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Summary

Emergent Dirac equations in topological condensed matter physics may, as
opposed to their high energy physics equivalents, have Lorentz-breaking
terms. Several such systems have been discovered both theoretically and
experimentally, among them the tilted Dirac and Weyl semimetals. Non-tilted
Dirac and Weyl semimetals have previously been shown to house a transverse
thermoelectric effect, a Nernst contribution. The origin of the effect is the
conformal anomaly, a quantum anomaly related to non-flat spacetime. The
effect, importantly, is finite even for zero chemical potential and temperature.
Using the Kubo formalism, we have extended the calculation to find the
response function of tilted Dirac and Weyl semimetals.

Using Luttinger’s relation, we introduce an effective gravitational field from
a thermal gradient, which couples to the energy density. By employing the
conservation of energy, we then reformulate the response as a response to the
derivatives of off-diagonal elements of the energy-momentum tensor.

We find the effect to be tunable by the direction and magnitude of the tilt
with respect to the magnetic field. Several possible candidates for experimental
signatures are presented. This work thus enables further experimental and
theoretical investigation into the effect. Furthermore, we show the importance
of the specific choice of the energy-momentum tensor, which for non-zero
tilt directly affects the computed response. The ambiguity of the energy-
momentum tensor is well known, however, our results show explicitly that in
these types of systems, the choice is not only a conceptual formality but has
qualitative consequences.
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Oppsummering

Effektive Dirac likninger i topologisk faststoff-fysikk kan, i motsetning til høy-
energi ekvivalentene, ha ledd som ikke er Lorentz invariante. Flere slike syste-
mer har blitt oppdaget, både teoretisk og eksperimentelt, deriblant skråstilte
Dirac og Weyl semimetaller. Det har tidligere blitt vist at ikke-skråstilte Dirac
og Weyl semimetaller gir opphav til en transversal termoelektrisk effekt, et
bidrag til Nernst effekten. Effektens opphav er den konforme anomaliteten, en
kvante-anomalitet relatert til kurvet romtid. Effekten består, viktig nok, også
ved null kjemisk potensiale og temperatur. Vi har generalisert utregningen til
skråstilte systemer, ved hjelp av Kubo-formalismen.
Gjennom Luttingers relasjon introduserer vi et effektivt gravitasjonsfelt

fra en termiske gradient, som vekselvirker med energitettheten. Ved bevar-
ingsloven for energi, kan dette omformuleres som en respons på den deriverte
til ikke-diagonale elementer av energi-impuls-tensoren.
Vi ser at effekten er justerbar ved retning og størrelse på skråstillingen i

forhold til magnetfeltet. Flere kandidater for eksperimentell signatur presen-
teres Dette arbeidet tilrettelegger altså for videre eksperimentell og teoretisk
utforskning av effekten. Videre viser vi viktigheten av valg av energi-impuls-
tensoren, som for skråstilte systemer påvirker resultatet av beregningen.
Tvetydigheten rundt definisjonen av tensoren er velkjent, men vårt resultat
viser eksplisitt at i denne typen systemer, så har valget ikke bare konseptuell
betydning, men direkte kvalitative effekt.
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Conventions and Symbols

• e is the fundamental charge, i.e. e = |e|.

• lB is the characteristic length of a B-field, given as lB =
√
ℏ/eB, with

e the fundamental charge defined above.

• The signature of the Monegasque metric is taken to be −2, i.e. the
metric tensor ηµν = diag(+1,−1,−1,−1).

• For a 3+1 dimensional case (q three-dimensional), the Fourier transform
is defined as

A(q, ω) =
∫∫

dtdrei(ωt−qr)A(r, t),

A(r, t) =
∫∫ dωdq

(2π)4 e
−i(ωt−qr)A(q, ω).

(1)

For other dimensionalities, the exponent of the 2π factor must be chosen
accordingly.

• Vectors will be written in bold font, v = (v1, v2, v3), and with Roman
indices, i, j, k, for two and three-dimensional vectors. Four dimensional
vectors will be typed in normal weight, v, with Greek indices, µ, ν, λ,
and upper and lower indices indicating contravariant and covariant
quantities

• Natural units ℏ = c = 1 will be used in parts of the thesis, for more
clear notation and in order to make it easier for the reader to recognize
the similarities with high energy physics literature.

• For spin degrees of freedom, the Pauli matrices will be denoted by σ for
real spin and τ for pseudo-spin.

• Operators will in general be typed with as normal quantities: O for
scalar operators and O or O for vector operators, depending on their
dimensions. The hat symbol, Ô, will not be used unless not including a
hat will be confusing.

• In Chapter 4, we will use capital letters M,N to indicate the absolute
value of the corresponding quantity, M = |m|.
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Introduction

Topological materials have been of central interest in contemporary condensed
matter physics [FC13], with the first topological phases arising in the context of
integer quantum Hall effect [KDP80; as cited in FC13]. A solid understanding
of the topological theory behind this has been developed during the last
decade and a half [BH13; FC13], with the Nobel Prize in Physics 2016
awarded for theoretical work on topological matter [Sci16]. Two excellent
reviews of topological materials are [FC13] and, most directly relevant for this
thesis, [AMV18].
One interesting phenomenon in topological materials is the emergence

of quantum anomalies and the emergent particles’ analogy to fundamental
particles of QFT (quantum field theory). Noether’s theorem says that for any
continuous symmetry of the action of a system, there is an accompanying
conserved current. This explains, for example, the conservation of momentum
and energy as a result of the position and time independence of our universe.
In a quantum mechanical treatment, however, the symmetry of the classical
theory may be broken, which gives rise to an anomaly. The chiral anomaly,
for example, has been of great interest in condensed matter research in
recent years [ACV19]. The chiral anomaly explains the non-conservation
of the axial current [Zee10], and gives rise to exotic transport phenomena
in condensed matter systems [Bur15; Bur16; WBB14]. A less investigated
anomaly is the conformal anomaly, the appearance of a non-vanishing trace of
the energy-momentum tensor in a conformally scaled metric. Transport from
the conformal anomaly has recently been investigated and shown in Weyl and
Dirac semimetals [ACV19; Arj19; CCV18; Che16].
Arjona, Chernodub, and Vozmediano [ACV19] derived, using the Kubo

formalism, the charge current response to thermal perturbations in Weyl and
Dirac semimetals. This response, a contribution to the Nernst current, has
its origin in the conformal anomaly. In this thesis, we extend the calculation
tilted Dirac and Weyl semimetals – Lorentz breaking extensions of the Dirac
equation. The work combines important theory and concepts from both
high-energy and condensed matter physics.
The thesis consists of four chapters; the three first chapters introduce

concepts central to the main derivation of the thesis, while the fourth chapter
represents the bulk work of the thesis, namely the derivation itself. Note that
some sections of the first and second chapter, and most of the third chapter,
started as parts of a specialization project report written in the fall of 2021.
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INTRODUCTION

The first chapter gives an overview of concepts important to topological
materials, starting with symmetries and ending with a more in-depth discussion
of Weyl and Dirac semimetals, with a special focus on the tilted type. In the
second chapter, linear responses theory is introduced in light of the Kubo
formalism and the Luttinger formalism of thermal transport. In chapter three,
we introduce anomalies of QFT in the context of high-energy physics. The
thesis also contains three appendices; Appendix A contains long expressions
not included in the main text, Appendix B contains a lengthy calculation
that runs somewhat in parallel to the main text, for an alternative choice of
the energy-momentum tensor (details discussed in the main text), and lastly,
Appendix C contains several minor results the author finds interesting, that
are only tangentially relevant to the main work.
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Topological Materials 1
In this chapter, we consider various concepts from physics that are relevant in
the context of topological materials. Firstly, the symmetry-related concepts
of parity, time-reversal, Kramer’s degeneracy, and accidental degeneracy are
explained. Then follows a quick summary of spin-orbit interactions. Lastly,
Weyl and Dirac cones are discussed, with particular focus on tilted cones. The
chapter is intended as a quick introduction to the vast field of topological
materials for someone who is not familiar with these concepts.

Some topics discussed are directly applicable to the thesis, while others are
included both in order to put the concepts of the thesis in a greater context,
and also with regard to further continuation of this work.

1.1. Parity
We consider now the discrete transformation of space inversion, or parity.
Firstly, basic properties of the transformation will be presented and discussed.
Its effect on the position, momentum, and angular momentum operators will
be discussed, before a more general discussion on how it transforms proper-
and pseudo-tensors.
Let the parity operator P be a unitary operator

P : |a⟩ → P |a⟩ . (1.1)

By definition, we require

P †xP = −x, (1.2)
P †pP = −p, (1.3)

where x, p are the position and momentum operators. By the unitarity of P ,
which means that P †P = I,

xP = −Px.

We now use this anticommutation to find an explicit form of the transformation
in the position representation. By noting that, given the position eigenstate
|x1⟩,

xP |x1⟩ = −Px1 |x1⟩ = −x1P |x1⟩ , (1.4)

3



TOPOLOGICAL MATERIALS

with x1 the eigenvalue of the state, we may conclude

P |x1⟩ = |−x1⟩
up to some arbitrary phase. We chose this phase to be unity. Then

P 2 |x1⟩ = |x1⟩ (1.5)

for any position eigenstate, which gives the operator relation P 2 = 1 =⇒
P = ±1. This also means that P is Hermitian,

P = P−1 = P †.

The treatment of angular momentum is somewhat more involved. Some
sources simply state that as the orbital angular momentum

L = x× p

is a product of two odd quantities, it must be even under parity. This,
of course, is a gross over simplification, as extra care must be taken when
considering the spin angular momentum S contributing to the total angular
momentum

J = L+ S.

The angular momentum operator is the generator of rotations

R = e−iϵJ ·n ≈ 1− iϵJ · n
where we expanded the operator under the assumption of a small angle, ϵ≪ 1.
As rotations are invariant during space inversion,

P †RP = R (1.6)
=⇒ P †J · nP = J · n (1.7)

from which it follows that
P †JP = J, (1.8)

as the parity operator obviously does not act on the normal vector n. Thus,
the angular momentum operator, unlike the linear momentum operator, is
even under parity.
For a general vector-like1 quantity V , we will consider how it transforms

during space inversion. If the quantity “flips” during space inversion, P †V P =
1We use the term vector-like instead of vector, as the term vector is defined as something
that is odd under parity, as opposed to for example a pseudo vector, even though they
naively “look” like vectors. This can be compared to tensors. The definition of a tensor
is something that transforms like a tensor under a Lorentz transformation, so we may
have matrix objects that “look” like tensors, but transforms differently.

4



1.2. Time-reversal

−V , we say simply that it is a vector, also sometimes known as a polar vector.
Quantities that do not “flip”, so that they turn into their opposites in the
flipped image, we denote pseudo vectors. Thus, depending on whether the
eigenvalue of an operator under space inversion is +1 or −1 we say that it
is either a pseudo-vector or vector, respectively. Position and momentum
are examples of vectors, while angular momentum and the magnetic field are
examples of pseudo-vectors. An illustrative explanation of this is shown in
Fig. 1.1, which explains both angular momentum and magnetic fields.
Remark about dimensionality: The above discussion about parity, which

is the standard way to present parity in condensed matter physics, is valid
for three dimensions. In two dimensions, however, one must separate parity
and space inversion. The former takes a right-handed system to a left-handed
system [SN17], while the latter inverts space, x → −x. In odd dimensions,
this is the same, while in even dimensions they differ. In even dimensions,
inversion corresponds to a rotation, while a parity transform is different from
any rotation. In more formal terms, inversion is part of the group of proper
rotations SO(n) for even dimensions, as the determinant is +1, the definition
of a proper rotation. Parity should in general be taken to be the operation
P such that the group of all rotations O(n) = SO(n)× {E,P}, with E the
identity transformation. This will not be of direct importance here, but it is
an important detail to note.

1.2. Time-reversal
We will now consider the time-reversal operator T . Firstly we will show that
it must be antiunitary, then we will show T 2 = ±1, and find a more specific
form of T for half-integer spin systems.
The time-reversal operator by definition will invert the value of the time

T : t→ −t

while leaving space unchanged. The invariance of space is summaries by the
operator relation,

T xT −1 = x, (1.9)
where x is understood as the position operator. The momentum operator,
however, is flipped due to its time dependence

T pT −1 = −p. (1.10)

A schematic representation of inversion symmetry and time-reversal symmetry
is given in Fig. 1.2.

5



TOPOLOGICAL MATERIALS

P

Figure 1.1.: Schematic illustration of vectors and pseudovectors. A vector
field with curl, which may be taken to be either momentum or current, is
shown as a rotating arrow. The curl of this field, which will respectively
be the angular momentum or B-field, is shown as a straight arrow. Under
inversion, shown as a mirror operation, the curl generated by the field
is inverted in addition to the mirroring, i.e. rotated. This non-formal
illustration gives an intuitive explanation of the concepts vector and
pseudovector. Note that as the example is two-dimensional, mirror
symmetry here the same as parity, and not inversion. See main text for
details.

We are now in a position to show that T must be antiunitary by requiring
the invariance of the commutation relation between momentum and position,
[x, p] = iℏ.

T [x, p]T −1 = T iℏT −1 = −[x, p] = −iℏ. (1.11)

In the first equality, the commutation relation was used directly. In the second
equality, Eqs. (1.9) and (1.10) were used to gain a minus sign. This all leads
to the relation

T iT −1 = −i. (1.12)

From this, we gather that the time-reversal operator must be antiunitary. An
antiunitary transformation O is a transformation

|a⟩ → |ã⟩ = O |a⟩ , |b⟩ → |b̃⟩ = O |b⟩ ,

such that

⟨b̃|ã⟩ = ⟨b|a⟩∗ , (1.13)
O (c1 |a⟩+ c2 |b⟩) = c∗1O |a⟩+ c∗2O |b⟩ . (1.14)

6



1.2. Time-reversal

↑ ↓

−π π

↑↓
↓, ↑ ↓, ↑

k

E

−π π

↑

↓

↓ ↑

k

−π π

↑↓
↓ ↓

k

Figure 1.2.: Schematic illustration of time and inversion breaking of degener-
ate energy bands of a two-level system. The two levels are denoted ↑ and
↓. (Left:) Both time-reversal and inversion symmetry present, with the
two energy bands being degenerate at all momenta. (Center:) Inversion
symmetry is broken. Notice how at the TRIM (time-reversal independent
momenta) points, −π, 0, π, the two energy levels are degenerate, as, by
definition, we have k = −k. (Right:) Time-reversal symmetry is broken.
Notice how in the time-reversal symmetric case Kramer’s doublet is
present, as for any state at k, the state at −k is degenerate in energy and
has opposite spin. This is not the case when time-reversal symmetry is
broken, as the spin at −k has the same spin. (Kramer’s doubled discussed
more in Section 1.3.) Figure inspired by Ramazashvili [Ram19].

A note of caution: the Dirac bra-ket notation was originally designed to
handle linear operators, where it excels. For anti-linear operators, which
antiunitary operators are, the bra-ket notation can be deceiving. We will
always take anti-linear operators to work on kets, never on bras from the right.
So, for example,

⟨a|O|b⟩

should be understood as
⟨a| (|O|b⟩)

and never
(⟨a|O|) |b⟩ .

The right operation of an anti-linear operator on a bra, ⟨a|O, will not be
defined [discussion based on SN17, Ch. 4.4].
We will in general write

T = UK (1.15)

7



TOPOLOGICAL MATERIALS

where U is a unitary transformation and K is the complex conjugation. Now,
we will show that T 2 = ±1, by an elegant method inspired by Bernevig and
Hughes [BH13]. Consider

T 2 = UKUK = UU∗ = U(UT )−1 ≡ φ, (1.16)

where we in the second last equality used the unitarity of U . As applying
the time-reversal operator twice must result in the original state, up to some
phase, φ must surely be diagonal. From Eq. (1.16) it follows

U = φUT , UT = Uφ (1.17)

where the fact that φT = φ for any diagonal matrix was used. From this
follows that

U = φUφ⇒ Uφ−1 = φU. (1.18)

This holds in general only for φ = ±1, and thus T 2 = ±1. Furthermore, we
will in the next section show that for integer spin particles T 2 = 1 while for
half-integer spin particles T 2 = −1.

1.2.1. Time-reversal operator on spinful particles
When considering spinful particles, we must enforce yet another property on
the time-reversal operator. As spin is odd under time-reversal one must have

T ST −1 = −S. (1.19)

Consider now specifically a spin-s state, with the basis |s,m⟩, being an
eigenstate of Sz,S2, with eigenvaluesmℏ, s(s+1)ℏ2 respectively. By Eq. (1.19)
it follows that T |s,m⟩ is also an eigenstate of Sz, with eigenvalue −mℏ, since

SzT |s,m⟩ = −T Sz |s,m⟩ = −mℏT |s,m⟩ . (1.20)

Let
T |s,m⟩ = η |s,−m⟩ ,

where η is some phase. Consider now the commutation of the ladder operators
J± = Sx ± iSy with the time-reversal operator.

[Sx ± iSy]︸ ︷︷ ︸
S±

T = −T Sx ∓ iT Sy

= −T [Sx ∓ iSy]︸ ︷︷ ︸
S∓

,
(1.21)

8



1.3. Kramer’s degeneracy

where the anti-linearity of T is emphasized. Thus, operating with S+ on
T |s,m⟩ gives

S+T |s,m⟩ = ηsmS+ |s,−m⟩
= ηsmℏ

√
(s+m)(s−m+ 1) |s,−m+ 1⟩ .

(1.22)

On the other hand, commuting the two operators first gives

S+T |s,m⟩ = −T S− |s,m⟩
= −T ℏ

√
(s+m)(s−m+ 1) |s,m− 1⟩

= −ℏ
√
(s+m)(s−m+ 1)ηs,m−1 |s,−m+ 1⟩ .

(1.23)

By comparison, ηsm = −ηs,m−1; ηsm has a flip of its sign under increments of
m. The m dependence should therefore be (−1)m. For later convenience, we
will choose to also include an s-term in the exponent, so that the exponent is
integer also for half-integer systems, resulting in

ηsm = (−1)s−mf(s), (1.24)

where f(s) is some phase that does not depend on m. We are now in a
position where we may find T 2, by acting on a general spin s system.

T 2
s∑

m=−s

am |s,m⟩ = T
∑
m

a∗mf(s)(−1)s−m |s,−m⟩

=
∑
m

amf
∗(s)(−1)s−mT |s,−m⟩

=
∑
m

am|f(s)|2(−1)2s |s,m⟩ .

(1.25)

Note that it was important that (−1)s−m was real, which is taken care of by
the s-term. As f(s) is only a phase, this gives

T 2 = (−1)2s, (1.26)

for any spin s system. Thus, for half integer spin, 1
2 ,

3
2 , . . . , T 2 = −1, while

for integer spin T 2 = +1.

1.3. Kramer’s degeneracy
Kramer’s degeneracy states that for any half-integer system that is time-
reversal symmetric, energy levels are at least two-fold degenerate. The proof

9



TOPOLOGICAL MATERIALS

of this is simple, and uses the fact that for any half-integer spin system,
T 2 = −1. A heuristic way to see this is the fact that spin is odd under time-
reversal, and for half-integer systems there is no zero-spin state, so reversing
the spin cannot result in the same state.

Proof: Assume
[H, T ] = 0

and that |n⟩ is an eigenstate of the system

H |n⟩ = En |n⟩ .

Then
HT |n⟩ = T H |n⟩ = T En |n⟩ = EnT |n⟩

and so T |n⟩ is also an eigenstate with the eigenvalue En. To assert that the
eigenvalue is in fact degenerate, one must also show that the two states are
not the same ray. That is T |n⟩ ≠ eiδ |n⟩, where δ is some phase. Suppose
that the above is not true, T |n⟩ = eiδ |n⟩. Then,

T 2 |n⟩ = T eiδ |n⟩ = e−iδT |n⟩ = + |n⟩ .

However, as was stated above, T 2 = −1 for all half-integer systems. The
assumption must therefore be wrong, and the eigenvalue is degenerate. □

The two states, |n⟩ and T |n⟩, are often referred to as Kramer’s doublet.
Note that the two states have opposite spin.

1.3.1. Generalization to time and parity symmetry

Consider now a time-reversal and parity symmetric system, [H,PT ] = 0.
This will, similar to the case for time-reversal, make the energy levels at least
two-fold degenerate.

Proof: Assume
[H,PT ] = 0

and that |n⟩ is an eigenstate of the system

H |n⟩ = En |n⟩ .

Then
HPT |n⟩ = PT H |n⟩ = PT En |n⟩ = EnPT |n⟩ .

10
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Assume now that PT |n⟩ = eiδ |n⟩, which we will prove to be false. That
would lead to

(PT )2 |n⟩ = PT eiδ |n⟩ = |n⟩ .
However, as [P, T ] = 0, we have

(PT )2 = PT PT = PT 2P = −1

as P 2 = 1. As above, the states are thus different, and the eigenvalue is
degenerate. □

1.4. Accidental degeneracy
In general, for a two-level system depending on some parameter set, the energy
levels of the two levels will not cross, i.e. be degenerate, unless there are
symmetries in the system forcing them to be degenerate, as is the case in for
example Kramer’s degeneracy. However, even without any symmetries2 there
will be so-called accidental degeneracies if the parameter space is sufficiently
large. Consider a general two-level Hamiltonian

H = f1σx + f2σy + f3σz, (1.27)

which will have an energy splitting between the two levels

∆E = 2
√
f21 + f22 + f23 . (1.28)

In general, we may solve ∆E = 0 by tuning the three parameters simultane-
ously, and thus there must be degenerate points – accidental degeneracies.
Supposing that the parameters fi can be expressed as functions of the mo-
mentum components, fi = fi(pi), this will correspond to degenerate points in
momentum space.
If there are in addition some symmetry constraints on the system, the

space of degenerate points may increase. Suppose, for example, the system
is time-reversal symmetric. Recalling the time-reversal operator defined in
Eq. (1.15)

T = UK,

with U being a unitary operator and K the complex conjugate, the imaginary
Pauli matrix σy must be excluded from the Hamiltonian, f2 = 0. Thus,
the solution to the closing of the band gap has a free parameter, and the
degenerate space has dimension one.
2There will always, for a degenerate system, be some symmetry, although it might be a
hidden symmetry. We here mean no a priori apparent symmetry.
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1.5. Spin-orbit interaction
Spin-orbit interactions are not used directly in this thesis. It is, however,
relevant to include some superficial introduction to the subject, both in order
to conclude that spin-orbit interactions are not something one has to consider
in later derivations of this thesis, and also that it might prove useful in future
applications of the ideas and theory discussed in the thesis.

Spin-1/2 particles are in general governed by the Dirac equation. In the non-
relativistic regime, as is the case in condensed matter physics, we may reduce
the equation to the Pauli equation. This equation contains as a relativistic
correction the spin orbit coupling term [ERH07]

HSO = λvacσ · (k ×∇Ṽ ), (1.29)

where λvac is a constant with dimension length squared, σ are the Pauli
matrices representing spin, and Ṽ is the total potential in the system. In
preparation of the considerations to come, split up the potential in the periodic
crystal potential Vcr and the remaining potential V from impurities

Ṽ = Vcr + V. (1.30)

Changing basis to a quasi-particle picture of free particles, thus eliminating
Vcr from the equation, one gets the effective Hamiltonian [ERH07]

Heff = ϵk + V +Hint +Hext, (1.31)

Hint = −1
2b(k) · σ, (1.32)

Hext = λσ · (k ×∇V ). (1.33)

Here, the subscripts denote the effective Hamiltonian Heff, consisting of an
intrinsic part, Hint, and an extrinsic part, Hext. b(k) is the intrinsic spin-
orbit field, the part of the crystal potential Vcr that is not eliminated by our
change of basis. As the intrinsic spin-orbit interaction should be time-reversal
invariant, we can argue that b must be an odd function.

T HintT −1 = Hint =⇒ b(k) · σ = −b(−k) · σ, (1.34)

where the well known effects of the time-reversal operator was applied to the
momentum and spin, as T kT −1 = −k and T σT −1 = −σ. Obviously, this
means that inversion symmetry must be broken for the intrinsic interaction
term to be finite. This is easily seen as, with P being the parity operator,

PHintP
−1 = Hint ⇒ b(−k) = b(k), (1.35)
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since spin is invariant under inversion.
The external contribution to the spin-orbit interaction is contained in Hext,

which does not require any particular symmetry to be present. A Zeeman
term, where time-reversal is broken, would be represented in the external part
of the Hamiltonian.
The spin-orbit field b(k) may take many forms depending on the specifics

of the system at hand. The Dresselhaus term

HD = αpx(p2y − p2z)σx + c.p. (1.36)

where c.p. denotes terms of circular permutation of the indices, [Man+15]
and the Rashba term [Wu+20]

HR = α(pyσx − pxσy), (1.37)

are arguably the most well-known models.
We immediately see that the Rashba Hamiltonian 1.37 does not break time-

reversal invariance, as both momentum and spin are odd under time-reversal.
It is however odd under inversion. This is of course exactly opposite of a
Zeeman term, where we introduce an external magnetic field, thus breaking
time-reversal symmetry. Consider a free electron model where we add a
Rashba term

H = p2

2m + α(pyσx − pxσy). (1.38)

The Hamiltonian commutes with the momentum operator, so we may replace
the momentum operator with its eigenvalue ℏk. Solving for the eigenvalue is
straight forward, and gives

E± = ℏk2

2m ± αk, (1.39)

where k = |k|. We expect the eigenvalues to be linear combinations of spin
up and spin down states, and also that the coefficients depend on k, as the
Rashba term has coupled spin and momentum. Take

ψ± = eikr√
2
(|↑⟩+ a |↓⟩) , (1.40)

where a is some phase we must find. By inserting into the time-independent
Schrödinger equation, we find a = ∓i(kx + ky)/k, which is obviously a =
∓i exp(iθ), where θ is the angle of the momentum, k = (k cos θ, k sin θ). Using
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the matrix representation |↑⟩ = (1, 0)T , |↓⟩ = (0, 1)T , the eigenvalues are given
as

ψ± = eikr√
2

(
1

∓ieiθ
)
. (1.41)

These states have interesting spin expectation values

⟨ψ±|σ|ψ±⟩ = ± [sin θx̂− cos θŷ] . (1.42)

The spin is orthogonal to the momentum, making a circular pattern around
the origin. The direction of the rotation defines the chirality of the state. The
spin together with the energy solutions are shown in Fig. 1.3.

Figure 1.3.: Dispersion curves for a system with Rashba spin-orbit coupling.
Left: Seen from above. Right: Seen from the front. The projection into
the xy-plane is shown, as well as a cross section in a plane perpendicular
to the xy-plane. The spin of the two states are shown as arrow above
the dispersion curves, which defines the chirality of each state. Notice,
as is most easily seen in the projection, that the two solutions together
form a pair of parabolas separated in momentum.
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1.6. Weyl and Dirac cones

1.6. Weyl and Dirac cones in condensed matter physics

Dirac and Weyl cones are the emergence of non-gapped linear energy bands
in condensed matter physics, in effect exhibiting relativistic behavior at non-
relativistic speeds. We here give a brief introduction to these materials. The
system and its relation to high energy physics is discussed first. Then, several
perturbations of the system are introduced. The topological nature of the
system is considered in the context of Chern numbers and Berry curvature.
Lastly, we go into tilted Dirac cones in some more depth. The reader is also
advised to consult the many recent reviews on the topic, notably Armitage,
Mele, and Vishwanath [AMV18] for a general introduction and overview of
the field, Jia, Xu, and Hasan [JXH16] with a focus on material realizations,
and Chernodub et al. [Che+21] which is the most directly relevant for our
work, discussing in particular thermal transport and the analogy to high
energy physics. For an intuitive and non-formal introduction to the latter,
the lecture by Vozmediano [Voz21] given at the theoretical physics colloquium
at Arizona State University is also recommended.

The standard model for metals in condensed matter physics is the Landau
Fermi liquid [Che+21; Lan56], where electrons are described by the Hamil-
tonian p2/2m∗, with m∗ some effective mass. The model works remarkably
well for many systems, but fails for the vanishing density of Dirac materi-
als [Che+21; Voz21], where the electrons behave as “Dirac fermions”. The
notion of a “Dirac fermion” is almost comical from a high energy point of
view [Che+21; Voz21] – what else can they be? A fermion is by its very
definition a Dirac spinor. In condensed matter language, however, we mean by
fermion that it obeys the Pauli exclusion principle and follows the Fermi-Dirac
distribution. By Dirac fermion in condensed matter we mean fermions whose
effective low-energy Hamiltonian is linear in momenta, they obey an effective
Dirac equation.
This field unifies concepts from high and low energy physics; a “new era

of grand unification of low and high energy physics” as Chernodub et al.
[Che+21] puts it. The emergent Dirac and Weyl cones in condensed matter
physics follow in beautiful analogy their high energy counterparts. Thus, the
theory and results from high energy physics may be applied in these emergent
Dirac systems. Likewise, these materials offer the opportunity to probe the
fundamental theories of our universe, and beyond, at much lower energy and
cost scales. Unfortunately, the language of QFT and high energy physics is
somewhat inaccessible for condensed matter physicists. At the same time, the
condensed matter descriptions have been difficult to relate back to the QFT
formalism. So while the intersection of the two fields offers the possibility
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of great new insight, it also comes with some misunderstandings. Some
phenomena are known under different names, while different phenomena may
be mistaken for the same. The recent and excellent review paper by Chernodub
et al. [Che+21] attempts to make the topics approachable for researchers from
both fields, with its “main purpose . . . to present the basic notions underlying
new developments in condensed matter in a language equally accessible to
both high energy and condensed matter communities”.

We wish here to briefly illuminate the connection between the high energy
Dirac theory and the Dirac and Weyl semimetals of condensed matter physics,
assuming the reader to be an expert in neither. The (massive) Dirac equation
reads

(i/∂ −m)ψ = 0, (1.43)

where /∂ = γµ∂µ, γµ are the so-called gamma matrices,3 m is some mass
parameter, and ψ the Dirac spinor. Note also that natural units c = ℏ = 1, as
usual, is used and that the systems is 4× 4. It may of course be written as a
Schrödinger equation [Che+21] i∂tψ = Hψ, withH = γ0m+γ0γipi. The great
insight of Dirac was that due to the requirement of Lorentz invariance, the
momentum and time operators had to appear at the same order, as opposed
to the standard free particle H = p2/2m. Shortly after Dirac published his
theory, Weyl commented that for a massless particle, the equation could be
decomposed into two 2 × 2 equations – a Weyl decomposition. This yields
two independent subsystems, themselves also linear in momentum,

H± = ±σ · p, (1.44)

with the ± defining the chirality4 of the Weyl component.
Interestingly, massless Dirac fermions may appear in condensed matter

as low energy effective descriptions of electronic systems near a two-band
crossing. Instead of obeying the Landau Fermi liquid theory, they obey a
Dirac equation, with the speed of light being replaced by the Fermi velocity
vF . As in the high energy case, the Dirac equation may be decomposed into
chiral Weyl equations

HD = svFσp, (1.45)

where σ are the Pauli matrices, vF the Fermi velocity, p the momentum, and
s = ±1 denotes the chirality. It is here important to note that the Pauli
matrices represent either real spin degree of freedom or some pseudo spin
3Also known as the Dirac matrices. They are any irreducible matrix representation of the
Clifford algebra.

4For massless particles equivalent to the helicity.
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degree of freedom. Examples of pseudo spin are that of bipartite lattices, such
as graphene, in which case one must be careful when for example applying
time-reversal, as only real spin is odd under this operation, and not pseudo
spin.

These linear low energy emergent systems may appear in both 2D and 3D.
There are, however, important differences depending on the dimensionality.
When we here refer to Dirac and Weyl materials, we always mean 3D systems.

The dispersion of the Hamiltonian (1.45) has a band crossing at p = 0.
For the two-dimensional case, a perturbation on the form mσz, with m some
parameter, opens a gap in the dispersion. This is easily verified by writing
out the Hamiltonian and solving the eigenproblem

H
(2D)
D = svF (pxσx + pyσy) +mσz, (1.46)∣∣∣H(2D)

D − E
∣∣∣ = 0. (1.47)

As the Hamiltonian commutes with the momentum operator, we replace the
momentum operator with its eigenvalues

E± = ±vFℏ
√
k2x + k2y +

m2

ℏ2v2F
. (1.48)

For a non-zero m, there are no solutions kx, ky making the energy levels
degenerate (i.e. E± = 0). The crossing is thus only protected by symmetry
considerations, and is not topologically protected.

In three dimensions the situation is somewhat different, with the Hamilto-
nian

H
(3D)
D = svF (pxσx + pyσy + pzσz). (1.49)

In this case, no perturbing term may open a gap at the crossing. There is no
2 × 2 matrix σ4 that anticommutes with the Pauli matrices and while also
being linearly independent, i.e. there is no “fourth” Pauli matrix; therefore
no perturbative term will open the gap. Say for example we add a term like
mσz, where the z-direction was chosen arbitrarily. The only effect this will
have on the crossing is to translate it in kz. Tying this back to the accidental
degeneracy of Section 1.4, we see that no matter the perturbation, the three-
dimensional momentum space will always have a point of degeneracy, i.e., a
crossing. The crossing is topologically protected. A more formal approach to
topological materials is that of topological invariants – numbers related to the
topology of the material. Having a non-trivial topological invariant number is
the very definition of topological materials, and we will in Section 1.6.1 show
that Dirac cones make the Chern number of these materials non-trivial.
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Lorentz breaking perturbations

As opposed to high energy physics, the emergent Dirac equation in condensed
matter physics need of course not be Lorentz invariant. We may therefore
introduce terms that break Lorentz invariance. Introduce to the system a
pseudospin degree of freedom, thus extending the system to 4× 4-matricies;
in effect re-constructing the full Dirac equation from the Weyl equations, and
then introduce perturbations. The Hamiltonian of the system

H = vF τx ⊗ σp+mτz ⊗ I2 + bI2 ⊗ σz + b′τz ⊗ σx, (1.50)

with τ the Pauli matrices related to the pseudospin, and I2 the identity matrix
of dimension 2. The perturbing parameters m, b, b′ are a mass parameter,
and Zeeman fields in the z and x direction, respectively [AMV18]. Ignore
for now b′, i.e. b′ = 0, which is related to a state known as the line node
semimetal. Notice that the b term breaks time-reversal symmetry in the
system, as the real spin σ is odd under time-reversal. The eigenvalues of this
system [AMV18]

Esµ(k) = s

[
m2 + b2 + v2Fk

2 + 2µb
√
v2Fk

2
z +m2

] 1
2
, (1.51)

with s = ±1, µ = ±1 encoding the degeneracies related to the spin and
pseudospin degrees of freedom, respectively. There are still linear dispersions
for b > m. For b < m, a gap opens, and the dispersion is non-linear. In fact,
for b > m, the perturbation is simply a shift in kz of the Dirac cone, similar
to what was discussed in the 2× 2 case, as is seen by rewriting

Esµ(k) = svF

k2x + k2y +
(√

k2z +
m2

v2F
+ µ

b

vF

)2 1
2

. (1.52)

This still has Weyl node solutions at k2z = (b2 −m2)/v2F , where the dispersion
is linear in the vicinity of the nodal solutions. The effect is thus to separate
the two Dirac nodes in momentum space, giving a Weyl semimetal. This
also illustrates that the decomposition in Eq. (1.45) is valid around either
of the shifted nodes. Expanding around one of the Dirac points of the Weyl
semimetal, the Hamiltonian is exactly Eq. (1.45), after decomposing the 4× 4
Hamiltonian into its two chiral 2×2 Weyl constituents. If one instead perturbs
the system with a Zeeman field in the x-direction, b′ ≠ 0, the separation is
instead in energy, giving a nodal loop where the two cones intersect. We will
not go into any depth on these types of materials.
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The three cases described here: unperturbed, where the two cones are
superimposed; perturbed by b, where the cones are separated in momentum;
and perturbed by b′, where the cones are separated in energy, are shown in
Fig. 1.4. Notice that in the two latter cases, the Dirac points, i.e. crossings,
are not superimposed. As will be substantiated more in Section 1.6.1, this
makes the crossings very robust, as the two nodes must merge before a gap
may be opened.
The Hamiltonian in Eq. (1.45) is not the most general 2× 2 Weyl system

if we allow for anisotropy in the system. In three dimensions we have more
generally the tilted Weyl Hamiltonian

Hs = (ts + sσ)(v ⊙ p), (1.53)

where ts is the tilt vector, v is some anisotropic velocity, (v ⊙ p)i = vipi is
the Hadamard product of the anisotropic velocity and the momentum, and σ
are the Pauli matrices corresponding to spin degree of freedom. By a simple
rescaling of the momenta, we may in general consider a system with isotropic
Fermi velocity vF , giving

Hs = svFσp+ vF t
sp. (1.54)

The energy bands are

Es(k) = ±vF |k|+ vF t
sk, (1.55)

as shown in Fig. 1.5. These types of systems, which are the systems of interest
for this thesis, are considered in detail in Section 1.6.2.

1.6.1. Chern number of the Weyl point

In order to more explicitly demonstrate the topological nature of the tilted
Weyl cone in Eq. (1.45), we will find a non-zero topological invariant associated
with that state. Thereby showing that the material is topological. The
topological number we will calculate is the Chern number, related to the
Berry curvature of the bands in some enclosed surface. In order to calculate the
Chern number, we must first find an expression for the Berry curvature of our
system. This derivation will follow closely Berry’s original derivation [Ber84]
of the Berry phase of a two-level system with the Hamiltonian

H(R) = 1
2σR. (1.56)
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Figure 1.4.: Dirac cones in the plane, with the perpendicular momentum
set to zero. (Left) Dirac material with superimposed cones. (Center)
Time-reversal symmetry broken, giving a Weyl material with the cones
separated in momentum space. (Right) The cones shifted in energy,
giving a nodal loop.

Figure 1.5.: Tilted Dirac cones in the plane, with the perpendicular mo-
mentum set to zero. From left to right the tilt increases, from no tilt
in the first cone to overtilt in the last. The three first are Type-I Weyl
semimetals, the last is a Type-II semimetal. The Fermi surface is marked
in red. See main text for details.
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Some notation has been modernized with inspiration from the treatment of the
Berry phase of the spin-1/2 particle in an external magnetic field in Holstein
[Hol89].
Suppose we have a Hamiltonian H(t), and that its t-dependence can be

parameterized by R = R(t), as in H(t) = H(R(t)). Any evolution of the
Hamiltonian through time, may then be described as a geometric path through
the R-space. As the reader might be aware, Berry’s most famous discovery
was that a closed path through R-space gives an observable phase to the
system, unlike the non-physical dynamical phase, which may be removed
by a suitable choice of gauge. Here we will however focus on the so-called
Berry curvature, B, a vector field that will be shown to be useful in the
categorization of topological materials. Note that there is some variation in
the literature on the naming of the various quantities, and the sign convention
used. In particular, the term Berry curvature will in some literature refer to
a rank two tensor; what we call Berry curvature is referred to as the Berry
field strength. In particular, if we let the rank two tensor be denoted Fij , the
Berry curvature is given by

Bi = ϵijkFjk. (1.57)

The Berry curvature for the state n is explicitly defined as [Ber84]

Bn(R) = −Im
∑
m ̸=n

⟨n(R)|∇RH|m(R)⟩ × ⟨m(R)|∇RH|n(R)⟩
(Em(R)− En(R))2 , (1.58)

where × denotes the cross product. Notice that for a degenerate point where
En = Em there will be a pole in Bn. Considering the Berry curvature as a
field in R-space, this resembles a source, as will become relevant later. This
may now be applied to for example the Weyl semimetal, both in the interest
of solidifying the above theory, and as it will be useful in future consideration.
The Hamiltonian around the (untilted) Weyl point is

H = vFσ · p, (1.59)

with vF the Fermi velocity, σ the Pauli matrices, and p the momentum
operator. By letting R = vFp, the Berry curvature of the Hamiltonian can
be found. The eigenvalues of this system are5

E+ = −E− = |R|. (1.60)
5Technically, this is sloppy notation, as the eigenvalues are of course E+ = −E− = vF |k|.
We chose to use the above notation for clarity and to be more true to Berry’s original
derivation, even though that included implicit interchanging of k ↔ p.
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The aforementioned degeneracy is here of course the Weyl point, where
E+ = E− = 0. Noting that

∇RH = σ, (1.61)
we can calculate the Berry curvature easily. Denote by |+⟩ the state with the
eigenvalue E+ and |−⟩ the state with the eigenvalue E−. Take also, without
loss of generality, R to be in the z-direction. This gives

B+ = −Im⟨+|σ|−⟩ × ⟨−|σ|+⟩
4R2 . (1.62)

As |+⟩ and |−⟩ are eigenstates of σz and orthogonal to each other, only the
z-component of the cross product may contain non-zero contributions.

B+ = − ẑ

4R2 Im (⟨+|σx|−⟩ ⟨−|σy|+⟩ − ⟨+|σy|−⟩ ⟨−|σx|+⟩)

= − ẑ

2R2 .
(1.63)

Here, the effect of the Pauli matrices on the eigenvectors was used, according
to

σx |±⟩ = |∓⟩ (1.64)
σy |±⟩ = ±i |∓⟩ (1.65)

Returning to general axis orientations, one has

B+ = −R̂/2R2 = −R/2R3. (1.66)

For the |+⟩-band, the Weyl point thus takes the form of a negative monopole
in R-space; this motivates the requirement that Weyl points must always
appear in pairs of opposite chirality, as the divergence of the Berry curvature
must always be zero over the entire sample.
Extending the calculation to a tilted Weyl cone

H = vFσ · p+ vF t · p, (1.67)

is trivial. The energies gain a factor vF t · p = t ·R, however, this does not
change the difference between the energies of the states. Furthermore, the
gradient of the Hamiltonian, Eq. (1.61), gains a factor

∇RH = σ + t, (1.68)

which does not affect the result, as ⟨±|t|∓⟩ = 0. Consequently, tilting does
not affect the Berry curvature.
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As mentioned, the Chern number is one of several numbers that is used to
classify topological materials. The Chern number is defined as

C = 1
2π

∮
∂C

B+ · dS, (1.69)

where the integral is taken over the closed surface ∂C, enclosing the volume C.
Noting that the Berry curvature has the shape of a monopole source at p = 0,
we immediately know the value of this quantity from electromagnetism. We
will, however, carry out the computation explicitly here. With the divergence
theorem in mind, it behooves us to find the divergence of the Berry curvature.
This divergence is zero everywhere except in the monopole source, giving

∇ ·B+ = −1
2∇ · R̂/R2 = −2πδ(p), (1.70)

where δ is the Dirac delta distribution. By virtue of the divergence theorem,
the Chern number is then found to be

C = 1
2π

∫
C
∇ ·B+dC = −1, (1.71)

where the property of integrals over Dirac delta distributions was used.
Note that some literature will have a Chern number differing from Eq. (1.71)

by the sign of the Fermi velocity,

C = − sign(vF ). (1.72)

This simply comes from the definition of the eigenstates. We have put the
sign dependence in the state, making the E+ state always have positive
eigenenergy. In the literature that instead defines E+ = vF |R| the state’s
energy will depend on the sign of the Fermi velocity, and as a consequence,
the sign dependence will end up in the Chern number instead.

The overall divergence of Berry curvature must be zero, or equivalently, the
sum of the Chern numbers must be zero. The Hamiltonian Eq. (1.56) chosen
with the opposite chirality,

H(R) = −1
2σR, (1.73)

has the opposite Berry curvature, and also the opposite Chern number. Thus,
Dirac cones must appear in pairs of opposite chirality, either superimposed
as the Dirac semimetal case or separated in momentum space, as the Weyl
semimetal.
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In light of the interpretation of the Dirac point as a monopole of Berry
curvature, the discussion in Section 1.6, on page 17, on the stability of the
band crossing in two and three dimensions gets an intuitive and geometric
interpretation. In Fig. 1.6 the Berry curvature pole is shown in p-space,
together with a plane parallel to the xy-plane, which we will denote the
state plane. In the two-dimensional case, the state is confined to the state
plane, with the z-position of the plane given by any mass terms mσz. In
the three-dimensional case, the state is not confined to this plane, as the
parameter kz is a free variable, or alternatively, it may be considered as
the freedom to move the state plane freely, with its initial position simply
shifted by any mass terms. It is thus obvious that one may never reach the
monopole in the two-dimensional case, and thus for no k is there a band
crossing. Importantly, the Berry curvature is indeed non-zero, however any
closed curve of integration will give a Chern number of zero; the monopole
has been moved outside the dimensionality of freedom.

Figure 1.6.: The state plane, transparent yellow, parallel to the xy-plane
and a Berry curvature monopole at the origin. An integration contour is
shown in blue dashed. See main text for details.
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1.6.2. Tilted Dirac semimetals

Figure 1.7.:
The conic section.

The conic section problem with the intersecting plane
restricted to pass through the node of the cone is trivially
seen to have two solutions: a point and two intersecting
lines, shown schematically in Fig. 1.7. Despite this, the
possibility of a Weyl cone tilted beyond the Fermi level
was never considered before Soluyanov et al. [Sol+15]
described this new class of Weyl semimetals in 2015.
This now seemingly obvious possibility made an already
rich field even more exciting, opening up for a wider
range of novel and interesting effects [FZB17; SGT17;
Sol+15; TCG16; YYY16].

In this section, we investigate in more detail the tilted
Weyl cone, the star of this thesis. The tilted Hamiltonian
was introduced in Eq. (1.54)

Hs = svFσp+ vF t
sp,

where we chose isotropic Fermi velocity. As discussed earlier, the proper Dirac
equation of particle physics cannot include such a tilting term, as it obviously
breaks Lorentz invariance. The emergent Dirac equation of condensed matter
physics, however, need not respect the Lorentz invariance and such a tilting
term is no problem.

As was alluded to in the introduction to the section, the Weyl cone has two
distinct phases: Type-I and Type-II. Tilting the Weyl cone, the upper and
lower bands will at some tilt angle touch the Fermi level, a critical tilt. Going
beyond this, the upper (lower) band dips below (above) the Fermi level, and we
have what is known as a Type-II Weyl semimetal. Although the two states are
similar in many ways, they also have hugely important differences separating
them from one another. In the Type-I regime, the density of states goes to zero
at the Fermi level. In the Type-II regime, however, particle and hole pockets
appear – the intersection of the cone and the Fermi level goes from a singular
point to two infinite lines (shown in Fig. 1.5 on page 20), making the density
of states non-zero. This abrupt change of the topology of the Fermi surface,
from closed to open, is known as a topological Lifshitz transition [Vol17]. This
gives Type-II Weyl semimetals manifestly different properties from Type-I,
useful both in practical applications and as an interesting phenomenon seen
from a purely scientific perspective.
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Linear Dirac equation from tight binding model

We will firstly consider a slightly more realistic tight binding toy model for
a Weyl semimetal, with a parameter taking the system from a Type-I to a
Type-II. This is instructive both in order to more intuitively see the origin
of the terms causing the tilting of the Dirac cone, and also to discuss the
validity of the linear model in different contexts. We will linearize the model
around the Weyl points, regaining the familiar form of a Dirac cone, with an
additional anisotropy term causing the tilt.
We will use the general time-reversal breaking model described by Mc-

Cormick, Kimchi, and Trivedi [MKT17]6

H(k) = [(cos ky + cos kz − 2)m− 2γ0(cos kx − cos k0)]σ1
− 2γ0 sin kyσ2 − 2γ0 sin kzσ3 + t0(cos kx − cos k0).

(1.74)

There are Weyl nodes at K ′ = (±k0, 0, 0), and the parameter t0 controls
the tilting of the emerging cones. For k0 = π/2, the cones are isotropic in
low-energy expansion. As k0 is reduced, the cones are brought closer together
and made anisotropic, as the effective Fermi velocity is not the same in all
directions, as shown in Fig. 1.8a, where two cones are moved until they meet
at the origin. Fig. 1.8b shows the eigenvalues of the system, as t0 is increased
from 0 to 3γ0. A value of t0 = 0 gives no tilt, while for t > |2γ0| the Type-II
system emerges. The t0-term “warps” the bands, and in the limit of Type-II
the hole band crosses the Fermi level into positive energy, while the particle
band crosses the Fermi level into negative energies. We call these electron and
hole pockets, respectively. Note that in this model, the pockets are shared
between the two nodes. One may also construct tight binding models with
isolated pockets [MKT17].

Linearizing around the Weyl nodes the Hamiltonian reduces to the familiar
expression of a Dirac cone

H(K ′±+k) ≈ ∓2γ0kx sin k0σ1−2γ0(kyσ2+kzσ3)∓t0kx sin k0σ0, kx, ky, kz ≪ 1.
(1.75)

When the separation between the two nodes is π, i.e. k0 = π/2, the linearized
Hamiltonian around the cone is

H ′(k) = ∓2γ0kxσx − 2γ0kyσy − 2γ0kzσz ∓ t0kx, (1.76)

with ∓ corresponding to the node at K ′±. For a system

H = tiki + kiAijσj , (1.77)
6Where we adapted the notation to match that used in the rest of the thesis.
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1.6. Weyl and Dirac cones

(a) A Type-I Weyl semimetal with sep-
aration between the nodes 2k0 =
0, π/2, π.

(b) The “warping” parameter t0 increased
from left to right, t0 = 0, 2γ0, 3γ0,
transitioning the system from Type-
I to Type-II.

Figure 1.8.: Two-band tight binding model for a tilted Dirac semimetal.
Shown are the two energy bands plotted in the xz-plane in momentum
space; the separation of the nodes is in the x-direction. In (a) the
separation between the two nodes is adjusted. In (b) the bands are
“warped” to induce tilt. See main text for details of the model.

the chirality of the node s = det(Aij) [MKT17], and we see this gives a
negative cone at kx = π/2 and positive at kx = −π/2. We could arrive at a
more familiar form of the expression by letting 2γ0 → vF , t0 → vF t, explicitly
introduce s for the chirality, and do a π rotation around x at the positive
cone, giving

H ′s(k) = svFk · σ + svF tkx. (1.78)

The model thus gives rise to a pair of Weyl cones, with an inversion symmetric
tilt, i.e. they tilt with equal magnitude in the opposite direction. Moving the
two nodes closer together, the effective Fermi velocity in the x-direction is
rescaled, and the system is anisotropic even for no tilt (γ = 0). As discussed
earlier, this may be mitigated by a rescaling of kx.
The linearized model is accurate in describing low-energy interactions

around the Dirac point. For higher energies, its validity falls apart, and more
complex models are warranted. For our calculations, we will take the linear
model to be sufficient. It is much easier to work with and sufficient in most
cases.
One of the most obvious differences between the tight-binding model and

the continuous linear model is the finiteness of the former. This is particularly
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important with regard to two aspects: the Dirac sea and the topology of the
Fermi surface. In high energy physics, the Dirac sea is infinitely deep [Bur16;
Voz21], whereas, in condensed matter physics, it is not. As is seen from the
tight-binding model, the Dirac sea of the two cones is really connected; this
has consequences for, among others, the interpretation of the chiral anomaly.
In our context, also the topology of the Fermi surface is of importance. As
mentioned, in the topological Lifshitz transition from Type-I to Type-II, the
Fermi surface goes from being closed to open in the linear model. This is
not the case in the tight-binding model, whose Fermi surface is shown in
Fig. 1.9. According to Ferreiros, Zyuzin, and Bardarson [FZB17] the linear
model will be able to give qualitatively correct results for Type-II in the deep
tilt limit. We propose yet another argument for this claim here. Consider
again the Fermi surface in Fig. 1.9; as the (Type-II) tilt is increased the Fermi
surface resembles more and more that of the linear model. At small (but still
Type-II) tilt, the Fermi surface is highly non-linear. For larger tilt, the Fermi
surface of the tight-binding model becomes more linear. Although this is in
no way rigorous, it gives hope that the linear model may give qualitatively
valid results for Type-II materials in the deep tilt limit.

A priori, it is not obvious when and how the linear model falls short, and
a critical interpretation and evaluation of results derived from it is always
warranted. It is, however, a very useful and interesting model. One of the
more obvious and common remedies is a momentum cutoff, restricting the
model to the region where it is the most correct [FZB17; SGT17].

The tilt term – symmetries and Type-I vs. Type-II

Recall the tilted Weyl Hamiltonian

Hs = svFσp+ vF t
sp,

with s± 1 the chirality of the cone. The tilt vector will in general depend on
the chirality of the cone. As the cones always appear in pairs, ts = st will give
a system with inversion symmetry, as was the result from the tight binding
model in the previous subsection. In the case of broken inversion symmetry,
we will consider the case of a tilt equal in direction and magnitude between
the two cones, ts = t. In short, we define

ts =
{
t broken inversion symmetry,
st inversion symmetry.

(1.79)

This convention is used in most literature [FZB17; vdWS19].
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t0 = 2.0γ0 t0 = 2.2γ0 t0 = 3.0γ0 t0 = 6.0γ0

Figure 1.9.: The Fermi surface of the tight binding model in the Type-II phase,
with the Fermi surface of the linear model for t0 = 3γ0 superimposed (gray,
truncated). The Figure shows the kx, ky plane, with kz = 0. Electron
pockets are shown in red, hole pockets shown in blue. As the tilt is
increased, the Fermi surface becomes more linear.

With no magnetic field, the eigenvalues of the system are

Es(k) = ±vF |k|+ vF t
sk, (1.80)

where in the literature the first term is sometimes referred to as the potential
term while the latter is the kinetic term. The definition for the system to
be Type-II is that there exists a direction in momentum space for which the
kinetic term dominates over the potential term [Sol+15]. The t-vector is thus
a convenient tool for categorization – if t > 1 we have a Type-II, else we have
a Type-I.

Proof: We may always rotate our coordinate system such that, without loss
of generality, t = tx̂. In that case, the first term dominates in the x-direction,
when t > 1. □

The definition is equivalent to defining Type-I as tilted cones with a point
like Fermi surface and Type-II as cones with a finite Fermi surface. In other
words, Type-II occurs when the bands cross the Fermi surface.
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When considering the symmetry properties of the system, we must consider
the full 4× 4 Dirac equation. The 2× 2 Weyl equation describing one cone
does not capture the symmetries of the full system, which involve both Weyl
cones. Let

H = vF τz ⊗ σp,

where τ is some pseudo spin degree of freedom, transforming like r. This
system describes two superimposed cones at the origin, with opposite chirality.
The effect of parity P and time-reversal T is

PτP† = −τ, T τT † = +τ,
PσP† = +σ, T σT † = −σ,
PkP† = −k, T kT † = −k,

(1.81)

compactly summarized in Table 1.1. Obviously then, the Hamiltonian is

Table 1.1.: The transformation rules for τ, σ, p under parity P and time-
reversal T .

P T
τ - +
σ + -
p - -

both time-reversal and parity invariant, as PP† = T T † = 1. Notice that
as PτP† = −τ , the chiralities of the cones are interchanged under a parity
transformation.
The tilt term takes the form vF τ

i
z ⊗ I2 t · p, where i = 1 for inversion

symmetric systems (ts = st) and i = 2 for broken inversion symmetry (ts = t).
We thus see explicitly, by applying the parity and time-reversal operators,
that the term breaks time-reversal symmetry, and that we get self-consistency
for the parity transformation. This is also shown pictorally in Fig. 1.10.
The unperturbed Dirac Hamiltonian is Lorentz invariant, given that we

consider an “effective speed of light”, namely the Fermi velocity, instead of
the actual speed of light c. Specifically, Lorentz invariance means invariance
under the Lorentz group. The Lorentz group is the O(1, 3) Lie group that
conserves

xµx
µ = t2 − x2 − y2 − z2,

i.e. all isometries of Minkowski space. More specifically, the group consists of
all 3D rotations, O(3), and all boosts. A boost is a hyperbolic rotation from a
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k

E
|↑〉

|↓〉

Figure 1.10.: One dimension of a tilted Dirac cone, with the two other
momenta set to zero, pictorally showing the time-reversal symmetry
breaking of the tilt. The two Weyl constituents are marked in red and
blue, respectively. Black arrows indicate spin direction, which for |↑ ⟩ is
parallel to k while for |↓ ⟩ is parallel to −k.

spacial dimension to the temporal dimension. If we now direct our focus at
the Hamiltonian of the Dirac cone

H = ±vFσp,

we may easily show the Lorentz invariance of the system. The time independent
Schrödinger equation is

H |ψ⟩ = E |ψ⟩ =⇒ (H2 − E2) = 0. (1.82)

As
pµ =

(
E

c
,p

)
,

the operator in Eq. (1.82) is nothing more than

H2 − E2 = v2Fp
2 − c2

(
p0
)2
, (1.83)

where we used the anticommutation relation

{σi, σj} = 2δij

of the Pauli matrices. Using now the effective speed of light c = vF , Eq. (1.82)
is

−v2F pµpµ = 0. (1.84)
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The invariance of xµxµ is the very definition of the Lorentz group, and so is
obviously Lorentz invariant.
Consider now a tilted Dirac cone

H = ±vFσp+ vF txpx, (1.85)

where we, without loss of generality, chose the tilt to be in the x-direction.
By the same argumentation as above, the eigen-equation

H |ψ⟩ = E |ψ⟩ =⇒ (H2 − E2) = 0

leads to the equation

−v2F pµpµ + vF txpx(2E − vF txpx) = 0. (1.86)

This is not invariant under a Lorentz transformation, as can be seen by, for
example, a rotation around the z-axis.
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Linear Response Theory 2
We will now introduce the Kubo formalism of linear response theory. Later,
the theory will be specialized to thermoelectric response. The material of this
section is mostly inspired by the explanations given in Giuliani and Vignale
[GV05]. The specialization to the electric response and Luttinger’s method is
also inspired by Mahan [Mah00].

We are interested in expressing the response of the observable A to some field
F coupling to another observable B. Let the uncoupled system be described
by the Hamiltonian H0 and the coupling term be HF (t) = F (t)B. Assume
also that the coupling field F is turned on at t = t0, such that HF (t) = 0 for
t < t0. Let the unperturbed Hamiltonian be H0, which will be assumed time
independent. The total Hamiltonian describing the coupled system is

H(t) = H0 +HF (t) = H0 + F (t)B. (2.1)

Linear response theory tells us then that the response δA is given by [GV05]

δA = − i

ℏ

t∫
t0

〈[
A(t), B(t′)

]〉
0 F (t

′)dt′, (2.2)

where [A,B] is the operator commutator and ⟨. . .⟩0 denotes the average in
the thermal equilibrium ensemble. A non-rigorous motivation for this form of
the response is the fact that

Ȧ = − i

ℏ
[A,H] + ∂AS

∂t
, (2.3)

with AS the Schrödinger picture operator, whose derivative is from here on
assumed zero. Taking H = HF , the part of the Hamiltonian whose dynamics
we are interested in, and integrating over the interaction time, the result is
reminiscent of Eq. (2.2). For a proper derivation see for example Giuliani and
Vignale [GV05, Chapter 3.3].

We will now try to make this expression slightly more manageable, and
in the process, we will highlight some important physical properties of the
expression. Firstly, by taking advantage of the time translation invariance of
the uncoupled Hamiltonian H0, we may realize that the average taken in the
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unperturbed basis may be taken at a more convenient time, preserving the
time separation of the operators〈[

A(t), B(t′)
]〉

0 =
〈[
A(t− t′), B(0)

]〉
0 . (2.4)

Inserting this back to Eq. (2.2), and performing a change of variable τ = t− t′
we have

δA = − i

ℏ

t−t0∫
0

⟨[A(τ), B(0)]⟩0 F (t− τ)dτ . (2.5)

In this form the retardedness of the coupling is apparent – no observable can
be affected by a future perturbation, shown schematically in Fig. 2.1.

t
t0 t t+∆t

“Interaction region”

Figure 2.1.: Interacting region of a perturbation turned on at t0. Note that
the perturbation in the future, t+∆t, does not interact, as this is the
retarded interaction.

For future convenience, and convention, we will in this last step introduce
the response function

χAB(τ) = − i

ℏ
Θ(τ) ⟨[A(τ), B(0)]⟩0 , (2.6)

where the step-function Θ was introduced to make the response function
explicitly retarded. Then our final expression for the response of A is

δA =
t−t0∫
0

χAB(τ)F (t− τ)dτ . (2.7)

Note of course that the limits could be altered to
∫∞
−∞ given that the coupling

field is zero for times earlier than t0 and we have chosen the retarded response
function.

2.1. Charge current from electromagnetic coupling
We will now discuss the electric conductivity in light of the Kubo formalism,
as an example to better understand and demonstrate the preceding discussion.
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2.1. Charge current from electromagnetic coupling

Firstly the concept of conductivity will be presented, then it will be derived
using the machinery of the Kubo formula. As mentioned above, this part
follow the derivation of Mahan [Mah00].

The charge current J that is induced from an electric field E in the linear
scheme is expressed by Ohm’s law

Ji(r, t) =
∫
V

dx
t∫

−∞
dt σij(r, t,x, s)Ej(x, s). (2.8)

Above the Einstein summation convention is used, and σij is the conductivity
tensor. We see of course that this has the familiar form of a response relation.
In the case of a simple and isotropic material, meaning symmetric under
SO(n) and with no transverse response, the tensor is diagonal with σ = σI
and one gets the more well-known version of Ohm’s law J = σE.

Again, by the principle of causality, the response of J can only depend on
E in the past; thus σij(r, t,x, s) can be finite only where the time separation
t − s is less than the time light takes to cover the spatial separation r − x.
Moreover, if we assume spatial and temporal invariance, i.e. that the response
only depends on the separation t− s and r − x, the expression is simplified
somewhat more by transforming it to the Fourier domain. Note that this
assumption is not valid on an atomic scale; it is here used under the assumption
that currents are averaged over multiple unit cells, a common practice in
electromagnetism of solids. Let σij(r−x, t− s) ≡ σij(r, t,x, s) and introduce
the Fourier transform

A(q, ω) =
∫∫

dtdrei(ωt−qr)A(r, t), A(r, t) =
∫∫ dωdq

(2π)4 e
−i(ωt−qr)A(q, ω).

(2.9)
Recognizing the right-hand side of Eq. (2.8)∫

dx
∫

dtσij(r − x, t− s)Ej(x, s) (2.10)

as a convolution, we can write Eq. (2.8) as

Ji(q, ω) = σij(q, ω)Ej(q, ω), (2.11)

by using the well known result that the Fourier transform of a convolution is the
product of the transformed functions of the convolution [Rot95]. Alternatively,
the same result is found by simply inserting the definition Eq. (2.9) for both
E and σ in Eq. (2.8), and use∫

dxe−ixa = 2πδ(a).
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We now attempt to conclude at the result (2.11) using the Kubo formalism.
The current couple to the electromagnetic potential A by a Hamiltonian term

HA = −
∫

drA(r, t) · J(r). (2.12)

Comparing with the notation introduced earlier for general linear response,
where the perturbing Hamiltonian in Eq. (2.1) was

F (t)B,

we identify the perturbing field F as A and the observable B as the current
density. We thus identify the response function

χij(r, t,x, s) = − i

ℏ
Θ(t− s) ⟨[Ji(r, t),Jj(x, s)]⟩0 . (2.13)

This gives the response

δJi(r, t) =
t∫

t0

ds
∫

dxχij(r, t,x, s)Aj(x, s). (2.14)

Assuming spatial and temporal translational invariance,

χij(r − x, t− s) ≡ χij(r, t,x, s), (2.15)

the expression can be simplified quite a bit. Firstly, we will make a change of
variables, and then Fourier transform both the spatial and temporal argument.
With τ = t− s and x′ = r − x,

δJi(r, t) =
t−t0∫
0

dτ
∫

dx′χij(x′, τ)Aj(r − x′, t− τ). (2.16)

By the Fourier transformation introduced in Eq. (2.9)

A(q, ω) =
∫∫

dtdrei(ωt−qr)A(r, t),

the time transformed version of Eq. (2.16) is

δJi(r, ω) =
t−t0∫
0

dτ
∫

dx′χij(x′, τ)
∞∫

−∞
dteiωtAj(r − x′, t− τ)

︸ ︷︷ ︸
≡eiωτAj(r−x′,ω)

. (2.17)
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Similarly, Fourier transforming the spatial component yields

δJi(q, ω) =
t−t0∫
0

dτ
∫

dx′χij(x′, τ)eiωτ
∫

dr e−iqrAj(r − x′, ω)︸ ︷︷ ︸
≡e−iqx′Aj(q,ω)

. (2.18)

Identifying the remaining part as the Fourier transform of the response
function, we finally end up with,

δJi(q, ω) = χij(q, ω)Aj(q, ω). (2.19)

One could of course also have used the observation that the original expression
is a convolution or the direct insertion of the Fourier transform for χ and A,
as shown earlier.

In the current derivation, the scalar field potential φ is taken to be zero, as
transverse electric field is assumed, so the electric field is related to the vector
potential as

E(r, t) = −∂tA(r, t) =⇒ E(r, ω) = −iωA(r, ω). (2.20)

Thus, the response can be written as

δJi(q, ω) =
i

ω
χij(q, ω)Ej(q, ω). (2.21)

The expression (2.21) found using the Kubo formalism may now be compared
to Ohm’s equation (2.11), where we see that, re-inserting the component
indices explicitly,

σij(q, ω) =
i

ω
χij(q, ω), (2.22)

χij(q, ω) =
∫

dx
∫

dt eiωt−iqxχij(x, t) (2.23)

= − i

ℏ

∫
dr
∫

dt eiωt−iqxΘ(t) ⟨[Ji(r, t),Jj(0, 0)]⟩0 .

It is here important to remember that it was here assumed only transverse
current. If that was not the case, there would be an additional contribution
to the σii components.

2.2. The Luttinger approach to thermal transport
Thermal transport, i.e. response to thermal gradients, is more convoluted than
the response to an electromagnetic field, as there is no well-defined Hamil-
tonian describing the temperature gradient, which of course is a statistical
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property of the system. In his now illustrious paper [Lut64] Luttinger seeks to
make the theory of transport due to temperature gradients more formal and
“mechanical”, as he puts it. Inspired by the mechanical derivation of Kubo for
the electric transport, he introduces a method where the transport may be
derived mechanically from a phenomenological term in the Hamiltonian – the
Luttinger term. Earlier calculations of the transport properties of temperature
gradients were conducted from local variable theories; Luttinger [Lut64] men-
tions the derivations of Green and Mori, where they respectively had assumed
a Markoff process and “local equilibrium distribution”. Luttinger’s method
attempts to put the results of those calculations on a “more solid basis”.

We will here simply outline the basic idea of Luttinger, without a rigorous
derivation. Introduce to the Hamiltonian a gravitational scalar potential field
ψ coupling to the energy density, here denoted by the T 00 component of the
energy-momentum tensor,1 of the (flat) system [Lut64]

HL =
∫

drψT 00. (2.24)

Note that the T 00 component of the energy-momentum tensor must not be
confused with the temperature T . Luttinger showed that the system is in
equilibrium, i.e. the thermal and gravitational driving forces balance out,
given that the gravitational field is related to the temperature by

∇ψ + ∇T
T

= 0. (2.25)

Borrowing the language of Tatara [Tat15], this is essentially a trick to be able
to calculate transport coefficients without introducing temperature gradients
in the Hamiltonian. Instead, one introduces the fictitious field ψ, for which
the origin is not addressed, and finds the transport coefficients for this system.
The situation is depicted in Fig. 2.2, where the temperature field is shown,
together with an accompanying gravitational field.
A temperature gradient, together with external electric field E and chem-

ical potential µ, gives a response in the electrical current J and energy
current JE [Mah00]. One commonly defines the transport coefficient tensors
Lab, a, b = 1, 2 containing the response functions such that

Ji = −eL11
ij

[
Ej − T∇j

µ

T

]
− eL12

ij T∇j
1
T
, (2.26)

JE,i = L21
ij

[
Ej − T∇j

µ

T

]
+ L22

ij T∇j
1
T
, (2.27)

1Also known as the stress-energy tensor and stress-energy-momentum tensor.
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2.2. The Luttinger approach to thermal transport

T

ψ

Figure 2.2.: Illustration of Luttinger’s solution to heat transport. To in-
clude a temperature fluctuation T , couple the system to some (possibly
fictious) gravitational potential ψ giving the same current response as
the temperature fluctuation.

with the electric charge e = |e|. Or, more compactly,(
−Ji/e
JE,i

)
= Lij

(
Ej − T∇j

µ
T

T∇j
1
T

)
. (2.28)

Importantly, note that these relations are valid when J ,JE are understood as
the transport currents, as opposed to the total currents containing also local
non-transporting currents. This is discussed more with regard to the results of
this thesis in Section 4.1.1. The coefficients of transportation, Lij is a widely
used convention, however, several slight variations are used, which at times
may cause confusion. In particular, these differences are on which factors of T
and µ are included explicitly; the reason for choosing other definitions might
be to have more convenient expressions for the Onsager relation, Seebeck
coefficient, thermal conductivity tensor, etc. [Che+21; LLF14; Mah00]. The
success of Luttinger’s method was that the transport coefficients could now
be calculated directly, and yielded the same results as had previously been
found by less formal approaches.

By the introduction of the Hamiltonian perturbation HL, the response may
now be investigated in the Kubo formalism. By the response in Eq. (2.2) the
electric current generated from the gravitational perturbation is

⟨J i⟩ (t, r) =
∫

dt′dr′
{−i

ℏ
Θ(t− t′)

〈[
J i(t, r), T 00(t′, r′)

]〉}
ψ(t′, r′), (2.29)

where the integration is taken over the entire spacetime. In order to express
this as a response to the thermal gradient, we wish to get the gradient of
the gravitational potential. To do this, firstly the 00-element of the energy-
momentum tensor will be expressed in terms of derivatives of T j0, and then a
partial integration will swap the derivative between the energy-momentum
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tensor and gravitational potential. Note first that in the flat system the
conservation law of the energy and momentum is simply2

∂tT
00(t, r) + vF∂iT

i0(t, r) = 0, (2.30)

where vF is the Fermi velocity. By the fundamental theorem of calculus this
obviously gives for the zero-zero component of the energy-momentum tensor

T 00(t, r) = −
t∫

−∞
dt′vF∂iT i0(t′, r). (2.31)

Introduce Eq. (2.31) in the response relation Eq. (2.29), and use integration
by parts ∫

uv′ = uv −
∫
u′v, (2.32)

giving

⟨J i⟩ (t, r) =
t∫

−∞
dt′
∫

dr′
t′∫

−∞
dt′′

{−ivF
ℏ

〈[
J i(t, r), T j0(t′′, r′)

]〉}
∂′jψ(t′, r′),

(2.33)
where we have defined ∂′i = ∂/∂r′i. By Luttinger’s relation

⟨J i⟩ (t, r) =
t∫

−∞
dt′
∫

dr′
t′∫

−∞
dt′′

{
ivF
ℏ

〈[
J i(t, r), T j0(t′′, r′)

]〉} ∂′jT (t′, r′)
T (t′, r′) ,

(2.34)
where care must be taken to distinguish the energy-momentum tensor T j0

and the temperature T , differentiated by the indices, or lack thereof.

2We used the conservation law of the energy-momentum tensor ∂µT
µν = 0, and ∂0 = ∂t/vF .
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Anomalies in Quantum Field Theory 3
“I have an equation; do you have one too?”

(Paul Dirac1)

From Noether’s theorem, described in the following section, we know that
any continuous symmetry of the Lagrangian L in a classical consideration
will lead to a conserved current. However, we know from the path integral
formulation of QFT that for a system with fields φ and an external source J ,
it is the generating functional

Z[J ] ≡
∫

Dφ exp
[
i

(
S[φ] +

∫
d4xJ(x)φ(x)

)]
(3.1)

that must be invariant for a transformation to be a symmetry operation of the
system. Quantum corrections from the second quantization can lead to the
symmetry group of the generating functional to be smaller than the symmetry
group of the classical action, in which case we say there is an anomaly. In
that case, the conserved current predicted by Noether’s theorem is no longer
protected by symmetry, as the operation is indeed not a symmetry of the
system. The terms breaking the classical conservation are called anomalies.

It should also be noted that the terminology anomaly and breaks the classical
symmetry are somewhat misleading; there is no actual symmetry breaking –
in the quantum theory there is no symmetry to begin with, and a more fitting
language to describe the situation is that there is an anomalous symmetry in
the classical Lagrangian, which is not there in the “real” theory. Thus, the
situation must not be confused with spontaneous symmetry breaking, and
there is no Goldstone boson present.

3.1. Noether’s theorem
The following section is inspired by the derivation of Kachelriess [Kac18].

Noether’s theorem is one of the most central results in theoretical quantum
physics. It relates continuous symmetries with conserved quantities, which for
example explain fundamental principles such as conservation of momentum
and conservation of energy. Given a Lagrangian L(φa, ∂µφa) dependent on the
1As quoted in [Zee10].
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fields φa, we will consider the variations δφa that leave the action, and thus
equations of motion, invariant. That is, the variations that are generators
for some continuous symmetry of the system. Firstly, we will restrict our
consideration to the case where the Lagrangian itself is invariant

0 = δL = δL
δφa

δφa +
δL

δ∂µφa
δ∂µφa. (3.2)

In the last term use that the variation and derivation may be exchanged,
[δ∂µ, ∂δδ] = 0, and in the first term use the Lagrange equations

δL
δφa

= δµ

(
δL

δ∂µφa

)
. (3.3)

By the product rule it follows that

0 = δL = ∂µ

(
δL

δ∂µφa

)
δφa +

δL
δ∂µφa

∂µδφa = ∂µ

(
δL

δ∂µφa
δφa

)
. (3.4)

Thus, we see that the quantity in the parenthesis after the last equality must
be conserved. We denote this quantity jµ and call it a current.

So far, we have the result that for any variation δφa that leave the Lagrangian
invariant, there is a conserved current

jµ = δL
δ∂µφa

δφa, ∂µj
µ = 0. (3.5)

There is, however, an even stronger formulation of Noether’s theorem. As
the equations of motion are only dependent on the transformation being a
symmetry transformation of the action, we realize that even a change in
the Lagrangian of the form δL = ∂µK

µ will not change the equations of
motion, as long as boundary terms of the integral over the Lagrangian may
be dropped (K → 0, r → ∞). Thus, altering the starting point in Eq. (3.4)
to 0 = δL − ∂µK

µ we get Noether’s theorem, theorem 1.

Theorem 1 (Noether’s theorem). For any continuous transformation that
leave the Lagrangian L invariant up to a total derivative ∂µKµ, there must be
an associated conserved current

jµ = δL
δ∂µφa

δφa −Kµ, ∂µj
µ = 0. (3.6)
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3.2. The axial/chiral anomaly

3.2. The axial/chiral anomaly
We will first give a quick and somewhat superficial introduction to the axial
anomaly,2 and why it matters in condensed matter physics. That discussion
will be based on the discussion given in Wehling, Black-Schaffer, and Balatsky
[WBB14] and Tong [Ton, Ch. 3]. Then we will present a more thorough deriva-
tion of the anomaly, based on the derivation of Zee [Zee10] and Kachelriess
[Kac18].
In the massless case, the Dirac equation reduces to two Weyl equations,

whose solutions are right- and left-moving fermions. In 1+1 dimensions they
have the energy dispersion

ϵ± = ±|p|,
where the ± indicates positive and negative energy solutions. Consider the case
now in the Dirac sea picture. The negative energy solutions, antiparticles in
high energy physics and holes in condensed matter physics, are all filled, with
the energy band going to ±∞ momentum. The particles with energy ϵ = +p
are right-moving solutions, while ϵ = −p represent left-moving solutions.
Note that in this language, an antiparticle with negative momentum, is right
moving, and of course, a particle with positive momentum is right moving.
The situation is shown in the left pane of Fig. 3.1. Introduce now an electric
field E. This will cause the states to shift, according to ṗ = eE, with e
being the electric coupling, which is here taken to be the fundamental charge;
note that this shift does not discriminate against left- and right-movers, they
are both shifted the same. For a field E > 0 the right-movers are shifted
towards higher energies and the left-movers are shifted towards lower energies,
shown in the right pane of Fig. 3.1. This also shifts the densities of left- and
right-movers! Denote by n+ the right-movers and n− the left-movers. The
total density n = n+ + n− is constant, however, the difference n+ − n− is not
conserved. Identifying J = n+ + n− as the vector current and JA = n+ − n−
as the axial current, we see that the vector current is conserved, but the axial
current is not! Notice how the origin of the anomaly in this context, is the
infinite depth of the Dirac sea.

The above argumentation gives an intuitive explanation and interpretation
of the anomaly, but it is obviously not rigorous. We here give a purely
field theoretical derivation of the axial anomaly. Consider a massless QFT
L = ψ̄iγµ∂µψ, which under the gauge transformation

ψ → eiθ+iθγ5
ψ (3.7)

2Also known as the chiral anomaly.
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0

k

ϵ 0

k

ϵ

Filled right movers Filled left movers

Figure 3.1.: Dispersion of Weyl fermions, black showing unfilled states, blue
filled right-movers, and red filled left-movers. (Left) No electric field
applied, Fermi level at the crossing. (Right) Electric field in the positive
direction applied, shifting the filled states. See main text for details.

is invariant. It can be shown that the associated conserved Noether currents
are the vector current Jµ = ψ̄γµψ and the axial current Jµ

5 = ψ̄γµγ5ψ [Zee10].
In the following, we will show that the two currents cannot be simultaneously
conserved – that is the chiral anomaly. As is often the case, there are many
ways to do this. For example, one could show directly that the measure of
the path integral is not invariant under a transformation. We will, however,
show it in a somewhat crude way, but where there are no complicated formal
considerations, only brute force calculation which is hopefully more readily
appreciated by those not familiar with the concept. The calculation also has
some historical importance, as the problem we will solve is exactly the same
as the problem that led to the discovery of anomalies [Adl69; BJ69]!3
We will calculate the triangle diagram

p

p− k1

p− q

γλγ5

γµ

γν

and show that this leads to the conclusion that either the vector current or

3The anomaly was discovered independently by Adler [Adl69] and Bell and Jackiw [BJ69]
in 1969. See Tong [Ton] for a more in-depth historic commentary.
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3.2. The axial/chiral anomaly

the axial current is non-conserved. The amplitude of the diagram is〈
0
∣∣∣TJλ

5 J
µJν

∣∣∣ 0〉 , (3.8)

with the vector current Jµ = ψ̄γµψ and the axial current Jµ
5 = ψ̄γµγ5ψ.

Written out explicitly in momentum space

Aλµν(k1, k2) = (−1)i3
∫ d4p

(2π)4

× Tr
(
γλγ5

1
/p− /q

γν
1

/p− /k1
γµ

1
/p
+ γλγ5

1
/p− /q

γµ
1

/p− /k2
γν

1
/p

)
,

(3.9)

where q = k1 + k2. For the vector current to be conserved the requirement
k1µAλµν = k2ν∆λµν = 0 must hold. For the axial current to be conserved,
the requirement is qλAλµν = 0 [Zee10].

One must be careful when carrying out this calculation, as is also stressed
in many textbooks dealing with this issue, for example [Kac18] and [Zee10].
Consider the criterion for the vector current to be conserved

k1µAλµν(k1, k2) = i
∫ d4p

(2π)4 Tr
(
γλγ5

1
/p− /q

γν
1

/p− /k1
− γλγ5

1
/p− /k2

γν
1
/p

)
= 0.

(3.10)
When calculating the integral it might be tempting to simply perform a
change of variables, rendering the two terms equal and thus concluding that
the criterion is met. However, we must notice that the integrand goes like
1/p2 while the boundary surface of a 3-sphere is proportional to p3. The
boundary terms do therefore not vanish, and there is an extra term associated
with performing such a change of variables.

Consider that we want to integrate over the function f∫
ddpf(p). (3.11)

If we perform the change of variables p→ p+ a, one could in theory get an
extra contribution from boundary terms, which we will now find. We will
calculate ∫

ddp [f(p+ a)− f(p)] , (3.12)

where we in the first term has “naively” performed a change of variables,
without considering the boundary terms. Thus, the result of this integral is
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indeed the boundary terms. Firstly, we will perform a Wick rotation into
Euclidean space∫

ddEp [f(p+ a)− f(p)] =
∫

ddEp [aµ∂µf(p) + . . . ] . (3.13)

Ignoring the higher order terms, the RHS may be rewritten as a surface
integral by Gauss’s theorem. Taking the average over the surface integral,
and denoting by Sd(r) the surface of a d-sphere with radius r, we write the
integral as

lim
P→∞

aµ
(
Pµ

P

)
f(P )Sd−1(P ). (3.14)

Rotating back to Minkowski space we gain an additional i, with∫
ddp [f(p+ a)− f(p)] = lim

P→∞
iaµ

(
Pµ

P

)
f(P )Sd−1(P ). (3.15)

We will now perform such a shift of variables in the second term of the
trace in Eq. (3.10), as we notice that shifting p→ p− k1 makes the two terms
cancel, leaving only the boundary term. Let

f(p) = Tr
(
γλγ5

1
/p− /k2

γν
1
/p

)
=

Tr
(
γ5(/p− /k2)γν/pγλ

)
(p− k2)2p2

= 4iϵτνσλk2τPσ

(p− k2)p2
.

(3.16)
Here we used in the first equality the property 1//a = /a/a2 twice, and the
cyclic permutation invariance of the trace, Tr(ABC) = Tr(BCA). In the
second equality, we first wrote the Feynman slash operator by its definition
/a = γµaµ, and then used the property

Tr(γ5γτγνγσgλ) = −4iϵτνσλ, (3.17)

where ϵ is the totally antisymmetric tensor. The trace can be split into two
terms, where the first vanishes as it is proportional to ϵτνσλpτpσ, and one is
left with the expression in Eq. (3.16). Thus, Eq. (3.10) becomes

k1µAλµν = i

(2π)4 lim
P→∞

i(−k1)µ
Pµ

P

4iϵτνσλk2τPσ

P 4 2π2P 3 = i

8π2 ϵ
λντσk1τk2σ.

(3.18)
Consider now, however, what happens if we shift p → p + k2 in the first

term of Eq. (3.10) instead. Surely, if our answer above is correct, any arbitrary
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shift must yield the same answer. Similarly to before, let

f(p) = Tr
(
γλγ5

1
/p− /q

γν
1

/p− /k1

)
=

Tr
(
γ5(/p− /q)γν(/p− /k1)γλ

)
(p− q)2(p− k1)2

= −4iϵτνσλk2τ (k1σ − pσ)
(p− q)2(p− k1)2

,

(3.19)

where we as above removed all terms symmetric under σ ↔ τ . Now, Eq. (3.10)
becomes

k1µAλµν = i

(2π)4 lim
P→∞

ikµ2
Pµ

P

−4iϵτνσλk2τ (k1σ − pσ)
P 4 2π2P 3 = iϵλντσ

8π2 k2τk2σ.

(3.20)
Where we used that the only term contributing is the pσ, as the term with
k1σ goes like P−1. Our results differ depending on the non-physical shift of
variables! As is shown by several textbooks, see [Kac18; Zee10], this comes
from the fact that the integral we started with is in fact linearly divergent –
its value is not well-defined. What we will have to do, is consider an arbitrary
shift a in the integration variable of the amplitude Eq. (3.9), which we will
show changes the amplitude by a quantity dependent on a. To cancel this, a
counter term must be inserted; however, as we will see, this counter term can
only make either the axial current or the vector current conserved! Consider
now a shift in the integration variable p→ p− a in the amplitude Eq. (3.9),
where we denote the amplitude with shifted integration variable

Aλµν(a, k1, k2)

= (−1)i3
∫ d4p

(2π)4 Tr
(
γλγ5

1
/p− /a− /q

γν
1

/p− /a− /k1
γµ

1
/p− /a

+ γλγ5
1

/p− /a− /q
γµ

1
/p− /a− /k2

γν
1

/p− /a

)
.

(3.21)

From Eq. (3.15) we already have a formula for the difference

Aλµν(a, k1, k2)−Aλµν(k1, k2), (3.22)

by choosing

f(p) = i

(2π)4 Tr
(
γλγ5

1
/p− /q

γν
1

/p− /k1
γµ

1
/p

)
.
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Ignore for now the prefactor, and note that in the limit

lim
p→∞ f(p) =

Tr(γλγ5/pγν/pγµ/p)
p6

=
2Tr(γλγ5/pγν/p)− p2Tr(γλγ5/pγνγµ)

p6

= 4ipσϵσνµλ
p4

.

(3.23)

In the second equality we used the anti-commutation relation of gamma
matrices in /pγµ = 2pµ − γµ/p and /a2 = a2. In the last equality, we used again
Eq. (3.17), and the vanishing of all terms symmetric under interchanging
indices when contracted with the fully antisymmetric tensor. We now find
the amplitude difference (3.22). Firstly, we simplify the expression slightly as

∆Aλµν(a, k1, k2) ≡
∫

d4pf(p− a)− f(p) + {(k1, µ) ↔ (k2, ν)}, (3.24)

where the last term indicates to repeat the preceding expression with inter-
change of k1 ↔ k2 and µ↔ ν. Thus, by Eq. (3.15),

∆Aλµν(a, k1, k2) = lim
p→∞ iaµ

(
pµ
p

)
i

(2π)4
4ipσϵσνµλ

p4
2π2p3

+ {(k1, µ) ↔ (k2, ν)}

= lim
p→∞

−iaµ
2π2

pµpσ
p2

ϵσνµλ + {(k1, µ) ↔ (k2, ν)}

= − iaσ
8π2 ϵ

σνµλ + {(k1, µ) ↔ (k2, ν)}.

(3.25)

Now is the time to take a break from the calculations and consider in some
detail what this result means, before we will finally carry out the derivation
to its end and show the anomaly. A priori Aλµν(a, k1, k2) should be just as
valid as Aλµν(k1, k2), i.e. setting a = 0. In fact, that formulation is quite
the misnomer, as a = 0 is no less arbitrary than any a ̸= 0 in this setting; p
is simply a name by which we denote the moment transfer in our diagram.
However, using Eq. (3.25), leading to

k1µAλµν(a, k1, k2)− k1µAλµν(a = 0, k1, k2)

= − i

8π2
[
ϵσνµλaσ + {(k1, µ) ↔ (k2, ν)}

]
k1µ,

(3.26)

we see that the criterion for vector current conservation, Eq. (3.10), may or
may not be met depending on our choice of a! Owning to a trick from Zee
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[Zee10], we will show that the resolve of this is to chose one particular a, and
the choice will be that a which preserves the consistency of our theory. Now,
this may indeed seem both strange and ad-hoc, how can we justify choosing
some parameter to get the result we want? This is, in fact, common in
QFT. Recall that both the UV-cutoff and dimensional regularization schemes
introduce a parameter, which must be determined “outside” of our theory.

Let a = α(k1 + k2) + β(k1 − k2). This is allowed as k1, k2 are independent,
and the only parameters of our equations. The α term is obviously symmetric
under interchange of k1, k2, while the β term is antisymmetric. Thus, we
see that in Eq. (3.26) only the β part survives when adding the pair with
interchanged indices and momenta. Thus,

k1µAλµν(a, k1, k2) = − i

4π2 ϵ
σνµλβ(k1σ − k2σ)k1µ + k1µAλµν(k1, k2)

= i

8π2
(
ϵλντσk1τk2σ − 2ϵσνµλβ(k1σ − k2σ)k1µ

)
= i

8π2 ϵ
λντσk1τk2σ(1 + 2β).

(3.27)

Here we inserted our previous result for k1µAλµν given in Eq. (3.18). In the
last equality, we used that k1σk1µ vanishes when contracted with the Levi
Cevita symbol, and relabeled the dummy indices. It is now apparent that
choosing β = −1/2 makes the criterion for conservation of vector current
hold!

By choosing the shift appropriately, the vector current is preserved. However,
it does come at a price. The requirement for the axial current to be conserved,
as mentioned earlier, is

qλAλµν = 0.

This amplitude is in fact also set by the parameter β, as also here α drops out;
we have no free parameter to tune after fixing β. With the choice β = −1/2,
required to conserve the vector current, the axial current will not be conserved!
This is the chiral anomaly.

We could have, of course, instead chosen β such that the axial current is
conserved, at the expense of the conservation of the vector current. However,
as Zee [Zee10] describes, this would have catastrophic consequences, rendering
the entire theory useless. A non-conserved vector current would make the
fermion number not conserved, clearly non-acceptable. We therefore chose to
sacrifice the axial current instead of the vector current.
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3.3. The conformal/scale anomaly
Consider massless QED (quantum electrodynamics)

L = −1
4F

µνFµν + iψ̄ /Dψ, (3.28)

with ψ the Dirac field, ψ̄ = ψ†γ0, /D = γµDµ, D the covariant derivative
Dµ = ∂µ − ieAµ, γµ the Dirac matrices. Aµ is the electromagnetic potential,
Fµν = ∂µAν − ∂νAµ the electromagnetic field, and e is the coupling, here the
fundamental charge. The theory is classically scale-invariant. That is, under
the transformation

x→ λ−1x, Aµ → λAµ, ψ → λ
3
2ψ, (3.29)

the Lagrangian transforms as

L → λ4L, (3.30)

which is canceled by the transformation of measure d4x → d4xλ−4 in the
action. As the action is invariant, thus so are the equations of motion.

By Noether’s theorem, there must be some conserved current corresponding
to this symmetry transformation, which we will now show is the dilation current
jµD = Tµνxν , where Tµν is the energy-momentum tensor. Consider a conformal
transformation of the type gµν = e2τηµν , also known as a Weyl transformation
of the metric. The variation of the metric is obviously δgµν = 2τηµν . Recall
also that the energy-momentum tensor is defined as the response of the action
to a variation of the metric4

Tµν = 2√
|g|

δS

δgµν
, (3.31)

where g is the determinant of the metric. Now, using this we see that

δS =
∫

d4x δS

δgµν
δgµν

=
∫

d4x
√
|g|
2 Tµνδg

µν

=
∫

d4xTµν
√
|g|τ(x)ηµν(x)

=
∫

d4x
√
|g|τ(x)Tµ

µ .

(3.32)

4This defines the dynamical energy-momentum tensor. See Section 4.1.2 for more details.
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As the scaling is a symmetry operation, Eq. (3.32) must be zero. As the
scaling factor τ is an arbitrary function, we conclude that the trace Tµ

µ must
vanish. The vanishing trace ensures the conservation of the dilation current as

∂µJ
µ
D = Tµν∂µxν + (

0︷ ︸︸ ︷
∂µT

µν)xν (3.33)
= Tµνδµν = Tµ

µ ,

where we used the property of the energy-momentum tensor that ∂µTµν = 0.
As the trace is zero, the dilation current is conserved in the classical picture.

However, this symmetry does not hold when quantum corrections are taken
into account. Loop effects give non-vanishing contributions to the trace, and
by Eq. (3.33) this makes the dilation current non-conserved. Due to this,
the conformal anomaly is also often referred to as the trace anomaly. Recall
that when calculating the propagators of the QED theory, we end up with
infinities. These, we regularize and renormalize, for example with dimensional
regularization or UV-cutoff. In any case, this introduces some dimensionful
scale, µ, the renormalization scale and the cutoff energy respectively for the
regulators mentioned. This scale dependence is encoded in the beta function
of the theory, encoding the dependence of the coupling e on the scale,

β(e) = ∂e

∂ logµ ; (3.34)

if the beta function does not vanish, our theory now has a scale dependence,
rendering our theory no longer scale-invariant!

When taking into account the loop effects, the trace of the energy-momentum
tensor is [Kac18]

Tµ
µ = β(e)

2e FµνF
µν , (3.35)

where β(e) is the beta function of the theory. This beta function makes the
anomaly not exact in one loop, as opposed to the axial anomaly. In one loop,
the massless fermion beta function is [Che16]

β(1) = e3

12π2 . (3.36)
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Thermoelectric Effect from the
Conformal Anomaly 4

In 2016 Chernodub [Che16] showed that the conformal anomaly of QED leads
to electrical currents in an inhomogeneous gravitational background. This
effect was further explored by Chernodub, Cortijo, and Vozmediano [CCV18],
showing through Luttinger’s method that such an anomalous transport could
be generated from a temperature gradient, giving additional contributions
to the Nernst current. The same effect was shortly after derived more for-
mally through the Kubo formalism, by Arjona, Chernodub, and Vozmediano
[ACV19].
In this chapter, we extend the Kubo calculation to tilted Weyl cones.

Firstly, the result for the untilted system is rederived, where we also show
several simplifications compared to previous computations. The results for
the untilted cone are then generalized to tilted cones. The computation is
quite lengthy, and the thesis is explicit in each step, with the goal being that
a graduate-level student should be able to comfortably follow the calculations.

The chapter is divided into sections, each representing a somewhat contained
part of the calculation. The text is not, however, written such that a reader
should expect to understand a section without reading the preceding one.
Due to the nature of the work, certain sections are rather technical. For the
benefit of the reader, we have included summaries of intermediate results,
enabling the reader to skip the more technical parts. In particular, the latter
part of Section 4.2.2 and Section 4.5.1 may be skipped without much loss.

We will find the current response of a single Weyl cone, with a temperature
gradient ∇yT and a magnetic field Bz. The current response of interest in
the given geometry is thus in the x-direction,

Jx = χxy
(−∇yT

T

)
, (4.1)

with χxy being the response function.1 This geometry is shown in Fig. 4.1.
For the untilted case, the first calculation by Chernodub, Cortijo, and Vozme-
diano [CCV18] used direct application of the scale magnetic effect [Che16] to
thermally perturbed condensed matter systems using the Luttinger formalism,
1The sign in Eq. (4.1) may differ in the literature due to different sign conventions, as
noted in [ACV19]. We follow that of [ACV19], differing from [CCV18].
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Figure 4.1.: Sketch of the geometry used in the derivation. Note that we
consider only bulk response, and the finite sample is only for illustration
purposes.

where the response function

χxy = e2vFB

18π2ℏ (4.2)

was found. Later, Arjona, Chernodub, and Vozmediano [ACV19] found

χxy = e2vFB

4π2ℏ . (4.3)

The results differ only by numerical prefactors, with the dependence on
parameters of the system otherwise equal. As we will show, the response
function for the tilted system differs from the untilted case only by a numerical
prefactor as well, dependent on the tilt.
The tilt t may in general take any direction. We separate between tilt

perpendicular to and parallel to the magnetic field, as the two cases give
qualitatively different behavior of the Landau levels. The perpendicular
component is, in the given geometry, thus in the xy-plane. In this work, we
have restricted the perpendicular component to be parallel2 to the charge
current. The first part of the calculation, however, is general for any tilt, and
the specialization to t⊥ = t⊥x̂ is first made in Section 4.5.

2Parallel is here taken to mean “proportional to”, i.e. either parallel or antiparallel.
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Recall the linear response from the Kubo formalism in Eq. (2.34), found
through Luttinger’s approach.

⟨J i⟩ (t, r) =
t∫

−∞
dt′
∫

dr′
t′∫

−∞
dt′′

{−ivF
ℏ

〈
[J i(t, r), T j0(t′′, r′)]

〉}
︸ ︷︷ ︸

χij

(−∂′jT (t′, r′)
T

)
,

(4.4)
where, as before, ∂′j = ∂/∂r′j . Fourier transforming to the frequency and
momentum domain will be beneficial in our calculations. The non-perturbed
system will be taken to be time and position invariant, such that the correlator
in Eq. (4.4) can be taken to depend only on the differences t− t′′ and r − r′.
Starting with Fourier transforming the position part, notice that the structure
of Eq. (4.4) is

⟨J i⟩ (r) =
∫

dr′χ(r − r′)
(
−
∂′jT (r′)
T

)
,

where the temporal parts were dropped for clarity. This is a convolution,
and the Fourier transform is thus simply given by the product of the two
factors [Rot95].

⟨J i⟩ (q) = −χ(q)(iqj)T (q)/T, (4.5)

where it was also used that the Fourier transform of a derivative gives the
component of the variable. Showing explicitly how to find the form of the
response χ in momentum space is often overlooked in much literature, and as
it does involve some finesse, we want to show it here. This trick is courtesy
of Chang [Cha18]. By definition, the Fourier transform of the response is,
where the variable of integration has been chosen to be r − r′ for later
convenience,

χ(q) =
∫

d(r − r′)e−iq(r−r′)χ(r − r′) (4.6)

=
∫

d(r − r′)e−iq(r−r′)C
〈[
J i(r), T j0(r′)

]〉
, (4.7)

(4.8)

where C denotes t-dependent prefactors and integrals over time are omitted,
again for clarity of notation. Note that∫

d(r − r′) = 1
V
∫

drdr′, (4.9)
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where V is the volume of the system. Thus,

χ(q) = 1
V
∫

drdr′e−iq(r−r′)C
〈[
J i(r), T j0(r′)

]〉
= C

V
〈[
J i(q), T j0(−q)

]〉
.

(4.10)

Considering now the temporal part, the procedure is simpler. The linear
response still has the form of a convolution, as the response function is only
dependent on the difference t− t′ by

χ(t− t′) =
0∫

−∞
dt′′Θ(t− t′)

〈[
J i(t− t′), T j0(t′′)

]〉
, (4.11)

where t′′ was shifted by t′, and then the translational invariance of the
correlator was used. In frequency space

χ(ω) =
∫

dteiωtχ(t) (4.12)

=
∫

dteiωt
0∫

−∞
dt′′Θ(t)

〈[
J i(t), T j0(t′′)

]〉
. (4.13)

In frequency and momentum space the response function is thus

χij(w, q) = −ivF
Vℏ

∫
dteiωt

0∫
−∞

dt′Θ(t)
〈[
J i(t, q), T j0(t′,−q)

]〉
. (4.14)

4.1. General remarks
Before beginning the computation, we here briefly mention some complications
and considerations important to our result. Firstly we discuss how the charge
current from a Kubo calculation relates to experimentally measurable currents.
Secondly, we discuss the ambiguity related to the energy-momentum tensor.

4.1.1. Transport and magnetization

Recall from Eq. (2.26) that we generally define the transport coefficients

J i = −eL11
ij

[
Ej − T∇j

µ

T

]
− eL12

ij T∇j
1
T
,
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where J i is the electrical current. In our work, we focus on the L12 coefficient,
however, the following discussion is valid also more generally. The definition of
transport currents becomes more subtle in systems with broken time-reversal
symmetry [Che+21; vdWS19]. In such systems, unobservable, circulating
magnetization currents arise. These currents do not contribute to transport,
but the Kubo treatment derives the local current, which in general also
includes non-transporting currents. Let

J = Jtr + JM , (4.15)

where J is the total local current, Jtr is the transport current, and JM is
the circulating magnetization current. The Kubo formalism generally gives
the response to the total local current, χ; we are more interested in the
experimentally measurable transport response L12

ij , related to our Kubo result
as [Che+21]

L12
ij = −χij/e+ ϵijlMl, (4.16)

with Ml the magnetization. For zero chemical potential, however, these
magnetization currents have been shown to go to zero as T → 0 [vdWS19].
The result from the Kubo calculation is therefore the actual transport current.

4.1.2. Comment on the energy-momentum tensor

There is some ambiguity regarding the definition of the energy-momentum
tensor [Che+21; FR04; Kac18; vdWS19]. The canonical energy-momentum
tensor, derived from the Lagrangian formalism, is defined as

Tµν = ∂L
∂∂µψi

∂νψi − ηµνL. (4.17)

On the other hand, from general relativity, the dynamical energy-momentum
tensor is defined by the variation of the (matter) action with respect to the
metric [Kac18]

Tµν
dyn = 2√

g

δS

δgµν
. (4.18)

Immediately, we see that the first definition is in general not symmetric, while
the latter is, as the metric is always symmetric.3 As the energy-momentum
tensor is an observable, this presents a problem: how should the tensor be
defined? This issue is not trivial and has puzzled physicists for decades [FR04].
3In a torsionless manifold. For manifolds with torsion, the definitions are still generally
different.
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Superficially, we make the following observations. The defining property of
the energy-momentum tensor is its conservation law

∂µT
µν = 0, (4.19)

on a flat manifold. This, of course, only defines the tensor up to a total
divergence. Denote by Tµν the canonical energy-momentum tensor. We can
then define another tensor

T̂µν = Tµν + ∂αS
αµν . (4.20)

By letting Sαµν be antisymmetric in α and µ, the last term of Eq. (4.20) is
divergence free. This is easily shown as

∂µ∂αS
αµν = −∂µ∂αSµαν

= −∂α∂µSµαν

= −∂µ∂αSαµν , (4.21)

where we used the commutation of partial derivatives and relabelling of the
dummy indices µ, α. By an appropriate choice of Sαµν the canonical energy-
momentum tensor may be symmetrized, importantly while still abiding by
the conservation law. The correction that symmetrizes the energy-momentum
tensor is known as the “Belinfante tensor”, which for the Dirac Lagrangian
is [Che+21]

Sαµν = 1
8Ψ̄ [γα, σµν ] Ψ, (4.22)

which gives
T̂µν = Tµν

dyn = 1
4Ψ̄(γµDν + γνDµ)Ψ. (4.23)

Which, in the case of the Dirac Lagrangian, so happens to correspond to the
naive symmetrization

Tµν
s = Tµν + T νµ

2 . (4.24)

It is also instructive for our work to consider a more naive line of reasoning.
The energy-momentum tensor is used in this work through its conservation law
Eq. (4.19), whose first component gives the conservation of energy. Writing it
out explicitly

∂0T
00 + ∂iT

i0 = ∂0ϵ+ ∂ij
i
ϵ = 0, (4.25)

with ϵ the energy density and jϵ the energy density current, the question
is really seen to be finding the energy density current, ignoring all formal
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arguments about the energy-momentum tensor in a general context. Using
such a line of reasoning van der Wurff and Stoof [vdWS19] argued that the
appropriate form of the energy-momentum tensor that should be used in
linear response calculations of Dirac material systems is the unsymmetrized
canonical tensor. In this work, we will therefore use the canonical energy-
momentum tensor, as opposed to the symmetric form used in the linear
response calculation of an untilted cone done by Arjona, Chernodub, and
Vozmediano [ACV19]. In the untilted case, even though the two definitions
are generally different, they give the same contribution, while for a tilted cone,
the response from the two definitions differs.
We here show explicitly how the response differs for the two choices of

the energy-momentum tensor. The discussion relies on results found later
in the text, however, we find it instructive to include the discussion already
here. For an untilted system, the components of interest of the canonical
energy-momentum tensor reads

T y0 = si

4
[
φ†σy∂0φ− ∂0φ

†σyφ
]
, (4.26a)

T 0y = vF
4
[
φ†pyφ− pyφ

†φ
]
, (4.26b)

where φ, φ† are the fields. The symmetrized energy-momentum tensor used
by Arjona, Chernodub, and Vozmediano [ACV19]

T y0
s = T y0 + T 0y

2 . (4.27)

Using this, the response was found to be

χ = [. . . ]
∑
m,n

N=M−1

∫
dκz(F (1) + F (2))α2

κzms, (4.28)

with [. . . ] prefactors not relevant here, and F (i), i = 1, 2 the contribution from
T y0 and T y0, respectively. They are

F (1) = ϵκzms + ϵκzns, (4.29)

F (2) = sακzns

√
M − 1 + s

√
M

ακzms
, (4.30)

where ϵκzms and κz are dimensionless energy and momentum, and

αkzms = − s
√
M

ϵm − sκz
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is a normalization factor of the eigenstate. Using the explicit form of the
energy

ϵm = sign(m)
√
M + κ2z,

it is not difficult to show that

F (2) = ϵκzms + ϵκzns = F (1). (4.31)

A tilt vector parallel to the magnetic field t ∥ B does not alter the eigen-
states, it only changes the eigenvalues by a factor tvFkz [TCG16; YYY16], as
we will show later. The results from the untilted case may thus be applied
directly, with rescaled energies. As the normalization factor ακzms is invariant
under the tilt, F (2) does not change. However, F (1) changes to

F (1) = ϵκzms + ϵκzns = ϵ0κzms + ϵ0κzns + 2κzt, (4.32)

where ϵ0κzms are the energy levels of the untilted system. The last term in
Eq. (4.32) gives a non-zero contribution to the total response, and so the results
for a tilted cone is generally dependent on the choice of the energy-momentum
tensor.

As mentioned, we have used the non-symmetric canonical energy-momentum
tensor. The calculation presented in the thesis has for completeness been
carried out for the symmetric energy-momentum tensor as well. The result is
presented in Appendix B.

4.2. Eigenvalue problem of the Landau levels of a Weyl
Hamiltonian

To evaluate the correlator of the response function, the matrix elements of
the current and energy-momentum tensor must be found. In order to do this,
we find eigenstates in the Landau basis of the system. We will first consider
the untilted Hamiltonian, which we will then use to find the Landau levels of
the tilted Hamiltonian.

4.2.1. The untilted Hamiltonian
Couple the Weyl Hamiltonian to the magnetic field through minimal coupling

Hs = svFσ
i (pi + eAi) , (4.33)

with s being the chirality, pi the momentum operator, and e = |e| the
coupling constant to the electromagnetic fieldA. Choose coordinates such that
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4.2. Eigenvalue problem of the Landau levels of a Weyl Hamiltonian

B = Bzẑ, which in the Landau gauge gives A = −Bzy x̂. As the Hamiltonian
is invariant in x and z, take the plane wave ansatz φ(r) = eikxx+ikzzφ(y). It
then follows

Hsφ(r) = Eφ(r) =⇒ H̃sφ(y) = Eφ(y), (4.34)
where H̃ is the result of replacing pz → kz, px → kx in Hs, as the plane wave
part of φ have these eigenvalues. Absorb the chirality s as a sign in the
velocity vF , for more concise notation. Thus, writing everything explicitly,
the spectrum is given by

−vF
(

−kz ∂y + eyBz/− kx
−∂y + eyBz/− kx kz

)
φ(y) = Eφ(y). (4.35)

We will now find the spectrum E of the Hamiltonian.
Inspired by the derivation for the spectrum of the 2D Dirac Hamiltonian

in [WBB14], we introduce the length scale lB = 1/
√
eB, and the dimensionless

quantity χ = y/lB − kxlB. In dimensionless quantities Eq. (4.35) is

−vF
lB

(
−kzlB ∂χ + χ
−∂χ + χ kzlB

)
φ(y) = Eφ(y). (4.36)

Let the operators a = (χ+ ∂χ) /
√
2, a† = (χ− ∂χ) /

√
2. One may easily verify

the commutation relation [a, a†] = 1; they are ladder operators of the har-
monic oscillators, whose eigenstates are |n⟩, with a |n⟩ = √

n |n− 1⟩ , a† |n⟩ =√
n+ 1 |n+ 1⟩. In terms of these operators, the system is

−
√
2vF
lB

−kzlB√
2 a

a† kzlB√
2

 |φ⟩ = E |φ⟩ . (4.37)

Take the ansatz
|φ⟩ =

(
β |n− 1⟩
α |n⟩

)
, (4.38)

which is the most general form of |φ⟩ with any hope of being an eigenstate.
This leads to

−
√
2vF
lB

((−γβ + α
√
n
) |n− 1⟩(

β
√
n+ γα

) |n⟩
)

= E |φ⟩ , (4.39)

with γ = kzlB/
√
2. For n > 0 this leads to the equation for φ to be an

eigenfunction
−γ + α

β

√
n = β

α

√
n+ γ. (4.40)
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Solving for α/β this gives

α

β
= γ√

n
±
√
1 + γ2

n
, (4.41)

and thus
E = ±vF

√
2n
l2B

+ k2z = ±svF
√
2neB + k2z , (4.42)

where we reintroduced the explicit s. For n = 0 the annihilation operator
a destroys the vacuum state |0⟩, and the energy is instead E0 = −skzvF .
The excited energy states are doubly degenerate; we choose to denote the
energy levels by m ∈ Z, where the sign from ±s is taken care of by the sign
of this quantum number, and the harmonic oscillator levels n are given by its
absolute value |m|. The energy levels are

Ekzms = sign(m)vF
√
2|m|eB + k2z for m ̸= 0, (4.43a)

Ekz0s = −skzvF for m = 0. (4.43b)

We now find the corresponding eigenvectors of the system. The solution to
the one dimensional harmonic oscillator in position space is, in dimensionless
coordinates ξ, [Olv+, Eq. 18.39.5]

⟨ξ|n⟩ = φn(ξ) =
1√
2nn!

π−
1
4 e−

ξ2
2 Hn (ξ) , (4.44)

where Hn are the Hermite polynomials. Thus,

⟨χ|φ⟩ =
(
β ⟨χ|n− 1⟩
α ⟨χ|n⟩

)
= e−

χ2
2

 β√
2n−1(n−1)!

√
π
Hn−1 (χ)

α√
2nn!

√
π
Hn (χ)

 , (4.45)

where we defined H−1 = 0 in order to get a more general expression. Choosing

α =

√
γ2

n
=⇒ β = 1

1±
√
1 + n

γ2

= ±γ
2

n

(√
1 + n

γ2
− 1

)
, (4.46)

gives

φ(χ) = e−
χ2
2

√
γ2

n


±
√

γ2
n

(√
1+ n

γ2
−1
)

√
2n−1(n−1)!

√
π

Hn−1(χ)
1√

2nn!
√
π
Hn (χ)

 . (4.47)

There are thus four quantum numbers related to the eigenvectors, kx, kz,m, s.
Reintroducing χ = (y − kxl

2
B)/lB and normalizing we get:
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Summary 1
The Landau levels of a Weyl cone coupled to a magnetic field Bz has the
eigenvalues

Ekzms = sign(m)vF
√
2eBM + k2z for m ̸= 0, (4.48a)

Ekz0s = −skzvF for m = 0. (4.48b)

The eigenstates are

φkms(r) =
eikxxeikzz√
LxLz

e
−(y−kxl2

B)
2

2l2
B√

α2
kzms + 1


αkzms√

2M−1(M−1)!
√
πlB

HM−1

(
y−kxl2B

lB

)
1√

2MM !
√
πlB

HM

(
y−kxl2B

lB

)
 ,

(4.49)
where k = (kx, kz), and with the normalization factor

αkzms =
−s

√
2eBM

Ekzms

vF
− skz

. (4.50)

Here, capital letters indicate absolute value of corresponding quantity,
M = |m|, a convention we will use throughout the chapter.

4.2.2. The tilted Hamiltonian

As we have seen, the eigenvalues of a Type-II Weyl semimetal are simple
to find, and are not qualitatively different from those of Type-I, other than
the appearance of particle and hole pockets at the Fermi level. We will also
consider the Landau levels of these materials, which importantly are very
different from Type-I. In fact, erroneous treatment of the Landau spectrum
of Type-II semimetals caused the original paper describing Type-II materials
to mistakenly assert that the chiral anomaly would not be present for certain
directions of a background magnetic field [SGT17; Sol+15].
The issue with the Landau level description is that for certain directions

of the B-field, the Landau levels break down. For Type-I materials, the
description is valid for all directions of the B-field, but as the cone tilts
into a Type-II material, the description breaks down when the B-field and
tilt direction are perpendicular [SGT17], and as the magnitude of the tilt
increases, the Landau levels are only valid up to a certain angle between the
tilt direction and magnetic field. We will in this section derive and elucidate
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the Landau levels and their regions of validity.
Consider again the Hamiltonian

H = vF t
sp+ svFpσ, (4.51)

with the tilt vector as defined in Eq. (1.79)

ts =
{
t broken inversion symmetry,
st inversion symmetry.

To find the Landau levels in a magnetic field B = Bz ẑ, we will “Lorentz boost”
the system to a frame where the cone is not tilted, where we may use the
usual approach for finding the Landau levels.
Generally, consider t to consist of two components: t∥ which is parallel

to the magnetic field, and t⊥ perpendicular to the magnetic field. Without
loss of generality, we take the magnetic field to be in the z-direction, with
the Landau gauge A = −Bzyx̂. By a rotation around z, we may also in
general take t⊥ ∥ x̂.4 Thus, let t = (t⊥, 0, t∥), and introduce the magnetic
field through the minimal coupling p → pB = p+ eA.

The Landau level equation is

(HB − E) |ψ⟩ = 0, (4.52)

with
HB = vF

(
ts⊥p

B
x + ts∥p

B
z

)
I2 +

∑
i

svF p
B
i σi, (4.53)

where I2 is the identity matrix of size 2. We may again make the plane
wave ansatz φ(r) = eikxx+ikzzφ(y), similar to what was done for the untilted
Hamiltonian in Section 4.2.1, to replace p(x/z) → k(x/z). In order to use the
ladder operator method used for the untilted cone, we must get rid of the kBx
on the diagonal of the Hamiltonian.5 To achieve this, we will use a “Lorentz
boost”, which as we will show only leaves kz and E in the diagonal. Act with
the hyperbolic rotation operator R = exp[Θ/2σx] on Eq. (4.52) from the left,
and insert identity on the form RR−1 before the state vector. By introducing
the state in the rotated frame |ψ̃⟩ = R−1N |ψ⟩, with N a normalization
4The setup considered in the response calculation does not have U(1) symmetry around
the B-field, due to the temperature gradient ∇T . However, the Landau levels are here
computed generally, and when later introducing the symmetry-breaking components like
the temperature gradient, we simply rotate to an appropriate frame.

5One could, in principle, have solved the system directly without such a transformation,
however, it would be very tedious. [TCG16]
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factor compensating for the non-unitarity of the transformation, we get the
eigenvalue equation

(RHBR− ER2) |ψ̃⟩ = 0. (4.54)
We now make the fortunate observation that the diagonal elements of

RσiR

are zero for i = y and non-zero for i = x, z. The x- and z-components may
thus be rotated in and out of the diagonal, without accidentally rotating the
y-components into the diagonal.

We will now find the boost parameter that eliminates kx from the diagonal.
Note that

R2 = eΘσx =
(
cosh θ sinh θ
sinh θ cosh θ

)
(4.55)

and as [R, σx] = 0,

RσxR = R2σx =
(
sinh θ cosh θ
cosh θ sinh θ

)
, (4.56)

as the effect of σx is to transpose the rows. The problematic part of the
Hamiltonian in regard to finding the Landau levels, are the terms containing
kBx on the diagonal, i.e.

vF t
s
⊥k

B
x I2 + svFk

B
x σx.

The requirement for kBx to be rotated out of the diagonal is thus

ts⊥ cosh θ + s sinh θ = 0. (4.57)

Solving for θ we get

θ = log(±
√
s− ts⊥√
s+ ts⊥

). (4.58)

Alternatively, written in a slightly suggestive form,

tanh θ = −sts⊥, (4.59)

which is of course on the form of the rapidity known from Lorentz transforma-
tions, with −sts⊥ taking the place of the β = v/c factor. From this observation,
we also find it instructive to introduce the Lorentz factor

γ = 1√
1− β2

= 1√
1− t2⊥

. (4.60)
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The required hyperbolic tilt angle to eliminate the kBx in the diagonal
elements of the Hamiltonian, originating from the tilt, is thus

θ = −s tanh−1 ts⊥. (4.61)

The inverse of tan, of course, diverges as the argument approaches ±1, as
shown in Fig. 4.2. For |t⊥| < 1 we can find an angle θ which transforms our
Hamiltonian into a form that we may solve. For |t⊥| ≥ 1, however, no (real)
solution of θ exits, and the Landau level description collapses. More concretely,
as we will show later, the separation of the Landau levels is reduced as the
perpendicular tilt increases, and as |t⊥| → 1, the level separation ∆E → 0.

−1 −0.5 0 0.5 1

−2

0

2

ta
nh

−
1
x

Figure 4.2.: Plot of tanh−1, which diverges as the argument goes to ±1.

Interestingly, there are no restrictions on the parallel tilt, t∥. The t
parametrization of the tilt is conveniently visualized by plotting the t-vector
inside a unit sphere, shown in Fig. 4.3. If the vector is outside the unit sphere,
it is a Type-II, if it is inside, it is a Type-I. Also, if the projection of the vector
onto the x, y-plane is on the unit disk, the Landau level description is valid,
if not, the Landau levels collapse. When the projection is on the unit disc,
the system is in the magnetic regime, otherwise, we denote it by the electric
regime. As the t-vector gets larger, the magnetic regime is restricted to smaller
angles between t and B. The magnetic regime is where the Landau levels are
valid. All Type-I materials may thus be described by Landau levels, while for
Type-II the Landau level description is only valid for certain directions of t.

We now return to solving Eq. (4.54), using the solution angle we just found.
By insertion, and after some clean up, we get

(RHBR− ER2) |ψ̃⟩ = vFA |ψ̃⟩ = 0, (4.62)
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Figure 4.3.: Geometric visualization of the tilt vector t. When the vector is
inside the unit sphere (t < 1), the system is in the Type-I regime. When
the vector is outside the unit sphere (t > 1), the system is in the Type-II
regime. When the projection onto the xy-plane is on the unit disc, the
system is in the magnetic regime, otherwise, it is in the electric regime.
Shown are Type-I tilt (blue), Type-II magnetic (red), and Type-II electric
(green). Figure inspired by Tchoumakov, Civelli, and Goerbig [TCG16].

with

A11 = kz(s+ ts∥γ)− E/vFγ,

A12 = −s(iky + kzt⊥t∥γ − kx/γ − E/vFγt
s
⊥),

A21 = s(iky − kzt⊥t∥γ + kx/γ + E/vFγt
s
⊥),

A22 = −kz(s− ts∥γ)− E/vFγ.

In order to simplify this further, absorb γts⊥(kzts∥ −E/vF ) into kx. Thus, let

k̃x = kx/γ + γts⊥(E/vF − kzt
s
∥),

k̃y = ky,

k̃z = kz.

(4.63)

67



THERMOELECTRIC EFFECT FROM THE CONFORMAL ANOMALY

These expressions warrant some explanation, as the Lorentz boost is of
course

k̃x = γ(kx − t⊥
E

vF
), (4.64)

where E is the effective energy, and we used the four momentum pµ = ( E
vF
,p),

and the effective speed of light vF . It can thus look like our expression
in Eq. (4.63) is wrong. The solution to this seeming inconsistency is that
the proper effective energy is not E − vFkzt

s
∥, but rather E − vFkzt

s
∥ −

vFkxt
s
⊥ [YYY16].

The eigenvalue equation in the transformed momenta is simply[
γ

(
ts∥k̃z −

E

vF

)
I2 + sk̃iσi

]
|ψ̃⟩ = 0. (4.65)

If we now again introduce the magnetic field using minimal coupling, kx →
kx − eyBz, this corresponds to an effective field Bz/γ in the new quantities.
This is because k̃x → k̃x − eyBz/γ. The Landau level equation thus reads[∑

i

svF
(
k̃i + eÃi

)
σi

]
|ψ̃⟩ = (E − ts∥vF k̃z)γ |ψ̃⟩ , (4.66)

where Ã = −Bz/γyx̂. We may thus use directly the result for the untilted
cone, Eq. (4.43), giving

(
E − ts∥vF k̃z

)
γ = sign(m)vF

√
2|m|eB

γ
+ k̃2z , m ̸= 0, (4.67a)(

E − ts∥vF k̃z
)
γ = −sk̃zvF , m = 0. (4.67b)

Cleaning up and introducing explicitly the quantum numbers to the energy

Ekzms = ts∥vF k̃z + sign(m)vF
γ

√
2|m|eB

γ
+ k̃2z , m ̸= 0, (4.68a)

Ekz0s = k̃zvF
(
ts∥ − s/γ

)
, m = 0. (4.68b)

As the perpendicular tilt is increased, γ = 1/
√
1− t2⊥ diverges to infinity.

With the trivial substitution α = 1/γ, which goes to zero, this gets an intuitive
interpretation. As the perpendicular tilt increases, the Landau levels converge
towards t∥vF k̃z. In particular, the separation between Landau levels is reduced
by a factor α3/2. The effect of the tilt on the Landau levels is to squeeze the
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4.2. Eigenvalue problem of the Landau levels of a Weyl Hamiltonian

Landau levels together, and we will call the α the squeezing factor. We note
that when approaching the degree of tilt where we are no longer able to find
a boost that enables us to solve for the Landau levels, i.e. when |t⊥| → 1, the
squeezing factor goes to zero. As the tilt exceeds this limit, the squeezing
factor is imaginary.

The energy levels of the tilted cone expressed in terms of the energy levels
of the untilted cone

Ekzms = ts∥vFkz + αE0
kzms(αB),

where E0
kzms(αB) is the energy in the untilted case, with magnetic field αB.

We thus see that, in the Landau level picture, the energy levels are tilted by
the t∥-component, while the t⊥-component squeezes the separation between
the levels. The Landau levels cross the Fermi level at the transition from
Type-I to Type-II, just like the energy bands do. The Landau levels are shown
in Fig. 4.4 for different choices of t⊥ and t∥.
Recall the eigenstate of

H = vFσ
i(pi + eAi),

with Ai = −Bzyδix, as given in summary 1 using the position basis,

φkms(r) =
eikxxeikzz√
LxLz

e
− (y−kxl2)2

2l2
B√

α2
kzms + 1


αkzms√

2M−1(M−1)!
√
πlB

HM−1

(
y−kxl2B

lB

)
1√

2MM !
√
πlB

HM

(
y−kxl2B

lB

)
 ,

where capital letters indicate absolute value of corresponding quantity, M =
|m|,k = (kx, kz), and with the normalization factor

αkzms =
−
√
2eBM

Ekzms

svF
− kz

. (4.69)

Taking care to keep track of boosted and rescaled quantities, the eigenstate
in the boosted frame is

φ̃(r̃) = eik̃xx̃eikzz√
LxLz

e
−(ỹ−k̃xl2

B′)2
2l2

B′√
α2
k̃zms

+ 1


αk̃zms√

2M−1(M−1)!
√
πlB′

HM−1

(
ỹ−k̃xl2

B′
lB′

)
1√

2MM !
√
πlB′

HM

(
ỹ−k̃xl2

B′
lB′

)
 ,
(4.70)
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Figure 4.4.: Landau levels for different values of t⊥, t∥. The top two rows
show Type-I, while the lowest row shows Type-II. Left column shows
t⊥ = 0, right column t⊥ = 0.64 (α = 0.6). The rows show t∥ = 0, 0.5, 1.2,
from top to bottom. The dotted lines show the Landau levels with
opposite sign of t∥, and the dashed show the opposite chirality. The
arrows indicate valid “transitions”, namely the 0 → 1 interband in black,
−1 → 4 interband in brown, and 1 → 2 intraband in teal. See main text
for details.
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with

αk̃zms =
−
√
2eB′M

γ
Ek̃zms−ts∥vF k̃z

svF
− k̃z

, (4.71)

where
B′ = Bα.

We note that αkz0s = 0, so using the explicit form of the energy we may
simplify the expression some. For m ̸= 0

Ekzms − ts∥vFkz

svF
= sign(m)sα

√
2MeBα+ k2z

and thus

αkzms =
−
√
αM

sign(m)s
√
αM + κ2 − κ

(4.72)

where we defined the dimensionless κz = kz/
√
2eB.

The original eigenstate |ψ⟩ = 1/N eθ/2σx |ψ̃⟩ of the tilted system is easily
found. Reinserting explicitly, in the boosted frame, that

k̃x = αkx +
ts⊥
α
(Ekzms/vF − kzt

s
∥) = αkx + ts⊥

E0
kzms(αB)
vF

and lB′ = lB√
α
we define

χ =
y − k̃xl

2
B′

lB′
=

√
α(y − kxl

2
B)/lB +

ts⊥lB√
αvF

E0
kzms(αB), (4.73)

which is the argument of the Hermite polynomials. For later convenience, let
us explicitly define

φ̃kms(r̃) =
eik̃xx̃+ikzz

√
LxLz

e−
1
2χ

2 4√α√
α2
k̃zms

+ 1

 αk̃zms√
2M−1(M−1)!

√
πlB

HM−1 (χ)
1√

2MM !
√
πlB

HM (χ)


︸ ︷︷ ︸

φ̃kms(y)

, (4.74)

and thus

φ̃kms(y) = e−
1
2χ

2
(
akmsHM−1(χ)
bkmsHM (χ)

)
, (4.75)
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with

akms =
αk̃zms

4√α√
α2
k̃zms

+ 1
√
2M−1(M − 1)!

√
πlB

, (4.76)

bkms =
4√α√

α2
k̃zms

+ 1
√
2MM !

√
πlB

. (4.77)

We proceed now to find the normalization factor N , as it will become
necessary in later steps. Recall that

|ψ⟩ = 1
N eθ/2σx |ψ̃⟩ ,

and use that for θ = tanh−1(−sts⊥) the hyperbolic rotation

R2 = eθσx = 1
α

(
1 −sts⊥

−sts⊥ 1

)
.

The upper and lower part of the spinor are orthogonal, thus we have

⟨ψ|ψ⟩ = 1
N ∗N

1
α
⟨ψ̃|ψ̃⟩ = 1 =⇒ N ∗N = 1

α
. (4.78)

We choose N = α− 1
2 .

Summary 2
The tilted Hamiltonian

H = vF t
sp+ svFpσ

in a magnetic field B has the Landau levels

E =

ts∥vFkz + sign(m)vFα
√
2eBαM + k2z m ̸= 0,

ts∥vFkz − sαvFkz m = 0,

with the squeezing factor α =
√
1− t2⊥. The associated eigenstates in the

position basis are

φ(r) =
√
αeθ/2σx

eikxx+ikzz

√
LxLz

φ̃(y),

where
φ̃(y) = e−

1
2χ

2
(
akzmsHM−1(χ)
bkzmsHM (χ)

)
,
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4.3. Analytical expression for the response function

where we have defined χ =
√
α

y−kxl2B
lB

+ ts⊥lB√
αvF

E0
kzms(αB) and akzms, bkzms

are given in Eqs. (4.76) and (4.77).

4.3. Analytical expression for the response function
We will here find analytical expressions for the current operator J i(ω, q)
and energy-momentum tensor T j0(ω, q), needed to calculate the correlation
function. The fields are given, in the position basis, by

ψ =
∑
kn

⟨r|kns⟩ akns(t) =
∑
kn

φkns(r)akns(t), (4.79)

ψ† =
∑
kn

⟨kns|r⟩ a†kns(t) =
∑
kn

φ∗kns(r)a
†
kns(t). (4.80)

Here a†λ(t) = exp(iEλt/)a†λ and a†λ, aλ are the creation and annihilation
operators of the state with quantum numbers λ.

4.3.1. Expressions for the operators
The current operator

The current operator Ĵ = ev̂, where v̂ is the velocity operator. Using the
relation of Heisenberg operators Ȧ = −i[A,H] [SN17], for the operator A and
Hamiltonian H, and with the minimal coupling pB = p+ eA,

v = ṙ = −i [r, H] (4.81)

= −ivF (sσi + tsi )
[
r, pBi

]
(4.82)

= vF (sσ + ts), (4.83)

where we used the canonical commutation relation [ri, pj ] = iδij and that the
position operator and magnetic potential A commute. We thus get

Jx = ψ†Ĵxψ = svF e
∑

km,ln

φ∗kms(r) (σx + stsx)φlns(r)a
†
kms(t)alns(t). (4.84)

The energy-momentum tensor

The canonical energy-momentum tensor is generally defined by

Tµν = δL
δ(∂µφi)

∂νφi − ηµνL, (4.85)
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where the index i runs over the types of fields. This definition is correct for
commuting fields, however, for non-commuting fields like ours, this formula is
slightly wrong. This is often overlooked in many textbooks and papers, so we
will here elucidate the issue to some degree. While a proper derivation requires
the use of Grassman variables and defining left and right derivation, which
we will not do here, some simple considerations help in understanding the
issue. In the standard textbook derivation of the canonical energy-momentum
tensor, one expands the total derivative of the Lagrangian L(ψi, ∂ψi) in terms
of the fields,

dL(ψi, ∂ψi)
dxν

≡ dνL = ∂L
∂(∂µφi)

∂(∂µψi)
∂xν

+ ∂L
∂ψi

∂ψi

∂xν
. (4.86)

This expansion, however, ignores the non-commutative nature of the fields.
For concreteness, consider ψi = ψ̄. Heuristically, the correct expression would
be obtained by reordering the factors in the two terms. By naively employing
Eq. (4.85), the resulting canonical energy-momentum tensor of the Dirac
theory would be

Tµν = δL
δ(∂µψ̄)

∂νψ̄ + δL
δ(∂µψ)

∂νψ − ηµνL, (4.87)

while the correct form is [IZ80, Eq. (3-153)]

Tµν = ∂νψ̄
δL

δ(∂µψ̄)
+ δL
δ(∂µψ)

∂νψ − ηµνL. (4.88)

The untilted Weyl Hamiltonian

Hs = sσipi, (4.89)

where natural units (c = vF = 1) are used, to have the expressions explicitly
match those of QFT literature. The associated Lagrange density [Kac18]

Ls = iφ†σµs ∂µφ, (4.90)

with σµs = (I2, sσ), i.e. σµs=1 = σµ, σµs=−1 = σ̄µ known from the Dirac
solutions. This is seen directly from the Dirac Lagrangian iψ̄ /∂ψ by taking
ψ = (φL, φR)T and setting, for example, φR = 0. Symmetrize in daggered
and undaggered fields6

Ls =
i

2(φ
†σµs ∂µφ− ∂µφ

†σµs φ), (4.91)

6The Lagrangian itself is nonphysical, and we may transform it in any way that leaves the
action

∫
L invariant.
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which will prove more convenient to work with. From the definition of the
canonical energy-momentum tensor for Dirac fields Eq. (4.88), one gets

Tµν = i

2(φ
†σµs ∂νφ− ∂νφ

†σµs φ− ηµνL). (4.92)

Consider now the tilted Weyl Hamiltonian

Hs = sσiki + (ts)ipi. (4.93)

Exactly analogous to the treatment of van der Wurff and Stoof [vdWS19]
for the full 4× 4 tilted Dirac Lagrangian, absorb the tilt term into the Pauli
matrices, giving the Lagrangian density

Ls = iφ†σ̃µs ∂µφ, (4.94)

where σ̃µs = σµs + (ts)µ, with (ts)µ = (0, ts). The corresponding energy-
momentum tensor, after again symmetrizing in the fields,

Tµν = i

2(φ
†σ̃µs ∂νφ− ∂νφ

†σ̃µs φ− ηµνL). (4.95)

Reintroducing the explicit effective speed of light vF and recalling ∂0 = ∂t/vF
this gives

T y0(t, r) = 1
2
∑

km,ln

φ∗kms(r)(sσy + tsy)φlns(r)

×
[
a†kms(t)i∂talns(t)− i

(
∂ta

†
kms(t)

)
alns(t)− 2µa†kms(t)alns(t)

]
. (4.96)

Here, also a non-zero potential µ is included by hand,7 equal to what was
done in Arjona, Chernodub, and Vozmediano [ACV19]. Our final result will
be given at zero potential, however, it is included in the calculations as it
for future work is interesting to consider small deviations from zero chemical
potential. Recalling the time dependence of a(t), a†(t) we have that

i∂taλ(t) = Eλaλ, i∂ta
†
λ(t) = −Eλa

†
λ,

which further simplifies the expression.
Summary 3
The current- and energy-momentum tensor operator are

7This is of course in no way a rigorous treatment of the chemical potential. Heuristically,
one may argue that as the T y0 component is to be regarded as the energy flux, the
contribution from chemical potential should be the chemical potential multiplied by the
particle velocity operator.
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Jx = svF e
∑

km,ln

φ∗kms(r) (σx + stsx)φlns(r)a
†
kms(t)alns(t), (4.97)

T y0(t, r) = 1
2
∑

km,ln

φ∗kms(r)(sσy + tsy)φlns(r) (4.98)

× [Ekzms + Elzns − 2µ] a†kms(t)alns(t).

4.3.2. Response function in momentum space
Fourier transforming the position gives

Jx(t, q) =
∑

km,ln

Jx
kms,lns(q)a

†
kms(t)alns(t), (4.99)

T y0(t,−q) =
∑

km,ln

T y0
kms,lns(q)a

†
kms(t)alns(t), (4.100)

where the matrix elements in momentum space are given by

Jx
kms,lns(q) =

∫
dre−iqrsvF eφ

∗
kms(r)(σx + stsx)φlns(r), (4.101)

T y0
kms,lns(q) =

1
2

∫
dreiqrφ∗kms(r)(sσy + tsy)(Ekzms + Elzns − 2µ)φlns(r).

(4.102)

Note that as T y0(t,−q) will be used later, we here for convenience included
the sign into the definition of the matrix element T y0

kms,lns, as is reflected in
the sign of the exponent of Eq. (4.102).
As was noted earlier, the eigenvectors are plane waves in the x- and z-

directions, and the non-trivial part is the y-dependent φ(y). Thus, we want to
express these matrix elements in terms of φ(y). The sum over l in Eq. (4.99)
can be replaced by an integral, as it is a good quantum number. As usual,
the measure in the integration is given by the density of states in momentum
space, the well-known Li/2π, with Li being the length of the system in the
i-direction.

Jx(t, q) =
∑
km,n

∫
dlxdlz

LxLz

4π2 Jx
kms,lns(q)a

†
kms(t)alns(t) (4.103)

=
∫

dlxdlz
∫

dye−iqyyδ(lx − kx − qx)δ(lz − kz − qz)

× svF eφ
∗
kms(y)(σx + stsx)φlns(y).
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The Dirac delta functions appeared from taking the integrals from the matrix
element over x and z, as the integrand in these variables was only plane waves.
The exact same procedure may be done for the energy-momentum tensor in
Eq. (4.100). Eliminating l by doing the integrals yields

Jx(t, q) =
∑
k,mn

Jx
kms,k+qns(q)a

†
kms(t)ak+qns(t), (4.104)

T y0(t,−q) =
∑
κ,µν

T y0
κµs,κ−q,νs(q)a†κµs(t)aκ−qνs(t), (4.105)

where q = (qx, qz). Keeping in mind that a†λ(t) = eiEλt/a†λ, and that〈[
a†kmsak+qns, a

†
κµsaκ−qνs

]〉
= δk,κ−qδm,νδk+q,κδn,µ [nkms − nk+qns] ,

(4.106)
where nkms is the Fermi-Dirac distribution, the correlation function is given
by〈[

Jx(t, q), T y0(t′,−q)
]〉

=
∑
kmn

ei(Ekzms−Ekz+qzns)tei(Ekz+qzns−Ekzms)t′

× Jx
kms,k+qns(q)T

y0
k+qns,kms(q) [nkms − nk+qns] . (4.107)

We are now ready to find the correlation function χxy given in Eq. (4.14)

χxy(ω, q) = −ivF
V

∫
dteiωt

0∫
−∞

dt′Θ(t)
〈[
Jx(t, q), T y0(t′,−q)

]〉
. (4.108)

Introduce as usual a decay factor e−η(t−t′) to ensure convergence in the time
integrals, and make a change of variables t′ → −t′. The integral part of
Eq. (4.108), ignoring everything without time dependence for clarity, is then

lim
η→0

∞∫
0

dtdt′e[i(Ekzms−Ekz+qzns+ω+iη)t]e[i(Ekzms−Ekz+qzns+iη)t′]

= lim
η→0

i [Ekzms − Ekz+qzns + ω + iη]−1 i [Ekzms − Ekz+qzns + iη]−1 . (4.109)

The response function then reads

χxy(ω, q) = ivF
V lim

η→0

∑
kmn

Jx
kms,k+qns(q)T

y0
k+qns,kms(q) [nkms − nk+qns]

× [Ekzms − Ekz+qzns + ω + iη]−1 [Ekzms − Ekz+qzns + iη]−1 ,

(4.110)
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where the matrix elements are

Jx
kms,k+qns(q) =

∫
dye−iqyysvF eφ

∗
kms(y)(σx + stsx)φk+qns(y), (4.111)

T y0
k+qns,kms(q) =

1
2

∫
dyeiqyyφ∗k+qns(y)(sσy + tsy)φkms(y) (4.112)

× (Ekzms + Ekz+qzns − 2µ) .

We will for the rest of the calculation consider η → 0. The calculation was
also done with a finite impurity η, which gives no important contributions.
We will consider the response function in the static limit limω→0 limq→0.

We may use the property of the limit of a product of functions limA · B =
limA · limB to write

lim
ω→0

lim
q→0

χxy(ω, q) = ivF
V

∑
kmn

Jx
kms,knsT

y0
kns,kms[nkms − nkns]

(Ekzms − Ekzns)2
, (4.113)

where the current and energy-momentum tensor matrix elements are the
expression given in Eqs. (4.111) and (4.112) taken in the limit. Furthermore,
we will take the zero temperature limit T → 0, where nkms = θ(µ− Ekzms).

4.4. Response of an untilted cone

We here evaluate Eq. (4.113) for the untilted cone.

4.4.1. Explicit form of the matrix elements

Compared to the procedure used by Arjona, Chernodub, and Vozmediano
[ACV19], taking the limit of each matrix element by itself greatly simplifies
the calculation.
Let

φkms(y) = e
− (y−kxl2

B
)2

2l2
B

akzmsHM−1

(
y−kxl2B

lB

)
bkzmsHM

(
y−kxl2B

lB

)
 , (4.114)

where akzms, bkzms are as defined in Eqs. (4.76) and (4.77), with t = 0.
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The current operator

The matrix element

Jkms;k+qns(q)

=
∫

dye−iqyysvF eφ
∗
kms(y)σxφk+qns(y) (4.115)

= svF e
∫

dy exp
{
−iqyy −

(y − kxl
2
B)2 + (y − (kx + qx)l2B)2

2l2B

}
(4.116)

×
[
akzmsbkz+qznsHM−1

(
y − kxl

2
B

lB

)
HN

(
y − (kx + qx)l2B

lB

)

+ bkzmsakz+qznsHM

(
y − kxl

2
B

lB

)
HN−1

(
y − (kx + qx)l2B

lB

)]
.

We wish to write the exponent on the form e−a(y+b)2 . Introduce qy = (qx, qy),
not to be confused with q = (qx, qz), and complete the square

Jkms;k+qns(q) = svF e
∫

dye−{y+l2
B
(iqy−2kx−qx)/2}2

/l2
Be−

1
4 l

2
B{q2y+2i(2kx+qx)qy}

×
[
akzmsbkz+qznsHM−1

(
y − kxl

2
B

lB

)
HN

(
y − (kx + qx)l2B

lB

)

+bkzmsakz+qznsHM

(
y − kxl

2
B

lB

)
HN−1

(
y − (kx + qx)l2B

lB

)]
.

(4.117)

By introducing ỹ = y
lB

+ lB(iqy − qx − 2kx)/2 the matrix element may be
rewritten

Jkms;k+qns(q) = svF e
∫

dỹ lB exp
[
−1
4 l

2
B

{
q2y + 2i(2kx + qx)qy

}]
e−ỹ2

×
[
akzmsbkz+qznsHM−1

(
ỹ + lB

2 (qx − iqy)
)
HN

(
ỹ + lB

2 (−qx − iqy)
)

+ bkzmsakz+qznsHM

(
ỹ + lB

2 (qx − iqy)
)
HN−1

(
ỹ + lB

2 (−qx − iqy)
)]

.

(4.118)

Taking the limit we find the simple form

Jkms;kns = Jkzmns = svF elB

∫
dỹe−ỹ [akzmsbkznsHM−1(ỹ)HN (ỹ) +m↔ n] ,

(4.119)
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where m↔ n are the repetition of the previous term under the interchange
of m,n. We employ now the orthogonality relation of the Hermite polynomi-
als [Olv+, Table 18.3.1]

∞∫
−∞

dxe−x2
Hn(x)Hm(x) =

√
π2nn!δn,m (4.120)

to write

Jkms,kns = Jkzmns = svF elB
√
π(akzmsbkznsδM−1,N2NN ! +m↔ n). (4.121)

With

akmsbkns =
αkzms√

α2
kzms + 1

√
α2
kzns

+ 1

[
2N+M−1(M − 1)!N !πl2B

]− 1
2 , (4.122)

bkmsakns =
αkzns√

α2
kzms + 1

√
α2
kzns

+ 1

[
2N+M−1(N − 1)!M !πl2B

]− 1
2 , (4.123)

we find explicitly

Jkms,kns = Jkzmns = svF e
αkzmsδM−1,N + αkznsδM,N−1√

α2
kzms + 1

√
α2
kzns

+ 1
. (4.124)

The energy-momentum tensor operator

Consider now the matrix element of the energy-momentum tensor

T y0
k+qns,kms(q) =

1
2

∫
dyeiqyyφ∗k+qns(y)sσy(Ekzms + Ekz+qzns − 2µ)φkms(y).

(4.125)
The form of the integrand is similar to the current matrix case, with the
exchange of the Pauli matrix σx → σy, thus giving an additional i and a
negative sign to the first term.

T y0
k+qns,kms(q) =

is

2 (Ekzms+Ekz+qzns−2µ)
∫

dyeiqyye
− (y−kxl2

B
)2+(y−(kx+qx)l2

B
)2

2l2
B

× [−akz+qznsbkzmsHN−1(. . . )HM (. . . ) + bkz+qznsakzmsHN (. . . )HM−1(. . . )] .
(4.126)
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Taking care to note that the factor from the Fourier transform, that was
e−iqyy in the current matrix element is here e+iqyy, a similar completion of
the square is done

T y0
k+qns,kms(q) =

is

2 (Ekzms + Ekz+qzns − 2µ)e−l2
B{q2y−2iqy(2kx+qx)}/4

×
∫

dy exp

−{y + l2B
2 (−iqy − 2kx − qx)

}2

/l2B


×
[
− akz+qznsbkzmsHN−1(. . . )HM (. . . )

+ bkz+qznsakzmsHN (. . . )HM−1(. . . )
]
.

(4.127)

The arguments of the Hermite polynomials have been dropped for brevity
of notation. As before make a change of variables to get the integral on the
form of the orthogonality relation for the Hermite polynomials Eq. (4.120).
Upon introducing ỹ = y

lB
+ lB(−iqy − qx − 2kx)/2 the orthogonality relation

is used on the expression

T y0
k+qns,kms(q) =

islB
2 (Ekµs + Eλνs − 2µ)e−l2

B{q2y−2iqy(2kx+qx)}/4
∫

dỹe−ỹ2

×
[
−ak+qnsbkmsHN−1

(
ỹ + lB

2 (iqy − qx)
)
HM

(
ỹ + lB

2 (iqy + qx)
)

+bk+qnsakmsHN

(
ỹ + lB

2 (iqy − qx)
)
HM−1

(
ỹ + lB

2 (iqy + qx)
)]

.

(4.128)

The terms in the integrand are exactly the same as in the current matrix
element case, just in the reverse order and with qy → −qy. In the limit q → 0

T y0
kns,kms(q) =

is

2
(Ekzms + Ekzns − 2µ)√
α2
kzms + 1

√
α2
kzns

+ 1
(αkzmsδM−1,N − αkznsδM,N−1) .

(4.129)

Summary 4
For an untilted Weyl cone, in the local limit q → 0, we have the matrix
elements
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Jkms;kns = ΓkzmnssvF e (αkzmsδM−1,N +m↔ n) , (4.130)

T y0
kns,kms =

isΓkzmns

2 (Ekzms + Ekzns − 2µ) (αkzmsδM−1,N −m↔ n) ,
(4.131)

where m↔ n represent the preceding term under the interchange of m,n

and where we have defined Γkzmns =
[
(α2

kzms + 1)(α2
kzns

+ 1)
]− 1

2 .

4.4.2. Computing the response function
It is now finally possible to write out the entire response function. We begin by
replacing the sum over k with an integral. Firstly, we will show that the sum
over kx is restricted; recall that the eigenfunctions are exponentially centered
around y0 = kxl

2
B, which for a finite sample we expect to be restricted to

0 ≤ y0 ≤ Ly. This restricts the kx sum to 0 ≤ kx ≤ Ly/l
2
B = LyeB, resulting

in the kx summation giving a finite degeneracy contribution [Ton, Ch. 1.4.1;
Lin17], as the integrand is independent of kx.

∑
k

=
LyeB∑
kx=0

∑
kz

→ LxLz

(2π)2

LyeB∫
0

dkx
∫

dkz (4.132)

= VeB
(2π)2

∫
dkz. (4.133)

Recall the response function (4.113)

lim
ω→0

lim
q→0

χxy(ω, q) = ivF
V

∑
kmn

Jx
kms,knsT

y0
kns,kms[nkms − nkns]

(Ekzms − Ekzns)2
. (4.134)

Firstly, introduce the dimensionless quantities κz
√
2eB = kz, ϵkzmsvF

√
2eB =

Ekzms, in order to facilitate solving the integral over kz. Collecting dimen-
sionful quantities, the response function reads

lim
ω→0

lim
q→0

χxy = −e
2vFB

2(2π)2
∑
mn

∫
dκz[nκzms−nκzns][(α2

κzms+1)(α2
κzns+1)]−1

× (ϵκzms + ϵκzns)(α2
κzmsδM−1,N − α2

κznsδN−1,M )
(ϵκzms − ϵκzns)2

. (4.135)
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Let us now define

ξ(κz,m, n) = lim
ω→0

lim
q→0

[nκms − nκ+qns]
[
(α2

κms + 1)(α2
κ+qns + 1)

]−1

(ϵκms − ϵκ+qns)(ϵκms − ϵκ+qns + ω
vF

√
2eB ) . (4.136)

As is shown in Table 4.1, in the limit, ξ(κz,m, n) is odd under interchange
of m,n. Using this, we may simplify our expressions. In the last term of
Eq. (4.135), relabel the summation indices m↔ n, and then use that ξ is odd
under interchange of m,n. This renders the two terms equal, and we may
consider

α2
κzmsδM−1,N − α2

κznsδN−1,M → 2α2
κzmsδM−1,N .

The simplified expression is then

lim
ω→0

lim
q→0

χxy = −e
2vFB

(2π)2
∑
mn

N=M−1

∫
dκzξ(κz,m, n)(ϵκzms + ϵκzns − 2µ)α2

κzms.

(4.137)

Table 4.1.: Sign change of factors under various transformations.

Transformation ξ(κz,m, n) ϵκzms ακzms

(m,n, κz) 7→ (−m,−n,−κz) -1 -1 -1
(κz, s) 7→ (−κz,−s) +1 +1 -1
(m,n) 7→ (n,m) -1

Before solving the integral, we note that in addition to the N =M − 1 se-
lection rule8 of the sum, the distribution functions nκzms−nκzns in ξ(κz,m, n)
impose further restrictions on which transitions are energetically allowed.
We consider the limit T → 0, where the distributions take the form of step
functions, nκzms → θ(−ϵκzms). As the sign of energy level m, for m ̸= 0, is
given by the sign of m itself, this gives a rather simple restriction on the sum.
For the zeroth energy level, the sign of the energy is given by sign(−sκz).
The distribution factor is

nkms − nkns =


0 mn > 0 or m,n = 0,

− sign(m) m,n ̸= 0,
− sign(m)θ [sign(m)sκz] n = 0.

(4.138)

8Known as the dipolar selection rule [TCG16].
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Combining this with the selection rule N = M − 1, we see that the only
allowed transitions are

M → −N = −(M − 1), −M → N = (M − 1).

The sum may be further restricted by noting that as both ξ(κz,m, n) and
ϵκzms + ϵκzns are odd under (m,n, κz) → (−m,−n,−κz), the two transitions
above give the same contribution when µ = 0. In the case of zero chemical
potential, the expression may thus be simplified further, by considering only
−N →M = N + 1 transitions, adding a factor of 2.

Lastly, we now show that the contributions from cones of opposite chirality
s are the same. Under the transformation (κz, s) 7→ (−κz,−s), the product
κzs is obviously invariant. Note that ϵκzms only depends on s and κz through
the product κzs. While it is not the case for ακzms, it is the case for its square.
Consequently, the integrand is invariant under (κz, s) 7→ (−κz,−s). Similar
to the argumentation used above, as the integral goes over all κz, the integral
is invariant under s 7→ −s.
Summary 5
We have shown the following simplifications of Eq. (4.135):

• The contributions from the terms α2
κzmsδM−1,N and −α2

κznsδN−1,M
are equal, and we consider therefore only one of them, adding a
degeneracy factor 2.

• The difference of the step functions takes the form Eq. (4.138), which
limits the transitions to states with energies of opposite signs. For
each value of M,N , this means the only valid transitions are m =
M,n = −N and m = −M,n = N .

• As the integrand is invariant under (m,n, κz) 7→ (−m,−n,−κz), we
may consider only one of the transitions mentioned in the previous
point, adding once again a degeneracy factor of 2.

• We lastly showed that the contribution is independent of the chirality
s.

For zero chemical potential, the response function is

lim
ω→0

lim
q→0

χxy = −2e2vFB
(2π)2

∑
i=0

∫
dκzξ(κz,m, n)(ϵκzms + ϵκzns)α2

κzms

∣∣
m=i+1
n=−i

,

(4.139)
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where the integration limits are (−∞,∞) for i ̸= 0, (−∞, 0) for i = 0, s = −1,
and (0,∞) for i = 0, s = 1.
Including only the first term of the sum, we find

lim
ω→0

lim
q→0

χxy = e2vFB

2(2π)2ℏ , (4.140)

where we have reinserted the explicit ℏ. Including contributions from the N̄
lowest Landau levels, one acquire additional numerical prefactors,

lim
ω→0

lim
q→0

χxy = γN̄
e2vFB

2(2π)2ℏ . (4.141)

Solving the integral analytically, we obtained the contribution from each term

γN̄ − γN̄−1 = 1 + 2N̄
{
1− (1 + N̄) log(1 + 1

N̄
)
}
, N̄ > 0. (4.142)

The sum can be shown to equal the rather nasty expression

γN̄ = γ0 +
1
3
(
6ζ(1,0)(−2, N̄ + 1)− 6ζ(1,0)(−2, N̄ + 2) + 6ζ(1,0)(−1, N̄ + 1)

+ 6ζ(1,0)(−1, N̄ + 2) + 12 log(ξ) + 3N̄2 + 6N̄ − 1
)
, (4.143)

where ξ ≈ 1.28243 is Glaisher’s constant. Specifically γ0 = 1, γ20 ≈ 2.
Furthermore, γN̄ goes like log N̄ . The first 300 contributions are shown in
Fig. 4.5.

4.5. The response of a tilted cone
The generalization to the tilted cone follows the same fundamental steps as
that of the untilted cone. However, there are important technical and physical
complications that must be handled with care. In this section, we compute
the response of a tilted cone, following the same structure as was used in the
untilted case. As mentioned in the introduction to the chapter, the tilt vector
t may in general have any direction. However, we here specialize to having
t = (t⊥, 0, t∥).

4.5.1. Explicit form of the matrix elements
We will here find an explicit form of the matrix elements, starting with the
charge current

Jkms;k+qns(q) =
∫

dye−iqyysvF eφ
∗
kms(y)(σx + stsx)φk+qns(y), (4.144)
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Figure 4.5.: Prefactor γN̄ for a non-tilted system as a function of the number
of included Landau levels N̄ .

which we will split into two parts, J (1), J (2), corresponding to the terms σx
and stsx. For the first part, we must find the matrix product φσxφ. Recall
from summary 2 that φ =

√
αeθ/2σx φ̃, and thus we must find

φ∗σxφ = αφ̃∗eθ/2σxσxe
θ/2σx φ̃ = αφ̃∗σxeθσx φ̃.

As defined in summary 2

φ̃ = e−
1
2χ

2
(
akmsHM−1(χ)
bkmsHM (χ)

)
, χ =

√
α
y − kxl

2
B

lB
+

ts⊥lB√
αvF

E0
kzms(αB).

With the previously found solution θ = − tanh−1 tsx, we get the rather simple
form

eθσx =
(

1 −stsx
−stsx 1

)
1√

1− tx
.

Where we in the untilted case only have off-diagonal contributions from σx,
the hyperbolic rotation gives contributions on the diagonal as well.
First, let us consider the exponent of the product. We want to complete

the square similarly to what was done for the untilted cone in Section 4.4.1.
Due to the extra term in χ, this becomes more elaborate. The exponent in
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the current matrix element Eq. (4.144) is of course

exp{−iqyy −
1
2χ

2
k − 1

2χ
2
k+q}. (4.145)

A straightforward but tedious calculation shows that the argument of the
exponent can be written as

− α

l2B

(
y +

l2B
2α(iqy − (q′x + 2k′x))

)2

− l2B
4α(q

2
y +2i(q′x+2k′x)qy +(q′x)2), (4.146)

where we have defined

q′x = qxα− β

vF
[E0

kzns(αB)− E0
kzms(αB)], (4.147)

k′x = kxα− β

vF
E0

kzms(αB). (4.148)

These must not be confused with the transformed momenta k̃, which are
similar in form. Eq. (4.146) is on the same form as in the untilted cone case,
and we may thus proceed with the same method. Make a change of variable

ỹ =
√
α

lB

(
y +

l2B
2α(iqy − 2k′x − q′x)

)
,

to get the exponent on the form e−ỹ2 . With this substitution,

χk = ỹ + lB
2
√
α

(
q′x − iqy

)
, (4.149)

χk+q = ỹ + lB
2
√
α

(−q′x − iqy
)
. (4.150)

The first part of the current matrix element, Eq. (4.144), is thus

J
(1)
kms;k+qns(q) =

svF e√
α

∫
dỹ lB exp

[
− l2B
4α
(
q2y + 2i(2k′x + q′x)qy + (q′x)2

)]
×e−ỹ2 [akmsbk+qnsHM−1 (χk)HN (χk+q)

− stxakmsak+qnsHM−1 (χk)HN−1 (χk+q)
+ bkmsak+qnsHM (χk)HN−1 (χk+q)
−stxbkmsbk+qnsHM (χk)HN (χk+q)] .

(4.151)
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Next consider the second term of the current operator,

J
(2)
kms;k+qns(q) = evF t

s
x

∫
dye−iqyyφ∗kms(y)φk+qns(y). (4.152)

With a procedure similar to above, with the same substitution and completion
of the square

J
(2)
kms;k+qns(q) =

svF et
s
x√

α

∫
dỹlB exp

[
− l2B
4α(q

2
y + 2i(2k′x + q′x)qy + (q′x)2)

]
× e−ỹ2

[
akmsHM−1(χk)sak+qnsHN−1(χk+q)
− akmsHM−1(χk)tsxbk+qnsHN (χk+q)
− bkmsHM (χk)tsxak+qnsHN−1(χk+q)

+ sbk+qnsHN (χk+q)
]
.

(4.153)

By inspection, recalling
√
1− t2x = α, we see

Jkms;k+qns(q) = svF e
√
α
∫

dỹ lB exp
[
− l2B
4α
(
q2y + 2i(2k′x + q′x)qy + (q′x)2

)]
× e−ỹ2

[
akmsbk+qnsHM−1 (χk)HN (χk+q)

+ bkmsak+qnsHM (χk)HN−1 (χk+q)
]
.

(4.154)

The diagonal elements cancel!
To perform the integration, we use the shifted orthogonality relation for

Hermite polynomials [GZ15, Eq. (7.377)]

∞∫
−∞

dxe−x2
Hm(x+ y)Hn(x+ z) = 2nπ 1

2m!yn−mLn−m
m (−2yz), m ≤ n,

(4.155)
where La

b are the generalized Laguerre polynomial of order b and type a. Define
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the functions Ξ1,Ξ2 by

√
ααkzmsΞ1(q,m, n, s)√

α2
kzms + 1

√
α2
kz+qzns

+ 1
=
∫

dỹ e−ỹ2 lBakmsbk+qnsHM−1(χk)HN (χk+q),

(4.156)
√
ααkz+qnsΞ2(q,m, n, s)√
α2
kzms + 1

√
α2
kz+qzns

+ 1
=
∫

dỹ e−ỹ2 lBbkmsak+qnsHM (χk)HN−1(χk+q).

(4.157)

Using that

akmsbk+qns =
√
ααkzms√

α2
kzms + 1

√
α2
kz+qzns

+ 1

[
2N+M−1(M − 1)!N !πl2B

]− 1
2 ,

(4.158)

bkmsak+qns =
√
ααkz+qzns√

α2
kzms + 1

√
α2
kz+qzns

+ 1

[
2N+M−1(N − 1)!M !πl2B

]− 1
2 ,

(4.159)

we use Eq. (4.155) to find explicit expressions

Ξ(1)
1 (q,m, n, s) =

√
2N (M − 1)!
2M−1N !

(
q′x − iqy

2
√
α

lB

)N−M+1
LN−M+1
M−1

(
q2yl

2
B

2α

)
,

(4.160a)

Ξ(2)
1 (q,m, n, s) =

√
2M−1N !

2N (M − 1)!

(−q′x − iqy

2
√
α

lB

)M−N−1
LM−N−1
N

(
q2yl

2
B

2α

)
,

(4.160b)

Ξ1(q,m, n, s) =
{
Ξ(1)
1 if N ≥M − 1

Ξ(2)
1 if N ≤M − 1

for M > 0, N ≥ 0, (4.160c)
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Ξ(1)
2 (q,m, n, s) =

√
2N−1M !

2M (N − 1)!

(
q′x − iqy

2
√
α

lB

)N−1−M

LN−1−M
M

(
q2yl

2
B

2α

)
,

(4.161a)

Ξ(2)
2 (q,m, n, s) =

√
2M (N − 1)!
2N−1M !

(−q′x − iqy

2
√
α

lB

)M−N+1
LM−N+1
N−1

(
q2yl

2
B

2α

)
,

(4.161b)

Ξ2(q,m, n, s) =
{
Ξ(1)
2 if N − 1 ≥M

Ξ(2)
2 if N − 1 ≤M

for M ≥ 0, N > 0, (4.161c)

Here, qy = (q′x, qy).
Thus, the current matrix element in terms of the functions Ξi is

Jkms;k+qns(q) = evF sα
2
exp

[
− l2

B
4α(q2y + 2i(2k′x + q′x)qy + (q′x)2)

]
√
α2
kzms + 1

√
α2
kz+qzns

+ 1

× [αkzmsΞ1(q,m, n, s) + αkz+qznsΞ2(q,m, n, s)] . (4.162)

Energy-momentum tensor

Consider now the energy-momentum tensor matrix element, taking ty = 0,

T 0y
k+qns,kms(q) =

1
2

∫
dyeiqyyφ∗k+qns(y)sσy(Ekzms + Ekz+qzns − 2µ)φkms(y).

(4.163)
As

σye
θ/2σx = e−θ/2σxσy (4.164)

we get the very fortunate result

φ∗σyφ = 1
N ∗N φ̃∗σyφ̃ = αφ̃∗σyφ̃. (4.165)

The energy-momentum tensor thus has the exact same form as the untilted
case, however with a prefactor α and using the transformed coordinates χ.
We thus get

T 0y
k+qns,kms(q) =

isα

2 (Ekzms + Ekz+qzns − 2µ)
∫

dyeiqyye−
1
2 (χ

2
k+q

+χ2
k
)

× [−ak+qnsbkmsHN−1(χk+q)HM (χk)
+ bk+qnsakmsHN (χk+q)HM−1(χk)]. (4.166)
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We will perform once again the completion of the square and substitution of
y. The exponent is the same as that which we found for the current operator
case, Eq. (4.146), with the change qy → −qy. We thus make the change of
variables

ỹ =
√
α

lB

(
y − l2B

2α(iqy + (2k′x + q′x))
)
, (4.167)

giving

χk = ỹ + lB
2
√
α

(
q′x + iqy

)
, (4.168)

χk+q = ỹ + lB
2
√
α

(−q′x + iqy
)
. (4.169)

Thus, after inserting and employing the defining relations for the Ξi functions,
the matrix element reads

T 0y
k+qns,kms(q) =

isα

2
Ekzms + Ekz+qzns − 2µ√
α2
kzms + 1

√
α2
kz+qzns

+ 1
(4.170)

exp
[
− l2B
4α(q

2
y − 2i(2k′x + q′x)qy + (q′x)2)

]
(4.171)

(−αkz+qznsΞ2(q̄,m, n, s) + αkzmsΞ1(q̄,m, n, s)), (4.172)

where q̄ = (qx,−qy, qz).
Summary 6
In summary, we have

Jkms;k+qns(q) = vF esα
2Γ−

kqmns

[
αkzmsΞ1(q,m, n, s)

+ αkz+qznsΞ2(q,m, n, s)
]
,

(4.173)

T 0y
k+qns,kms(q) =

isα

2 Γ+
kqmns(Ekzms + Ekz+qzns − 2µ) (4.174)

× [−αkz+qznsΞ2(q̄,m, n, s) + αkzmsΞ1(q̄,m, n, s)],

with q̄ = (qx,−qy, qz) and

Γ±
kqmns =

exp
[
− l2

B
4α(q2y + (q′x)2)± iqyl

2
B(k′x +

q′x
2 )
]

[
(α2

kzms + 1)(α2
kz+qzns

+ 1)
] 1
2

.
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4.5.2. Static limit and dimensionless form of the matrix elements
We are interested in the response in the static limit q → 0. As before, we use
the property of limits of products

lim
n→a

A ·B = lim
n→a

A · lim
n→a

B.

We may thus consider the limits of the current and energy-momentum matrix
elements separately, as we did in the untilted case. Furthermore, to facilitate
for more easily solving the integration later, we will use the same dimensionless
energy and momentum ϵκzms = Ekzms/(vF

√
2eB), κz = kz/

√
2eB as before,

where B is importantly still the actual magnetic field, and not the rescaled
αB. Consider firstly the exponent in the Γ± factor from summary 6,

Γ±
kqmns ∝ exp

[
− l2B
4α(q

2
y + (q′x)2)± iqyl

2
B(k′x +

q′x
2 )
]
.

Define
P = lim

q→0
lBq

′
x√

2α
= tx√

α
[ϵ0κzns(αB)− ϵ0κzms(αB)], (4.175)

where q′x was defined in Eq. (4.147),

q′x = qxα− β

vF
[E0

kzns(αB)− E0
kzms(αB)].

In the limit, the exponent is thus

lim
q→0

Γkqmns ∝ exp
[
−β

2

2α [ϵ
0
κzns(αB)− ϵ0κzms(αB)]2

]
. (4.176)

The normalization factor αkzms is independent on q, and already dimen-
sionless. Explicitly, it is given in dimensionless quantities as

αkzms = −
√
2eαBM

Ekzms−t∥vF kz
vF sα − kz

= −
√
αM

sϵ0κzms(αB)− κ
. (4.177)

When there is a non-zero tilt, the Ξi functions, defined in Eqs. (4.160)
and (4.161), do not have a trivial form in the static limit. Expressed in the
quantities introduced here, they simplify to

Ξ(1)
1 (q,m, n, s) =

√
2N (M − 1)!
2M−1N !

(
P√
2

)N−M+1
LN−M+1
M−1

(
P 2
)
, (4.178a)

Ξ(2)
1 (q,m, n, s) =

√
2M−1N !

2N (M − 1)!

(
− P√

2

)M−N−1
LM−N−1
N

(
P 2
)
, (4.178b)
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4.5. The response of a tilted cone

Ξ(1)
2 (q,m, n, s) =

√
2N−1M !

2M (N − 1)!

(
P√
2

)N−1−M

LN−1−M
M

(
P 2
)
, (4.179a)

Ξ(2)
2 (q,m, n, s) =

√
2M (N − 1)!
2N−1M !

(
− P√

2

)M−N+1
LM−N+1
N−1

(
P 2
)
, (4.179b)

Lastly, notice that in the static limit, the entire expression of the response
function is independent of kx, and so the same procedure as was done for the
untilted cone in Section 4.4.2 is valid for the tilted cone, replacing the k sum
with an integral over kz and a degeneracy factor∑

k

→ VeB
(2π)2

∫
dkz. (4.180)

Importantly, the degeneracy factor does not depend on the renormalized
magnetic field αB, but rather B itself.

4.5.3. Tilt perpendicular to the magnetic field
We consider here the specialized situation where t = txx̂, i.e. only tilt
perpendicular to the magnetic field. The response function

lim
ω→0

lim
q→0

χxy(ω, q) = eBivF
(2π)2

∑
mn

∫
dkz[nkms − nkns]

×
Jx
kms,kns(q → 0)T y0

kns,kms(q → 0)
(Ekzms − Ekzns)(Ekzms − Ekzns)

.

(4.181)

Writing out the matrix products we have

Jx
kms,kns(q → 0)T y0

kns,kms(q → 0) = vF eiα
3

2 e−P 2

×
(Ekzms + Ekzns)(α2

kzmsΞ1(0,m, n, s)2 − α2
kzns

Ξ2(0,m, n, s)2)
(α2

kzms + 1)(α2
kzns

+ 1)
.

(4.182)

And so, inserting into the response function

lim
ω→0

lim
q→0

χxy(ω, q) = −e2α3vFB

2(2π)2
∑
mn

∫
dκze−P 2 [nκzms −nκzns](ϵκzms + ϵκzns)

× (α2
κzmsΞ1(0,m, n, s)2 − α2

κznsΞ2(0,m, n, s)2)
(α2

κzms + 1)(α2
κzns + 1)(ϵκzms − ϵκzns)2

, (4.183)
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where we also made a change of variables kz =
√
2eBκz.

We make the observation that Ξ1(m,n) = Ξ2(n,m), where it is important
to note that P changes sign under interchange of m,n. The rest of the factors
are invariant under the interchange m ↔ n, except for the step functions,
which give an overall sign change. Thus, using Ξ1(m,n) = Ξ2(n,m) and
relabelling the summation indices we may consider

α2
κzmsΞ2

1 − α2
κznsΞ

2
2 → 2α2

κzmsΞ2
1.

We may also simplify the step function expression. Physically, the step
function term corresponds to only considering transitions between states with
energies of opposite signs. For Type-I systems, which we are restricted to
here as we consider currently only perpendicular tilt, the energy of the state
with quantum number n has the same sign as n itself, excluding of course
the zeroth state. For the zeroth state, the sign of the energy is sign(−sκz).
Using these considerations, we may make certain selection rules for the sum.
In the (m,n)-plane, the first and third quadrants give no contribution, as
there mn > 0, i.e. they have the same sign. Our sum is thus restricted to the
second and fourth quadrant. It is easy to show that

nkms − nk+qns =


0 mn > 0 or m,n = 0,

− sign(m) m,n ̸= 0,
sign(n)θ(sign(n)sκ) m = 0,

− sign(m)θ(sign(m)sκ) n = 0.

(4.184)

Furthermore, the contributions from the second and fourth quadrants are
equal, which we will now show. The mapping (m,n, κz) 7→ (−m,−n,−κz),
i.e. a π rotation and κz inversion, transforms points from the m < 0 half
plane to the m > 0 half plane, including mapping the second quadrant to
the fourth quadrant. We want to consider how the integrand in question
transforms under such a mapping. Recall

ακzms = −
√
αM

sϵ0κzms(αB)− κz
,

ϵ0κzms(αB) = sign(m)
√
αM + κ2z, m ̸= 0.

Under the above mapping, we have the following relations

ϵ0κzms(αB) 7→ −ϵ0κzms(αB), (4.185)
ακzms 7→ −ακzms, (4.186)

P 7→ −P. (4.187)

94



4.5. The response of a tilted cone

The Ξ functions also acquires a sign for some values of m,n, however, we
only consider Ξ2. The integrand in Eq. (4.183) is thus invariant under the
transformation from the second to the fourth quadrant, and so we may consider
only the fourth quadrant, adding a degeneracy factor 2. The summation
region is shown in Fig. 4.6.

Lastly, completely analogous to the untilted case, the integrand only depend
on s and κz through their product sκz, and thus is invariant under (s, κz) 7→
(−s,−κz). As the integral spans all of κz, the contribution is independent of
the chirality s and may be calculated for a specific choice, which is here taken
to be s = +1.
Summary 7
The response of a perpendicularly tilted cone with chirality s is given by

lim
ω→0

lim
q→0

χxy(ω, q) = e2vFB

2(2π)2 γ
tx
N̄
, (4.188)

with

γtx
N̄

= −4α3
N̄∑
mn

∫
dκze−P 2 (ϵκzms + ϵκzns)α2

κzmsΞ1(0,m, n, s)2

(α2
κzms + 1)(α2

κzns + 1)(ϵκzms − ϵκzns)2
,

(4.189)
where the summation goes over m > 0, n ≤ 0, indicated in Fig. 4.6, capped
at the Landau level N̄ . The integration limits are (−∞,∞), except for
n = 0, where they are [0,∞).

The tilt tx enters the expression only through its square, in α and P , and
so the contribution is even in tx.

4.5.4. Tilt parallel to the magnetic field

Even though the treatment above for a general tilt is valid for parallel tilt, the
response can be found more directly from the untilted case. For t = tz ẑ, the
energy momentum tensor T y0, charge current Jx, and wave functions φ(r) are
all independent of tz, and the only difference compared to the untilted system
is a change in the energies of the Landau levels. We may thus immediately
use the result from the untilted case

lim
ω→0

lim
q→0

χxy = −e
2vFB

2(2π)2
∑
mn

∫
dκzξ(κz,m, n)(ϵκzms + ϵκzns)

× (α2
κzmsδM−1,N − α2

κznsδN−1,M ),
(4.190)
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m

n

1 2 3 4 50

−1

−2
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Figure 4.6.: The region of (m,n) to sum over for a Type-I perpendicularly
tilted cone. The black line represents the combinations that give a finite
contribution also in the untilted case. As the cone is tilted, this sharp
line “diffuse” into the red and blue regions as well, where the contribution
is respectively positive and negative. Note that, as Ξ1 defined only for
M > 0, the region with m = 0 gives no contribution; at M = N the
contribution is also zero.

with

ϵκzms =

tszκz + signm
√
M + κ2z m ̸= 0,

(tsz − s)κz m = 0,
(4.191)

ακzms = −s
√
M

ϵ0κzms − sκz
, (4.192)

lim
ω→0

lim
q→0

ξ(κz,m, n) =
[nκms − nκns]

[
(α2

κms + 1)(α2
κns + 1)

]−1

(ϵκms − ϵκns)2
. (4.193)

In the untilted case, we made several simplifications to this expression, espe-
cially with regard to limiting the summation domain. We will here consider
which of those simplifications apply also in the case of tilt tz.

Under the transformation (m,n, κz) 7→ (−m,−n,−κz), the factors of the
integrand ξ(κz,m, n), ϵκzms, ακzms are all still odd, and so the integrand is
invariant under such a transformation. As the integral is over all κz, we may
therefore consider only half the m,n plane, as was the case in the untilted case.
However, in the untilted case, the sum was restricted to only one quadrant,
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4.5. The response of a tilted cone

as at T → 0 the transitions must be between states with energies of opposite
signs. In the case of Type-II systems, this requirement does not restrict the
sum to one quadrant. It is thus convenient to consider Type-I and Type-II
separately.
In the untilted system, the contributions from the two chiralities were the

same. In the case of tz tilt, this is not the case. The proof for the response
from the two chiralities being the same in the untilted case was that s and κz
appeared only through the product sκz, and so the expression was invariant
under (s, κz) 7→ (−s,−κz). As our integration spans all κz, the total response
is invariant under s → −s. The tilt parameter enters the expression only
through ϵκzms = ϵ0κzms + κzt

s
z, and in the inversion symmetric case, tsz = stz,

the argument still holds. In the case of broken inversion symmetry, however,
where tsz = tz, the argument fails. A similar argument may, however, be made
for the transformation (s, κz, tz) 7→ (−s,−κz,−tz), for which the (inversion
broken) system is invariant. The response of a cone with chirality s = −1 is
thus equal the response with s = +1 and tz → −tz. We therefore compute all
responses for s = +1; for symmetric systems the response is equal for s = −1,
while for broken inversion symmetry, the response is given at tz → −tz.

Type-I

In Type-I systems, the selection rules from the step functions are independent
of tz, and the only difference from the untilted case is the term ϵκzms+ϵκzns =
ϵ0κzms + ϵ0κzns + 2κztsz. The response is therefore

lim
ω→0

lim
q→0

χxy = e2vFB

2(2π)2 (γ
0
N̄
+ γdiv,N̄ ), (4.194)

where γ0
N̄

is the prefactor of the untilted case, and according to Eq. (4.139)

γdiv,N̄ = −4
N̄∑
i=0

∫
dκzξ(κz)2κztszα2

κzms

∣∣∣m=i+1
n=−i

, (4.195)

which has a UV divergence. Introduce the momentum cutoff Λ, in which case
the integral can be solved analytically, with the result

γdiv,0 = 2tz
(
Λ
(
Λ−

√
Λ2 + 1

)
+ sinh−1(Λ)

)
(4.196)
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and the contribution from each term of the sum

γdiv,N̄ − γdiv,N̄−1 = 2tz
{
Λ
(√

Λ2 + N̄ −
√
Λ2 + N̄ + 1

)

+ (N̄ + 1) tanh−1
[

Λ√
Λ2 + N̄ + 1

]
− N̄ tanh−1

[
Λ√

Λ2 + N̄

]}
, (4.197)

where we used the selection rule of the sum N = M − 1 and m > 0, n < 0.
The contribution (4.197) is odd in tz, and so for systems with broken inversion
symmetry, the total contribution from two cones cancels.

Type-II

For Type-I semimetals, the sign of energy state m ̸= 0 is given by the sign of
m itself. For m = 0 the sign of the energy is given by −s sign κ. Due to this,
the sum is restricted to n =M + 1,m = −M and n = −M − 1,m =M . In
the case of Type-II, however, the situation is not so simple. The energy bands
cross the Fermi surface, and we must also include in our sum overlap between
states of the same sign, i.e. n =M + 1,m =M and n = −M − 1,m = −M ,
which is non-zero for certain intervals of κ. See plot of the tilted Landau
levels in Fig. 4.4 (on page 70).

In order to find explicitly the limits of integration for the Type-II case, we
must find the roots of the energy levels. The zeroth Landau level always has
only one root, which is in the origin. For the higher order Landau levels, we
solve

ϵκzms = tszκz + sign(m)
√
M + κ2z = 0, (4.198)

whose solution is
κ2z =

M

t2z − 1 .

The actual roots of the energies are

κz = − sign(mtsx)
√

M

t2z − 1 . (4.199)

The integration limit for the 0 → 1 transition is thus, for tz > 1, [−
√
t2z − 1

−1
, 0].

The 1 → 2 transition is [−
√
2/
√
t2z − 1,−

√
t2z − 1

−1
], and so forth. The gen-

eral n→ m transition has the integration limits[
− sign(tz)

√
m

t2z − 1 ,− sign(tzn)
√

−n
t2z − 1

]
.
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The 0 → 1 transitions was computed analytically, and found to be

γ0 = 2 sign(tz)

|tz| sinh−1

 1√
t2z − 1

− 1

 . (4.200)

For a general n → m, N > 0,M = N + 1 transition, the contribution
γN̄ − γN̄−1 was found to have very lengthy expressions. Consult Table 4.2 to
find the appropriate expressions for positive and negative tilt, and interband
and intraband transitions.

Table 4.2.: Decision matrix for the expression of the m → n;N > 0,M =
N +1 transition over different regions. Expressions given in Mathematica
code format. The code listings are found in Appendix A. See main text
for details.

Tilt direction

tx > 1 tx < −1

B
an

d
ty

pe

n < 0 Lst. A.1 Lst. A.2

n > 0 Lst. A.3 Lst. A.4

4.6. Results
In the static and local limit limω→0 limq→0 the transverse response function
χxy of the charge current to a temperature perturbation

Jx = χxy
(−∇yT

T

)
(4.201)

from a single Weyl cone was found to be

lim
ω→0

lim
q→0

χxy = γN̄
e2BvF
2(2π)2ℏ , (4.202)

with γN̄ a prefactor dependent on the chirality s, the tilt t, and how many
Landau levels N̄ are included in the final evaluation of the response function.
Here we have also reinserted the explicit ℏ.
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In general, the prefactor γN̄ diverges as N̄ → ∞. However, not all Landau
levels are filled, and thus the sum should not be taken to all levels. Similarly
to a quantum Hall effect, the number of filled bands, the filling factor ν, is
inverse proportional to the B-field strength

ν ∝ 1
B
. (4.203)

Thus, we expect that the N -sum should be truncated at a Landau level, given
by the filling factor ν. A detailed derivation of the exact truncation of the
N -sum has not been done.
As described earlier, the contribution from the cone with chirality s = −1

can be found from the result of the positive chirality cone. In the case of
perpendicular tilt, they are exactly the same. In the case of parallel tilt, it
depends on the symmetry of the tilt. For systems with inversion symmetry,
the responses from the two cones are the same. On the other hand, for broken
inversion symmetry, the contribution from the cone with chirality s = −1 is
the same as that of the s = +1 cone at the opposite tilt tz → −tz. Therefore,
it is useful to separate the contribution into even and odd components, for
finding the total contribution from the two cones combined. Separating even
and odd components also allows for presenting the data in more compact
plots.
For some contribution γ(tx/z), we define

γeven(tx/z) =
γ(tx/z) + γ(−tx/z)

2 , (4.204)

γodd(tx/z) =
γ(tx/z)− γ(−tx/z)

2 . (4.205)

All results will be given in terms of these components, at tx/y > 0. The
total contribution γtot for the two cones is found by taking the appropriate
combinations of Eqs. (4.204) and (4.205), as shown in Table 4.3.

4.6.1. Tilt perpendicular to the magnetic field

In the case of a tilt perpendicular to the magnetic field, we are, as previously
explained, restricted to Type-I materials, as the Landau level description
breaks down for Type-II perpendicular tilt. Importantly, this does not gen-
erally mean that the effect is not present for Type-II systems, but simply
that the linear model Landau level description is not a good basis for the
system. The collapse of the Landau levels caused Soluyanov et al. [Sol+15] to
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4.6. Results

Table 4.3.: The total contribution from two cones γtot is found by linear
combinations of the even and odd components of γ, depending on the
case at hand. Note that total contribution given in the table is γtot/2.

Case Total contribution, γtot/2
Perpendicular tilt γeven + γodd = γ
Parallel tilt, broken inversion symmetry γeven
Parallel tilt, inversion symmetry γodd + γeven = γ

erroneously predict the collapse of the chiral anomaly in their now-famous
paper first describing Type-II Weyl semimetals.
As explained in Section 4.5.3, the m,n summation is restricted to the

fourth quadrant in the m,n plane. In the case of no tilt, only contributions
from M = N + 1 were non-zero; we named the contribution from the 0 → 1
transition γ0, the −1 → 2 transition γ1 and so forth. For perpendicular tilt,
as there are contributions also away from the M = N + 1 line, we denote by
γ0 the contributions from inside the square of length 2 centered at the origin.
The γ1 contributions are those inside the square of length 4, and in general
γn the square with length 2n. This is indicated in Fig. 4.7. This definition
effectively sets a ceiling on which Landau levels we consider.

The integral was computed numerically for M,N ≤ 14 over different values
of tx with tz = 0, with the individual contributions shown in Fig. 4.7. Note
that the figure shows contributions for the entire m,n-plane, not only the
fourth quadrant as discussed above. This is purely for illustration purposes,
and only the fourth quadrant needs to be computed. The total contribution
γN̄ as a function of N̄ is shown in Fig. 4.8. The contribution is even in
tx, and the two cones have the same contribution, as shown analytically in
Section 4.5.3. Also shown in Fig. 4.8 is γ0 as a function of tx, which is seen
to be strictly decreasing to zero as tx → 1. This last observation is discussed
further in Section 4.6.3, under “Perpendicular tilt with only zeroth level
transitions”.
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Figure 4.7.: Contributions to γN̄ from m→ n transitions for different values
of tx. In order to retain contrast, the color values are capped at 0.1,
meaning that the γ0 contributions are clipped. The squares indicating
γN̄ are drawn with sides 1 larger than their definitions, as the colored
tiles have edges at half-integer values.
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Figure 4.8.: Total contribution γN̄ for a perpendicular tilt tx, which only
has an even component. See main text for details on how γN is defined.
Shown in dashed teal on secondary axis (gray labels) is γ0 as a function
of tx, which is strictly decreasing from 1 at tx = 0 to 0 at tx = 1.
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4.6.2. Tilt parallel to the magnetic field

In the Type-I regime, the contributions differ from that of the untilted system
by γdiv,N̄ , Eq. (4.195), dependent on a momentum cutoff Λ = kcutoff/

√
2eB,

where kcutoff is the physical cutoff. The explicit form of the contribution
was found analytically, given in Eqs. (4.196) and (4.197). The contribution
from each new Landau level, γdiv,N̄ − γdiv,N̄ is shown in Fig. 4.9 for some of
the lowest Landau levels. In the large cutoff limit, Λ ≫ 1, expanding and
dropping terms O(1/Λ2), we find,

γdiv,N̄ − γdiv,N̄−1 = tz

([
−1 + N̄ log

(
N̄

N̄ + 1

)
− log N̄ + 1

4

]
+ 2 log Λ

)
.

(4.206)
The first term, independent of Λ, is a negative factor that decreases as N̄
increases, and goes like − log N̄ for large N̄ . The contribution is proportional
to tz, i.e. there is no even component, so for systems with broken inversion
symmetry, the two chiralities cancel, and the response is equal to the untilted
case. In the case of inversion symmetry, the contributions from the two
chiralities are equal and add up. The contribution has the same sign as the
tilt, and the magnitude depends on the Landau cutoff N and momentum
cutoff Λ.
We also investigated the untilted part, γ0

N̄
, under the momentum cutoff.

We found the integral over momentum to converge very quickly, and so the
momentum has little effect. The result found for no cutoff is therefore used.
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−
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Figure 4.9.: The addition of each new Landau level to the divergent factor
γdiv,N̄/tz, as a function of the momentum cutoff Λ. Each level has the
same Λ dependence; they are separated by a Λ independent factor, and
the separation decreases for higher levels. See main text for details.

103



THERMOELECTRIC EFFECT FROM THE CONFORMAL ANOMALY

In the Type-II regime, the contributions have a more complicated form.
Considering firstly only the lowest Landau level contribution, Eq. (4.200),
which is odd in tz, the total contribution cancels between the chiralities for
broken inversion symmetry, while it adds up for inversion symmetric systems.
As |tz| → 1 from above, the contribution blows up. This is to be expected as
we move towards the Lifshitz transition, where we expect the linear model to
perform poorly.9 The contribution goes to zero as tz → ∞, shown in Fig. 4.10.
Considering also higher Landau level contributions, both interband and

intraband transitions must be included,10 meaning the summation is no longer
restricted to a quadrant in the m,n plane, but rather to half the plane. The
contributions are shown in Fig. 4.10. These contributions are not odd in tz –
they have a finite even component. Due to this, the contribution does not
cancel for inversion broken systems, however, the even contribution is small
in magnitude compared to the other contributions.

A schematic plot of all the contributions of a parallel tilt is shown in Fig. 4.11.
In systems with broken inversion symmetry, where only the even contribution
survives, we see that in the Type-I regime, the response is independent of
the tilt tz. In the Type-II regime, the response has the opposite sign, and is
heavily reduced in magnitude; for a sufficiently large magnetic field, when
only the zeroth Landau level is filled, the effect is non-existent. However,
in inversion symmetric systems also the odd component contributes. In the
Type-I regime, there is a contribution linear in tz dependent on the momentum
cutoff Λ = kcutoff/

√
2eB, with the same sign as tz. Fixing the magnitude of

the term, equivalently fixing the momentum cutoff, has not been done. In the
Type-II regime, close to the Lifshitz transition (tz = 1), the result is divergent,
which we expect is a non-physical discrepancy caused by the non-validity of
the linear model. Deeper in the Type-II regime, the contribution decreases
to zero but is still a significant contribution. The odd component dominates
over the even component, and so the total response is of the same sign as the
tilt tz.

One disadvantage of using the Kubo formalism to find the response function,
as opposed to the procedure of Chernodub, Cortijo, and Vozmediano [CCV18],
who argued more directly from fundamental principles, is that the origin of
the effect is less clear. Specifically, it is not clear directly from the Kubo
calculation that the origin of the effect is the conformal anomaly. In the
case of Type-II, it is in fact not entirely clear what is the origin of the effect.
9As the Fermi surface of the linear model is vastly different from the Fermi surface of the
tight-binding model. See discussion on page 27 in Section 1.6.2 and van der Wurff and
Stoof [vdWS19].

10By band, we here refer to the “conduction” band and “valence” band.
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We have not been able to investigate this in-depth, but note the following
important observation. When the material is tilted into Type-II, the density of
states goes abruptly from vanishing to finite at the Dirac point, as mentioned
earlier. As the density of states is finite, there is some finite energy related to
the system as well. It is then a valid question to ask if the effect is indeed
of conformal anomaly origin; the scale invariance of the system is broken
by the energy scale introduced by the density of states, and so the anomaly
itself is also broken. This is especially pertinent in light of the non-physical
behavior seen around the Lifshitz transition; in the transition from Type-I to
Type-II, the chiral anomaly is not broken, and chiral anomaly effects have
been found to have analytical behavior in the transition, even for the linear
model [SGT17]. This is still an open question.
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(a) Intraband, −N → N + 1.
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Figure 4.10.: The contribution from n→ m transitions in a Type-II tz tilted
system. Solid line is the odd component γodd, dashed is even component
γeven.
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0 1 2

Untilted contribution

∝ log Λ

tz

Even
Odd

Figure 4.11.: Schematic summary of the contribution for parallel tilt tz.
Shown are the even (solid line) and odd (dashed line) parts as a function
of tz. As explained in the main text and shown in Table 4.3, the total
contribution for a pair of cones is given by the sum of the components
in inversion symmetric systems, and by the even component for broken
inversion symmetric systems. Note that, as the contributions depend on
factors such as the number of Landau levels and momentum cutoff, their
relative magnitudes in the sketch are of little importance.
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4.6.3. Other observations

We here present some further observations that are of interest, which we have
been unable to investigate further due to time constraints. We, therefore, do
not have conclusive results and do not want to present them together with the
main results. However, they are of great importance and will be investigated
further in future work.

Perpendicular tilt with only zeroth level transitions

Above, we defined the prefactor γN̄ for perpendicular tilt as the sum of all
transitions m → n, |m|, |n| < N̄ ; in other words, all transitions between
Landau levels up to some cutoff level N̄ . However, there are other possible
ways one may consider including the Landau level cutoff. In the untilted case,
the dipolar selection rule M = N + 1 makes the choice obvious. With no
such selection rule, the choice is however less obvious, and one other natural
choice would be the following. Assuming a large magnetic field, only the
lowest Landau level is occupied [Che+21], and so it would be natural to only
consider 0 → n, |n| < N̄ transitions. Doing this, the resulting response is
very interesting! If we define by γN̄ the sum of all 0 → n, |n| < N̄ transitions,
and compute γN̄ as a function of the tilt tx for various N̄ , we get the result
shown in Fig. 4.12. When including transitions to higher Landau levels, γN̄
as a function of tx is no longer strictly decreasing – it has a maximum at
0 < tx < 1! This would be a very interesting experimental signature.
One pertinent question is how the cutoff level N̄ should be found in this

context. The cutoff N̄ is not tunable in any obvious way – we have already
assumed the system to be in the deep quantum limit where only the zeroth
level is Landau level is filled. We do note that the effect of including ever-
higher levels is diminishing; the 0 → n contributions become smaller for higher
n, and seem to converge as n becomes large.11

The procedure, however, is not rigorous. Due to time limitations, we have
not been able to investigate this effect further in time for this print, however,
we plan to do a more rigorous treatment in the future. In particular, this
shows the importance of the choice of how one truncates the Landau level
sum when there is no dipolar selection rule; with a dipolar selection rule, as
is the case for no tilt and parallel tilt, the truncation yields only additional

11This, of course, warrants an investigation into the 0 → n transition contributions shown
in Fig. 4.7, to find if they are indeed decreasing faster than 1/n.
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numerical factors but does not change the behavior as a function of the tilt
magnitude. Here, however, it qualitatively changes the response as a function
of the tilt!
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0.5
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γ
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N̄ = 3
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N̄ = 7
N̄ = 10
N̄ = 12

Figure 4.12.: Numerically computed values of the prefactor γN̄ with only
the N̄ lowest, 0 → n transitions included for perpendicular tilt tx. The
contribution is even in tx, and vanish as |tx| → 1. For clarity, only every
4th mark is drawn.

Experimental signature at finite potential and temperature

In real materials, the Fermi level is close to, but not exactly at, the Dirac point.
Arjona, Chernodub, and Vozmediano [ACV19] investigated this, which is of
great interest with regard to experimental observations, by extending the com-
putation to finite chemical potential and temperature. For a sufficiently large
magnetic field, only the zeroth Landau level is filled [ACV19; Voz21], and the
only transitions are the 0 → ±1 transitions. For a chemical potential µ small
enough to be contained between the ±1 Landau levels, i.e. |µ|/(vF

√
2eB) < 1,

the response function was found to be invariant. Furthermore, for a finite
temperature, it was found that thermally activated carriers increased the
magnitude of the effect, with a stable plateau around µ = 0. The width of
the plateau is inversely proportional to the temperature. See Fig. 4.13.
As tilt is introduced, the energy interval in which one only has the zeroth

Landau level is reduced, and as t→ 1 the interval vanishes. So as the system
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is tilted, the width of the plateau is reduced. We reproduced the calculation
for finite potential and temperature in the untilted situation,12 but have not
yet extended the computation to the tilted case. This should not present any
major differences to what has been done in this work, other than including
the Fermi-Dirac distribution when evaluating the kz integral in the response
function. However, both the issue of which Landau levels to include in the
case of perpendicular tilt and the momentum cutoff in the case of parallel tilt
has to be given extra care.
We may, however, make some conclusions without explicit calculations in

the case of parallel tilt. We restrict ourselves to the Type-I case, where the
aforementioned gap is finite. In the case of zero temperature, the situation
is rather easy. Recall that the contribution is γ0

N̄
+ γdiv,N̄ . The first term

explicitly depends on the chemical potential, but it is also independent of
the tilt. The second term is tilt-dependent, and the chemical potential enters
only through the Fermi-Dirac distribution; when the chemical potential is
within the gap, the distribution is independent of the chemical potential, for
zero temperature. Thus, the plateau is retained, with a potential independent
addition γdiv,N ; the width of the plateau, however, is reduced according to
the width of the gap. At finite temperature, the thermal activation makes
the above argument invalid, as the distribution function in the tilt-dependent
term will also be affected by the chemical potential.

12Using the non-symmetric choice of the energy-momentum tensor, as opposed to the
symmetric one used in the original calculation [ACV19].
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Figure 4.13.: The Landau level of an untilted Weyl cone. The inset shows the
prefactor γ0 of the response function for a small finite potential µ, within
the energy interval indicated with dashed lines. In the inset, the solid
line is computed at zero temperature, while the dashed line is computed
at a small finite temperature. Figure inspired by Arjona, Chernodub,
and Vozmediano [ACV19].
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Conclusion and Outlook

We have computed a contribution to the transverse thermoelectric response
function – Nernst response – of a tilted Dirac cone. The response was
calculated for a single Weyl cone, and then the total response was found by
summing the response of two Weyl cones of opposite chirality. The origin of
the contribution is the conformal anomaly, and it is finite in the limit of no
chemical potential and zero temperature. The response function was found to
be tunable with the tilt vector t.
In the case of tilt perpendicular to the magnetic field and parallel to the

charge current, we found the response function to be even in the perpendicular
tilt component t⊥. The response decreases as the magnitude of the tilt is
increased, and as the tilt approaches the critical tilt between Type-I and
Type-II, the response is zero. In the Type-II regime with perpendicular tilt,
the Landau levels collapse, and our method is no longer appropriate. In
the case of tilt parallel to the magnetic field, the response function depends
on the symmetry of the tilt of the Dirac cone – the effect of the two Weyl
cones partially cancel when they tilt in the same direction, while for inversion
symmetric tilt their contributions add up. We split the response into even
and odd parts as functions of the parallel tilt component t∥. For inversion
symmetric tilt both contribute, while for broken inversion symmetry only the
even component survives. The even component was found to be independent
of the tilt in the Type-I regime, while it is heavily suppressed in the Type-II
regime. The odd component, which only survives for inversion symmetric tilt,
is proportional to the magnitude of the tilt in the Type-I regime, with its
proportionality constant dependent on a momentum cutoff. In the Type-II
regime, the odd component diverges to infinity close to the topological Lifshitz
transition but quickly decreases as the tilt is increased. The divergence at the
Lifshitz transition is believed to be an artifact of the linearized model.
This work facilitates future experimental designs and theoretical investi-

gation into the effect and the conformal anomaly. As the direction of the
tilt relative to the magnetic field is easily tunable, by simply rotating the
field or sample, the dependence on the direction of the tilt, in particular,
poses an interesting venue for experimental setups. We furthermore found
the possibility of a distinct maximum of the response function in the case of
perpendicular tilt, when considering the deep quantum where only the lowest
Landau level is filled. This, however, requires further theoretical investigation.

The calculation has also demonstrated the importance of the correct treat-
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ment of the energy-momentum tensor. Depending on the definition used, the
resulting response is qualitatively different for tilted systems, as opposed to
untilted systems.

As we conclude this thesis, there are several unanswered questions, and we
believe this to be a fruitful topic for the future. Here we propose a selection
of ideas and questions that are relevant, which are direct extensions of the
work in this thesis.

Tilt parallel to temperature gradient Due to time constraints, we were not
able to extend the calculation to tilt parallel to ∇T in time for writing
the thesis. This is a natural extension, and we hope to be able to
do this for a manuscript currently being written. This extension is
mostly a technical matter. In particular, this situation is interesting as
a ty-component, in the geometry considered in the thesis, gives rise to a
new term in the matrix element of the energy-momentum tensor.

The energy-momentum tensor The ambiguity related to the energy-momen-
tum tensor, discussed in Section 4.1.2 is still an open question, which
should be explored more. Much literature has been written on the
topic, both in general [FR04] and specific to Dirac and Weyl semimet-
als [ACV19; vdWS19]. We have had discussions on the topic with María
Vozmediano and Alberto Cortijo, and have several venues that we wish
to explore further on this question.
One of our current ideas involves a fully covariant calculation, absorbing
the tilt directly in the metric instead of explicitly including it in the
Lagrangian. That will involve combining the curvature of the tilt and
Luttinger’s perturbation in a Kubo calculation. It is of interest to see if
this leads to the same expressions as we found from having explicit tilt
in flat space. For some initial work on this, see Appendix C.4.

Finite chemical potential and temperature As discussed in Section 4.6.3, it
would be interesting to extend the calculation to finite potential and
temperature. In the untilted case, the response has a stable plateau as a
function of chemical potential even for finite temperature, related to the
energy gap between the ±1 Landau levels, where there is only the zeroth
Landau level. As the cone is tilted, the gap is reduced and vanishes
at the transition between Type-I and Type-II. An explicit calculation
of this is a natural next step and requires only minor adaptions of the
work done here.

Spin current response We computed the charge current response. It is also
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of interest to see if there is a spin current response of the system.
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Long Expressions Not Included in the
Main Text A

Listing A.1: Expression for Type-II interband transition with tz > 1, given
in Mathematica format.

(m/(−1 + tz ^2) − (2∗m∗ tz ) /(−1 + tz ^2) − (4∗(−1 + m) ∗m∗
tz ) /(−1 + tz ^2) + (m∗ tz ^2)/(−1 + tz ^2) +

tz ∗Sqrt [ (m∗ tz ^2∗(1 + (−1 + m) ∗ tz ^2) ) /(−1 + tz ^2) ^2 ] +
2∗(−1 + m) ∗ tz ∗Sqrt [ (m∗ tz ^2∗(1 + (−1 + m) ∗ tz ^2) )

/(−1 + tz ^2) ^2 ] −
Sqrt [m + (−1 + m) ∗m∗ tz ^2]/(−1 + tz ^2) − (2∗(−1 + m) ∗

Sqrt [m + (−1 + m) ∗m∗ tz ^2 ] ) /(−1 + tz ^2) +
(2∗ tz ∗Sqrt [m + (−1 + m) ∗m∗ tz ^2 ] ) /(−1 + tz ^2) + 2∗(−1

+ m) ∗Log [ ( 1 − Sqrt [ ( 1 + (−1 + m) ∗ tz ^2)/m] ) /(1 + tz
) ] +

(−1 + m) ∗ tz ∗Log [ ( 1 − Sqrt [ ( 1 + (−1 + m) ∗ tz ^2)/m] ) /(1
+ tz ) ] −

2∗(−1 + m)^2∗Log [ ( ( 1 + tz ) ∗Sqrt [m/(−1 + tz ^2) ] ) /(Sqrt
[m/(−1 + tz ^2) ] − Sqrt [ ( 1 + (−1 + m) ∗ tz ^2)/(−1 +
tz ^2) ] ) ] −

(−2∗(−1 + m) ^(3/2) ∗Sqrt [−1 + m∗ tz ^2 ] + (−1 + tz ) ∗Sqrt
[(−1 + m)∗(−1 + m∗ tz ^2) ] −

tz ∗(2∗m^2 − (1 + tz )∗(−1 + Sqrt [(−1 + m)∗(−1 + m∗ tz
^2) ] ) + m∗(−3 + tz ∗(−1 + 2∗Sqrt [(−1 + m)∗(−1 + m
∗ tz ^2) ] ) ) ) −

(1 − m)∗(−1 + tz )∗(−1 + (1 + tz ) ∗(2 + tz ) ∗Log[−((−1
+ tz ) ∗Sqrt [(−1 + m)/(−1 + tz ^2) ] ) ] ) −

(−1 + tz ^2)∗(−2 + m∗(2 + tz ) ) ∗Log [ ( Sqrt [−1 + m] +
Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] +

tz ∗Log [(−(Sqrt [−1 + m]∗ tz ) + Sqrt [−1 + m∗ tz ^2 ] ) /
Sqrt [−1 + tz ^ 2 ] ] −

tz ^3∗Log [(−(Sqrt [−1 + m]∗ tz ) + Sqrt [−1 + m∗ tz ^2 ] ) /
Sqrt [−1 + tz ^ 2 ] ] −

2∗(−1 + m) ^2∗( tz + (−1 + tz ^2)∗Log[(−1 + m + Sqrt
[(−1 + m)∗(−1 + m∗ tz ^2) ] ) /(−1 + m + tz − m∗ tz ) ] )
) /(−1 + tz ^2) −
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tz ∗Log [ (m∗ tz − Sqrt [m + (−1 + m) ∗m∗ tz ^2 ] ) /(−1 + tz ) ] )

Listing A.2: Expression for Type-II interband transition with tz < −1, given
in Mathematica format.

(1 + Sqrt [(−1 + m)∗(−1 + m∗ tz ^2) ] − 2∗m∗Sqrt [(−1 + m)
∗(−1 + m∗ tz ^2) ] − Sqrt [m + (−1 + m) ∗m∗ tz ^2 ] +

2∗m∗Sqrt [m + (−1 + m) ∗m∗ tz ^2 ] + (−1 + m) ∗(2 + tz ) ∗Log
[−((1 + tz ) ∗Sqrt [(−1 + m)/(−1 + tz ^2) ] ) ] +

(−2 + m∗(2 + tz ) ) ∗Log[−((−1 + tz ) ∗Sqrt [m/(−1 + tz ^2)
] ) ] + 2∗Log [ ( Sqrt [m]∗ ( 1 − tz ) ) /(Sqrt [m] + Sqrt [ 1 +
(−1 + m) ∗ tz ^2 ] ) ] −

4∗m∗Log [ ( Sqrt [m]∗ ( 1 − tz ) ) /(Sqrt [m] + Sqrt [ 1 + (−1 +
m) ∗ tz ^2 ] ) ] +

2∗m^2∗Log [ ( Sqrt [m]∗ ( 1 − tz ) ) /(Sqrt [m] + Sqrt [ 1 + (−1
+ m) ∗ tz ^2 ] ) ] +

2∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz ^2 ] ) /Sqrt [−1 +
tz ^ 2 ] ] − 2∗m∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz
^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] +

tz ∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz ^2 ] ) /Sqrt [−1 +
tz ^ 2 ] ] − m∗ tz ∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz
^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] +

tz ∗Log [(−(Sqrt [m]∗ tz ) + Sqrt [ 1 + (−1 + m) ∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] −

tz ∗Log [(−(Sqrt [−1 + m]∗ tz ) + Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] − 2∗Log [ ( 1 − Sqrt [(−1 + m∗ tz ^2)/(−1 +
m) ] ) /(1 + tz ) ] +

4∗m∗Log [ ( 1 − Sqrt [(−1 + m∗ tz ^2)/(−1 + m) ] ) /(1 + tz ) ]
− 2∗m^2∗Log [ ( 1 − Sqrt [(−1 + m∗ tz ^2)/(−1 + m) ] ) /(1
+ tz ) ] +

2∗Log[−Sqrt [(−1 + m)/(−1 + tz ^2) ] + Sqrt [(−1 + m∗ tz
^2)/(−1 + tz ^2) ] ] −

2∗m∗Log[−Sqrt [(−1 + m)/(−1 + tz ^2) ] + Sqrt [(−1 + m∗ tz
^2)/(−1 + tz ^2) ] ] −

m∗ tz ∗Log[−Sqrt [(−1 + m)/(−1 + tz ^2) ] + Sqrt [(−1 + m∗
tz ^2)/(−1 + tz ^2) ] ] )

Listing A.3: Expression for Type-II intraband transition with tz > 1, given
in Mathematica format.
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(−((−1 + m) ∗m∗ tz ∗AppellF1 [ 1 , 1/2 , 1/2 , 2 , (1 − tz ^2)
^(−1) , (1 − m) /(m∗(−1 + tz ^2) ) ] ) +

m^2∗ tz ∗AppellF1 [ 1 , 1/2 , 1/2 , 2 , −(m/((−1 + m)∗(−1 +
tz ^2) ) ) , (1 − tz ^2)^(−1) ] +

(−1 + tz ^2)∗(−2∗Sqrt [(−1 + m) ∗m^3] + 2∗m^2∗Sqrt [(−1 +
m) ∗(1 + (−1 + m) ∗ tz ^2) ] − 4∗m^3∗Sqrt [(−1 + m) ∗(1

+ (−1 + m) ∗ tz ^2) ] +
2∗Sqrt [m^3∗(−1 + m∗ tz ^2) ] − 6∗Sqrt [m^5∗(−1 + m∗ tz

^2) ] + 4∗Sqrt [m^7∗(−1 + m∗ tz ^2) ] −
(−2∗Sqrt [(−1 + m) ∗m^5] + 2∗Sqrt [(−1 + m) ∗m^7] + (−

Sqrt [(−1 + m) ∗m^3] + Sqrt [(−1 + m) ∗m^5 ] ) ∗ tz ) ∗Log
[−1 + m] −

2∗Sqrt [(−1 + m) ∗m^5]∗Log [m] + 2∗Sqrt [(−1 + m) ∗m^7]∗
Log [m] + Sqrt [(−1 + m) ∗m^5]∗ tz ∗Log [m] +

2∗Sqrt [(−1 + m) ∗m^3]∗ tz ∗Log [ 1 + tz ] − Sqrt [(−1 + m)
∗m^3]∗ tz ∗Log[−1 + tz ^2] −

4∗Sqrt [(−1 + m) ∗m^5]∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 +
m) ∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] +

4∗Sqrt [(−1 + m) ∗m^7]∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 +
m) ∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] −

2∗Sqrt [(−1 + m) ∗m^3]∗ tz ∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1
+ m) ∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] +

2∗Sqrt [(−1 + m) ∗m^5]∗ tz ∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1
+ m) ∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] +

4∗Sqrt [(−1 + m) ∗m^5]∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 +
m∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] −

4∗Sqrt [(−1 + m) ∗m^7]∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 +
m∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] −

2∗Sqrt [(−1 + m) ∗m^5]∗ tz ∗Log [ ( Sqrt [−1 + m] + Sqrt [−1
+ m∗ tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] ) ) /(2∗Sqrt [−1 + m]∗m
^(3/2)∗(−1 + tz ^2) )

Listing A.4: Expression for Type-II intraband transition with tz < −1, given
in Mathematica format.

(4∗m∗(−1 + tz ) ∗Sqrt [(−1 + m) ∗(1 + (−1 + m) ∗ tz ^2) ]∗(−1 +
Abs [ t z ] ) − 4∗(−1 + m)∗(−1 + tz ) ∗Sqrt [m∗(−1 + m∗ tz
^2) ]∗(−1 + Abs [ t z ] ) +

8∗(−1 + m) ^(3/2) ∗m∗Sqrt [ 1 + (−1 + m) ∗ tz ^2 ]∗ (1 + tz ∗
Abs [ t z ] ) − 8∗(−1 + m)^2∗Sqrt [m∗(−1 + m∗ tz ^2) ]∗ ( 1 +
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tz ∗Abs [ t z ] ) +
2∗(−1 + m) ∗ tz ∗(AppellF1 [ 1 , 1/2 , 1/2 , 2 , (1 − tz ^2)

^(−1) , (1 − m) /(m∗(−1 + tz ^2) ) ] −
AppellF1 [ 1 , 1/2 , 1/2 , 2 , m/(−1 + m − (−1 + m) ∗ tz ^2)

, (1 − tz ^2)^(−1) ] ) −
2∗ tz ∗AppellF1 [ 1 , 1/2 , 1/2 , 2 , m/(−1 + m − (−1 + m) ∗ tz

^2) , (1 − tz ^2)^(−1) ] −
4∗(−1 + m) ^(5/2) ∗Sqrt [m]∗(−1 + tz ^2) ∗(Log[(−1 + m)/m]

− 2∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] +

2∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt [−1 +
tz ^ 2 ] ] ) − Sqrt [(−1 + m) ∗m]∗(−1 + tz ) ∗

(−4 + 4∗Abs [ t z ] + tz ∗Log [m/(−1 + tz ^2) ] + 4∗ tz ∗Log [ (
Sqrt [−1 + m] + Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt [−1 + tz
^ 2 ] ] +

4∗ tz ^2∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] + 2∗ tz ∗Log [ 1 + Abs [ t z ] ] −

6∗ tz ∗Log [ Sqrt [m/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] ) ] − 4∗ tz
^2∗Log [ Sqrt [m/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] ) ] ) +

(−1 + m) ^(3/2) ∗Sqrt [m]∗ ( 8∗ tz + 8∗Abs [ t z ] + Log[(−1 +
m)/m] − tz ^2∗Log[(−1 + m)/(−1 + tz ^2) ] + tz ^2∗Log [
m/(−1 + tz ^2) ] −
8∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz ^2 ] ) /Sqrt [−1 +

tz ^ 2 ] ] − 4∗ tz ∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗
tz ^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] +

8∗ tz ^2∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] +

4∗ tz ^3∗Log [ ( Sqrt [m] + Sqrt [ 1 + (−1 + m) ∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] +

8∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt [−1 +
tz ^ 2 ] ] + 4∗ tz ∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 + m∗ tz
^2 ] ) /Sqrt [−1 + tz ^ 2 ] ] −

8∗ tz ^2∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] −

4∗ tz ^3∗Log [ ( Sqrt [−1 + m] + Sqrt [−1 + m∗ tz ^2 ] ) /Sqrt
[−1 + tz ^ 2 ] ] + 6∗Log [ Sqrt [(−1 + m)/(−1 + tz ^2)
]∗ ( 1 + Abs [ t z ] ) ] +

4∗ tz ∗Log [ Sqrt [(−1 + m)/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] ) ]
− 6∗ tz ^2∗Log [ Sqrt [(−1 + m)/(−1 + tz ^2) ]∗ ( 1 + Abs
[ t z ] ) ] −
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4∗ tz ^3∗Log [ Sqrt [(−1 + m)/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] )
] − 6∗Log [ Sqrt [m/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] ) ] −

4∗ tz ∗Log [ Sqrt [m/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] ) ] + 6∗ tz
^2∗Log [ Sqrt [m/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] ) ] +

4∗ tz ^3∗Log [ Sqrt [m/(−1 + tz ^2) ]∗ ( 1 + Abs [ t z ] ) ] ) ) /(4∗
Sqrt [(−1 + m) ∗m]∗(−1 + tz ^2) )
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Contributions from the Symmetric
Energy-Momentum Tensor B

As noted in the main text, there are some subtlety in the definition of the
energy-momentum tensor. The canonical definition, which we have used in
the main text, is in general not symmetric. In the calculation by Arjona,
Chernodub, and Vozmediano [ACV19], the symmetrized1 energy-momentum
tensor

Tµν
S = Tµν + T νµ

2
was used. In this appendix we show the contributions of the symmetric tensor.
The contributions from Tµν and T νµ are shown to be equal in the non-tilted
case, while they differ in the tilted case.

In the main text we have already found the contributions from the canonical
tensor, and so we focus here on the contributions from Tµν

F = T νµ. The
relevant element is T y0

F = T 0y.
The tilted canonical energy-momentum tensor, Eq. (4.95),

Tµν = i

2(φ
†σ̃µs ∂νφ− ∂νφ

†σ̃µs φ− ηµνL),

and so the symmetric tensor is

Tµν
S = i

2(φ
†σ̃µs

↔
∂ νφ+ φ†σ̃νs

↔
∂ µφ− ηµνL), (B.1)

where we used the notation φ†
↔
∂φ = (φ†∂φ − (∂φ†)φ)/2. We split T y0

S into
three parts; the first part corresponds to the canonical energy-momentum
tensor, while the two latter correspond to the two terms of T y0

F . Explicitly

T y0
S = i

2φ
†σ̃ys

↔
∂0φ︸ ︷︷ ︸

T (1)

+ i

4φ
†∂yφ︸ ︷︷ ︸

T (2)

+ i

4φ
†∂yφ︸ ︷︷ ︸

T (3)

. (B.2)

In other words, the first part is half that found in the main text, while the
two latter are unique to the symmetric tensor. For convenience, we will for
the rest of the appendix rename Tµν = Tµν

S .
1See Section 4.1.2 for a more precise discussion on the symmetrization of the energy-
momentum tensor.
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CONTRIBUTIONS FROM THE SYMMETRIC ENERGY-MOMENTUM TENSOR

B.1. No tilt
Begin by considering the matrix elements

T
0y (2)
k+qns,kms(q) = +1

4

∫
dyeiqyyvFφ∗k+qns(y)pyφkms(y), (B.3)

T
0y (3)
k+qns,kms(q) = −1

4

∫
dyeiqyyvF

(
pyφ

∗
k+qns(y)

)
φkms(y). (B.4)

Recall that φkms(y), defined in Eq. (4.114), consists of two y-dependent
factors: exp

[
− (y−kxl2B)2

2l2
B

]
and the Hermite polynomials. The operator py thus

produces two terms when operating on φ. The first term, coming from the
exponent, is proportional to y − kxl

2
B. The operator in Eqs. (B.3) and (B.4)

acts on φ with the quantum number k and k+ q, respectively; when summing
the two contributions, everything thus cancels except for a term proportional
to qx, which vanishes in the local limit.

It remains to consider the result of py operating on the Hermite polynomials.
Let p̃y indicate the py operator acting only on the Hermite polynomial part of
φ, and use the property of Hermite polynomials ∂xHn(x) = 2nHn−1(x) [Olv+,
Eq. 18.9.25].

φ∗k+qns(y)p̃yφkms = −iℏ exp
{
−(y − kxl

2
B)2 + (y − (kx + qx)l2B)2

2l2B

}
2
lB

{
(M − 1)akmsak+qnsHM−2

(
y − kxl

2
B

lB

)
HN−1

(
y − (kx + qx)l2B

lB

)

+Mbkmsbk+qnsHM−1

(
y − kxl

2
B

lB

)
HN

(
y − (kx + qx)l2B

lB

)}
. (B.5)

Completing the square, we get∫
dyeiqyyφ∗k+qns(y)p̃yφkms(y) = −iℏ exp

[
− l

2
B

4
{
q2y − 2iqy(2kx + qx)

}]
∫

dy exp

−{y + l2B
2 (−iqy − 2kx − qx)

}2

/l2B


2
lB

{
(M − 1)akmsak+qnsHM−2

(
y − kxl

2
B

lB

)
HN−1

(
y − (kx + qx)l2B

lB

)

+Mbkmsbk+qnsHM−1

(
y − kxl

2
B

lB

)
HN

(
y − (kx + qx)l2B

lB

)}
. (B.6)
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B.1. No tilt

Upon introducing ỹ = y
lB

+ lB(−iqy − qx − 2kx)/2, as was also done in the
main text, the expression reduces to

∫
dyeiqyyφ∗k+qns(y)p̃yφkms(y) = −iℏ exp

[
− l

2
B

4
{
q2x + q2y − 2iqy(2kx + qx)

}]
∫

dỹlB exp
[
−ỹ2

]
2
lB

{
(M − 1)akmsak+qnsHM−2

(
ỹ + lB

2 (iqy + qx)
)
HN−1

(
ỹ + lB

2 (iqy − qx)
)

+Mbkmsbk+qnsHM−1

(
ỹ + lB

2 (iqy + qx)
)
HN

(
ỹ + lB

2 (iqy − qx)
)}

. (B.7)

Considering now the local limit q → 0, the expression greatly simplifies, and
we may use the orthogonality relation for the Hermite polynomials Eq. (4.120)

∞∫
−∞

dxe−x2
Hn(x)Hm(x) =

√
π2nn!δn,m

to evaulate the integral.

lim
q→0

∫
dyeiqyyφ∗k+qns(y)p̃yφkms(y) = −iℏ

√
2αkmsαkns

√
M − 1 +

√
M

lB
√
α2
kms + 1

√
α2
kns + 1

δN,M−1.

(B.8)
Similarly, for T 0y (3)

k+qns,kms(q), one has

(
p̃yφ

∗
k+qns(y)

)
φkms(y) = −iℏ exp

{
−(y − kxl

2
B)2 + (y − (kx + qx)l2B)2

2l2B

}
2
lB

{
(N − 1)akmsak+qnsHM−1

(
y − kxl

2
B

lB

)
HN−2

(
y − (kx + qx)l2B

lB

)

+Nbkmsbk+qnsHM

(
y − kxl

2
B

lB

)
HN−1

(
y − (kx + qx)l2B

lB

)}
(B.9)

which with the same procedure as above gives

lim
q→0

∫
dyeiqyy

(
p̃yφ

∗
k+qns(y)

)
φkms(y) = −iℏ

√
2αkmsαkns

√
N − 1 +

√
N

lB
√
α2
kms + 1

√
α2
kns + 1

δM,N−1.

(B.10)
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Summary 8
In the untilted case, we have

lim
q→0

T
y0 (2)
kns,kms = − iℏ

√
2

4
αkmsαkns

√
M − 1 +

√
M

lB
√
α2
kms + 1

√
α2
kns + 1

δN,M−1, (B.11)

lim
q→0

T
y0 (3)
kns,kms =

iℏ
√
2

4
αkmsαkns

√
N − 1 +

√
N

lB
√
α2
kms + 1

√
α2
kns + 1

δM,N−1. (B.12)

B.2. With tilt

In the tilted case, we have shown in the main text that

Tµ0 = i

2
[
∂iψ̄Γjγ0Γµψ − ψ̄Γµγ0Γj∂jψ

]
.

Swapping the indices, we have for µ ̸= 0 [vdWS19]

T 0i = i

2[ψ̄γ
0∂µψ − ∂µψ̄γ0ψ].

In our work, we have considered only tilt perpendiculat to the thermal gradient,
so the component of the energy-momentum tensor of interest are not affected
by the tilt.
or

T
0y(2)
k+qns,kms(q) = +1

4

∫
dyeiqyyvFφ∗k+qns(y)pyφkms(y), (B.13)

T
0y(3)
k+qns,kms(q) = −1

4

∫
dyeiqyyvF (pyφ∗k+qns(y))φkms(y). (B.14)

Firstly, we note that
[py, eθ/2σx ] = 0.

Furthermore, exactly as for the untilted case, the momentum operator acting
on the exponential prefactor of φ gives contributions proportional to qx. In
the local limit q → 0 this term vanishes, and we need only consider the effect
of the momentum operator acting on the Hermite polynomials.
Denote by p̃y the momentum operator py acting only on the Hermite

polynomial part of φ. Furthermore, we will use the property of Hermite
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B.2. With tilt

polynomials ∂xHn(x) = 2nHn−1(x) [Olv+, Eq. 18.9.25].

p̃yφkms = −iℏeθ/2σxe−
1
2χ

2
∂y

(
akmsHM−1(χ)
bkmsHM (χ)

)
(B.15)

= −iℏeθ/2σxe−
1
2χ

22∂χ
∂y

(
akms(M − 1)HM−2(χ)
bkms(M)HM−1(χ)

)
(B.16)

= −iℏeθ/2σxe−
1
2χ

2 2
√
α

lB

(
akms(M − 1)HM−2(χ)
bkms(M)HM−1(χ)

)
. (B.17)

And thus, recalling that

eθσx =
(

1 −tx
−tx 1

)
1√

1− t2x

,

we find the product

φ∗k+qns(y)p̃yφkms = − iℏ2
√
α

lB
√
1− t2x

e
− 1

2χ
2
k
− 1

2χ
2
k+q

[
ak+qnsHN−1(χk+q) {akms(M − 1)HM−2(χk)− txbkmsMHM−1(χk)}

+ bk+qnsHN (χk+q) {−txakms(M − 1)HM−2(χk) + bkmsMHM−1(χk)}
]
.

(B.18)

Completing the square and substituting

ỹ =
√
α

lB

(
y − l2B

2α(iqy + (2k′x + q′x))
)

gives
∫

dyeiqyφ∗k+qns(y)p̃yφkms(y) = exp
[
− l2B
4α(q

2
y − 2i(2k′x + q′x)qy + (q′x)2)

]

× −iℏ2√α
lB
√
1− t2x

∫
dỹ lB√

α

×
[
ak+qnsHN−1(χk+q) {akms(M − 1)HM−2(χk)− txbkmsMHM−1(χk)}

+ bk+qnsHN (χk+q) {−txakms(M − 1)HM−2(χk) + bkmsMHM−1(χk)}
]
.

(B.19)
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We must now evaluate the integral, and express the result in the Ξ-functions,
defined in Eqs. (4.160) and (4.161) of the main text.(

ak+qnsHN−1(χk+q)
bk+qnsHN (χk+q)

)T ( 1 −tx
−tx 1

)
︸ ︷︷ ︸

T

(
akms(M − 1)HM−2(χk)
bkmsMHM−1(χk)

)

For each of the entries in T , we get a product of Hermite polynomials. Where
the untilted cone had two such terms, the tilt parameter tx now gives two extra
products, which we must evaluate. Let M (2)

ij be the product corresponding to
Tij , i.e.

M
(2)
11 = ak+qnsakms(M − 1)HN−1(χk+q)HM−2(χk), (B.20)

M
(2)
12 = −txak+qnsbkmsMHN−1(χk+q)HM−1(χk), (B.21)

M
(2)
21 = −txbk+qnsakms(M − 1)HN (χk+q)HM−2(χk), (B.22)

M
(2)
22 = bk+qnsbkmsMHN (χk+q)HM−1(χk). (B.23)

We want to evaluate

F
(2)
ij =

[
(α2

kzms + 1)(α2
kz+qzns + 1)

] 1
2
∫

dỹe−ỹ2M
(2)
ij , (B.24)

with the prefactor introduced for later convenience.
Notice that

F
(2)
12 = −tx

√
α

√
M

2 αk+q,nΞ2(q̄,m∓ 1, n). (B.25)

and

F
(2)
21 = −tx

√
α

√
M − 1

2
a2kms

lBakm∓1s
Ξ1(q̄,m∓ 1, n, s). (B.26)

F
(2)
11 and F (2)

22 are the same as for the untilted case:

F
(2)
11 =

√
α
αkzmsαkz+qzns

√
M − 1

lB
√
2

Ξ1(q̄,m∓ 1, n∓ 1, s), (B.27)

and

F
(2)
22 =

√
α

√
M

lB
√
2
Ξ1(q̄,m, n, s). (B.28)
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B.2. With tilt

In summary we have

T
0y (2)
k+qns,kms(q) = +vF4

∫
dyeiqyqφ∗k+qns(y)pyφkms(y) (B.29)

= − iℏvF2 Γ+
kqmns

∑
i,j

F
(2)
ij , (B.30)

where

Γ+
kqmns =

exp
[
− l2

B
4α(q2y − 2i(2k′x + q′x)qy + (q′x)2)

]
[
(α2

kzms + 1)(α2
kz+qzns

+ 1)
] 1
2
√
1− t2x

In a similar procedure, we find T 0y (2)
k+qns,kms(q).

p̃yφ
∗
k+qms =

−iℏ√α
lB

e−
1
2χ

2
(
ak+qms(M − 1)HM−2(χ)
bk+qms(M)HM−1(χ)

)
. (B.31)

And thus,(
p̃yφ

∗
k+qns(y)

)
φkms = − iℏ2

√
α

lB
√
1− t2x

e
− 1

2χ
2
k
− 1

2χ
2
k+q

[
ak+qns(N − 1)HN−2(χk+q) {akmsHM−1(χk)− txbkmsHM (χk)}

+ bk+qnsNHN−1(χk+q) {−txakmsHM−1(χk) + bkmsHM (χk)}
]
. (B.32)

With the now well-known completion of the square and substitution, we have∫
dyeiqy

[
p̃yφ

∗
k+qns(y)

]
φkms(y) = exp

[
− l2B
4α(q

2
y − 2i(2k′x + q′x)qy + (q′x)2)

]

× −iℏ2√α
lB
√
1− t2x

∫
dỹ lB√

α

×
[
ak+qns(N − 1)HN−2(χk+q) {akmsHM−1(χk)− txbkmsHM (χk)}

+ bk+qnsNHN−1(χk+q) {−txakmsHM−1(χk) + bkmsHM (χk)}
]
. (B.33)

Denote the terms of the integrand by

M
(3)
11 = ak+qnsakms(N − 1)HN−2(χk+q)HM−1(χk), (B.34)

M
(3)
12 = −txak+qnsbkms(N − 1)HN−2(χk+q)HM (χk), (B.35)

M
(3)
21 = −txbk+qnsakmsNHN−1(χk+q)HM−1(χk), (B.36)

M
(3)
22 = bk+qnsbkmsNHN−1(χk+q)HM (χk). (B.37)
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We must evaluate

F
(3)
ij =

[
(α2

kzms + 1)(α2
kz+qzns + 1)

] 1
2
∫

dỹe−ỹ2M
(3)
ij . (B.38)

From the untilted case we know

F
(3)
11 =

√
N − 1

2
αkzmsαkz+qzns

lBαkz+qzn∓1s
Ξ2(q̄,m∓ 1, n∓ 1, s), (B.39)

F
(3)
22 =

√
N

2
1

lBαkz+qzns
Ξ2(q̄,m, n, s). (B.40)

Furthermore,

F
(3)
12 = −tx

αkz+qzn

αkz+qzn∓1lB

√
N − 1

2 Ξ2(q̄,m, n∓ 1, s), (B.41)

F
(3)
21 = − tx

lB

√
N

2
αkzm

αkz+qzn
Ξ2(q̄,m∓ 1, n, s). (B.42)

We thus have

T
0y (3)
k+qns,kms(q) = −vF4

∫
dyeiqyy

(
pyφ

∗
k+qns(y)

)
φkms(y) (B.43)

= iℏvF
2 Γ+

kqmns

∑
ij

F
(3)
ij . (B.44)

Summary 9
The non-canonical part of the energy-momentum tensor Tµν

F = T νµ in a
tilted system have the matrix elements

T
0y (2)
k+qns,kms(q) = − iℏvF2 Γ+

kqmns

∑
i,j

F
(2)
ij , (B.45)

T
0y (3)
k+qns,kms(q) =

iℏvF
2 Γ+

kqmns

∑
ij

F
(3)
ij . (B.46)

with

Γ+
kqmns =

exp
[
− l2

B
4α(q2y + (q′x)2) + iqyl

2
B(k′x +

q′x
2 ))

]
[
(α2

kzms + 1)(α2
kz+qzns

+ 1)
] 1
2
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B.2. With tilt

and where the factors F (n)
ij where found to be

F
(2)
12 = −tx

√
α

√
M

2 αk+q,nΞ2(q̄,m∓ 1, n), (B.47)

F
(2)
21 = −tx

√
α

√
M − 1

2
a2kms

lBakm∓1s
Ξ1(q̄,m∓ 1, n, s), (B.48)

F
(2)
11 =

√
α
αkzmsαkz+qzns

√
M − 1

lB
√
2

Ξ1(q̄,m∓ 1, n∓ 1, s), (B.49)

F
(2)
22 =

√
α

√
M

lB
√
2
Ξ1(q̄,m, n, s), (B.50)

F
(3)
11 =

√
N − 1

2
αkzmsαkz+qzns

lBαkz+qzn∓1s
Ξ2(q̄,m∓ 1, n∓ 1, s), (B.51)

F
(3)
22 =

√
N

2
1

lBαkz+qzns
Ξ2(q̄,m, n, s), (B.52)

F
(3)
12 = −tx

αkz+qzn

αkz+qzn∓1lB

√
N − 1

2 Ξ2(q̄,m, n∓ 1, s), (B.53)

F
(3)
21 = − tx

lB

√
N

2
αkzm

αkz+qzn
Ξ2(q̄,m∓ 1, n, s). (B.54)

B.2.1. Simplifications for tilt parallel to the magnetic field

The procedure greatly simplifies in the case of parallel tilt. As noted in the
main text, parallel tilt only rescales the energies Landau levels, while the wave
functions and operators stay invariant. The procedure for the untilted cone,
done in Appendix B.1, is thus relevant here as well, with an interchange of
the energy levels where relevant.
The T (2) and T (3) parts of the energy-momentum tensor for parallel tilt

is therefore the same as the result without tilt, found in summary 8. In the
main text we showed a simplification procedure for terms of the form

α2
κzmsδM−1,N − α2

κznsδN−1,M (B.55)

in the total response function. The outline of the idea was to note that we
sum over all m,n, and by certain symmetries of the terms under interchange
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of m↔ n, we could rename summation indices and replace

α2
κzmsδM−1,N − α2

κznsδN−1,M → 2α2
κzmsδM−1,N . (B.56)

For details on the procedure see Section 4.4.2 of the main text. By simply
inserting T (2), T (3) in the response function, one may easily show that the
resulting term is on the form Eq. (B.55), with the first term corresponding to
T (3) and the second to T (2). The response from T (2) and T (3) is thus equal.

By the procedure explained in Section 4.1.2, the response of T (2)+T (3) may
be rewritten as the response of T (1), which contains the factor Ekzms +Ekzns,
with the energies replaced with the untilted energies. In other words, using
the energy momentum tensor Tµν

F , the response is the same as the response
found for parallel tilt in the main text, Eq. (4.190),

lim
ω→0

lim
q→0

χxy = −e
2vFB

2(2π)2
∑
mn

∫
dκzξ(κz)(ϵκzms + ϵκzns)

× (α2
κzmsδM−1,N − α2

κznsδN−1,M ),

with the term ϵκzms + ϵκzns replaced with the untilted energies ϵ0κzms + ϵ0κzns.
The response from the Tµν

F tensor is therefore the exact same as that of the
untilted cone, as long as one stays in Type-I. It differs from the response
found in the main text by the divergent prefactor γdiv,N .
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Auxiliary Results C
C.1. Conformal symmetry of a tilted system

The origin of the term conformal anomaly is the conformal symmetry. Under
the conformal transformation, the massless QED Lagrangian is invariant, as
shown in the main text. Specifically, the QED Lagrangian

L = −1
4F

µνFµν + iψ̄ /Dψ,

with the usual ψ̄ = ψ†γ0, /D = γµDµ, Dµ = ∂µ−ieAµ transforms under the
scaling

x→ λ−1, Aµ → λAµ, ψ → λ
3
2ψ,

as
L → λ4L.

The action S =
∫
d4xL is thus invariant (as d4x→ λ−4d4x), and the theory

is classically manifestly scale invariant.
Consider now the tilted Dirac Lagrangian considered in our work,

Lkiψ̄Γµ∂µψ, (C.1)

with Γµ = γµ+ tµγPγ0, where γP = I4 when inversion summery is broken and
γP = γ5 for inversion symmetric systems. The tilt parameter tµ = (0, t) is
invariant under scaling, and thus also this theory is classically scale invariant.

C.2. Spin states of the Dirac cone

Similar to the discussion in Section 1.5 on the spin structure of a system with
Rashba coupling, we here consider the spin structure of the Weyl cone. We
begin by finding the eigenstates of the Weyl Hamlitonian H = vFσp. Assume
plane wave states, and some arbitrary linear combination of spin up and spin
down,

ψ± = eikrα

(
1
b

)
,
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where α is some normalization. Solving the time independent Schrodinger
equation

Hψ = Eψ,

we find
b = − kz ± k

kx − iky
. (C.2)

Requiring normalized states ⟨ψ|ψ⟩ = 1 gives the normalization

|α|2 = 1
1 + |b|2 .

Having found the states, we find the spin expectation value

S = ⟨ψ|Ŝ|ψ⟩ , (C.3)

where S is the spin expectation value and Ŝ = σ
2 is the spin operator, where

ℏ was set to 1. Simply evaluating Eq. (C.3), yields

S = ± k

2k . (C.4)

The spin structure is that of a hedgehog. This gives a nice intuitive
explanation of the symmetries of a Dirac cone. Recall that under an inversion
transformation, momentum is flipped while spin is invariant. Under time-
reversal both momentum and spin change direction. When all symmetries are
present, the Dirac cone consists of two superimposed Weyl cones. Breaking
inversion symmetry separates the cones in momentum while breaking time-
reversal symmetry separates the cones in energy.1 The three cases are shown
schematically in Fig. C.1. By inspection, one sees that when the cones are
separated in momentum, the spin at the opposite momentum has the same
direction, and so time-reversal symmetry is broken. Similarly, when the cones
are separated in energy, the spin at the opposite momentum has the opposite
direction, and so inversion symmetry is broken.

1Giving a nodal loop.
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Time�reversal broken
Momentum separated

Nothing broken
Superimposed

Inversion broken
Energy separated

Figure C.1.: Schematic overview of symmetry properties of a Dirac cone.
Drawn is the energy contour of a Dirac cone for some non-zero energy; in
other words, the intersection of a Dirac cone with a plane at some energy
E ≠ 0. The arrows indicate the spin direction. From top to bottom,
there is a Dirac cone with two superimposed Weyl cones, momentum
separated Weyl cones, and energy separated Weyl cones. The solid and
dashed lines corresponds to the two chiralities.
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C.3. Only translationally invariant systems have
conservation of momentum in correlators

Theorem 2. If the momentum space correlator is ⟨A(p)B(−p)⟩, the real
space correlator is translationally invariant.

Proof: Consider the correlator

⟨A(x)B(y)⟩ . (C.5)

If its momentum space equivalent is

⟨A(q)B(−q)⟩ = ⟨A(q)B(p)⟩ δ(p+ q), (C.6)

then the real space correlator is given by∫
dpdq ⟨A(p)B(q)⟩ δ(p+ q)eipx+iqy =

∫
dp ⟨A(p)B(−p)⟩ eip(x−y). (C.7)

This function is only dependent on x− y, and thus translationally invariant.
Therefore, the only way to get a correlator on the form ⟨A(p)B(−p)⟩ is to
assume trnaslational invariance. □

C.4. Removing the explicit tilt from the Lagrangian by
a non-flat metric

In the main text, we have used the Lagrangian

Ls = iφ†σ̃µ∂µφ, (C.8)

where we defined the modified Pauli matrices σ̃µ = σµ + tµ, tµ = (0, t). We
here present an alternative, where we instead consider moving the tilting into
the metric, i.e. considering a non-tilted cone in curved spacetime. In essence,
we want

gµνσνpµ

to give (σµ + tµ)pµ. We see that this involves putting tµ on the 0-components
of the metric.
Consider the metric

gµν = ηµν + tµ(δµ0 + δν0 ) =


1 tx ty tz

tx −1 0 0
ty 0 −1 0
tz 0 0 −1

 . (C.9)
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The top row is however problematic, as it gives an unwanted

g0νσν = σ0 − tσ.

Interestingly, the metric thus cannot be symmetric! We conclude that the
appropriate choice is

gµν = ηµν + tµδν0 =


1 0 0 0
tx −1 0 0
ty 0 −1 0
tz 0 0 −1

 . (C.10)

Consider therefore the Lagrangian

L = φ†gµσσσ∂µφ. (C.11)

Using once again the canoncial defintion

Tµν = ∂L
∂(∂µφ)

∂νφ (C.12)

= φ†gµσσσ∂νφ, (C.13)

we find the component of the energy-momentum tensor

T y0 = φ†gyσσσ∂0φ = φ†(tyσ0 + σy)∂0φ. (C.14)

Remark 1. The four-Pauli matrices are defined as

σµ = (σ0, σ1, σ2, σ3) = (σ0, σx, σy, σz), (C.15)

where the matrices with lower roman indices are the well-known Pauli matrices.
Thus, the four-matrices with lowered inddex are

σµ = ηµνσ
µ = (σ0,−σ1,−σ2,−σ3). (C.16)
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