of
the in-plane and out-of-plane g-factors in the spherical
approximation [29,62],

g‖
g⊥

= p2
F〈

p2
z

〉 . (15)

Assuming parabolic dispersion for the range of energies of
interest, we can consider a finite two-dimensional density of
HHs ρ in the valence band and thus write for the ratio of g-
factors at the Fermi level

g‖
g⊥

= 2πρ〈
k2

z

〉 = 2

π
ρd2, (16)

where in the last step we again used our assumption of an
infinite-well-type of confinement along z, resulting in 〈k2

z 〉 =
π2/d2, where d is the width of the well.

2. Anisotropic Hamiltonian, δ �= 0

Going beyond the spherical approximation, as is necessary
for Si, all HHs and LHs are mixtures of mj = ± 3

2 and mj =
± 1

2 states, thus resulting in general in a finite coupling to Bx,y

within the HH subspace, also in the absence of finite in-plane
momentum. We thus transform the Zeeman Hamiltonian (11)
to the basis where the part of H proportional to uz is diag-
onal, which we then project to the HH subspace. To leading
order in 1/uz, the resulting g-tensor can be written relatively

compactly,

gzz

κ
= 2

Qzz

ν
+ 4

ν

μ
, (17)

gzx − igzy

κ
= 2

√
3

Szz

ν
− 2

RzzS∗
zz

μν
, (18)

gxz + igyz

κ
= 2

RzzSzz

μν
, (19)

gxx − igxy = g−+ + g++, (20)

gyy + igyx = g−+ − g++, (21)

with

g−+
κ

= −
√

3
R∗

zz

μ

(
1 + Qzz

ν

)

− (S∗
zz )2

|Szz|2
(

1 − Qzz

ν

)(
1 + ν

μ

)
,

g++
κ

=
√

3
Rzz

μ

S2
zz

|Szz|2
(

1 − Qzz

ν

)

+ R2
zz

|Rzz|2
(

1 + Qzz

ν

)(
1 − ν

μ

)
,

using the shorthand notation ν = √
Q2

zz + |Szz|2 and μ =√
Q2

zz + |Szz|2 + |Rzz|2. These results generalize those pre-
sented in Refs. [61,63], where the focus was on confinement
along [nnm]. Equations (18)–(21) are again valid to leading
order in 1/uz; we note that with the spherical approximation
we have Szz = Rzz = 0, yielding gzz = 6κ as the only nonzero
element, as expected.1 We only included the leading-order
terms in 1/uz and assumed that k‖ = 0, i.e., formally we
evaluate the g-tensor at the edge of the valence band. However,
finite k‖ also contributes to ḡ in the anisotropic (δ �= 0) case,
similar as in Sec. III B 1. That contribution typically becomes
comparable to the one evaluated here when k‖d ∼ 1, the exact
number being highly material dependent.

When the 2DHG is confined along a high-symmetry di-
rection, such as [001] or [111], we obtain an out-of-plane
g-factor g⊥ = 6κ and in-plane g-factors g‖ = 0, as expected.
For lower-symmetry directions also the gxx and gyy compo-
nents become nonzero, and by taking [110] as an example we
find straightforwardly

gzz

κ
= 2 + 2(γ2 + 3γ3)√

γ 2
2 + 3γ 2

3

, (22)

gyy

κ
= −2 − 2(γ2 − 3γ3)√

γ 2
2 + 3γ 2

3

, (23)

gxx

κ
= 2 − 4γ2√

γ 2
2 + 3γ 2

3

, (24)

1Although we here focus on the leading-order terms ∝ 1/uz, we
note that the expressions in Eqs. (18)–(21) can be generalized to
describe the g-tensor of any heavy hole governed by a Hamilto-
nian in the form of Eq. (3) by simply substituting {Qzz, Rzz, Szz} →
{Q, R, S}.
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FIG. 3. The nine components of the heavy hole g-tensor given by
Eqs. (18)–(21) plotted against the direction of confinement. We here
used parameters for Si, see Table I.

and vanishing off-diagonal components. To obtain nonzero
off-diagonal elements one has to consider less common di-
rections. For example, for a 2DHG oriented along [112] one
finds nonzero off-diagonal elements

gxz

κ
= 2

√
2√
3

(γ3 − γ2)2√
γ 2

2 + 3γ 2
3

√
11γ 2

2 + 2γ2γ3 + 35γ 2
3

, (25)

gzx

κ
= 2

√
2√
3

6(γ3 − γ2)
√

γ 2
2 + 3γ 2

3 − (γ3 − γ2)2√
γ 2

2 + 3γ 2
3

√
11γ 2

2 + 2γ2γ3 + 35γ 2
3

, (26)

coupling the z component of the spin to the x com-
ponent of B and vice-versa, making the g-tensor highly
anisotropic. All these expressions follow straightforwardly
from Eqs. (18)–(21) upon inserting the explicit expressions
given in Appendix A. In Fig. 3 we plot the magnitude of all
nine components of the HH g-tensor at the band edge as a
function of the two confinement angles α and β, as given by
Eqs. (18)–(21), where we again used parameters for Si. We see
that by controlling the orientation of the confining potential
one can design the qualitative form of the g-tensor, ranging
from purely diagonal for high-symmetry directions to highly
anisotropic for less common directions.

IV. CONFINED HEAVY HOLES

In the previous section we investigated the effects of con-
finement along the z direction on the g-tensor in a 2DHG.
Further confinement along the in-plane coordinates x and y,
often done via electrostatic gating, can then be used to localize
the holes in lateral quantum dots, opening up the possibility to
use them as a spin-qubit platform. The effective g-tensor for
such localized holes can be affected by spin-orbit interaction
(SOI) [2], the effect of which we will include in this section.

In this section we will restrict ourselves to a general linear
Rashba-type SOI, which could be caused by the 2DHG con-
finement potential [64,65]. The Hamiltonian describing this
type of interaction for the j = 3

2 states in the upper valence
band reads as [29,63,66]

Hso = βso(pyJx − pxJy), (27)

where we neglected the contribution proportional to J , which
is usually much weaker, and we assumed the electric field
associated with the confining potential to point along z. The
parameter βso is material dependent and depends also in an
intricate way on the exact shape of the transverse confining
potential. By focusing solely on this Rashba term, we neglect
the Dresselhaus contribution stemming from the lack of a
crystallographic inversion center (which can contribute to the
SOI in materials like GaAs and InAs) and we disregard the
direct Rashba SOI due to HH-LH mixing [31–34,67] and the
dipolar SOI [68]. Our choice is not meant to indicate that we
believe that this type of SOI is dominant most often in realistic
systems, but we think that it makes our presentation as peda-
gogical as possible: the straightforward derivation that follows
below can serve as a clear blueprint for how the approach can
be adapted to other, possibly more complex types of SOI.

In the remainder of this section we will start by calculating
the level structure of holes confined in a quantum dot. This
allows us then to project the spin-orbit Hamiltonian in Eq. (27)
to this basis of localized heavy-hole states and calculate the
SOI-induced corrections to the g-tensor using perturbation
theory.

A. Level structure

The Luttinger Hamiltonian that governs the in-plane mo-
tion of the effective heavy holes was obtained by transforming
the in-plane part of H in Eq. (3) to the basis where the part of
H proportional to uz is diagonal. We now add a circularly sym-
metric parabolic confinement potential V (r) = λ(x2 + y2),
which can describe the confinement of the holes in a quantum
dot,

HH
L,‖ = p2

x̃

2m−
+ p2

ỹ

2m+
+ m−

2
ω2

x x̃2 + m+
2

ω2
y ỹ2. (28)

Here, m− = mH(ζ ) and m+ = mH(ζ + π/2) are the minimum
and maximum HH effective masses, as given by Eq. (7),
and the new in-plane coordinate system {x̃, ỹ} is thus rotated
over an angle ζ along z with respect to the original sys-
tem {x, y}. Further, the frequencies ωx = √

2λ/m− and ωy =√
2λ/m+ determine the strength of the in-plane confinement

and p = −ih̄∂r̃ + eA(r̃) is the canonical momentum, with
A(r̃) = Bz(−ỹ/2, x̃/2, 0) being the vector potential for which
we use the circular gauge and neglect in-plane components of
the magnetic field, assuming strong confinement along z.

The eigenstates and eigenenergies of such an anisotropic
two-dimensional oscillator in the presence of a magnetic field
can be found in different ways, see, e.g., Refs. [69–71]. We
follow the procedure presented in Ref. [72], resulting in a
Hamiltonian that can be written in terms of two independent
harmonic oscillators,

HH
L,‖ = h̄ω+

(
a†

+a+ + 1
2

) + h̄ω−
(
a†

−a− + 1
2

)
, (29)
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FIG. 4. Asymmetry in the confinement energy ω+/ω− as given
by Eq. (31). (a) ω+/ω− as a function of the direction of confinement
in the absence of a vector potential. (b) ω+/ω− as a function of
the angle β and applied magnetic field eBz/

√
λm0, setting α = π/4

(which corresponds to focusing on confinement directions [nnm]). In
both plots we used parameters for Si.

where a(†)
± are bosonic creation and annihilation operators, and

the (positive) oscillator frequencies are defined through

ω2
± = 1

2
ω2

x + 1

2
ω2

y + 2ω2
c

± 1

2

√(
ω2

x − ω2
y

)2 + 8
(
ω2

x + ω2
y + 2ω2

c

)
ω2

c , (30)

with ω2
c = e2B2

z /4m+m−. We will assume throughout that the
oscillator energies h̄ω± are much smaller than the energy uz

associated with the transverse confinement.
Since the masses m± depend on the orientation of the plane

of the 2DHG (through the angles α and β, see Sec. III A) the
level splitting in the dot will also vary as a function of that
orientation, which can be shown more explicitly by inserting
the maximum and minimum masses as given by Eq. (7),

ω2
± = λ

m0

(
2γ1 + s + 2χ2

c ± η
)
, (31)

where we introduced the notation

η =
√

b2 + 4χ2
c

(
2γ1 + s + χ2

c

)
, (32)

and used the dimensionless parameter

χc = eBz

4
√

λm0

√
(2γ1 + s)2 − r2, (33)

characterizing the magnitude of the cyclotron frequency com-
pared to the harmonic oscillator frequencies. We used the
same notation as in Sec. III A, where we omitted the super-
script “H” from the coefficients r and s.

To illustrate the dependence of the confinement energies on
the orientation of the 2DHG explicitly, we plot in Fig. 4(a) the
anisotropy of the level splitting ω+/ω− as a function of the
angles α and β in the absence of a vector potential, where
we used parameters for Si. Naturally, since this anisotropy
stems from the orientation dependence of the effective mass, it
strongly resembles the results shown in Fig. 2(c). Figure 4(b)
shows how a nonzero vector potential affects the anisotropy.
We plot ω+/ω− as a function of eBz/

√
λm0 and the angle

β, fixing α = π/4, which captures all confinement directions

of the form [nnm]. We see that, as expected, the magnetic
field increases the anisotropy, while retaining some of the
orientation dependence.

B. Corrections to the g-tensor

Since the holes we now consider are localized, Hso does not
couple the orbital ground states of the heavy holes directly,
but does so only in higher order via virtually excited orbital
states, this in contrast with the Zeeman Hamiltonian. To find
the corrections to the g-tensor for the localized eigenstates of
the Hamiltonian (28), we first transform Hso to the basis that
diagonalizes the part of the Luttinger Hamiltonian (3) that is
proportional to uz, as we did in Sec. III B. This transformation
thus amounts to performing the same rotation as we applied
to HZ, meaning that the resulting Hamiltonian in the HH
subspace can be written using the g-tensor we derived above.
For a general spin-orbit Hamiltonian f (px, py) · J this results
in 1

4κ
σ · ḡ · f (px, py), and for the case of the linear Rashba

Hamiltonian (27) we thus write

HH
so = βso

4κ
σ · ḡ ·

⎛
⎝ py

−px

0

⎞
⎠. (34)

In this form the spin-orbit Hamiltonian contains the leading-
order effect of HH-LH mixing.

We then express the in-plane momentum operators px,y as
linear combinations of the bosonic creation and annihilation
operators a†

± and a± (see Appendix B),

px = w+
x a+ + w−

x a− + H.c., (35)

py = w+
y a+ + w−

y a− + H.c., (36)

with

w±
x = W ∓

[
±

(
m3

−
m+

)1/8√
η ± r ± 2χ2

c cos ζ

− i

(
m3

+
m−

)1/8√
η ∓ r ± 2χ2

c sin ζ

]
, (37)

w±
y = W ∓

[
i

(
m3

+
m−

)1/8√
η ∓ r ± 2χ2

c cos ζ

±
(

m3
−

m+

)1/8√
η ± r ± 2χ2

c sin ζ

]
, (38)

where the common prefactor reads as

W ± =
(

h̄2λ

16η2

)1/4[(
2γ1 + s + 2χ2

c − η
)√m+m−

m2
0

]±1/4

,

(39)
and the angle ζ was defined in (8).

By inserting Eqs. (35) and (36) for px and py in the spin-
orbit Hamiltonian (34) we see that we can write

HH
so = βso

4κ
σαAγ

αaγ + H.c., (40)

in terms of bosonic creation and annihilation operators,
which makes performing perturbation theory in the SOI
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very straightforward. Summation over repeated indices α ∈
{x, y, z} and γ ∈ {+,−} is implied and we introduced the
vectors

A±
α = gαxw

±
y − gαyw

±
x . (41)

Similar expressions for other types of SOI can straightfor-
wardly be derived along the same lines.

Using this form of the spin-orbit Hamiltonian we now
perform second-order perturbation theory on the eigenstates
of the unperturbed Hamiltonian H0 = HH

L,‖ + HH
Z , as given in

Eqs. (12) and (29). To order β2
so/ω

2
± this yields a correction

that follows from projecting

Vso =
∑
γ=±

{
HH

so

[
γ

1

2
EZ − H0

]−1

HH
so, Pγ

}
, (42)

to the HH subspace. Here EZ = |ḡ · B| is the magnitude of
the HH Zeeman splitting, the operator P± = |±〉〈±| projects
to the two eigenstates of HH

Z and can be written explicitly as
P± = 1

2 (1 ± b · σ ) with b = ḡ · B/EZ the unit vector pointing
in the direction of the Zeeman field. We then evaluate (42)
and extract the spin-orbit-induced contribution to the g-tensor
from the linear dependence of Vso on B. This yields the rela-
tively compact expression

gso
i j = 1

16κ2

l2
0

l2
so

[
cos2 ζ

(
gixg jx

L3−
+ giyg jy

L3+

)
+ sin2 ζ

(
gixg jx

L3+

+ giyg jy

L3−

)
+ sin(2ζ )

L+ + L−
L2+L2−

εikl gkxglyδ jz

]
, (43)

where

L± =
√

2γ1 + s ± r, (44)

and we used the length scales l0 = (h̄2/m0λ)
1
4 (characterizing

the in-plane confinement) and lso = h̄/m0βso (the spin-orbit
length). The first two terms in (43) arise due to the Zeeman
shift of the ground and excited spin states, whereas the last
term contains the contribution linear in ωc and couples there-
fore only to Bz.

In Fig. 5 we show an example of the orientation de-
pendence of the matrix elements gso

i j as given by Eq. (43),
where we again used parameters for Si, for consistency. The
matrix elements are plotted in units of the dimensionless
ratio l0/lso, which characterizes the effect of the spin-orbit
interaction in the quantum dots. The elements gso

ix and gso
iy

are solely determined by the first two terms in Eq. (43),
whereas the elements gso

iz also include contributions from the
last term. Similar to the unperturbed g-tensor as investigated
in Sec. III B, many elements of the spin-orbit correction ḡso

also vanish for high-symmetry confinement directions such as
[001] and [111].

Depending on the details of the material and confinement
potential of the hole gas, other types of SOI than the lin-
ear Rashba type of Eq. (34) could be dominating, such as
an effectively cubic Rashba interaction ∝ p3

+σ− − p3
−σ+. We

emphasize again that the derivation presented in this section
can easily be adapted to such other spin-orbit Hamiltoni-
ans, simply by substituting Eqs. (35), (36) into the spin-orbit

0

0
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0 0

0

10

15

5

0

-5

-10

-15

FIG. 5. The nine matrix elements of the spin-orbit correction
to the g-tensor, as given by Eq. (43), plotted as a function of the
direction of the confinement plane. The correction is shown in units
of l0/lso. In this plot we used again parameters for Si.

Hamiltonian and evaluating the resulting correction (42).
Working in the bosonic number basis this is a straightforward
task.

V. CONCLUSION

Depending on the choice of material, holes confined in
two- or lower-dimensional semiconductor structures can pos-
sess anisotropic dynamics that are highly dependent on the
details of the confinement potentials in the system. Such holes
can have several interesting properties that arise from this
anisotropy, such as highly anisotropic effective masses and
g-tensors.

In this paper we investigated these anisotropies, with
special focus on the detailed role of the orientation of
the confinement potentials. Starting from a 4 × 4 Luttinger
Hamiltonian, which we did not necessarily assume to be
spherically symmetric, we assumed very strong transverse
confinement in one direction, resulting in a 2DHG. We ro-
tated our coordinate system such that the transverse direction
could easily be integrated out for an arbitrary direction of
confinement. This approach allowed us to extract very gen-
eral analytic expressions for both the in-plane effective hole
masses and the heavy-hole g-tensor, where we pointed out
how the effect of strain can easily be included. We then inves-
tigated a strainless 2DHG and derived analytic expressions for
the effective masses and the g-tensor. In our explicit results we
focused on Si, which exhibits relatively strong anisotropies,
but the expressions we presented are fully general.

We then assumed additional in-plane confinement, leading
to the formation of quantum dots. We presented a straightfor-
ward approach to include the effects of spin-orbit coupling on
the dynamics of the hole states localized in a quantum dot. As
an example we considered the effect of a linear Rashba-like
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SOI that could arise from the transverse confinement. By
calculating the level splitting of the localized states, we pro-
jected the spin-orbit Hamiltonian to the basis of the localized
states and used perturbation theory to obtain an electric-field-
dependent correction to the g-tensor of the confined heavy
holes. Our results are highly relevant for the ongoing efforts
to use hole spins localized in Si- or Ge-based quantum dots
as spin qubits. Finding optimal working points, providing
fast qubit control through g-tensor modulation together with
relative insensitivity to charge noise requires a thorough un-
derstanding of the intricate interplay of SOI, confinement, and
applied magnetic fields.
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APPENDIX A: HAMILTONIAN TENSOR ELEMENTS

The rotated Luttinger (and Bir-Pikus) Hamiltonian can al-
ways be written in the following form:

H (α, β ) =

⎛
⎜⎜⎝

P − Q −S R 0
−S† P + Q 0 R
R† 0 P + Q S
0 R† S† P − Q

⎞
⎟⎟⎠, (A1)

in the basis of the eigenstates {| 3
2 〉, | 1

2 〉, |− 1
2 〉, |− 3

2 〉} of Jz with
its quantization axis along the new z direction.

For the Luttinger Hamiltonian the matrix elements P, Q, R,
and S can be expressed in terms of dimensionless symmetric
tensors Mi j ,

M = 1

2m0

∑
i, j

Mi j{pi, p j}, (A2)

where {A, B} = 1
2 (AB + BA), M ∈ {P, Q, R, S} and i, j ∈

{x, y, z}. The diagonal element P is invariant under rotations
and follows from Pi j = δi jγ1, while the tensor elements of Q,
R, and S read

Qxx = −1

5
(2γ2 + 3γ3) − 3δ

160
[3 + 5 cos(4α) − 5 cos(4β ){7 + cos(4α)}], (A3)

Qyy = −1

5
(2γ2 + 3γ3) + 3δ

40
[3 + 5 cos(4α) + 10 cos(2β ) sin2(2α)], (A4)

Qzz = 2

5
(2γ2 + 3γ3) − 3δ

160
[9 + 20 cos(2β ) + 35 cos(4β ) + 40 cos(4α) sin4 β], (A5)

Qxy = −3δ

2
sin(4α) cos β sin2 β, (A6)

Qyz = −3δ

2
sin(4α) sin3 β, (A7)

Qzx = 3δ

16
[4 sin2(2α) sin(2β ) + sin(4β ){7 + cos(4α)}], (A8)

Rxx = −
√

3

5
(2γ2 + 3γ3) +

√
3δ

160

[
21 − 40 cos(2β ) + 35 cos(4β ) + 80 cos2 β

{
e−4iα cos4

(
β

2

)
+ e4iα sin4

(
β

2

)}]
, (A9)

Ryy =
√

3

5
(2γ2 + 3γ3) −

√
3δ

40
[9 + 15 cos(4α) − 10 sin2(2α) cos(2β ) − 20i sin(4α) cos β], (A10)

Rzz =
√

3δ

8
sin2 β[5 + 7 cos(2β ) + cos(4α){3 + cos(2β )} − 4i sin(4α) cos β], (A11)

Rxy = 2
√

3i

5
(2γ2 + 3γ3) +

√
3δ

40
[5 sin(4α){7 cos β + cos(3β )} + 4i{3 + 5 cos(4α) − 10 sin2(2α) cos(2β )}], (A12)

Ryz =
√

3δ

8
[sin(4α){5 sin β + sin(3β )} − 8i sin2(2α) cos(2β )], (A13)

Rzx = −
√

3δ

8
sin(2β )[3 − 7 cos(2β ) − cos(4α){3 + cos(2β )} + 4i sin(4α) cos β], (A14)

Sxx = −
√

3δ

16
[8 cos2 β sin β{cos(4α) cos β − i sin(4α)} − 2 sin(2β ) + 7 sin(4β )], (A15)

Syy = −
√

3δ sin(2α) sin β[sin(2α) cos β + i cos(2α)], (A16)

Szz = −
√

3δ

16
[8 sin3 β{cos(4α) cos β − i sin(4α)} − 2 sin(2β ) − 7 sin(4β )], (A17)
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Sxy = −
√

3δ sin(2α) sin(2β )[cos(2α) cos β − i sin(2α)], (A18)

Syz = −2
√

3i

5
(2γ2 + 3γ3) −

√
3iδ

10
[3 + 5 cos(2β ) + 10 sin2 β{cos(4α) − i sin(4α) cos β}], (A19)

Szx = 2
√

3

5
(2γ2 + 3γ3) −

√
3δ

40
[3 + 5 cos(4α){1 − cos(4β )} − 35 cos(4β ) − 40i sin(4α) cos β sin2 β]. (A20)

Also the Bir-Pikus Hamiltonian can easily be obtained
from the tensor elements above. The matrix elements of the
Hamiltonian take the form

M =
∑
i, j

MBP
i j εi j, (A21)

where ε̄ is the strain tensor, and MBP
i j can be obtained from Mi j

by the substitution {γ1, γ2, γ3} → {−a, 1
2 b, 1

2
√

3
d}.

APPENDIX B: HARMONIC OSCILLATOR HAMILTONIAN

The Hamiltonian we consider has the form

H = π2
x

2m−
+ π2

y

2m+
+ m−

2
ω2

x x2 + m+
2

ω2
y y2, (B1)

with π = p + eA(r), where A(r) = Bz(−y/2, x/2, 0), and
p = −ih̄∂r the kinetic momentum. We insert this expression
for p and rewrite the Hamiltonian as

H = p̄2
x

2μ
+ p̄2

y

2μ
+ ωc p̄yx̄ − ωc p̄xȳ + μ

2
ω2

1 x̄2 + μ

2
ω2

2 ȳ2,

(B2)

using the frequencies ω1 = √
ω2

x + ω2
c , ω2 =

√
[b]ω2

y + ω2
c ,

and ωc = eBz/2μ. We further rescaled p̄x = px
√

μ/m−,
p̄y = py

√
μ/m+, x̄ = x

√
m−/μ, and ȳ = y

√
m+/μ, with μ =√

m+m− being the geometric average of the two effective
masses. In this way we rewrote the Hamiltonian as that for
an electron with an isotropic mass μ in an elliptic harmonic
potential in the presence of an out-of-plane magnetic field.

There are many ways to diagonalize such a Hamiltonian;
we will follow the method outlined in Ref. [72], which leads
straightforwardly to

H = h̄ω+
(
a†

+a+ + 1
2

) + h̄ω−
(
a†

−a− + 1
2

)
, (B3)

with ω± as defined in the main text and

a± = u± · {x̄, p̄x, ȳ, p̄y}, (B4)

which obey bosonic commutation relations. The vectors u±
read as

u± = 1

C±

{−iμω±
(
ω2

± − ω2
y − 2ω2

c

)
, ω2

± − ω2
y ,

−μωc
(
ω2

± + ω2
y

)
,−2iωcω±

}
, (B5)

with

C± =
√

2h̄μω±
[(

ω2± − ω2
y

)2 + 4ω2
cω

2
y

]
. (B6)

We can then solve Eq. (B4) to express the coordinate and
kinetic momentum operators {x̄, p̄x, ȳ, p̄y} in terms of the
bosonic operators a± and a†

±,

p̄x = u−
3 a+ − u+

3 a−
2(u−

3 u+
2 − u−

2 u+
3 )

+ H.c., (B7)

p̄y = −u−
1 a+ + u+

1 a−
2(u−

4 u+
1 − u−

1 u+
4 )

+ H.c., (B8)

x̄ = u−
4 a+ − u+

4 a−
2(u−

4 u+
1 − u−

1 u+
4 )

+ H.c., (B9)

ȳ = −u−
2 a+ + u+

2 a−
2(u−

3 u+
2 − u−

2 u+
3 )

+ H.c. (B10)

After scaling back to the original operators {x, px, y, py}, the
canonical momenta

πx =
√

m−
μ

p̄x − eBz

2

√
μ

m+
ȳ, (B11)

πy =
√

m+
μ

p̄y + eBz

2

√
μ

m−
x̄, (B12)

are expressed in terms of the bosonic operators. Such a
form of the momentum operators is very convenient to use
in perturbation theory: In this bosonic framework one can
straightforwardly work exclusively in the bosonic Fock space,
where no explicit knowledge of the electronic wave functions
is required.
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Spin–orbit interaction (SOI) plays a fundamental role in many low-dimensional semiconductor
and hybrid quantum devices. In the rapidly evolving field of semiconductor spin qubits, SOI is an
essential ingredient that can allow for ultrafast qubit control. The exact manifestation of SOI in a
given device is, however, often both hard to predict theoretically and probe experimentally. Here,
we develop a detailed theoretical connection between the leakage current through a double quantum
dot in Pauli spin blockade and the underlying SOI in the system. We present a general analytic
expression for the leakage current, which allows to connect experimentally observable features to
both the magnitude and orientation of the effective spin–orbit field acting on the moving carriers.
Motivated by the large recent interest in hole-based quantum devices, we further zoom in on the
case of Pauli blockade of hole spins, assuming a strong transverse confinement potential. In this
limit we also find an analytic expression for the current at low external magnetic field, that includes
the effect of hyperfine coupling of the hole spins to randomly fluctuating nuclear spin baths. This
result can be used to extract detailed information about both hyperfine and spin–orbit coupling
parameters for hole spins in devices with a significant fraction of non-zero nuclear spins.

I. INTRODUCTION

Spin–orbit interaction (SOI) couples the spin degree of
freedom of a charge carrier moving in an electromagnetic
field to its momentum. This interaction is an essential in-
gredient for many semiconductor-based quantum devices.
In semiconductor-superconductor hybrid structures, SOI
plays a crucial role for the realization of Majorana bound
states [1–6], with potential applications in topologically
protected quantum computation [7–10]. For spin-based
quantum technologies SOI enables spin manipulation via
electric control, allowing for enhanced spin-cavity cou-
plings [11–13] and electric dipole spin resonance [14–16].

In the field of semiconductor spin qubits [17–21], the
electric control over spin provided by SOI enables fast
qubit operation [22, 23], while also being a source of
qubit decoherence and relaxation [24–26]. Lately, there
has been substantial progress with Si- and Ge-based spin
qubits that use the spin of valence-band holes instead of
conduction-band electrons [27–34]. The p-type nature of
the valence band leads to a mixing of the orbital and
spin degrees of freedom of the carriers, yielding a poten-
tially strong effective SOI that depends on the details of
the confinement. This can give rise to several interesting
phenomena such as a highly anisotropic and electrically
tunable g-tensor [35–46], and it could also allow for very
fast spin-qubit manipulation [47–53].

Despite SOI being crucial for the working of many
semiconductor quantum devices, its exact manifestation
for a given system is often hard to predict or deduce from
experiments. This is partly a result of the total SOI hav-
ing often several, qualitatively different contributions in
strongly confined systems [54, 55]. Common contribu-
tions are Rashba terms stemming from structural inver-
sion asymmetry, e.g., created by a confining potential,
and Dresselhaus terms originating from the lack of a crys-
tallographic inversion center in semiconductors with zinc-

blende structure. In addition to this, both the so-called
dipolar SOI [56] and strain-induced mixing of different
hole states [57] can strongly affect the total effective SOI
for valence-band spins.

In an experiment, the relevant spin–orbit parameters
often emerge on a phenomenological level as an effective
spin–orbit field that acts on the moving carriers. The
manifestation of this field can be probed using several
different approaches, the most common ones being dis-
persive gate sensing [58] and current measurements as a
function of the orientation of an externally applied mag-
netic field [59–62]. Since such measurements are the most
straightforward way to access the details of the effective
spin–orbit field, it is essential to develop a thorough un-
derstanding of the connection between the experimen-
tally accessible quantities and the underlying SOI.

In this paper, we focus on a double quantum dot tuned
to the regime of Pauli spin blockade, where the most
important effect of SOI is that it effectively allows for
interdot tunneling accompanied by a spin rotation [63],
which fundamentally changes the nature of the blockade.
We theoretically investigate the leakage current through
the system, focusing on its dependence on the details
of the SOI. Building on the approach of Refs. [64, 65],
which found expressions for the current in absence of SOI,
we derive a general analytic expression for the leakage
current including SOI. Based on this result we present
a straightforward connection between the details of the
emerging spin–orbit field and the dependence of the cur-
rent on experimentally tunable parameters. We also dis-
cuss the role of the hyperfine interaction between the
localized spins and randomly fluctuating nuclear spins of
the host material, most relevant for devices based on III-
V semiconductors. For the case of hole-based systems
defined in a strongly confined two-dimensional hole gas
we present an analytic expression that captures the com-
bined effects on the leakage current of SOI and coupling
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to randomly polarized nuclear spin baths. Comparing
this expression to an experimentally measured current
could reveal details about both the effective nuclear fields
on the dots and the spin–orbit field in the system.

The rest of the paper is organized as follows. In Sec. II
we present our model Hamiltonian used to describe the
double-dot system. In Sec. III we then derive an ana-
lytic expression for the leakage current as a function of
arbitrarily oriented spin–orbit and Zeeman fields. Based
on this expression we characterize special points in pa-
rameter space where the current vanishes. In Sec. IV
we consider the collection of these stopping points and
we present straightforward connections between clear fea-
tures of the current (such as sharp minima) and the ori-
entation and magnitude of the effective spin–orbit field
in the system. In Sec. IV A we assume fully controllable
Zeeman fields on the two dots and in Sec. IV B we assume
a homogeneously applied field but allow for additional
random nuclear fields on the dots, focusing on hole-spin
systems with strong transverse confinement.

II. MODEL

The system we consider consists of two tunnel cou-
pled quantum dots that both are connected to a lead,
as illustrated in Fig. 1. We assume that the system is
tuned close to the (1,1)–(0,2) charge transition, where
(n,m) indicates a state with n(m) excess charges on the
left(right) dot, which can be either electrons or holes.
Applying a voltage bias between the two leads can then
induce a current to run through the double dot, say from
the left to the right lead. Assuming a large on-site orbital
level splitting (typically ∼ meV) compared to the applied
bias voltage, states involving excited orbitals can be dis-
regarded, and the Pauli exclusion principle then dictates
that the two charges in the (0,2) configuration must be
in a spin-singlet state, |S02〉. In the (1,1) charge config-
uration all four spin states are accessible, three triplets
|T±,0〉 and one singlet |S〉. This can lead to a so-called
spin blockade, where the system is stuck in one of the
(1,1) triplet states, which cannot transition to |S02〉.

We include two spin-mixing ingredients that can mod-
ify or lift this blockade. Firstly, each of the two dots
experiences a Zeeman field, BL,R, which we allow to be
different on the two dots. These effective magnetic fields
can originate from an externally applied field, nearby on-
chip micromagnets, or hyperfine interaction between the
localized spins and the nuclear spins of the host material.
Secondly, we also allow for strong spin–orbit coupling.
This can result in spin flips during tunneling between
the dots, but it can also renormalize the g-tensors on the
two dots, potentially contributing to a difference in the
effective Zeeman fields on the two dots.

Focusing on the five levels mentioned above, we de-
scribe the system with a simple model Hamiltonian,

H = He +Ht +HB . (1)

FIG. 1. Illustration of the two tunnel coupled quantum dots
connected to two leads, showing the orientation of the dif-
ferent fields: The spin-orbit vector is assumed to be pointing
along ẑ, whereas the Zeeman fields EZ,i and Overhauser fields
Ki are arbitrary.

Here

He = −δ|S02〉〈S02| (2)

accounts for the relative detuning δ of the four (1,1)
states with respect to the (0,2) singlet. The interdot
tunnel coupling is described by

Ht = ts|S〉〈S02|+ itso · |T 〉〈S02|+ H.c., (3)

where |T 〉 = {|Tx〉, |Ty〉, |Tz〉} is the vector of unpo-
larized triplet states along the three orthogonal co-
ordinate axes [63]. The first term in Ht accounts
for spin-conserving tunneling, whereas the second term
parametrizes the effect of spin–orbit interaction on the in-
terdot tunneling, effectively yielding spin-non-conserving
tunneling terms. The magnitude and orientation of the
vector tso depend on microscopic details of the spin–orbit
interaction. Finally, due to the singlet nature of |S02〉,
magnetic fields only yield a Zeeman effect within the (1,1)
subspace, which we describe by

HB =
1

2
[(BL · σL)⊗ 1R + 1L ⊗ (BR · σR)] , (4)

with σL(R) being the vector of Pauli matrices acting on
the left(right) spin and BL(R) being the total Zeeman
field on the left(right) dot. These fields can contain a
contribution from externally applied magnetic fields as
well as the Overhauser fields that are due to hyperfine
interaction with the spinful nuclei in each dot.

III. LEAKAGE CURRENT

The current through the double dot, and thus the de-
gree of spin blockade, is governed by an interplay between
the structure of the coupling Hamiltonian (3) and the de-
gree of spin mixing within the (1,1) subspace due to the
fields BL,R. Because of the resulting complexity it will
be convenient to perform a basis transformation which
makes the Hamiltonian take a simple form, from which
the current can be calculated analytically.

The first step is to define the z-direction of our coordi-
nate system to point along tso. This rotates the coupling
Hamiltonian into Ht = ts|S〉〈S02| + itso|T0〉〈S02| + H.c.,
where |T0〉 = 1√

2

[
|↑↓〉 + |↓↑〉

]
is the (usual) unpolarized
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spin triplet along ẑ and tso is the magnitude of the spin–
orbit vector tso. We then introduce a dimensionless pa-
rameter η = arctan [tso/ts] that parameterizes the rela-
tive strength of the spin–orbit-induced tunnel coupling
and apply a basis transformation to all (1,1) states

|ψ̃〉 = ei
η
2 (σ

z
L−σzR)|ψ〉. (5)

In this new basis we find that |S̃〉 = cos η |S〉+ i sin η |T0〉
is a “bright” state that is coupled to |S02〉 with strength

t ≡
√
t2s + t2so, and |T̃0〉 = i sin η |S〉 + cos η |T0〉 is a

“dark” state that is not coupled; the polarized triplet
states |T̃±〉 = |T±〉 are unchanged by the transformation.
Therefore, in the new basis only one (1,1) state is coupled
to |S02〉, the price to pay being that the transformed Zee-

man Hamiltonian e−i
η
2 (σ

z
L−σzR)HBe

i η2 (σ
z
L−σzR) acquired an

η-dependence and now incorporates all spin–orbit effects
included in our model. The transformation thus gauges
away the spin–orbit interaction, yielding a Hamiltonian
that can be mapped exactly to the case without spin–
orbit coupling (tso = 0), simply by redefining the two
effective Zeeman fields. For the case without spin–orbit
interaction steady-state expressions for the current have
been derived before [64, 65] and one can thus apply a
similar approach to include spin–orbit coupling.

We assume the system to be tuned to the open regime,
where the couplings to the reservoirs, characterized by
the tunneling rates Γin,out (see Fig. 1), are the largest
relevant energy scales. This ensures that the sequential
tunneling process (0, 2)→ (0, 1)→ (1, 1) is effectively in-
stantaneous, and the interesting dynamics happen during
the transition (1, 1)→ (0, 2) which involves only the five
levels we included in the Hamiltonian (1). An analytical
expression for the current is then obtained by solving the
steady-state Master equation (see App. A for more de-
tails). In the limit Γ � δ, t, BL,R we find the relatively
compact expression (setting ~ = 1 from here on),

I

eΓs
=
|e2iηB−RBzL −B−LBzR|2 + Im{e2iηB−RB+

L }2

Γ2
sQ

2
+

[
3 +

16Q2
+Q

2
−

(B2
L−B2

R)2

]
+B2

LB
2
R

, (6)

where we used BL,R = |BL,R| and we introduced the
rate Γs ≡ t2/Γ, which sets the scale of the effective decay
rate of the (1,1) states. We also introduced the notations
B± = Bx ± iBy and

Q2
± = Re{ 12eiη(B+

L ±B−R )}2

+ Im{ 12eiη(B+
L ∓B−R )}2 + 1

4 (BzL ±BzR)2. (7)

This expression thus describes the current through a dou-
ble quantum dot in the spin-blockade regime, including
the effect of spin–orbit coupling and two possibly differ-
ent Zeeman fields on the two dots.

Eq. (6) is the most important analytic result of this
work; it generalizes the result presented in Ref. [65],
by including arbitrarily oriented non-spin-conserving in-
terdot tunneling processes. The relative importance
of these processes is described by the parameter η =

a) b)

FIG. 2. (a) For two Zeeman fields with the same orientation
b = B/B but different magnitudes the current only vanishes
when the two fields are oriented along the spin–orbit vector
marked in red. (b) Tuning the Zeeman fields away from the
spin–orbit vector, the current vanish along the red lines on
the sphere where the relative orientation of the two Zeeman
vectors bL,R satisfy δφ = 2η.

arctan[tso/ts], so that eiη = (ts/t) + i(tso/t), and the
direction of the vector tso is encoded in the choice of
coordinate system, by defining the z-direction along tso.

From Eq. (6) we can identify special configurations of
BL,R for which the current vanishes, so-called “stopping
points” [64, 65]. We find four of such points: (i) The first
arises when the magnitude of the two Zeeman fields is
equal, BL = BR, making the term 16Q2

+Q
2
−/(B

2
L−B2

R)2

in the denominator diverge. The blockade at this point
can be understood from considering the (1,1) states in
the basis of spin up and down along the local fields on
the left and right dot. In this basis, the two states |↑↓〉
and |↓↑〉 are both eigenstates of HB with zero total Zee-
man energy. This means that they can be rearranged
into a bright and a dark state (again in terms of cou-
pling to |S02〉) and the system will thus get blocked in
the dark state. (ii) The three other points are obtained
for field configurations where the numerator in Eq. (6)
vanishes. One configuration for which this happens is
when either of the two fields is zero, BL,R = 0, result-
ing in two doubly degenerate subspaces which can again
be rearranged in dark and bright states. (iii) The nu-
merator also vanishes when both fields are parallel or
antiparallel to the spin–orbit vector tso, i.e., B±L,R = 0.

In this case the two triplets |T±〉 are eigenstates of HB

that are not coupled to |S02〉, resulting in a blockade of
the current. (iv) The last stopping point occurs when
e2iη = B−LB

z
R/B

−
RB

z
L. Writing the two fields in spheri-

cal coordinates {B, θ, φ}, where θ = 0 corresponds to the
z-direction (which is aligned with tso), as illustrated in
Fig. 2(a), we see that this condition corresponds to hav-
ing φR − φL = 2η if θL = θR and φR − φL = 2η + π if
θL = π − θR. This configuration corresponds to the two
fields having the same “latitude” but a relative azimuthal
angle of δφ = 2η, as illustrated in Fig. 2(b) (or one of the
two fields can have an overall minus sign compared to
this situation). This stopping point can be understood
from considering the non-spin-conserving tunneling that
underlies the coupling Hamiltonian (3): Ht can be inter-
preted as being a projection to our five-level basis of the
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general non-spin-conserving tunneling Hamiltonian

Ht =
1√
2
ĉ†L,α[ts1 + itso · σ]αβ ĉR,β + H.c., (8)

where ĉ†L(R),σ is the creation operator of a charge with

spin σ on the left(right) dot. With the z-axis oriented
along tso we see that this tunneling Hamiltonian reduces

to Ht = 1√
2
ĉ†L,α[t eiησz ]αβ ĉR,β + H.c., which describes

charge tunneling with amplitude t that is accompanied by
a z-rotation of the spin over an angle of ±2η (depending
on the direction of tunneling). With this in mind we un-
derstand that the eigenstate of HB where both spins are
aligned with (or exactly opposite to) two local fields that
have a relative azimuthal angle of 2η will evolve during
the interdot tunneling into a fully polarized spin-1 state,
which has no overlap with |S02〉.

IV. EFFECTS OF SPIN–ORBIT COUPLING

A. Independently controllable Zeeman fields

The collection of stopping points provides a potentially
useful tool for characterizing the spin–orbit interaction in
a double-dot system, allowing to identify both the orien-
tation and magnitude of the spin–orbit tunneling vector
tso. Assuming that one has full control over the two Zee-
man fields on the dots, either through local control of
the applied magnetic fields or, e.g., via local manipula-
tion of the g-tensor, one can in principle map out all the
stopping points discussed above.

If one makes sure that the two Zeeman fields are both
non-zero and have different magnitudes, then only the
last two stopping points will be probed. In this case, the
orientation of the spin–orbit vector (up to a sign) can be
identified from making the two Zeeman fields parallel to
each other and finding the field orientation for which the
current vanishes, i.e., by probing stopping point (iii) [66].
Knowing the orientation of the spin–orbit vector, its mag-
nitude can then be found by identifying stopping points
of type (iv): One tilts both fields away from tso, in any
direction, and then one rotates one of the fields along
tso while measuring the leakage current. From the point
where the current vanishes the parameter η, and thus the
relative magnitude tso/ts, follows via η = (φR − φL)/2,
see Fig. 2(b). We note here that there is no requirement
on the actual magnitude of the difference |BL − BR|:
As long as the line shape of the resulting leakage cur-
rent can be detected, the stopping points can be located.
Also if the fields are equal in magnitude but there still
is a sizable leakage current due to, e.g., spin relaxation
processes, then the stopping points related to tso are still
detectable by locating the minima of the current.

In the above we assumed accurate control over the two
Zeeman fields BL,R separately. In many systems, how-
ever, especially in devices based on III-V materials such
as GaAs and InAs, but also in some Si- and Ge-based

0
0

-100

a) b)
1

0 100-10 10

0
0

c)

0.03

0.06

FIG. 3. (a,b) Calculated current as a function of the mag-
nitude of a uniformly applied external field Bext, assuming
two different g-tensors on the two dots. In this plot we used
BL = {0.76, 0.32, 0.34}Bext and BR = {1, 0, 0}Bext with
Γs = 0.1 µeV. The blue lines show the case with no nu-
clear spins present, and the red lines show how adding two
small random nuclear fields KL,R, drawn from a normal dis-
tribution with an r.m.s. value of 0.1 µeV, drastically changes
the behaviour of the current at small fields. (c) Current as
a function of φR with BL = 0.9, BR = 1, θL = θR = 3π/8,
and φL = 0. In the absence of nuclear fields (blue line) the
current vanishes when the relative azimuthal angle δφ of two
fields of different magnitude is equal to 2η. Averaging the
current over random nuclear fields (red line) with the same
distribution as used in (a,b), the current still has its minimum
at δφ = 2η.

systems, atoms that carry finite nuclear spin yield small
quasistatic, but random effective magnetic fields acting
on the localized spins, sometimes of the order of a few mT
when there is a significant fraction of spinful nuclei. This
means that the total Zeeman fieldsBL,R = Bext

L,R+KL,R

are the sum of the externally applied fieldsBext
L,R and ran-

dom components KL,R that cannot be controlled.

However, since only the direction of the two total Zee-
man fields matters for the procedure described above, the
effect of the random contribution from the nuclear fields
can be suppressed simply by working in the large-field
limit Bext

L,R � K, where K is the typical magnitude of
the nuclear fields on the dots; residual details depending
on the specific configuration of KL,R will average out in
a typical experiment, where the total measurement time
exceeds the correlation time of the nuclear fields.

We illustrate this in Fig. 3. First, in Fig. 3(a,b)
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we exemplify the effect of one single static configura-
tion of KL,R on the leakage current: The blue lines
show the current as given by Eq. (6), as a function
of a uniformly applied magnetic field Bext, in the ab-
sence of nuclear fields but assuming different g-tensors
on the two dots (see the caption for the details). For the
red lines we added two randomly oriented nuclear fields
with magnitudes drawn from a normal distribution with
〈K2

L,R〉1/2 ≡ K = 0.1 µeV. We see that the difference
is substantial at small fields, but vanishes at larger ap-
plied field. In Fig. 3(c) we assume two external fields
with BL = 0.9, BR = 1 and θL = θR = 3π/8, looking for
the current minimum as a function of their relative angle
δφ, in the absence of nuclear fields (blue line) and after
averaging over many (finite) nuclear field configurations
(red line). Fig. 3(c) confirms that the averaging removes
all sharp features, allowing again to locate the minimum
in the current that is related to spin–orbit coupling, in
the same way as in the case without nuclear fields.

B. Homogeneous external field:
Hole-spin qubits with strong transverse confinement

Finally, we turn our attention to the more common
situation where one can only control a homogeneous ex-
ternal field, yielding more or less equal Zeeman fields on
the two dots. Since the situation with BL = BR cor-
responds to one of the stopping configurations discussed
above, in this case finite nuclear fields are in fact required
for obtaining a finite leakage current (in the absence of
other spin relaxation processes). Eq. (6) thus has to be
averaged over the random fields KL,R to find the leakage
current that would be measured in a typical experiment,
which is in general hard to do analytically.

One case, however, that can be treated analytically
is potentially relevant for hole-based transport in quan-
tum dots hosted in a quasi-two-dimensional carrier gas.
The valence band of most semiconductors is of p-type,
which adds another threefold orbital angular momentum
degree of freedom to the hole states. Spin–orbit cou-
pling splits off the states with total (orbital and spin)
angular momentum J = 1

2 , leaving a four-dimensional

J = 3
2 low-energy subspace. Out-of-plane confinement,

used to create a two-dimensional hole gas, results in fur-
ther splitting inside this subspace, lowering the energy of
the so-called heavy holes (HHs) with Jz = ± 3

2 relative

to the light holes (LHs) with Jz = ± 1
2 . For strong con-

finement this HH–LH splitting can become significant,
in which case the low-energy confined states on the dots
will mostly have a HH character. Due to the ± 3

2 angular
momentum carried by the two basis states, these states
are to lowest order not expected to be coupled directly by
the in-plane angular momentum operators J±. This is
the reason why in the absence of significant HH–LH mix-
ing most spin-dependent phenomena are usually highly
anisotropic in the HH subspace: The in-plane g-factor
can be up to an order of magnitude smaller than the

FIG. 4. Illustration of the orientation of the fields used for
the analytical derivation in Sec. IV B: The spin-orbit vector
tso and both nuclear fields KL,R are assumed to be pointing
along ẑ. The external Zeeman field Bext is equal on the two
dots, but can point in any direction.

out-of-plane one [35–38, 41–43, 45, 46], hyperfine inter-
action with the residual nuclear spins could become ef-
fectively almost purely Ising-like [67–70] (although some
experiments suggest that a significant d-shell state ad-
mixture can result in a much less anisotropic coupling
than naively expected [71, 72]), and also spin–orbit cou-
pling inside the HH subspace will in general be more
efficient along Jz.

In this highly anisotropic limit we can thus assume that
(i) the two nuclear fields are purely out-of-plane and (ii)
the spin–orbit vector tso is also most likely to be out-of-
plane. In that case, the current (6) becomes a function of
the fields BL,R = Bext +Kz

L,Rẑ, as illustrated in Fig. 4.
The experimentally measured current then follows from
averaging Eq. (6) over Kz

L,R,

Iav =

∫
dKz

LdK
z
R

e−[(K
z
L)

2+(Kz
R)2]/2K2

4πK2
I(BL,BR), (9)

where we have assumed the nuclear-field distributions to
be Gaussian with mean zero and variance K2. Signa-
tures of the hyperfine interaction that survive this aver-
aging are again expected to be most prominent at small
fields, where Bext . K. We will thus focus on the small-
field limit, Γs � K,Bext, where we find the approximate
analytic result

IavΓs
eK2

= 2f (α+ ibz)
{

1 + 6f
(
1
2β
)
β2
}

− f
(
1
2α+ ibz

) {
2 + 3f

(
1
2β
)
β2
}
, (10)

where we have used the function

f(x) =

√
π

3
Re {x}Re

{
ex

2

erfc (x)
}
− 1

3
, (11)

with erfc(x) being the complementary error function.
Furthermore, we introduced α = b‖ cos η and β = b‖ sin η
where bz = Bzext/K and b‖ =

√
(Bxext)

2 + (Byext)
2/K give

the out-of-plane and in-plane component of the external
Zeeman field, respectively, in units of K.

In Fig. 5 we plot the current given by Eq. (10) as a func-
tion of the magnitude of the external magnetic field, for
different orientations of the field and different strengths
of spin–orbit coupling. The four plots (a–d) show the
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FIG. 5. The current as given by Eq. (10), as a function of the
magnitude of the applied field Bext. The four plots have an
increasing magnitude of spin–orbit interaction: (a) η = 0, (b)
η = 0.02, (c) η = 0.1 and (d) η = 0.5. In each plot the four
traces correspond to four different orientations of the applied
field, the corresponding polar angles of Bext are indicated in
(a) (same colors represent same orientations in all plots).

current for different magnitudes of spin–orbit coupling
(η = 0, η = 0.02, η = 0.1 and η = 0.5, respectively)
and each plot contains four traces that assume a differ-
ent orientation of Bext, the angle θ being the polar angle
of the applied field (see Fig. 4). In all plots we used the
parameters Γs = 15 µeV and K = 0.1 µeV.

For all values of η the current vanishes when the Zee-
man field points along ẑ (i.e., is parallel to KL,R and tso)
and at the point where Bext = 0, both of which are cases
of the third stopping point mentioned above.

The spin–orbit-free case η = 0 is shown in Fig. 5(a).
For most orientations of Bext, but most prominently for
an in-plane field, we observe a peak in the current around
zero field, with a width ∼ K, that is split into a double
peak by the stopping point at Bext = 0. For large fields
the current converges towards a direction-dependent lim-
iting value I∞av ≈ 2(e/Γs)K

2 sin2 θ/(4 + tan2 θ). This
large-field current vanishes for θ = 0 (see above), but
also for θ = π/2, where the nuclear fields do not affect
the magnitude of the total fields to leading order, result-
ing effectively in a blockade due to stopping point (i).

As illustrated in Fig. 5(b–d), adding a finite spin–orbit
coupling changes the current profiles: On top of the nar-
row current peaks caused by the nuclear fields, we ob-
serve in most cases the characteristic spin–orbit-induced
low-field current dip, the shape and width of which de-
pend on η and the direction of the applied field. The
large-field limiting current is typically larger than in the

case of η = 0, due to the efficient spin–orbit-induced spin
mixing, which becomes more effective at larger fields.

Comparing Eq. 10 with the experimentally measured
low-field leakage current could thus give insight in the
typical magnitude of the effective nuclear fields in the
system as well as the total strength of the effective spin–
orbit field, for the case of hole-based transport in systems
with strong transverse confinement. We note here that
features similar to some observed in Fig. 5 (such as a
low-field split peak on the background of a wider zero-
field dip in the current) are indeed sometimes observed
in such systems [60, 61].

V. CONCLUSION

Spin–orbit interaction is an important ingredient in
low-dimensional semiconductor and hybrid structures,
and understanding the detailed manifestation of the in-
teraction is therefore essential. One of the mechanisms
that couples the spin dynamics of localized carriers to the
more easily detectable charge dynamics is the Pauli spin
blockade that can occur in multi-quantum-dot structures.

In this paper we investigated in detail how the leak-
age current of a double quantum dot in spin blockade
is affected by spin–orbit interaction. The main effect
of spin–orbit interaction in such a situation is that it
yields effectively a non-spin-conserving interdot tunnel
coupling. Using a simple few-level model Hamiltonian to
describe the coupled spin-charge dynamics in the system,
we derived a relatively compact analytic expression de-
scribing the leakage current through the blockade, includ-
ing the detailed effect of the spin–orbit coupling. From
this result we could identify different so-called stopping
points, for which the current vanishes, which allowed us
to connect qualitative features in the current to both the
magnitude and orientation of the effective spin–orbit field
acting on the tunneling carriers. This connection could
thus provide a tool for characterizing the relevant spin–
orbit parameters in multi-quantum-dot devices.

We then investigated the leakage current in more de-
tail in the presence of randomly fluctuating nuclear spin
baths that can couple to the localized carriers. For the
case of hole spins in a strongly confined two-dimensional
hole gas, we derived an analytic expression for the low-
field leakage current that includes averaging over the ran-
dom effective nuclear field configurations on the two dots.
Comparing these results with the experimentally mea-
sured leakage current at small fields could provide addi-
tional information about the details of both the hyperfine
and spin–orbit coupling in a system.
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Appendix A: Derivation of the current

We write the Hamiltonian (1) in the rotated basis

|ψ̃〉 = ei
η
2 (σ

z
L−σzR)|ψ〉 of one bright and three dark states,

as explained in the main text. Then, we introduce the
(anti)symmetric magnetic fields B± = 1

2 (BL ± BR)
and we define the auxiliary fields E± = {Bx± cos η −
By∓ sin η,By± cos η + Bx∓ sin η,Bz±} that incorporate the
η-dependence of the Zeeman Hamiltonian. In terms of
these new fields, we can write the Zeeman terms as

HB =
1√
2

∑

±

[
(Ex+ ± iEy+)|T̃0〉〈T̃±|

+ (∓Ex− − iEy−)|S̃〉〈T̃±|+ H.c.
]

+ Ez+
{
|T̃+〉〈T̃+| − |T̃−〉〈T̃−|

}

+ Ez−
{
|S̃〉〈T̃0|+ |T̃0〉〈S̃|

}
, (A1)

which has exactly the same form as the usual (1,1) Zee-
man Hamiltonian (4) when written in a singlet-triplet
basis [64], under the substitution B± → E±.

The 3×3 block of the Hamiltonian governing the sub-
space {|T̃+〉, |T̃0〉, |T̃−〉} thus describes a spin-1 system
coupled to the spin–orbit-rotated effective field E+. Ap-
plying the appropriate spin-1 rotation exp(iαJ ·n̂) (where
J is the vector of spin-1 matrices and n̂ is the unit vector
of rotation), we can diagonalize this block such that the

full five-level Hamiltonian becomes

H =




E+ 0 0 c 0
0 0 0 −d 0
0 0 −E+ −c 0
c −d −c 0 t
0 0 0 t −δ


 , (A2)

where t =
√
t2s + t2so, and the (real) couplings between

the triplets and the bright state |S̃〉 read

c =
E−√

2

{
[cos θ+ sin θ− cos(φ+ − φ−)− cos θ− sin θ+]

2

+ sin2 θ− sin2(φ+ − φ−)
}1/2

, (A3)

d = E− [cos θ− cos θ+ + sin θ− sin θ+ cos(φ+ − φ−)] ,
(A4)

with

θ± = arccos

[
Ez±
E±

]
, φ± = arg

[
Ex± + iEy±

]
, (A5)

being the angles that define the orientation of the fields
E±. Having the Hamiltonian on this form is advanta-
geous when calculating the current since it reduces the
number of independent parameters from eight to five.

To obtain an analytical expression for the current
through the system we then solve the master equation
in steady state

∂ρ̂

∂t
= −i[H, ρ̂] + Γ(ρ̂) = 0, (A6)

where ρ̂ is the five-level density matrix and Γ(ρ̂) =

− 1
2Γ{P̂02, ρ̂} + 1

4Γ(1 − P̂02)ρ̂02,02 the superoperator de-
scribing the fast tunneling processes to and from the
reservoirs. Here, Γ is the characteristic rate of decay of
|S02〉 and subsequent reloading of one of the (1,1) states,

and P̂02 = |S02〉〈S02| is the projector onto the state |S02〉.
After solving Eq. (A6) for the steady-state density matrix
ρ̂ss, the current through the double dot can be calculated
from the expression I = eΓρ̂ss02,02, giving

8eΓt2c2d2E2
+

I
= 4c4d2(4E2

+ + Γ2 + 4δ2)

+ d2[4E6
+ + 4E2

+t
4 + d4(4E2

+ + Γ2 + 4δ2)− 2d2E2
+(4E2

+ − 4t2 + Γ2 + 4δ2)]

+ 2c2[E2
+t

4 + 2d4(4E2
+ + Γ2 + 4δ2) + 2d2E2

+(4E2
+ + 2t2 + Γ2 + 4δ2)]. (A7)

Eq. (6) in the main text then follows from assuming that
we are in the strong-coupling regime, where Γ � δ,B±,

and introducing the rate Γs ≡ t2/Γ, which sets the scale
of the effective decay of the (1,1) states.
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F. Schäffler, J.-J. Zhang, and G. Katsaros, Nat. Comm.
9, 3902 (2018).
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