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Abstract

As the size of transistors begins to reach the extent of a couple of atoms,
keeping up with Moore’s law has become increasingly difficult. Furthermore,
new methods of computing are pursued by researchers in the quest for more
energy-efficient hardware. The intersection between analog and neuromor-
phic computing is one candidate to spark a transition into a new computing
regime with specialized hardware for specific tasks. In this thesis, numerical
micro-magnetic simulations of an antiferromagnetic and insulating spiking
neuron yield a proof-of-concept for a new computing unit, that seeks to over-
come equivalent metallic and ferromagnetic neurons in terms of speed and
energy consumption. The spiking neuron could be a part of a hardware re-
alization of a neural network. The neurons are set up to mimic the behavior
of leaky integrate-and-fire neurons. Two different versions of the neuron will
be given, and they will be compared in detail. The proposed spiking neuron
is a new way of envisioning how applied spintronics can yield energy-efficient
specialized computing hardware. The state of the proposed neuron is coded
into the position of a magnetic domain wall, which can be controlled by ex-
citing spin waves in the antiferromagnet and a voltage-controlled magnetic
anisotropy. The simulations will show that in principle a spiking neuron
that operates at pico-second time scale is possible. Furthermore, results in-
dicate that the neurons could potentially operate at an energy consumption
of ∼ 100 aJ per spike.
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Sammendrag

Ettersom størrelsen p̊a transistorer begynner å tilsvare utstrekningen til et
par atomer, blir det stadig vanskeligere å holde tritt med Moore’s lov. Sam-
tidig forskes det p̊a nye metoder for mer energieffektiv maskinvare. Krys-
ningen mellom analog og nevromorf prosessering gir muligheter til å utløse
en overgang til et nytt regime innen datateknologi, med datamaskiner som
er spesialisert til å løse spesifikke oppgaver. I denne masteroppgaven vil nu-
meriske mikromagnetiske simuleringer av et antiferromagnetisk og isolerende
impulsnevron gi innblikk i det som kan bli en ny prosesseringsenhet. Dette
er med den hensikt i å overg̊a metalliske og ferromagnetiske tilsvarende im-
pulsnevron n̊ar det gjelder hastighet og energiforbruk. Nevronene er designet
for å etterligne funksjonaliteten til lekkende integrer-og-fyr nevroner. To
forskjellige versjoner av nevronet vil bli foresl̊att og sammenlignet. Det anti-
ferromagnetiske impulsnevronet er et forslag p̊a hvordan anvendt spintronikk
kan gi energieffektive datamaskiner som er spesialisert til å løse konkrete
og krevende oppgaver. Tilstanden til det foresl̊atte nevronet er kodet inn
i posisjonen til en magnetisk domenevegg som kontrolleres av spinnbølger
og spenningskontrollert magnetisk anisotropi. Simuleringene vil vise at im-
pulsnevronet i prinsippet kan operere p̊a en picosekund tidsskala. Videre
indikerer resultatene at nevronet kan ha et energiforbruk p̊a ∼ 100 aJ per
impuls.
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Symbols and conventions

This thesis includes ideas and concepts from a wide range of scientific fields.
Most prominent are probability and information theory, machine learning,
neuroscience and spintronics. An effort has been made to keep to standard
notation, but in some cases, this has been impossible. The symbol H (Hamil-
tonian, fields, entropy) is perhaps particularly overloaded. The following list
indicates where notation may differ from what is the standard practice in
some fields, and hopefully removes confusion where similar symbols are used
for quite different quantities. All variables are defined as they are introduced
in the text.

• H is the Hamiltonian.

• H is effective fields.

• h is applied external magnetic field.

• l is the Néel vector.

Furthermore the following notation is used

a Scalar.
a Vector.
A Matrix.
↔
a Tensor.
a Stochastic variable.
∂x Derivative with respect to x.
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List of abbreviations
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FNN feedforward neural network
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RCP right circularly polarized
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SHE spin Hall effect
SNN spiking neural network
sLLG stochastic Landau–Lifshitz–Gilbert
SRM0 standard response model of zeroth order
STT spin-transfer torque
VCMA voltage-controlled magnetic anisotropy
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1 Introduction

The computing paradigm of today hinges on complementary metal-oxide-
semiconductor (CMOS) transistors [1]. Logic operations are achieved by
moving charges in the form of electrons. For several decades the develop-
ment of new transistors has followed the famous Moore’s law that states that
the number of transistors one can fit on a chip will grow exponentially, or
equivalently that transistors will decrease in size correspondingly [2]. This
has allowed the digital age we today live in. Less famously, there exists an-
other rule describing the innovation of new transistors called Dennard scaling
which states that the power consumption of transistors is constant as their
size decreases. To this day Moore’s law is still followed. However, the new
technology is no longer capable of complying with Dennard scaling [3]. This
comes as a consequence of transistors starting to reach the size of a couple of
atoms, causing larger current leaks caused by direct tunneling through the
transistor gate. This has sparked an interest in finding new ways of build-
ing logic units capable of arithmetic, integrating different types of computing
hardware that each has its specialization in a single computer [4].

It is difficult to relate the computational power of the brain to a com-
puter. However, when making a human compete against a computer at a
given task, one can get some insight by comparing results and performance.
In 2016, AlphaGo, a computer program by Google Deepmind played 18 times
world champion Lee Sedol in a 5-game match in the board game Go [5]. The
program calculated the next move by a search tree method combined with
a deep neural network. It is speculated that the power consumption of the
AlphaGo program during this match was ∼ 1.2MW [6]. On the other side,
the power consumption of a human brain is about 20W. Although AlphaGo
won 4− 1, one can assume that the players were somewhat evenly matched.
The fact that the human was able to compete with the machine with a 60 000
times smaller power consumption is quite remarkable.

It is not just in power efficiency the brain outperforms machines. Hu-
mans outperform machines in some tasks that come naturally to us but are
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difficult to describe formally in a computer program [7]. Such tasks could
be image and speech recognition [8]. The introduction of deep learning has
spawned a new age for artificial intelligence, and can now begin to compete
with humans. However, there are still aspects where the brain exceeds the
computer. All this is although computers operate at substantially slower
frequencies than the brain.

Neuromorphic computing is the concept of engineering either software
or hardware that operates somewhat equal to the human brain [9]. The
goal of neuromorphic computing is to identify how the brain works and then
implement systems that mimic some functionality of the brain, to gain some
advantage over conventional computing, such as improved power efficiency.
A famous example of this is artificial neural networks. A subset of artificial
neural networks that tries to imitate the spiking behavior of neurons in the
brain is spiking neural networks. These types of networks can be implemented
with great energy efficiency on specialized neuromorphic chips, as will be
discussed in chapter 3. An example of this is the SpiNNaker machine, which
is capable of modeling spiking neural networks with the size of a rat brain in
real-time [8].

In the human brain, memory is stored in the same location where the
computation happens [10]. This is a crucial distinction from how a conven-
tional computer operates. In 1945 Von Neumann envisioned some rules for
how a computer could be built, inspired by how the human brain functions
[11]. This is today called the Von Neumann architecture, and conventional
computers are built on many of these principles. Von Neumann identified
the main components of a computer, among others memory, M, and a con-
trol arithmetic unit, CA. Today they respectively correspond to RAM and
the CPU. Furthermore, Von Neumann identified that data would have to be
transferred from M to CA and back to M for each computation. This is the
case in modern conventional computers as they still have separated memory
and logic units, as opposed to the human brain. This transfer of data sets
a cap on computational performance and is called the Von Neumann bottle-
neck [12]. Additionally, it requires a substantial amount of energy to move a
lot of information back and forth between memory and logic unit [13]. Im-
plementing hardware that is not limited by the Von Neumann bottleneck is
a crucial problem in neuromorphic computing. The Loihi chip by Intel is
an example of such a device that implements non-Von Neumann architecture
[14, 15], built with regular CMOS technology, that operates with great power
efficiency.
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Analog computing is a contrary paradigm to digital computing. It is
based on building a physical system that is governed by the same equations
that one is trying to solve [16]. The idea is that by initiating the system with
some given initial conditions, it will naturally evolve towards the solution.
Famously analog computers were used to predict tides, long before the en-
trance of digital electronic computers. Traditionally one would build analog
computers consisting of gears and wheels. In the 1980s digital computers
dethroned analog computers. Nevertheless, researchers are now considering
analog computers as a potential candidate for supplementing digital comput-
ers when problems become computationally expensive. Analog computing
trades accuracy and reproducibility for shorter computing times and power
consumption [17]. Today analog computers are used in conjunction with
standard digital computers to form hybrid computers, and it is believed that
analog computers can provide a more energy-efficient alternative than digital
computers [18].

In recent years there has been development in using spintronic com-
ponents to realize such systems [13] and the combination of neuromorphic
computing and spintronics in neuromorphic spintronics has gained a lot of
interest. Spintronics is a field of condensed matter physics that concerns itself
with understanding the properties of the intrinsic spin of the electrons, and
how it can be used to create new electrical components [19]. This would be a
fundamentally different approach to building computing machines than what
is offered by CMOS technology. The prospect of using the spin of electrons
as information carriers rather than electrons themselves provides the oppor-
tunity for a more power-efficient computing regime. Spintronic devices share
some characteristics of the brain, such as non-linearity and plasticity [20],
and could achieve a substantial reduction in the energy cost of computing.

One of the objectives of neuromorphic and analog computing is to bridge
the gap in power consumption between the human brain and computers. In all
electrical components except for super-conductors, there is some power dissi-
pation from electrical energy to heat due to Joule heating [21]. Joule heating
is a consequence of electrons colliding as they move through the wire. An
insulating material that is stimulated through electron spin and not moving
electrons do not suffer from this drawback and can be more efficient. Both fer-
romagnetic and antiferromagnetic spintronic devices is proposed. However,
we will see that antiferromagnetic may have a better potential than ferro-
magnetic devices as they work at higher frequencies, giving an edge when it
comes to operating speed.

3



This master’s thesis revolves around a proof-of-concept numerical study
of a spintronic device, that could be implemented in a hardware realization
of a spiking neural network. It consists of an insulating antiferromagnetic
material, which can be stimulated without the use of electrical currents, in
an attempt to tackle the issue of Joule heating [22]. Furthermore, it utilizes its
physical behavior to do arithmetic operations such as integration. Moreover,
it has a natural short-term memory embedded into its behavior, that could
help transcend the Von Neumann bottleneck. It is both a neuromorphic
and analog computing unit. Chapters 2 and 3 will give introduction to the
necessary theory to understand the proposed device. Then chapter 4 will
explain the implementation of the neuron, and how it works, while chapter
5 will give an example of how it may be used to implement a spiking neural
network. At last, a summary and an outlook will be given in chapter 6.
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2 Introduction to spintronics

This chapter will introduce concepts of magnetism and spintronics that will
lay the foundation for the implementation of a hardware spiking neuron
based on antiferromagnetic domain wall movement. The first section will
concern general magnetization dynamics. More specialized topics will follow
in the subsequent section and will give the necessary insight to understand
the physics behind the proposed neuron in chapter 4.

2.1 Magnetization dynamics

This section explores the concept of magnetism in terms of electron spin and
the free energy of magnetic materials.

2.1.1 Electron spin and magnetization

Elementary particles has angular momentum that comes about in two forms,
orbital and intrinsic. In quantum mechanics these quantities are described
as operators, rather than vectors. The total angular momentum operator J̃
is the sum of the two contributions [23]

J̃ = L̃+ S̃ (2.1)

where L̃ and S̃ is the orbital and intrinsic angular momentum operators. One
typically refers to S̃ as simply the spin of the particle. A charged particle
with angular momentum will create a magnetic moment

M̃ = γLL̃+ γSS̃. (2.2)

The terms γL and γS is the respective gyromagnetic ratios. In general the
gyromagnetic ratio of a particle is given as γ ≡ gq/2m where g is called the
g-factor. q and m is the charge and the mass of the particle. For many
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2.1. Magnetization dynamics

magnetic materials the contribution from L̃ is quenched [24], and for the
electron one can approximate

M̃ ≈ γeS̃, γe = geff
qe
2me

S̃ (2.3)

where ge ≈ 2 [25], and qe is the electron charge. γe is called the gyromagnetic
ratio of the electron2. The magnetic moment operator is in other words
dependent of the spin of the electron. To connect the classical field theory
to the quantum theory of spins, one can write the continuous magnetization
vector M(r) as

M(r) =
⟨∑i∈Vav M̃i⟩

Vav(r)
(2.4)

where Vav is an small averaging volume around the position r and M̃i mag-
netic moment operator from an electron i. M(r) describes the magnetic
moment per unit volume at r. Note that the averaging procedure above
reduced the operator M̃ to a real-valued vector. This can be seen as a semi-
classical micromagnetic approach for magnetism, and the rest of this thesis
will utilize this regime [26]. In contrast to the micromagnetic approach, there
is the atomistic approach which treats magnetic moment as a vector per atom.

Throughout this paper one assumes that the amplitude of the magne-
tization as constant and finite in both time and space, i.e. |M(r, t)| = Ms,
where Ms is the saturation magnetization. It is then common to introduce
the normalized magnetization vector

m ≡ M

Ms
. (2.5)

In the rest of this text, we will use the name ”magnetization” for m, as this
is the order parameter that will be used to describe magnetic systems. The
fact that |m| = 1 can be used to deduce a restriction on m. Taking the time
derivative on both sides of m ·m = 1 one deduces the following important
relation

m · ∂m
∂t

= 0. (2.6)

This restricts the motion of m at a given point in space to the unit sphere.
We will use this equation later when deriving the dynamics of m.

2γe is negative, as qe < 0. In some text γe is defined as its absolute value. To avoid
confusion |γe| will be used in the rest of this thesis, such that the subsequent equations
follows the most common sign convention.
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2.1. Magnetization dynamics

2.1.2 Free energy of ferromagnetic materials

The motion of m is a determined by the free energy F [m] which is a func-
tional of m. The free energy, F , is functional of m(r). F is expressed as an
integral of the free energy density, f , taken over the sample volume V [27,
26]

F [m(r)] =
∫

V
f(m,∇m, r)d3r. (2.7)

The free energy density can be written as a sum of relevant contributions. The
contributions stem from m interacting with itself, and fields from the outside
world. Here we will only consider the relevant interactions for describing the
AFM neuron in chapter 4.

Exchange interaction

The exchange interaction is one of the most dominant interactions in magnetic
materials [28]. It comes as a consequence of interaction between electrons at
neighboring atoms, and describes how spins will seek to align with other spins
in their vicinity. The exchange is written as [26]

fexchange = A

[(
∂m

∂x

)2
+
(
∂m

∂y

)2
+
(
∂m

∂z

)2]
= A∇m : ∇m, (2.8)

where A is a constant that parametrizes the interaction strength [26]. The
notation A : B ≡ Tr(AB†) is called the Frobenius inner product [29].

Crystalline anisotropy

Crystalline anisotropy generates an energy contribution where the magneti-
zation becomes dependent on the crystal axes [28]. It can arise in a variety
of forms, here we shall only consider the simple case of

fanisotropy = −Keasy(m · eeasy)2 +Khard(m · eeasy)2, (2.9)

where Keasy ≥ 0 and Khard ≥ 0. eeasy and ehard are unit vectors along the so
called easy- and hard axis. Anisotropy can vary several orders of magnitude.
In general, the coefficients Khard and Keasy can be made position dependent
[30], as we shall see in section 2.2.

7



2.1. Magnetization dynamics

DMI

The Dzyaloshinskii–Moriya interaction (DMI), also known as asymmetric
exchange, appears in materials with low symmetry and is given as

fDMI = Dm · (∇×m), (2.10)

where D is a constant [28]. This interaction favours a tilting of neighboring
spins, competing with the exchange interaction and can give rise to structures
like domain walls and skyrmions.

One way to deal with the derivative of m along the boundaries is
∂m

∂n̂
= 2

A
n̂×m, (2.11)

where A is the exchange constant from Eq. (2.8), and n̂ is the unit surface
normal vector.

Zeeman interaction

The final interaction we will consider is the Zeeman interaction. It arises
when applying an external field to a magnetic material. The field will couple
to magnetization

fZeeman = −Msm · µ0h, (2.12)
where µ0 is the magnetic permeability of vacuum [27].

Total free energy for ferromagnets

Collecting all the terms from above, we can write the total free energy density
as

fFM =A

[(
∂m

∂x

)2
+
(
∂m

∂y

)2
+
(
∂m

∂z

)2]
−Keasy(m · eeasy)2

+Khard(m · ehard)2 +Dm · (∇×m)−Msm · µ0h.

(2.13)

Here the superscript FM indicates that this expression is valid for ferro-
magnets. It is worth noting that all terms in fFM are invariant under the
flip of a spin, except for the Zeeman energy term from the applied ex-
ternal magnetic field h. Ignoring this term one can in other words write
fFM(m) = fFM(−m). This leads to a two-fold degenerate ground state of
the system.
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2.1. Magnetization dynamics

2.1.3 Ferromagnetism and antiferromagnetism

Materials that exhibit some sort of magnetic order is often separated into
five different categories; diamagnetism, paramagnetsim, ferromagnetism, an-
tiferromagnetism and ferrimagnetism [31]. Of these only the last three have
magnetic ordering in the absence of any applied magnetic field. Fig. 2.1
displays a ferromagnetic and antiferromagnetic ordering and will be at the
center of attention in this thesis. It is the exchange interaction that deter-
mines whether a material is a ferromagnet or an antiferromagnet. Considering
only the exchange interaction in Eq.(2.8), an energy minimum exists when
∇m = 0 given that A > 0. This is the trademark of a ferromagnet (FM),
i.e. that the state of the system is achieved when all spins align in the same
direction, enforced by a positive exchange constant.

An antiferromagnet (AFM) works inherently in a different manner. In a
discretized model it corresponds to an negative exchange interaction between
neighboring spins, yielding a ↑↓ ground state for a two spin system [28].
However, in the continuos case it is commonly modelled by two superimposed
vector fields mA(r) and mB(r).

(a) (b)

Figure 2.1: Ground states of magnetic system with only exchange interac-
tions. (a) ferromagnet and (b) antiferromagnet.
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2.1. Magnetization dynamics

Fig. 2.1b differs a bit from another common way of modeling antifer-
romagnets [28]. One will often see that the two sublattices are shifted with
respect to each other, creating an alternating up-down pattern, ↑↓↑↓ as op-
posed to ↕↕↕↕. However, in the continuous regime, there is no distinction
between the two models. The reason for this divergence from the widespread
practice is simply because the numerical method that is used in this thesis
[26], which will be described in detail later, discretize mA(r) and mB(r) at
the same points in space. This yields a similar model of the system as in fig
2.1b. It is worth noting that although figures display a discrete model, the
equations are given in a continuous model.

In this numerical model, the only interaction between the two sublattices
A and B is the antiferromagnetic homogenous exchange and contributes to
the free energy density as [27, 26]

f ex, h
i = 4Ahmi ·mj , i, j ∈ {A, B} ∧ i ̸= j. (2.14)

Ah parametrizes the interaction strength, and favours an antiferromagnetic
configuration when positive. This can be understood as f ex, h

i has a minimum
for when mi and mj points in opposite directions. We shall consider one
other term that can couple the two sublattices together and that is called
homogenous DMI [26, 32]

fDMI, h
i = −ηi(Dh ×mj) ·mi, i, j ∈ {A, B} ∧ i ̸= j, (2.15)

where ηA = −ηB = 1, andDh is the homogenous DMI vector, and determines
the strength of the interaction and the spin tilt direction. The total free
energy density for each sublattice is then

fi = fFM + f ex, h
i + fDMI, h

i , (2.16)

where fFM is given in Eq. (2.13). Due to previously discussed symmetry
of fFM some of characteristic of two sublattices mA and mB is similar, just
in opposite directions mA ≃ −mB as the antiferromagnetic homogeneous
exchange is relatively strong compared to the other terms.

It is possible and common to describe AFMs by two different order pa-
rameters than mA and mB , namely the staggered order parameter, or Néel
vector, l, and the magnetization field m̃ [33, 34]. They are defined as

l = mA −mB
2 , m̃ = mA +mB

2 . (2.17)
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2.1. Magnetization dynamics

In the limit where there is a strong interaction between lattices A and B, one
can write

|m̃| → 0, when Ah ≫ 1. (2.18)

It is then possible to use only l as an order parameter.

When it comes to building computing components, AFM has some ad-
vantages over FM. Since AFM has a small net magnetization m̃ they do not
induce large stray fields [35]. This is advantageous, as AFMs can be stacked
close to each other without interfering. Another desirable feature of AFMs
is that they display resonance frequencies in the THz range, as opposed to
GHz in FMs. This yields the opportunity for faster computing units.

In conclusion, one can numerically simulate an AFM, by simulating two
superimposed FMs, coupled together through the antiferromagnetic homoge-
nous exchange, and the homogenous DMI. This makes the equation of motion
for describing FMs and AFMs quite similar [26], as we will see in the com-
ing section. The next subsection describes the equations of motion for FMs,
which are easily adapted to AFMs by solving for two superimposed FMs
coupled by Eq. 2.14.

2.1.4 The Landau-Lifshitz-Gilbert equation

As previously stated, magnetic materials is described by their magnetization
m. The magnetization will evolve over time and the Landau-Lifshitz-Gilbert
equation (LLG) determines the dynamics of m [20]

∂m

∂t
= −|γe|m× µ0Heff + αm× ∂m

∂t
+ τ . (2.19)

Here γe is the electron gyromagnetic ratio and Heff is an effective magnetic
field, given by the functional derivative of the free energy [26]

H = − 1
µ0Ms

δF [m(r, t)]
δm

. (2.20)

The first term −|γe|m×µ0H will cause m to precess around H. The second
term in the LLG Eq. (2.19) is called the Gilbert damping and is parametrized
by the Gilbert damping constant α. This term will seek to minimize the free
energy of the system given in Eq. (2.13) by relaxing m towards H. More
generally one can state about the first two terms of Eq. (2.19) that −|γe|m×
µ0H determines the eigenmode frequency, while the Gilbert damping term

11



2.1. Magnetization dynamics

determines the eigenmode lifetime [25]. Fig. 2.2 indicates both the precession
term and the Gilbert damping term. The last term τ is a spin-transfer torque
(STT). STT can appear if one were to apply an electric current to a metallic
and magnetic material. The spins of the electrons in the applied current
could interact with the localized electron spins, causing a change in m [36].

Figure 2.2: Motion of m due to an effective field H and Gilbert damping.
m, −m× µ0H and −m×m× µ0H are all perpendicular to each other.

For computational reasons it may be preferable to rewrite the LLG Eq.
(2.19) so that the derivative is isolated on one side of the equation. By
inserting the expression for ∂tm from Eq. (2.19) back into the derivative on
the right hand side, and applying the condition in Eq. (2.6) one can write
the transformed and explicit LLG equation

∂m

∂t
= −|γe|
1 + α2 [m× µ0H+ αm×m× µ0H+ α̃τ ×m] + τ (2.21)

where α̃ = α/|γe|.

2.1.5 Calculation of the effective field, Heff

The effective field H remains to be calculated in Eq. (2.20). The functional
derivative of the right hand side can be written [37]

δF [m(r, t)]
δm

= ∂f(m,∇m, r, t)
∂m

−∇ · ∂f(m,∇m, r, t)
∂(∇m) (2.22)

12



2.1. Magnetization dynamics

By substituting the expression for f in Eq. (2.13) and doing the derivatives
one obtains

H = 2
µ0Ms

[
A∇2m+Keasy(m · eeasy)eeasy −Khard(m · ehard)ehard

−D∇×m
]
− µ0h.

(2.23)

Together with the LLG Eq. (2.19) one can now solve the motion of m. For
AFMs the additional fields of Eqs. (2.14) and (2.15) is

Heff, i = −4Ah, ex
µ0Ms

mj , Heff, i =
ηi

µ0Ms
Dh ×mj . (2.24)

2.1.6 Temperature in the LLG equation

The LLG Eq. (2.19) can be expanded to include the effect of temperature
in the magnetic system. This is achieved by adding a new field, Hth to
the already existing field H. The thermal field is added phenomenological
to account for random fluctuations caused by the finite temperature. Due
to the stochastic fluctuations of H the new and updated equation is called
stochastic-Landau-Lifshitz-Gilbert equation (sLLG) and reads [38]

∂m

∂t
= −|γe|m× µ0(H+Hth) + αm× ∂m

∂t
+ τ . (2.25)

Hth will have the following restrictions

⟨Hth(r, t)Hth(r, t′)⟩ =
2αkBT
|γ|µ0Ms

δ(r − r′)δ(t− t′) (2.26)

and
⟨Hth(r, t)⟩ = 0. (2.27)

Here kB is the Boltzmann constant and T is the temperature of the system.
The Dirac delta function δ(x) is defined by [39]

δ(x) = 0 for x ̸= 0 and
∫ ∞

−∞
δ(x) dx = 1. (2.28)

The Gaussian noise caused by temperature is in competition with the mag-
netic ordering spawned by H [28]. In a numerical simulation where both time
and space is discretized, the thermal field could be drawn from a Gaussian
distribution

H ∼ N
(
0,
√

2αkBT
|γ|µ0MsV∆t

)
, (2.29)
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2.2. Voltage-controlled magnetic anisotropy

where V is and ∆t is the discretization volume and time [26]. Replacing the
Dirac delta functions with 1

∆V∆t Eq. 2.29 will fulfil the restrictions above.

Given a large enough temperature in a FM called the Curie temperature,
TC , the system will lose its magnetic ordering and become dominated by
the unsystematic nature of Hth [40]. This principle also applies to AFMs,
where the critical temperature is called the Néel temperature, TN . Increasing
temperature above these critical temperatures results in a phase transition
in the magnetic material.

2.2 Voltage-controlled magnetic anisotropy

In Eq. (2.9) the anisotropy constants are taken as constants in space. How-
ever, there exists a method called voltage-controlled magnetic anisotropy
(VCMA) that allows for a spatially varying anisotropy parameter K → K(r)
[30]. VCMA is a relatively newly discovered method of controlling anisotropy
in a magnetic material. This is achieved by applying an electrical field to the
magnetic sample. In FMs the VCMA is believed to occur when the applied
electrical field causes relative changes in the electronic occupation state in
3d orbitals. In an insulating material, the electrical field will vanish in the
bulk of the material [21], therefore VCMA is only possible in thin materials.
In [41] it is proposed that an anisotropy gradient can control a topological
magnetic structure called a skyrmion in an AFM. Furthermore, in [42] con-
trol over in-plane (IP) and out-of-plane (OOP) magnetization using VCMA
is observed. In this thesis, we will assume that we can control the anisotropy
coefficients by applying an electrical field to the AFM, and the strength of the
anisotropy modulation is dependent on the amplitude of the electrical field.
This thesis will employ VCMA to obtain control over a topological structure,
similar to the work mentioned in [41].

2.3 Spin waves

A spin wave is a non-uniform excitation of the spin lattice that progresses
from one location to another. Unlike uniform precession where the whole
lattice precesses with the same phase, spin waves have a position-dependent
phase. The study of spin waves is called magnonics, as their quanta is named
magnons [30]. It is a research field of great interest, as spin waves are consid-
ered to be a possible replacement for moving electrons as information carriers.
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2.3. Spin waves

Just as fluid waves, spin waves are transportation of phase and energy, rather
than an actual particle. Figure 2.3 shows a spin wave on a one-dimensional
chain of spins. Considering a FM and assuming a small deviation δm, from
some fixed ground statem0, and further assuming the excitations to be planer
waves one can write

m(r, t) = m0 + δm, |δm| ≪ |m| (2.30)

where k is the wave vector and ω is the angular frequency of the wave [1].

Figure 2.3: Spin wave on a one dimensional chain of spins.

Neglecting quadratic terms in δm and doing a temporal Fourier trans-
form one arrives at the linearized LLG equation [43, 1]

iωδm = −|γe|m× µ0Heff + iωαm0 × δm, (2.31)

i being the imaginary unit. This equation has spin wave solutions on the form
δmei(ω(k)t+k·r) where ω(k) is the dispersion relation. The group velocity vg
and the phase velocity vp of the spin wave is then given as [1]

vg = ∇kω vp = kω

|k|2 . (2.32)

Spin waves exist in both FMs and AFMs alike. FM spin waves have
typically ω in the GHz range, and |vg| ≈ 1 km/s. In nano-devices this cor-
responds to a pico second time scale. There are numerous examples of how
spin waves in FM can be utilized in new and modern computing devices
[44, 9]. However, AFM spin waves reach THz frequencies, which yields the
possibilities for extremely fast and energy-efficient computing.
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2.4. Domain walls

Spin waves can be excited in several ways. Among others is by VCMA
modulation [44], spin-transfer torques, thermal excitation and laser pulses
[30]. Thermal excitations suffer from the incoherent nature of temperature,
while spin-transfer torques require some kind of applied current which will
give rise to Joule heating. VCMA modulation and laser pulse excitation is
promising as they can be localized to nanometre scale, is tunable, and does
not require applied currents [30, 45]. However, these techniques are still in
development and not commercially available on large scales.

2.4 Domain walls

Domain walls (DW) are topological structures that separate two magnetic
domains. They are commonly separated into two types; Bloch and Néel [28].
Bloch DWs are characterized by that the rotation of m over the DW happens
out of the DW plane. On the contrary, Néel DW rotates in the DW plane.
This is illustrated in Fig. 2.4.

(a) Bloch domain wall. (b) Néel domain wall.

Figure 2.4: Bloch and Néel type domain walls.

Considering a Bloch DW as in fig. 2.4a, the magnetization can we written
in spherical coordinates

m(φ(y)) = sinφ ex + cosφ ez (2.33)

φ is the azimuthal coordinate, or angle from the x-axis, and the wall is taken
to be in the x-z plane. A configuration like this can be obtained by a system
with exchange and easy axis along the x-axis. The free energy is

F =
∫ [

A

(
∂m

∂y

)2
−Keasy (m · ex)2

]
dy (2.34)

To find the DW thickness one can find the energy minimum with respect

16



2.5. Spin pumping and the spin hall effects

to φ(x). Inserting for m this reduces to

δF

δφ
= δ

δφ

[∫
A

(
∂φ

∂y

)2
+Keasy sin2 φ−Keasy

]
dy = 0. (2.35)

Using the Euler-Lagrange eq. (2.22), multiplying with ∂φ/∂y and exploiting
the fact that ∂(∂φ/∂y)2/∂y = 2∂φ/∂y ∂2φ/∂y2 one arrives at

dφ
dy =

√
K sin2 φ

A
. (2.36)

Finally making use of mx = cosφ one obtains

dmx

1−m2
x

= −
√
K/A dx =⇒ mx = − tanh



√

K

A
y


 . (2.37)

The width of the domain wall δDW thus scales as δDW ∼
√
A/K. A strong

anisotropy shortens the width, while a large gradient in m increases the
exchange energy. Although this is a simple system, it still provides some
intuition into some qualitative properties of DWs.

Domain walls behave similarly in AFMs. It can be noted that the two
sides of a DW in an AFM will appear identical, due to the nature of the sub-
lattice model and the strong antiferromagnetic homogenous exchange inter-
action. One important difference is that DW velocities in AFMs can become
much larger than in FMs [27]. FM DWs can reach velocities of ∼ 100m/s
while ∼ 10 000m/s is possible in some AFMs.

2.5 Spin pumping and the spin hall effects

The final features of spintronics necessary for the implementation of the pro-
posed spiking neuron are spin pumping and the spin hall effects, and here a
quick introduction to those phenomenons will follow.

2.5.1 Spin currents and the spin Hall effects

Spin currents are flow of angular momenta, and in Cartesian coordinates it
is expressed as a rank two tensor [46], and will in this text be denoted ↔

z .
This section will follow the work of Dyakonov in [47]. Phenomenologically
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2.5. Spin pumping and the spin hall effects

the current density j and the components of the spin current (↔z)ij = zij can
be written as

j
(0)
i = ζqenEi −Dqe

∂n

∂xi
, (2.38)

z
(0)
ij = −ζnEiPj −D

∂Pj

∂xj
, (2.39)

where ζ and D are the mobility and diffusion constants, E is the electric
field, P is the spin polarization density3 and n is the electron concentration.
The zij component gives the spin flowing in direction ei with polarized along
ej .

In the presence of spin-orbit coupling the two currents couples together
and for a isotropic material with inversion symmetry the total currents be-
comes

ji = j
(0)
i + qeβϵijkz

(0)
jk , zij = z

(0)
jk − βϵijkj

(0)
k , (2.40)

where ϵijk ≡ (↔ϵ)ijk is the Levi-Cevita tensor, also known as the unit anti-
symmetric tensor, and β parametrizes the spin-orbit coupling strength, and
the Einstein summation convention is applied.

Eq. 2.40 can be written explicitly as [47]

j

qe
= ζnE +D∇n+ βζE × P + βD∇× P , (2.41)

and
zij = −ζEiPj −D

∂Pj

∂xi
+ ϵijkβ(ζnEk +D

∂n

∂xk
). (2.42)

Additionally there is a continuity restriction for P

∂Pj

∂t
+ ∂zij

∂xi
+ Pj

τs
= 0, (2.43)

where τs is the spin relaxation time. The two first terms in Eq. 2.41 is
already accounted for in Eq. 2.38. The third term βζE × P is called the
anomalous Hall effect, and corresponds to a resistivity dependent on spin
polarization. The last term βD∇ × P indicates that a non-uniform spin
polarization density can induce an electric current. This is called the inverse
spin Hall effect (iSHE). The third term in Eq. 2.42 ϵijkβζnEk describes the
spin Hall effect (SHE). This effect allows for the possibility that an electrical
3Here we follow the convention used in [47] and use P instead of the normal spin density
S = P /2, sometimes also called the spin accumulation [48].
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2.5. Spin pumping and the spin hall effects

field can cause a spin current. The last term is a diffusive counterpart to the
SHE and indicates that a diffusive electron gradient can also induce a spin
current.

Lets consider applying an electrical field E = E0ex to a rectangular
magnetic material situated at the origin with dimensions Lx, Ly and Lz. We
wish to investigate the spin polarization at the y = 0 boundary. Following
the procedure in [47] and working to the first order in E and using Eqs. 2.42
and 2.43 while assuming stationary conditions, we get

D
∂2Pj

∂y2
= −Pj

τs
. (2.44)

At the y boundary of the material, we must have a zero spin current in the
y-direction qyj = 0. Using this we get from Eq. 2.42

∂Px

∂y

∣∣∣∣
y=0

= 0, ∂Py

∂y

∣∣∣∣
y=0

= 0, ∂Pz

∂y

∣∣∣∣
y=0

= βζnE

D
, (2.45)

due to the antisymmetry of ↔
ϵ and the fact that the applied field only as an

x-component. Solving Eq. 2.44 we get

Pz(y) = −βζnELs

D
e−y/Ls , Px = Py = 0, (2.46)

where Ls ≡ √
Dτs is some characteristic spin diffusion length. A similar

approach at the y = Ly boundary would yield the same result just shifted
y → y−Ly. An important note to be made is that an applied electrical field in
the x-direction yields a non-zero spin polarization density at the y-boundaries
with polarization in the z-direction. In general E (or j), the polarization of
zij and the flow direction of zij are all perpendicular to each other.

There exists another common way write the SHE and iSHE terms. We
introduce the explicit terms [48]

jiSHE = θSHAD
qe
2µB

∇× P (2.47)

and
↔
z
SHE = θSHA

µB
qe

↔
ϵ

↔
σE. (2.48)

Here θSHA ≡ 2µB/β is the spin hall angle that parametrizes the strength of
the SHE, and ↔

σ is the electrical conductivity tensor of the material.
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2.5.2 Spin pumping

Attaching a heavy metal (HM) to a magnet will create a strong spin-orbit
coupling between the two materials. A dynamical magnetization generates
a spin current that will be absorbed by the HM, a phenomenon known as
spin pumping. A changing magnetization will induce a spin current into the
HM [48]. The spin pumping effect can be utilized together with the iSHE
to detect the position of a DW [49]. Spin pumping is the reciprocal effect of
spin-transfer torques. For FMs and AFMs the spin current can be written

jFMS =µBℏ
q2e

[
Re{G↑↓}m× ∂m

∂t
+ Im{G↑↓}∂m

∂t

]

jAFM
S =µBℏ

q2e

[
Re{G↑↓}

(
l× ∂l

∂t
+ m̃× ∂m̃

∂t

)
+ Im{G↑↓}∂m̃

∂t

]
,

(2.49)

where l and m̃ is defined in Eq. (2.17) and µB is the Bohr magneton, µB ≡
qeℏ/2me, and ℏ being the reduced Planck constant [48, 50]. Note that the
vector components of the above equations gives the direction of polarization
and not flow. The direction of flow is given by the geometry of the setup, i.e.
where one places the HM on the magnet.

Inserting for l and m̃, the cross-terms mi × ∂tmj cancels and the spin
pumping current for AFM reduces to

jAFM
S = µBℏ

q2e

[
Re{G↑↓}ξ + Im{G↑↓}

(
∂mA
∂t

+ ∂mB
∂t

)]
, (2.50)

where the vector ξ is defined as

ξ ≡ mA × ∂mA
∂t

+mB × ∂mB
∂t

. (2.51)

The idea we are going to employ is that when a DW moves through a magnet,
it naturally causes a change in m or l. This will lead to spin pumping in
the presence of an attached HM. If the polarization of the spin current is
perpendicular to the direction of the spin current, a current will be induced
in the HM, and this could be readily detected.

2.6 Summary - Introduction to spintronics

This chapter has provided an introduction to some features of spintronics
that will be utilized in the AFM spiking neuron. We have studied FMs
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and AFMs, and seen that one can model the AFM as two superimposed
FMs. Furthermore, the topological phenomenon of DWs and spin waves
have been introduced. The concepts of VCMA and the spin Hall effects
yield opportunities for interaction with magnetic materials from the outside
world. The foundation for understanding the physics of the proposed spiking
neuron has been given. The next chapter will provide the context in which
we want the neuron to operate, and answer why we would want a spiking
AFM neuron.
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3 Introduction to spiking
neural networks

Before introducing the proposed spiking neuron, an introduction to spiking
neural networks will follow. This is to provide insight into what function
the artificial neuron will serve in a computational setting. The chapter will
introduce the biological neuron, and mathematical models describing it. This
chapter features an introduction to ensembles of such neurons called artificial
neural networks. A description of the general machine learning algorithm
will be given. Finally spiking neural networks will be described, and the
leaky integrate-and-fire model will be explained. Together with chapter 2
this provides the foundation to understand how the proposed spiking neuron
functions, and how its behavior could be utilized in a physical implementation
of a neural network.

3.1 The biological neuron and its first
mathematical models

This section will give investigate the biological neuron found in the brain of
animals. Furthermore, we will investigate the first mathematical models of
the neuron that were used to build computing units.

3.1.1 The biological neuron

The neuron is an electrically excitable cell type, and essential to the nervous
tissue of almost all animals [10]. It is a fundamental processor of informa-
tion and interconnects with other neurons to create vast networks. In the
human brain, there are several billion neurons [51]. The neuron consist of
four main parts: the soma, dendrites, the axon and the synapse. Figure 3.1
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3.1. The biological neuron and its first mathematical models

shows a schematic picture of the components. The soma, or cell body, takes
care of the main biological tasks necessary for a cell to live. The neurons
communicate with each other through electrical signals, also called spikes,
which are transmitted by the axon. The axon splits into several branches
to reach neurons at different destinations. The dendrites connect to the ax-
ons, collecting the signals. In the interconnection between dendrite and axon
lies the synapse. The synapse interprets the input from the axon and sends
an output to the dendrites depending on some function that is adaptable
for each synapse. A presynaptic neuron sends signals via its synapses to its
postsynaptic neurons. The state of a neuron is determined by the potential
of its soma. This is a function of signals from presynaptic neurons. If the
potential reaches a threshold value, a spike is transmitted from the neuron
to its corresponding postsynaptic neurons.

Figure 3.1: Schematic of a single neuron. Figure from [52], adapted to add
labels.

3.1.2 McCulloch-Pitts neuron model

The first mathematical proposal of a neuron was given by McCulloch and
Pitts in 1943 [53]. The model for the neuron is now known as McCulloch-
Pitts (MP) neuron. Fig. 3.2 shows the setup of the neuron. Their model
consist of a set of binary input variables x = {xj} and a single binary output
yi. The function g(x) is a simple sum of the inputs

g({xj}) =
∑

j

xj = Gi. (3.1)
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Figure 3.2: McCulloch-Pitts neuron. The inputs {xj} are binary, and so is
the output y.

The function f(G) then compares G to some threshold value T , and gives a
binary output

yi = f(Gi) =
{
1, for f(Gi) ≥ Ti

0, for f(Gi) < Ti.
(3.2)

McCulloch and Pitts showed in their paper that one could build logical gates
such as AND and OR with this simple neuron model.

3.1.3 Rosenblatts neuron and Hebbian learning

In 1958, Rosenblatt expanded upon the MP neuron, by introducing tunable
weights wij into the model [54]. The gate value G is now given by

Gi = g({xj};wij) =
∑

j

wijxj . (3.3)

The function f(G) is still the same as in Eq. 3.2. The Rosenblatt neuron
is able to learn a mathematical function by changing the weights wij . The
weights can be updated according to Hebb’s learning rule [10]

wij → wij + λyixj (3.4)

where yi and λ is some learning parameter. However, even with adaptable
weights, the Rosenblatt neuron can not learn the XOR logical function [7].
Learning the functions that can not be linearly separated requires a non-linear
activation function f .
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3.2 Artificial neural networks

This section will provide an introduction to artificial neural networks (ANNs)
in the context of computer science and machine learning. Parallels will be
drawn between the machine learning algorithms and the previously discussed
neuron model. Artificial neural networks employ a different kind of neuron
from the Rosenblatt neuron. The new type of neuron allows for a non-binary
continuous output and has a non-linear activation function.

3.2.1 The general machine learning algorithm

Any machine learning algorithm is composed of four main components: a
dataset, a cost function, an optimization method and a model. The following
provides a general introduction to a supervised machine learning algorithm
based on [7].

Consider a conditional probability distribution Pdata(y | x). Our dataset
consists of observations of inputs x and outputs y of the random variables x
and y governed by Pdata. The model is set of functions Pmodel(y | x;θ). Here
θ is a set of parameters that shapes the probability distribution. The goal of
machine learning is to learn the true data generating distribution Pdata. This
is achieved by first guessing what kind of set of functions Pmodel should be,
and then tweaking the parameters θ so that it mimics Pdata.

Let the set of observations be denoted {x(i)} for inputs and {y(i)} for
outputs. Choosing θ is commonly done through a maximum likelihood prin-
ciple. This implies choosing the parameters such that the probability of
observing the output given the input is maximized. It can be written

θML = argmax
θ

Pmodel({y(i)} | {x(i)};θ), (3.5)

where the argmaxx of the function f : X → Y is defined as

argmax
x

f(x) ≡ {x : f(c) ≤ f(x) ∀ c ∈ X}. (3.6)

Assuming that we have m observations in the dataset that are independent
and identically distributed allows us to write (3.5) as

θML = argmax
θ

m∏

i=1
Pmodel(y(i) |x(i);θ). (3.7)
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This maximization problem does not change if one takes the logarithm and
divides by the factor m. Doing this makes the problem a bit more convenient,
as it can be expressed in terms of minimizing the cross entropy between the
empirical probability distribution, P̂data, obtained from the dataset

θML = argmax
θ

1
m

m∑

i=1
lnPmodel(y(i) |x(i);θ)

= argmax
θ

Ey,x∼P̂data
lnPmodel(y |x;θ)

= argmin
θ

S(P̂data, Pmodel).

(3.8)

The notation Ex∼P [f(x)] can be read as the expectation value of f(x) with
respect to P (x). The cross entropy between two probability distributions
P (x) and Q(x) is defined to be S(P,Q) ≡ −Ex∼P lnQ(x).

The cost function, typically denoted J(θ), could simply be the cross
entropy, J(θ) = S(P̂data, Pmodel). However, it is possible and common to add
terms to this, for instance regularization terms that decrease the variance of
Pmodel.

3.2.2 Feedforward neural networks

When learning non-linear functions it is difficult to guess what family of
functions Pmodel should be. The feedforward neural network (FNN) provides
a solution to this problem [7]. The feedforward neural network generally
consists of 3 types of layers of neurons, the input layer, hidden layers and
output layers. Connections are drawn between each neuron in each layer.
Figure 3.3 provides an overview of the network layout. When describing
the FNN it is preferable to adopt a vector notation by letting each layer
l be described as xl = {xli}, where {xli} is the set of all neurons in layer
l. Doing this for hidden and output layers makes equations more compact.
The machine learning as described in the previous subsection takes place by
feeding the input data x into the input layer. The information flow from
input to output is illustrated by Fig. 3.3.

The neurons in the first hidden layer is calculated from the input by a
weighted sum of all neurons from the input layer in addition to some input
independent bias, and then transformed by a non-linear transformation called
the activation function f1

h1 = f1(W 1x+ b1), (3.9)
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Figure 3.3: Graph structure of neural network with two hidden layers, and
arbitrary depth in each layer. Input layer is {xi} and output layer is {yi}.

where b1 is the biases, and W 1 is the weight matrix connecting x to h1.
The next layer of neurons, h2 is then computed based on the results of Eq.
(3.9), in a similar way. This procedure is reiterated all the way through to
the output layer

y = f3(W 3h2 + b3). (3.10)

A typical example of an activation function is the sigmoid function

σ(x) = 1
1 + exp(−x) . (3.11)

Common for activation functions is that they map the output to a given
interval, setting a limit on how large, either negative or positive, the state of
a neuron can be. The sigmoid function maps all real numbers to an interval
between 0 and 1. To have such non-linear activation functions is essential for
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x h1 h2 y
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Figure 3.4: Neural network with two hidden layers, and arbitrary depth in
each layer.

machine learning with artificial neural networks. Another activation function
that was commonly used before is tanh(x), which was also used to describe
domain walls in section 2.4. The two functions are depicted in Fig. 3.5. It
can be shown that a single neuron with a non-linear activation function can
represent the XOR function, which the Rosenblatt neuron was unable of [7].

−8 −6 −4 −2 0 2 4 6 8
−1

0

1

x

σ(x)
tanh(x)

Figure 3.5: Two non-linear activation functions. The sigmoid function σ(x)
and hyperbolic tangent function tanh(x).

The machine learning as described in the previous section takes place
by initiating the network with randomly selected weights and biases. The
network architecture consists of the number of hidden layers and their depth
and is together with activation functions chosen before the learning proce-
dure starts. Then ymodel is calculated based on the input xdata. Then the
cross entropy between ymodel and the empirically observed ydata is then min-
imized by tweaking the parameters θ which in this case consists of both W
and b. The selection of activation functions and network architecture might
seem like choosing the family of functions Pmodel which was the problem we
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were trying to avoid. However, this is not the case as stated in the universal
approximation theorem [55, 56]. The theorems interpretation is that a FNN
with at least one hidden layer with enough units and an activation function
like the sigmoid function, can represent any Borel measurable function [7]
from one finite dimensional space to another. A definition of a Borel mea-
surable function is given in [55], but it suffices to say that any continuous
function on a closed and bounded subset of Rn is Borel measurable, where Rn

is the n dimensional set of real numbers. The term represent means in this
case approximate with any desired non-zero amount of error. Here within
lays the true power of the FNN.

3.3 Spiking neural networks

A spiking neural network (SNN) takes the inspiration from human brain
activity into computer science one step further than the previously discussed
ANN. SNNs are coined ”the third generation of neural network models”,
the first generation referring to networks based on McCulloch-Pitts neurons,
and the second generation referring to ANNs with a non-linear activation
function [57]. The graph structure and connectivity of SNNs are similar to
ANNs. However, information is encoded as spikes, and the network has an
explicit time dependency. The system is event-driven as opposed to clock-
driven as in ANNs. As mentioned in the introduction, chapter 1, specialized
neuromorphic chips implementing SNNs have already been developed.

3.3.1 Mathematical description of the model

The spiking neuron Ξ is represented in Fig. 3.6. Compare this to the MP
neuron in Fig. 3.2. A formal definition of SNNs is given in [57]. Let V be
a finite set of spiking neurons, connected by a set of E ⊆ V × V synapses.
For each synapse ⟨i, j⟩ ∈ E between presynaptic neuron j and postsynaptic
neuron i there are associated a response function ϵij and a weight wij . The
state variable ui(t) of neuron i is then given by

ui(t) = η(t− tprevi ) +
∑

j

∑

f

wijϵij(t− t
(f)
j ) + u0, (3.12)

which is a combination of the zeroth order spike response model (SRM0) in
[58] and the formulation in [57]. Here u0 is the equilibrium potential, i.e.
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Figure 3.6: Simple spiking neuron. Three spike trains or three synapses
lead to a spiking neuron Ξ. The spike trains are multiplied by weights
wi and merged before they get sent into Ξ. A non-linear function deter-
mines whether the neuron should fire as a consequence of stimuli from its
synapses. Here w2 < 0 to illustrate that synapses might be inhibitory as
well as excitatory, while w1 = 1 and w3 > 1. Spikes are drawn as vertical
lines, indicating Dirac delta functions δ(t− tj).

the value of ui(t) when no stimuli has affected the neuron. t(f)j indicates the
firing times, where f is the label of each spike. Here tprevi is the time of the
most recent spike from neuron i

tprevi = max{t(f)i |t(f)i < t}. (3.13)

The function η(t− tprevi ) describes the spike form of ui(t) and is often written
[58]

η(t− tprevi ) =




1/∆t for 0 < t− t

(f)
i < ∆t

−η0 exp(− t−tprev
i
τη

) for ∆t < t− t
(f)
i .

(3.14)

The parameters η0 and τη determine how a negative spike-afterpotential may
appear, which is more related to modelling biological neurons. In the limit
∆t → 0 we get η(t − t

(f)
i ) → δ(t − t

(f)
i ). Thus, ui(t) is immediately reset to

u0 once a spike is fired. ϵ determines the response for postsynaptic neuron i
from stimuli from presynaptic neuron j. Repeated spikes from neuron i gives
rise to a spike train Si(t)

Si(t) =
∑

f

δ(t− t
(f)
i ). (3.15)
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In general the firing time t = t
(f)
i of a neuron i is set when ui(t) reaches a

threshold value uthreshold from below (or above given that u0 > uthreshold)

ui(t) = uthreshold and sign(ui(t)− u0)
dui(t)
dt

> 0 =⇒ t = t
(f)
i , (3.16)

where sign(x) ≡ x/|x| is the sign-function. It is worth noting that Eq. 3.12
assumes no time delay as signals travel the synapses. This could easily be
added as with a delay time dij for each synapse [59].

To give the SNN information about the outside world, we introduce a
set of input neurons Vinput ∈ V . These neurons do not have any presynaptic
neurons. Instead, they send spikes as a function of some input data. We will
see in section 3.4 how to convert regular data, such as an image, into spikes.

There is a strong resemblance when comparing Eq. 3.12 to Eqs. 3.9
and 3.10. The biggest difference is the time dependence of η(t − tprevi ) and
ϵij(t− t

(f)
i ), which corresponds to the time dependence of SNNs themselves.

Similar to ANNs, training a SNN means to tune the weights or set of
parameters θ = {wij} in order to minimize some cost function, and thus
make some Pmodel resemble a data generating distribution Pdata.

3.3.2 Leaky integrate-and-fire neuron model

The fact that neuroscientists and computer scientists have two different per-
spectives when trying to model a neuron again becomes evident when dis-
cussing neuron models. Neuroscientists often seek to model a neuron to get
insight into the functionality of the brain, while computer scientists rather
want to have efficient computational units. The rather general Eq. 3.12 could
be used to model a variety of neuron models. The following will introduce a
common neuron model, used by computer scientists when creating SNNs.

Leaky integrate-and-fire model

The leaky integrate-and-fire (LIF) model are one of the most prominent neu-
ron models [58]. It can be modelled by a RC circuit as shown in Fig. 3.7.
The neuron voltage corresponds to the capacitor voltage u(t). The LIF model
is described by the differential equation

τ
du

dt
= −u(t) +RI(t), τ = RC, (3.17)
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τ being the time constant of the capacitor, R is the resistance of the resistor
and C is the capacitance of the capacitor. In the sense of neurons, I(t)
corresponds to presynaptic stimuli, while the term −u(t) ensures a leaky
behavior. Eq. 3.17 can be rewritten as

C
du

dt
= I(t)− u(t)

R
, (3.18)

where we see that if we short the resistor part of the circuit, i.e. letting
R → ∞ we get a perfect integrate-and-fire circuit with no leaky factor,
Cdtu = I(t). This is a more simple neuron model that is also used in SNNs.
The incoming current I(t) is

Ii(t) =
∑

j

wij

∑

f

δ(t− t
(f)
j ). (3.19)

The weights wij determine the connection strength from presynaptic neuron
j to postsynaptic neuron i. The sum ∑

f is over all presynaptic spike times
(f).

The LIF model can be generalized to a non-linear leaky integrate-and-fire
model

τ
du

dt
= F (u) +G(u)I(t), (3.20)

where the functions F (u) and G(u) are arbitrary functions. Here the neuron
response to input I(t) is a function of u while in Eq. 3.12 it is a function of
the time since last spike.

R

C

I(t)

u(t)

Figure 3.7: Leaky integrate-and-fire circuit. A capacitor, C, and resistor,
R, are wired in parallel. The voltage over the capacitor u(t) integrates
the current input, while it leaks to ground. When u(t) reaches a threshold
value, a switch controlling the input wire is flipped, stopping new currents
into the system for a refractory period. During the refractory period
charge is completely depleted from the capacitor.
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3.4 Neural coding

Information in SNNs is naturally encoded as spike trains, rather than the
usual binary information coding schemes used in regular computers. Convert-
ing binary information to spikes requires a transformation into time-related
domain. The spike train has a natural temporal component, which is inher-
ently different from binary code. The following two subsections will consider
two spike encoding schemes, called rate code and temporal code. In neuro-
science, the problem of neural coding is not yet solved, but it is assumed that
it is probably a mix of the two schemes [58].

3.4.1 Rate code

Rate code encodes information as some average value or frequency of spikes.
Consider a black and white image as input.

A problem with rate code is that the temporal averaging suffers the
loss of information in the temporal dimension. As previously discussed, the
time dependence in SNNs is thought to be one of its strong points. On the
other hand, rate code makes the SNNs more similar to ANNs, and can thus
be simpler to work with. Another problem is that it is an inefficient way of
encoding in a digital computer. Running SNNs on a clock-driven system with
discrete time steps will require 2N time steps to code N bits of information.

The simplest way of rate encoding is just averaging the number of spikes
ns over a predetermined time interval ∆t [58].

ν = ns
∆t

(3.21)

A stronger signal could correspond to a higher frequency. Rate code works
well on slowly varying or constant signals. Essentially rate code corresponds
to a Fourier transform of the spike train in Eq. 3.15.

3.4.2 Temporal code

Temporal code, or spike code as it is also known, is the alternative to rate
code and is a set of different coding schemes that encode information in the
timing between individual spikes. There are several ways to do this, and here
we will consider three distinct methods. In temporal coding, neurons need
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only to fire once for each set of new presynaptic stimuli. The idea behind
temporal coding is that the time it takes to reach the threshold value in
neurons such as LIF neurons is correlated to the strength of the stimuli [60].

Time-to-first-spike

Time-to-first-spike encodes information as the time between the arrival of
stimuli to a spike is sent. If a neuron transmits a signal shortly after stimuli,
it can be considered a strong interaction. This requires a reference signal that
spikes can be timed after. In theory, this could code for infinitely many bits.
However, in a more realistic setup, with time resolution δt and N neurons,
one could in a time interval ∆t encode log2(∆t/δt)N bits.

Rank-order-coding

Rank-order-coding is another spike code, utilize the timing between spikes to
encode information [60]. Consider a set of x = {xi} neurons. Their output
spikes are ordered in time, and the order determines the information. If ti
is the time neuron xi sends a spike, then the order t2 > t1 > t0 encodes
something different than t2 > t0 > t1. A layer of N neurons can with rank-
order-coding transmit log2N ! bits of information, as there are N ! ways of
arranging {ti}.

Latency coding

Latency coding is the most efficient temporal coding scheme mentioned here.
It codes information as the timing between different spikes. Spikes are orders
as in rank-order coding, but instead of just using the sequence of spikes,
latency coding employs the time difference between spikes as ∆tij = ti −
tj [61]. Latency coding and the other temporal coding methods trade the
robustness of rate coding for superior efficiency.
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3.5 Summary - Introduction to spiking neural
networks

This chapter has introduced neural networks and neuron models of increas-
ing complexity. The SNN has been studied in detail, together with the LIF
neuron. Furthermore, an introduction to the general machine learning algo-
rithm has been given. We can now understand why we would want a physical
spiking unit. All necessary theory has now been concluded, and we are ready
to study the proposed spiking AFM insulating neuron.
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4 Neuron implementation

This chapter will introduce the proposed AFM spiking neuron. The AFM
spiking neuron will correspond to Ξ in Fig. 3.6. Two different variations of the
neuron will be discussed, namely one with OOP magnetization and one with
IP magnetization because they exhibit different properties in some areas. The
computational method will then be described before some important features
will be investigated in detail. Finally, a finite temperature will be introduced
to the system, and its effect on the neuron will be discussed.

4.1 Setup and functionality

The AFM neuron differs from the proposed neuron in [62] in two major
aspects. The first is that the neuron is an AFM and not an FM. Furthermore,
the AFM neuron is an insulating material as opposed to conducting. In [62]
STTs from charge currents are used to move the DW. However, the insulating
material in the AFM spiking neuron makes this a poor choice as it will cause
power dissipation through Joule heating.

4.1.1 Geometry

The AFM material in the neuron is an elongated strip. Fig. 4.1 displays the
geometry of the setup. The IP and OOP neuron variations require slightly
different geometric setups as displayed in Fig. 4.1. The reason behind this
will be explained in detail in sections 4.3 and 4.4. For now, it suffices to
say that the excitatory antenna has to be placed parallel to the direction
of the Néel vector in the area that is in direct contact with the antenna.
Furthermore, it is necessary to place the detector such that it is normal to
the Néel vector at the DW, l(xDW). This gives the two different setups.
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(a) (b)

Figure 4.1: AFM neuron setup. Dimensions are not to scale. (a) OOP,
and (b) IP. The injector is colored red, detector in blue, and the VCMA
insulator and electrode in yellow. A voltage is applied between the VCMA
electrode and the AFM.

4.1.2 Free energy

The free energy of the IP neuron is as given in Eq. (2.16), excluding the
homogenous DMI. The IP magnetization is supported by an easy axis in the
x-direction and a hard axis in the y-direction. Keasy = Kx and Khard = Ky.
The OOP neuron has the same free energy as the IP neuron except for the
DMI interaction, which is absent, and Keasy = Kz. The different parameters
and constants are given in table 4.1. Furthermore, the easy axis has a spatial
dependence

Keasy(x) =
(

x

Lx
− 2

3

)2
+ 1, (4.1)

that is created by the VCMA effect as described in section 2.2. Figure 4.4
depicts the starting configuration of the OOP and IP neuron. The minimum
value of Keasy(x) creates an equilibrium position x0 for xDW

dKeasy(x)
dx

= 0 =⇒ x0 =
2
3 · Lx ∼ 333 nm. (4.2)

The IP neuron has magnetization mainly in the x-direction, with a DW in the
z-direction, which is an opposite arrangement from the OOP neuron. The
DMI causes the DW to be slightly skewed from the y-direction, as opposed
to the OOP DW.

There is one additional parameter that has a spatial variation, and that is
the Gilbert damping coefficient α. For 0 nm < x < 480 nm we have α = 0.002
as in table 4.1. However, at the far right end of the AFM x ≥ 480 nm, we
have α = 0.1. This increase in damping is added for two practical reasons.
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(a)

(b)

Figure 4.2: To scale AFM neuron setup. (a) OOP, and (b) IP. Linput for
the IP indicates that the applied field is set to propagate 20 nm into the
material. In other words the applied field for both neurons work in the
entire volume of the AFM with x ≤ 20 nm.

The first is to minimize the effect of magnon reflection at the end of the AFM,
and the second is to create a boundary such that the DW does not move so
far right that it disappears out of the strip, rendering a uniform l.

4.1.3 Functionality

The main functionality of the neuron is similar to that in [62]. The position
of the DW, xDW encodes the state of the system. By exciting magnons, which
in our case is done by applying a circularly polarized external field h, one
can move the position of the DW. By sending signals similar to that in a
SNN one can move the DW towards the end of the strip, where a detector
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Figure 4.3: VCMA coefficient. (a) shows the spatial variation of Keasy(x).
(b) indicates AFM, insulator and electrode layered from top to bottom,
which ensures a spatially varying electrical field, and in turn results in
the spatial variation of Keasy(x).

is placed. This corresponds to the integrating part of a LIF neuron which
was discussed in subsection 3.3.2. Once enough signals have been sent into
the neuron, the DW will eventually have reached the detector at the end.
The detector registers the DW and puts the neuron into fire mode. A signal
is then sent from the detector of the next postsynaptic neurons that are
coupled to this firing neuron. Once the neuron has fired, a switch will break
the input line for the time needed to relax the DW back into the equilibrium
position. The spatial dependence of Keasy will then ensure that the DW
moves back into the equilibrium position, x0. This effect is always present,
and not just when the neuron is refractory. This then corresponds to the
leaky functionality of a LIF neuron. In neuroscience, the refractory period
is the time needed for Na and K pumps to restore the concentration of ions
outside and inside the cell [58], while here it is the time it takes for the DW
to move from the detector position back to x0. After the refractory time has
passed, the switch controlling the input line is then turned back, allowing
new incoming signals to the neuron, starting the process of moving the DW
towards the detector once more.
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Figure 4.4: Equilibrium configuration of DW for (a) IP and (b) OOP. Both
lx and lz components are shown.

4.2 Computational method

The LLG equation (or sLLG when a finite temperature is present) is solved
using Boris Computational Spintronics [26], which is a rather new and ver-
satile computational spintronics research software. It uses finite differences
to solve the equation with the RK4 method. In the simulations, a cell size
of 4 nm× 4 nm× 2 nm yielding 125× 5× 2 grid with the given dimensions of
the AFM. Spin waves are excited at the injector and modeled by a circularly
polarized magnetic field. This results in monochromatic magnons at the left
end, emulating an incoming laser beam. The frequency is close to the reso-
nance frequency of the AFMs, and given in table 4.1 together with all other
relevant parameters. To simulate the firing event when the DW passes under
the detector, the spatial average of the relevant component of ξ is measured
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under the detector area. We assume this to be proportional to the signal
that is measured in experiments that use the inverse spin hall effect and spin
pumping.

Table 4.1: Coefficients used in simulations.
Name Symbol Value Unit
Length of AFM Lx 500 nm
Width of AFM Ly 20 nm
Height of AFM Lz 4 nm
Detector position xdetector 100 nm
Detector length Ldetector 10 nm
Input length Ltext 20 nm
Exchange constant A 1× 10−12 J/m
Homogeneous exchange constant Ah −200× 103 J/m3

Easy-axis anisotropy constant Keasy 20× 103 J/m3

Hard-axis anisotropy constant Khard −10× 103 J/m3

Saturation magnetization Ms 2.1× 103 A/m
Gilbert damping α 0.002 1
DMI coefficient (only IP) D 300× 10−6 J/m2

Applied field frequency ω 6.25× 1013 rad s−1

4.3 Domain wall movement

A crucial part of the neuron is the possibility to move the DW. As previously
mentioned, this is done with exciting magnons with a circularly polarized
external field. Fig. 4.5 shows the effect of applying one pulse of RH and
one pulse of LH circularly polarized field. Here, the qualitative distinction
between the OOP and IP neuron becomes evident. The magnons that are
excited at the end of the sample travel down the AFM and work with an
effective force on the DW. For the OOP neuron, the force is attractive, i.e.
that the DW starts to move towards the place where the magnons are excited.
In the case of the IP neuron, changing the handedness of the applied field
changes the direction of the DW movement. In other words the sign of its
velocity, vDW changes. This is not present in the OOP neuron. This is
summarized in table 4.2. Furthermore, the shift in DW position, ∆xDW,
is larger in the IP case, despite having a weaker field applied. Simulations
indicated that without the presence of DMI in the IP neuron, there was

41



4.3. Domain wall movement

only an attractive force on the DW. This complies with the results of [34],
where they found that DMI gave the possibility to have both attractive and
repulsive movement in a DW with IP magnetization on a one-dimensional
chain of spins.

Table 4.2: Whether or not changing handedness of excitatory field changes
direction of DW movement.

DMI No DMI
IP Yes No
OOP No No
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Figure 4.5: DW movement resulting from one right handed and one left
handed excitatory signal. The duration of each of spike is 8 ps. The left
y-axis refers to position along the x-axis of the AFM, while the right
indicates applied field strength and handedness. Note that the sign here
indicates whether the signal is LCP, |hOOP| > 0, or RCP ,|hOOP| < 0,
and not the sign of h itself.

The figure also indicates a DW velocities vIPDW ∼ 20 km s−1 and vOOP
DW ∼

10 km s−1. This concurs with known DW speeds for other AFMs [63]. It is
also possible to observe a delay from the applied signal, before the DW starts
to move. This is a consequence mainly due to the fact that the magnons have
to travel from the excitation area, which is between [x = 0nm, x = 20nm],
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to the DW which is situated at the equilibrium position x0 = 333 nm. This
gives a spin wave group velocity of roughly vSWg = 150 km s−1, around one
order of magnitude faster than vDW.

4.4 Spike readout

This section will provide and explain a method to determine if xDW passes
some threshold, and thus if the neuron should ”fire”. An explanation as to
why the detector is placed differently from the IP to the OOP case will also
be given. The focus lies on finding a significant qualitative measurement.
We will make the assumption that Re{G↑↓} ≫ Im{G↑↓} and that the output
signal to be measured is proportional to ξ, where ξ is as defined in Eq. 2.51.
There has been no attempt to estimate the parameters in Eqs. 2.47 and 2.50.

4.4.1 Spike readout in the OOP neuron
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Figure 4.6: Spin pumping effect in OOP neuron. A field with amplitude
H0 = 5 × 107Am−1 is applied from t = 0ps until xDW = xdetector at
t = 27ps, and is then turned off. The notation ⟨·⟩detector indicates that it
is a spatial average under the detector area. The left y-axis indicates the
normalized detected signal, while the right indicates the position along
the AFM.
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To know whether or not the neuron should spike, it is necessary to mea-
sure xDW. Here, it is proposed to detect by utilizing the effects of spin
pumping and the iSHE, mentioned in section 2.5. The detector consists of
a HM that is in direct contact with the AFM. Once the DW passes under
the HM, it will induce a large spin pumping effect. This will induce a spin
current in the HM, which in turn will create a measurable potential differ-
ence in the HM through the iSHE. The spin pumping effect for the OOP
neuron is shown in Fig. 4.6. More specifically it shows the spacial average
of ξ under the detector area. When the DW reaches the detector position
xdetector = 100 nm at t = 27ns, there is a large increase in the fluctuation
amplitude. Furthermore, the spin current into the HM, which will be in the
z-direction, will be polarized along lDW. In the OOP case, this is along the
x-direction. This will then create a potential difference in the HM across the
y-direction, which can be measured to determine that the DW has indeed
reached the detector due to the iSHE. A signal can then be sent to the post-
synaptic neurons, and the neuron itself can be put into refractory mode. The
smaller fluctuations at t < 27 ps is a consequence of the applied magnons. At
t > 27 ps the input signals are turned off, and magnons are no longer excited
in the system. The fluctuations quickly dissipate after the DW has moved
away from the detector.

4.4.2 Spike readout in the IP neuron

Spike readout in the IP neuron works generally the same way as in the OOP
case. However, the fact that lDW now lies in the z-direction, and not in the x-
direction has an impact on the readout, as the geometry of DW and detector
placement matters for the outgoing signal. Fig. 4.7 indicates all components
of ξ. In the OOP case, it is ξz that is measured, along the same direction as
n̂easy. In the IP case, this would be equivalent to measuring ξx. However, this
is geometrically unavailable, as the AFM lies in the x-direction. A detector
can only be placed on the AFM at xdetector = 100 nm in the y or z-direction.
Nevertheless, Fig. 4.7 indicates changes in both ξy and ξz as xDW < xdetector.
The most considerable changes happen in ξy and that is why the detector is
placed on the side of the AFM instead of on top as in the OOP case, as in
Fig. 4.1. In the IP neuron xDW overshoots xdetector, due to the inertia of the
AFM DW. At t = 19ns a new and weaker output signal can be seen in all
three components of ξ.
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Figure 4.7: Spin pumping effect in IP neuron. A field with amplitude H0 =
2× 107Am−1 is applied from t = 0ps until xDW = xdetector at t = 15ps,
and is then turned off. The left y-axis indicates the normalized detected
signal, while the right indicates the position along the AFM.

4.5 Energy consumption

As mentioned in chapter 1 one of the advantages of analog and neuromorphic
is the possibility of substantially more energy-efficient computing units than
what regular CMOS-technology can provide. Chapter 2 makes the case that
operating the neuron without electrical currents avoids the problem of Joule
heating. This section seeks to make a simple estimate of how much energy
it takes to excite a neuron from equilibrium to firing, i.e. how much energy
it takes to move xDW = x0 to xDW = xdetector. We introduce the total
free energy of the AFM as f(xDW) = fA + fB, see Eq. (2.16). Fig. 4.8
shows f(xDW) with no external excitations, h = 0. The function mirrors
the spatial dependence of Keasy(x), as seen in Fig. 4.3. Here we have only
considered the energy difference from having the DW at different positions
along the AFM. Moving the DW requires excitations of spin waves in the
material. Fig. 4.9 displays the change in f as the DW is excited from x0 to
xdetector. It becomes evident from the figure that exciting spin waves across
the whole lattice require more energy than it takes to move the DW. In
the first picoseconds, spin waves travel down the magnet from the antenna.
Referring to the spin wave velocity in section 4.3, it takes about 3− 4ps for
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Figure 4.8: The free energy density of the AFM neuron with no external
fields, as a function of DW position.

the spin waves to travel the full length of the AFM. This can be seen as the
initial rapid increase of ∆f(t) = f(t)− f(t = 0) in Fig. 4.9.
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Figure 4.9: Change in free energy density as a function of time, during the
excitation of xDW from x0 to xdetector.

As the free energy density in Figs. 4.8 and 4.9 are averages over the
whole sample volume, the integral in equation Eq. (2.7) becomes trivial, and
we get the simple expression for excitation energy ∆F

∆F = [f(xDW = xdetector)− f(xDW = x0)]LxLyLz. (4.3)

Using the equation for ∆F and the data displayed in Fig. 4.8 one can estimate
the excitation energy needed to simply move the DW from x0 to xDW. This
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will be denoted as ∆Fmin as it is the minimum energy required for putting
a neuron into fire mode. However, this would yield a too low estimate for
the energy needed to excite the DW, as one would have to excite spin waves
in the whole AFM to move the DW. The results in table 4.3 indicate that
much of the energy used to move the DW is used on exciting spin waves in
the AFM.

Table 4.3: Energy required for moving the DW from x0 to xdetector. ∆Fmin is
just the increase in energy from simply translating the DW, while ∆Fmax
is the energy required form exciting spin waves and moving the DW.

∆Fmin ∆Fmax

IP 3.9 zJ 38 aJ
OOP 4.3 zJ 246 aJ

These energy estimates do not consider the generation of h, the VCMA
or readout circuitry. That being said, energy consumption in the zJ4 range is
still substantially lower than what is reported in [62], where they proposed a
FM neuron where the DW is excited by an applied current, that operates at a
fJ scale. Furthermore, [64] reports a LIF neuron built with CMOS technology
that operates in the pJ range.

4.6 Temperature in the neuron

This section will focus on the effects of introducing a finite temperature to
the neuron. It will feature both the Néel temperature and the effect of tem-
perature on xDW.

4.6.1 Néel temperature

The Néel temperature of the AFM neuron is found by examining the com-
ponent the Néel vector which is in the ground state, ⟨lz⟩ for OOP and ⟨lx⟩
for IP. For these simulations, the parameter variation in Keasy and pinning
at the far right of the neuron is turned of. The system is initiated with a
uniform l along eeasy and then relaxed for t = 25ps without any applied

4z = zepto = 1×10−21. a = atto = 1×10−18. f = femto = 1×10−15. p = pico = 1×10−12.
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Figure 4.10: Néel temperature of IP and OOP neuron. Magnetic ordering
is lost as temperature increases. The graph is the average over 50 simu-
lations. Error bars indicate the standard deviation.

fields. The value of ⟨l⟩ · eeasy = ⟨leasy⟩ is then recorded. Here the average
is done over the whole volume of the AFM. This is done for temperatures
between T = 0K to T = 850K, and 50 simulation is done for each value of
T . The resulting graph is shown if Fig. 4.10. It indicates a Néel temperature
of about 450K for OOP and 350K for IP. We observe that ⟨lIPx ⟩ < ⟨lOOP

x ⟩
for all temperatures above the Néel temperatures. Even at T = 0K we have
that ⟨lIPx ⟩ < Ms. This is a consequence of the DMI that is only present in the
IP neuron. As mentioned in section 2.1, the DMI causes a tilting of spins,
and the ground state of the system is not the uniform l = ±Mseeasy, but
has some texture along the edges of the material. This can also be observed
in Fig. 4.1b, where there are some variations in lz, as opposed to the more
inform lx for OOP in Fig. 4.1a.

4.6.2 Temperature-induced Domain wall movement

The loss of magnetic order in the neuron is detrimental to any computing
application. However, we see that TN is above room temperature. This
however does not necessarily mean that the proposed neuron would work at
T = 300K. Having some magnetic ordering is not necessarily sufficient for
maintaining the desired capabilities. As temperature increases, the DW in
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the chip will start to fluctuate around its ground state. The quadratic form
of Keasy(x) is to ensure the DW does not move too far from x0. Despite
this, given a large enough temperature, the DW will be able to move so far
left that it can initiate a spike, and even move so far left or right that it
disappears out of the neuron. The increase in damping on the far right edge
helps in this regard but is not enough to ensure that the DW does not move
out of the system, resulting in a uniformly magnetized chip. The required
temperature to cause this is far less than the Néel temperature. Fig. 4.11
shows histograms over the now stochastic variable xDW for temperatures at
T = 10K and T = 40K. The fitted normal distributions indicate almost a
doubling of the standard deviation σ in both the IP and OOP neurons. The
slight shift in x0 towards the left can be understood as a consequence of the
increased damping at the right end of the AFM, which makes the system
unsymmetrical around x0. We also observe that the OOP neuron has smaller
temperature-induced fluctuations than the IP neuron.

Considering that the energy potential well keeping the DW in place is
∼ zJ it is remarkable that the DW does not fluctuate more as a consequence
of temperature. Furthermore, as noisy the movement of the magnetization
is induced by temperature, the spin wave signal traveling down the chip
gets weaker and distorted. In [65] they model a noisy neuron by adding
a Wiener process [66] to a noiseless neuron. This is quite similar to the
temperature-induced DW motion. In [67] they argue that stochastic neurons
can be important for probabilistic calculations in the brain.
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Figure 4.11: Temperature induced DW movement for (a) IP neuron and
(b) OOP neuron. The introduction of finite temperature turns DW
position into a stochastic variable. xDW was observed for t = 5ns.
HistTdata(xDW = x) are normalized histograms over the recorded xDW
over the observation time, and indicates draws from the data generat-
ing probability distribution. Normal distributions N (µ, σ) are fitted for
both Hist10Kdata(xDW = x) and Hist40Kdata(xDW = x).
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4.7 Summary - Neuron implementation

This chapter has explained the idea and setup for the proposed AFM neu-
rons. The position of the DW encodes the state of the neuron, which exhibits
leaky integrate-and-fire behavior. Methods to move the DW and read out the
position of the DW have been included. The OOP and IP neurons are quite
similar, although they differ slightly in geometrical setup. The biggest dif-
ference is that the IP neuron with DMI interaction exhibits both attractive
and repulsive movement of xDW under the change of handedness of the ap-
plied field h. Furthermore, the IP neuron can operate at lower applied field
amplitudes than the OOP neuron. However, the OOP neuron is slightly
more robust against temperature fluctuations than the IP neuron. Since the
IP neuron is more sensitive to lower amplitudes of h one could increase the
value of Keasy to obtain a more stable neuron in regards to temperature-
induced DW fluctuations, and still operate at similar field amplitude values
as the OOP neuron. Upon comparison with the ferromagnetic and metallic
spiking neuron proposed in [62] our neuron indicates quicker dynamics and
better energy efficiency.
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5 Neuromorphic computing
application

This chapter will focus on finding a surrogate model that describes the dy-
namics of the spiking neuron, and discuss a potential neural network applica-
tion. This chapter will only focus on the IP neuron and exclude temperature.

5.1 Surrogate model for the AFM spiking neuron

The full-scale simulations of the spiking neuron are quite computationally
expensive. To investigate neural networks consisting of this type of neuron
would require simulating a large quantity at once, and is not pragmatic.
Therefore it is desirable to find a surrogate model for the spiking neuron.
Furthermore, such a model could yield additional insight into the system.
The spiking neuron is so complex and non-linear, that a LIF neuron model
as previously mentioned in section 3.3.2 will not be sufficient to describe the
behavior. To see this, consider that the DW has a tendency to overshoot
when relaxing towards x0, as in Fig. 4.6. Considering a LIF neuron without
external stimuli, the state of the system is completely described by the voltage
u. In the AFM spiking neuron, we substitute u → xDW. However, if the
system is completely described by xDW alone, then overshooting x0 should
not be possible at the same time as just staying still at x0, which of course
must be possible. This section will consider finding a neuron model that is
computationally less expensive than the micro-magnetic simulations in Boris,
yet captures the complex behavior of the neuron. The starting approximation
is to describe the system by two variables, the domain wall position and
velocity along the x-axis. The state vector of the system X is then

X =
[
xDW
vDW

]
. (5.1)
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5.1. Surrogate model for the AFM spiking neuron

xDW is obviously essential for any surrogate model, as it is this variable that
record the integration of the inputs, and determines when the spiking event
occurs. vDW is perhaps a more subtle inclusion, however it is important to
include this as AFMs displays some damping behavior in the neuron dynam-
ics.

The ansatz for the time evolution of X is on the following form

dX

dt
=
[

vDW
w(h) · I(t− tdelay(xDW)) · f(xDW) + g(xDW) + d(vDW)

]
, (5.2)

where w(h)I(t− tdelay) is the incoming presynaptic spikes weighted by w(h)
which is a function of the applied field strength. f(xDW) is a function that
determines the strength of the spiking signal at the DW position, g(xDW)
is the function that describes the relaxation force caused by the VCMA,
and d(xDW) encodes the damping effect of the DW. In other words, I(t −
tdelay(xDW))·f(xDW) ensures integration of the input into the system, g(xDW)
is the leaky factor, and d(vDW) is a consequence of the characteristic physics
of the AFM neuron. The term ”force” is applied loosely here, as it perhaps
is more correct to talk about DW acceleration. Here we will only focus on
one specific applied field strength, and set this value of w(h) = 1.

The time t is the time of the input signal being applied. The delay time
in tdelay(xDW) is a consequence of the time it takes for the spin waves to
travel from xdetector to xDW. Although the spin waves move fast, modelling
without considering the time delay deemed unfeasible. Using the estimate for
spin wave velocity vSWg in section 4.3 and furthermore assuming a constant
velocity we get

tdelay(xDW) = xDW
vSWg

∼ xDW
Lx

3.33 ps. (5.3)

Some simple and general observations could be made about the function
g(xDW), that will aid in making a reasonable ansatz. Firstly, it has to be a
odd function around the equilibrium position x0, to ensure that it constitutes
a force that always points towards x0. This is a consequence of the symmetric
design of the VCMA around x0, see Fig 4.3. Secondly, we have to require
that g(xDW = x0) = 0 as any movement due to VCMA at x0 is contradictory
to the fact that it is a steady state position of xDW. An simple ansatz for
g(xDW) that meet this requirements is

g(xDW) = b1(xDW − x0), (5.4)
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Figure 5.1: Spike force and relax force in the neuron.

where b2 and b1 are some coefficients to be determined.

The damping function d(vDW) as to act in opposite direction of vDW as
the opposite would be unphysical. The equation sign(d(vDW)) = −sign(vDW)
is satisfied by the simple

d(vDW) = −c1 · vDW. (5.5)

Furthermore, we take f(xDW) has to be directed towards xdetector for
and towards Lx for . Here we only consider, and take f(xDW) to be

f(xDW) = −a1(xDW − x0) + a0. (5.6)

The coefficients in Eqs. (5.4), (5.5) and (5.6) is given in table 5.1.

Table 5.1: Coefficients used in neuron surrogate model.
Constant Value Unit

a0 38 nm/(ps)2
a1 0.069 1/(ps)2
b1 0.0504 nm/(ps)2
c1 0.275 1/ps

Even though this is a simplification of a rather complex system, the
model displays correspondence with the micro-magnetic simulation, as shown
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5.1. Surrogate model for the AFM spiking neuron

in Fig 5.2. The surrogate model indicates that it is possible to reduce the
AFM spiking neuron down to two coupled differential equations of two vari-
ables, xDW and vDW. The surrogate model is comparable to the differential
equations describing a harmonic oscillator which is perturbed by some force
[31]. Furthermore, we observe that the quadratic function Keasy results in a
linear relaxation force in Eq. 5.4. The spike force is also a linear function of
xDW. It indicates that the perturbing effect of exciting spin waves on the DW
gets weaker the further the DW is from the injector. This can probably be
understood as a consequence of spin waves being damped as they propagate
through the material, even though our damping coefficient is rather small,
α = 0.002. Observing Fig. 5.2 we see that the domain wall moves a relatively
large distance on the first two spikes. This is despite the fact of a weaker
spike force f(xDW). It appears the weaker relaxation force gDW allows for a
large excitation of the DW position.
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Figure 5.2: Micromagnetic simulation and surrogate model. Both mod-
els are subjected to the same input I(t) where all spikes have the same
amplitude. Note that the presynaptic spikes are given as I(t) and not
I(t− tdelay), i.e. the spikes plotted at the time they were applied, and not
when they acted on the DW. The left y-axis indicates DW position and
the right axis indicates the amplitudes of spikes.
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5.2 Neural networks

Up until now, we have only considered a single neuron. To be able to learn
complicated functions, it is necessary with an ensemble of interconnected
neurons, as described in section 3.2. A crossbar synapse as in [62] could be
employed to connect neurons together. Simulations indicate that how strong
DW movement is dependent on the applied field strength, as in Eq. 5.2.
Tweaking parameters two learn a function could be achieved by somehow
adjusting the w(h) function. This is however outside the scope of this thesis.

Once the simpler equation of the surrogate model is obtained, it becomes
straightforward to model neural networks. There exists software for simulat-
ing spiking neural networks on conventional computers [68]. The surrogate
model could easily be integrated into such a system to yield information about
how and if the neuron could be capable of actual machine learning.
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6 Further work and
conclusion

This chapter will serve as an epitome for the thesis in general. Suggested
further work will feature before a final conclusion is given.

6.1 Further work

Experiments will have to be conducted on the effects of voltage-controlled
anisotropy on antiferromagnets. It is necessary to investigate whether it is
possible to achieve a 40% difference in anisotropy coefficients in antiferromag-
nets as we have assumed in this thesis. Exploration of materials that inhibits
the imperative characteristics for building a spiking neuron will be of impor-
tance in the future. This thesis has not dealt with how to efficiently convert
the electrical signal measured at the detector into coherent spin waves again,
which will be crucial for building a hardware network of these computing
units. The idea of a system that could utilize spintronic technologies for all
aspects such as excitation, signal detection, and perhaps most importantly
signal transfer and fan-out is compelling. As energy efficiency is an impor-
tant concept of both analog and neuromorphic computing, it is important
to seek a setup that can function in room temperature conditions. This is
to avoid spending energy on cooling the system. Additionally, it could be of
interest to investigate if temperature-induced domain wall fluctuations could
provide an efficient gateway for stochastic spiking neural networks. We have
seen that energy is lost as spin waves are damped when propagating through
the material. It would be interesting to investigate excitations that are local
to the domain wall, such that the spin waves are not dependent on moving
significant distances before reaching their desired destination.
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6.2 Conclusion

Numerical simulations of an antiferromagnetic and insulating spiking neuron
have demonstrated a successful proof-of-concept. The state of the neuron is
described by the position of a domain wall, which is modulated by voltage-
controlled anisotropy and coherent spin wave excitation. This is not depen-
dent on the application of electrical currents, mitigating the issue of Joule
heating. The neuron displays leaky integrate-and-fire properties, similar to a
biological neuron and the models used for simulating spiking neural networks.
Compared to other hardware neuron proposals, it indicates the possibility of
a significantly improved power efficiency. Furthermore, it can operate at pico
second timescales. We have also seen that it is possible to create a surro-
gate model that simplifies simulations yet still captures the dynamics of the
neuron. The simulations show promising results for energy-efficient and fast
computing, inspiring further work in neuromorphic computing based on spin-
tronics. The work in this thesis will be the foundation for a paper that will
be submitted to the journal Neuromorphic Computing and Engineering for
their special edition on Topological Solitons for Neuromorphic Systems [69].
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Appendix - Specialization
project

For completeness, the specialization project from the fall semester 2021 is at-
tached to this master’s thesis. It should be viewed as a completely independent
text from the master’s thesis. It provides insight into another neuromorphic
application based on spintronics.
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Abstract

The plasticity and non-linearity of the stripe skyrmions that arise in mag-
netic thin films with a large Dzyaloshinskii-Moriya interaction is utilized for
simulating a hardware based artificial neural network. By applying voltages
to the thin films one is able to both compute and store the weights of the
network within the films. The computational architecture in the magnetic
films are fundamentally different then that of conventional computers, and is
not limited by the Von Neumann bottleneck. The idea is conceptualized by
numerical simulations of a 4 node Hopfield neural network able of practicing
associative memory. A theoretical framework for both spintronics and neural
networks is provided. The results try to emulate the results in the paper
Hopfield neural network in magnetic textures with intrinsic Hebbian learning
by Yu et al. [1]. This paper will use the software Boris Computational Spin-
tronics [2], as opposed to Yu et al. who ran their simulations on COMSOL
Multiphysics ® [3] with a costumed built module for micromagnetics [4]. The
ramification of the proceedings is a proof-of-concept for the realization of a
physical Hopfield neural network.
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Introduction

The famous Moore’s law states that the number of transistors one can fit on a
chip will grow exponentially [5]. This have been the case for several decades,
but is predicted to come to a halt as transistors start to reach the size of a
couple of atoms. This has sparked an interest in finding new ways of building
logic units capable of arithmetic, integrating different types of computing
hardware that each has its own specialization in a single computer [6].

It is difficult to relate the computational power of the brain to a com-
puter. However, when making a human compete against a computer at a
given task, one can get some insight by comparing results and performance.
In 2016, AlphaGo, a computer program by Google Deepmind played 18 times
world champion Lee Sedol in a 5-game match in the board game Go [7]. The
program calculated the next move by a search tree method combined with
a deep neural network. It is speculated that the power consumption of the
AlphaGo program during this match was ∼ 1.2MW [8]. On the other side,
the power consumption of a human brain is about 20W . Although AlphaGo
won 4− 1, one can assume that the players were somewhat evenly matched.
The fact that the human was able to compete with the machine with a 60000
times smaller power consumption is quite remarkable.

Neuromorphic computing is the concept of engineering either software
or hardware with brain like features. The goal is to identify how the brain
works, and then implement systems that mimic some functionality of the
brain. A famous example of this is artificial neural networks. In recent years
there have been development in using spintronic components to realize such
systems [9] and the combination of neuromorphic computing and spintronics
in neuropmorphic spintronics has gained a lot of interest. Spintronics is a
field of condensed matter physics that concerns itself with understanding the
properties of the intrinsic spin of the electrons, and how it can be used to cre-
ate new electrical components. Spintronic devices share some characteristics
of the brain, such as non-linearity and plasticity [1]. In 2017, Prychynenko
et al. suggested using magnetic skyrmions in magnetic films for reservoir
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computing [10] and in 2021 Yu et al. simulated a physical Hopfield neural
network capable of associative memory [1]. This project report will seek to
give a theoretical framework for how a Hopfield neural network could be re-
alized in magnetic thin films with a maze structure, and emulate and explain
the results of Yu et al.
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Symbols and conventions

This paper includes ideas and concepts from a wide range of scientific fields.
Most prominent is probability and information theory, machine learning, neu-
roscience and spintronics. An effort has been made to keep to standard nota-
tion, but in some cases this has been impossible. The two symbols S (entropy,
spin) andH (Hamiltonian, fields, entropy) is perhaps particularly overloaded.
The following list indicates where notation may differ from what is the stan-
dard practice in some fields, and hopefully removes confusion where similar
symbols are used for quite different quantities. All variables are defined as
they are introduced in the text.

• H is the Hamiltonian

• H is effective fields

• h is applied external magnetic field

• S is electron spin

• S is entropy

• V is the state of a system in a fully connected neural network, or set
of voltages, which in this text is considered to be the same thing

• σ is used as the Pauli spin vector in calculating spin transfer torques,
and in the rest of the paper it is conductivity

Furthermore the following notation is used

a Scalar
a Vector
A Matrix
↔
a Tensor
a Random variable
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1 Introduction to
ferromagnetic spintronics

This chapter establishes the basics of ferromagnetic spintronics. It gives an
introduction to magnetism and spin dynamics. Then the electrical transport
theory of magnetic films is discussed with a special focus on magnetoresis-
tance. Finally, a special phenomenon called stripe skyrmions is introduced.

1.1 Magnetism

This section explores the concept of magnetism in terms of electron spin and
the free energy of magnetic materials.

1.1.1 Electron spin and magnetization

Electrons has angular momentum that comes about in two forms, orbital and
intrinsic. In quantum mechanics these quantities are described as operators,
rather than vectors. The total angular momentum operator J̃ is the sum of
the two contributions

J̃ = L̃+ S̃ (1.1)

where L̃ and S̃ is the orbital and intrinsic angular momentum operators [11].
One refers to S̃ as simply the spin of the electron. As the electron is charged,
one can associate a magnetic moment, M̃, with the angular momentum

M̃ = γLL̃+ γSS̃. (1.2)

The terms γL and γS is the respective gyromagnetic ratios. In general the
gyromagnetic ratio of a particle is given as γ ≡ gq/2m where g is called the
g-factor. q and m is the charge and the mass of the particle. For many
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1.1. Magnetism

magnetic materials the contribution from L̃ is quenched [12], and for the
electron one can approximate

M̃ ≈ γeffS̃ = geff
e

2me
S̃ (1.3)

where geff ≈ −2 [13]. The magnetic moment operator is in other words
dependent of the spin of the electron. To connect the classical field theory
to the quantum theory of spins, one can write the continuous magnetization
vector M(r) as

M(r) =
⟨∑i∈Vav

M̃i⟩
Vav(r)

(1.4)

where Vav is an small averaging volume around the position r and S̃i denotes
the quantum spin operator. M(r) describes the magnetic moment per unit
volume at r. By dividing with the saturation magnetization, Ms, one obtains
the dimensionless vector m(r) = M(r)/Ms. This is going to be used as the
order parameter to describe the physics of the magnets.

1.1.2 Free energy of magnetic materials

The free energy of the system is a functional of the magnetization F =
F [m(r)], and it is important for the dynamics of m. A discrete model of a
many spin system has free energy [14]

F = −
∑

⟨ij⟩
Jijmi ·mj−

∑

i

Kn(mi ·n̂)2−
∑

⟨ij⟩
Dij ·(mi×mj)−Msµ

∑

i

mi ·hext
i

(1.5)
The first terms is called the direct exchange interaction and is a consequence
of electric interaction and the Pauli exclusion principle. The term Jij param-
eterize this interaction. If Jij > 0 then this term will strive to align spins
i and j. This is the trademark of a ferromagnetic structure. Note that the
summing index ⟨ij⟩ indicates that the sum is over nearest neighboring spins.
The second term is called magnetic anisotropy. This determines an axis n̂
which may be favorable or unfavorable direction for mi to point, depending
on the sign of Kn. If Kn > 0 then mi will seek to align with n̂. n̂ is then
called an ”easy axis”. However, if Kn < 0, mi will rotate away from n̂ trying
to minimize its free energy by being normal to n̂ making it a ”hard axis”.
This effect can be the result of a wide range of causes, among others struc-
tural differences, or tension, in the material. The term ∑

⟨ij⟩Dij · (mi×mj)
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1.2. Spin dynamics

is called the Dzyaloshinskii-Moriya interaction (DMI) or antisymmetric ex-
change. The DMI will try to tilt neighboring spins along the vector Dij .
This is in competition with the exchange interaction mentioned previously.
The forth and final term is called the Zeeman interaction. This is a result
of the spin coupling to an external magnetic field hext

i . µ is the magnetic
susceptibility of the material. It can also be written µ = µ0µr, where µ0 is
the magnetic permeability of vacuum, and µr is the relative permeability of
the material. The consequence of an external magnetic field is that the spins
will tend to align along it.

The same Eq. (1.5) can also be written on a continuous form. The free
energy is now expressed as an integral of the free energy density, f , over the
sample volume

F [m(r)] =
∫

V
f(m,∇m, r)d3r. (1.6)

The free energy density can be written similarly as

f = A(∇m)2 −Kn(m · n̂)2 −Dm · (∇×m)−Msµm · hext (1.7)

where A is a new material constant proportional to J in Eq. (1.5) [2, 13, 15].

1.2 Spin dynamics

This section will consider how localized spins behave as a function of time,
based on interaction with other localized spin, external fields, and applied
currents.

1.2.1 The Landau-Lifshitz-Gilbert equation

As previously stated, magnetic materials is described by their magnetization
m. The magnetization will evolve over time and the Landau-Lifshitz-Gilbert
equation (LLG) determines the dynamics of m [1]

∂m

∂t
= −γem× µ0Heff + αm× ∂m

∂t
+ τ . (1.8)

Here γe is the electron gyromagnetic ratio and Heff is an effective magnetic
field, given by the functional derivative of the free energy [2]

Heff = − 1
µ0Ms

δF [m(r, t)]
δm

. (1.9)
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1.2. Spin dynamics

The first term −γem × µ0Heff will cause m to precess around Heff . The
second term in the LLG Eq. (1.8) is called the Gilbert damping and is param-
eterized by the Gilbert damping constant α. This term will seek to minimize
the free energy of the system given in Eq. (1.7) by relaxing m towards
Heff . More generally one can state about the first two terms of Eq. (1.8)
that −γem×µ0Heff determines the eigenmode frequency, while the Gilbert
damping term determines the eigenmode lifetime [13].

The last term τ is a spin-transfer torque. The electrons in the current
have spins themselves and will interact with the localized electron spins,
causing change in m. Figure 1.1 illustrates this interaction. There are several
different ways a current can interact with the m. This paper will focus on
the s-d interaction and spin-orbit interaction, and will be discussed in the
following section.

Figure 1.1: An incident free electron from a current has spin not aligned with
the spin of the localized electron in the material, illustrated by the blue
arrow. As electrons pass by the local m field, the free electrons spin aligns
with m. By conservation of angular momentum, the torque required to
turn the electron spin must be equal and opposite to the torque on the
localized electron. This is called the spin-transfer torque. Figure courtesy
of [16].

Throughout this paper one assumes that the amplitude of the magnetic
moment is constant and finite, i.e. |m(r, t)| = 1. The variation in m is solely
in the direction of the vector. Taking the time derivative on both sides of
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1.2. Spin dynamics

m ·m = 1 one deduces the following important relation

m · ∂m
∂t

= 0. (1.10)

For computational reasons it may be preferable to rewrite the LLG Eq. (1.8)
so that the derivative is isolated on one side of the equation. By inserting the
expression for ∂m

∂t from Eq. (1.8) back into the derivative on the right hand
side, and applying the condition in Eq. (1.10) one can write the transformed
LLG equation

∂m

∂t
= −γe
1 + α2 [m×Heff + αm×m×Heff + α̃τ ×m] + τ (1.11)

where α̃ = α/γe.

1.2.2 s-d and spin orbit interaction and the resulting spin
transfer torques

s-d interaction

The s-d interaction gets its name from the interaction between local electrons
that constitute the m field, usually in the d-orbital, and incoming free elec-
trons from a current, usually in an s-orbital. The Hamiltonian can be written
as [13]

Hsd = Jsdσ ·m (1.12)

where σ is the Pauli vector describing the incoming current, and Jsd is a
constant that parametrize this interaction. Consider first an incident current
toward a two domain system. A domain is an area in the material where
all m point in the same direction. As the current has traversed the first
domain, all electrons will have spins aligned with the first domain. As the
electrons enters the next domain, the spins will start to turn and align with
the new magnetization direction. The change in spin of the current electrons
is opposite of the change in the local electrons. This torque is called the
Slonczewski torque [16]

τ s = − γℏ
2eMsV

m× (m× Is). (1.13)
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1.2. Spin dynamics

where Is is the spin current. A symmetry argument lead to the possibility
of another torque

τ sβ = − γℏ
2eMsV

βsm× Is. (1.14)

The coefficient βs is a material dependent parameter and determines the
strength of τ sβ relative to τ .

If the magnetization is more continuously varying we say that the struc-
ture has a magnetic texture. Figure 1.2 illustrates this. In this setup, which
can be considered the continuous limit of the two domain system, the spin-
transfer torque takes another form, and is called the Berger spin-transfer
torque

τB = γℏ
2eMs

P (j · ∇)m. (1.15)

Here P is the spin polarization and j is the current density [16].

Figure 1.2: Current incident on a ferromagnet with texture indicated by
purple arrows. Blue arrows show the spin of the incident electrons that
change as they move through the material. Red arrows illustrate the
spin-transfer torque. Figure courtesy of [16].

Similarly to τ sβ there can exist a torque perpendicular to τB which takes
the form

τBβ = γℏ
2eMs

βBPm× (j · ∇)m. (1.16)

Spin orbit coupling

The next interaction between a current and a ferromagnetic system to be dis-
cussed is the spin-orbit interaction. For the hydrogen atom the Hamiltonian
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1.2. Spin dynamics

for this interaction can in general be written [14]

Hso = −ℏσ · p×∇V

4m2
ec

2 . (1.17)

Here p and me is the momentum operator and mass of the electron, c is
speed of light. V is the Coulomb potential from the interaction between
electron and proton. For a bulk material the Hamiltonian becomes more
complicated as V should contain all electric potentials. It is possible to split
the Hamiltonian in two parts, intrinsic and extrinsic, depending on the origin
of the potential. Potentials stemming from the electronic band structure of
the material will be intrinsic, while potentials due to impurities, boundaries
and external field will be extrinsic. The two Hamiltonians Hint and Hext can
be written as

Hint = −1
2σ · b(k) (1.18)

Hext = −λσ · k ×∇Vext (1.19)
where b(k) is a spin-orbit field due to the band structure as a function of
the wave vector k. λ is constant that is proportional to the atomic number
Z. A symmetry argument leads to the conclusion that b(k) must vanish if
there is spacial inversion and time reversal symmetry in the system. The two
symmetries can be denoted by operators Î for spacial inversion, and T̂ for
time reversal

Î =





k → −k

r → −r

σ → σ

T̂ =





k → −k

r → r

σ → −σ

(1.20)

The argument goes as follows: if spacial inversion symmetry is present, then
Hint = Î(Hint) and similarly for time reversal Hint = T̂ (Hint). However, if
one considers the right hand side of Eq. (1.18) then Î(σ · b(k)) = σ · b(k)
only if b(k) is a even function of k. Furthermore, T̂ (σ · b(k)) = σ · b(k) only
if b(k) is an odd function of k. This contradiction leads to the conclusion
that b(k) = 0 unless at least one of the two symmetries is broken.

To illustrate how the spin orbit coupling leads to a torque, we shall con-
sider a two-dimensional system where spacial inversion symmetry is broken
along the z-axis. This can for instance be achieved by applying an exter-
nal field along ẑ-direction. The resulting Hamiltonian is called the Rashba
Hamiltonian can be written

HRashba = −αRσ · (p× ẑ) (1.21)

82



1.2. Spin dynamics

where αR parameterize this effect [17]. Upon comparison with the qunatum
mechanical Hamiltonian for the Zeeman effect, HZ ∝ σ ·B, we see that the
terms (p × ∇V ) and p × ẑ in Eqs. (1.17) and (1.21) can be though of as
effective momentum dependent fields.

The Rashba Hamiltonian will result in a torque

τ so = m×HRashba (1.22)

where
Hso = −δHso

δσ
= αR(p× ẑ) (1.23)

By the same symmetry reasons as before there can also exist a torque

τ soβ = m× τ so. (1.24)

1.2.3 Calculation of the effective field, Heff

The effective field Heff remains to be calculated in Eq. (1.9). The functional
derivative of the right hand side can be written

δF [m(r, t)]
δm

= ∂f(m,∇m, r, t)
∂m

−∇ · ∂f(m,∇m, r, t)
∂(∇m) (1.25)

By substituting the expression for f in Eq. (1.7) and doing the deriva-
tives one obtains

Heff = 1
µ0Ms

[
2A∇2m− 2Kn(m · n̂)− 2D∇×m

]
− µhext. (1.26)

Together with the LLG Eq. (1.8) one can now solve the motion of m.

1.2.4 Temperature in the LLG equation

The LLG Eq. (1.8) can be expanded to include the effect of temperature
in the magnetic system. This is achieved by adding a new field, Hth to the
already existing field Heff . The thermal field is not an physical magnetic
field, but it encodes the fluctuations that would appear if the temperature is
above zero. Due to the stochastic fluctuations of Heff the new and updated
equation is called stochastic-Landau-Lifshitz-Gilbert (sLLG) and reads
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∂m

∂t
= −γm× (Heff +Hth) + αm× ∂m

∂t
+ τ . (1.27)

The first term describes the interaction with an effective magnetic field and
a thermal field Hth [18, 19]. The thermal field must meet the following
restrictions [20]

⟨Hth(r, t)Hth(r, t′)⟩ = 2ξHδ(r − r′)δ(t− t′) (1.28)

and
⟨Hth(r, t)⟩ = 0 (1.29)

where ξH = αkBT/(γµs).

1.3 Electrical currents in magnetic materials and
anisotropic magnetoresistance

When an electrical current is applied to a ferromagnetic material, it can
exhibit a physical phenomenon called magnetoresistance. Magnetoresistance
occurs when the electrical resistivity of a material ρ is dependent on the
magnetization m of the material. The charge current density j as a function
of the electrical field E is then given by

j(r) = ↔
σ[m]E(r). (1.30)

Here ↔
σ[m] is the conductivity tensor, dependent on m [10]. In essence this

equation is a generalization of Ohm’s law. Under the assumption that the
relaxation of the current happens much faster than the magnetization, the
electrical field is given by E = ∇Φ, where Φ is the electric potential. An
equation for Φ can be found by taking the divergence of Eq. (1.30)

∇ · j = ∇ · (↔σE). (1.31)

Conservation of charge gives ∇·j = 0, and using the notation ∂x = ∂/∂x the
right hand side can be written
∑

i

∂i
∑

j

σijEj =
∑

i

∑

j

(Ej∂iσij + σij∂iEj) = (∇ · ↔
σ) ·E + ↔

σ : ∇E (1.32)

where the notation A : B ≡ Tr(AB†) and is also known as the Frobenius
inner product [21]. Substituting E = ∇Φ we get the equation for the electric
potential

(∇ · ↔
σ) · ∇Φ+ ↔

σ : ∇(∇Φ) = 0, Φi
electrode = Vi. (1.33)
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The boundary conditions state that the potential Φi
electrode at electrode imust

be equal to the applied voltage Vi for that electrode.
↔
σ[m] can be found by inverting the resistivity tensor ↔

ρ[m]. We are
going to assume that the local resistivity at a given point can be split into
two parts, one isotropic part that is constant throughout the material, and
one part caused by magnetoresistance. This allows us to write the total local
resistivity as [10]

ρtot = ρ⊥ + (ρ∥ − ρ⊥) cos2 θ, θ = m · ĵ. (1.34)

Here, ρ⊥ and ρ∥ is the resistivity of current flowing perpendicular (θ = 90◦)
and parallel (θ = 0◦) to m respectively. The resistivity tensor can then be
written ↔

ρ[m] = ρ⊥I+(ρ∥−ρ⊥)P̃ [m], where P̃ [m] = m⊗m is the projection
operator. Making use of the relation ↔

σ = (↔ρ)−1 gives

↔
σ[m] = σ0I− σ0

a

1 + a




m2
x mxmy mxmz

mymx m2
y mymz

mzmx mzmy m2
z


 (1.35)

where σ0 = 1/ρ∥ and a = (ρ∥ − ρ⊥)/ρ⊥1. The first term is the isotropic
conductivity, while the second term is due to magnetoresistance. The matrix
terms can be split up into two separate effects called anisotropic magnetoresistance
(AMR) and planar Hall effect (PHE). The AMR is encoded in the diagonal
terms, while the off diagonal constitute the PHE. The PHE will cause a cur-
rent density jPHE ∼ m(m ·E) [23]. However, it is an other effect called the
anomalous Hall effect (AHE) that is not included in Eq. (1.35). The AHE
will cause a current jAHE ∼ m × E. To include this, a conductivity tensor
↔
σAHE on the following form should be added to Eq. (1.35)

−σAHE




0 mz −my

−mz 0 mx

my −mx 0


 (1.36)

where σAHE parameterize the AHE.

In the presence of electrical currents, the LLG Eq. (1.11) needs to be
solved self consistently with Eq. (1.30), Eq. (1.33) and Eq. (1.35). This is
because τ in the LLG Eq. will rotatem and thus change ↔

σ[m]. Subsequently
1Other definitions σ0 and a is also used. One convention uses σ0 = (1/ρ∥ + 2/ρ⊥)/3 and
a = 2(ρ∥ − ρ⊥)/(ρ∥ + ρ⊥) [1, 22].
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this changes j and Φ.

The software Boris Computational Spintronics is applied for the simula-
tions [2], a slightly different convention is used. The conductivity is defined
as

σ = σ0
1 + a cos2(θ) , θ = m · ĵ. (1.37)

This is just then the inverse of Eq. (1.34). With this simplification j will
always be parallel with E. This preserves the effect of anisotropic magne-
toresistance. However, it neglects the Hall effect. This may have an impact
on results, but it is argued that the PHE and AHE in maze structures is
small [22]. Furthermore, it expedites the solving of Eqs. (1.30) and (1.33) as
σ now is a scalar, as opposed to a tensor.

1.4 Stripe skyrmions

The ground state of a magnetic system is decided by the minimum of the free
energy. The relative strengths of the different interaction terms determines
what configurations that are stable. As previously mentioned, the DMI favors
a tilting of the spins. This interaction can stabilize magnetic quasiparticles
called skyrmions [24] in the ground state of a system. The skyrmions in are
topological stable particles characterized by a continuously changing magne-
tization. The magnetization in the center of the skyrmion and at the rim
points in opposite directions. There are a lot of different types of skyrmions
[24]. One type is stripe skyrmions. Stripe skyrmions are characterized by a
maze like magnetization profile, as depicted in figures 1.3 and 1.4. The qual-
itative connection between the DMI strength D and the width of the stripes
is that the larger D becomes, the thinner the stripes get [25]. Consequently
this leads to denser packed stripes in a given area. Figure 1.3 shows an image
of Fe3Sn2, a material with a large DMI coefficient, where stripe skyrmions
appear. Considering figure 1.4 it is interesting to see that the in-plane mag-
netization, indicated by the colors, on the sides of a domain pointing in the
ẑ direction, indicated in black and white, always point in the opposite direc-
tions. This is a reflection of the continuously changing magnetization that
characterizes skyrmions.
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1.4. Stripe skyrmions

Figure 1.3: Magnetic maze textures of Fe3Sn2 captured by magnetic force
microscopy. Credit to: Erik Roede & Dennis Meier.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 1.4: Magnetic maze structure or stripe skyrmions. The colors indi-
cate the angle of the magnetization vector m in the xy-plane, together
with the z-component of m in gray tones. ẑ-direction is out of plane. The
result is obtained using Boris Computational Spintronics [2].
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2 Introduction to neural
networks

This section will explore the how the human brain processes information, es-
pecially how it can associate an input to a stored memory. Furthermore, the
brain and a conventional computer will be compared. The three disciplines
artificial neural networks, statistical physics and neuroscience will be intro-
duced and connected together through the Hopfield neural network model.
The Hopfield model will be investigated in detail, before presenting some
simple examples where associative memory problems have been solved, using
the prementioned model.

2.1 The neuron model

This section will explore the neuron, and give a simple mathematical descrip-
tion of it. A distinction between how the brain and a computer operates is
highlighted.

2.1.1 The neuron anatomy and biological functionality

The neuron is an electrically excitable cell type, and essential to the nervous
tissue of almost all animals [26]. It is a fundamental processor of information,
and interconnects with other neurons to create vast networks. In the human
brain there are several billion neurons [27]. The neuron consist of four main
parts: the soma, dendrites, the axon and the synapse. Figure 2.1 shows a
schematic picture of the components. The soma, or cell body, and takes care
of the main biological tasks necessary for a cell to live. The axon carries the
electrical signal, and splits into several branches. The dendrites connects to
the axons, collecting the signals. In the interconnection between dendrite and
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2.1. The neuron model

axon lies the synapse. The synapse interprets the input from the axon, and
sends a output to the dendrites depending on some function that is adaptable
for each synapse. A simple model will be discussed in the following to see
how this functions.

Figure 2.1: Schematic of a single neuron. Figure from [28], adapted to add
labels.

2.1.2 Mathematical description of the neurons

The following is based on the works of Geszti in Physical Models of Neural
Networks [26]. Information that travels through the neurons is primarily
coded in the firing frequency of the neuron. The mathematical model to be
introduced assumes that information is solely encoded as frequency.

The frequency code requires that the neurons have a interval where they
fire evenly. This comes at the cost of processing speed, but makes the archi-
tecture more resilient to noise-errors than if information was coded binary
in individual pulses. A neuron gets stimulated by other neurons though the
dendrites, and is the sum of excitatory and inhibitory signals that decides
the output frequency of a neuron.

The time-averaged potential in a neuron zi is dependent on the input
frequencies xj from all the j-neurons connected to the i-th neuron

zi = z0 +
∑

j

Jijxj (2.1)

where Jij is the synaptic weights that make up the teachable parameters
crucial for any neural network. If Jij < 0 then the synapse is inhibitory, and
if Jij > 0 then the synapse is excitatory. z0 is the average potential in the
neuron when no stimulus is present. The potential level zi is compared to a
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threshold level Ũi, and filtered before it decides the output firing frequency
yi

yi = f(zi − Ũi) = f(
∑

j

Jijxj − Ui) (2.2)

where f(z) is a non-linear function, that maps its input to a limited interval.
This equation models how neurons connect to each other in a simple way.
However, it is hard to envision how it could model thought processes where
time plays a significant role as there is no time dependence in the equation.
Furthermore, it does not account for the event of the output yi connecting
back into xj and it induce the need for specific output neurons. By letting
neuron yi send information back into xj , and thus removing the output, one
can write the equation of the system as

Vi(t+ 1) = f(
N∑

j=1
JijVj(t)− Ui). (2.3)

Here Vi is the state of neuron i, and all neurons comprise to the total state
of the network, V , which is given by the set of all neurons V = {Vi}.

The next step in the development in the neuron model is to constrain
each neuron to being either firing or silent. The two possible states will be
encoded as either Vi = +1 for firing and Vi = −1 for silent. The neurons is
then said to be bipolar. The activation function is taken to be the sign func-
tion sign(z) = z/|z|, such that the neuron at a later time also in constrained
to be bipolar.

The Eq. (2.3) is deterministic, but can be made probabilistic by choosing
an appropriate activation function that maps the input to an interval between
0 and 1, and interpret this as the probability of a neuron firing. To ensure
that a large input in the activation function leads to a large probability of
firing, and vice versa for small inputs, it is natural to choose an activation
function

P (Vi) =
e−ViHiβ

Z
, where Z =

∑

Vi={1,−1}
e−ViHiβ and Hi =

N∑

j=1
JijVj(t)−Ui

(2.4)
where Z is known as the partition function and ensures normalization of the
probability. β is a parameter for the probability distribution, that can be
chosen freely. In the limit β → ∞ the probability reduces to 1/2 for Vi = 1
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regardless ofHi. This is of course also through for Vi = −1 as the probabilities
P (Vi = 1) and P (Vi = −1) must sum to one. Furthermore in the limit β → 0
the model becomes deterministic, and we end up at the starting Eq. (2.3)

Vi(t+ 1) = sign(
N∑

j=1
JijVj(t) + hi). (2.5)

2.1.3 The Von Neumann bottleneck

In this simple model, it is the synapse that does the multiplication Jijxj in
Eq. (2.2), while the soma does the summation and function transformation.
The weight Jij is stored within the synapse, where the calculation takes place.
This is a crucial distinction from how a conventional computer operates. In
1945 Von Neumann defined some rules for how a computer could be built,
inspired by how the human brain functions [29]. This is today called the Von
Neumann architecture, and conventional computers is built on many of these
principles. Von Neumann identified the main components of a computer,
among others memory, M, and a control arithmetic unit, CA. Furthermore
he identified that data would have to be transferred from M to CA and
back to M for each computation. Conventional computers today still has
separated memory and logic units, as opposed to the human brain. This
has the consequence that if the Eq. (2.2) where to be computed, it would be
necessary to transfer the weights Jij from the memory to the logic unit where
the multiplication takes place. Then the result would have to be transferred
back to the memory unit where it is stored. This transfer of data sets a cap on
computational performance and is called the Von Neumann bottleneck [30].
Implementing hardware that is not limited by the Von Neumann bottleneck
is a crucial problem in neuromorphic computing. This will be addressed in
chapter 3.

2.2 Spin glass and the Ising model

We can draw a strong parallel between the neuron model in the previous
section into the world of magnetism. Consider the free energy for a many
spin system in Eq. (1.5), and let us neglect the DMI interaction. If we
imagine a large enough Kn-value, all spins will align either parallel or anti
parallel to the easy axis n̂, making the spins bipolar. The system is now fully
described along one axis, and allows us to drop the vector notation and just
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indicate direction as either being positive or negative. If one allows not only
nearest neighbor interaction between spins, but also long range interaction
the free energy for a single spin is

Fi = −mi(
∑

ij

Jijmj +Msµsh
ext
i +Kn). (2.6)

With only nearest neighbor interaction this is known as the Ising model, and
with long range interaction as the Spin glass model [31]. The probability of
a spin pointing along n̂ in a material at temperature T is given by [32]

P (mi > 0) = e−Fiβ

Z
, where β ≡ 1

kBT
(2.7)

where kB is a constant known as the Boltzmann factor. By comparison with
Eq. (2.4) we see that the two models are identical. In this model electron spin
(or their magnetic moments), effectively act as neurons. This is a important
observation. It connects statistical physics with neuroscience. The spin glass
model is studied comprehensibly in physics, and the understanding can be
carried directly over to the neuron model. The next section will connect
artificial neural networks in the context of computer science to the neuron
model.

2.3 Artificial neural networks

This section will provide a short introduction to artificial neural networks
in the context of computer science and machine learning. Parallels will be
draw between the machine learning algorithms and the previously discussed
neuron model.

2.3.1 The general machine learning algorithm

Any machine learning algorithm is composed of four main components: a
dataset, a cost function, an optimization method and a model. The following
provides an general introduction to a supervised machine learning algorithm
based on [33].

Consider a conditional probability distribution Pdata(y | x). Our dataset
consists of observations of inputs x and outputs y of the random variables x
and y governed by Pdata. The model is set of functions Pmodel(y | x;θ). Here
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θ is a set of parameters that shapes the probability distribution. The goal of
machine learning is to learn the true data generating distribution Pdata. This
is achieved by first guessing what kind of set of functions Pmodel should be,
and then tweaking the parameters θ so that it mimics Pdata.

Let the set of observations be denoted {x(i)} for inputs and {y(i)} for
outputs. Choosing θ is commonly done through a maximum likelihood prin-
ciple. This implies choosing the parameters such that the probability of
observing the output given the input is maximized. It can be written

θML = argmax
θ

Pmodel({y(i)} | {x(i)};θ). (2.8)

Assuming that we have m−observations in the dataset that are independent
and identically distributed allows us to write (2.8) as

θML = argmax
θ

m∏

i=1
Pmodel(y(i) |x(i);θ). (2.9)

This maximization problem does not change if one takes the logarithm and
divides by the factor m. Doing this makes the problem a bit more convenient,
as it can be expressed in terms of minimizing the cross entropy between the
empirical probability distribution, P̂data, obtained from the dataset

θML = argmax
θ

1
m

m∑

i=1
lnPmodel(y(i) |x(i);θ)

= argmax
θ

Ey,x∼P̂data
lnPmodel(y |x;θ)

= argmin
θ

S(P̂data, Pmodel).

(2.10)

The notation Ex∼P [f(x)] can be read as the expectation value of f(x) with
respect to P (x). The cross entropy between two probability distributions
P (x) and Q(x) is defined to be S(P,Q) ≡ −Ex∼P lnQ(x).

The cost function, typically denoted J(θ), could simply be the cross
entropy, J(θ) = S(P̂data, Pmodel). However, it is possible and common to add
terms to this, for instance regularization terms that decrease the variance of
Pmodel.

2.3.2 Feedforward neural networks

When learning nonlinear functions it is difficult to guess what family of func-
tions Pmodel should be. The feedforward neural network (FNN) provides a
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solution to this problem. The feedforward neural network generally consists
of 3 types of layers of neurons, the input layer, hidden layers and output
layers. Connections are drawn between each neuron in each layer. Figure
2.2 provides an overview of the network layout. When describing the FNN
it is preferable to adopt a vector notation by letting each layer be described
as x = {xi}, where {xi} is the set of all neurons in the layer. Doing this
for hidden and output layers makes equations more compact. The machine
learning as described in the previous subsection takes place by feeding the
input data x into the input layer. The information flow from input to output
is illustrated by figure 2.3.
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Figure 2.2: Neural network with two hidden layers, and arbitrary depth in
each layer.

The neurons in the first hidden layer is calculated from the input by a
weighted sum of all neurons from the input layer in addition to some input
independent bias, and then transformed by a nonlinear transformation called
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x h1 h2 y

b1 b2 b3

W 1 W 2 W 3

Figure 2.3: A general schematic of a feedforward neural network with vector
notation. Biases b and weight matrices W indicated between each layer.

the activation function f1

h1 = f1(W 1x+ b1), (2.11)

where b1 is the biases, and W 1 is the weight matrix connecting x to h1.
The next layer of neurons, h2 is then computed based on the results of Eq.
(2.11), in a similar way. This procedure is reiterated all the way through to
the output layer

y = f3(W 3h2 + b3). (2.12)

A typical example of an activation function is the sigmoid function

σ(x) = 1
1 + exp(−x) . (2.13)

Common for activation functions is that they map the output to a given
interval, setting a limit on how large, either negative og positive, the state of
a neuron can be. The sigmoid function maps all real numbers to an interval
between 0 and 1. It slightly resembles the sign-function that maps all real
numbers to either −1 or 1. To have such non linear activation functions is
essential for machine learning with artificial neural networks.

The machine learning as described in the previous section takes place
by initiating the network with a randomly selected weights and biases. The
network architecture consist of the number of hidden layers and their depth,
and is together with activation functions chosen before the learning proce-
dure starts. Then ymodel is calculated based on the input xdata. Then the
cross entropy between ymodel and the empirically observed ydata is then min-
imized by tweaking the parameters θ which in this case consists of both W
and b. The selection of activation functions and network architecture might
seem like choosing the family of functions Pmodel which was the problem we
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were trying to avoid. However, this is not the case as stated in the universal
approximation theorem [34, 35]. The theorems interpretation is that a FNN
with at least one hidden layer with enough units and an activation function
like the sigmoid function, can represent any Borel measurable function [33]
from one finite dimensional space to another. A definition of a Borel mea-
surable function is given in [34], but it suffices to say that any continuous
function on a closed and bounded subset of Rn is Borel measurable, where
Rn is the n dimensional set of real numbers. The term represent means in
this case approximate with any desired nonzero amount of error. Here within
lays the true power of the FNN.

Compare the FNN with the time independent neuron model in Eq. (2.2).
It is clear that the Eq. indeed is a FNN without hidden layers. Of course
a extension of the neuron model to feature hidden layers is not far-fetched.
However, the the time dependent neuron model in Eq. (2.3) can not be
described as a FNN. There is information flowing both ways through layers,
and no output units. Another type of neural networks is needed to describe
this model.

2.3.3 Fully connected recurrent neural networks

By letting a layer in a FNN connect back into a predecessing layer one
has created a recurrent neural network (RNN). Suppose that as previously
mentioned the FNN can describe a data generating probability distribution
P (y|x). By connecting all neurons together in an FNN one gets a fully con-
nected RNN called a Hopfield neural network. The Hopfield neural network
describes a probability distribution P (x). As it is no output data y in this
problem, this is an example of unsupervised learning. The goal is to deduce
what relations between the components off x translates to probable or im-
probable configurations of x. Note that the graph connecting neurons is now
undirected, as information is free to flow both ways between two neurons,
as opposed to the directed graph for the FNN, where information flows in
only one direction through layers. The requirement that each possible con-
figuration of x should have a nonzero probability can be enforced by using
an energy-based model

Pmodel(x;θ) =
1
Z

exp(−E(x;θ)) (2.14)

where Z is called the partition function, ensuring that the probability is
normalized. The connection between neurons decides how E may look. In
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a network described by a fully connected graph, E should be dependent on
xi and the connections between neurons xixj . This is the case that will be
considered in the following. The energy function E is given as

E(x) = −x⊤Wx− b⊤x (2.15)

where W is a matrix that describes the connections between neurons, and b
is a set of biases for the neurons. Togheter they make up the parameters θ
that needs to be fund. Finding the weights W and b is done by a maximum
likelihood approach similar to that for the FNN. Consider a set of observed
data {x(i)} from a data generating distribution Pdata that we wish to find.
The maximum likelihood estimate for the parameters is given by

θML = argmax
θ

m∏

i=1
P (x(i)|x(j); θ)

= argmax
θ

Exi|x∼P̂data
lnPmodel(xi |x;θ)

= argmin
θ

Exi|x∼P̂data
(E(x) + Z)

(2.16)

This can be interpreted as choosing the parameters θ to minimize E(x) with
the constraint Z using the observed data.

Drawing samples from Pmodel might be difficult when the number of
neurons in x grow large. Gibbs sampling is an example of a Markov Chain
Monte Carlo algorithm for sampling probability distributions. The algorithm
is initiated by setting all {xi} to random values, which is the state of the
network at t = 0. Then a random neuron xi is selected an calculated based
on the conditional probability of all other neurons that connect to the selected
one

xi(t+ 1) ∼ Pmodel(xi|x(t)). (2.17)

The new state x(t + 1) is now all neurons as they where at t = 0 with the
exception of the updated xi. Then another neuron xj is selected and its value
is updated as

xj(t+ 2) ∼ Pmodel(xj |x(t+ 1)) (2.18)

Repeating this process over many time steps t will yield a correctly sampled
state from the original distribution Pmodel. By comparing the energy based
model for the probability distribution, and the Gibbs sampling method with
Eq. (2.5) we see that the two models are almost equivalent. This is another
important point. It connects the neuron model to artificial neural networks.
As have already been discussed, it exists a connection between statistical
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physics and the neuron model. Now we can add artificial neural networks to
this.

2.4 Hebbian Learning

This section will deal with how memories can be stored in the context of
the neuron model based on [26]. Section 2.1 explained how the neuron firing
pattern changes in time. However, it is possible to attain a firing patterns
which is stable in time. A stable pattern will be written as V (t) = ξ. This
pattern will then not evolve any further, i.e. V (t+1) = ξ, when considering
the deterministic evolution equation (2.5). The vector ξ is then considered
an attractor in the system and any input that leads to this configuration
of the system is called the corresponding basin of attraction. There can be
more than one stable pattern in such a neural network. Different basins
may lead to different attractors. An attractor is considered stable, as small
perturbations from ξ may just lead the system back into the steady state.
Attractors is essential for associative memory, as information is coded in
the firing pattern. The brain accomplishes this by changing the weights Jij
between neurons. When an external pattern is subject to memorization, the
weights Jij is changed such that the pattern remains stable after the input
is removed. Hebb’s rule determines how the weights should be updated for a
pattern ξ to be memorized

Jij → Jij + λξiξj (2.19)

where λ is a parameter that determines the speed of memorization. This is of
course an extreme simplification of how the brain actually function, but it is
a rule that works when modeling memory in connective dynamical networks.
This is a remarkable simple rule as the weights between two neurons is only
dependent on the state of each of the two neurons. A network can store
several patterns but careful consideration needs to be taking into the changing
of Jij as learning one pattern must not delete previous learned patterns. In
a general network this is only possible with a more complicated updating
algorithm than Hebb’s rule. For instance is the learning rule for a FNN
dependent on the state of all other neurons. However, there exists one type
of model where Hebb’s rule accomplishes this. The next section will provide
some insight into a model that can learn memories by the simple Hebb’s rule,
and what happens when the weights Jij becomes overloaded with memories.
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2.5 The Hopfield model

This section is based on [26]. In 1982 Hopfield theorized that compering the
mechanizes of associative memory to the Ising model could give consider-
able insight, although this is a simplification of both the brain and magnetic
systems. The Hopfield model is defined in the following:

Serial dynamics Neurons should be updated according to Eq. (2.4). Instead
of updating all spins from t to t + 1 at the same time, which is called
parallel dynamics, each spin should be updated one at a time. This is
called serial dynamics.

Hebb’s rule Generate p different firing patterns {ξp} and fix the weights Jij
according to Hebb’s rule (2.19).

By using Hebb’s rule with zero initial weights one obtains

Jij = λ
p∑

µ=1
ξµi ξ

µ
j (i ̸= j). (2.20)

It is easy to see that the weights now become symmetric: Jij = Jji. To gain
some insight into how many memories a Hopfield neural network can store,
the self-coupling terms will be set to zero, Jii = 0 and the networks energy
function can be written

E(V ) = −
∑

i,j
i ̸=j

JijViVj −
∑

i

hexti Si. (2.21)

This energy equation defines a hyperplane over the configuration space con-
taining all possible states V can be in. In the T = 0 regime modeled by
Eq. (2.5), this energy equation will monotonously decrease. Minima of the
function will act as attractors that the spin system will evolve towards. The
stored patterns will be encoded as the minima energy function. All the start-
ing configurations that decrease monotonously towards the minima will be
the corresponding basin of attraction. Figure 2.4 illustrates the energy func-
tion of the Hopfield network after being subject to Hebbian learning.

There are two types of noise in this model:

Temperature noise A consequence of the probabilistic evolution equation,
parameterized by β.

Synaptic noise This noise is related to the weights Jij not being to encode
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Figure 2.4: Energy function of the Hopfield model after Hebbian learning.
The two memories ξ(1) and ξ(2) is encoded as a valley in the energy func-
tion. The smaller local minima is spurious memories, a result of synaptic
noise, or overlap between the two encoded memories. To minimize the
chance of the system retrieving a spurious memory, a fictitious tempera-
ture T might allow for the possibility for V to travel to states with higher
energy with a small probability, and thus climbing out of local minima.
Selecting the fictitious temperature correctly, or slowly letting T → 0
gives a high probability of the system V settling in a memory state.

all {ξp} without any overlap. The accuracy of a retrieval pattern is
influenced by the other stored patterns.

To analyze the noise in the system, it is convenient to define the overlap, mµ,
between the system configuration V and a stored pattern ξµ as

mµ = 1
N

N∑

i=1
Viξ

µ
i . (2.22)

For a system with hext = 0 then the energy function can be written

E = −λ

2N
2

p∑

µ=1
(mµ)2 +

λ

2Np. (2.23)

If a pattern ξν is (almost) perfectly retrieved, i.e. V → ξν , then the over-
lap (mν)2 = O(1). To make the analysis easier, the following constraint is
demanded from the stored patterns {ξp}

qµν = ⟨ξµξν⟩ = 1
N

N∑

i=1
ξµi ξ

ν
i → 0 as N → ∞. (2.24)
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In other words, the overlap between memories should vanish for large N . This
is the case if memories consist of random states ξi, and we shall consider this
to be the case.

To further investigate the effect of synaptic noise, we are going to con-
sider the deterministic regime, where T = 0, i.e. there is no noise present
due to temperature. This is modeled by Eq. (2.5). An errorless retrieval of
a stored pattern ξν is possible and achieved if ξνi

∑
j ̸=i Jijξ

ν
j ≥ 0 for all i.

∆ν
i ≡

ξνi
∑

j ̸=i Jijξ
ν
i√∑

j ̸=i J
2
ij

(2.25)

is called the stability of pattern ξν at the i-th neuron. For retrieval of the
memory without errors, one should have ∆ν

i > 0 everywhere. It is possi-
ble to give an upper bound of how many patterns one can store while this
remains the case, as long as the set of stored patterns {ξp} consists of ran-
dom spins. By approximating the denominator in Eq. (2.25) by its mean,
Ê(

√∑
j ̸=i J

2
ij) = λ

√
p(N − 1), and using the definition of Jij from Eq. (2.20)

we can write

∆ν
i =

ξνi
∑

j ̸=i λ
∑p

µ=1 ξ
µ
i ξ

µ
j ξ

ν
j

λ
√
p(N − 1)

=
ξνi

∑
j ̸=i ξ

ν
i ξ

ν
j ξ

ν
j√

p(N − 1)
+

ξνi
∑

j ̸=i

∑p
µ̸=ν ξ

µ
i ξ

µ
j ξ

ν
j√

p(N − 1)

=
√

N − 1
p

+
ξνi

∑
j ̸=i

∑p
µ̸=ν ξ

µ
i ξ

µ
j ξ

ν
j√

p(N − 1)
.

(2.26)

The remaining sum is the sum of random spins ±1. For N and p large, this
becomes a Gaussian distributed variable with zero mean and standard devi-
ation

√
(N − 1)(p− 1), such that the probability distribution of ∆ν

i becomes
P(∆ν

i ) = N [
√

N−1
p , (N − 1)(p− 1)]. The probability of ∆ν

i < 0 is then

P (∆ν
i < 0) =

∫ 0

−∞
P(∆ν

i )d∆ν
i = 1

2erfc
√

N

2p (2.27)

where erfc(x) is the error function. Perfect retrieval is expected when N
p ≫ 1.

In this limit, the probability becomes

ε ≡ P (∆ν
i < 0)N

p
≫1 =

√
p

2πN e−N/2p (2.28)
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and the i-th neuron is retrieved correctly. The probability for the signal as a
whole to be retrieved perfectly, P0 becomes

P0 = (1− ε)N . (2.29)

From this it is possible to obtain an upper bound for p that ensures perfect
retrieval

p ≤ N

2 ln(N) . (2.30)

This result is valid for when N
p ≫ 1. However, for smaller fractions, the cal-

culation becomes difficult. Experiments show that the network has a sharp
breakdown when N

p = 0.14. This limit exhaust the synaptic weights, destroy-
ing the function of associative memory in the network.

2.6 Maximum entropy distribution

We shall see that the Ising model can be derived from a maximum entropy
principle. The idea is that the probability distribution that describes the
network is the one that maximizes the entropy of the network. A general
derivation of the maximum entropy distribution is given in the following,
based on [36].

We define the entropy of a system S[P (x)] to be

S[P (x)] ≡ −
∑

x

P (x) lnP (x). (2.31)

Here P (x) is the probability distribution of the system that we seek to find.
If the system subject to constraints, where the constraints can be written as

∑

x

fj(x)P (x) = aj (2.32)

where aj is the constraint. Using the method of Lagrange Multipliers we can
maximize S[P (x)] under the constraints by introducing the functional

S̃[P (x)] = −
∑

x

P (x) lnP (x)−
∑

j

λj(
∑

x

fj(x)P (x)− aj). (2.33)

Now taking the functional derivative we obtain

δS̃
δP (x) = − lnP (x)− 1−

∑

j

λjfj(x) = 0 (2.34)
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Solving for P (x), and ensuring that the probability is normalized by dividing
with the constant Z gives the maximum entropy distribution

P (x) = 1
Z

exp(−
∑

j

λjfj(x)), where Z =
∑

x

exp(−
∑

j

λjfj(x)). (2.35)

This is a generalization of the Boltzmann distribution, and one can ob-
tain it by letting λ = 1/kBT and fj(x) be the Hamiltonian of the system
[32].

For the Hopfield and spin glass model we denote the system as a set of
neurons that either fires or is silent, or spins that is either up or down, V =
{Vi}. There are constraints on each individual spin Vi and the correlation
between two spins ViVj . Making the transitions x → V , we have the following
constraints

⟨Vi⟩model ≡
∑

V

ViP (V ) = ⟨Vi⟩data and ⟨ViVj⟩model ≡
∑

V

ViVjP (V ) = ⟨ViVj⟩data.

(2.36)
The constraints demands that the model probability distribution must have
the same expectation value and variance as the observed data. All higher
moments are not constrained. Fulfilling these constraints leads to selecting
the appropriate multipliers hi and Jij

P (V ) = 1
Z

exp(
∑

i

hiVi +
∑

i ̸=j

JijViVj) =
1
Z

exp(h⊤V + V ⊤JV ). (2.37)

This is the probability distribution for the spin glass and Hopfield models.

2.7 A Hopfield model example for associative
memory

Two simple examples will give further insight to the Hopfield model and its
use. For this, one further simplification is made to the model. Another
simple example highlights how the energy surface E behaves when memories
are stored in the Hopfield network. A further simplification to the Hopfield
model will be done by allowing self connections Jii ̸= 0 but turning of the field
hi. The Hebbian learning is then given by Eq. (2.19) without the restriction
i ̸= j. This ensures that Jij ≥ 0. as Jii = λ

∑p
µ=1(ξ

µ
i )2. A weight Jij says

something about the desire of neuron i and j has to be equal to each other. If
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Jij > 0 then neuron i and j will strive towards being in the same state, while
the opposite is true if Jij < 0. Jii then says something about the stability
of each neuron or the desire to be equal to its previous state. The energy is
then given by

E(x) = −x⊤Jx (2.38)
where x again is a bipolar pattern describing the states of the neurons in
the network, and J is that the system becomes invariant for a sign flip off
all states xi. In other words x and −x describes the same states, as is seen
by Eq. (2.38). J only encodes relations between neurons in {xi} and not
anything about their sign. Figure 2.5 illustrates a fully connected Hopfield
network with symmetric weights.

x1 x2

x3x4

J12

J24

J34

J13

J24

J14

Figure 2.5: Simple schematic of a 4 neuron Hopfield neural network.

To illustrate the usage of a Hopfield neural network for associative mem-
ory, a simple model has been implemented. 3600 fully connected neurons was
initiated and pictures 2.6a and 2.6d was simultaneously stored in the network
according to the Hebbian learning rule. Figure 2.6 indicates that the stored
patterns indeed are attractors in the system, as both a noise image and a
image where half is missing, both converges to the correct memory. We can
thus also conclude that each guess is in the corresponding basin of attraction
of the memories. Although only two patterns are stored in this network, it
could hold many more. For the worst possible scenario where all memories
are orthogonal, this network could store up to 3600 · 0.14 = 504 patterns. It
is worth noting that the computational demanding part is not choosing the
weights to store the patterns, but rather deducing the output from an input.
This is opposite of what one might suspect from working with feedforward
neural networks.
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(a) Train 1 (b) Input 1 (c) Output 1

(d) Train 2 (e) Input 2 (f) Output 2

Figure 2.6: The results of a simple Hopfield network for associative memory.
(a) and (d) are stored simultaneously in the network by Hebbian learning.
(b) an initial input where half the memory is lost and (e) an initial input
of a stored memory with noise. (c) and (f) is the corresponding outputs
of inputs (b) and (e).

Another simulation of a 6 neuron Hopfield network provides some in-
tuition that Hebbian learning has on the energy function. Figure 2.7 shows
the energy surface over the an 6-dimensional binary configuration space, pro-
jected down onto a 2-dimensional surface. The resulting 8 × 8 matrix gives
all the 26 = 64 possible configurations a 6-bit vector can be in. The state
of a vector is denoted by a sequence of + and −, equivalent of each node in
the network being either spin up or down. The rows of the matrix indicates
the first 3 bits while the column represents the last 3. Figure 2.7a shows
the different memories that the network will try to store, numbered by the
order that they are added to the network. The first pattern to be learned is
−+++++. 2.7b shows that Hebbian learning indeed result in the network
having a global energy minima for the desired pattern ξ(1). However it is also
another global minima with the same energy for configuration +−−−−−.
This is the mirror image of the the learned pattern. This is of course due to
the fact that Eq. (2.38) is a quadratic function such that E(−x) = E(x).
This gives an energy function that is symmetric. The inferring process can
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(a) Inputs (ξ(1), ξ(2), ξ(3))
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(c) Two inputs (ξ(1), ξ(2))
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(d) Three inputs (ξ(1), ξ(2), ξ(3))

Figure 2.7: The energy function of a 6 neuron Hopfield network. Patterns
ξ(1), ξ(2), ξ(3) is added one at the time, and the energy is calculated over
the total configuration space. The network has a breakdown and can not
store all 3 memories at the same time.
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be thought of as traversing the energy configuration where one only jumps to
a neighboring configuration if this results in a decrease in E. In this sense,
state vectors x(1) and x(2) is neighbors if they only differs in one bit. As
an example consider the configuration in the top right corner, −−−+−−.
The states that is located directly to the left and beneath is indeed only
one bit-flip away. However, the total number of neighbors must be 6. The
matrix can be though of to be periodic such that the top left, and bottom
right corners is also neighbors. The final two neighbors is − − − + +− and
−+−+−−. These two are not directly touching the top right corner in 2.7b
but this is the loss of doing the projection from 6 dimensional space down to
2 dimensions. One might suspect that − + + − ++ is a local minima of E
and thus a spurious memory. However, this is not the case as indeed it is a
neighbor of the global minima −+++++. Figure 2.7c shows E when both
the first and second pattern is stored. There are only global minima at the
stored configurations, and their mirrors. Finally the network breaks down
when the third pattern is added in figure 2.7d. E now has only 4 minima as
opposed to the desired 6. Furthermore, 2 of these minima are for the wrong
configurations. The mirror image of ξ(2) interferes with ξ(3) (and vice versa)
giving global minima at −−−−−− and + +++++.

A final note on the Hopfield model is that it is relevant in solving other
problems than associative memory. It is shown that it can give ”good enough”
solutions to some NP hard problems [31], such as the traveling salesman
problem. Furthermore, in 2021, Ramsauer et al. [37] introduced a contin-
uous Hopfield neural network that delivered state-of-the art benchmarks on
some classification task. We now turn our attention to simulating a physical
realization of a Hopfield neural network capable of associative memory.
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3 A Hopfield neural network
with natural learning

This section will explore how one can realize a physical Hopfield neural net-
work by applying voltages to films with magnetic maze texture. The discus-
sion will be based on the paper Hopfield neural network in magnetic textures
with intrinsic Hebbian learning [1]. The purpose is to show a proof of concept;
that one can build an artificial neural network (ANN) capable of associative
memory using magnetic films and concepts from spintronics.

3.1 Magnetic films for natural learning

The main idea of the paper is that the non-linearity and plasticity of magnetic
films with magnetization texture can be used to store and learn the weights of
the network. The magnetic films is modeled by the LLG equation where the
torque considered is limited to the Berger spin-transfer torque τB in equation
(1.15). The equation of motion of m then reads

∂m

∂t
= −γm×Heff + αm× ∂m

∂t
+ τB (3.1)

where in this case

Heff = 2A
µ0Ms

∇2m+ 2K
µ0Ms

m · ẑ − 2D
µ0Ms

∇×m. (3.2)

In other words this is a system where there is no temperature fluctuations.
Furthermore, there is an easy axis along the ẑ direction and no external
magnetic field h. The magnetic texture creates a maze-like configuration
as can be seen in figure. For this type of magnetization to be stable, it is
important with a strong DMI-interaction as compared to the other terms
in Eq. (3.2). More specifically this means that D > 4

√
AK/π. There is an
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3.1. Magnetic films for natural learning

infinite configuration space spanned by the different maze structures possible,
which is almost energy degenerate. One can easily change magnetization
structure through the spin-transfer torque by applying an external current
into the film.

The following simulations solves Eqs. (1.15), (3.1), (3.2), (1.30), (1.37)
and (1.33) using Boris Computational Spintronics [2].

3.1.1 Conductance as a function of maze structure

A simple simulation highlights what happens when voltages and currents is
applied to magnetic maze structures. This is done to gain insight in the affects
the spin transfer torque have on the conductance of a magnetic thin film with
maze structures. Initially a 400 nm× 400 nm× 2 nm chip is wedged between
two electrodes. The setup and result is shown in figure 3.1. The initial
configuration of the maze structure is obtained by a uniformly magnetized
film in the z-direction, and then relaxed toward one of the many degenerate
ground states of Eqs. (3.1) and (3.2) with τB = 0. This is the starting maze
structure at t = 0ns. Due to the symmetric initialization of the structure,
there is no reason why the film should exhibit different properties in the y or
x direction.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

(a) (b)

Figure 3.1: 400 nm× 400 nm× 2 nm chip with magnetic maze structure de-
picted by the z-component of the magnetization vector m (out of plane).
Electrodes are attached to the vertical sides of the film. (a) is the initial
random configuration at t = 0ns before a voltage Vx is applied. (b) shows
how the structure has changed as a result of the current flowing through
the chip for 50 ns.
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3.1. Magnetic films for natural learning

The resulting pattern after applying voltages for t = 50ns no longer
appears to be random, but vertical lines normal to the current direction has
appeared. This can be understood as an attempt to minimize the resistance
through the current experiences through the chip. From equation 1.37 we
see that the local conductivity is the largest for m · ĵ = 0 i.e. when the
current and magnetization are normal to each other. The spin transfer torque
between the local electrons in the film and the free electrons in the current
will try to align j and m. As this is the case, m should be continuously
rotating around the x-axis to ensure that j never manages to catch up with
m. This is achieved when the stripes align normal to the x-axis. Figure 3.2
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Figure 3.2: Conductance Gxx and Gyy for the film in figure 3.1 as a function
of time.

displays how the conductance changes in the film during the 50 ns simulation.
Conductance is defined as

Gij =
Ii
Vj

(3.3)

and is the extensive version of Eq. (1.30). Gxx is steadily increasing, but
most rapidly in the first 10 ns. At one point (not shown in the figure) the
conductance will reach a upper threshold, when all stripes are straightened
and normal to the applied current direction. An important point is that
the conductance Gyy is decreasing as Gxx is increasing. No currents have
been applied in the y direction. However, the movement of the domain walls
to decrease the resistance in the x direction comes at the cost of a higher
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3.2. Physical realization of the Hopfield network

resistance in the y direction. This will be an important point in the next
section, when a physical Hopfield network is discussed.

3.2 Physical realization of the Hopfield network

This section will describe the framework on which the physical Hopfield net-
work will be built, and then provide the results of the numerical simulations.

3.2.1 Physical neurons and weights

The idea is to realize a physical Hopfield neural network by attaching a set of
electrodes to a thin film that exhibits stripe skyrmions. The neurons of the
network will be the voltage of each electrode, and the state if the network
will be described by to describe the state of the network. Now the voltage is
taken to be either +V0 or −V0, so that each neuron . The currents flowing
into or out of each electrode is governed by Kirchoff’s law

Ii =
∑

j

Gij [m]Vj = (GV )i (3.4)

where Gij [m] is the conductance matrix of the film, that is dependent on the
magnetization m due to the AMR. The network can be trained to remember
a set of binary values by simply applying a pattern of voltages V = {Vi}.
Note that indices i, j here do not refer to spacial coordinates, but rather to
specific electrodes. Currents will start to flow in the chip from electrodes with
Vi = +V0 to electrodes with Vj = −V0 as long as not all electrodes are kept
at either +V0 or −V0. As we have seen in figure 3.1 the structure will start
to evolve such that the conductance of the film increases in those directions
where currents are flowing. This will simultaneously lead to an decrease in
conductance in the areas where currents are not flowing. By measuring the
elements of G before and after the training procedure one can obtain which
pattern that has been encoded in the film. Gij = Ii/Vj can be measured by
simply setting all Vk ̸=j = 0 and Vj = +V0 and measuring the current Ii. The
sign convention used for the for the current is positive Ii when flowing out of
the electrode. It is worth noting that when this convention is used, the off
diagonal terms will be negative Gi ̸=j < 0 while Gii < 0. This can be seen
from a current conservation principle. When all Vk = 0 except Vi = +V0
current will flow out of electrode i and into all the others. Since we must
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3.2. Physical realization of the Hopfield network

have Ii =
∑

k ̸=i Ik, where Ik must be negative, we get by inserting Eq. (3.4)

Gii = −
∑

k ̸=i

Gki > 0 where Gki < 0 for i ̸= j. (3.5)

The memory that is trained into the network is captured in G′
ij = Gij −G0

ij .
This can now be connected to the Hopfield neural network model, by letting
the electrodes be the neurons in the model, sign(Vi) be the state of the
neurons, and finally G′

ij be the weights between each neuron. It is important
to make the distinction between G′

ij and Gij . This is because the starting
configuration of the texture may already have some patterns preferred over
others. As a matter of fact, since G is inversely proportional to the distance
between electrodes the connections between for example neuron 1 and 2 will
be larger in absolute value than 1 and 3, |G12| > |G13| since electrodes 1
and 2 is closer together physically on the chip than 1 and 3. The network
should have no bias for some patterns before training, and this is accounted
for by choosing G′

ij to be the weights. In [1, 22] it is suggested to use the
uniformly magnetized film as G0. Granted this will remove the bias towards
electrodes that are close together, but it does not account for the case where
the initial configuration of the maze structure just happens to prefer some
neuron connections than others. This requires extra steps before training to
ensure that the domain walls is not aligned by chance to reduce resistance
between some electrodes rather than others. Therefore, I suggest it is better
to choose the starting conductance that the film has with texture. This has
it drawback as well, as one would have to measure G0 for each new chip one
is training.

The power consumption of the chip, E, is related to the energy function
of the physical Hopfield network, E′, in the following way

E = −
∑

i

IiVi = −
∑

i

∑

j

(G′
ij+G0

ij)VjVi = −V ⊤G′V −V ⊤G0V = E′+E0.

(3.6)
Here the last term E0 = −V ⊤G0V is a constant, while E′ = −V ⊤G′V
holds all the information about the memories, and is the energy function of
the network as G′

ij is chosen to be the weights between neurons, and not Gij .

3.2.2 Simulating memory learning on a chip

Four input electrodes is connected to a circular thin film as shown in figure
3.3. Note that the electrodes is now situated on top of the chip, instead of
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3.2. Physical realization of the Hopfield network

on the sides as in figure 3.1. The film exhibits a maze structure, due to a
large DMI coefficient. The diameter of the film is 1 µm and has a thickness of
2 nm. The electrodes are 100 nm × 100 nm squares and placed 600 nm apart
in a square. The initial state of the film is the relaxed state from a uniformly
magnetized film in the z direction, governed by Eqs. (3.1) with no external
torques τ = 0. The figure shows the initial state with the electrodes numbered
in a clockwise manner. The memories ξ(1) = + + −+, ξ(2) = + − −+ and
ξ(3) = + − +− have been trained into three different chips. The notation
+ − +− as before refers to the state of the network being + in the first
neuron, − in the second neuron and so forth. It is important to emphasize
that there is one separate chip and simulation for each memory. However,
all started with the same maze structure. Coefficients used in simulations is
given in table 3.1. From the maze pattern of the magnetization it is possible
to see that for especially the ++−+ and +−+− memories in the top right
and bottom left chips follow the principle of straitening the domain walls out
normal to the direction of the current flow j.

It is interesting that in the computer programmable version discussed in
section 2.5 the weights is obtained by summing over the outer products of
the memories J = λ

∑p
i ξξ

⊤ while on this hardware version, the training is
achieved by simply keeping the network in the state of the memory one is
trying to read in for a long time.

To see if this procedure actually ends up at the memory patterns being
stored in the chips, it is natural to inspect the energy function E′ and look
for minima. Figure 3.4 shows E0, E′ and E for all three chips, where the
V space have been projected down to 1 dimension, in a similar fashion as in
figure 2.4. All patterns ξ(1), ξ(2), ξ(3) have been encoded in their respective
chips energy function as the global minima. If one for instance examines the
middle plot where the memory ξ(2) = +−−+ have been trained, it is evident
that the energy function E′ indeed has a minima for the desired pattern.
Furthermore, the energy of all other configurations has increased. This is
in correspondence with the results shown in figure 3.2, i.e. that increase in
conductance in one direction can come at the expense of decrease in another
direction. However, for memories ξ(1) and ξ(3) have led to a decrease in E′

for other patterns as well. For the bottom graph in figure 3.4 all patterns
V has decreased, with the exception of the trivial pattern ++++ where no
currents are flowing. This can be understood by looking at the corresponding
magnetization configuration in figure 3.3. Every pattern except the trivial
one will experience increased conductance for at least on set of neighboring
electrodes.
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3.2. Physical realization of the Hopfield network

Figure 3.3: Figure shows the initial maze structure before training (top left)
with electrodes numbering convention. The rest of the images show the
resulting maze structures after applying the indicated voltages (+ or −)
for 100 ns. z direction is out of plane.
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Figure 3.4: The energy function, E′, together with the total energy before
and after training. E′ = EFinish − EStart. The x-axis indicates the state
of the network V excluding the mirrored states. Memorized patterns in
bold.
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3.2. Physical realization of the Hopfield network

The third chip in the bottom figure of 3.4 the state V = + − −+ is a
local minima and thus a spurious memory. There is no state one can reach
from +−−+ with a single bit flip with given energy landscape that has less
energy. Furthermore, it is worth noting that in the top plot of figure 3.4
training pattern ξ(1) = ++−+ has led to an decease in E′ for V = +−−+
while training pattern ξ(1) = +−−+ has led to an increase in E′ for pattern
V = ++−+.

Name Parameter Value Unit
Exchange constant A 6.0005× 10−12 Jm−1

Easy-axis anisotropy Kz 1.499 97× 105 J/m3

Saturation magnetization Ms 4.9× 105 Am−1

Gilbert damping α 0.3 1
Field-like torque coefficient β 0 1
DMI coefficient D 2.001 19× 10−3 J/m2

Isotropic conductivity σ0 7× 106 Sm−1

Spin polarization P 0.8 1
AMR coefficient a 1.5 1
Writing voltage V W

0 0.05 V
Reading voltage V R

0 0.001 V

Table 3.1: Coefficients used in simulations. Note that σ0 = 1/ρ⊥ and a =
(ρ∥ − ρ⊥)/ρ⊥. The material parameters are typical for Pt/CoFe/MgO
multilayers [22], except for the AMR coefficient which is chosen to be
larger than natural to speed up the simulations.

3.2.3 Inferring process

The last subsection considered reading in a memory into the magnetic films.
The energy function indicates that the memory indeed have been stored.
To complete the formulation of the physical Hopfield network the memory
retrieval process needs to be considered as well. It is possible to calculate the
energy function for all possible V and read out the minima similar to what
has been done in figure 3.4. Computationally this method is not preferable
as it involves calculating the energy of all 2(N−1) possible states, excluding
the mirror states. The iterating procedure discussed in section 2.1 should
be implemented for this problem. This is achieved by letting the voltages at
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3.2. Physical realization of the Hopfield network

electrodes evolve from a random initial pattern V (t = 0) as

Vi(t+ 1) = sign(I ′i(t))V0 (3.7)

where I ′i = (G′V )i = Ii − I0i , and is a similar separation that has been done
with energy E′ = E − E0 and conductance G′ = G − G0. The updating
of states Vi could either be done in serial or parallel. Increased memory
retrieval accuracy of the system is accomplished by turning the process into
a Boltzmann machine by selecting a neuron i at random, and flipping the
state Vi(t+ 1) = −Vi(t) with probability

P = 1
1 + exp(∆E/T ) . where ∆E = E(t+ 1)− E(t). (3.8)

T here is a fictitious temperature that should be slowly decreased towards
0 to minimize the chance of retrieving a spurious memory. The Boltzmann
machine does not require calculating G′ or E′ because ∆E = ∆E′ as E0 is
a constant. Albeit this comes at the cost of having to calculate the change
in E for each change in V by Eq. (2.38) in addition to actually calculating
the probability in Eq. (3.8). Although it may be natural to consider energies
in the Boltzmann machine, it can be simplified in the following way. By
rewriting ∆E as

∆E = E(t+ 1)− E(t)
= −

∑

i

Ii(t+ 1)Vi(t+ 1) +
∑

i

Ii(t)Vi

= −Ij(t+ 1)Vj(t+ 1)−
∑

i ̸=j

Ii(t+ 1)Vi(t+ 1) + Ij(t)Vj(t) +
∑

i ̸=j

Ii(t)Vi(t)

= (Ij(t+ 1) + Ij(t))Vj(t).
(3.9)

One can vastly reduce the number of computations needed in each iteration
of the Boltzmann machine. The Boltzmann machine requires a temporary
flip of Vj(t) → Vj(t+1) to make it possible to measure Ij(t+1). If a random
number between 0 and 1 is less than or equal to the probability in Eq. (3.8),
than the flip is made permanent. If not, Vj is returned back to its original
state.
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4 Summary and outlook

This chapter will summarize the findings in the report. The results and its
meaning will be discussed, while natural further work is indicated.

As we have seen, simulations indicate that it is possible to realize a
physical Hopfield neural network for associative memory tasks. However,
simple 4 node networks would have little practical use. The true power of
the Hopfield network is first exploited when the number of nodes grow large.
It is natural to consider how one would scale up such systems. It has been
proposed to simply scale up the 2× 2 electrode design above into an N ×N
[22]. This would however cause some drawbacks. For a Hopfield model to be
fully connected, the weights between each neuron should be independent. It
is the current between electrodes than creates the foundation for the weights
between neurons. If one considered the two neurons at opposite corners in a
large N×N network, it is hard to imagine that the current between these two
will be independent of what happens locally to each neuron. Nevertheless,
they would be able to interact with distant neurons indirectly through its
neighbors. In other words this will be a locally connected Hopfield network.
This may have an impact the performance of the networks memory storing
capabilities.

Another measure to further this work could be to add terms to the
Hamiltonian of the system. For instance temperature is neglected in the sim-
ulations. By the stochastic-Landau-Lifshitz-Gilbert equation (1.27) a large
enough temperature will distort the systems. One could even envision that
a temperature might diminish the effect of spurious memories. In addition
one could consider the other torques presented in section 1.2.2. The effects
of this is not obvious and should be investigated to see if it either improves
or deteriorate the performance of the network.

When one or several memories are encoded in a chip, one could retrieve
the G′ matrix and run the energy function minimization procedure discussed
in section 3.2.3 with a conventional computer program. This would involve
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solving Eq. (3.4) for each iteration. Considering a 4 neuron network this
is not a problem. However, when the number of neurons grow large, this
might not be an effective way to retrieve memories and would not exploit
the advantage of intrinsic computation in these films. The Eq. (3.4) is of
course naturally solved in the film when applying voltages, and obtaining the
currents is just a matter of doing a measurement at each electrode. However,
one would still have to implement an electronic system capable of flipping
the voltage Vi depending on sign(I ′) and not the measured current I. This
would have to work on top of the magnetic films, controlling the read out
process and retrieving the network state when a stable pattern is achieved.
Considering that the read out process is more computationally expensive
than the writing, it is natural to consider the latter of these approaches as
the most preferable for large networks.

Increasing the chip size and adding more electrodes, while increasing
the number of terms in the Hamiltonian will escalate the simulation time.
These simple simulations running on an NVIDIA GeForce GTX 970 GPU had
simulation time in the order of days, even as Boris Computational Spintronics
incorporates parallel computing. It is difficult to imagine that a simulation
of a large network of this kind with the inclusions of all effective fields and
torques discussed in section 1.2 on a conventional computer would be feasible.
Physical experiments should be considered as a more practical approach than
numerical simulations when the number of neurons grow large.

In this report, the basic theoretical introduction to spintronics and Hop-
field neural networks have been given. This has then been used to numerically
simulate simple 4-neuron Hopfield networks. The simulations is a proof of
concept that it is possible to realize hardware components for neuromorphic
computing capable of associative memory. The non-linearity and plasticity
of magnetic thin films with stripe skyrmions has been used to train specific
memories. The training procedure happens naturally within the film, as the
free energy of the film is minimized with external currents present. The plas-
ticity of the stripe skyrmions ensure that memories encoded are not volatile.
The read out process is done searching for the minimum power consumption
of the film. The computation is done naturally within in the film by Ohm’s
law. The magnetic films thus stores the weights where the computation
takes place. Retrieving memories is thus reduced to a matter of measuring
a current and flipping voltages. The hardware architecture is fundamentally
different from the Von Neumann architecture implemented in classical com-
puters, and is not limited by the Von Neumann bottleneck. The simulations
show promising results for memory storing and retrieval, inspiring further
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work in spintronics based neuromorphic computing.
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