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Summary

As the maritime traffic sector is expected to increase over the next years, effort
should be invested into protocols and technology for ensuring safe and efficient
voyage over the seas. Autonomous ships can here offer multiple benefits, such as
increased safety and efficiency, lessened environmental impact and higher rates
of reliability and consistency. Recently, there has been an increased focus on the
development of such autonomous surface vehicle platforms, with examples such
as Yara Birkeland and Zeabuz leading the way in Norway. For this development
to be successful, there is a need for robust autonomy systems onboard the ship,
which can make intelligent decisions in reasonable time in order to avoid colli-
sion and adhere to the International Regulations for Preventing Collisions at Sea
(COLREGS), when faced with a challenging and uncertain environment involving
multiple grounding hazards and dynamic vessels or obstacles. In this setting, a
robust collision avoidance (COLAV) system is vital for the safety and efficacy of
the autonomous ship. Topics within this field has been the focus in this thesis.

During the PhD, two sampling-based Collision Probability Estimators (CPEs) were
developed, one based on a combination of Monte Carlo Simulation (MCS) and
a Kalman-filter, and the other based on the Cross-Entropy (CE) method. Both
CPEs estimate the probability that a ship will collide with a nearby dynamic ob-
stacle, by taking the kinematic uncertainty of the obstacle into account. For the
first CPE, samples from the obstacle Probability Density Function (PDF) involv-
ing both position and velocity are used to estimate the probability, which is then
filtered through the KF to obtain the final estimate. The KF makes it possible
to reduce the statistical variance introduced by the MCS. However, the method
struggles with estimating low collision probabilities, as the assumption of constant
obstacle velocities in the sampling and the curse of dimensionality makes evident.
This was solved through the CE-based CPE, which can adaptively converge towards
the optimal density to sample from using iterative optimization by minimizing the
Kullback-Leibler divergence between the optimal and the current importance den-
sities. Because of the adaptivity, the CE-based estimator can obtain low variance
collision probability estimates at reasonably low computational cost. Simulation
studies are shown to verify the methods.

Simultaneously, the Probabilistic Scenario-based Model Predictive Control (PSB-
MPC) was introduced, based on the original Scenario-based MPC (SB-MPC),
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Summary

as an aim towards taking situational uncertainty into account for COLAV. The
PSB-MPC employs a CPE to have probabilistic risk assessment, by using colli-
sion probability estimates in its cost function, which increases the COLAV situa-
tional awareness. The PSB-MPC was further enhanced throughout the thesis work
to also consider intention uncertainty for nearby dynamic obstacles, by evaluat-
ing the probabilities of multiple different maneuvering scenarios for each obstacle.
Ornstein-Uhlenbeck (OU) processes and Line-of-Sight (LOS) guidance based mod-
els have been used to improve its prediction scheme and allow for also taking into
account this intention uncertainty. Simulation results are shown throughout the
thesis chapters to prove that the method incrementally gets more and more vi-
able for use as a means for robust COLAV. This is also evident after a parallelized
and efficient implementation of the algorithm was developed, which facilitates both
static and dynamic obstacle avoidance through the use of a Graphical Processing
Unit (GPU) in the MPC cost evaluation. In the last part of the thesis work, the
GPU-based PSB-MPC with a Dynamic Bayesian Net (DBN) for intention infer-
ence is validated in full-scale experiments, which demonstrates the viability of the
method.

Lastly, a new approach to joint vessel destination inference and long-term kinemat-
ics prediction for dynamic obstacles was developed. The method uses a maritime
graph in combination with a piecewise OU process and a so-called bridge model,
in a Bayesian inference setting. The piecewise OU process utilizes maritime traffic
pattern information through the maritime graph, for more accurate predictions of
typical vessel trajectories along common sea lanes. After the vessel has reached
the end of its trajectory along the maritime graph, the bridge model enables the
continued vessel prediction to converge towards the considered destinations. It is
demonstrated using historical Automatic Identification System (AIS) data that
the method performs better than current state-of-the-art in terms of both desti-
nation inference and prediction quality. Improved vessel predictions, in addition
to information on their most likely goal destinations, is valuable for ship auton-
omy applications, and the next step will be to also incorporate this in risk-based
COLAV systems.

The thesis work has contributed to the progress of research within robust COLAV
systems, for both the situational awareness and decision making aspects of the
topic. Still, there are considerable challenges to solve. How to tune COLAV sys-
tems such as the PSB-MPC, with all involved modules, for use in a large variety of
situations with different geographies and dynamic obstacle configurations is highly
non-trivial. It will here be important to investigate methods for making such sys-
tems adaptive and capable of learning from experience, in order to properly adopt
them on maritime vessels.
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Samandrag

Ein ventar at den maritime sektoren vil auke i dei komande åra. Det bør derfor
investerast i protokollar og teknologi for å gjere sjøtransport både sikrare og meir
effektiv. Her kan autonome skip tilby fleire fordelar, som auka sikkerheit og effek-
tivitet, mindre miljømessig påverknad samt ein i større grad påliteleg og repeterbar
oppførsel. I det siste har det vore auka fokus på utvikling av slike platformar for
autonome overflatefartøy, med eksempel som Yara Birkeland og Zeabus i Noreg.
For at denne utviklinga skal vere vellukka, trengst det robuste autonomisystem
på skipet, som kan ta intelligente avgjersler i rimeleg tid for å unngå kollisjon
med andre båtar. Eit utfordrande og usikkert miljø med fleire grunningsfarar og
dynamiske hindringar krev også at ein føyer seg etter det internasjonale regelver-
ket for å forhindre kollisjon på sjøen (COLREGS). I denne samanhengen så er
eit robust kollisjonsunngåingssystem viktig for sikkerheita og effektiviteten til det
autonome skipet. Emne innan dette feltet har vore fokuset i denne avhandlinga.

I løpet av PhD-en blei to samplingsbaserte kollisjonssannsynsestimatorar utvikla.
Den første er basert på ein kombinasjon av Monte Carlo-simulering og eit Kalman-
filter, medan den andre er basert på kryssentropi-metoden. Begge estimerer sannsynet
for at eit skip vil kollidere med ei nærliggande dynamisk hindring, ved å ta om-
syn til den kinematiske usikkerheiten til hindringa. For den første estimatoren, blir
sampel av både posisjon og hastigheit frå sannsynstettleiken til hindringa brukt
til å estimere sannsynet, som vidare blir filtrert gjennom Kalmanfilteret for å få
det endelege estimatet. Kalmanfilteret gjer det mogleg å redusere den statistiske
variansen som kjem frå bruk av Monte Carlo-simulering. På den andre sida slit
metoden med å estimere låge kollisjonssannsyn, på grunn av at ein i samplinga
reknar hastigheiten som konstant, samt den såkalla dimensjonalitetsforbanninga.
Dette blei løyst gjennom bruk av den kryssentropibaserte estimatoren, som på ein
adaptiv måte kan konvergere mot den optimale tettleiken å sample frå, ved bruk
av iterativ optimalisering for å minimalisere Kullback-Leibler-divergensen mellom
den optimale og nåverande viktigheitstettleiken. På grunn av adaptiviteten kan
den andre estimatoren oppnå låg varians på kollisjonssannsynsestimata ved liten
reknemessig kostnad. Simuleringsstudiar er her vist for å verifisera dei to estima-
torane.

Samtidig blei den probabilistisk scenariobaserte modellprediktive regulatoren (PSB-
MPC) introdusert, basert på den opprinnelege scenariobaserte MPC-en (SB-MPC),
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Samandrag

med målet om å kunne ta omsyn til situasjonsspesifikk usikkerheit for kollisjon-
sunngåing. PSB-MPC-en bruker ein kollisjonssannsynsestimator for å oppnå prob-
abilistisk risikovurdering der kollisjonssannsynsestimata inngår i kostnadsfunksjo-
nen, noko som igjen aukar situasjonsforståinga til systemet. Algoritmen blei vidare
forbetra gjennom arbeidet i doktorgraden til å også kunne ta omsyn til intensjon-
susikkerheit for nærliggande dynamiske hindringar. Dette var mogleg ved å evaluere
sannsyna for fleire ulike manøverscenariar for kvar hindring. Ornstein-Uhlenbeck
(OU)-prosessen og siktelinjemetoden blei brukt til å forbetre prediksjonsdelen av
MPC-en, for å kunne ta omsyn til intensjonsusikkerheit. Simuleringsresultat er vist
for å demonstrere at metoden gradvis gir meir robust kollisjonsunngåing. Dette blir
endå meir tydeleg etter at ein parallellisert og effektiv implementasjon av algorit-
men blei utvikla. Denne innlemma kollisjonsunngåing med omsyn til både statiske
og dynamiske hindringar ved å ta i bruk ein grafikkprosessor i kostnadsevalueringa
til MPC-en. Den paralleliserte versjonen av PSB-MPC-algorithmen blei til sist
testa experimentelt ilag med eit dynamisk Bayesiansk nettverk brukt til intensjon-
sinferens for dynamiske hindringar, som demonstrerte at algoritmen kan brukast i
praksis.

Sist blei ein ny måte å samtidig estimere eit skip sin planlagte destinasjon og
langtidsprediksjon mot denne, utvikla. Metoden bruker ein maritim graf kombin-
ert med ein stykkevis OU-prosess og ein såkalla brumodell i ein Bayesiansk setting.
Den stykkevise OU-prosessen utnyttar informasjon om maritime trafikkmønster
gjennom den maritime grafen, for meir nøyaktige prediksjonar av typiske skips-
banar langs vanlege sjøvegar. Etter at skipet har nådd enden av banen langs den
maritime grafen, gjer brumodellen det mogleg å få baneprediksjonen til å kon-
vergere mot vurderte destinasjonar. Ved bruk av historisk data frå eit automa-
tisk identifikasjons system (AIS), blir det demonstrert at metoden yter betre enn
den nåverande forskningsfronten på emnet, med tanke på destinasjonsinferens og
kvaliteten på skipsprediksjonane.

Avhandlinga har bidratt til framgang på forskninga innan robuste system for kol-
lisjonsunngåing, for både situasjonsforståing- og beslutningstakingsaspektet på fel-
tet. Det finst derimot framleis betydelege utfordringar å løyse. Korleis ein skal jus-
tere parametrane for slike system, som for eksempel PSB-MPC-algoritmen, med
alle involverte modular til bruk i eit stort spekter av situasjonar med forskjellig
geografi og konfigurasjonar av dynamiske hindringar, er ikkje trivielt. Det vil her
vere viktig å utforske moglege metodar for å gjere slike system adaptive og i stand
til å lære frå erfaring, for å kunne ta dei i bruk på maritime fartøy.
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Chapter 1

Introduction

1.1 Motivation

The modern society we know today is dependent on automated technology or au-
tomation. Automation is found everywhere, ranging from the flushing mechanism
in our toilet, display light adjustment on the smart phone screen in our pocket to
robotic assembly lines and Artificial Intelligence (AI) based chat bots for customer
service. The common denominator of automation is the minimal human interven-
tion in a task, as the meaning of the word is to be self-governing, self-acting or
moving on its own. Automation was first taken into common use after Henry Ford
established an automation department in his car factory in 1947. The origins of
the word however goes millennia back to ancient Greece, where the similar word
automaton was used by Homer in the Iliad to describe self-governing machines or
automata.

It was here, in ancient times that the first known automated technology inven-
tions originated, where e.g. the Greek Ctesibius developed automatic water level
control using floats [1]. During the Industrial Revolution, centrifugal governors
were introduced as a feedback mechanism to control the speed of steam engines
[2]. In the latter part of the 20th century, the large advances in computer tech-
nology, especially during the Space race between the US and the Soviet Union,
paved the way for modern automatic control systems in a diverse set of applica-
tions such as electrical power plants, oil platforms, aircraft autopilots and space
satellites [3]. The introduction of computerized control made automation realistic
in all branches of society, and revived the concept of autonomy or autonomous
systems first commonly used in the 17th century. Autonomy is an extension of au-
tomation to describe an independent system, which can act, learn and adapt when
faced with new situations and uncertain environments. Another interpretation of
autonomy is the automation of tasks commonly performed by operators today. In
recent years it is starting to become a part of daily conversation when considering
the progress within topics such as self-driving cars [4], robotics [5] and drones [6].
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In 1922, the first success within maritime automation emerged with the installa-
tion of Elmer Sperry‘s gyropilot on the ship Munargo [7]. The invention introduced
automatic ship heading control through the use of a gyrocompass for feedback
[8]. Only 12 years after the first permanent installation, over 400 gyropilots were
in service. Since this stage, in tact with improved vessel propulsion systems and
maneuverability, they have gradually gotten more advanced automatic control sys-
tems, exemplified by the development of the dynamic positioning (DP) control
system for accurate station-keeping [9].

Research on maritime autonomy has over the years mostly been focused on au-
tonomous underwater vehicles (AUVs), as the difficulty of direct vehicle control
underwater is high due to limitations on communication between the vehicle and
the human operator. However, this is changing today, as increasing effort is be-
ing put also on autonomous surface ship technology. This origins from challenges
within the growing maritime sector, one of them being safety. The European Mar-
itime Safety Agency (EMSA) reported a total number of 15481 causality events
with a ship from 2014 to 2020 [10], where collision, contact and grounding con-
stituted 43% of these. The consequences of such events can be detrimental, with
human casualties, environmental and property damage being the result. Humans
are reported to be the main causality factor over 75% of the time [11]–[13], which
speaks the case for autonomous ships taking over many aspects of maritime traffic,
in order to increase safety at sea. Aside the safety aspect, autonomous ships offer
a number of benefits, including increased reliability and efficiency, and lower costs
during operation [13].

The emphasis on developing autonomous ship technology today is shown through
the increased effort in the maritime domain for testing and commercializing self-
driving vessels, both from the governmental and industrial side. In 2016, the De-
fense Advanced Research Projects Agency (DARPA) launched Sea Hunter, an
unmanned surface vehicle (USV) designed to detect and track submarines [14].
Together with the Finnish Finferries, Rolls-Royce demonstrated autonomous oper-
ation of the car ferry Falco in 2018, with the ferry shown in Figure 1.1. Around the
same time, the other Finnish company Wärtsilä conducts successful autonomous
docking and voyage with its solution onboard the Norwegian Folgefonna ferry. Later
in 2020 Kongsberg Maritime also demonstrated autonomous car ferry operation on
the Bastø Fosen VI ferry in the Oslofjord [15], and launches the zero emission Yara
Birkeland autonomous cargo ship project [16]. NTNU has also taken initiative of
experiments with autonomous ferry transport as a low cost alternative to manned
bridges through the Milliampere vessel [17], shown in Figure 1.2. Furthermore, the
university recently launched the Autoship Centre for Research based Innovation
(SFI) [18] focused on taking a leading role in autonomous ship development the
next eight years.

There is, however, still a lack of trust in self-governing vehicles, which is why none
are arguably permanently deployed without any form of human supervision today.
This is well argued, as autonomous systems must be able to work in a large vari-
ety of operating conditions. For such self-governing systems, challenges related to
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1.1. Motivation

Figure 1.1: The Finnish car ferry Falco. Courtesy of The Engineer [19].

Figure 1.2: The autonomous ferry prototype Milliampere developed at NTNU. Courtesy
of Kai Dragland [20].
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cyber-security, self monitoring, fault tolerance and complex machinery need to be
addressed in order to increase their thrustworthyness. In the context of autonomous
ships, the sea is a challenging environment to operate in, as the ship must avoid
collision with dynamic vessels, grounding hazards and other potentially harmful
obstacles. Simultaneously, the ship should to adhere to the Convention on the In-
ternational Regulations for Preventing Collision at Sea (COLREGS) [21]. In this
setting, there exists a multitude of uncertain factors that the ship must deal with.
One of the biggest uncertainties are associated with nearby vessels, where ques-
tions such as the following arises: Where is the other vessel is going? Will it adhere
to the COLREGS? Has the vessel seen the autonomous ship? Furthermore, the
sensor suite of the autonomous ship, used to detect and track nearby hazards, will
never be able to perfectly detect and track the hazards in an environment, and the
corresponding tracking uncertainty should also be taken into account. Thus, the
autonomous ship needs adequate situational awareness in addition to robustness
in its decision making algorithm, in order to tackle all sources of uncertainty while
adhering to the COLREGS. A robust and deliberate COLAV system is needed for
this, which has been the main research focus in this thesis. Here, the word delib-
erative refers to the COLAV algorithm planning efficient trajectories that adheres
to the COLREGS and avoid collision well before risky situations occur. The thesis
focus has been put specifically on how to capture uncertainties associated to nearby
vessel intents and kinematics in a more informed collision risk assessment for au-
tonomous ship collision avoidance. Furthermore, it has also been put focus on how
to combine this risk assessment with automatic anti-grounding and probabilistic
compliance to the COLREGS, all in a real-time feasible manner.

1.2 COLREGS

For car traffic there are fairly strict rule sets to follow, somewhat depending on the
country one drives in. If these rules are violated, the consequences are human ca-
sualties, property and environmental damage. This is because of cars having strict
constraints of following the set lanes on the road, being designed for high traffic
density, leading to limited maneuvering space. For traffic at open sea, the case is
often the opposite, where one can have large room for vessel maneuvering. Fur-
thermore, sea voyage inland, in narrow waterways and near port areas give rise to
specially challenging situations. The freedom of sea voyage gives many possibili-
ties, but also challenges in determining how vessels will travel locally, especially in
cases with other nearby vessels and land objects. An autonomous ship will greatly
benefit from information on how nearby vessels intends to maneuver, both with
regards to safety and efficiency.

The International Regulations for Preventing Collision at Sea were put forth by the
International Maritime Organization (IMO) in 1972 [21], which helps in addressing
the challenges with sea voyage by facilitating regulated sea traffic and to reduce
the risk for collisions between maritime vessels. Many aspects of different existing
rule sets were standardized by the introduction of COLREGS, which helped in
removing many sources of inconsistencies often leading to incorrect maneuvering
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Figure 1.3: COLREGS situations. From left to right: Overtaking, head-on and crossing
situations. The arrows indicate the correct behavior in each situation.

decisions and confusion at sea.

The COLREGS is divided into six parts (A to F) and has a total of 41 rules. Four
Annexes detailing technical requirements for things such as ship lights and their
shapes are also included. For collision avoidance at sea, Part B detailing rules on
steering and sailing for power driven vessels should be considered. From this part,
rules 6-10 and 13-18 are the most relevant. These are described below, with rules
13-15 illustrated in Figure 1.3.

Rule 6 Safe speed : Vessels shall travel with safe speeds in order to make maneu-
vering for collision avoidance easier and more effective, where one should
take into account the current situational information such as environmental
disturbances, visibility and traffic density.

Rule 7 Risk of collision : States that every vessel shall determine the if there
is a risk of collision, based on available means and information from the
current situation. It also explicitly states that assumptions shall not be
made based on scanty or small amounts of information.

Rule 8 Action to avoid collision : Actions taken to avoid collision shall be readily
observable for nearby vessels and taken in ample time, which implies that
speed or course changes taken shall be large enough. Course changes should
here be prioritized over speed changes for visibility, if enough free space is
available.

Rule 9 Narrow channels : A vessel driving along a narrow channel or fairway
must stay as near the starboard limit of the channel or fairway as is safe
and practicable.

Rule 10 Traffic separation schemes : When using a traffic separation scheme, a
vessel shall follow the general direction of the traffic lane it is associated
with, keep clear of the separation line, and when leaving a lane, doing so
at as small an angle to the general traffic direction as possible.
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Rule 13 Overtaking : A vessel is classified as overtaking if coming up to another
vessel from a direction more than 22.5 degrees abaft her beam. If this is
the case, the overtaking vessel shall keep clear of the overtaken vessel.

Rule 14 Head-on: When two vessels meet on reciprocal or near reciprocal courses
such that there is a risk of collision, each vessel shall change their course
to starboard such that they pass each other with the other vessel on the
port side.

Rule 15 Crossing : When two vessels are crossing with speed and course configu-
ration such that there is a risk of collision, the vessel with the other on its
starboard side is supposed to keep clear, and avoid crossing ahead of the
other vessel if possible.

Rule 16 Action by give-way vessel : The vessel supposed to give-way shall if possi-
ble perform substantial actions early to keep well clear of the other vessel.

Rule 17 Action by stand-on vessel : The vessel with stand-on role shall nominally
keep its course and speed, but should take action to avoid collision if the
give-way vessel does not take appropriate action in order to comply with
the rules. Furthermore, if the situation considered is crossing, the stand-on
vessel shall if possible not alter its course to port when the other vessel is
on its port side.

Rule 18 Responsibilities between Vessels : A power-driven vessel shall during voy-
age keep clear of:

(i) A vessel not under command
(ii) A vessel with restricted maneuvering capabilities
(iii) A fishing vessel
(iv) A sailing vessel

Of the listed rules, 6-7, 9-10 and 18 are included for completeness, which should
be adhered to by a COLAV system in a fully functioning autonomous ship. In the
literature, however, mostly rules 8 and 13-17 have been focused on.

Following these rules blindly in any type of situation is not sufficient, which was
shown in [22]. Here, it was demonstrated that the existence of agreements between
captains and local unwritten rules went contrary to the rules specified by COL-
REGS. Furthermore, COLREGS is open to disagreements making it unsafe to act
only based on your own interpretation of the situation [23], [24]. This can be gauged
by examining the list of rules described here, where 13-16 only involve two vessels
and are vague with respect to quantifying how the speed and course of give-way
vessels shall be decided.

Autonomous ships that are to operate at sea thus need to take into account the
intentions of other vessels, when attempting to adhere to the COLREGS. For sea
voyage, rigidly sticking to the rules can be dangerous and inefficient if the en-
countering vessel facing the autonomous ship violates them. Vessels involved in a
COLREGS situation can have different interpretations on what rules to apply, and
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different inclinations towards following them. This makes it paramount to have
adequate situational awareness for the autonomous ship with respect to inferring
nearby obstacle ship intentions. One can then better assess the risk level in any
hazardous situation in adherence with rule 7 and thus make more deliberate ma-
neuvering decisions.

1.3 Literature Review

In this section, a brief historical overview on the results within the field of maritime
COLAV is given, with the aim of providing context to the main research questions
in this thesis. A more complete overview of the literature and proposed methods
can be found in [25]–[31].

Research within maritime collision avoidance began after World War II in the
1960s [26], shortly after the newly emerged radar technology was also starting to be
utilized on civilian vessels. At this stage and until the 1980s, studies were qualitative
and focused on collision regulation interpretation, ship decision support and plot
aid systems for officers on watch. An example is Mitrofanov [32], who developed an
analogue computer which used manually input radar data to calculate a set of safe
headings. The computation was based on a mathematical model using the involved
vessel‘s speed and course, where the collision-free headings were represented as a
non-shaded region on a heading display. Further ahead in the 1970s, the Sperry
“collision avoidance system” also introduced interpretation of the radar data, to
display predicted areas of danger for the officer [33].

From the academic side, more theoretical approaches to COLAV from within game
theory [34]–[36], optimal control [37]–[39], and geometry-based models (the room-
to-maneuvre principle) [40] were starting to emerge in the 1970s and 1980s. The
latter approach was a precursor to the common Velocity Obstacle (VO) COLAV
method [41], and was one of the first methods in the field to consider both heading
and speed changes in COLAV. Furthermore, the game-theory based approach by
Cannell [36] was to the author‘s knowledge the first COLAV study to also consider
COLREGS. However, it was not until Dove and colleagues [42] proposed a method
for collision avoidance at sea where the vessel could govern itself without human
interaction, that the research expanded its focus from not only decision support
systems but also to automatic COLAV for vessels.

More complex methods were proposed for COLAV during the 1990s and 2000s,
using fuzzy logic [43], [44], Nonlinear Programming (NLP) [45], [46], genetic and
evolutionary algorithms [47], [48], and articifial potential fields [49], thus advancing
further the state-of-the-art. Sato [50] introduced a COLAV method which used
radar and infrared imaging for measuring the course of nearby target vessels. Their
approach demonstrated that such sensor technology can give improved situational
awareness for collision avoidance.

A sense-act behaviour-based control architecture using multiobjective optimiza-
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tion for COLAV was proposed by Benjamin and Curcio in 2004 [51], and later
demonstrated in 2006 as the first closed loop experimentally verified COLAV from
academia [52]. They did however use communication between the vessels involved
in the sea trials. For the method, each of the COLREGS rules 8 and 14-16 were
captured by specific behaviours encompassed by their own objective functions.
When multiple rules were active, the multiobjective optimization found the opti-
mal weighting of the behaviours to decide which course and speed to apply for the
vessel.

On-wards to the late 2000s, the concept of planning ahead in a sense-plan-act
decomposition for deliberate and hybrid COLAV emerged [53]–[56]. Loe [55] devel-
oped a two-layered hybrid COLAV using A*-search and Rapidly-exploring Random
Trees (RRTs) [57] as a top level global or deliberate planner, with the Dynamic
Window (DW) algorithm [58] as a lower level local or reactive planner. The method
was verified to comply with COLREGS rules 14-16. A three-layered approach was
introduced by Casalino [56] in 2009, further decomposing the COLAV problem
by having three layers with specialized focus on global static obstacle avoidance,
local dynamic obstacle avoidance and local reactive static and dynamic obstacle
avoidance, respectively. COLREGS were however not considered.

In 2014, Kuwata and colleagues developed the sense-act VO algorithm for maritime
dynamic and static COLAV [41], which was experimentally verified to adhere to
COLREGS rules 13-16. The method computes a feasible velocity set in which the
own-ship does not collide with nearby vessels nor grounding hazards. COLREGS
is taken into account by expanding the VO associated with an obstacle in specific
directions to consider the relevant traffic rule. Kinematic uncertainty was handled
by expanding the VO to account for a worst case scenario. Kuwata‘s COLAV was
embedded into the Control Architecture for Robotic Agent Command and Sensing
(CARACaS) autonomy suite developed at the NASA Jet Propulsion Laboratory
[59], through the Autonomous Maritime Navigation (AMN) project [60]. A version
of VO taking consideration of nearby vessel kinematic uncertainties were considered
already in 2004 [61]. However, the avoidance behavior of the obstacles were assumed
known, which will not be the case unless vessel-vessel communication is used.

Svec [62] introduced a two-layered approach with a deliberate lattice-based plan-
ner and a reactive COLREGS-compliant planner for COLAV in 2013. The method
was demonstrated to also be COLREGS-compliant with rules 13-16. Their work
was one of the first studies to consider probabilistic risk assessment in maritime
COLAV, although limited details on the implementation nor methods used were
given. A* search is also used by Blaich[63] and Schuster [64] on an occupancy
grid to plan collision-free waypoints. The methods employ a non-symmetrical ship
domain [65] in order to make the COLAV algorithm plan COLREGS-compliant
routes. For [64], radar-based detection and tracking in COLAV was demonstrated
in sea trials, although no convincing results with respect to COLREGS adherence
were given. The work in [63] was later extended by Blaich in [66] to calculate oc-
cupancy probabilities for obstacles in two-dimensional space by using a numerical
approximation, considering their kinematic uncertainty from tracking system in-
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formation. As a large part of the contributions to maritime autonomy and COLAV
came from the military side during the 2000s and 2010s [59], [60], [67], the studies
[62], [63] was a breath of fresh air in terms of contributions to the topic from the
academia again.

Agrawal and Dolan [68] came up with a field-test verified A* search path planner
for COLAV in 2015, which attempts to find a COLREGS-compliant and collision-
free path with respect to both dynamic and static obstacles. To predict nearby
dynamic obstacle paths, the planner employs Monte-Carlo (MC) simulation using
fuzzy logic and the path history of the obstacle to find a set of probable paths, where
the most probable one is considered for collision avoidance. However, the method
does not consider the prediction uncertainty associated with dynamic obstacles.
With the deliberate aspects of COLAV gaining increased focus in the 2000s and
2010s, [68] were one of the studies not conforming to the common assumption of
constant speed and course for nearby dynamic obstacles in the prediction horizon.

Predictions allowing maneuvering for dynamic obstacles were also utilized in [69],
where A* search was applied to collision-free path planning. An intention based
motion model was used for dynamic obstacles, using historic data in order to clas-
sify a vessel as COLREGS-compliant or not, and which also incorporated reactive
COLAV. Details on this model were again however not given. This work was to
the author‘s knowledge one of the first to consider dynamic obstacle intentions in
maritime COLAV.

Johansen, Perez and Cristofaro [70] introduced the Scenario-based Model Predic-
tive Control (SB-MPC) for COLAV in 2016, which employs brute force cost evalu-
ation of a discrete set of own-ship trajectories or scenarios to find an optimal surge
and course modification. These modifications are then used to alter the input ref-
erences for the ship autopilot. In the study, the motion of dynamic obstacles are
predicted with a deterministic CV model. However, the COLAV is versatile in that
the MPC problem can be non-convex, nonlinear and mixed integer with constraints,
as it does not depend on a complex solver for the solution. This gives freedom in
parameterizing the problem, selecting cost functions and prediction models for the
own-ship and obstacles. The algorithm has been experimentally verified in several
closed loop sea trials [71]–[73] to be compliant with COLREGS rules 13-17. Other
MPC-based approaches to COLAV in the later years include Abdelaal [74]–[76],
which developed a trajectory tracking Nonlinear MPC for COLAV with dynamic
and static obstacles as inequality constraints. How the NMPC scales with increas-
ing situational information is not discussed however.

A global and local path planner was developed by Candeloro and colleagues [77]
in 2017, using Voronoi Diagrams to generate a set of static obstacle collision-free
waypoints, from where a continuous path is generated using Fermat‘s Spiral. The
method considers local replanning windows for taking detected dynamic and static
obstacles into account, and predicts dynamic obstacle motion with the Constant
Velocity (CV) model [78]. A convex hull representing the dynamic obstacle uncer-
tainty up until time to Closest Point of Approach (CPA) is created from using the
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position estimates and error covariances from a Kalman filter (KF), which is then
regarded as an area to avoid in the planner. This may however be overly conser-
vative, due to the unrealistic uncertainty growth in the CV model [79]. How the
local replanning run-time scales with increasing window size, dynamic and static
obstacles is not considered.

Deep Reinforcement Learning (RL) obstacle avoidance for COLAV was proposed
by Cheng in 2018 [80], where obstacle collisions were formulated as negative re-
wards in the RL agent, although no COLREGS was considered. RL or deep learning
approaches were also proposed in [81], [82]. Also in 2018, Chiang and Tapia [83] in-
troduced a static and dynamic obstacle considerate path planner with COLREGS-
compliant COLAV based on RRTs, where a joint simulator is used to predict both
the own-ship and dynamic obstacle motion. Potential fields are used in the pre-
diction to ensure that all the vessels have collision-free paths with respect to each
other and static obstacles. The method is shown to have beneficial run-times fea-
sible for real-time. However, the underlying assumption in the prediction is that
ships will always perform deterministic COLREGS-compliant maneuvers if pos-
sible, which is not necessarily true in practice. Zaccone and colleagues [84] also
developed a RRT-based COLAV, with the main aim of it being used as decision
support. Newer proposals for hybrid COLAV based on MPC has been shown in
[85] with compliance to COLREGS rules 8, and 13-17.

The work in this PhD started in 2019, and at this point the research has become
more mature, with a rich set of algorithms developed for automatic COLAV, where
multiple of these are experimentally verified in closed loop tests [41], [52], [62], [68],
[69], [73], [86]. One of the aspects still missing in COLAV is the situational aware-
ness part [28], [87], as most studies have put focus on the control part or own-ship
modelling part. The majority of algorithms proposed for maritime COLAV assume
constant velocity for dynamic obstacles in their predictions. Only a few considers
the prediction uncertainty [66], [69], [77], [88]. Furthermore, actually considering
what the intent of nearby dynamic obstacles are in any hazardous situation has
only been done in a few recent studies [69], [89], [90]. For air traffic and road vehicles
however, there exist studies on intention-aware COLAV, such as in [91], [92].

1.4 Research Questions

Based on the above literature overview on maritime COLAV, three open research
questions RQ1 - RQ3 are formulated below. These are related to the topics of
collision risk assessment, dynamic obstacle predictions and intention inference, and
real-time feasibility of COLAV.

RQ-1: Collision Risk Assessment

Previous studies up until 2019 had little focus on adequate collision risk assessment
in COLAV considering uncertainties present in GNC [28], except from a couple of
studies [66], [69], [77], [88], [89]. For these studies, there are a few limitations.
The CV assumption is used in [66], [77], [88], which is conservative and not valid
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in most hazardous situations, as vessels are expected to maneuver in order to
avoid grounding and to comply with COLREGS. This assumption will thus give
conservative risk estimates in a deliberate COLAV, especially when considering
longer time horizons, and could lead to infeasibility as the uncertainty propagation
blows up with time [79].

Cho [89] uses a Constant Turn (CT) model for obstacles in the risk assessment,
which will have the same issue with less realistic trajectory predictions and large
increases in the uncertainty propagation. However, the method represents a step
towards more informed risk assessment, as dynamic obstacle intention inference
is also considered, and combined with a reachable set based collision probability
estimation approach. A priori precomputed uncertainties for a given scene, using
MC simulation and polynomial regression are used as basis for the collision risk
estimation in [69]. This is also a limitation, as the uncertainty will not be rep-
resentable in other collision situations with varying configurations of static and
dynamic obstacles.

Thus, there are improvements to be made in collision risk assessment for COLAV,
with respect to considering maneuvering vessel models with adequate uncertainty
representations not exploding with time, and also the trade-off with the compu-
tational efficiency of the method. The latter topic has not been discussed in any
of the above mentioned studies, and will be important when evaluating the risk
with increasing numbers of own-ship trajectories, static and dynamic obstacles.
Addressing these limitations can result in better adherence with COLREGS rule
7, which states that scanty information shall not be used for performing collision
risk assessment.

RQ-2: Predictions and intention inference

The situational awareness part of COLAV, with the improvement of nearby dy-
namic obstacles predictions and consideration of their intentions and associated
uncertainty, has mostly been neglected in the literature, except from a few studies
[68], [69], [77], [89]. This is closely related to the above research question on collision
risk assessment. Again there are limitations related to modelling and uncertainty
consideration in the predictions. Agrawal [68] predicts multiple probable obstacle
path, and chooses the most likely one based on ad hoc set fuzzy weights. However,
no uncertainty is considered for the path. The problem with precomputed uncer-
tainties as in Shah [69] was mentioned under RQ-1. Furthermore, little details on
the obstacle motion model is provided in [69]. Cho [89] considers a CT model with
uncertainty, but the predictions have limited validity over longer time horizons.
This is, as discussed in the above section, also the case for CV-based predictions
with or without uncertainty, as in [66], [77], [88].

These limitations creates a gap to be filled with COLAV methods that can more
accurately predict multiple alternative obstacle maneuvering scenarios and use the
associated intention and kinematic uncertainty, resulting in elevated situational
awareness. Since vessels are expected to maneuver in hazardous situations, and
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more so when constrained by grounding hazards and multiple nearby dynamic ob-
stacles, this is required for properly informed autonomous ship decision making.
Thus, improving on the prediction part in a deliberate COLAV to take into ac-
count vessel maneuvering, uncertainty and also their intents, has been a central
focus in this thesis work. This can give better capabilities for planning safer and
more efficient trajectories, avoiding nearby hazardous objects while adhering to the
COLREGS when the situation admits it.

RQ-3: Real-time feasibility

Lastly, the topic of real-time feasible deliberate COLAV is considered. This is
especially relevant for COLAV where longer prediction horizons and larger amounts
of information should be considered. How deliberate COLAV algorithms scale with
increasing amounts of possible avoidance decisions, situational information such
as nearby vessels behaving in multiple various prediction scenarios, and grounding
hazards, have not been formally addressed in the studies [68], [70], [74], [76], [77],
[85], [93], except from [83]. Chiang [83] shows run-time results compared with
other methods for increasing dynamic obstacles, and also for varying time steps
considered. The other mentioned methods do not consider such an analysis with
respect to changes in the environment. Furthermore, as many of these methods
employ a simplistic CV prediction for dynamic obstacles [70], [74], [76], [77], [85],
[93], the computational demand will be lower than if more sophisticated predictions
are used, as e.g. the joint forward simulator in [83].

Thus, there is work to be done on thorough investigation of run-time properties
for a deliberate COLAV method which explicitly takes into account increasing
amounts of both own-ship decisions and situational information.

1.5 Autonomous Ship System Architecture

The challenges put forth by grounding hazards and uncertainties in dynamic obsta-
cle tracking, vessel intentions, COLREGS situation interpretation and adherence,
put requirements on how the system architecture for the autonomous ship should
be designed.

A simplified example architecture for the autonomous ship which addresses these
challenges is shown in Figure 1.4. Here, the COLAV system is composed of three
layers, as in a hybrid structure. It uses feedback from a situational awareness sys-
tem and the vessel sensor and navigation suite. The top level COLAV planner is
typically run at the start of the mission, and calculates a global path for the ship
to follow, using the objective and e.g. static obstacle information. Information on
dynamic obstacles and updated static obstacles are used by the mid level COLAV
planner to modify the nominal trajectory output from the top level planner if
necessary. Lastly, this modified path goes through the low-level reactive COLAV
which can plan emergency avoidance maneuvers if necessary. The sampling time in
this COLAV hierarchy typically decreases as one moves down the layers. The top
level planner is typically being run only once per mission or if new objectives are
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received, while the mid-level planner can be run regularly depending on the predic-
tion horizon it considers. The low-level COLAV has the fastest sampling time due
to it being designed for reacting to cases or new information the mid-level COLAV
has not accounted for.

It is also possible to go towards a more integrated approach, with one COLAV
module for considering multiple aspects of the problem, such as a merged middle
and lower-level COLAV which takes in a nominal static obstacle free trajectory from
a top level planner. This has been the main focus for COLAV in this thesis work,
where the Probabilistic Scenario-based Model Predictive Control (PSB-MPC) has
been developed [94]. The PSB-MPC can serve as both mid and low-level COLAV
depending on its prediction horizon and sampling time.

For the situational awareness part, it is necessary to have a module that can detect
and track dynamic obstacles reliably, typically named the target tracking system in
the literature [95], originating from its military applications. The track estimates
on targets or dynamic obstacles and other information is then used by an infer-
ence module which estimates their intent towards e.g. COLREGS adherence and
destination target [96]. This can then be used in the mid and low-level COLAV
for better decision making. With respect to grounding hazards, there is also the
need for a managing unit which can process sea map data in typical Electronic
Navigational Chart (ENC) format, vessel sensor and navigation data, and weather
information to output updated static obstacle data for the autonomous ship.

Other aspects not mentioned in this architecture includes modules such as a self-
monitoring system for cyber-security, ship integrity, sensor and navigation systems.
This is omitted here as the focus in this thesis has been more exteroceptive, as
COLAV is considered.

1.6 Contributions and Outline

The thesis is structured into nine chapters based on the contributions made during
this PhD. The outline is given in chronological order based on the six publications
where I have been the main author, which comes after this introductory chapter
and Chapter 2 on preliminaries. Lastly, a discussion with concluding remarks on
the thesis work and how it relates to the research questions, reflections on the work
and suggestions for future research directions are given in Chapter 9. The following
text gives an overview of the chapters, including the publications on which they
are based on, their topic, and the main contributions therein.

Chapters 3 - 5 represent the incremental development of Collision Probability Es-
timators (CPEs), for use in COLAV that has been done throughout the PhD work,
as a way of taking into account uncertainties present in situational awareness in
hazardous situations. Furthermore, Chapter 4 represent a first step for using dy-
namic obstacle intent information in an MPC framework, which Rothmund et. al.
embodies in an intent inference module in [96]. Chapters 3 - 7 represent incremental
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Figure 1.4: Example system architecture for the autonomous ship.
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improvements of the Probabilistic Scenario-based Model Predictive Control (PSB-
MPC) as steps towards a risk-based COLREGS-compliant COLAV with adequate
situational awareness for real-time use on maritime vessels, experimentally verified
in Chapter 7. Lastly, Chapter 8 details the work on destination inference and long-
term prediction for maritime vessels, was pursued during the author’s research stay
in La Spezia during the Spring 2022.

1.6.1 Preliminaries (Chapter 2)

This chapter contains information on preliminary aspects used throughout the
thesis. This includes mathematical concepts used throughout the text, an overview
of different models used in the PhD, information on sampling based estimation
techniques, and an overview of the Scenario-based MPC (SB-MPC) on which large
parts of this work is based on.

1.6.2 First Edition of Collision Risk Assessment in a
Probabilistic Scenario-based MPC (Chapter 3)

[97] T. Tengesdal, E. F. Brekke and T. A. Johansen, "On collision risk assess-
ment for autonomous ships using scenario-based MPC", IFAC-PapersOnLine,
vol. 53, no. 2, pp. 14509-14516, 2020, 21st IFAC World Congress, Berlin.

The chapter introduces a way of dealing with the kinematic uncertainty present
when relying on track estimates of nearby dynamic obstacles in COLAV. This
uncertainty must be accounted for in robust COLAV systems to ensure both safe
and efficient operation of the vessel in accordance with the traffic rules. To enable
this, a COLAV system built on the Scenario-based Model Predictive Control (SB-
MPC) with dynamic probabilistic risk treatment is presented. The system estimates
the probability of collision with all nearby obstacles using a combination of Monte
Carlo simulation (MCS) and a Kalman Filter (KF). A probabilistic collision cost
is then used in the MPC to penalize risk-taking maneuvers. Simulation results
show that the proposed method may provide increased robustness due to increased
situational awareness, while also being able to efficiently follow the nominal path
and adhere to the traffic rules.

The novelty presented in this chapter is related to the developed Collision Proba-
bility Estimator (CPE), which can take dynamic obstacle kinematic uncertainty in
both position and velocity into account. A strategy based on using MCS for esti-
mating a defined collision probability over a time step, and then filtered through a
KF to reduce statistical sampling noise is new in the literature. The probability is
defined through the event of collision between the own-ship and an obstacle at any
time in the future, thus also making the probability predictive. This requires sam-
pling both position and velocity in the MCS from the four-dimensional Probability
Density Function (PDF) describing the obstacle state, where constant velocities
until the time of collision is assumed. Because the MCS output is filtered by the
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KF, it reduces the need for large sampling numbers in order to reduce statisti-
cal variance, making the CPE fast. The first version of the Probabilistic SB-MPC
(PSB-MPC) then uses these probability estimates in a less ad-hoc manner in its
collision risk assessment.

1.6.3 Second Edition of Collision Risk Assessment in a
Probabilistic Scenario-based MPC with Obstacle Intent
Consideration (Chapter 4)

[98] T. Tengesdal, T. A. Johansen and E. F. Brekke, "Risk-based autonomous
maritime collision avoidance considering obstacle intentions", in 2020 IEEE
23rd International Conference on Information Fusion (FUSION), 2020.

A robust and efficient COLAV system for autonomous ships is dependent on a
high degree of situational awareness. This includes inference of the intent of nearby
obstacles, including compliance with traffic rules such as COLREGS, in order to
enable more robust decision making for the autonomous agent. In this chapter, a
generalized framework for obstacle intent inference is introduced. Different obstacle
intentions are then considered in the second version of the PSB-MPC COLAV
algorithm using an examplatory intent model, when statistics about traffic rules
compliance and the next waypoint for an obstacle are assumed known. Simulation
results show that the resulting COLAV system is able to make safer decisions when
utilizing the extra intent information.

The chapter presents several contributions. The first is the definition of a general-
ized framework which can be used for maritime obstacle intent inference, through
the use of Bayesian networks. Furthermore, the CPE introduced in the previous
chapter is improved to take into account vessel maneuvering in the estimation, by
defining the collision probability through the event that a collision occurs over the
next prediction time step in the PSB-MPC. This makes the collision probability
estimation less conservative.

The main contribution is the introduction of the new PSB-MPC version, which
can use the updated CPE and obstacle intention information for better decision
making. This is because it can take into account obstacle kinematic uncertainty for
maneuvering obstacles, a priori obstacle COLREGS compliance information and
future waypoint information. A side contribution here is the enhanced prediction
scheme for the PSB-MPC, which in order to accomodate intent information allows
for multiple alternative maneuvering scenarios for each dynamic obstacle, through
the use of an Ornstein-Uhlenbeck (OU) process.
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1.6.4 Third Edition of Collision Risk Assessment in a
Probabilistic Scenario-based MPC Using The
Cross-Entropy Method (Chapter 5)

[94] T. Tengesdal, E. F. Brekke and T. A. Johansen, "Ship collision avoidance
utilizing the cross-entropy method for collision risk assessment", IEEE Trans-
actions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11148-11161,
2022.

In this chapter, a new approach for ship-ship collision probability estimation based
on the Cross-Entropy (CE) method is introduced, which can be treated as an adap-
tive importance sampler. It has the advantage of attaining low variance estimates
of small collision probabilities, which will most often be the case in realistic sce-
narios. The CE-based CPE is used in the risk assessment of the PSB-MPC, and
tested in a simulation study, where the total system is validated. Simulation results
show that the MPC is able to utilize the new CPE for better risk assessment than
the original version, in order to make safer decisions in close quarter situations and
cases where nearby obstacles make unexpected maneuvers. It is also shown that
when all vessels involved use the PSB-MPC, situations are resolved according to
the traffic rules in a safe manner.

The CE-based CPE is the main contribution, which compared to the current state
of the art can produce low variance probability estimates at reasonable compu-
tational cost, especially for smaller collision probabilities. The method is bench-
marked against other CPEs, such as the one developed in the start of this PhD
work in Chapters 3 and 4, and other sampling based methods. Because of the
low variance estimate property, it will lead to decreased sensitiveness in decision
making when used in the COLAV system for risk assessment, which is desirable.

1.6.5 Real-time Feasible Probabilistic Scenario-based MPC
(Chapter 6)

[99] T. Tengesdal, T. A. Johansen, T. D. Grande and S. Blindheim, "Ship Col-
lision Avoidance and Anti Grounding Using Parallelized Cost Evaluation in
Probabilistic Scenario-based Model Predictive Control", IEEE Access, 2022.
Submitted.

The ability to effectively process large amounts of information in reasonable time
will be important for robust pro-active collision avoidance (COLAV) algorithms.
Failure to do so can lead to collision, and can be compared to lack of proper super-
vision from officers on watch. An implementation of the PSB-MPC on a Graphical
Processing Unit (GPU) is here presented for static and dynamic obstacle avoid-
ance. The MPC can read and preprocess ENC data into a low computational cost
representation of static obstacles for anti-grounding purposes. Simulation results
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demonstrate that the COLAV method can comply with COLREGS and keep safe
distance to grounding hazards and nearby vessels with relatively low computational
cost. Corresponding run-time results presented demonstrates that the algorithm
utilizing parallel processing performs better than the alternative for increasing
numbers of own-ship control behaviours, nearby static and dynamic obstacles, and
dynamic obstacle prediction scenarios considered.

The contribution in this chapter is thus the parallelized implementation of the PSB-
MPC on a GPU platform which incorporates both dynamic obstacle avoidance and
anti-grounding. The parallelized computation makes it possible for the COLAV to
consider larger amounts of situational awareness information in the form of obstacle
prediction scenarios considered, and possible own-ship avoidance decisions.

1.6.6 Full-scale Experiments With an Obstacle Intention-Aware
Probabilistic Scenario-based MPC (Chapter 7)

[100] T. Tengesdal, Sverre V. Rothmund, Erlend A. Basso, T. A. Johansen, and
H. Schmidt-Didlaukies, "Obstacle Intention Awareness in Automatic Colli-
sion Avoidance: Full Scale Experiments in Confined Waters", Field Robotics,
2022. Submitted.

In this chapter, full-scale experiments with a dynamic obstacle intention-aware
PSB-MPC-based COLAV system are presented. The COLAV system consists of
the PSB-MPC for trajectory planning, dynamic obstacle avoidance, and anti-
grounding, with a Dynamic Bayesian Net (DBN) for inferring obstacle intentions
online. The experiments put emphasis on hazardous situations where intention in-
formation is both useful and necessary to avoid high collision risk. Experimental
results demonstrate the validity of the proposed COLAV scheme, with adherence
to the COLREGS rules 7-8 and 13-17 in a diverse set of situations.

The main contribution of the chapter is the experimental validation of an inten-
tion inference module for use in deliberate COLAV planning, bridging the gap
between the situational awareness and decision making aspects of the problem at a
higher degree. Intention information in the form of probabilities for different alter-
native obstacle prediction scenarios, its inclinations of giving way and performing
COLREGS-compliant maneuvers, are used in the PSB-MPC for more informed
decision making.

1.6.7 Vessel Destination and Kinematics Prediction Using a
Maritime Traffic Graph (Chapter 8)

[101] T. Tengesdal, L. Millefiori, P. Braca, and E. F. Brekke, "Joint Stochastic
Prediction of Vessel Kinematics and Destination based on a Maritime Traf-
fic Graph", in 2nd International Conference on Electrical, Computer, Com-
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munications and Mechatronics Engineering (ICECCME), Maldives, 2022. In
press.

Maritime traffic increases every year, and therefore also the amount of traffic data
from the Automatic Identification System (AIS). Utilizing these data on traffic pat-
terns and possible destinations for long-term vessel prediction is an important way
of gaining maritime situational awareness (MSA) for use in the decision making in
autonomous ships, such as collision avoidance algorithms, which can reduce colli-
sion risk during voyage. In this chapter, a destination inference method based on
piecewise Ornstein-Uhlenbeck (OU) processes for predicting vessel motions toward
a set of destinations is detailed. The mean velocities of the processes are inferred
through the creation of a maritime graph that represents the major traffic pat-
terns in the area of consideration. Tested on a real-time AIS dataset, the method
is shown to perform better than current state-of-the art methods in destination
inference as it indirectly takes land and passed destinations into account.

The usage of a maritime graph for capturing traffic patterns in historical AIS data,
in a Bayesian vessel destination inference and kinematic state prediction method, is
the main contribution. Furthermore, the combination of a traffic pattern informed
piecewise OU process and an Equilibrium Reverting Velocity (ERV) bridge model
for the vessel prediction is new, and allows for taking land indirectly into account.
This is because the OU model part predicts the vessel kinematics along the mar-
itime graph, which captures major sea lanes in the considered geographical area of
interest. The ERV bridge model then predict the vessel convergence towards the
destination. As current state of the art [102], [103] have only used a bridge model
for the vessel from the start to endpoint, the errors for long-term prediction will
be larger than for the proposed approach, as is shown in the chapter.

The work in this chapter is not directly linked to the development of the PSB-MPC
presented in the foregoing chapters, but showcases how maritime traffic information
can be combined with Bayesian inference to improve vessel kinematics prediction
for increased situational awareness. A natural step-up would then be to incorporate
the method in the prediction framework of the PSB-MPC, for deliberate COLAV
planning at sea with longer time horizons.

1.6.8 Other Publications

I also contributed on the following paper

[96] S. V. Rothmund, T. Tengesdal, E. F. Brekke, and T. A. Johansen, "In-
tention modelling and inference for autonomous collision avoidance at sea",
Preprint submitted to the Journal of Ocean Engineering, 2022.

which builds upon results in Chapter 4 for developing an intention inference module
for use in the PSB-MPC and other compatible COLAV methods. It is included in
the Appendix of this thesis.
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The method proposed in the above publication uses a dynamic Bayesian network
(DBN) to model and infer the intentions of other ships in open waters based on their
observed real-time behavior. Multiple intention nodes are included to describe the
different ways a ship can interpret and conflict with the behavioral rules outlined in
COLREGS. The prior probability distributions of the intention nodes are adapted
to the current situation based on observable characteristics such as location and
relative ship size. The resulting model is able to identify situations that are prone
to cause misunderstandings and infer the state of multiple intention variables that
describe how the ship is likely to behave.
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Chapter 2

Preliminaries

2.1 Introduction

This chapter provides descriptions of mathematical concepts, models, systems and
algorithms commonly used or referred to in this thesis.

2.2 Sampling-based Integration

For continuous random variables x distributed according to some PDF p(x,θ) with
parameter θ, integrals are a means for extracting interesting properties from the
distribution, such as the mean and variance. In the context of this thesis, estimating
probabilites of collision has been central, which also involve an integral over the
considered PDF. Consider the following integral

I =

∫
R
g(x)p(x,θ)dx, (2.1)

where g(x) is a vector-valued function of x ∈ Rnx with dimension nx, and R is
the domain of integration. If g(x) = x and R = Rnx , the value of I will be the
ubiquitous expected value of x under the PDF p(x,θ). On the other hand, if the
function is equal to one, i.e. g(x) = 1, the value of (2.1) will be a probability [104],
[105]. As the latter case has been central in this PhD topic, integrals on the form

Ip =

∫
R
p(x,θ)dx, (2.2)

is considered here. For multivariate distributions, solving (2.2) analytically or nu-
merically can often be intractable. The choice fell on using sampling-based estima-
tors in this thesis, due to their flexibility and simplicity, with MCS and Importance
Sampling (IS) being two central methods here, outlined below.

2.2.1 Monte Carlo Simulation

MCS or MC integration [106] is a common way of estimating the value of (2.1) and
(2.2), when analytical solutions are hard to find or intractable, or when numerical
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approximations are inaccurate. Applied to (2.2), the method involves sampling Ns

independent and identically distributed random variables (i.i.d.) {x}Ns
z=1 directly

from the PDF p(x,θ), and estimate the integral as

ÎMCS
p =

1

Ns

Ns∑
z=1

I{xz ∈ R} (2.3)

where I{xz ∈ R} ∈ {0, 1} is an indicator variable determining whether or not
the sample xz is inside the integration domain R. The estimator is unbiased, as
increasing sampling numbers will in theory ensure convergence to the true value,
i.e. Ns → ∞, Îp → Ip. The downside of MCS is the requirement of being able to
sample directly from p(x,θ), which can be intractable. Furthermore, a large sample
number Ns is often required to ensure convergence.

2.2.2 Importance Sampling

In many cases, depending on how the distribution of x looks, it can be inefficient or
intractable to use MCS, sampling directly from p(x,θ). The Importance Sampling
(IS) approach can then be a viable approach [107]. Note that the probability (2.2)
can be written as

Ip =

∫
R

p(x,θ)

λ(x,ν)
λ(x,ν)dx (2.4)

where λ(x,ν) is the importance density parameterized by ν and ωz(θ,ν). Then,
sampling {x}Ns

z=1 from the importance density instead of the original integrand
PDF, the IS estimate can be obtained as

ÎMCS
p =

1

N

N∑
z=1

I{xz ∈ R}ωz(θ,ν) (2.5)

where ωz(θ,ν) = p(xz,θ)
λ(xz,ν) are the so-called importance weights. The importance

density should be chosen such that it has support everywhere p(x,θ) > 0 inside R.
The downside with IS is that it can be hard to select a feasible importance density,
with proper support and ease of sampling from.

2.3 Coordinate Frames

States and measurements required for automatic control of the own-ship along de-
sired trajectories, are referenced to specific coordinate systems. When using GPS,
position measurements are given relative to an earth-centered frame, whereas mea-
surements of nearby dynamic obstacles from a radar are given in a vessel-fixed
coordinate frame. Furthermore, static obstacles read in from map data can be
specified in a local Universal Transverse Mercator (UTM) projection for a given
zone [108]. Thus, there is a need for different coordinate frames and transforma-
tions between them, when considering GNC for autonomous ships, target tracking
of dynamic obstacles, and static obstacles from georeferenced map data in COLAV.
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Figure 2.1: Illustration of the WGS ellipsoid with the definition of latitude ϕ, longitude
λ and height h. P is an arbitrary point, O is the ellipsoid centroid, C the point on the
equatorial surface when projected normally downwards from P through the shown surface
tangential plane.

2.3.1 The World Geodetic System

For mapping and satelite-based navigation such as GPS, the World Geodetic Sys-
tem (WGS) is the common standard used as a reference today [109]. The WGS-84
revision is the latest version, and defines a reference ellipsoid and a horizontal
datum which coordinate frames are defined relative to. The reference ellipsoid is
an approximation of the earth‘s surface, and includes definitions of fundamental
constants such as the origin at the earth‘s center of mass, equatorial radius and
flattening factor. The datum then describes how positions are measured on the
earth with the standard.

From this standard, positions on the earth‘s surface are described through the
latitude ϕ, longitude λ and ellipsoidal height h, illustrated in Fig. 2.1.

North-East-Down and BODY

In this work, mainly the North-East-Down (NED) and ship centered BODY frame
have been used. The NED frame is defined with a chosen origin on the earth surface,
relative to the reference ellipsoid from WGS-84. It is the most common coordinate
system, used extensively in our daily lives, and essentially defines a tangent plane
with the x-axis pointing towards the true north, the y-axes towards east, and the
z-axis pointing in a normal downwards from the earth surface as in Fig. 2.1. A
reference latitude ϕ0 and longitude λ0 defines the NED frame origin relative to
the WGS-84 earth approximation. The NED-frame is typically used in flat Earth
navigation, valid for vessels travelling only within a local area such as the in the
Trondheimsfjord.
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Figure 2.2: Illustration of the relationship between NED and BODY through a trans-
lation and rotation of ψ from NED to BODY for the blue vessel. The axes of NED and
BODY are denoted with superscript {n} and {b}, respectively.

The BODY frame on the other hand, is a coordinate system defined relative to the
NED-frame, with origin fixed to the vessel, x-axis along the major vessel length, y-
axis along its width, and z-axis pointing downwards [110]. The relationship between
the NED frame and BODY frame is shown in Fig. 2.2.

Then, given a vector x{n} described in the NED frame, it can be transformed to
the BODY frame using the rotation matrix Rb

n ∈ SO(3) between BODY and NED
through

x{b} = Rb
nx

{n} (2.6)

where the special orthogonal group of order 3 is defined as [110]

SO(3) = {R | R ∈ R3×3, RRT = RTR = I} (2.7)

2.4 Vessel Modelling

Different models have been used for maritime vessels throughout the PhD work,
where the type and usage depend on the application. Some example cases for
different model requirements are given below:

• The tracking system providing the COLAV system with nearby dynamic
obstacle estimates commonly use a stochastic model such as the Constant
Velocity (CV) model [78], [111] for prediction, in combination with a tracker
such as a KF or PDAF. As the prediction is only for a small time step, the
constant velocity assumption can be feasible and thus often used [95], [111],
[112]. A stochastic model is here used to have an uncertainty measure for the
track estimates.
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• For the own-ship trajectory prediction in the MPC, a deterministic model
without uncertainty description can be used, as one can normally use GNSS
and IMUs to have accurate navigation estimates compared to that of nearby
tracked vessels [113]. Furthermore, as the modelling error will only increase
with larger prediction horizons, it can be argued that a simplistic prediction
model should be used, where one assumes that the vessel motion control
system can compensate for complex modelling objects such as environmental
disturbances.

• The dynamic obstacle trajectory prediction in the MPC can, on the same
note as for the own-ship prediction, use a simplistic model, but should be
stochastic in the attempt to capture realistic future maneuvering uncertainty
for the obstacle. This is why an Ornstein-Uhlenbeck (OU) process has been
used in the PSB-MPC for prediction, as it is simple and can produce realistic
levels of uncertainties for vessels with estimated or assumed known mean
velocities [79]. Having multiple prediction scenarios or trajectories allows for
taking into account multiple intention scenarios for the obstacle, and thus
more uncertainty.

2.4.1 Constant Velocity Model

Commonly used in target tracking [78], the CV model captures the kinematics of
an obstacle i with state vector xi = [xi, V i

x , y
i, V i

y ]
T , where xi, yi are the position

coordinates, and V i
x , V i

y are velocity components, all typically given in the NED or
North-East frame, respectively. The model in discrete time for obstacle i is given
by

xi
k+1 = Fxi

k + ϵik (2.8a)

yi
k = Hxi

k +wi
k (2.8b)

where F and H are the transition and measurement matrix, respectively. The
vector ϵik is the process noise affecting obstacle i, and wi

k the measurement noise
affecting the measurement at discrete time instant tk. Lastly, the vector yi

k contains
the noise corrupted measurement, containing position and/or velocity information,
depending on the available information, reflected through the matrix H. The sys-
tem matrices F and Q are given as

F =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

 , Q = σ2
a


T 3
s

3
T 2
s

2 0 0
T 2
s

2 Ts 0 0

0 0
T 3
s

3
T 2
s

2

0 0
T 2
s

2 Ts

 (2.9)

where Ts = tk+1 − tk is the sampling time for the linear prediction, and could be
time varying. The process noise and measurement noise are assumed to be zero
mean, white, mutually independent and Gaussian. The process noise strength σa is
chosen based on the expected maneuverability of the vessel [114]. Note that other
prediction- and measurement models are also possible, for instance the constant
turn rate model or the constant acceleration model [78].
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2.4.2 Ornstein-Uhlenbeck Process

The OU process can be used to represent the motion of non-maneuvering vessels at
open sea, as first described in [115]. The model has the property that an obstacle
will have a tendency to revert towards its mean velocity with time. As commercial
traffic mostly keep a constant speed, the property is valuable for prediction pur-
poses. Furthermore, the model has beneficial uncertainty propagation properties
compared to the CV model [79].

Here, xk = x(tk) = [sTk ṡTk ]
T is the state vector at discrete time tk consisting of

the r = 2 two-dimensional position sk and velocity ṡk of the maritime vessel in a
suitable coordinate system. Denoting the variables as function of the time t, the
model has its basis from the following Stochastic Differential Equation (SDE)

ds(t) = AOUs(t) +GOUvdt+BOUdw(t) (2.10)

where v = [vx, vy]
T is the assumed constant mean velocity or long-run OU-process

mean with velocity components in a planar reference system such as the north-east
frame. The system matrices are given as

AOU =

[
0r×r Ir×r

0r×r −Θ

]
(2.11)

BOU =
[
0r×r C

]
(2.12)

GOU =
[
0r×r Θ

]
(2.13)

with 0r×r and Ir×r being the r-dimensional null matrix and identity matrix, and
where C and Θ are generic bi-dimensional matrices. The revertion effect of the
process towards its mean velocity is captured by the matrix Θ, normally assumed
positive definite and decomposed with an affine transformation as Θ = JΓJ−1

where J is a transformation matrix and Γ is a diagonal matrix of revertion strength
γ = [γx, γy] in each dimension. The target state at discrete times xk can be found
from the first moment of the solution to (2.10) [116], and can be written as

xk = Φ(h)xk−1 +Ψ(h)v +wk (2.14)

with

Φ(h) =

[
Ir×r (Ir×r − e−Γh)Γ−1

0r×r e−Γh

]
(2.15)

Ψ(h) =

[
hIr×r − (Ir×r − e−Γh)Γ−1

Ir×r − e−Γh

]
, (2.16)

where we then assume Θ = Γ is diagonal and thus J = Ir×r. The covariance
prediction in the OU process from a time tk to tk+1 is given through

Pk+1 = Pk +Σ1 ◦Σ2(tk+1 − tk) (2.17)
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where Pk is the covariance at tk, and

Σ1 =
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(2.18)

being the noise matrix Σ1 as a function of the Wiener noise and revertion strengths,
with the symbol ◦ in (2.17) denoting the Hadamard product. The parameters σx,
σxy and σy are the Wiener process noise values in the OU process. The matrix Σ2

is a function of the prediction time step and revertion strengths, and given as

Σ2(t) =



f(tγx) h(t,γ) k(tγx)

g( t2γy)

γy
−

t
2 (γx + γy)

γx + γy

h(t,γ) f(tγy)

g( t2γx)

γx
−

t
2 (γx + γy)

γx + γy

k(tγy)

k(tγx)

g( t2γx)

γx
−

t
2 (γx + γy)

γx + γy

g(tγx) g( t2 (γx + γy))

g( t2γy)

γy
−

t
2 (γx + γy)

γx + γy

k(tγy) g( t2 (γx + γy)) g(tγy)



(2.19)

with the functions in (2.19) defined as

f(t) :=
1

2
(2t+ 4e−t − e−2t − 3) (2.20)

g(t) :=
1

2
(1− e−2t) (2.21)

h(t,γ) := t− 1− e−tγx

γx
− 1− e−tγy

γy
+

1− e−t(γx+γy)

γx + γy
(2.22)

k(t) := e−2t(1− et)2 (2.23)

The model parameters in general need to be estimated depending on the ship type
and the local traffic area. See [116] for more information on the OU process model
derivation from the stochastic differential equation (SDE) framework.
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2.4.3 Kinematic Vessel Model

A kinematic model based on the speed over ground (SOG) and course over ground
(COG) for a vessel can be used to model nearby dynamic obstacles, and also the
own-ship in an MPC prediction. It is formulated in discrete time as

xk+1 = Ukcos(χk)

yk+1 = Uksin(χk)

χk+1 =
1

Tχ
(χd,k − χk)

Uk+1 =
1

TU
(Ud,k − Uk)

(2.24)

with χ, χd and U , Ud as the actual and desired vessel SOG and COG pairs, re-
spectively. Perfect vessel motion control is assumed through the model, as no lower
level controllers are considered. Furthermore, zero crab and slip angles are also
assumed. One can also extend the model to include linear acceleration and course
rate terms.

2.4.4 Kinetic Vessel Model

A three Degrees of Freedom (DOF) kinetic model for the own-ship vessel model
is typically used in lower level motion control of maritime vessels, where the need
to compensate for modelling errors and environmental disturbances acting on all
DOFs is important.

The model is used to describe the horizontal motion of the own-ship in surge,
sway and yaw [110]. The vessel position in the North-East-Down (NED) coordinate
system is given by η = [x, y, ψ]T . The variables x, y and ψ are the ship north and
east coordinates and the heading, respectively. The ship velocity in the BODY-fixed
coordinate system is given as ν = [u, v, r]T . Here, u and v are the surge and sway
velocity, respectively, while r is the yaw rate. The vector τ = [X,Y,N ]T describes
the generalized forces and moments affecting the ship in surge, sway and yaw. The
equations of motion for the vessel can then be represented in vectorial form as

η̇ = R(ψ)ν (2.25)
Mν̇ +C(ν)ν +D(ν)ν = τ +w (2.26)

where R(·) is the rotation matrix from the NED frame {n} to the BODY frame
{b}, M is the inertia matrix, C(·) the coriolis and centripetal matrix and D(·)
the nonlinear damping matrix. For more information on the different terms in
(2.25)-(2.26), see [110].

2.5 Guidance, Navigation and Control

A system for guidance, navigation and control enables the automatic control of
vehicles that move under water, on the surface or in space [110]. The guidance

32



2.5. Guidance, Navigation and Control

part enables the vehicle to follow trajectories and paths without direct human
control. The navigation part is responsible for determining the vehicle position
or attitude, velocity and acceleration. Lastly, the control system makes sure that
position, attitude, velocity and acceleration are automatically controlled. In other
words, the GNC system is the autopilot for the vessel. The remainder of this Section
is mostly based on [110].

As the topic of navigation and motion control for autonomous ships have not been
focused in this PhD work, only the guidance part is relevant here. In the remaining
text of this Chapter, the Line of Sight (LOS) guidance method, which is a simple
and intuitive method for steering a ship towards a path, is detailed.

2.5.1 Guidance

LOS guidance is a common and simple way to steer the own-ship towards a desired
path, often parameterized as waypoints, and produce a reference course for the
autopilot control system to track. The intuition behind the method is to direct the
vessel course towards a point a certain lookahead distance along the path. A small
lookahead distance will then lead to aggressive steering towards the path, and vice
versa for a larger value.

When considering piece-wise straight line paths, the closest active straight line seg-
ment between two waypoints is considered in the LOS guidance. Given two way-
points in the NED frame, consisting of their Cartesian coordinates: pn = [xn, yn]T

and pn+1 = [xn+1, yn+1]T , the first step in the LOS law is to find the path-
tangential angle αn, given as

αn = atan2(yn+1 − yn, xn+1 − xn) (2.27)

where n is defined as the index corresponding to the current waypoint, with n+ 1
then being the next waypoint to be reached by the vessel. The operator atan2(·) is
the four-quadrant inverse tangent function. The path-tangential angle is then used
to compute the along-track error s(t) and cross-track error e(t), defined relative to
the path-fixed reference frame as

ϵ(t) =

[
s(t)
e(t)

]
= Rp(α

n)T (pn(t)− pn) (2.28)

where
Rp =

[
cos(αn) −sin(αn)
sin(αn) cos(αn)

]
(2.29)

The goal of the path-following is thus to reduce the cross track error e(t) towards
zero, as this means that the vessel has converged onto the path. The desired course,
which ensures vessel convergence onto the path, is computed as

χd(e) = αn + χr(e) (2.30)

with
χr(e) = atan

(
−KLOS

p e
)

(2.31)
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being the velocity-path relative angle. The inverse tangent function atan returns

values in the interval [−π
2 ,

π
2 ]. The parameter KLOS

p =
1

∆LOS
> 0 is a function of

the lookahead distance ∆LOS , and determines the steering aggressiveness towards
the path. To switch between straight line path segments and increment pn to pn+1,
the condition

(xn+1 − x(t))2 + (yn+1 − y(t))2 ≤ R2
a (2.32)

must be fullfilled, with Ra being the radius of acceptance around waypoint with
index n+ 1.

In case of disturbances, integral action can be added to the LOS steering law in
(2.31) to compensate for non-zero sideslip and crab angles. Extensions to curved
path following can be done by parameterizing the path as a geometric curve as a
function of a path variable, but will not be detailed here.

The assignment of the desired speed for the vessel control system to follow can
be done in various manners. A simple solution is to set piece-wise constant values
to be followed for each waypoint segment. On the other hand, specifying a speed
profile as function of a path variable, with time as a constraint, leads to a time-
varying trajectory to be tracked. The choice depends on the application, where e.g.
shipping transport normally specify constant speed along piece-wise straight line
segments.

If not stated otherwise, the COLAV planning algorithms presented in the upcoming
chapters use one of the vessel models in sections 2.4.1 - 2.4.4 for the own-ship,
and LOS-guidance to steer the vessel itself. Navigational estimates of the own-
ship states are most often assumed known, as usage of GNSS and an INS with
an estimator such as an Extended Kalman filter (EKF) make the corresponding
uncertainty negligible.

2.6 The Scenario-based Model Predictive Control

The SB-MPC is a sampling based optimization algorithm originally published in
[70]. It is based on MPC, which is an optimal control technique involving the use of
a prediction model for solving a finite horizon open loop control problem, using the
current system state or measurement as initial condition. The output is an optimal
input sequence, where the first control input in the sequence is used applied to the
controlled system, as illustrated in Fig. 2.3. The optimization is then performed at
regular intervals.

What separates the SB-MPC from traditional MPC is the consideration of a finite
control set (FCS). The method is therefore typically named direct MPC or Finite
Control Set MPC (FCS-MPC) in the literature [118], [119], commonly used in
power electronics applications due to its straight forward implementation and usage
with inputs such as power converter switching states. Its formulation removes the
need for using a complex numerical solver to find the optimal solution, as one
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Figure 2.3: Illustration of the MPC principle [117].

only need to evaluate the cost for all considered control variables, and extract the
optimal one giving minimal cost.

2.6.1 Control Behaviours

Specifically designed for autonomous ship COLAV, the SB-MPC considers a set of
own-ship control behaviors or so-called scenarios. A control behaviour represent a
certain own-ship trajectory, typically parameterized as a surge speed and course
modification. The set of control behaviors typically used in the algorithm are the
following finite sets

• Course offsets χm ∈ {−90,−75,−60,−45,−30,−15, 0, 15, 30, 45, 60, 75, 90}
degrees.

• Nominal propulsion (keep current speed), slow forward and full stop in for-
ward speed, i.e Um ∈ {1.0, 0.5, 0.0}.

which sums up to 13 · 3 = 39 behaviours. Ideally, one should investigate all con-
trol behaviors at each sample time in the SB-MPC prediction, as in a traditional
MPC. However, this will quickly make the real-time implementation infeasible, as
the computational demand increases substantially. For instance, with five planned
changes in speed and course modifications over the prediction horizon, the amount
of scenarios to evaluate grows to 395 = 90224199. This is why the control behavior
in the SB-MPC is normally assumed fixed over the horizon, which is a trade-off
between computational cost and performance from a safety perspective.

The combination of surge and course modifications are used to predict multiple dif-
ferent own-ship trajectories. To predict the own-ship trajectories with the surge and
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course modifications, LOS guidance was used in [70]. Alternatively, a transitional
cost could be included in the SB-MPC to fully decouple the guidance strategy from
the COLAV system, as in [71]. Moreover, effects from wind, waves and ocean cur-
rent can also be taken into account through using a more complex own-ship motion
model such as the 3 DOF surface vessel model in Section 2.4.4. A trajectory tree
with one sequential maneuver, similarly to the predictions in the Branching-Course
MPC [86] will then result from predicting with every control behaviour in the FCS.

The models of the own-ship with LOS-guidance, and obstacle kinematics are used as
equality constraints in the optimization problem. A straight line prediction model
is used for dynamic obstacles, using the current time estimated velocity vector of
the obstacle. This equates to using a deterministic CV model with no process noise.
An outline of the SB-MPC is summarized in Fig. 2.4.

Figure 2.4: Summary of the collision avoidance control algorithm [70].

2.6.2 The Optimization Problem

The optimal control behaviour l∗ in the SB-MPC is found by solving the optimiza-
tion problem

l∗(t0) = argmin
l
Hl(t0) (2.33)

at the current time t0, where the candidate control behavior l consists of the modi-
fication tuple (χl

m, U
l
m) to the nominal guidance references χd and Ud in course and

forward speed, respectively. Using the optimal control behaviour l∗, the SB-MPC
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modifies the autopilot references as χc = χd+χ
l∗

m and Uc = Ud ·U l∗

m . Alternatively,
the SB-MPC can output a reference trajectory for the autopilot to track.

The cost or hazard function Hl(t0) is given as

Hl(t0) = max
i

max
t∈D(t0)

(
Cli(t)Rl

i(t) + κiµ
l
i(t)
)
+ f(·) + g(·) (2.34)

balancing the penalization of high collision risk, COLREGS violation, path devi-
ation and grounding, respectively. Here, D(t0) = {t0, t0 + Ts, ..., t0 + T} contains
the discrete sample times in the prediction from the current time t0, with Ts as the
sample time and T as the prediction horizon. The following text will elaborate on
the cost terms with the variables involved.

Risk of Collision

The collision risk parameterization in the SB-MPC utilizes an ad-hoc risk factor
Rl

i(t), which is multiplied by the cost of collision Cli(t) associated with obstacle i
in scenario l at time t. The risk factor is defined as

Rl
i(t) =

 1
|t−t0|p

(
di
safe

dl
0,i(t)

)q
, if dl0,i(t) ≤ d

safe
i .

0, otherwise
(2.35)

where t > t0 is the current prediction time. The exponent q ≥ 1 and safety distance
disafe are chosen large enough such that COLREGS rule 16 is satisfied. The value
of p ≥ 1

2 weights the importance of time until the event of collision occurs. Further,
the cost of collision Cli(t) is given by

Cli(t) = Kcoll
i

∥∥vl
0(t)− vl

i(t)
∥∥2 (2.36)

which essentially is a scaling of the kinetic energy given by the relative velocity
between the own-ship and obstacle i. Here, Kcoll

i is the cost scaling factor, depen-
dent on the obstacle type and size. vl

0(t) and vl
i(t) are the velocity vectors of the

own-ship and obstacle i in the horizontal plane, respectively.

COLREGS Compliance

In order to penalize COLREGS violations, the SB-MPC employ a set of inequality
tests to calculate a binary indicator µl

i ∈ {0, 1} representing whether or not the
own-ship breached COLREGS in control behavior l with respect to obstacle i. For
this penalization to be active, the dynamic obstacle must be inside a radius dclose
about the own-ship at predicted time t. Then, a set of inequality tests are used
to determine the COLREGS situation for the own-ship and obstacle i pair at the
predicted time t for control behaviour l, which are given by the boolean variables
CLOSE, OVERTAKEN, STARBOARD, HEAD-ON and CROSSED. These are
described below.

• An obstacle i is said to be CLOSE if

dk0i(t) ≤ dclose (2.37)
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• The own-ship is said to be OVERTAKEN by obstacle i if

vl
0(t)

Tvl
i(t) > cos(68.5◦)

∥∥vl
0(t)

∥∥ · ∥∥vl
i(t)
∥∥ (2.38)

and in addition the obstacle is CLOSE and has higher velocity than the
own-ship, i.e.

∥∥vl
0(t)

∥∥ < ∥∥vl
i(t)
∥∥.

• Obstacle i is said to be STARBOARD to the own-ship, if

∠Ll
i(t) ≥ ψl(t) (2.39)

where Ll
i(t) is the unit LOS-vector from the own-ship to obstacle i, and ψl(t)

is the own-ship heading.

• Obstacle i is said to be HEAD-ON if

vl
0(t)

Tvl
i(t) < −cos(22.5◦)

∥∥vl
0(t)

∥∥ · ∥∥vl
i(t)
∥∥ (2.40a)

vl
0(t)

TLl
i(t) > −cos(15◦)

∥∥vl
0(t)

∥∥ (2.40b)

holds, and if it is CLOSE and the obstacle speed
∥∥vl

i(t)
∥∥ is not close to zero.

• Obstacle i is said to be CROSSED if it is CLOSE and

vl
0(t)

Tvl
i(t) < cos(68.5◦)

∥∥vl
0(t)

∥∥ · ∥∥vl
i(t)
∥∥ (2.41)

The angles not associated with overtaking can in general be adjusted based on
the type of obstacle, velocity and so on. Then, using the above defined boolean
variables, a binary indicator µl

i ∈ {0, 1} determines whether rule 14 or 15 in the
COLREGS are violated between the own-ship and obstacle i in scenario l, given as

µl
i = RULE14 || RULE15 (2.42)

where
RULE14 = CLOSE & STARBOARD & HEAD-ON (2.43a)

RULE15 = CLOSE & STARBOARD & CROSSED
& NOT OVERTAKEN

(2.43b)

Rule 13 is also included here, as it states that the overtaking vessel shall keep out
of the way. The COLREGS violation indicator is then multiplied by the penalty
parameter κi in the total COLREGS penalization cost.

A weakness with the COLREGS penalization is that one only determines a violation
at an instantaneous prediction time t, instead of considering the entire trajectory
of the own-ship and obstacle. This can lead to premature violations. Furthermore,
COLREGS rule 8 on readily apparent actions and 17 on stand-on responsibilities
are not strictly enforced. Another weakness with the SB-MPC formulation is that
it does not scale properly to multi-ship situations as the dynamic obstacle cost and
COLREGS cost should then be weighted with respect to each ship.

38



2.6. The Scenario-based Model Predictive Control

Trajectory Deviation Cost and Grounding Cost

As the modifications in a control behaviour will lead to a deviation from the refer-
ence trajectory produced by the guidance part, the term

f(χl
m, U

l
m) =KU (1− U l

m) +Kχχ
2
m +K∆U |U l

m − Um,last|
+K∆χ(χ

l
m − χm,last)

2
(2.44)

penalizes this behavior, commonly referred to as the trajectory deviation cost.
Here, KU , Kχ, K∆U and K∆χ are penalty parameters. Kχ and K∆χ are generally
asymmetric about the origin, chosen such that starboard course changes are pre-
ferred to port side changes. Penalization for deviation from the previous optimal
modifications Um,last and χm,last prevents large decision variations from the MPC.

2.6.3 Location in the Control Hierarchy

The position of the SB-MPC method in the GNC-system for an autonomous ship
proposed in [70] is shown in Figure 2.5. The authors used an apparent decoupling
between the COLAV system and the mission planning and steering parts of the
vessel. This allowed for easy modification and reusability of the COLAV method
across different GNC architectures.

The inputs to the SB-MPC are predicted obstacle positions and velocities with
basis from tracking system information, grounding hazard data, and own-ship nav-
igational information and references for course and speed from the mission planner.

The method can also be directly used as a mid-level and/or low-level COLAV which
takes in a nominal trajectory as input and produces a modified trajectory for the
ship autopilot to track, similarly to that shown in Fig. 1.4.

Figure 2.5: Block diagram illustrating the information flow between the main modules
in the system [70].

39





Chapter 3

First Edition of Collision Risk
Assessment in a Probabilistic
Scenario-based MPC

The chapter is based on the following publication, which was the first step in the
work of this PhD to address kinematic uncertainties of nearby objects in deliberate
COLAV planning.

[97] T. Tengesdal, E. F. Brekke and T. A. Johansen, "On collision risk assess-
ment for autonomous ships using scenario-based MPC", IFAC-PapersOnLine,
vol. 53, no. 2, pp. 14509-14516, 2020, 21st IFAC World Congress, Berlin.

3.1 Introduction

3.1.1 Motivation

To have adequate situational awareness in the autonomous ship, a system which
detects and tracks nearby obstacles is important. This is commonly referred to as
a tracking system in the maritime situational awareness domain, and is formally
responsible for providing the ship COLAV system with tracks of nearby obstacles.
An obstacle in this context here refers to a dynamic vessel or obstacle, but can
include static grounding hazards, animals and other non-categorized objects being
potential collision candidates for the ship. The track typically contains estimates
of position and velocity for the generating target. These estimates will have an
inherent kinematic uncertainty originating from sensor detection errors, sensor in-
accuracies, modelling and configuration errors in the tracking system. Depending
on if a tracker such as a KF, Probabilistic Data Association Filter (PDAF) or
other stochastic Multi Target Tracking (MTT) methods are being used [120], the
estimates are accompanied by a corresponding uncertainty estimate, typically an
error covariance.
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An autonomous ship COLAV system using these estimates needs to be informed
about the level of uncertainty in the tracks received, in order to make a safe and
efficient avoidance maneuver. Blindly taking the estimates in a track as ground
truth can lead to a collision with fatal consequences, as is demonstrated in some
of the work in this thesis. A way of taking a more informed decision is by using
the accompanied kinematic uncertainty estimates to estimate the probability that a
collision with the nearby dynamic obstacle will occur within some time interval into
the future. This collision probability can not only be utilized by COLAV systems,
but also for vessel operators as a decision support aid.

3.1.2 Previous Work

There are many existing COLAV algorithms which have COLREGS compliance at
varying degree. However, only a few of these are performing probabilistic risk as-
sessment in collision situations considering uncertainties present, as this has mostly
been ignored for such systems [28]. As the COLAV problem will involve considering
uncertainties present in the current situation, taking these into account, and then
choosing the risk minimizing action. Deterministic approaches will therefore have
limitations for efficient and robust COLAV systems. For a general treatment of
different collision risk measures, see for instance [121] and [122]. Relevant maritime
COLAV algorithms which incorporate some form of probabilistic risk measure are
summarized below.

In [69], an A* search method is applied to collision-free trajectory planning which
penalizes high collision risk, COLREGS breaches and trajectory deviation. The col-
lision risk is estimated by calculating collision probabilities using sampling based
techniques, considering the positional uncertainty Details on the method for cal-
culating the probabilities are however not given. A* search is also used in [66], to
plan a collision-free trajectory through an occupancy grid. Here, occupancy prob-
abilities for obstacles in two-dimensional space are calculated using a numerical
approximation, considering their kinematic uncertainty. The search then tries to
find a trajectory which minimizes the cost due to non-zero occupancy probabilities,
and the Euclidean distance to the goal. COLREGS is not considered here.

In [88], MCS is used to estimate the collision probability beween the own-ship and
an obstacle, both with time varying uncertainty. This is done by first forming a
Probability Density Function (PDF) at the tracked obstacle position, with a co-
variance that is the sum of the estimated vessel position covariances. The ratio
of samples drawn from this PDF that are inside a collision risk zone, to the total
number of samples, is used as a collision probability estimate. The collision proba-
bility estimate is then used to decide on replanning collision-free waypoints for the
ship to follow, which also adhere to the COLREGS.

[123] plans a collision-free trajectory using Theta* search, based on the current
locally estimated sea state, nearby static and dynamic obstacles, and own-ship
motion uncertainty. MCS is used to sample dynamic obstacle positions and veloci-
ties based on their perception uncertainty, and used together with a precomputed
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state transition table to index an estimated mean time between failure for the USV,
which is then used to estimate the probability of failure in reaching a motion goal
due to collision and local environmental disturbances. This failure probability is
then penalized in the search cost function, together with trajectory execution time
and COLREGS breaches.

Maneuvering intentions of an obstacle are estimated using a KF in [89]. The inten-
tions are used to calculate the collision probability with obstacles by considering
reachable sets. A COLAV system then makes evasive maneuvers when the collision
probability exceeds a certain threshold, with no COLREGS consideration.

3.1.3 Contributions

The proposed method is the first probabilistic version of the Scenario-based Model
Predictive Control by [70], i.e. Probabilistic SB-MPC (PSB-MPC). Here, the prob-
ability of collision with nearby obstacles is estimated, and used to minimize the
collision risk on the prediction horizon. A novel contribution is how the collision
probabilities are estimated through the use of MCS combined with a KF for the
attenuation of statistical noise resulting from few MCS samples. The uncertainty
in both position and velocity for the obstacles are considered, as obtained from a
tracking system based on the KF. This gives increased situational awareness for
the autonomous ship, as the kinematic uncertainty in both position and velocity is
an information source not being used in most COLAV systems.

3.1.4 Chapter Overview

The Chapter is organized as follows: In Section 3.2, the own-ship model used for
guidance, control and prediction, and the obstacle model used in the tracking sys-
tem and MPC predictions, are presented. The collision probability framework used
here is introduced in Sections 3.3-3.4, whereas the PSB-MPC is introduced in Sec-
tion 3.5. Results comparing the PSB-MPC against the original SB-MPC are then
given in Section 3.6, before conclusions are summarized in Section 3.7.

3.2 Models

3.2.1 Own-ship

A model with 3 degrees of freedom (DOF) is used to describe the horizontal motion
of the own-ship in surge, sway and yaw [110], as was described in Section 2.4.4,
and restated here as

η̇ = R(ψ)ν (3.1)
Mν̇ +C(ν)ν +D(ν)ν = τ +w (3.2)

Environmental disturbances are not considered since they are assumed compen-
sated for in the autopilot, and thus w = 0. The position and velocity of the own-
ship is assumed to be accurately measured, and thus its uncertainty in position
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and velocity is neglected. The own-ship is steered using LOS (see Section 2.5.1),
with a feedback linearizing controller used for surge, and a Proportional-Derivative
(PD) controller for the heading. The details on the control system can be found in
[124].

3.2.2 Obstacles

The CV, as described in Section 2.4.1, is employed to describe the motion of nearby
dynamic obstacles. For an obstacle i, it is restated as

xi
k+1 = Fxi

k + vi
k (3.3)

zi
k = Hxi

k +wi
k (3.4)

The CV is used with a KF for tracking the obstacles, which results in multivari-
ate Gaussian PDFs pi(x, tk) = N (x; x̂i

k,Σ
i
k), where x̂i

k and Σi
k are the obstacle

track estimate and associated covariance, respectively. A deterministic CV with
the full state vector available, obtained by omitting the noise terms, is used in the
MPC predictions. Note that the CV assumption has limitations in scenarios where
maneuvers are expected, as for instance in ship encounters.

3.3 Collision Probability Definition

Probabilities are always relative to the domain of events considered, and a clear
definition is therefore needed to avoid amibiquity and confusion. Here, the following
events are used to define the collision probability between the own-ship and an
obstacle.

Ai
k = A collision occurs between obstacle i and the
own-ship at some time tc ≥ tk.

(3.5)

Bik = A collision between obstacle i and the own-ship
does not occur at any time tc ≥ tk.

(3.6)

which are mutually exclusive. Collision is the breach of the safety zone, which is
defined as a circular region with radius dsafe around the own-ship. The probability
of collision with obstacle i at time tk then becomes

Pi
c,k = Pr{Ai

k} = 1− Pr{Bik} (3.7)

Note that this definition of collision probability is predictive, as it allows for the
collision to happen at any time in the future. The collision probability Pi

c,k is found
by integrating the obstacle tracked state PDF pi(x, tk):

Pi
c,k =

∫
S
pi(x; tk)dx (3.8)

where S ⊂ R4 is a region which include all straight line trajectories which make
the obstacle cross and recide in the own-ship safety zone at the Closest Point of

44



3.4. Collision Probability Estimation

Approach (CPA) [124]. This makes the formulation of a compact S difficult, due
to time being an implicit constraint. More specifically, the integration limits on the
obstacle velocities depend on both the starting position (xik, y

i
k) of the obstacle,

which is uncertain, and the time interval for which the given trajectory starting at
(xik, y

i
k) gives an obstacle position inside the own-ship safety zone at CPA.

An illustration of the issue is given in Figure 3.1, where a sample trajectory based
on the obstacle uncertainty in position and velocity is shown. The own-ship is shown
in blue at the current time following a straight line trajectory, and also at the CPA
in dashed blue with the safety zone of radius dsafe enclosing it. The obstacle is
shown in green at the current time with its 3σ position probability ellipse. If the
time to CPA gives an obstacle position on the indicated red part of the trajectory,
the trajectory is in S and may result in a collision.

3.4 Collision Probability Estimation

The calculated collision probability between the own-ship and obstacle i is here
filtered recursively using a KF [125]. Probabilities calculated through MCS to ap-
proximate the integral (3.8) are used as measurements. The KF is used to attenuate
the statistical noise inherent in the MCS with a finite number of samples, and to
make use of knowledge about the collision probability from the previous time step.
The simple model used in the KF is

Pi
c,k+1 = Pi

c,k + v̄ik (3.9a)

yik = Pi
c,k + w̄i

k (3.9b)

vos

dsafe

vi

vs

ps

Figure 3.1: Illustration of the problem of determining if an obstacle trajectory is in S.
The sampled obstacle trajectory is given by the sampled starting position ps and velocity
vs. The expected obstacle velocity vi and own-ship velocity vos are also indicated.
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where y is the measurement, v̄ ∼ N (v̄; 0, qP ) and w̄ ∼ N (w̄; 0, rP ) are the process
and measurement noise, respectively. The collision probability measurement yik is
obtained through MCS as

yik =
1

NMC

NMC∑
s=1

I{xs ∈ S}pi(xs, tk) (3.10)

where NMC is the number of samples drawn from the obstacle tracked state PDF.
This is done by sampling from a standard normal distribution, followed by a trans-
formation through the obstacle state estimate x̂i

k and Cholesky factorization of the
obstacle state covariance Σi

k. The indicator variable I{xs ∈ S} ∈ {0, 1} determines
if the straight line trajectory sample parameterized by xs makes the obstacle cross
and recide inside the own-ship safety zone at the CPA, assuming that the own-ship
also follows a straight line trajectory at time tk. These assumptions are made in
order to have a tractable approach of calculating the collision probability.

In general, an integral estimate obtained through MCS is consistent by the law of
large numbers, when the underlying probability model is accurate [126]. In this case,
the consistency of the collision probability estimate produced by the MCS and KF
are conditioned on the validity of the assumptions of obstacles being modelled as
CVs with Gaussian distributed states, the validity of the model (3.9), and the own-
ship being assumed to also follow a straight line trajectory at the time of probability
calculation. Thus, it is typically a conservative estimate, as factors such as the own-
ship and obstacles’ intention of avoiding collision and adhering to COLREGS are
not accounted for. The estimate will anyhow be used here as an indication of the
collision risk. An increased situational awareness by the autonomous ship will be
gained regardless, due to the tracking uncertainty being used to have a probabilistic
risk picture.

Simulation results for a simple scenario with one obstacle are shown in Figure
3.2. Here, the own-ship is stationary at coordinates (x, y) = (100, 0), whereas an
obstacle starting at (55,−55) with assumed known expected position is travelling
east with speed 4m/s. The safety zone is indicated as the red circle. The obstacle
is shown at CPA, directly south the own-ship at time t = 13.75 s, and also at
the end of the simulation. A number of NMC = 100 samples are used. The noise
covariances are tuned to be qP = 0.00005 and rP = 0.001, based on trial and
error and Normalized Innovation Error (NIS) considerations [127]. The filter was
initialized with prior probability and variance of 0 and 0.3, respectively. This was
partially based on an initial guess, and the assumption that the own-ship starts
relatively far from nearby obstacles. The obstacle tracked state has a constant
covariance matrix of Σ = diag([25, 25, 4, 4]), which causes the collision probability
to have a maximum right above 0.3, and decreasing as it passes the own-ship, due
to the number of possible straight line trajectories which can cross the safety zone
decreases.

46



3.4. Collision Probability Estimation

-100 -50 0 50 100

East (m)

0

50

100

150

200

N
o

rt
h

 (
m

)

(a) North east plot of the own-ship (blue) and obstacle
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Figure 3.2: Test scenario.

Thus, from the results, the advantage in using MCS and KF for collision probability
estimation is apparent in the reduction of statistical noise at lower computational
cost than pure MCS, as fewer samples are needed in the MCS calculations.
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3.5 The Probabilistic Scenario-based Model Predictive
Control

A Probabilistic variant of the SB-MPC, which was detailed in Section 2.6, modifies
the cost function (3.11) to

Hl(t0) = max
i

 ∑
t∈D(t0)

Cli(t)P̂l,i
c (t)exp

(
−
(t+ tlcpa(t)− t0)

Tc

)
+

max
t∈D(t0)

κiµ
l
i(t)

]
+ f(·) + g(·)

(3.11)

involving the accumulated probabilistic collision cost over the horizon, exponen-
tially discounted by the time until the potential collision. Thus, the ad hoc risk
term Rl

i from the original SB-MPC is replaced by the collision probability estimate
P̂l,i
c . Here, grounding is not considered and thus g(·) = 0. The discounting type was

chosen mainly due to its simplicity and common use for devaluating events or data,
as for instance in the recursive least squares method [128]. The time constant Tc
is a tuning parameter. The variable tlcpa indicates the time until the CPA between
the own-ship and obstacle i occurs, calculated at the time t using the correspond-
ing predicted states. As the collision probability is predictive, the time until CPA
is added to weight the collision cost by the time of occurrance. Note that this is
under the assumption of straight line trajectories at the time of calculation. More-
over, because the collision probabilities are summed, it is assumed that they are
independent from one time step to another. This is conservative, as there will be
dependencies due to obstacle dynamics and the fact that at maximum one collision
between the own-ship and an obstacle can occur in the horizon.

A reasonable alternative to this MPC formulation would be to use a collision risk
constraint instead, to retain the risk to a certain limit. However, due to the con-
sistency issues mentioned in the previous section, the constraint limit would be ad
hoc. Further, as the collision probability calculations are done in the open loop
MPC predictions, with no future feedback accounted for, the limit should not be
set too low. Moreover, issues with constraint infeasibility would need to be solved
with slack variables to allow practical use.

The advantage of penalizing the collision cost as in the original SB-MPC, is the
guarantee of a feasible solution and the intuition of balancing the cost terms. With
this approach one is able to choose the maneuver with minimum probabilistic
collision cost, which would not be possible in a risk constrained PSB-MPC, as ma-
neuvers are only deemed feasible or not. However, in situations with high collision
risk for all control behaviors, the optimally chosen maneuver may still be infeasible
in practice and possibly lead to collision, which would require extra handling with
this MPC formulation.
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3.6 Results

The PSB-MPC and SB-MPC were tested in a head-on scenario, and a congested
traffic scenario with multiple obstacles. A sampling interval of Ts = 0.1 s was used
for the obstacle motion and as the step time in Euler’s method to simulate the
own-ship motion. A sample time of Ts,MPC = 0.5 s was used for the MPC. The
own-ship was in each scenario planned to follow the straight line going north, with
forward speed Ud = ud = 9m/s, starting in the origin. The obstacles were randomly
initialized inside a grid of 1000m × 800m, with obstacle velocities varying from
2m/s to vimax = 9m/s. The process noise parameter σa was uniformly randomly
generated between 0m/s2 and 0.03m/s2 for each obstacle. This simulates scenarios
with vessels of lengths around 30m, driving around cruising speed and below. A
measurement covariance of R = diag([25, 25])m2 was used to generate obstacle
position measurements at 0.4Hz, with values based on the results using a radar-
based tracker in [129].

KFs were used to track each obstacle, with the track estimates fed into the PSB-
MPC and SB-MPC. The corresponding covariance estimates were used in the col-
lision probability calculation of the PSB-MPC for the entire time horizon. Thus,
the tracked state covariance was not propagated using a deterministic CV in the
MPC predictions, but kept constant. This simplification makes the collision proba-
bility estimate less conservative, as the covariance would increase when propagated
in time. As nearby obstacles will in reality react to the own-ship maneuvers, and
measurements of their positions will be used to reduce the uncertainty, this was
deemed reasonable. Further, single-point track initiation was used for the obstacle
estimates based on the results in [130], where the obstacle initial position and ve-
locity are set to the first measurement and zero, respectively. The a priori obstacle
state covariance is set using the KF measurement covariance matrix and maximum
velocity U i

max, where it is here assumed that the maximum speed is known a priori,
and identical for all obstacles.

To illustrate the importance of considering kinematic uncertainty in a COLAV
system, the KF in the tracking system was tuned conservatively in both scenarios
with a measurement covariance matrix 25 times larger than the actual covariance
R, and process noise parameter σa = 0.5m/s2 for all obstacles. This can be the
case when measurements from a radar device becomes unreliable due to extreme
weather conditions, and where one in addition wants to account for fast obstacle
maneuvers by having an increased process noise. This combined with the chosen
track initialization, will cause more uncertain obstacle course estimates, which has
been shown to cause problems in deterministic reactive COLAV systems [131].

The collision probability filter was again initialized with prior probability and vari-
ance of 0 and 0.3, respectively. The parameters used for each COLAV method are
summarized in Table 3.1, and are partially based on [132] and trial and error. The
COLAV methods are run every fifth second in the simulations, with 39 control
behaviors with one planned evasive maneuver on the prediction horizon.
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Results comparing the original SB-MPC and the PSB-MPC are shown in Figure 3.3
and 3.4. In each Figure, the first part shows a north east plot for the own-ship with
the original SB-MPC (blue boat with black trajectory) and the PSB-MPC (red
boat with dashed black trajectory), with the safety zone of radius dsafe enclosing
them. Also, the obstacles are shown as green boats, with numbered trajectories
of different colors. The second part shows the distance from the own-ship to each
obstacle, for both COLAV versions, with the safe distance also indicated in red. The
obstacle and own-ship sizes are enlarged for visualization purposes. The scenario
in Figure 3.3 also include a track plot.

The scenario in Figure 3.3 shows that the PSB-MPC is more risk averse than the
original SB-MPC by taking a maneuver compliant with COLREGS rule 14 and
16, with larger safety margins. In contrast, the SB-MPC trusts the obstacle track
estimate blindly, which causes a small safety zone violation while performing the
COLREGS-compliant maneuver. This is because the SB-MPC believes the obstacle
is travelling south with a negative east speed for the first 37 seconds. This is caused
by the high obstacle track uncertainty coming from a conservatively tuned KF and
the Single-Point track initialization, which causes a velocity variance surpassing
20m/s2 in each direction initially.

Figure 3.4 shows that the PSB-MPC is capable of making safe maneuvers in more
complex scenarios. Here, the original SB-MPC initially violates rule 14 COLREGS
slightly and makes a poor decision to turn port, due to its overconfidence in the
obstacle track estimates. This is because obstacles are initialized to zero speed,
which makes a port maneuver optimal in the SB-MPC as this gives the minimum
ad hoc collision cost. The PSB-MPC again accounts for the estimated uncertainty
and decide on a starboard maneuver, due to its minimum probabilistic collision

Table 3.1: Parameters for the COLAV methods.

SB-MPC PSB-MPC
Parameter Value Value

T 200 s 200 s
Ts,MPC 0.5 s 0.5 s
dsafe 40m 40m
κi 10.0 10.0
KU 9.0 9.0
K∆U 8.0 8.0
Kχ,port 1.8 1.8

Kχ,starboard 1.5 1.5
K∆χ,port 1.2 1.2

K∆χ,starboard 0.9 0.9
Tc - 6 s

NMC - 100
qP - 0.00005
rP - 0.001
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Figure 3.3: Head-on scenario with 1 obstacle.
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(a) North east plot of the own-ship and obstacles at two time instants.

0 20 40 60 80 10
0

Time (s)

0

100

200

300

400

500

D
is

ta
n

c
e

 (
m

)

SB-MPC

0 20 40 60 80 10
0

Time (s)

PSB-MPC

d
safe

Obst. 1

Obst. 2

Obst. 3

Obst. 4

Obst. 5

Obst. 6

Obst. 7

Obst. 8

Obst. 9

Obst. 10

Obst. 11

Obst. 12

Obst. 13

(b) Distance from the own-ship to each obstacle, for both versions of the SB-MPC.

Figure 3.4: Congested traffic scenario with 13 obstacles.

cost.

3.7 Conclusion

The first version of the PSB-MPC attempts to take dynamic obstacle collision prob-
abilities into account, which considers uncertainty in both position and velocity,
and is able to take safe decisions in complex scenarios due to increased situational
awareness. The probabilistic collision cost gives larger safety margins, but this is
conditioned on the quality of the track estimates and collision probability estimates.
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Simulation results show that its performance with regards to trajectory following
is also on par with the original SB-MPC. Note that the PSB-MPC formulated here
is preliminary, and aims to illustrate the benefits of introducing probabilistic risk
assessment in a COLAV system.

Moreover, as the method for calculating collision probabilities is simplistic, based
on straight line trajectory assumptions, and relatively slow, work is needed in order
to make the calculations more efficient and also more consistent and realistic by
considering obstacle maneuvers and probabilistic COLREGS compliance. Lastly,
the proposed planner should be compared with other methods on different metrics
such as energy expenditure and distance to the nominal trajectory, in addition to
the safety aspect.
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Chapter 4

Second Edition of Collision Risk
Assessment in a Probabilistic
Scenario-based MPC with Obstacle
Intent Consideration

This chapter is based on the following publication

[98] T. Tengesdal, T. A. Johansen and E. F. Brekke, "Risk-based autonomous
maritime collision avoidance considering obstacle intentions", 23rd Interna-
tional Conference on Information Fusion, 2020.

and represent one iterative improvement of the CPE introduced in the previous
chapter to also account for dynamic obstacle maneuvering. Furthermore, the PSB-
MPC is improved to also take obstacle intention uncertainty into account, where a
general maritime vessel intent inference framework is introduced.

4.1 Introduction

4.1.1 Motivation and Previous Work

To enable robust and efficient COLAV planning for the autonomous ship, a high
degree of situational awareness is needed in the system to allow for deliberate
choices of avoidance maneuvers that achieve acceptable collision risk while not
being overly conservative. Here, information about the intention of nearby obstacles
has high value, as it will enable the COLAV system to take more informed and less
conservative decisions by considering future trajectories which reflect the current
obstacle intention.

Predicting obstacle trajectories and inferring their intentions will be a key part of
robust deliberate COLAV planning algorithms. Different approaches for doing this
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have been introduced outside the COLAV setting. For COLAV, one is typically
interested in the time scale of minutes, and there are different methods employing
AIS data for long-term predictions, as in for instance [79], [133]–[135]. The intent
of objects are predicted in [102] using a Bayesian approach, when assuming that a
finite set of possible endpoints for their trajectories are known. The method con-
structs so-called bridge distributions for each possible endpoint, and uses a linear
motion model conditioned on the endpoint to reduce the trajectory uncertainty
from the current object position to its waypoint. The motion model parameters
are learned using historic data.

Considering obstacle intentions in collision-free trajectory planning for air traffic
and road vehicles has previously been studied [91][92]. For instance in [92], goal hy-
potheses of road driving obstacles are formed based on the current road topology,
and a probabilistic motion model is used to predict their future trajectories condi-
tioned on the hypotheses. However, for maritime applications, it is to the author’s
knowledge only [69] and [89] that considers nearby obstacles to be agents capa-
ble of different maneuvers or intentions. In [69], an A* search method is applied
to collision-free trajectory planning which penalizes high collision risk, traffic rule
violations and trajectory deviation. An intention motion model is used for nearby
civilian vessels, where historical state observations and vessel characteristics are
used to output predicted trajectories and classify the vessels as compliant to the
COLREGS or not. Information on how this intention model is implemented is lim-
ited. The positional uncertainty of an obstacle’s predicted trajectory is estimated
offline using MCS for a given scene. The predicted trajectories also incorporate re-
active obstacle avoidance for the obstacle to avoid the own-ship and other vessels.
In [89], the maneuvering intent of obstacles are estimated using a KF. The intents
are further used to calculate the collision probability with obstacles by considering
reachable sets. A simple COLAV planner is then implemented by making evasive
maneuvers when the collision probability is above a certain threshold.

4.1.2 Contributions

In this chapter, the effect of taking probabilistic information of obstacle inten-
tions into account will be showcased. The novelty lies in introducing a generalized
framework for obstacle intention inference and applying this in a COLAV planning
algorithm. The probability of a finite set of obstacle intentions is considered, when
the next waypoint of obstacles is assumed known from some source of informa-
tion in addition to their degree of COLREGS compliance. This can be the case
when vessel-to-vessel communication is employed to get waypoint information of
nearby vessels or if local traffic pattern analysis is used. A modified version of the
PSB-MPC [97] is proposed, which takes obstacle intentions into account through
an enhanced prediction scheme using an OU process as in [79]. The scheme allows
obstacles to take different alternative maneuvers at multiple time instants in the
horizon. In addition, an updated method of estimating collision probabilities is used
in the PSB-MPC, which calculates the collision probability estimates considering
piecewise linear segments for the own-ship and obstacle trajectories.
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4.1.3 Chapter Overview

The chapter is organized as follows. Section 4.2 outlines the proposed intention
modelling framework and includes an example heuristic model. The updated colli-
sion probability estimation is detailed in Section 4.3. Section 4.4 gives an overview
of the second PSB-MPC edition, with Section 4.5 showing simulation results.
Lastly, Section 4.6 gives final remarks on the work in the chapter.

4.2 Intention Probability Framework

4.2.1 Generalized Framework

The index a = 1, 2, ..., na is here defined as the obstacle intention. The probability
of intention a for obstacle i is denoted Pi

a. The probability is for a finite time
interval from tk−1 to tk, where k is the discrete time index, and is assumed to be
known as an input to the COLAV planning algorithm in the form of a conditional
probability

Pi
a = Pr{a|i, I}, where

na∑
a=1

Pi
a = 1 (4.1)

In general, the variable I contains information on all factors that will affect the ob-
stacle intention. Factors such as the type of obstacle, the grounding hazards, nearby
static and dynamic obstacles, weather, the obstacle’s current state of perception,
and its planned route will all affect this probability. A Bayesian network can here
be used to represent the dependence of obstacle intentions on these factors. This is
illustrated for an example network in Fig. 4.1. The variable I is here represented
by the seven factors. Note that the network is not unique, and a modelling choice
has been made such that intentions are indirectly dependent on for instance the
ship type and nearby obstacles through the situation type.

It is a non-trivial task to estimate Pi
a, as the information in I must be inferred from

a subset of all factors involved. Knowledge of this variable is assumed. The purpose
of this chapter is not to show how to infer obstacle intentions, but to demonstrate
the potential gain of using probabilistic information about this for decision making
in a COLAV planning algorithm. However, the framework opens up the possibility
to use machine learning methods to learn Bayesian nets for obstacle intention
inference by for instance employing historic AIS data.

4.2.2 A Simple Intention Model

Model Assumptions

Three intentions for an obstacle are here considered (na = 3), corresponding to the
obstacle keeping its current course and speed (a = 1), taking a starboard (a = 2)
or port turn (a = 3), respectively. It is assumed that the next waypoint WP i of
an obstacle i is known, for instance through usage of historical AIS data. Also,
probabilistic information about its tendency to adhere to the COLREGS is known.
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Based on the above assumptions and the situation type (ST ), the intention prob-
ability model used is determined. This is similar to the case in Fig. 4.1 when only
the situation type (ST i), COLREGS compliance (CCi), nearby obstacles (includ-
ing the own-ship) and the next waypoint for obstacle i are considered. Moreover,
the situation type is assumed independent on the next obstacle waypoint here.

COLREGS compliance is considered when the distance from the obstacle to the
own-ship d0i is less than some threshold dclose [70]. The ST i is formulated as a tuple
determining if it is an overtaking (OT ), head-on (HO) or crossing (CR) scenario,
and whether or not the obstacle is the give-way (GW ) or stand-on (SO) vessel.
These situations can be determined using the position, heading and velocity of the
own-ship and obstacle [70]. For the case when d0i > dclose, i.e. when the ships are
outside the defined COLREGS consideration limit, then ST i = ∅. The conditional
intention probabilities can then be calculated as

Pi
a = Pr{a|WP i, ST i}Pr{ST i|CCi}Pr{CCi} (4.2)

Ship type Location

COLREGS
compliant

Situation
type

Local
map in-

formation

Nearby
dynamic
obstacles

Next
waypoint

Intention

Figure 4.1: Example Bayesian net for intention inference for an obstacle ship, considering
seven factors (topmost nodes). The situation type is here either overtaking, head-on or
crossing, and whether or not the obstacle is stand-on or give-way vessel. Nearby dynamic
obstacles can e.g. be represented by a list containing data structures carrying data on
their states.

58



4.2. Intention Probability Framework

Table 4.1: Conditional intention probability given WP i, ST i and indirectly through
CCi. The situation type is given single letters from A to F to minimize notation space.

CCi ST i Pr{a|WP i, ST i}

True

A = ∅ Pr{a|WP i, A}

B = (OT, SO) Pr{a|B}

C = (CR,SO) Pr{a|C}

D = (OT,GW ) Pr{a|D}

E = (HO,GW ) Pr{a|E}

F = (CR,GW ) Pr{a|F}

False A = ∅ Pr{a|WP i, A}

An a priori COLREGS compliance probability Pr{CCi} will be used here, but
could in general be inferred through knowledge on for instance the obstacle ship
type and its current location. The next obstacle waypoint is assumed known, but
the route towards this waypoint is uncertain. Further, it is assumed that ST i can
be calculated deterministically given CCi. Thus, the only unknown probability
remaining is Pr{a|WP i, ST i}, which is here specified by ad hoc intention models.

Table 4.1 summarizes the conditional intention cases given WP i, ST i and CCi.
In Table 4.1, the intention is indepedent of the next waypoint for ST i = B to F ,
as COLREGS compliance is assumed to have the highest priority. If the obstacle
is not CC, then the waypoint dependent intention model will be used, i.e. as for
ST i = A. Note that this is weighted by the prior CC probability Pr{CCi}.

With the stated assumptions, the intention probability Pi
a simplifies to

Pi
a = Pr{a|WP i, ST i}Pr{CCi} (4.3)

Waypoint Dependent Intention

For ST = A, the waypoint information is considered, where a simple ad hoc model
for the obstacle intention is developed considering the obstacle course χi and the
Line of Sight (LOS) vector Li from the obstacle to its next waypoint. This is
illustrated for an example head-on scenario in Fig. 4.2.

The angle θ is defined as the angular difference between the LOS-vector to the
waypoint and the obstacle course, and used to define the intention probability of
straight line motion, starboard or port maneuvers. The probability for the obstacle
to keep its course a = 1 is then assumed on the form

Pr{a = 1|WP i, A} = α1,WPe
−c1|θ| + α2,WP (4.4)

where c1 > 0 is a parameter to decide the decrease/increase in probability as the
obstacle turns towards the end point. The parameters α1,WP and α2,WP determines
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the maximum probability for the waypoint dependent intention a. For a starboard
or port maneuver at some time tturn ≥ t0, where t0 is the current time, the intention
probabilities are assumed to be

Pr{a = 2|WP i, A} =


α1,WP (1− e−c1θ)

+ α2,WP if θ ≥ 0.

α3,WP , otherwise.

(4.5)

Pr{a = 3|WP i, A} =


α1,WP (1− ec1θ)
+ α2,WP if θ ≤ 0.

α3,WP , otherwise.

(4.6)

respectively. The weigthing parameters satisfy

α1,WP + 2α2,WP + α3,WP = 1 (4.7)

If the probability of a maneuver to a given side is high due to the angle θ being
large, the probability for a maneuver to the other side is set to a small constant
value α3,WP . The intention probabilities in (4.4) - (4.6) can be verified to sum to
unity.

v0

θ
vi

Li

Figure 4.2: A head-on scenario with obstacle i in green and own-ship in blue. Their
velocity vectors vi and v0 are also shown. The unknown ground truth planned obstacle
trajectory is shown in grey, with its next waypoint assumed known to the own-ship as the
black dot.
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Stand-on Dependent Intention

If the obstacle is stand-on vessel in either crossing or overtaking, it is assumed to
be COLREGS-compliant and keep its current course and speed with a constant
high probability, and thus the intention probabilities for this ST are

Pr{a|B} = Pr{a|C} = {α1,B , α2,B , α3,B} (4.8)

where αa,ST for a = 1, 2, 3 are parameters which sum to one for any ST , and
αa,B = αa,C by assumption. The parameter α1,B is typically chosen higher than
0.9 due to the COLREGS compliance assumption.

Give-way Dependent Intention

When the obstacle is the give-way vessel, the intention probability is assumed to
follow a model dependent on the distance d0i. For the overtaking situation ST = D,
the model is assumed of the form

Pr{a = 1|D} ∝ α1,De
c2(d0i−dclose) (4.9)

Pr{a = 2|D} ∝ (1− α2,D)(1− ec2(d0i−dclose))

+ α2,D

(4.10)

Pr{a = 3|D} ∝ (1− α3,D)(1− ec2(d0i−dclose))

+ α3,D

(4.11)

where c2 > 0 is a parameter to tune the the obstacle intention a decrease/increase.
For the head-on situation ST = E, the probabilities are assumed of the form

Pr{a = 1|E} ∝ α1,Ee
c2(d0i−dclose) (4.12)

Pr{a = 2|E} ∝ (1− α2,E)(1− ec2(d0i−dclose))

+ α2,E

(4.13)

Pr{a = 3|E} ∝ α3,E (4.14)

Lastly, for the crossing-on situation ST = E, the probabilities are assumed of the
form

Pr{a = 1|F} ∝ α1,F e
c2(d0i−dclose) (4.15)

Pr{a = 2|F} ∝ (1− α2,F )(1− ec2(d0i−dclose))

+ α2,F

(4.16)

Pr{a = 3|F} ∝ α3,F (4.17)

In head-on and crossing, a maneuver towards starboard will be given the highest
probability, and thus α2,E and α2,F will be chosen higher than α1,E and α1,F ,
respectively. For the overtaking case, starboard and port maneuver intentions will
be given equal weight, thus α2,D = α3,D, also chosen higher than the weight α1,D
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on keeping the current course. To avoid overconfidence in the decision of the MPC,
all parameters αa,ST i are chosen strictly higher than zero. Note that only the
intention of a given maneuver is quantified through these models, not the time
of occurance and how much change in course and speed the maneuver will have.
The intention probabilities specified in the models (4.9) - (4.11), (4.12) - (4.14) and
(4.15) - (4.17) sum to one after multiplication with the inverse of the normalization
constant

∑na

a=1 Pr{a = |ST i}.

This intention probability model is ad hoc, makes many assumptions and neglects
a significant amount of factors. However, the point is merely to display the effect
on the performance of a COLAV planning algorithm when taking such information
into account. When considering the example set of three maneuvering intentions,
the model can be compared to the Interacting Multiple Model (IMM) approach
commonly used in tracking [136], where probabilities of a target behaving as per
a set of different modes is estimated based on kinematic measurements. The dif-
ference from the IMM approach is, however, that the DBN for intention inference
proposed here can condition on a diverse set of information types, such as the
current obstacle state, its ship type, its next waypoint or destination and incli-
nation towards adhering to the COLREGS. The DBN could in general represent
more complex obstacle intention states, e.g. the degree of COLREGS compliance,
whether or not the obstacle has higher priority than other ships, what it considers
as safe distance to nearby vessels and what it considers ample time.

4.3 Updated Collision Probability Estimation

The work in [97] introduced a method for estimating the collision probability be-
tween the own-ship and an obstacle using the obstacle uncertainty in position and
velocity in a MCS and KF scheme. The method assumes straight line trajectories
for both vessels for the entire time horizon at the time of evaluation, which will be
overly conservative as the vessels will most likely make maneuvers in the future to
reduce collision risk. This chapter further extends this method by calculating the
collision probability on piece-wise linear segments along the vessel trajectories, to
reduce the conservativeness of the estimate by exploiting the intention models in
Section 4.2. A discretization time step of Tseg = tj − tj−1, for two time instants tj
and tj−1, is used, typically larger than the prediction time step in the MPC. The
concept is illustrated in Fig. 4.3 for a maneuvering own-ship and an obstacle.

Piece-wise linear segments from tj−1 to tj along the vessel trajectories are created,
with vessel velocities given by the average over the current segment and direction
along the linear segment. These segments are then used as in the original method
[97] to estimate the collision probability, with one alternation: If the time until CPA
tcpa is less than tj for two linear segments in consideration, the vessel states at tj
instead of tcpa is used in the MCS part. This is done to constrain the collision prob-
ability evaluation to only consider positions on the discretized vessel trajectories.
The obstacle covariance at the time tj−1 is used in the MCS [97]. This alteration
naturally requires retuning of the noise parameters rP and qP in the estimation.
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t1

t0

t0

t1

t2 = tcpa,2

tcpa,1

Figure 4.3: Illustration of the updated collision probability estimation method. Note
that Tseg is chosen large to make the methodology more clear. Further note that the
CPA drawn in the sketch are examplatory. The obstacle (green) and own-ship (blue)
trajectories are shown in green and gray, respectively. The obstacle 3σ uncertainty ellipse
at t0 is shown in orange. The black dots indicate the vessel positions at times t0, t1 and
t2. The red dots indicate the vessel positions along the linear segments at CPA, which
for the two segments in the own-ship trajectory gives two CPA times tcpa,1 and tcpa,2.
Since tcpa,1 > t1, the safety zone (cyan) around the own-ship is centered to the own-ship
position at t1, where the vessel positions at t1 is used as basis for the collision probability
estimation. For the second pair of segments, tcpa,2 ≤ t2 and the safety zone is thus centered
over tcpa,2.

4.4 Probabilistic Scenario-Based Model Predictive Control

The second version of the PSB-MPC algorithm [97] uses the updated CPE in
its probabilistic collision risk assessment, and also facilitates the use of obstacle
intention information through probabilities of starboard, constant course and port
maneuvers. This is accomodated by using an OU model for predicting multiple
alternative maneuvering scenarios for an obstacle in the enhanced MPC prediction
scheme outlined below. See Section 3.5 in the previous chapter for information on
the first PSB-MPC version.

4.4.1 Enhanced Prediction Scheme

The obstacle motion is predicted using a stochastic OU process. Details on the
model was outlined in Section 2.4.2. A state vector xi

k = [xik, y
i
k, V

i
x,k, V

i
y,k]

T is
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used to describe the kinematics of obstacle i at time index k, and is given by
the position and velocity components in a planar north and east reference system,
respectively.

To make use of knowledge about different obstacle intentions in the MPC, the
predictions must allow for port and starboard turns at different time instants in
the horizon, in addition to the original straight line motion prediction. The number
of turns and time of each turn for an obstacle is here determined by considering the
time remaining until and distance at the estimated CPA, tcpa and dcpa, respectively.

If there is no predicted collision at tcpa, i.e. the obstacle does not enter the safety
zone of the own-ship with radius dsafe [97], then the alternative maneuvers are
spaced evenly with tts apart throughout the horizon of length T . If there is a
predicted collision, the time tcpa determines how many alternative maneuvers are
accounted for. Thus, the final turn time of the obstacle is given by

tft =


t0 + T, if dcpa > dsafe.

t0 + tcpa, if dcpa ≤ dsafe & tcpa > tts.

t0, if dcpa ≤ dsafe & tcpa ≤ tts.
(4.18)

The case where dcpa ≤ dsafe and tcpa > tts is illustrated for a head-on scenario in
Figure 4.4. The two vessels are here predicted to collide at the blue cross (CPA).

The maneuvers are implemented by changing the velocity vi
OU,k of the OU model

at the turn time. In general, a finite number of different course changes can be
used. In Fig. 4.4, three changes are used. As the explosion of obstacle uncertainty
is avoided by using an OU process for prediction, its uncertainty can be divided into
pieces given by the amount of different prediction scenarios specified. The spacing
between turns and amount of different course changes should be set such that the
union of the obstacle uncertainty in all prediction scenarios cover all possible paths.
This is also a trade off with the computational effort required in the predictions.

4.4.2 Multiple Sequential Avoidance Maneuvers

To prevent conservative solutions, the second PSB-MPC edition is allowed to make
nM sequential avoidance maneuvers in the prediction horizon. The start time of
each avoidance maneuver is selected as follows. The first avoidance maneuver is
made at t0. The subsequent maneuvers are made immediately after the closest
obstacle in the current collision situation makes its maneuver at t0 + tts, or im-
mediately after tcpa with the closest obstacle. When the closest obstacle is passed,
the subsequent maneuvers are found in the same manner using the next relevant
close obstacle. The spacing between the possible own-ship maneuvers will thus be
of minimum tts seconds. Thus, the control behavior l now consist of the avoidance
maneuvers

[
(U l

m,1, χ
l
m,1), ..., (U

l
m,nM

, χl
m,nM

)
]
. For the optimal control behavior l∗,

the first maneuver (U l∗

m,1, χ
l∗

m,1) is the MPC output. The PSB-MPC will typically
re-evaluate its optimal strategy at regular intervals, e.g. every 5 seconds.
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4.4.3 Cost Function

To account for multiple obstacle intentions and own-ship maneuvers in the predic-
tion horizon, the PSB-MPC cost function for the own-ship control behavior l is

v0

t0

t1

t2

t3

t4 = tcpa

vi

Figure 4.4: The previously shown head-on scenario with obstacle i in green and own-
ship in blue. Their velocity vectors vi and v0, respectively, are also shown. The prediction
scheme allows for the obstacle to make different types of port and starboard maneuvers
indicated at the discrete times t0 to t3 in this case, in addition to the original straight
line prediction. The blue cross indicates the obstacle position at tcpa.
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modified to

Hl(t0) =max
i

na∑
a=1

Pi
a(t0)C

l,i
a + g(·)+

1

nM

nM∑
M=1

f(U l
m,M , U

l
m,M−1, χ

l
m,M , χ

l
m,M−1)+

1

nM − 1

nM∑
M=2

h(χl
m,M , χ

l
m,M−1, tM − tM−1)

(4.19)

where

Cl,i
a =

ni
ps(a)∑
s=1

wi,s

nips(a)
max

t∈D(t0)

[
Cl,si (t)P̂l,i,s

c (t) + κiµ
l,s
i (t)

]
(4.20)

is the average cost for all predicion scenarios nips involving intention a for obstacle
i. For the case in Fig. 4.4, nips(1) = 1 and nips(2) = nips(3) = 12. The weights wi,s

are given as

wi,s =

{
Pr{CCi}, if obstacle i is CC in s

1− Pr{CCi}, otherwise
(4.21)

The check whether the obstacle is CC in a prediction scenario is done by deter-
mining whether it breaches COLREGS given that the own-ship keeps its course.
The terms Cl,si , P̂l,i,s

c (t) and κiµ
l,s
i (t) are the collision risk cost, collision probability

and COLREGS penalization term, for control behavior sequence l, obstacle i in
its prediction scenario s. Unlike [97], no discounting is made on the collision cost
because this is done implicitly in the collision probability calculation when prop-
agating the obstacle uncertainty in time. The set D(t0) contains all time samples
in the prediction horizon.

The control reference cost f(·) is summed over all own-ship avoidance maneuvers
in the control behavior l, where U l

m,0 = Um,last and χl
m,0 = χm,last are the offsets

from the previous optimal MPC output. For nM > 1, a new control reference cost
has been introduced in h(·), which is given by

h(χ1, χ2, t) =

Ksgnexp
(
− t

Tsgn

)
, if sign(χ1) ̸= sign(χ2)

0, otherwise
(4.22)

and penalizes chattering behavior in course throughout the horizon, discounted by
the time tM − tM−1 between maneuvers, with tuning parameters Ksgn and Tsgn.
See [97] for more information on the cost terms and their parameters.

4.5 Simulation Results

The PSB-MPC is compared against the original SB-MPC described in Section 2.6
with one avoidance maneuver in two different scenarios. The performance of the
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PSB-MPC will be gauged when different prior probabilities on the obstacle CC is
used, when it knows the next waypoint for each obstacle.

Measurements for the obstacles are generated using a covariance R = diag(25, 25)m2.
Obstacles of lengths 30− 100m are considered. The obstacles are initialized to the
ground truth but with a single-point initialized covariance, and otherwise tracked
using Kalman-filters as in [97], where the filter measurement covariance and process
covariance parameters are chosen as RKF = 2R and σKF

a = 0.5m/s2, respectively.
This represents a conservative KF which expect fast maneuvers for the obstacle,
and therefore gives higher track uncertainty, as could be the case for a real time
tracking system with model mismatch and/or degraded sensor performance.

Important parameters for the SB-MPC and PSB-MPC, segment-wise collision
probability estimation and intention models are summarized in Table 4.2. The
parameter dclose is chosen larger than in [97] because it here also determines the
model switching in the ad hoc intent inference. Considering their common param-
eters, the two versions are tuned equally. For the PSB-MPC, course changes of
30, 60 and 90 degrees are considered for the obstacle predictions. Two sequential
avoidance maneuvers are considered, where the first one samples 39 control behav-
iors as in [70], and the second maneuver samples a subset of those: Um,2 ∈ {1, 0.5}
and χm,2 ∈ {−90,−45, 0, 45, 90} degrees, to limit the computational effort. For the
MPC predictions, the initial typical velocity vi

OU,k is set to the current velocity
estimate of the obstacle.

Results for the two MPC versions are shown below. The own-ship using SB-MPC
and PSB-MPC are shown in blue and red with continuous black and dashed black
trajectories, respectively. The obstacles are shown in green with their corresponding
index number. The obstacle intention probabilities and distance to the obstacles
are also shown. In all scenarios, the PSB-MPC knows the next waypoint for the
obstacles but not their route.

In the head-on scenario in Fig. 4.5, the a priori CC probability is set to Pr{CCi} =
0.1, indicating low trust in the obstacle to follow COLREGS. The scenario is also
set up such that the obstacle breaches COLREGS through a port maneuver. Due
to the intent inference being used as input to the PSB-MPC planning algorithm,
it predicts a port maneuver from the waypoint information and therefore initially
slows a bit down and makes a large CC starboard maneuver. The original SB-MPC
does not forsee this, and risks collision with the obstacle. This is also contributed to
the uncertainty in the track estimates, which is not considered in the original SB-
MPC. The switching in intent probabilities in Fig. 4.5(b) occur due to the obstacle
entering the COLREGS consideration limit and when it passes the own-ship. Some
oscillation in the course offset for the PSB-MPC is also seen partially due to this.
Because of a small a priori CC probability, the waypoint dependent intention will
dominate. Note that alternative behaviors could also be feasible, such as a port
turn to minimize collision risk at the cost of breaching COLREGS. A weighting
between risk aversion and COLREGS compliance must therefore be made.
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safety zone marked as the red line.

Figure 4.5: Non-CC obstacle in head-on scenario with more correct probabilistic infor-
mation.
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Results for the same head-on scenario when having a false high trust in CC for
the obstacle, by setting Pr{CCi} = 0.9, are shown in Fig. 4.6. In this case the
PSB-MPC makes a smaller CC starboard maneuver, as it expects the obstacle also
will act accordingly. However, as the probability of non-CC is 0.1, the waypoint
dependent intent causes a higher port intention probability than the probability of
keeping the current course. Thus, a more conservative starboard maneuver is made
for the PSB-MPC than the SB-MPC, which gives a higher safety margin when
the obstacle makes the unforseen port turn. The intention probabilities switches
one time during the simulation as ST i changes from E to A when the own-ship
is passed by. As no boundary conditions are enforced on the probabilities, discrete
jumps can occur. The increase in starboard turn intention at the end is due to the
angle θ going positive at some point during the port turn.

Lastly, results for a combined head-on and crossing scenario are shown in Fig.
4.7, where a non-CC obstacle head-on to the own-ship, basically identical to the
case in Fig. 4.5, makes a port maneuver too late, and where a CC obstacle with
assumed Pr{CC2} = 0.9 makes a late give-way maneuver in a crossing situation.
The assumed a priori CC probability for each obstacle i = 1, 2 is set to 0.1 and
0.9, respectively. The performance of the SB-MPC again causes large hazard with
obstacle 1, as only one deterministic straight line prediction based on the current
track estimates of the obstacles are considered, while the PSB-MPC is able to utilize

Table 4.2: Parameters for the different methods and models.

SB-MPC PSB-MPC
Parameter Value Value

rP - 0.001

qP - 0.017

Tseg - 1 s

dclose 1000m 1000m

na - 3

nM 1 2

tts - 25 s

Ksgn - 5

Tsgn - 4tts
σx - 0.8m/s2

σxy - 0m/s2

σy - 0.8m/s2

γ - [0.1, 0.1]T

α:,WP - {0.875, 0.05, 0.025}
α:,B - {0.9, 0.05, 0.05}
α:,D - {0.05, 0.475, 0.475}
α:,E - {0.05, 0.9, 0.05}
α:,F - {0.05, 0.9, 0.05}
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Figure 4.6: Non-CC obstacle in head-on scenario with wrong probabilistic information.
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the extra probabilistic information to make a larger proactive avoidance maneuver
starboard. The algorithm could also be tuned to make the own-ship slow down and
then take the turn, or make a port turn to minimize the collision risk with obstacle
1. As obstacle 2 is almost assumed fully CC, it could be safer to violate COLREGS
and pass the obstacles with a port maneuver. The next waypoint for obstacle
i = 1 again lies to the east, and the corresponding port intention dominates due
to the low CC trust. Switches occur two times for the obstacles as they enter the
COLREGS consideration limit and are passed by. The next waypoint for obstacle
i = 2 lies in the south, and an increase in port intention is here seen due to the
angle θ switching sign.

4.6 Conclusion

The PSB-MPC extended to also consider probabilistic obstacle intentions and mul-
tiple sequential avoidance maneuvers, gives increased situational awareness and
thus improved decision making. This is here shown for an ad hoc intention inference
model, which is only used for illustration. As the complexity of the MPC predictions
are significantly increased, further simulation studies are needed to investigate op-
timal tuning parameters and prediction scenario configurations. Existing methods
should be used on AIS data to estimate the parameters of the OU process used
in predictions. Furthermore, the robustness of the PSB-MPC for various obstacle
intention probability configurations should be studied in more detail.
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Figure 4.7: Combined scenario.
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Chapter 5

Third Edition of Collision Risk
Assessment in a Probabilistic
Scenario-based MPC Using The
Cross-Entropy Method

This chapter is based on the publication

[94] T. Tengesdal, E. F. Brekke and T. A. Johansen, "Ship collision avoidance
utilizing the cross-entropy method for collision risk assessment", IEEE Trans-
actions on Intelligent Transportation Systems, vol. 23, no. 8, pp. 11148-11161,
2022.

which outlines a new approach to collision probability estimation. The CPE out-
lined in the previous chapters assumed constant velocity for the vessels involved
over a time step or more. Furthermore, it suffers from the curse of dimensionality
when low collision probabilities are considered, as a higher sampling number is re-
quired. In this chapter, the developed Cross-Entropy (CE) based method improves
on CPEs developed in the previous two chapters by using adaptive importance
sampling [137], which is able to produce accurate estimates at low computational
cost. With accuracy it is here meant the property of low variance and unbiased
estimates. Through its adaptivity, it can better handle rare collision events with
low probabilities.

5.1 Introduction

5.1.1 Motivation

As COLAV planning algorithms typically use information about nearby obstacles
from e.g tracking systems, it needs to account for the uncertainties present in these
information sources in order to make robust and safe decisions. However, as shown
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in previous chapters, the associated uncertainty with a tracking system estimate
can be difficult to assess and utilize in COLAV systems [97]. A collision probability
estimator (CPE) can be used to take into account the kinematic uncertainty from
the tracking system, to provide a higher level of situational awareness for the au-
tonomous ship. The CPE should then use a robust method with a proper trade-off
between overconfidence and conservativeness in the estimate.

Collision probabilities can furthermore be good indicators for determining haz-
ardous situations. A CPE and other probabilistic methods for evaluating collision
risk can therefore also be used in general systems for supervisory risk control of
autonomous ships [138], to update online risk models.

5.1.2 Previous Work

Collision Probability Estimation

Many different approaches for the problem of assessing collision probabilities and
collision risk for both the maritime and air traffic sectors exist. They can be par-
titioned into methods which do not explicitly consider the uncertainties present in
vessel navigation and control, and methods which do. Methods in the first group
applied in the maritime sector, have used quantitative risk assessment models, rule-
based systems with fuzzy logic, ship-ship geometry such as the time and distance to
the CPA, neural networks and ship domain considerations to estimate the collision
probability and risk [122].

For the second group, which is considered here, there exist different methods for
collision probability estimation, as the probability can in general not be found
analytically. The methods differ by the choice of framework, vessel motion and
uncertainty representations, and the estimation approach used. The framework is
here defined as the formulation and definition of safe separation zones, conflict
zones and collisions. The word conflict is used in some of the methods, which is
defined as the loss of a minimum separation distance between the vehicles, and
where collision is the actual vehicle contact. For this article, a collision will instead
be defined as the breach of a defined safety zone around the own-ship.

For air traffic, Paielli and Erzberger propose an approximate analytical solution to
the problem in [139], [140]. A conflict probability is here calculated by integrating
the combined positional PDF of two aircrafts assumed to have normally distributed
trajectory errors flying with constant speed, over an extended conflict zone. The
zone is essentially a corridor along the direction of the relative velocity centered to
one of the aircrafts. A coordinate transformation is applied in order to make the
probability feasible for direct computation. Due to the constant velocity assump-
tion, the method performs poorly for maneuvering cases, which is improved in [91]
by considering a limited rectangular conflict zone. A numerical solution for the
same problem is introduced in [141], but where decoupled along-track and cross-
track position uncertainties for the aircrafts are assumed. The estimation is further
improved by refining the approximate conflict zone in [142] and through evaluating
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the approximate Cumulative Density Function (CDF) of a quadratic form of Gaus-
sian variables for the exact conflict zone in [143]. Random sampling methods with
MCS to solve the problem are used in [88], [144], [145]. The concept of probability
flow was introduced and proposed for the estimation problem in [146]. Here, the
rate of change of probability through the conflict zone is integrated using adaptive
numerical integration methods to estimate an upper bound to the conflict probabil-
ity in real-time. A thorough review of methods for collision probability estimation
in the air traffic domain is given in [147], where a unified mathematical framework
for the collision probability estimation problem is proposed.

For maritime vessels, a semi-analytical solution of the problem based on probability
flow is presented in [148], built on the method in [146], which improves on the
results summarized in the previous paragraph with less conservative estimates and
lower computational time. Again, a numerical method is used to integrate the rate
of change of probability, now modelled as a drift and diffusion process, to obtain
the collision probability. However, the method was not tested for maneuvering
ships with uncertain velocities, as only vessels with assumed constant deterministic
velocities were considered in the study. Neither was the method tested in low
collision probability scenarios. Furthermore, the method is not easily reproducable
from the paper. An approach considering maneuvering intentions and reachable
sets for the collision probability estimation is proposed in [89]. The computational
efficiency of the method was however not discussed.

A combination of MCS and a KF has also been proposed recently for the estimation
problem, detailed in the previous two chapters. First in [97] assuming uncertain
constant velocity for both encountering vessels, and updated in [98] to consider
maneuvering vessels by discretizing their trajectories and estimating the proba-
bility along piece-wise linear segments. Statistical “measurements” of the collision
probability are here generated using sampled straight line trajectories from the
four-dimensional obstacle uncertainty in the MCS, and processed through the KF
to optimally use previous probability estimates and attenuate statistical noise due
to a limited amount of samples used. This allows for a predictive collision proba-
bility calculation, but at the cost of more conservative results as only straight line
trajectories are considered.

Risk-based Collision Avoidance

Maritime COLAV has been an active research field for a long time[26]. There are
still many challenges associated with tackling uncertainties related to the vessel
kinematics and intent of nearby obstacles present in hazardous situations. Several
studies exist that take some of the uncertainties into consideration, but dealing
explicitly with these challenges in a probabilistically sound manner has most often
been ignored for maritime COLAV [28] as previously mentioned.

A probabilistic version of velocity obstacles for COLAV is introduced in [61], where
the kinematic uncertainty in velocity for the obstacle is taken into account in a
one-step reflective navigation planning approach. The computational efficiency of
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the method used for calculating the probabilistic velocity obstacles is however not
detailed nor discussed.

A lattice-based planner is proposed in [69], where A* search is used to find a
collision-free trajectory, where COLREGS breaches, trajectory deviation and high
collision risk are penalized. How the collision probability between the own-ship and
nearby obstacles is explicitly calculated is however not mentioned nor discussed.
In [66], A* search to find a collision-free trajectory through an occupancy grid.
The search uses a cost-to-go function that penalizes the Euclidean distance to the
goal, and non-zero obstacle occupancy probabilities. The occupancy probabilities
for obstacles are calculated using a numerical approximation, but the accuracy of
the method is not discussed.

The COLAV approach in [88] uses MCS for collision probability estimation to re-
plan waypoints for a collision-free trajectory when the probability estimate exceeds
a threshold, considering the case when both the own-ship and obstacle have time
varying kinematic uncertainty, assuming constant speed in the vessel prediction
models.

The probabilistic variant of the SB-MPC [70] was introduced in [97], where a proba-
bilistic collision cost was used in the COLAV planner to take into account kinematic
obstacle uncertainty. The method was further expanded in [98] to consider obstacle
intent uncertainty. The method developed for estimating collision probabilities is
based on MCS considering the uncertainty in both position and velocity for ob-
stacles. Thus, it will suffer from the curse of dimensionality and sample wasting
when considering small probabilities. Both these editions were also detailed in the
previous two chapters.

5.1.3 Contributions

In this chapter, a novel adaptive importance sampling method based on the Cross-
Entropy method [149] is presented, for use in estimating ship-ship collision prob-
abilities. The CPE will search for a near-optimal PDF to sample from, in order
to maximize the number of effective samples used in estimation, thereby attaining
better accuracy in the sense of lower variance estimates than conventional sampling
methods such as pure MCS [145] and Importance Sampling (IS). The method is
benchmarked against these traditional sampling-based estimation methods, in cases
of low to high collision probabilities for typical maritime traffic situations involving
maneuvering ships. This is something that has not been properly done in previous
work, e.g. [148], as constant speed and course are often assumed for the vessels.
The proposed CPE is furthermore shown able to deliver accurate estimates for
real-time use.

To demonstrate a possible use case of the proposed method, it is employed in a
maritime COLAV system to show the benefits of more accurate risk assessment.
A simulation study is presented to validate the PSB-MPC [98] COLAV algorithm
using the CE-method for collision probability estimation. The COLAV planning
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algorithm robustness when the obstacles perform unexpected maneuvers is tested,
which requires accurate predicted collision probabilities in order to have adequate
reactive COLAV capabilities. The PSB-MPC using the CE-method for collision
probability estimation is compared to the original SB-MPC as in [70]. The case
when all vessels involved are intelligent and use the PSB-MPC is also shown.

5.1.4 Chapter Overview

This chapter is organized as follows. Section 5.2 briefly outlines the prediction
models used in the COLAV planning algorithm. The collision probability definition
is given in Section 5.3, whereas Section 5.4 introduces the CE-method applied to
the estimation of this probability. Section 5.6 comes with a description of the
PSB-MPC algorithm and contains a simulation study of the COLAV algorithm
in different situations. Finally, Section 5.7 comes with concluding remarks to the
work in this article.

5.2 Models

The own-ship is represented by a ship model with 3 degrees of freedom as in
[97], described in Section 2.4.4. The COLAV algorithm will use an OU process to
describe the predicted motion of obstacles, as described in Section 2.4.2.

As in the previous two chapters, it is assumed that the obstacle state is Gaussian,
such that x will have a predicted PDF pi(x, tk) = N (x;xi

k,P
i
k) at the current

prediction time tk, with mean xi
k and covariance P i

k.

5.3 Collision Probability

5.3.1 Assumptions

Before defining the collision probability, the assumptions behind the CPE frame-
work are stated:

1. The own-ship trajectory has negligible uncertainty.
2. The safety zone around the own-ship is circular with radius dsafe.
3. The obstacle has a Gaussian distributed state obtained from the OU process,

which will have a predicted PDF pi(x, tk).

The first assumption is made because more accurate sensing often makes the own-
ship navigation uncertainty small compared to the tracked or predicted obstacle
uncertainty [113].

The second and third assumptions allow for a tractable approach for estimating the
collision probability. The safety zone radius dsafe can be inflated by for instance
half the length of the encountering vessels, to take into account the geometric
extent of the vessels.
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The Gaussianity assumption for the obstacle uncertainty is common in vehicle
tracking systems [120]. Thus, since the proposed CPE here uses estimates from such
a tracking system, this assumption is natural. The predicted obstacle PDF will be
initialized with the state estimate x̂i(t0) and the corresponding error covariance
matrix P̂ i(t0) at the current time t0, obtained from the tracking system.

5.3.2 Definition

The collision probability, denoted Pi
c,k, is defined as the probability for an encoun-

tering obstacle with index i to breach the own-ship safety zone within the predicted
time interval [tk, tk+1]. It can be defined using the probability of the event

Cik = An obstacle i breaches the own-ship
safety zone within the time interval [tk, tk+1].

(5.1)

which can be expressed in integral form using the obstacle positional PDF as

Pi
c,k = Pr{Cik} =

∫∫
R
pi2(x, y; tk)dxdy (5.2)

where R is the two-dimensional area of integration, namely the own-ship safety
zone, and pi2(·) the predicted positional part of the obstacle PDF, hence the sub-
script 2. Although the integral is over the own-ship safety zone, the main contri-
bution to the collision probability will come from the conflict zone S2, which is the
region of overlap between the own-ship safety zone and the obstacle PDF, illus-
trated in Fig. 5.1. The obstacle PDF is here represented as a probability ellipse,
which has the equation

(x− xi
1:2,k)

T (P i
2,k)

−1(x− xi
1:2,k) = χ2

1−αp,n (5.3)

where the index 1 : 2 for xi
1:2,k signifies components 1 to 2 of the state vector.

P i
2,k is the positional part of the predicted obstacle covariance at time tk, and

χ2
1−αp,n is the inverse cumulative Chi-squared value for a probability 1 − αp with
n = 2 degrees of freedom. For instance αp = 0.003 will give approximately the
3σ probability ellipse, i.e. enveloping approximately 99.7% of the total positional
uncertainty.

Assumption 1 from the previous section allows the simplification of only consid-
ering the obstacle uncertainty. However, the obstacle PDF could be replaced by
the combined uncertainty of both the own-ship and obstacle if the own-ship uncer-
tainty was deemed significant compared to that of the obstacle. This is done in e.g.
[140]. The uncertainty in the obstacle velocity is here indirectly taken into account
through the propagation of its predicted state xi

k and covariance P i
k.
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Figure 5.1: Collision probability estimation geometry illustration, with the own-ship
safety zone in red, and the positional uncertainty for a dynamic obstacle represented by
a 3σ probability ellipse. S2 is the conflict zone.

5.4 The Cross-Entropy Method Applied to Ship Collision
Probability Estimation

5.4.1 Derivation

The collision probability (5.2) can be written as the integral

Pi
c,k =

∫
R
p(x,θ)dx (5.4)

with p(x,θ) = pi2(x, y; tk), where θ is the parameter vector describing the obstacle
positional PDF at time tk. A conventional method for solving this using sampling
based estimation is the Importance Sampling (IS) approach, described in Section
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2.2.2, which estimates the integral using

Pi
c,k =

∫
R

p(x,θ)

λ(x,ν)
λ(x,ν)dx

≈ 1

N

N∑
z=1

I{xz ∈ R}ωz(θ,ν)

(5.5)

where N is here the number of state samples xz, with z as the sample superscript.

The Cross-Entropy (CE) method can be used when finding a tractable importance
density λ(x,ν) is hard [137]. A tractable density is easy to evaluate and will give a
low variance estimator P̂i

c,k for (5.4). For estimation, the CE-method boils down to
an adaptive importance sampling strategy which attempts to find the best possible
importance density through iterative optimization. This is done by minimizing the
Kullback-Leibler divergence between the optimal importance density λ∗(x) and
the current density λ(x,ν) in each step. The Kullback-Leibler divergence between
two PDF´s Θ and Υ is given by

D(Θ,Υ) = EΘ

[
ln

Θ(x)

Υ(x)

]
=

∫
Θ(x) ln

Θ(x)

Υ(x)
dx

=

∫
Θ(x) lnΘ(x)dx−

∫
Θ(x) lnΥ(x)dx

(5.6)

The CE method can then be formulated as the optimization problem

min
ν
D(λ∗(x), λ(x,ν)) (5.7)

where λ∗(x) and λ(x,ν) are the optimal and current importance densities, respec-
tively. The optimal importance density has the property of being able to estimate
Pi
c,k with minimal variance, and can readily be found from (5.5) as

λ∗(x) =
I{x ∈ R}p(x,θ)

Pi
c,k

(5.8)

However, since Pi
c,k is unknown, (5.8) can not be evaluated and it can not be

guaranteed that the current density λ(x,ν) will converge towards the optimal one.
However, one can use (5.8) in reformulating the problem, noticing that only the
latter integral in (5.6) will be dependent on ν, and thus (5.7) can be formulated as
the maximization problem

max
ν

∫
λ∗(x) lnλ(x,ν)dx (5.9)

Inserted for λ∗(x), this gives

max
ν

∫
I{x ∈ R}p(x,θ)

Pi
c,k

lnλ(x,ν)dx (5.10)
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which is equivalent to
max
ν

Eθ [I{x ∈ R} lnλ(x,ν)] (5.11)

where the expectation is taken with respect to p(x,θ). The solution ν∗ to (5.11)
can be estimated through its stochastic counterpart

max
ν

N∑
z=1

I{xz ∈ R}ωz(θ,ϕ) lnλ(x,ν) (5.12)

where x1, ...,xN are samples from λ(x,ϕ), with ϕ as the reference parameter used
in the importance sampling of (5.11), typically taken as the prior importance den-
sity parameters. When (5.12) is convex and differentiable with respect to ν, the
estimate ν̂∗ for the new parameters can be found by solving the resulting system
of optimality equations [137]

1

N

N∑
z=1

I{xz ∈ R}ωz(θ,ϕ)∇ν lnλ(xz,ν) = 0 (5.13)

The importance parameters can then be iteratively improved by some performance
criteria by generating samples from the current importance density and solving
(5.13). For random variables in the exponential family, analytical solutions to (5.13)
can be found. As Gaussian distributions are considered, the mean µCE and covari-
ance PCE are the relevant parameters. Then, iteratively solving (5.13) boils down
to an iterative maximum likelihood estimation update

µCE
j =

1

Nelite

Nelite∑
e=1

xe (5.14)

PCE
j =

1

Nelite

Nelite∑
e=1

(xe − µCE
j )(xe − µCE

j )T (5.15)

with Nelite being the number of best performing or elite samples xe, with su-
perscript e, drawn from λ(x,νj−1). The index j denotes the current importance
density parameters. The superscript CE is used to separate the CE-method im-
portance parameters from other variables with the same letter. See [149] and [137]
for more information about the method derivation in general.

Note that although the Gaussian distribution is assumed here, the CE-method is
general, and solving (5.12) using other sampling distributions can be done. This
can however lead to non-convex programs, and might require a solver, which can
lead to more computational effort needed in using the method.

5.4.2 Importance Density Update Criteria

The CE-method will iteratively improve the importance density by sampling from
the current density, determine valid samples for update, and use these in (5.14) -
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(5.15). The criterion for xe being an elite sample is here formulated as the condition

V = (xe − µOS
2,k )

T (xe − µOS
2,k ) ≤ d2safe &

(xe − µi
2,k)

T (P i
2,k)

−1(xe − µi
2,k) ≤ χ2

1−αp,n

(5.16)

where µOS
2 and µi

2 are the predicted own-ship and obstacle positions, respectively.
Thus V = I{x ∈ S2}, i.e. the sample must be both inside the own-ship safety zone
and the obstacle probability ellipse bounded by the inverse cumulative Chi-squared
value χ2

1−αp,n with n = 2. The parameter αp should be chosen low enough to ensure
that all samples giving significant weight from the entire conflict zone are used in
updating the importance density, to ensure that λ(x,ν) has proper support when
estimating (5.2) after the final density update.

The reason for using the condition (5.16) stems from the desire to maximize the
amount of samples used in estimation. Elite samples after this criterion will have
non-zero importance weights, which means samples inside the safety zone, with
integrand PDF values larger than zero. In cases of low collision probabilities, where
the conflict zone is a region in the tail of the integrand PDF in (5.2), MCS and
poorly chosen IS densities will typically give less accurate estimates with higher
variance due to sample wasting. The CE-method can perform better by searching
for the optimal area to sample from, which will be a density centered in and covering
the conflict zone.

5.4.3 Smoothing

The updated density can be smoothed [149] using

µCE
j = αµCE

j + (1− α)µCE
j−1 (5.17)

PCE
j = αPCE

j + (1− α)PCE
j−1 (5.18)

with parameter 0 < α ≤ 1. This is done in order to prevent degeneration in the
importance density, which can occur when having a low number Ne of elite samples
or an extremely small conflict zone.

5.4.4 Initialization

A heuristic initialization of the starting importance density parameters ν0 as

µCE
0 =

1

2
(µOS

2,k + µi
2,k) (5.19)

PCE
0 =

d2safe
3

In×n (5.20)

is used, based on trial and error, where µOS
2 and µi

2 are the predicted own-ship
and obstacle positions, respectively.
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A hot start using the previous optimal parameters is applied if the algorithm satis-
fied the termination criteria with collecting enough samples in the previous iteration

µCE
0 = µCE

opt,last + (vOS
k−1 + vi

k−1)Ts (5.21)

PCE
0 = PCE

opt,last + σ2
injIn×n (5.22)

where µCE
opt,last and PCE

opt,last were the previous optimal parameters, Ts is the pre-
diction time step and vOS

k−1 and vi
k−1 are the predicted north-east velocity vector of

the own-ship and the obstacle, respectively, at the previous time tk−1. As the out-
put importance sampling PDF can get very small when the conflict zone is small,
a change in the vessel positions between two time instants can cause the density to
not have sufficient support considering the new conflict zone. Using the previously
predicted vessel velocities in the hot start will help in mitigating this problem, in
addition to injecting the covariance matrix with σinj . The variance injection also
makes the algorithm robust against the particle deprivation problem [150].

5.4.5 Termination Criterion

The main termination criterion for the CE-method is that Nelite ≥ ρN elite samples
have been collected, for a parameter ρ > 0. The secondary termination criterion
is if the maximum allowed number of iterations Nmax,iter has been reached. After
terminating, a final sample set of size N is generated from the current density, and
the collision probability is estimated using (5.5) on the problem (5.2). The main
criterion attempts to make sure that a high percentage of the samples are used in
the calulation of the estimate. The parameter ρ should be chosen sufficiently high
in order to obtain accurate estimates, but not too high as this can cause conver-
gence issues. The adaptive importance sampling method for collision probability
estimation based on the CE-method can be summarized in Algorithm 1.

5.5 Evaluation of the CE-method

5.5.1 Comparison of Sampling Schemes

The CE-method is compared with the method in [98], hereby abbreviated as M1.
M1 considers predicted trajectories of the own-ship and obstacle, and discretizes
them using piecewise linear segments. For each of these segments, straight line tra-
jectories from the four-dimensional obstacle PDF at the relevant time are sampled.
The ratio of the trajectories causing an obstacle position inside the own-ship safety
zone at CPA to the total number of trajectories, is used as a collision probability
estimate. A Kalman filter is then used to reduce the statistical noise in this esti-
mate, which comes from using a finite number of samples. The collision probability
is in this method defined as a collision at some time tc ≥ tk in the future. Thus, to
allow for comparison, a linear segment discretization time step of Tseg = tk+1 − tk
is used, i.e. equal to the prediction step Ts. This limits the possible future collisions
to be inside the time interval [tk, tk+1]. See [98] for more details.
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Algorithm 1 The CE-method based CPE algorithm.

1: ν0 ← {µCE
0 ,PCE

0 } calculated using (5.19) - (5.20) or (5.21) - (5.22)
2: for j = 1 to Nmax,it do
3: Nelite ← 0
4: for z = 1 to N do
5: Sample xz from λ(x,νj−1) = N (x;µCE

j−1,P
CE
j−1).

6: if xz satisfies (5.16) then
7: Tag xz as an elite sample
8: Nelite ← Nelite + 1
9: end if

10: end for
11: if Nelite > ρN then
12: Break;
13: else
14: Update and smooth νj using (5.14) - (5.15) and (5.17) - (5.18) with the

Nelite elite samples
15: end if
16: j ← j + 1
17: end for
18: Sample x1,x2...,xN from λ(x,νj) and use in estimating (5.2) with (5.5).

The proposed method is also benchmarked against the following other traditional
sampling based strategies M2 and M3.

M2: MCS

Estimating (5.2) using MCS with samples directly from the obstacle positional
PDF, i.e. using λ(x,ν) = pi2(x, y; tk) in the approximation (5.5). This is essentially
the same approach as in [145].

M3: Naive IS

Estimate Pi
c,k from (5.5) by sampling from a Gaussian PDF centered at the own-

ship position at time tk with variance d2
safe

3 in both x and y. The variance value
was chosen in order to give a good spread of samples on the entire safety zone,
with a minimum amount outside the zone.

5.5.2 Simulation Results

The different methods were compared in three prediction scenarios with one ob-
stacle, as described below. Vessels of lengths around 40m were considered. An
approximate ground truth (AGT) was obtained by using an MCS strategy with
106 samples for estimating the probability, to provide a benchmark for the other
methods in terms of accuracy. The root mean square error (RMSE) of the collision
probability estimates for the other methods relative to the AGT were used as a

84



5.5. Evaluation of the CE-method

performance metric. Results using these metrics were averaged over 50 MCS for
each scenario and for different sample numbers N . The simulations were performed
in MATLAB R2019a running on a laptop with an Intel(R) Core(TM) i9-8950HK
2.90GHz processor and 32GB RAM.

1. Head-on scenario with the own-ship starting at (x, y) = (0, 0) heading north
with forward speed u = 9m/s, while the obstacle is starting at (xi, yi) =
(150, 50) with initial covariance matrix P i = diag

(
[102, 52, 0.52, 0.52]

)
fol-

lowing a nearly constant speed of 9m/s, but immediately starting a port
maneuver to keep clear of the own-ship. There is no real threat of collision
in this scenario, but the probability of collision will be non-zero due to the
obstacle uncertainty causing a non-empty conflict zone.

2. Crossing scenario with the own-ship again starting at (x, y) = (0, 0) head-
ing north with forward speed u = 9m/s. The obstacle starts at (xi, yi) =
(400,−400) with initial covariance P i = diag

(
[52, 102, 0.52, 0.52]

)
travelling

eastward with constant speed 9m/s. No avoidance maneuvers are taken, so
a direct collision will occur at (400, 0) in the nominal scenario.

3. Overtaking scenario with the own-ship starting at (x, y) = (100, 0) head-
ing north with forward speed u = 15m/s, while the obstacle is starting at
(xi, yi) = (200, 0) with covariance P i = diag

(
[102, 52, 0.52, 0.52]

)
also going

north with constant speed 3m/s. The own-ship takes a starboard maneuver
immediately to avoid the obstacle, before converging back to the trajectory
going straight north.

Scenarios with different proximity between the own-ship and obstacle have been
chosen to illustrate the performance of the methods in dealing with different colli-
sion situations which can be encountered in the predictions of a COLAV planner.
The starting covariance values are partially based on the results in [129].

Important parameters are given in Table 5.1. For the OU process, parameters are
chosen partially based on values estimated in [79], but with higher values due to
a time scale of seconds and not hours being used. They were also chosen to as-
sume the obstacles are smaller vessels with high maneuverability by having larger
revertion strength. Increased maneuverability will increase the predicted kinematic
uncertainty of a vessel, and the process noise was therefore also increased to re-
flect this. Equal revertion in both x and y leads to an equal increase of obstacle
uncertainty in these directions, which will coincide well with a higher tendency for
maneuvering. The CE parameters are chosen based on trial and error.

For the sample collision probabilities shown in the results below, the number of
samples N used for each method M1 - M3 and CE have been chosen individu-
ally to account for the difference in computational effort required, to make their
computation time approximately equal on average.

Note that the vessel sizes indicated in the figures below have been scaled for visu-
alization, and does not necessarily reflect real vessel dimensions. In the north east
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Table 5.1: Important CE-parameters.

Parameter Value Comment
Ts 0.5 s Prediction time step
dsafe 50m Safety zone radius
σx 0.9m/s2 Process noise parameter
σxy 0m/s2 -
σy 0.9m/s2 -
γ [0.1, 0.1]T 1/s Revertion parameter
ρ 0.9 Sample fraction for parameter update
α 0.9 Smoothing parameter
αp 0.001 Elite sample boundary parameter
σinj dsafe/2 Injection parameter

Nmax,iter 10 Max number of iterations
NCE 1000 # of samples used for CE
NM1 200 # of samples used for M1
NM2 4000 # of samples used for M2
NM3 4000 # of samples used for M3

plots, the obstacle is shown in green and the own-ship in black. The 3σ obstacle
positional probability ellipse is shown at time steps with varying color, in addition
to the own-ship safety zone in red.

Results for the head-on scenario are shown in Figs. 5.2(a), 5.2(b) and 5.2(c), where
the collision probability is small due to a small conflict zone. Fig. 5.2(b) shows that
the CE method is able to estimate the probability well compared to the AGT. The
other methods have higher variance, especially M1 due to a limited sample number
in the run, and because it samples directly from the four-dimensional obstacle PDF.
This will lead to many wasted samples not placing the obstacle in the conflict zone.
The same can be said for M2 and M3, although with less variance due to more
samples and doing it from positional PDFs. Fig. 5.2(c) shows that the CE method
has notably lower RMSE compared to the other methods, which will naturally even
out as the number of samples increase. A higher RMSE for M1 is partially caused
by the fact that only straight line trajectories are sampled in the algorithm [98], in
addition to the curse of dimensionality.

Run-time results for the head-on scenario are shown in Table 5.2. An approximate
linear relationship was found between the number of samples and the mean and
max evaluation time, when performing the MCS. The computational effort required
in the CE method is not excessive, with approximately 1ms per run for N = 1000,
making it feasible for real-time use. The methods M2 and M3 are naturally faster
due to only one batch of samples drawn from a two-dimensional distribution being
used in the estimation. For M1 there is a larger increase due to sampling trajectories
from a 4-dimensional distribution [98]. Similar results can be obtained for the
other scenarios. Note that the run-time results are highly dependent on hardware,
implementation details and the programming language used.
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Figure 5.2: Head-on scenario.
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Table 5.2: Mean evaluation time per sample for the head-on scenario, averaged over 50
MCS, in addition to the max evaluation time per sample and the standard deviation on
the results.

Method Mean Max Std. dev. Unit

CE 8.84× 10−7 3.08× 10−6 7.46× 10−7

s/sample
M1 3.99× 10−6 7.52× 10−6 3.76× 10−6

M2 2.46× 10−7 5.96× 10−7 2.57× 10−7

M3 2.52× 10−7 5.51× 10−7 2.71× 10−7

Results for the crossing scenario are shown in Figs. 5.3(a), 5.3(b) and 5.3(c). The
performance of M1-M3 is better than for the first scenario due to a larger conflict
zone. Looking at the RMSE, the CE method performs on par with M3. For this
scenario, the method M3 will waste few samples as the obstacle uncertainty quickly
overlaps the entire safety zone over a longer time period, making the conflict zone
equal to the safety zone. Thus, for high collision probability cases where the conflict
zone overlaps almost fully with the own-ship safety zone, the CE-method will form
an importance density centered and covering the safety zone.

This is, however, most often not the case in realistic scenarios, as ships will perform
maneuvers in order to minimize collision risk. Moreover, the simulation considers a
conservative safety zone of 50m, which together with no avoidance maneuvers lead
to high collision probability. Choosing another safety zone parameterization such
as a polygon shape better fitted to the own-ship would decrease the probability. In
terms of run-times, the computational demand of the adaptive importance sampler
can be reduced by pre-checking whether or not there is any significant conflict zone,
in which case one can approximate Pi

c,k ≈ 0. The case of full overlap with the safety
zone can also be detected, such that the estimator can terminate its optimization
earlier in order to reduce run-time.

Note also that because the estimator considers the probability of collision defined
within the interval [tk, tk+1], the probability only reach 1 when the obstacle uncer-
tainty is completely overlapped by the own-ship safety zone within one time step.
However, if the quantity was defined as the probability of a collision at anytime
over the entire own-ship trajectory, the predicted collision probability should come
close to or equal to 1 in this scenario.

Figs. 5.4(a), 5.4(b) and 5.4(c) show results for the overtaking scenario. The CE-
method achieves a low variance estimate for the low probabilities in the beginning
and the end, as can be seen from Fig. 5.4(b), and reflected through Fig. 5.4(c).
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5.6 The Probabilistic Scenario-based Model Predictive
Control

The third edition of the PSB-MPC utilizes the CE-based CPE for collision risk
assessment. Here, a more complete cost function, including previously developed
extensions to the SB-MPC [71], [72], is described. The extensions include a transi-
tional cost meant to reduce chattering decision making behavior in the MPC [71],
and to take into account that track loss can occur when using the method with
e.g. a radar-based tracking system [72]. The prediction scheme outlined in Section
4.4 in the previous chapter is again used here.

Again, the control behaviours are parametrized by a sequence[
(U l

m,1, χ
l
m,1), ..., (U

l
m,nM

, χl
m,nM

)
]

consisting of speed multiplicative factors Um

and additive course angle offsets χm to the autopilot references Ud and χd in for-
ward speed and course angle, which represent nM sequential avoidance maneuvers
taken by the own-ship. The optimal control behaviour

l∗(t0) = argmin
l
Hl(t0) (5.23)

at the current time t0 is then followed, with the first maneuver (U l∗

m,1, χ
l∗

m,1) as the
MPC output. The extended cost function Hl(·) is now given as

Hl(t0) = max
i

na∑
a=1

Pi
a(t0)C

l,i
a + g(·) + 1

nM

nM∑
M=1

f(·) + 1

nM − 1

nM∑
M=2

h(·) (5.24)

with

Cl,i
a =

ni
ps(a)∑
s=1

wi,s

nips(a)
max

t∈D(t0)

[
ζiCl,si (t)P̂l,i,s

c (t)+ κiµ
l,s
i (t) + τ l,si (t)

]
(5.25)

as the average cost for all predicion scenarios nips involving intention a for obstacle
i. Again, the terms inside the brackets in (5.25) are the probabilistic collision cost
Cl,si (t)P̂l,i,s

c (t) (now weighted by the track loss factor ζi for the obstacle [72]), the
COLREGS penalization cost κiµ

l,s
i (t) and transitional cost τ l,si (t) [71], respectively.

The estimated collision probability P̂l,i,s
c has an expanded notation compared to the

probability defined in (5.2), which involves the own-ship trajectory when following
control behavior l and the obstacle prediction scenario s. Expressions for the control
deviation cost f(·), chattering cost h(·), the weights wi,s and other cost function
terms are found in the previous two chapters, and Section 2.6 on the SB-MPC.

5.6.1 Simulation Results

The simulation results are split in two. In the first part, the PSB-MPC is compared
to the original SB-MPC from Section 2.6 in the three situations described below.
The own-ship starts in the origin (x, y) = (0, 0) in all scenarios, heading north with
constant forward speed U = 9m/s in situation 1 and 2, and U = 6m/s in situation
3. The obstacle configuration in all situations are given below.
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1. Head-on scenario with an obstacle travelling straight south towards the own-
ship with a speed of 9m/s, and makes a hazardous port maneuver at a certain
time instant, breaking COLREGS.

2. Crossing scenario where an obstacle travels westwards with a speed of 10m/s,
and breaks its stand-on duty [21] in the COLREGS situation with the own-
ship by making a port maneuver towards the south.

3. Combined scenario where a fast obstacle i = 1 overtakes the ownship with a
speed of 12m/s in a COLREGS-compliant maneuver. Obstacle i = 2 travels
straight eastward with a speed of 6m/s, with no regard for adhering to COL-
REGS, simulating the case for an unaware vessel or with steering problems.

The scenarios in part one put emphasis on testing the COLAV planning method´s
robustness where obstacles make unexpected maneuvers which require good reac-
tive capabilities with accurate risk assessment.

Part two of the simulations uses the same set of situations and initial conditions
with regular head-on, crossing and combined crossing and overtaking, but where all
vessels involved are assumed to be intelligent and uses the PSB-MPC, to illustrate
that multiple vessels running the same COLAV system with the CE-method as a
CPE can work together to avoid collision and adhere to the COLREGS.

For both parts, a number of 50 MC simulations were used for each situation. The
percentage of own-ship safety zone violations was calculated for each situation,
for both MPC versions in part one and only the PSB-MPC in part two. The
percentage is calculated considering if there is a safety zone violation with respect
to any obstacle at minimum 1 point in time during a simulation. A safety zone
violation is defined as a collision here, as per (5.1). Note that the own-ship safety
zone dsafe = 50m is inflated to be larger than the geometric vessel extent, and
thus the metric should be taken as a crude performance measurement.

The MPC versions are tuned similar to that in [98], and the CE-based CPE uses
similar parameters to the ones in Table 5.1. The COLAV system is assumed to use
a KF-based tracking system implemented as in [98] for obtaining dynamic obstacle
state estimates x̂i(t0) and error covariances P̂ i(t0) at the current time t0.

Furthermore, the PSB-MPC considers intentions a ∈ {1, 2, 3} as described in the
previous chapter, and assumes constant intention probabilities of Pi

a = [ 13 ,
1
3 ,

1
3 ]

T

for the obstacles. This can represent the case when no information on obstacle
intents is known.

Part One

The figures below illustrate a particular realization from the Monte Carlo simu-
lation for each situation. The own-ship running the PSB-MPC and the original
SB-MPC are shown in red and blue, with black and grey dashed trajectories, re-
spectively. The obstacles are shown in green, with their ground truth and tracked
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trajectories in green and purple, respectively. The associated measurements are
shown as black circles. Further, the 3σ obstacle positional probability ellipse using
the tracking system information is shown at the different time steps in teal. Figures
displaying the distance from the own-ship to the obstacles are also shown.

Results from the head-on scenario are shown in Figs. 5.5(a) and 5.5(b). Both ver-
sions of the MPC algorithm adhere to the COLREGS, but only the PSB-MPC
avoids a breach of its safety zone, due to taking into account both kinematic and
intention uncertainty for the obstacle. Again, the tracking system has a higher state
error covariance matrix due to being tuned with higher process noise to take into
account fast obstacle maneuvers. This becomes an issue for the SB-MPC, where its
decision made just before t2 does not take into account the kinematic uncertainty,
nor does it anticipate an obstacle maneuver, which leads to the obstacle violating
the own-ship safety zone. In the next SB-MPC iteration, this then leads to a panic
maneuver directed away from the obstacle after t2, because the maximum collision
cost in the algorithm is attained already at the start of the prediction.

In the crossing situation in Figs. 5.6(a) and 5.6(b) the own-ship has give-way duty,
and both MPC versions make the COLREGS-compliant starboard maneuvers.
However, due to another unexpected obstacle maneuver, the SB-MPC struggles
with staying well clear of the obstacle. The PSB-MPC utilizes the accurate CPE
and probabilistic risk assessment in the algorithm to make a safer maneuver in
order to avoid collision.

Results from the combined crossing and overtaking situation are shown in Figs.
5.7(a), 5.7(b) and 5.7(c), where the own-ship has stand-on duty with respect to
both obstacles. This situation is challenging due to having an overtaking obstacle
i = 1 on the own-ship´s starboard side with no regard for keeping a minimum
safe distance. On the other hand, a port maneuver to avoid the overtaking obstacle
violating the own-ship safety zone would possibly cause a collision with the obstacle
i = 2 to the northwest. Both MPC versions tackle the situation fairly well, taking
small avoidance maneuvers to avoid safety zone violations.

Part Two

For the intelligent simulation, the same set of figures are given in Figs. 5.8(a) and
5.8(b) for the head-on situation, in Figs. 5.9(a) and 5.9(b) for the crossing situation,
and Figs. 5.10(a), 5.10(b) and 5.10(c) for the multi-ship situation. Statistics on
safety zone violations for both parts are shown in Table 5.3. For the first part, the
results indicate that the PSB-MPC is better by a large margin in avoiding collisions
in the first two situations. The SB-MPC performs best in the last situation because
no sudden obstacle maneuvers are taken as in the two other situations. When all
vessels utilize the PSB-MPC with the CE-method for CPE in the COLAV system
as in part two, the situations are resolved in a safe and COLREGS-compliant
manner.
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Table 5.3: Percentage of safety zone violations for the own-ship using both MPC-versions
in part one of the simulations, and for the PSB-MPC in part two, calculated over the 50
MCS.

Part Method Situation 1 Situation 2 Situation 3

One
SB-MPC 88% 95% 30%

PSB-MPC 0% 0% 4%

Two PSB-MPC 0% 0% 0%

5.7 Conclusion

Because the predicted kinematic uncertainties of vessels can get large when con-
sidering time horizons over the minute, predicted collision probabilities will often
be small. The new CE-based CPE presented here and used in the PSB-MPC for
calculating probabilistic collision costs is more accurate than other sampling based
methods in the sense of lower estimator variance, when used in estimating small
collision probabilities. For high collision probabilities, it performs on par with other
sampling based methods. Furthermore, the method is capable of delivering the es-
timates in real-time. This results in a more robust COLAV planning algorithm by
making it less susceptile to statistical noise in sampling-based collision probability
estimation. Alternatively, the computational efficiency improvements can be used
to evaluate more intention scenarios for the obstacles, also contributing to improved
robustness.

The resulting closed-loop COLAV system is shown to be able to perform adequate
reactive collision avoidance in simulation, when nearby obstacles make unexpected
maneuvers. It is also demonstrated that safety is attained in a manner compliant
with rules 13 - 17 of COLREGS, when all vessels involved in a situation use the
same closed-loop COLAV system.

The proposed CPE is beneficial to use in general risk management systems for ships
to determine the current or predicted collision risk, where accuracy is important,
which can further be used to determine or trigger feasible avoidance actions. The
low variance property causes the decision making relying on collision risk estimates
to be more robust. However, for crude precaution measures or detecting hazardous
situations, simpler methods based on CPA parameters can be more reasonable,
as the added computational effort from the optimization in the CE-method might
then not be necessary.

Since only kinematic uncertainty is considered in the CPE, the collision proba-
bilities estimated considering predicted trajectories will be high compared to the
case in a real-time situation, due to other factors not being considered. Thus, fu-
ture work will involve improving the CPE by taking into account information such
as the obstacle ship type and intention uncertainty in addition to its kinematic
uncertainty, to make the collision probability estimates less conservative.
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Figure 5.7: Combined crossing and overtaking situation part one.

97



5. Third Edition of Collision Risk Assessment in a Probabilistic Scenario-based
MPC Using The Cross-Entropy Method

-200 -100 0 100 200

East [m]

0

50

100

150

200

250

300

350

400

450

500

N
o

rt
h

 [
m

]
w/PSB-MPC

GT obst. trajectory

Tracked obst. trajectory

Measurements

Obst. probability ellipse

(a) North east plot at multiple time instants. Both the GT and the
tracked obstacle trajectories are shown.

0 20 40 60 80

Time [s]

0

100

200

300

400

500

D
is

ta
n

c
e

 [
m

]

Safety zone

w/PSB-MPC

(b) Distance to the obstacle.

Figure 5.8: Head-on situation part two.

98



5.7. Conclusion

-200 -100 0 100 200 300

East [m]

0

100

200

300

400

500

600

N
o

rt
h

 [
m

]

w/PSB-MPC

GT obst. trajectory

Tracked obst. trajectory

Measurements

Obst. probability ellipse

(a) North east plot at multiple time instants. Both the GT and the
tracked obstacle trajectories are shown.

0 20 40 60 80

Time [s]

0

100

200

300

400

500

D
is

ta
n

c
e

 [
m

]

Safety zone

w/SB-MPC

(b) Distance to the obstacle.

Figure 5.9: Crossing situation part two.

99



5. Third Edition of Collision Risk Assessment in a Probabilistic Scenario-based
MPC Using The Cross-Entropy Method

-300 -200 -100 0 100 200 300

East [m]

0

100

200

300

400

500

600

700
N

o
rt

h
 [

m
]

w/PSB-MPC

GT obst. i=1 trajectory

Tracked obst. i=1 trajectory

Measurements obst. i=1

GT obst. i=2 trajectory

Tracked obst. i=2 trajectory

Measurements obst. i=2

Obst. probability ellipse

(a) North east plot at multiple time instants. Both the GT and the tracked obstacle
trajectories are shown.

0 20 40 60 80

Time [s]

0

100

200

300

400

500

D
is

ta
n

c
e

 [
m

]

Safety zone

w/PSB-MPC

(b) Distance to the obstacle i = 1.

0 20 40 60 80

Time [s]

0

100

200

300

400

500

D
is

ta
n

c
e

 [
m

]

Safety zone

w/PSB-MPC

(c) Distance to the obstacle i = 2 .

Figure 5.10: Combined crossing and overtaking situation part two.
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Chapter 6

Real-time Feasible Probabilistic
Scenario-based MPC

The following publication forms the basis of this chapter, which outlines a real-time
feasible PSB-MPC algorithm that employs parallel computation. By doing this, the
MPC can consider increasing amounts of possible own-ship maneuvering decisions
and situational information at lower computational cost.

[99] T. Tengesdal, T. A. Johansen, T. D. Grande and S. Blindheim, "Ship Col-
lision Avoidance and Anti Grounding Using Parallelized Cost Evaluation in
Probabilistic Scenario-based Model Predictive Control", IEEE Access, 2022,
Submitted.

6.1 Introduction

6.1.1 Motivation

Autonomous ships will require a high level of data processing in order to have
adequate situational awareness and to make deliberate decisions. This requires effi-
cient and robust algorithms, and well chosen platforms to enable fast computation.
When facing a hazardous situation in e.g. confined space with multiple static and
dynamic obstacles, the need to evaluate a larger set of future control behaviours
or trajectories for the autonomous ship and other obstacles will be necessary, such
that a risk minimizing or collision-free trajectory is possible to find. This can also
make it easier to comply to the COLREGS [21]. However, evaluating the risk asso-
ciated in any of these control behaviours can be computationally expensive. Thus,
to meet run-time requirements, a COLAV planning algorithm which scales well in
the evaluation of different control behaviours will be both beneficial and necessary
in such cases. Increased robustness can then also result as a consequence of being
able to evaluate more vessel behaviour scenarios and situational information in the
system at run-time.
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An SB-MPC approach is here a viable option that can incorporate most of the
elements needed in a robust COLAV planning algorithm, such as anti-grounding,
dynamic obstacle avoidance and multi-ship adherence to COLREGS. This is be-
cause of its flexibility in the formulation of its optimization problem, with different
control objectives and possible integration of constraints, and which has a rich
theoretical foundation. The sampling-based method is also flexible in the predic-
tion models used to generate own-ship and dynamic obstacle prediction scenar-
ios. The problem with this approach however, and especially for the probabilistic
version (PSB-MPC), is that the optimization problem in the COLAV planning
algorithm scales poorly with an increasing set of considered own-ship avoidance
maneuvers, static obstacles and dynamic obstacles with their own alternative pre-
diction scenarios. The prediction of the collision risk with respect to all dynamic
and uncertain obstacles involved, and calculating distances to all static obstacles
for anti-grounding purposes, has exponentially increasing computational cost as
the optimization problem increases.

6.1.2 Literature Review

Many studies on maritime collision avoidance exists today, and are mainly summa-
rized in review papers such as [26], [28]–[30], whereas we here focus on deliberative
COLAV planning methods having dynamic obstacle avoidance and COLREGS ad-
herence in addition to anti-grounding in their algorithms. For a general overview on
planning algorithms, see [151]. A lattice-based trajectory planner using A* search
for finding collision-free trajectories is introduced in [69], where non-adherence to
the COLREGS, trajectory deviation and collision risk with respect to static and
dynamic obstacles is penalized in the cost function. An intention based motion
model is used for dynamic obstacles, which relies on learning the positional predic-
tion uncertainty for a given scene when used in calculating collision probabilities.
The details on this model is not given, and results on how the planner scales in run-
time with increasing lattice grid density, dynamic and static obstacles are however
not given.

The work in [152] introduces a hierarchical system with three levels. The top level
trajectory planner uses lattice-based A* search combined with an Optimal Control
Problem (OCP) method for generating collision-free trajectories with respect to
static obstacles. A mid level MPC-based COLAV planning algorithm modifies this
trajectory to adhere to the COLREGS and avoid collisions with respect to dynamic
obstacles. Lastly, a low-level reactive COLAV sampling-based planning algorithm
acts as a fail-safe in case the levels above can not handle the situation. The system
does however assume straight line trajectories for dynamic obstacle predictions
without uncertainty, which does not coincide with real-time vessel behaviour in
hazardous situations. Furthermore, scalability and run-time properties with an
increasingly complex situation is not discussed.

In [68], a field-test verified A-star search trajectory planner is developed, which
attempts to find a COLREGS-compliant and collision-free trajectory with respect
to dynamic and static obstacles in a lattice. To predict nearby dynamic obstacle
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trajectories, the planner employs Monte-Carlo (MC) simulation using fuzzy logic
and the trajectory history of the obstacle to find a set of probable trajectories,
where the most probable one is considered for collision avoidance. As in [152],
the method does not consider the prediction uncertainty associated with dynamic
obstacles. Furthermore, the computational efficiency of the planner only tested
for a set of 500 possible own-ship trajectories and one expected dynamic obstacle
trajectory, which can be inadequate in highly congested scenarios.

Candeloro et. al. 2017 [77] propose a global and local lattice-based trajectory plan-
ner which uses Voronoi Diagrams to generate a set of static obstacle collision-free
waypoints, from where a continuous trajectory is generated using Fermat‘s Spiral.
The method considers local replanning windows for taking detected dynamic and
static obstacles into account, and predicts dynamic obstacle motion with the CV
model [78]. A convex hull representing the dynamic obstacle uncertainty up until
time to CPA is created from using the position estimates and error covariances from
a Kalman filter, which is then regarded as an area to avoid in the planner. This may
however be overly conservative, due to the unrealistic uncertainty growth in the
CV model [79]. How the local replanning run-time scales with increasing windows
size, dynamic and static obstacles is not considered.

NMPC for static and dynamic obstacle collision avoidance with environmental
disturbance rejection was proposed in [76]. A deterministic CV model was used for
the dynamic obstacle prediction, which will not be the case in real-time hazardous
maritime situations where ships will maneuver. Furthermore, how the MPC scales
with static and dynamic obstacles was not considered.

[83] introduces a sampling-based static and dynamic obstacle considerate trajectory
planner with COLREGS-compliant COLAV planning algorithm based on Rapidly
exploring Random Trees (RRTs), where a joint simulator is used to predict both the
own-ship and dynamic obstacle motion. Potential fields are used in the prediction to
ensure that all the vessels have collision-free trajectories with respect to each other
and static obstacles. The method is shown to have beneficial run-times feasible
for real-time. However, the underlying assumption in the prediction is however
that ships will always perform deterministic COLREGS-compliant maneuvers if
possible, which is not necessarily true in practice.

Collision avoidance within a distributed flocking control strategy based on MPC
was considered in [153], with respect to nearby dynamic vehicles in the flock and
static obstacles. The computational efficiency or scalability of the method was how-
ever not discussed, and the states of all vehicles involved are assumed deterministic.

6.1.3 Contributions

In this chapter, an implementation of the sampling-based PSB-MPC algorithm
on a GPU platform which facilitates efficient anti-grounding and dynamic obsta-
cle avoidance is introduced. The main contribution of the chapter compared to
current state-of-the-art deliberate static and dynamic obstacle COLAV planning
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algorithms is the description of a parallelization algorithm for efficient cost evalu-
ation of possible own-ship trajectories in the PSB-MPC, taking into account dy-
namic obstacle uncertainties and complex static obstacles in maritime hazardous
situations. The algorithm is feasible for real-time, as the MPC cost function evalu-
ation scales linearly with increasing numbers of dynamic obstacles with their own
prediction scenarios and also static obstacles, due to the parallelization. Static ob-
stacles are read in from Electronic Navigational Chart (ENC) data and processed
into simplified polygons using the Ramer-Douglas-Peucker (RDP) algorithm [154].
The efficiency of the parallelized implementation makes it possible for the COLAV
planning algorithm to consider more dynamic obstacle prediction scenarios and
own-ship trajectories, and more complex static obstacle maps for elevated situa-
tional awareness and better trajectory planning. Furthermore, a side contribution
of the chapter is that the dynamic obstacle prediction scheme in [94] is updated to
use a kinematic model with incorporated LOS guidance for more realistic trajec-
tories.

6.1.4 Chapter Overview

The chapter is organized as follows. Section 6.2 gives new background information
about the fourth edition of the PSB-MPC, with prediction models, cost function
structure and grounding hazard extraction and representation. An outline of a
sequential implementation of the algorithm is also given. A parallelized implemen-
tation of the PSB-MPC is given in Section 6.3. Finally, Section 6.4 show simulation
results with the PSB-MPC, and Section 6.5 concludes the work.

6.2 The Probabilistic Scenario-based Model Predictive
Control

The third edition of the PSB-MPC described in the previous chapter is here con-
sidered, but extended to include grounding hazard consideration in addition to
the classic dynamic obstacle avoidance. Furthermore, the prediction model used
for dynamic obstacles and the own-ship is changed. An illustration of the COLAV
problem involving both static and dynamic obstacle avoidance, is given in Fig. 6.1,
where it is noted that the control behaviours selected are arbitrary.

Each control behaviour is evaluated by a cost function Hl(·) which penalizes prob-
abilistic collision risk, grounding risk, COLREGS violation and nominal trajectory
deviation. The optimal one is selected as

l∗(t0) = argmin
l
Hl(t0) (6.1)

In this chapter, a way to parallelize the evaluation of the cost in (6.1) is shown,
and also for considering anti-grounding in the PSB-MPC.
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Figure 6.1: PSB-MPC illustration, with the own-ship running the algorithm in blue.
Nearby dynamic obstacles are shown in cyan and brown. Grounding hazards are shown
in beige. Candidate control behaviours predicted in the MPC are also shown, where the
color from red to green represents their cost, with green being the lowest. Thus, the green
candidate trajectory is the optimal one. The nominal trajectory goes straight north-east
through the confined environment.

6.2.1 Prediction Models

Own-ship

For deliberate COLAV planning algorithms, the own-ship prediction model can
be selected to be complex or simple depending on how much vessel information
one has. The PSB-MPC can easily handle complex ship motion models in its
framework. However, as the kinematic uncertainty associated with the ship mo-
tion prediction increases substantially with time, having a simple model to capture
qualitatively the approximate own-ship behaviour is often adequate for deliberative
COLAV planning algorithms, where the low-level vessel control systems (autopilot)
can compensate for model inaccuracies and disturbances. As predictions of vessel
motions over longer time horizons are inherently uncertain, due to environmen-
tal disturbances, future maneuvering decisions and unforeseen events, especially in
hazardous situations, it is argued that there is limited gain in using an overly com-
plex model. On the other hand, for reactive collision avoidance methods and lower
level motion control with shorter prediction horizons, it will be more important to
consider the ship dynamics accurately. Thus, in this chapter a discrete kinematic
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model as outlined in Section 2.4.3 is used
xk+1 = xk + Ukcos(χk)

yk+1 = yk + Uksin(χk)

χk+1 = χk +
1

Tχ
(χd,k − χk)

Uk+1 = Uk +
1

TU
(Ud,k − Uk)

(6.2)

is used, which describes the own-ship state xk = [xk, yk, χk, Uk]
T motion during

the MPC prediction, using LOS guidance to predict all candidate trajectories, as
described in Section 2.5.1.

This combination of a kinematic model used with LOS guidance allows for a
lightweight prediction of candidate own-ship trajectory candidates. For each own-
ship control behaviour, the speed modifications ulm,M and course modifications
χl
m,M for all nM sequential maneuvers are applied to the LOS guidance references

for speed and course at maneuvering times tM ,M = 1, 2, ..., nM , now evenly spaced
througout the horizon with a time spacing parameter tts for simplicity.

To create trajectories simulating the ship motion for the own-ship and dynamic
obstacles forward in time, Euler‘s method is used for numerical integration. Specif-
ically, the integration is done over the prediction horizon with discrete predicted
times tk ∈ D(t0) = {t0, ..., t0 + k∆mpc, ..., Tmpc}, with ∆mpc as the time step and
Tmpc as the prediction horizon.

Dynamic Obstacles

As one often do not have information on the underlying dynamic obstacle vessel or
object, their motion models should be simple. The second and third edition of the
PSB-MPC used the OU process [116] in order to predict the motion of dynamic
obstacles, and allows for alternative obstacle prediction scenarios [98]. However,
the trajectories only specify a single change in course, and are thus not necessarily
realistic. A more realistic approach as shown in Fig. 6.2 is now employed, where
more avoidance like maneuvers are used.

The predicted obstacle motion is implemented using the same kinematic model as
for the own-ship in (6.2):

xik+1 = xik + U i
kcos(χ

i
k)

yik+1 = yik + U i
ksin(χ

i
k)

χi
k+1 = χi

k +
1

Tχ
(χi

d,k − χi
k)

U i
k+1 = U i

k +
1

TU
(U i

d,k − U i
k)

(6.3)

where the superscript i is used for dynamic obstacles as usual. LOS guidance [155]
is again used to specify χi

d,k, when assuming the obstacle has a nominal trajectory
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along a straight line which can be parametrized by waypoints. Its current speed
estimate from the tracking system is used as U i

d,k. To branch out on different
scenarios as shown in Fig. 6.2, multiples of an artificial cross-track error rct is
added to the actual cross track error in the LOS guidance.

The obstacle kinematic uncertainty is again predicted forward in time heuristically
using an OU-process as used in the previous two chapters:

P i
k+1 = P i

0 +Σ1 ◦Σ2(tk+1 − t0) (6.4)

The 3σ positional uncertainty is heuristically bounded by rct in the prediction, such
that each obstacle trajectory has a tube uncertainty with approximate radius rct.
As for the own-ship, the parameters for the obstacle prediction are all dependent
on the type of ship, ship control system, ship captain etc., and should be estimated
using available data about the obstacle.

As mentioned, it is assumed that the obstacle nominal trajectory is a straight line
from its current course, where waypoints on this line. Vessel to vessel communica-
tion or e.g. road map methods [156] may be used to predict the nominal obstacle
trajectory in more confined spaces where the straight line trajectory assumption is
restrictive. An illustration of the uncertainty prediction together with the dynamic
obstacle trajectories is shown for a case with a non-straight line obstacle trajec-
tory in Fig. 6.3. One should here choose a sufficiently large number of prediction
scenarios such that the obstacle maneuvering uncertainty is covered.

t0

v0

t0

vi

rct

Figure 6.2: Head-on scenario with obstacle i in green and own-ship in blue. Their velocity
vectors vi and v0, respectively, are also shown. The updated prediction scheme using
LOS-guidance allows for the obstacle to make realistic alternative maneuvers to port and
starboard. The stationary time spacing between trajectories is determined by rct.
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Figure 6.3: Dynamic obstacle prediction illustration with an obstacle in purple. Three
prediction scenarios are shown, all starting at t0, where the vessel is depicted in full purple
with its tracked estimation error covariance represented around it as a 3σ probability
ellipse in light blue. The nominal predicted obstacle trajectory is shown with the grey
dotted line, whereas the alternative scenarios are spaced rct apart.

6.2.2 Grounding Hazards

The static obstacles or grounding hazards considered in the PSB-MPC are param-
eterized as two-dimensional polygons. Here, polygons are read in from shapefiles
using the C based library Shapefile C Library, which are generated using the Elec-
tronic Navigational Chart processing module in seacharts corresponding to the
relevant map region considered [157]. If real-time sensor data is available, this can
also be used to update the polygons used in the MPC.

Because electronic map data can have high accuracy, larger polygons extracted can
have tens of thousands of vertices. However, for collision avoidance, this level of
detail is not necessary, and the polygons should thus be simplified in order to save
computation time in the algorithm. One of the earliest and most common curve
simplification methods that can be used for polygon simplification is the RDP al-
gorithm [154]. The method recursively simplifies a curve of points by consecutively
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Algorithm 2 The Ramer-Douglas-Peucker curve simplification algorithm.

1: function RDP(Points , ϵrdp)
2: dmax ← 0, j ← 1, end ← length(Points).
3: for i = 2, .., end do
4: d← perpendicularDistance(Points [i],

Points [1],Points [end])
5: if d > dmax then
6: j ← i, dmax ← d
7: end if
8: end for
9: if dmax > ϵrdp then

10: rResults1 =RDP(Points [1, .., j], ϵ)
11: rResults2 =RDP(Points [j, .., end ], ϵ)
12: newPoints = {rResults1[1, ..,

length(rResults1)− 1], rResults2}
13: else
14: newPoints = {Points [1],Points [end ]}
15: end if
16: return newPoints
17: end function

considering its line segments, pruning away points which are further away from
the considered line segment than a specified threshold ϵrdp. The distance tolerance
parameter ϵ should be chosen as not to overly simplify the polygons, preserving as
much structure as possible. The method is summarized in Algorithm 2. A graphical
illustration of the algorithm can be found in https://en.wikipedia.org/wiki/Ramer-
Douglas-Peucker_algorithm. The distance from the own-ship center to nearby poly-
gons is used in the PSB-MPC grounding cost. It is obtained by using a point to
polygon calculation method [158], using the ray intersection method for determin-
ing if the own-ship center point is inside the polygon, which is suitable for both
convex and concave polygons.

6.2.3 Cost function reformulation

In this chapter, the following restructuring of the PSB-MPC cost function is con-
sidered

Hl(t0) = Hl
do +Hl

colregs +Hl
so +Hl

p, (6.5)

for a control behaviour l, where the four terms are the cost associated with dy-
namic obstacles, COLREGS violation, static obstacles or grounding hazards and
trajectory tracking, respectively. The dynamic obstacle related cost is reformulated
to

Hl
do =

ndo∑
i=1

wiHl,i
do (6.6)

where wi represent the weight of the cost from obstacle i, in general influenced
by factors such as distance, bearing, nearby grounding hazards and vessel-vessel
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communication. If no prior information is used, it is set to wi = 1. The dynamic
obstacle i cost is given by

Hl,i
do =

ni
ps∑

s=1

P̂i
sC

l,i
s (6.7)

where nips is the number of prediction scenarios for the obstacle, P̂i
s represent

the associated prediction scenario probabilities from an intention inference module
[98][96], and Cl,i

s is the cost involving prediction scenario s for obstacle i, given as

Cl,i
s = max

k
ζiCl,si,kP̂

l,i,s
c,k exp(−tk/Tcoll) (6.8)

which is taken as the maximum of the probabilistic collision risk, involving the rel-
ative kinetic energy term Cl,si (t) as defined in (2.36) from Section 2.6. The variable
P̂l,i,s
c,k is the collision probability estimate calculated using the CE method, intro-

duced in the previous chapter [94]. An exponential discounting term with time
constant Tcoll gives lower weighting of collision events far ahead in the future.

The intention uncertainty of a dynamic obstacle is represented through the sce-
nario probabilities P̂i

s for each considered obstacle prediction scenario. Given a
representable set of obstacle prediction scenarios, we are able to cover most antic-
ipated obstacle maneuvering cases because we predict the uncertainty for each of
the scenarios. These probabilities of different target ship plans or trajectories are
typically inferred by an intention model as outlined in Chapter 4 and embodied
in [96], and can be used for having elevated situational awareness in the planner.
Furthermore, the probabilities are an adequate way of taking into account inten-
tion information, as they are easy to interpret, can be used to define risk and leads
to a natural way of weighting the collision risk associated with different decision
candidates for an obstacle ship. The downside is that one needs a validated inten-
tion inference model, and a sufficient set of dynamic obstacle prediction scenarios
in order to have meaningful estimates.

To favor COLREGS compliance in multi-ship situations, the COLREGS related
cost is now separated into its own term in the PSB-MPC, and given as

Hl
colregs = κ

ndo∑
i=1

wiµl,i (6.9)

with the tuning parameter κ and

µl,i =

ni
ps∑

s=1

P̂i
sµ

l,i
s , (6.10)

with µl,i
s ∈ {0, 1} as the indicator of the own-ship following control behaviour l

violating COLREGS with respect to obstacle i in prediction scenario s, calculated
as in Section 2.6. The parameters wi and dynamic obstacle scenario probabilities
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are again used for weighting purposes. The new formulation now penalizes COL-
REGS violations of rules 13-17, with respect to all dynamic obstacles, and allows
for better handling of compliance in multi-ship situations.

The static obstacle related cost or grounding cost is parameterized as

Hl
so = max

j
Hl,j

so (6.11)

where

Hl,j
so = max

k

[
(G1 +G2ϕ

l
j,kV

2
w)exp(−(G3|dl0j,k − dsafe|+G4tk))

]
(6.12)

inspired by [159], where G1 to G4 are tuning parameters, Vw the estimated wind
speed, ϕlj,k = max(0,ω ·Ll

0j,k) with ω as the wind direction unit vector. The unit
vector Ll

0j,k points from the own-ship to the static obstacle j, with dl0j,k as the
corresponding distance between them.

The trajectory deviation cost is given as

Hl
p =

1

nM

nM∑
M=1

f(·) + 1

nM − 1

nM∑
M=2

h(·) (6.13)

with f(·) and h(·) as the control deviation and change cost, described in Section
4.4 of Chapter 4.

6.2.4 Standard PSB-MPC Implementation

As the PSB-MPC is a FCS-MPC, the solution to the non-convex Mixed Integer
Nonlinear Programming (MINLP) problem in (6.1) is parameterized by the chosen
discrete set of own-ship control behaviours or controls. The benefit of the finite-set
MPC formulation is that by brute force iterating over the set of control behaviours
one is able to find a global solution, which would be hard in the case if numerical
optimization was used.

Implementing the cost evaluation in the PSB-MPC on a sequential computing
platform will involve loops over the own-ship control behaviours, where loops over
static and dynamic obstacles in their set of prediction scenarios are found within.
This would look something like the method outlined in Algorithm 3. One can see
that this implementation involves several nested for loops, especially the one over
dynamic obstacles and their prediction scenarios. In addition, one must also loop
over the number of discrete samples tk ∈ D(t0) in the predicted trajectories. Thus,
the MPC problem will scale poorly with increasing number of control behaviours,
static and dynamic obstacles.

6.3 Parallelized PSB-MPC Implementation

The nature of the FCS-MPC described in the above section makes it possible to
independently evaluate the cost associated with the control behaviours, and thus
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Algorithm 3 Standard PSB-MPC cost evaluation on a sequential processing plat-
form, assuming all obstacle prediction scenarios are generated beforehand.
1: Initialize optimal control behaviour to l∗ = 1.
2: for l = 1, .., ncbs do
3: Predict the own-ship trajectory following control behaviour l.
4: Calculate the trajectory related cost Hl

p using (6.13).
5: for j = 1, .., nso do
6: Calculate the static obstacle j grounding cost Hl,j

so using (6.12).
7: end for
8: Calculate total grounding cost Hl

so using (6.11).
9: for i = 1, .., ndo do

10: for s = 1, .., ni
ps do

11: Calculate probabilistic collision cost Cl,i
s from (6.8) and COLREGS

12: indicator µl,i
s in (6.10).

13: end for
14: Calculate dynamic obstacle i cost Hl,i

do using (6.7).
15: end for
16: Calculate total dynamic obstacle cost Hl

do using (6.6).
17: Calculate control behaviour cost Hl(t0) = Hl

do +Hl
colregs +Hl

so +Hl
p.

18: if Hl(t0) < Hl∗(t0) then
19: Set l∗ = l.
20: end if
21: end for

apply parallelism in the main part of the algorithm. Furthermore, all obstacle pre-
diction scenarios are assumed to be independent of the own-ship control behaviour
and can be generated beforehand. This is deemed reasonable as maneuvering un-
certainty is taken into account in the obstacle prediction.

When considering large amounts of situational information and a dense set of
possible own-ship trajectories, evaluating the cost of an own-ship control behaviour
sequentially will not make the COLAV real-time feasible. Parallelizing the cost
evaluation will allow for more refined own-ship decision making, as more own-ship
trajectories can be considered. Also, more static obstacles and prediction scenarios
for dynamic obstacles can then be considered, resulting in increased situational
awareness for the own-ship. The limiting factor here will then be how many threads
that can be scheduled on the parallel computation platform.

A naive way of cost function evaluation parallelization would be to schedule GPU
threads to evaluate the cost (6.5). However, this is a big task for a single thread,
as it among others involves going through all static and dynamic obstacles in all
their prediction scenarios to find the total cost. This equates to a nested for loop
over obstacles, prediction scenarios and discrete time samples in the code that
implements the MPC as in Algorithm 3, and will scale poorly with an increase
in the number of obstacles and number of prediction scenarios nips for dynamic
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obstacles. As GPU cores have limited processing power compared to CPU cores,
their tasks should be as lightweight as possible.

Two of the main bottlenecks in the cost evaluation is calculating the distance to
static obstacles and the estimation of collision probabilities. The first bottleneck is
readily apparent when considering large polygons with tens of thousands of vertices.
However, the RDP algorithm will reduce the number of vertices in a polygon and
thus alleviate computational effort. Reducing the number of time steps to evaluate
the grounding cost can also aid in fixing this problem.

For the second bottleneck, giving each thread the job of estimating collision proba-
bilities associated with only a pair of trajectories will give higher throughput, at the
cost of scheduling more threads on the GPU and therefore having higher memory
demands. However, as GPU technology continue to improve with respect to single
core processing power and device memory, this is deemed a worthy trade-off. Fur-
thermore, the calculation efficiency using the CE method for collision probability
estimation [94] is increased by estimating P̂l,i,s

c ≈ 0 when the predicted distance
between the own-ship and an obstacle is larger than dsafe+4σi

largest, where σi
largest

is the standard deviation along the axis where obstacle i has the largest predicted
positional uncertainty.

Thus, a way to solve the bottlenecks in (6.1) utilizing parallel processing can be
done in two steps: First schedule ncbs threads to predict the own-ship trajectory
and calculate the trajectory related cost (6.13) for each control behaviour l =
1, 2, .., ncbs. Then, schedule

nct = ncbs · (nso +
nobst∑
i=1

nips) (6.14)

threads that evaluates the cost (6.12), (6.8) and the COLREGS violation indicator
in (6.10). The total cost (6.5) is finally stitched together afterwards on the CPU.
This way, no GPU thread has run-times dependent on large nested for-loops, and
the MPC-problem scales better with increasing number of obstacles and dynamic
obstacle prediction scenarios. This approach of using parallelization to solving (6.1)
can be summarized in Algorithm 4.

Note that how the PSB-MPC algorithm is implemented both on the CPU and GPU
will have big impacts on the obtained run-time results. Hardware, programming
language and software libraries used will be significant factors here. An alternative
to the structure in algorithm 4 would be to have separate kernels to evaluate the
static and dynamic obstacle partial costs. This could be better suiting for a setup
with multiple GPUs, as the two kernels could then be run concurrently. Lastly,
because of the extra latency overhead due to porting data from the host (CPU)
to the device (GPU), as much memory as possible for the relevant data needed on
the GPU should be pre-allocated.
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Algorithm 4 Parallelized PSB-MPC cost evaluation, assuming all obstacle pre-
diction scenarios are generated beforehand.
1: Schedule ncbs GPU threads, transferring all the required data for own-ship

trajectory prediction and calculating (6.13).
2: parfor l = 1, .., ncbs do
3: Predict the own-ship trajectory following control behaviour l, save trajec-

tory in GPU memory for use by the subsequent processing.
4: Calculate the trajectory related cost Hl

p using (6.13).
5: Return the results to CPU memory.
6: end parfor
7: Schedule nct GPU threads, transferring all the required data needed for partial

static and dynamic obstacle cost evaluation.
8: parfor ct = 1, .., nct do
9: Extract control behaviour l, static obstacle j or dynamic obstacle i and

prediction scenario s to consider.
10: Calculate the grounding cost Hl,j

so using (6.12) or Cl,i
s using (6.8) and the

indicator µl,i
s , depending on if a static or dynamic obstacle is considered in the

thread.
11: Return the results to CPU memory.
12: end parfor
13: Use all the calculated Hl,j

so to calculate Hl
so using (6.11).

14: Use all the calculated Cl,i
s and µl,i

s plus other relevant data to calculate Hl
do

using (6.6) and Hl
colregs using (6.9).

15: Finally, calculate (6.5) for all control behaviours using the previously calculated
terms Hl

do, Hl
colregs, Hl

so and Hl
p of the cost function, and extract the optimal

one l∗ giving minimal cost.

6.4 Simulation Study

The GPU-based PSB-MPC is tested in two situations to illustrate that the COLAV
planning algorithm can tackle dynamic obstacles with uncertainties in addition
to grounding hazards. The first river scenario is chosen to test how the COLAV
planning method handles avoidance in confined spaces, whereas the second sce-
nario aims to test the algorithm performance in a longer time horizon with mul-
tiple dynamic obstacles in a mix of an open sea area and a narrow channel. The
setup with tracking system and parameters are similar to that in [94], where the
obstacle tracker is deliberately tuned conservatively to test the MPC robustness
against kinematic uncertainty. The situations are described below, with a number
of NMC = 50 MC simulations used for each situation. A run-time analysis consider-
ing the first situation is performed, comparing the CPU and GPU implementations
of the PSB-MPC, Algorithm 3 and 4, respectively. The CPU version evaluates the
PSB-MPC cost for all own-ship control behaviours sequentially on CPU cores. The
simulations are performed on a work station with an Intel(R) Core(TM) i9-10900K
3.70GHz processor, with 32 GB RAM and an NVIDIA GeForce RTX 3090 GPU.
C++ is used to implement the CPU version of the PSB-MPC, whereas C++ and
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CUDA is used for the GPU version.

1. Head-on scenario in Nidelva in Trondheim, Norway. The own-ship travels
upstream with constant speed 2m/s, whereas two dynamic obstacles trav-
els downstream with constant speed 2m/s. Vessels of lengths 5m are here
considered, and an own-ship safety zone of dsafe = 5m is used.

2. Multi-ship situation with grounding hazards near Sakshaug, Trøndelag in
Norway. Dynamic obstacle i = 1 is traveling from the south through Straumen
with constant speed 5m/s and ends up in an overtaking situation with respect
to the own-ship, whereas dynamic obstacle i = 2 travels east-west through
Straumen with constant speed 6m/s and ends up in head-on situations with
respect to the other vessels. Obstacle i = 3 travels with speed 7m/s east-west
from Straumen towards the own-ship in a head-on situation, and obstacle i =
4 just north-east of the own-ship travels south with speed 8m/s. The own-ship
travels with constant speed 7m/s. Vessels of lengths 10m are considered, and
an own-ship safety zone of dsafe = 10m is used. In addition to COLREGS
adherence with respect to multiple ships, the challenge here is voyage through
the narrow passage in Straumen, beneath the bridge which has two pylons
that the vessels have to avoid.

For simplicity, a uniform set of scenario probabilities P̂i
s are defined for the dynamic

obstacles, which resembles a conservative case when no prior information from
intent inference is available. For the grounding hazards, only polygons within a
range dso are considered, to reduce computation time. Waypoints for the own-ship
are set in a way that a top level planner could generate, but with small margins
to static obstacles, such that the anti-grounding part of the PSB-MPC becomes
important. Furthermore, the waypoints are set such that a nominal collision-free
trajectory does not exist for all vessels involved.

The MPC is tuned such that anti-grounding and collision avoidance is prioritized
over adhering to COLREGS and following the nominal trajectory. Naturally, be-
cause river voyage is different from sea voyage, the PSB-MPC has a different tuning
for the two situations. Important parameters for the first situation tuning are given
in Table 6.1.

6.4.1 Nidelva Situation

Results for the first situation are given in Fig. 6.4. The dynamic obstacles are
here assumed to be intelligent running their own PSB-MPC algorithm to simulate
human behaviour. The conservative tracking system tuning will create an extra
challenge for the COLAV planning algorithm, with higher kinematic obstacle un-
certainty. Despite this and nearby grounding hazards, all vessels involved are able
to avoid collision and grounding in addition to adhering to the COLREGS rules
8, 14 and 16 related to clear actions, head-on situation and actions for give-way
vessels, respectively. The near constant minimum distance to the closest static ob-
stacle in the statistics is because the own-ship is closest to a grounding hazard
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Table 6.1: Important PSB-MPC parameters for the Nidelva situation.

Parameter Value Comment
ϵ 2m RDP distance threshold

TMPC 150 s Prediction horizon
Ts 0.5 s Prediction time step

Tcoll 100 s
Collision cost time

discounting parameter

nLOS
ps 5

Number of LOS
prediction scenarios

rct 10.0m Prediction scenario spacing

dso 200.0m
Static obstacle

consideration range

nM 2
Number of sequential
avoidance maneuvers

Uoffsets,1 {1.0, 0.5, 0.0} Speed offsets first maneuver
Uoffsets,2 {1.0, 0.5} Speed offsets second maneuver

χoffsets,1

{−60,−45,−30,−15,
−10,−5, 0, 5, 10,
15, 30, 45, 60}

Course offsets first maneuver

χoffsets,2

{−60,−45,−30,−15,
−10,−5, 0, 5, 10,
15, 30, 45, 60}

Course offsets second maneuver

initially. Note that the map data for the river area do not include the piers at
which boats are docked, which would be taken into account through usage of e.g.
LIDAR data in a real-time application.

For the situation in Nidelva, a run-time analysis was performed with respect to
the number of control behaviours ncbs for the MPC, and the number of dynamic
obstacle prediction scenarios nips considered. The number of control behaviours is
increased by increasing the number of sequential maneuvers nM in the horizon, and
by expanding the finite set of course and surge modifications. Both the CPU and
GPU implementations were run for NMC simulations for each parameter setting.
Figs. 6.5, 6.6 and 6.7 show a box-plot representation of the results. The GPU-
implementation of the PSB-MPC performs better than the CPU-version when the
number of control behaviours increase beyond a thousand. With ncbs < 1000 and
a scheduled number of threads nct < 5000, the overhead of launching the GPU
kernels becomes too large compared to the gain of parallelized cost evaluation.
This makes the CPU-implementation feasible for cases where typically nM = 1
and a small number of possible course and speed changes is enough, and only a
small number of static and dynamic obstacles are considered.

Furthermore, one can see that the CPU implementation performs better than the
GPU implementation when considering increasing numbers of prediction scenarios
up until nips = 101 for dynamic obstacles, when using a low number of control
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(a) North east plot at multiple time instants for a sample run. Dynamic obstacles are shown in
green (i = 1) and blue (i = 2). The own-ship is shown in red.
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(b) Distance to static and dynamic obsta-
cles for the sample run.
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(c) Statistics on the minimum distance to
the obstacles over all NMC simulation runs.

Figure 6.4: Results for the situation in Nidelva with multiple obstacles.

behaviours ncbs = 39. In this case, the GPU run-time is mainly caused by the
overhead of porting data back and forth between the host and device side. The
contrary result is the case when considering ncbs > 1000. This is again because a
CPU is optimized for fast sequential execution on fewer but more complex tasks,
whereas a GPU is optimized for execution of many simple tasks in parallel. A
similar result is obtained by increasing nobst while keeping nips constant, but will
not be reported here.

From Figs. 6.5 - 6.7, an approximate linear scaling of the MPC run-time complexity
with increasing own-ship control behaviours, dynamic obstacle scenarios and static
obstacles can be found. For static obstacles represented as polygons, one also have
to take into account the added run-time complexity due to the number of vertices
in the polygons.
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Figure 6.5: Box-plot representation of the runtime results with respect to increasing
numbers of control behaviours ncbs, when keeping the number of dynamic obstacle pre-
diction scenarios constant at ni

ps = 1.
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Figure 6.6: Box-plot representation of the runtime results with respect to increasing dy-
namic obstacle prediction scenarios ni

ps, when keeping the number of own-ship avoidance
maneuvers constant at nM = 1 and a total number of control behaviours ncbs = 39.

Also, tests to compare the run-time related to calculating predominantly the ground-
ing cost in the MPC on a CPU and GPU platform was performed, when the own-
ship is located in Nidelva standing still. No dynamic obstacles are considered, and
thus the calculation of the distance to static obstacles will be the bottleneck. The
largest static obstacle in the region is a polygon with 21962 vertices originally, and
has 1734 vertices after application of the RDP algorithm. The map environment
around Nidelva in Trondheim is illustrated in Fig. 6.8, where the static obstacle
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Figure 6.7: Box-plot representation of the runtime results with respect to increasing dy-
namic obstacle prediction scenarios ni

ps, when keeping the number of own-ship avoidance
maneuvers constant at nM = 2 and a total number of control behaviours ncbs = 1014.

j = 13 is the largest one with 21962 vertices. Information about the number of
vertices for each polygon is given in Table 6.2.

Table 6.2: Polygon vertices before and after applying RDP on the Nidelva environment.

Polygon Vertices before Vertices after
1 8 3
2 207 27
3 649 95
4 322 33
5 140 18
6 890 53
7 207 48
8 8 3
9 8 5
10 1633 187
11 2110 162
12 2483 143
13 21961 1734

The first test compares the run-time when only considering the largest polygon,
with and without usage of the RDP algorithm. This is a worst case scenario, as a
real-time anti-grounding system should preprocess large polygons such that only
the relevant local part is considered. The test is included for completeness, as it
shows the importance of polygon preprocessing. Results are here given in Fig. 6.9.

The results in Fig. 6.10 show a run-time analysis for increasing numbers of static
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Figure 6.8: Map of the Trondheim region with Nidelva in the middle, with all relevant
polygons labelled with different colors. The own-ship position is the small red dot in
Nidelva in the middle.

obstacles, after using the RDP for polygon simplification. Note that the results
considering an increasing number of static obstacles are strongly dependent on the
number of vertices for each obstacle, which varies from 3 to 1734 vertices as seen
from Table 6.2 after using RDP on this environment. This is why there is a sharp
increase in average run-time when nso = 13, because the largest polygon is then
included in the consideration. An approximate linear run-time increase can however
be found when considering polygons of fairly the same complexity. The trend from
these results is that the GPU implementation becomes more feasible than the CPU
one when the number of scheduled parallel threads nct surpasses around 5000.

6.4.2 Sakshaug Situation

Important parameters for the tuning are given in Table 6.3, with results shown
in Fig. 6.11 and 6.12. The first case show results when only the own-ship has a
COLAV planning algorithm, whereas the second case show results when all vessels
involved use the PSB-MPC. For the first case, waypoints for the obstacles are set
such that they will not collide with each other, but would collide with the own-ship
if no COLAV planning algorithm was used.
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Figure 6.9: Box-plot representation of the runtime results with respect to the worst
case polygon scenario before and after applying RDP, when keeping the number of own-
ship avoidance maneuvers constant at nM = 2 and a total number of control behaviours
ncbs = 1014.
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Figure 6.10: Box-plot representation of the runtime results with respect to increasing
numbers of static obstacles nso, when keeping the number of own-ship avoidance maneu-
vers constant at nM = 2 and a total number of control behaviours ncbs = 1014.

For both the first and second case, the own-ship has difficulties with overtaking
purple obstacle i = 1 while simultaneously avoid grounding and avoiding blue
obstacle i = 2 head-on, that adheres to both COLREGS rules 13 and 14 regarding
overtaking and head-on. Especially in the time period between t2 and t3, the own-
ship struggles with figuring out the side to overtake obstacle i = 1 on when entering
Straumen, hence the oscillations in the trajectory in this period. The black obstacle
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i = 3 and green obstacle i = 4 are easier to avoid as the vessels are here less
constrained by land.

Thus, the own-ship is in general able to avoid collision with all obstacles in both
cases, but COLREGS adherence in the narrow passage is difficult to accomplish
with respect to all ships. This is mainly due to constant conservative intent infor-
mation being used, with uniform prediction scenario probabilities for dynamic ob-
stacle trajectories, essentially assuming that no dynamic obstacle will have specific
inclinations towards adhering to the COLREGS. Also needing to avoid grounding
in the narrow passage further restricts the PSB-MPC‘s ability to adhere to COL-
REGS in a safe manner. The algorithm is however able to keep safe distance to
all obstacles in all Monte Carlo simulation runs. The diversity of the environment
makes algorithm tuning challenging, as one can argue that the COLAV planning
algorithm parameters should be adaptive based on changes in the situation.

When the dynamic obstacles do not explicitly follow COLREGS in the first case,
the own-ship can be more excused for not doing the same with respect to all
vessels. For the second case, one see the potential for vessel-vessel communication
to explicitly reduce trajectory uncertainties and adhere to COLREGS, during the
passage through Straumen. Addressing these issues is the topic of future research
more focused on multi-ship COLREGS compliance in confined waters.

Regarding run-time complexity for this example, it will be similar as for the first
situation when considering increasing dynamic obstacles and their prediction sce-
narios. There will be a small increase in the run-time due to the Sakshaug situation
has larger and more complex static obstacles, although a smaller set than for the
Nidelva situation is considered in the proximity of the own-ship. In total, run-time
results generated for this example would be fairly similar to the first simulation,
albeit with a bias on the static obstacle run-time complexity due to larger obstacles
considered.

6.5 Conclusion

The PSB-MPC COLAV planning algorithm presented in this chapter facilitates
both dynamic and static obstacle avoidance, with the most performance-critical
part of its algorithm implemented on the GPU. What separates it from current
state-of-the-art is the computational speed of the algorithm, where the cost eval-
uation is parallelized such that the MPC problem scales approximately linearly
with increasing control behaviours, static and dynamic obstacles and prediction
scenarios, as shown in the run-time results presented. This makes the COLAV
planner able to consider more control behaviours and dynamic obstacle prediction
scenarios efficiently, which results in real-time capabilities and performance gains
in cases where large amounts of situational information and possible own-ship de-
cisions have to be considered.

In simulation, the COLAV algorithm is shown to handle both grounding hazards
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Table 6.3: Important PSB-MPC parameters for the Sakshaug situation.

Parameter Value Comment
ϵ 2m RDP distance threshold

TMPC 150 s Prediction horizon
Ts 1.0 s Prediction time step

Tcoll 100 s
Collision cost time

discounting parameter

nLOS
ps 5

Number of LOS
prediction scenarios

rct 20.0m Prediction scenario spacing

dso 800.0m
Static obstacle

consideration range

nM 2
Number of sequential
avoidance maneuvers

Uoffsets,1 {1.0, 0.5, 0.0} Speed offsets first maneuver
Uoffsets,2 {1.0, 0.5} Speed offsets second maneuver

χoffsets,1

{−90,−75,−60,−45,
−30,−15, 0, 15, 30,

45, 60, 75, 90}
Course offsets first maneuver

χoffsets,2

{−90,−75,−60,−45,
−30,−15, 0, 15, 30,

45, 60, 75, 90}
Course offsets second maneuver

and multiple dynamic obstacles in a safe manner, both in a narrow river environ-
ment, and also in a mix of more open sea and narrow waters. However, there is
an inherent challenge in finding parameters that will make the algorithm work ro-
bustly and adhere to COLREGS for multiple types of situations, especially when
the environmental constraints vary a lot.

Future work will involve making the PSB-MPC adaptive to the environment faced,
and utilize historical data for tuning the algorithm. Also, the dynamic obstacle pre-
diction and COLREGS penalization cost evaluation should be extended to consider
static obstacles, for better applicability in confined spaces.
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(a) North east plot at multiple time instants for a sample run. Dynamic obstacles in purple
(i = 1), blue (i = 2), black (i = 3) and green (i = 4). The own-ship is shown in red.

0 100 200 300

Time [s]

0

100

200

300

400

500

600

D
is

ta
n

c
e

 [
m

]

Safety zone

Closest static obst.

Obst. i=1

Obst. i=2

Obst. i=3

Obst. i=4

(b) Distance to static and dynamic obsta-
cles for the sample run.
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the obstacles over all NMC simulation runs.

Figure 6.11: Results for the situation in Sakshaug with multiple obstacles in the first
case.
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(a) North east plot at multiple time instants for the sample run. Dynamic obstacles in purple
(i = 1), blue (i = 2), black (i = 3) and green (i = 4). The own-ship is shown in red.
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(b) Distance to static and dynamic obsta-
cles for the sample run.

0 10 20 30 40 50

MC run

0

20

40

60

80

100

120

140

160

180

200

D
is

ta
n

c
e

 [
m

]

Safety zone

Closest static obst.

Obst. i=1

Obst. i=2

Obst. i=3

Obst. i=4

(c) Statistics on the minimum distance to
the obstacles over all NMC simulation runs.

Figure 6.12: Results for the situation in Sakshaug with multiple obstacles in the second
case.
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Chapter 7

Full-scale Experiments With an
Obstacle Intention-Aware
Probabilistic Scenario-based MPC

The chapter is based on the following publication

[100] T. Tengesdal, Sverre V. Rothmund, Erlend A. Basso, T. A. Johansen, and
H. Schmidt-Didlaukies, "Obstacle Intention Awareness in Automatic Colli-
sion Avoidance: Full Scale Experiments in Confined Waters", Field Robotics,
2022. Submitted.

Here, a DBN for intention inference is combined with the latest version of the GPU-
based PSB-MPC planner and verified in closed-loop full scale experiments using
the Milliampere 2 ferry. Probabilistic information on obstacle intention states is
used to make more informed decisions in the deliberate COLAV planner, such as
the choice of disregarding one‘s stand-on role in a COLREGS situation where the
other obstacle ship is inferred to be non-compliant. The work presented in this
chapter combines all the major developments on intention inference and risk-based
COLAV done throughout this thesis.

7.1 Introduction

7.1.1 Motivation

COLAV can be split into a two-part process. The first part is having adequate
situational awareness. Situational awareness can be divided into three levels, per-
ception, comprehension, and projection [160]. For COLAV at sea, perception repre-
sents data from sensors, such as radar, Lidar (light detection and ranging), or data
from the Automatic Identification System (AIS), that lets the autonomous ship
estimate the states of obstacles in the environment. Comprehension represents the
ability to track the state of the obstacles based on the combined information from
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the different sensors. The last piece, projection, is the ability to predict the future
motion of other ships based on tracking results. The work in this chapter focuses
on the projection part of situational awareness. The projection is achieved by in-
ferring the intentions of other ships based on past observations from the tracking
system. The intentions are then used to evaluate the probability that other ships
will follow different alternative maneuvering scenarios [96].

The second part of collision avoidance considers the decision-making based on the
situational awareness. A challenge when developing decision-making algorithms for
collision avoidance is the need to plan COLREGS-compliant and optimal trajecto-
ries while being able to react quickly when changes are observed. A hybrid approach
for handling this challenge is to divide the COLAV planning system into multiple
levels, as done in e.g. [55], [56], [85]. In a three-layer structure, as in [85], the high-
est level is a planner, which runs at low frequency and is responsible for finding a
globally optimal trajectory to the ship’s goal location while taking static obstacles
into account. The mid-level planner is responsible for handling the collision avoid-
ance and compliance with COLREGS in the local area, thus needing to take both
static and dynamic obstacles into account. Lastly, the low-level planner is designed
to operate at a high frequency in order to handle reactive collision avoidance when
new situational information renders the trajectories planned by the higher levels
unsafe. In this chapter, the focus is placed on the mid-level COLAV planning, which
based on the understanding of the intentions of other ships, finds a collision-free
trajectory that complies with the COLREGS regulations [97].

To fully enable both situational awareness and decision-making for collision avoid-
ance, there is also a need for efficient computational platforms, which can both
handle and take advantage of the increasing amounts of situational information
made available today through modern sensor technology and AIS data. As certain
situations can require the COLAV system to consider thousands of possible evasive
own-ship maneuvering decisions, static obstacles, and dynamic obstacle intention
scenarios with inherent uncertainty, an important part of the decision-making will
be to process situational awareness information and possible decision candidates
efficiently.

7.1.2 Previous Work

Maritime COLAV has been an active research field since the 1950s [26], and many
algorithms have been proposed for solving this problem. This literature review will
consider the subset of proposed methods that tackle static and dynamic obstacles,
that explicitly consider uncertainties present in dynamic obstacle kinematics, and
uncertainty in their intentions. For a general comprehensive literature review on
maritime COLAV, please refer to [26], [27], [29], [30], [122].

The work in [68] developed an A-star search based trajectory planner for find-
ing COLREGS-compliant and collision-free trajectories considering dynamic and
static obstacles in a lattice. MC simulation with fuzzy logic and trajectory history
data was used to find the set of most probable dynamic obstacle trajectories. From
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the set, the most probable trajectory is considered in the collision avoidance mod-
ule. No prediction uncertainty was considered for the dynamic obstacles, and the
computational efficiency of the planner was only tested in a specific setting.

A* search is applied to collision-free lattice-based trajectory planning [69], where
trajectory deviation, collision risk, and non-compliance of COLREGS are penal-
ized in the cost function. An intention-based motion model is used for dynamic
obstacles, which uses historical data in order to classify a vessel as COLREGS-
compliant or not, and which incorporates reactive COLAV. The details on this
model are however not given.

A two-layered COLAV planning system with a global and local lattice-based tra-
jectory planner was developed in 2017 [77]. Here, Voronoi Diagrams were used to
generate a set of static obstacle collision-free waypoints, which again is used to gen-
erate a continuous path using Fermat‘s Spiral. Local re-planning windows are used
for taking detected dynamic and static obstacles into account, where the dynamic
obstacle motion is predicted using the CV model [78]. Using the predicted dynamic
obstacle uncertainty up until time to CPA, a convex hull is created with the pre-
dicted positions and covariances from a KF, which is then regarded as an area to
avoid in the planner. However, this can be overly conservative, as the CV model
often has unrealistic uncertainty growth in real-world cases [79]. Furthermore, the
run-time properties of the local planner were not studied.

RRTs was used in a sampling-based COLAV planning algorithm for COLREGS-
compliant dynamic and static collision avoidance in [83]. The planner used a joint
simulator for predicting both the own-ship and dynamic obstacle motion, with po-
tential fields being used in the joint prediction to ensure collision-free trajectories.
The planning algorithm was shown to be real-time feasible through multiple sim-
ulations. However, the joint simulator does assume that nearby ships will always
perform deterministic COLREGS-compliant maneuvers if possible, which is not
necessarily the case in practice.

Static and dynamic obstacle collision avoidance with consideration of environmen-
tal disturbances was proposed in [76] using NMPC. The dynamic obstacle motion
was predicted using a deterministic CV model, which has limited quality in haz-
ardous situations where ships will maneuver. How the MPC scaled with static and
dynamic obstacles was not considered.

The work in [85] proposed a hierarchical COLAV system with three layers: A top-
level trajectory planner responsible for generating collision-free trajectories with
respect to static obstacles; a mid-level MPC-based COLAV planning algorithm
for modifying this top-level trajectory in order to avoid collision with dynamic
obstacles and adhere to COLREGS; and a reactive COLAV algorithm in the bottom
layer used for planning emergency avoidance maneuvers in case the layers above
do not plan a sufficiently safe trajectory.

Different types of VO based methods have been proposed for more reactive COLAV
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planning in [41], [61], [161]–[163], where the core idea is to compute a set of reach-
able velocities for the own-ship which do not cause collision with nearby dynamic
obstacles. COLREGS adherence and taking dynamic obstacle kinematic uncertain-
ties into account have been considered by specifying additional constraints when
computing the VO, in probabilistic versions of the algorithm [61], [163]. These
methods do however assume constant velocity for dynamic obstacles, unless their
trajectories are known beforehand, and can be classified as reactive approaches
since the sense-act methodology is used.

In [164], nonlinear VO (NL-VO) is used for the own-ship, together with a method
for estimating the intent of vessels having a give-way role. The trajectories of dy-
namic obstacles with give-way roles are processed using the Douglas-Peucker algo-
rithm, to find their action parameterized as turning points. The reachable velocity
of the obstacle at these action points are then checked for intersection with the cor-
responding own-ship generated NL-VO set, and is used for determining whether
the own-ship having stand-on role should perform emergency evasive maneuvers.

Fast probabilistic velocity obstacle (fPVO) for multi-ship COLAV is introduced in
[162], where the own-ship roles with respect to all nearby vessels are calculated
based on a symmetric own-ship - target ship COLREGS role classification method,
and used to determine whether or not an evasive maneuver should be taken. The
evasive maneuver taken minimizes a cost function that penalizes high collision risk,
COLREGS role violation, and trajectory deviation. However, the study assumes
that all involved vessels adhere to the COLREGS and try to avoid collision, which
is not always valid in practice. The method is extended into a reciprocal (R-fPVO)
version in [90], using a DBN for intent inference as in [165]. The Bayesian network
estimates the probability of an obstacle ship being COLREGS-compliant and maps
this into a rule-compliance factor which scales the COLREGS role violation cost.
In contrast, the work presented in this chapter uses an intention inference method
able to infer multiple intention states which in total models the behavior of meeting
traffic.

The SB-MPC for maritime COLAV was first presented in [70] and was extended to
the PSB-MPC in [97] to explicitly handle dynamic obstacle kinematic uncertainty
through the estimation of collision probabilities associated with pairs of predicted
own-ship and obstacle trajectories. The method was extended in [98] to incorporate
intent information from e.g. DBNs in the form of a discrete set of intention proba-
bilities which scaled the dynamic obstacle cost and COLREGS violation cost. The
intention probabilities consider only if an obstacle was likely to keep its course, or
take a starboard or port maneuver, which made it difficult to assess whether an
intention was COLREGS-compliant or not. However, the MPC was shown able to
take into account alternative obstacle trajectory scenarios, where most COLAV al-
gorithms only assume the obstacle will keep its course and speed in the prediction.
The MPC was further refined in [94] to instead consider intent information through
using a set of estimated probabilities for a set of predicted obstacle trajectories or
scenarios and implemented on a GPU with embedded anti-grounding in [99]. Prior
to the present research, the PSB-MPC COLAV planning algorithm had not been
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tested with an intention inference module, only with usage of a priori intention
information.

7.1.3 Contributions

Previous work on automatic maritime COLAV has most often neglected or sim-
plified the situational awareness part of COLAV, assuming constant behavior in
speed and course for nearby dynamic obstacle ships without uncertainty. This as-
sumption of constant course and speed for vessels involved in encounters will not
hold in practice, and limits the own-ship decision-making, possibly leading to more
reactive avoidance maneuvers being made. Except for a few articles as in [68], [69],
[77], [89], [90], the majority of studies in the literature have used this assumption
without taking into account the dynamic obstacle kinematic uncertainty.

Thus, in this chapter, we propose a COLAV system with an intention inference
module as in [96] for providing added situational information to the PSB-MPC
planning algorithm as in [94], [99], and validate the system in experimental trials.
All obstacle ships involved in the encounters broadcast their GNSS information
for easier tracking system handling, which lets the present chapter focus on the
projection part of situational awareness. This chapter combines the work on in-
tent inference in [96] for evaluating the probability of a ship following different
predicted trajectories, with the work in [94], [97], [99] for taking into account in-
tention information under uncertainty in deliberate COLAV planning. The proba-
bility information, predicted trajectories, and other dynamic obstacle information
is combined with static obstacle data from navigational charts and fed into the
PSB-MPC COLAV planning algorithm. The PSB-MPC utilizes parallel processing
to handle larger amounts of situational information and possible own-ship avoid-
ance decisions than what would be possible on a sequential computation platform.

The resulting system has increased situational awareness in hazardous encounters
and an improved ability to make decisions based on uncertain information on the
kinematics and intents of nearby dynamic obstacles. The system is compliant with
all the behavioral rules specified in COLREGS for power-driven vessels operating
outside of traffic separation schemes, more specifically rules 8 and 13-17. Also,
the system has better adherence to rule 7 on collision risk assessment as more
situational information is considered.

The contributions of this chapter are thus as follows.

• Exploit intention models for obstacle ships in a risk-based COLAV for in-
creased situational awareness.

• Validate if the intention-aware COLAV system with parallel processing ca-
pabilities has benefits through sea experiments.
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7.1.4 Chapter Overview

The chapter is structured as follows. Section 7.2 gives an overview of the COLAV
system architecture and software framework, in addition to the experimental plat-
form used. Section 7.4 and 7.3 details the intention inference module and the PSB-
MPC COLAV planning algorithm. Experimental results are given in Section 7.5
and conclusions are lastly given in Section 7.6.

7.2 System Architecture and Experimental Setup

7.2.1 COLAV System

An overview of the system architecture when using the PSB-MPC COLAV planning
algorithm with a situational awareness system including intention inference is given
in Fig. 7.1. Relevant system components are described below:

GHM Grounding Hazard Manager. Responsible for processing all data
related to static obstacles, in a parameterization suitable for the
PSB-MPC. A list of relevant hazards, typically inside a radius of
dso,relevant around the current own-ship position, is sent to the
PSB-MPC. Electronic Navigational Chart (ENC) data is used to
get grounding hazard information.

DOM Dynamic Obstacle Manager. Responsible for processing all data re-
lated to dynamic obstacles, and for generating prediction scenarios.
A prediction scenario here refers to an alternative maneuver or tra-
jectory for the obstacle. The dynamic obstacle data includes track-
ing system information and estimated intention information for
confirmed tracked obstacles. A list of data from relevant dynamic
obstacles, inside a radius of ddo,relevant, is sent to the PSB-MPC.
The dynamic obstacle data specifically includes, among others, the
current time estimates and error covariances, predicted trajecto-
ries, and estimated probabilities for each alternative maneuvering
scenario.

DOII Dynamic obstacle intention inference. Updates the intention model
based on observed behavior. Receives dynamic obstacle data with
predicted trajectories for each obstacle, and evaluates the proba-
bility that the obstacle will follow different candidate trajectories.
See section 7.4.

PSB-MPC Finds the optimal own-ship trajectory based on static and dynamic
obstacle data. See section 7.3.

7.2.2 The Own-ship Platform

The field experiments used the fully actuated milliAmpere 2 vessel as the own-ship
platform, shown in Figure 7.2. The vessel is owned by NTNU and is used for re-
search and technology development purposes in the field of autonomous maritime
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Figure 7.1: COLAV system overview.

Figure 7.2: The Milliampere 2 ferry. Courtesy of Mikael Sætereid.

transport in urban areas. It is 8.6m long, 3.5m wide, fully electric, and equipped
with four Fischer Panda 10 kW azimuth thrusters. To obtain accurate own-ship
navigation data, the ferry uses a moving base Real-Time Kinematic (RTK) solu-
tion with two Global Navigation Satelite Systems (GNSS) receivers and two RTK
antennas. At the time of the experiments, a Virtual Reference Station (VRS) was
used with a Network Transport of RTCM data over IP (NTRIP) client for correc-
tions, due to an RTK base station being down.
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The Robotic Operating System (ROS) is used as middleware for the COLAV sys-
tem, with software packages for each system component. The Milliampere 2 ferry
uses a commercial DP system from Marine Technologies, which takes in trajectory
references in planar pose, velocity, and acceleration. It is configured to perform
small heading changes, mostly relying on speed changes, since back-and-forth ferry
transportation is the goal. This created some challenges for trajectory tracking and
COLREGS adherence in this work, as it is important to make apparent maneuvers
to comply with COLREGS rule 8.

The PSB-MPC COLAV planning algorithm calculates the desired trajectory for
the ferry to follow, and converts the output to the correct format of input for
the DP system. The PSB-MPC and the situational awareness module runs on a
separate computer, which is connected to an onboard Milliampere 2 computer via
ethernet. The onboard computer is responsible for enabling autonomy on the ferry
and connects to the navigation, sensor, and DP systems. The separate computer is
a workstation running with Ubuntu 20.04.3 LTS as its operating system with an
Intel(R) Core(TM) i9-10900K 3.70GHz processor, 32 GB RAM, and an NVIDIA
GeForce RTX 3090 GPU.

7.2.3 Target Tracking

As the main research objective is to showcase how an intention inference module
can be used with a COLAV planning algorithm for safer and more efficient ship
guidance, we use a simple communication setup where dynamic obstacles send GPS
information to the own-ship tracking system. The tracking system then filters these
measurements using a linear KF [125] to produce tracks for each vessel, using a
CV model [95] for the estimation, as done in simulation in [97]. We then use 4G
routers on each vessel to establish communication.

The target ships (dynamic obstacles) considered in the experiments is a Jeanneau
Marlin 65 vessel called Havfruen depicted in Fig. 7.3(a), and the Cyberotter 1 de-
picted in Fig. 7.3(b). To get GNSS information from Havfruen, the vessel-driver
runs a laptop with a Ublox ZED-F9P receiver that sends position measurements
over ROS to the own-ship using ROS Ublox driver software. The Cyberotter has
an onboard SBG GNSS system, which in the same fashion sends its GPS infor-
mation over ROS. The own-ship is here configured as the ROS master, running
on the workstation on milliAmpere 2, which is connected via ethernet and the 4G
communication link to Havfruen and the Cyberotter.

Due to the Milliampere 2 ferry being restricted to operate within channels and
harbor areas without waves, all experiments were performed in the easternmost
basin of Nyhavna, Trondheim, Norway.

1More information at https://otter.itk.ntnu.no/doku.php?id=cyberotter.
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(a) Havfruen. Courtesy of Mannhullet at
NTNU.

(b) Cyberotter. Courtesy of Øystein
Volden.

Figure 7.3: The target ships or dynamic obstacles Havfruen and Cyberotter used in the
experiments.

7.3 The PSB-MPC COLAV Planning Algorithm

The PSB-MPC in this chapter is extended from the GPU-based version presented
in the previous chapter, to more explicitly consider COLREGS rules 8 and 13-17
with usage of intention information, and with an update to the trajectory deviation
cost.

As stated in previous chapters, the objective of the PSB-MPC is to solve the
following optimization problem

l∗(t0) = argmin
l
Hl(t0) (7.1)

at the current time t0, to find the optimal control behavior l which minimizes
Hl(t0). The cost function penalizes dynamic obstacle collision risk cost Hl

do, breach-
ing the COLREGS with respect to all dynamic obstacles Hl

colregs, grounding on
static obstacles Hl

so, in addition to penalizing deviations from the nominal trajec-
tory Hl

p, respectively. The solution gives us an optimal avoidance trajectory for
the own-ship, which is regarded as a reference trajectory to be tracked by the DP-
system. A sampling time of 5 seconds is used for the MPC. Algorithm 4 described
in the previous chapter is used to evaluate the cost of all control behaviors, and to
find the optimal solution.

The following sub-sections go through the prediction models used in the MPC and
the different elements in the cost function, and how the PSB-MPC is used with
the Milliampere 2 ferry.
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7.3.1 Prediction Models

Similarly to the previous chapter, a discrete kinematic model as outlined in Section
2.4.3 was used in the PSB-MPC during the experiments:

xk+1 = xk + Ukcos(χk)

yk+1 = yk + Uksin(χk)

χk+1 = χk +
1

Tχ
(χd,k − χk)

Uk+1 = Uk +
1

TU
(Ud,k − Uk)

(7.2)

which describes the own-ship state xk = [xk, yk, χk, Uk]
T motion during the MPC

prediction, and where LOS guidance is used to predict all candidate trajectories,
as described in Section 2.5.1. This is also the case for dynamic obstacles, where
the same prediction scheme as outlined in Section 6.2.1 was used, with a kinematic
model and LOS guidance for generating alternative obstacle maneuvering scenarios.

Considering a prediction horizon of length Tmpc with a time step ∆mpc, Eu-
ler‘s method for numerical integration is used to generate predicted own-ship
and dynamic obstacle trajectories with samples at the discrete predicted times
tk ∈ D(t0) = {t0, t0 +∆mpc, ..., t0 + k∆mpc, ..., Tmpc}.

7.3.2 Cost Function

As in the previous chapter, the PSB-MPC cost function for a specific control be-
havior l can be decomposed as

Hl(t0) = Hl
do +Hl

colregs +Hl
so +Hl

p, (7.3)

where the penalization terms are associated with dynamic obstacles, COLREGS vi-
olation, static obstacles or grounding hazards and trajectory tracking, respectively.
The following text will go through their definitions, where the COLREGS cost and
trajectory deviation cost have been subjects to modification in this chapter.

Dynamic Obstacle Cost

The dynamic obstacle cost captures the probabilistic collision risk and is here
chosen as a sum over all nearby obstacles

Hl
do =

ndo∑
i=1

Hl,i
do (7.4)

where the individual dynamic obstacle cost is given by a weighted sum over the
nips prediction scenarios

Hl,i
do =

ni
ps∑

s=1

P̂i
sH

l,i,s
do (7.5)
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with the prediction scenario probabilities {P̂i
s}

ni
ps

s=1 as weights, estimated from the
dynamic obstacle intention inference module. The cost associated with the pair of
an own-ship control behavior l and a dynamic obstacle i behaving as in prediction
scenario s is, as in the previous chapter, calculated as

Hl,i,s
do = max

k
ζiCl,si,kP̂

l,i,s
c,k exp(−tk/Tcoll) (7.6)

The CE method is used to estimate the collision probabilities P̂l,i,s
c,k as in Chapter

5, and multiplied by the collision consequence function

Cl,si,k = Kcoll||vi,s
k − vl

k||2 (7.7)

to obtain the collision risk, where Kcoll is again the collision cost penalty parameter,
vi,s
k is the predicted obstacle velocity in prediction scenario s and vl

k the predicted
own-ship velocity, both at the predicted time tk.

By specifying a sufficiently rich set of obstacle prediction scenarios, which in total
spans the maneuvering possibilities of a dynamic obstacle, the scenario probabilities
P̂i
s can capture its intention uncertainty and thus give the PSB-MPC elevated

situational awareness.

COLREGS Violation Cost

The COLREGS violation cost has in this chapter been updated to consider the
entire candidate trajectory of the own-ship when evaluating whether or not the
rules were breached and is meant to make adherence to the COLREGS rules
8, 13, 14, 15, 16 and 17 easier. The total COLREGS cost, Hl

colregs is evaluated by
summing the COLREGS violation costs over all dynamic obstacles

Hl
colregs =

ndo∑
i=1

Hl,i
colregs (7.8)

which enables multi-ship COLREGS adherence. The cost towards a specific dy-
namic obstacle i for a control behavior l is evaluated by summing the violation
costs for all different prediction scenarios s weighted by the prediction scenario
probabilities as

Hl,i
colregs =

ni
ps∑

s=1

P̂i
sH

l,i,s
colregs (7.9)

where the scenario-specific cost is

Hl,i,s
colregs = κSOµ

l,i
SOP̂

i
WGW + κGWµl,i

GW P̂i
CCEM + κRAµ

l
RA (7.10)

and µl,i,s
SO and µl,i,s

GW are binary indicators of whether or not the own-ship following
control behavior l violated its stand-on or give-way role with respect to dynamic
obstacle i behaving as in scenario s. The binary indicator µl

RA is equal to 1 if
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the control behavior l induces an initial avoidance maneuver that does not lead
to a readily apparent action. The cost (7.10) considers the entire own-ship and
dynamic obstacle trajectories in the violation evaluation, which is different from
the original SB-MPC where only instantaneous states were considered. Distinct
penalty parameters κSO, κGW and κRA are used to weight the stand-on, give-
way, and readily apparent violation costs separately. The stand-on violation cost
is weighted by the estimated probability P̂i

WGW that the obstacle will fulfill its
give-way obligations when specified by the COLREGS, obtained from the intention
inference module. The give-way violation cost is similarly weighted by the estimated
probability P̂i

CCEM that the obstacle will perform a COLREGS-compliant evasive
maneuver when specified by COLREGS, also obtained from the intention inference
module. See Section 7.4 for more information.

The COLREGS situation CS is defined when the distance d0i from the own-ship
to obstacle ship i at the current time is less than a given parameter dcolregs. This
ensures that subsequent changes in course or bearing do not change the situation, as
stated in COLREGS rule 13(d). The COLREGS situation is determined as follows

• If the bearing from the own-ship to the obstacle is more than 22.5◦ abaft the
beam of the own-ship, then the own-ship is being overtaken and CS = OT -en
(COLREGS rule 13(b)).

• If the bearing from the obstacle to the own-ship is more than 22.5◦ abaft the
obstacle beam then the own-ship is overtaking and CS = OT -ing (COLREGS
rule 13(b)).

• If the relative heading between the ships is within 180◦ ± 10◦, then there is
a head-on situation and CS = HO (COLREGS rule 14).

• If there is no head-on or overtaking situation then there is a crossing situation
(COLREGS rule 15), and either a port side or starboard side crossing based
on the following:

– If the bearing to the obstacle ship relative to the own-ship heading is
negative, the obstacle ship is on the port side and CS = CR-PS .

– If the bearing to the obstacle ship relative to the own-ship heading is
positive, the obstacle ship is on the starboard side, and CS = CR-SS .

For a control behavior l, no penalty is given if the time until closest point of
approach (CPA) with respect to obstacle i, tl,icpa, is longer than a time threshold
Tstart = s. Also, no penalty is given if the ships will pass at a distance at CPA, dl,icpa,
that is larger than a distance threshold dcolregs, i.e. dicpa > dcolregs. Note that all
distance calculations take the extent of the own-ship and an obstacle into account.

A control behavior l gets a stand-on violation penalty if the own-ship has a stand-
on role and the control behavior leads to a change in course (CIC l) of more than
CICSO

max = 15◦, or change in speed (CIS l) of more than CISSO
max = 0.5m/s, as per

COLREGS rule 17(a). No stand-on penalty is given if the current distance d0i to
the obstacle is below a critical value dcritical = 15m, as all ships should then act
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to avoid collision, as stated in COLREGS rule 17 (a)(ii) and (b). The stand-on
penalty indicator is thus given as

µl,i
SO =tl,icpa < Tstart ∧ dl,icpa < dcolregs ∧ d0i > dcritical ∧

(CS == OT -en ∨ CS == CR-PS ) ∧ (CIC l ̸= none ∨ CIS l ̸= none)
(7.11)

A control behavior l gets a give-way violation penalty if it does not act as specified
in COLREGS rules 14, 15, and 17. COLREGS rule 14 specifies that ships in a
head-on situation should pass port-to-port (P2P). According to COLREGS rule
15 a ship in a crossing situation with the other on its starboard side CR-SS , should
cross aft of that ship (CA). If a ship is forced to take action in a crossing situation
with the other on its port side, CR-PS , then it should avoid changing the course
to port (COLREGS rule 17(c)).

µl,i
GW =tl,icpa < Tstart ∧ dl,icpa < dcolregs ∧ (CS == HO ∧ ¬P2P l ∨

CS == CR-SS ∧ ¬CAl ∨ CS == CR-PS ∧ CIC l == port) (7.12)

Lastly, a control behavior l gets a readily apparent violation penalty if it does not
adhere to COLREGS rule 8, which will be the case if the behavior induces any non-
zero initial speed or course modification that is not sufficiently high to make the
resulting avoidance maneuver apparent. Here, any non-zero course modification
which is less than CICGW

min = 45◦ or any non-zero speed modification less than
CISGW

min = 0.5m/s gains a violation:

µl,i
RA =tl,icpa < Tstart ∧ dl,icpa < dcolregs ∧ (7.13)

((|χl
m,1| > 0 ∧ |χl

m,1| < CICGW
min) ∨ (U l

m,1 > 0 ∧ U l
m,1 < CISGW

min)) (7.14)

The large course change threshold was chosen due to the Milliampere 2 ferry not
being tuned to make large heading changes when tracking trajectories.

Static Obstacle Cost

Static obstacles or grounding hazards are parameterized as polygons and read in
from map data from the considered area to navigate in, as described in Section
6.2.2 in the previous chapter. The cost of grounding on static obstacles is given as

Hl
so = max

j
Hl,j

so (7.15)

where

Hl,j
so = max

k
(G1 +G2ϕ

l
j,kV

2
w)exp

(
−(G3|dl0j,k − dsafe|+G4tk)

)
(7.16)

Here, Vw is the estimated wind speed and ϕj,k = max(0,ωTLl
0j,k) with ω denoted

as the unit wind direction and ωT being its transpose vector. The unit vector Ll
0j,k
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points from the own-ship to the static obstacle j, with dl0j,k as the corresponding
distance. The parameter dsafe is the own-ship safety zone radius, and G1 to G4 are
tuning parameters for the grounding cost. If no wind information is available, the
wind speed is set as Vw = 0, which was the case in these experiments. However, the
grounding cost in general forces the MPC to take action if the own-ship is drifting
towards land due to non-zero wind speed.

Trajectory Deviation Cost

A change in the trajectory deviation cost from previous chapters is made to take
into account large cross-track errors from the nominal trajectory. The cost of de-
viating from the nominal trajectory is parameterized as

Hl
p = max

k
Ke|elk|+

1

nM

nM∑
M=1

[
KU |1− U l

m,M |2 +K∆U |U l
m,M − U l

m,M−1|+

Kχ(χ
l
m,M )2 +K∆χ|χl

m,M − χl
m,M−1|2

] (7.17)

where elk is the cross-track error at predicted time tk when following control be-
havior l, penalized with parameter Ke. The parameters KU and K∆U determine
the severity of the penalties of speed change from the nominal reference, speed
change from one maneuver to the next, and similarly for Kχ and K∆χ, where
course modifications are penalized.

7.3.3 Creating Autopilot References

The PSB-MPC outputs a desired trajectory which consist of Ns predicted desired
own-ship state samples xd,k = [xd,k, yd,k, χd,k, Ud,k]

T , k = 1, 2, ..., Ns. The inputs
to the Milliampere 2 DP-system consist of planar pose, velocity, and acceleration
references. These are obtained from the PSB-MPC reference trajectory by con-
structing a continuously differentiable spline using methods as in [166], where a
geometric path is composed using xd,k, yd,k, χd,k and with a speed profile using
Ud,k. Every time the PSB-MPC outputs a new reference trajectory, interpolation
is used to generate a new spline that uses the references at the current time from
the old reference trajectory as boundary conditions, which ensures continuity of
the velocity references.

7.4 Dynamic Obstacle Intention Inference

The Dynamic Obstacle Intention Inference (DOII) module gets a list of dynamic
obstacle estimates and prediction scenarios from the DOM. The goal of the DOII is
then to evaluate the probabilities that the dynamic obstacle will follow the different
scenarios (P̂i

s). Additionally, the module gives the probability that the obstacle will
fulfill its give-way obligations (P̂i

WGW ) and the probability that it will perform a
COLREGS-compliant evasive maneuver (P̂i

CCEM ) when supposed to.

The relevant probabilities are evaluated using a DBN. This model is a modified
version of the one presented in [96], which is included at the end of this thesis.
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Compared to [96] this model removes nodes related to whether or not the situation
has started and whether or not there is a risk of collision. As the experiments in
the present chapter will be done in confined environments, there is little to no
uncertainty in whether there is a risk of collision and when the situation starts.
Additionally, some small alterations were made to improve the model based on the
experience gathered from extensively testing the method.

The DBN takes the perspective of one of the dynamic obstacles in an encounter.
This dynamic obstacle is referred to as the reference ship in this section. Multiple
ships are modeled by running an instance of the model for each dynamic obstacle
in the encounter.

The DBN contains different intention nodes that define how the ship will act in
different situations. The different intention nodes are given in Table 7.2. These
nodes are stochastic and represent the own-ship’s belief regarding the intentions of
the reference ship. The distributions of the intention nodes are updated based on
observed behavior and are used to evaluate the probability of the different obstacle
prediction scenarios.

The DBN has an output node that represents whether or not different measured
properties are compatible with the state of the intention nodes. The measured
properties are given in Table 7.3 and are evaluated assuming all obstacle ships
keep their current course and speed. The intention nodes are updated by inserting
evidence based on an observation in a new time-step of the DBN together with
evidence stating that the output node is in the state “true”.

Whether or not the measured properties are compatible with the intentions is based
on the behavioral rules specified in COLREGS rules 8, and 13 to 18. Section 7.4.1
transcribes these rules as logic statements, which are used to build the conditional
probability tables used by the DBN. The topography of the resulting network is
shown in Fig. 7.4.

The probabilities that the reference ship will follow the different prediction sce-
narios are evaluated in a similar manner. The different measured properties are
first evaluated based on the specific prediction scenario. These are then inserted
on a new temporary time-step in the DBN, which is removed after the evaluation.
The probability that the output node is in the state “true" gives the probability
that the scenario is compatible with the obstacle intentions (Pr(C [t])). As a large
number of prediction scenarios can be compatible with the intentions, the resulting
distribution over the different scenarios must be normalized such that it sums to
1.

P̂i
s = ηPr{C [t]}(1 + cos(δs0)) (7.18)

A prior of 1 + cos(δs0), stating that the ship is more likely to keep its current
course than to change it, is used in the probability evaluation. The variable η is
a normalization factor, and δs0 the difference between the course held 10 s into a
scenario s and the current course of the reference ship. The time interval of 10 s is
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Figure 7.4: Topography of the DBN used for intention modeling. The figure shows the
case of an encounter with two ships. Everything inside the dotted line is time-varying
and repeats for each time step in the DBN. The intention nodes, shown in orange, are
time-invariant. The abbreviations are explained in tables 7.2, 7.3, 7.4.

Table 7.1: Abbreviations

Abbreviation Description
SO Stand-on
GW Give-way
HO Head-on
OT -ing Overtaking
OT -en Overtaken
CR-SS Crossing with other ship on starboard side
CR-PS Crossing with other ship on port side

chosen in our experiments as it gives enough time for the reference ship to change
its course.

7.4.1 Course applicability logic

The measured properties are compatible with the intentions of the ship (C ) if
they are compatible towards all ships in the encounter (Cρ) or the ship behaved in
an unmodelled fashion (IU ). IU works as a catch-all for all unmodelled behavior,
indicating that we have no knowledge of how the reference ship will act in the future.
Subscript ρ represents the ID of another ship in the encounter. P represents the
set of all ships in the encounter other than the reference ship.

C [t] = (∀ρ∈PCρ[t]) ∨ IU (7.19)
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Table 7.2: Intention variables. N (µ, σ)[a,b] indicates a normal distribution with expected
value µ, standard deviation σ, truncated to be between a and b, and discretized into 30
evenly spaced intervals. The probability of “true" is given for binary states.

Symbol Description States Prior
IAT What time until

CPA the reference
ship considers as
ample time to act

real-valued N (60 s, 4 s)[0,100]

IC Whether the refer-
ence ship intends to
follow COLREGS

binary 0.98

ICSρ
What COLREGS
situation the refer-
ence ship thinks it
has towards ship ρ

{OT -ing ,OT -ing ,HO ,
CR-PS ,CR-SS}

See section 7.4.3

IGS Whether the refer-
ence ship intends
to act according to
good seamanship

binary 0.99

IPρ Relative priority the
reference ship has to
ship ρ

{higher , similar , lower} [0.05, 0.90, 0.05]

ISD What the reference
ship considers a safe
distance at CPA

real-valued N (25m, 2.5m)[0,30]

ISDF How far in front
of ship ρ the refer-
ence ship considers a
crossing as safe

real-valued N (20m, 4m)[0,50]

ISDM What the reference
ship considers a safe
distance at CPA to
the current midpoint
between the refer-
ence ship and ship ρ.
(Relevant for HO)

real-valued N (15m, 2.5m)[0,30]

IU Whether the refer-
ence ship acts in an
unmodelled way

binary 0.00001
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Table 7.3: Measurement variables

Symbol Description States
MDCPAρ

[t] Distance between reference ship and ship
ρ at CPA

real-valued

MDFρ [t] How far the reference ship crosses in front
on ship ρ. This value is set to ∞ if the
ship does not cross in front of ship ρ

real-valued

MDMρ
[t] The reference ship’s distance at CPA to

the current midpoint between the refer-
ence ship and ship ρ

real-valued

MPρ
[t] Whether the reference ship has passed

ship ρ
binary

MTCPAρ
[t] Time until CPA between reference ship

and ship ρ
real valued

MPSρ [t] Whether the reference ship will pass with
ship ρ on its port or starboard side

{starboard , port}

MMPSρ
[t] Whether the reference ship will pass the

current midpoint between itself and ship
ρ on its port or starboard side

{starboard , port}

MCIC [t] Whether the reference ship has changed
course more than X since the start of the
encounter

{starboard , straight ,
port}

MCIS [t] Whether the reference ship has changed
speed more than Y since the start of the
encounter

{higher ,none, lower}

MCCC [t] Whether the reference ship is currently
changing course or speed

binary

The measured properties are compatible with the intentions of the reference ship
towards ship ρ (Cρ) if one of the listed conditions is met

• If the ships have passed each other safely (Pρ).
• If the role (Rρ) of the reference ship is give-way and it gives way correctly

(GWC ρ), while adhering to god seamanship (GSρ) or if it does not intend
to act with good seamanship (IGS).

• If the role (Rρ) of the reference ship is stand-on and stands on correctly
(SOC ).

• If the reference ship does not intend to comply with the COLREGS regu-
lations (ICC ) and passes at what it considers to be a safe distance (SDρ),
while adhering to god seamanship (GSρ) or if it does not intend to act with
good seamanship (IGS)

Cρ[t] =Pρ[t] ∨ (Rρ == SO ∧ SOC ρ[t]) ∨((
(Rρ == GW ∧GWC ρ[t]) ∨ (¬ICC ∧ SDρ)

)
∧ (GSρ ∨ ¬IGS)

) (7.20)
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Table 7.4: Model variables

Symbol Description States
C [t] Observation compatible with the intentions of

the reference ship
binary

Cρ[t] Observations and intentions compatible towards
ship ρ

binary

CEM ρ[t] Correct evasive maneuver towards ship ρ binary
C_CR_SSρ[t] Correct crossing evasive maneuver with ship ρ

on the starboard side
binary

C_CR_PSρ[t] Correct crossing evasive maneuver with ship ρ
on the port side

binary

C_HOρ[t] Correct head-on evasive maneuver towards ship
ρ

binary

C_OT ρ[t] Correct overtaking evasive maneuver towards
ship ρ

binary

GSρ[t] Good seamanship towards ship ρ binary
GWC ρ[t] Gives way correctly towards ship ρ binary
Pρ[t] Safely passed ship ρ binary
Rρ Role towards ship ρ {GW ,SO}
PAρ[t] There has been a port action towards ship ρ binary
Rρ Role towards ship ρ {GW ,SO}
SDρ[t] The reference ship will cross at a safe distance

towards ship ρ
binary

SAρ[t] There has been a starboard action towards ship
ρ

binary

The reference ship stands on correctly towards ship ρ (SOCρ) if it does not change
its course (MCIC ) or speed (MCIS ). A change in course or speed is accepted if
it is performing a correct evasive maneuver (CEM ) towards another ship in the
encounter (λ) that it has a give-way role (R) and has not already passed (P )
(COLREGS rule 17). The ship is considered as keeping its course if the difference
between the current course and the initial course in the encounter is less than 10◦.
As none of the dynamic obstacles were to intentionally change their speed, the
change in speed measurement was overridden to always be in the state none. This
simplified the experiments as it was difficult to get the ships up to speed before
the situation started in the confined area.

SOCρ[t] = (MCIC [t] == straight ∧MCIS [t] == none)

∨
(
∃λ∈P\{ρ}Rλ == GW ∧ CEM λ[t] ∧ ¬Pλ[t]

)
(7.21)

The reference ship gives way correctly towards ship ρ (GWC ρ) if one of the listed
conditions is met

• If the reference ship is executing a correct evasive maneuver (CEM ρ).
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• If the time until CPA (MTCPAρ
) is longer than what the reference ship

considers “ample time”, (IAT ) (COLREGS rule 8).

• If the reference ship is currently in the middle of a course or speed change
MCCC .

Thus, before ample time the ship is allowed to stand on correctly (SOC ρ). In the
middle of a course change, the reference ship may have changed course enough to
not stand on correctly while it has not changed enough to pass the other ship at a
safe distance.

GWC ρ[t] =CEM ρ[t] ∨MCCC (7.22)

∨
(
MTCPAρ [t] < IAT ∧ SOC ρ[t]

)
COLREGS rules 13-17 define different encounter situations and how to act in them.
ICSρ

represents which situation the reference ship thinks it is. An evasive maneuver
is correct (CEM ρ) if it complies with the rules.

CEM ρ[t] =(ICSρ
== HO ∧ C_HOρ[t])

∨ (ICSρ
== OT -ing ∧ C_OT ρ[t])

∨ (ICSρ
== OT -en ∧ C_OT ρ[t])

∨ (ICSρ
== CR-SS ∧ C_CR_SSρ[t])

∨ (ICSρ
== CR-PS ∧ C_CR_PSρ[t]) (7.23)

A correct overtaking evasive maneuver (C_OT ) is performed if the ships pass at
a safe distance (SDρ) (COLREGS rule 13).

C_OT ρ[t] = SDρ[t] (7.24)

A correct head-on evasive maneuver (C_HOρ) is performed if the ships pass each
other at a safe distance on the port side (CORLEGS rule 14). To ensure that
both ships must give way, the distance to the current midpoint between the ships
(MDMρ

) is considered.

C_HOρ[t] =
(
MMPSρ [t] == port

)
∧ (MDMρ [t] > ISDM ) (7.25)

A correct crossing starboard-side evasive maneuver (C_CR_SSρ[t]) is performed
if the reference ship passes at a safe distance (SDρ) aft of ship ρ (COLREGS
rule 15). If the reference ship is passing aft of ship ρ in a starboard-side crossing
situation, then it will pass with ship ρ on its port side.

C_CR_SSρ[t] = (MPSρ
== port) ∧ SDρ[t] (7.26)
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A correct crossing port-side evasive maneuver (C_CR_PSρ[t]) is performed if the
reference ship passes at a safe distance and does not change the course (MCIC ) to
port (COLREGS rule 17(c)).

C_CR_PSρ = (MCIC ̸= port) ∧ SDρ[t] (7.27)

COLREGS rules 13 to 15 specifies which ship that has a give-way and stand-on
role (Rρ) in an encounter. Additionally, a ship may stand on if it has higher priority
(IPρ

), either as specified in COLREGS rule 18 or due to unwritten rules [22]. The
other ship will then have lower priority and must give way.

Rρ =


GW

if IPρ
== lower

∨
(
IPρ

== similar
∧ (ICSρ

== HO
∨ ICSρ

== CR-SS
∨ ICSρ

== OT -ing)
)

SO otherwise

(7.28)

The ship can have different definitions of what it considers a safe distance in front of
a ship (ISDF ) and how close it can be at CPA (ISD).MDCPAρ

marks the distance
at CPA while MDFρ

marks how far in front of ship ρ the reference ship crosses.

SDρ[t] =(MDCPAρ
[t] > ISD) ∧ (MDFρ

[t] > ISDF ) (7.29)

A ship is considered to act according to good seamanship (GS ) if it does not
perform both a starboard action (SAρ) and port action (PAρ) and if a change in
course (MCIC ) indicates whether it plans to pass with the other ship on its port
or starboard side (MPS ).

GSρ[t] = ¬(SAρ[t] ∧ PAρ[t]) ∧MCIC [t] ̸=MPS [t] (7.30)
SAρ[t] =MCIC [t] == starboard ∨ SAρ[t− 1] (7.31)
PAρ[t] =MCIC [t] == port ∨ PAρ[t− 1] (7.32)

(7.33)

The reference ship has safely passed ship ρ (Pρ) if they have passed each other
(MPρ) and are at a safe distance (SDρ).

Pρ[t] =MPρ [t] ∧ SDρ[t] (7.34)

Lastly, the probability information used by the COLREGS cost evaluation in the
PSB-MPC for more informed traffic rule compliance is derived. The first proba-
bility P̂i

WGW considers if the reference ship or obstacle i will fulfill its give-way
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obligations, which is dependent on if it does not have higher priority, it intends to
adhere to the COLREGS and does not display unmodelled behavior:

P̂i
WGW = Pr{(IPρ

̸= higher) ∧ IC ∧ ¬IU} (7.35)

The second probability considers if the reference ship or obstacle i will perform a
COLREGS-compliant evasive maneuver, and is given by

P̂i
CCEM = Pr{IC} (7.36)

7.4.2 Evaluating Prediction Scenarios

When evaluating a dynamic obstacle prediction scenario or candidate trajectory, it
is assumed that the reference ship will follow that trajectory while all other ships
keep their course and speed. Time until CPA, MTCPAρ

, is only used to evaluate
whether the reference ship must act now or can wait and act later. This is not
relevant when evaluating a trajectory as the entire future motion of the reference
ship is assumed known. Time until CPA is therefore instead set as the lowest
acceptable definition of ample-time, IAT . If the reference ship intends to act after
this point then a trajectory that keeps the course or speed for the entire encounter
will get a high probability. This ensures that the own-ship will act to avoid collision
if the reference ship plans to avoid collision at an unacceptable short time before
collision.

7.4.3 Prior distribution

The prior distribution of what the reference ship thinks the COLREGS situation
is, ICSρ

, is defined at the start of the encounter. The probability that it is an over-
taking situation is based on the classifier shown in figure 7.5. The classifier shown
in figure 7.6 is used to evaluate the probability that it is a head-on situation. The
uncertainty in the classifier represents the uncertainty that arises due to measure-
ment errors and different definitions of the situation borders. The probability of
there being a crossing situation is equal to the probability that it is not an over-
taking nor a head-on situation. Whether the reference ship is aft or front of ship
ρ defines whether the reference ship is overtaking, OT -ing , or being overtaken,
OT -en. Whether ship ρ is on the starboard or port side of the reference ship at
the start of the encounter defines whether it is an CR-PS or CR-SS situation.

7.4.4 Limiting computational burden

As the computational burden of evaluating the DBN increases with each new time-
step, the number of time steps has to be limited. This was achieved by in most
cases inserting a new measurement on the current time-step thereby overriding
the previous measurement. A new time-step is made if the previous time a new
time-step was made is more than ∆ts,max = 20 s, or if the previous time-step was
made no less than ∆ts,min = 10 s and either ship in the encounter has changed
their course more than Θ = 15◦ or speed more than Υ = 15m/s.
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Figure 7.5: Classifier giving the probability that it is an overtaking situation. Relative
bearing is defined as the bearing from the ship being overtaken to the overtaking ship
relative to the heading of the ship being overtaken. 22.5◦ abaft the beam as specified in
COLREGS rule 13 is the same as ±112.5◦ relative to the heading. This classifier considers
a 15◦ uncertainty in the situation.

7.5 Experimental Results

The COLAV system described in Sections 7.2 - 7.3 was tested in the following nine
different scenarios, with the relevant COLREGS rules indicated in parentheses:

1. Head-on scenario with correct dynamic obstacle behavior, where the obstacle
makes a starboard turn (COLREGS rule 14).

2. Head-on scenario with wrong dynamic obstacle behavior, where the obstacle
makes a port turn (COLREGS rule 14).

3. Crossing with a dynamic obstacle as stand-on and own-ship as the give-way
vessel (COLREGS rule 15 and 16).

4. Crossing with the own-ship as stand-on, and a dynamic obstacle which does
not adhere to COLREGS and does not give way (COLREGS rule 15 and 17).

5. Crossing with the own-ship as stand-on, only with a COLREGS-compliant
dynamic obstacle taking a starboard turn (COLREGS rule 15 and 17).

6. Overtaking scenario with the obstacle being overtaken (COLREGS rule 13
and 16).
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Figure 7.6: Classifier giving the probability that it is a head-on situation. The relative
heading between the two ships defines the probability. This classifier considers a 10◦

uncertainty in the situation.

7. Overtaking scenario with the own-ship being overtaken (COLREGS rule 13
and 17).

8. Combined overtaking and crossing starboard side scenario, with the own-ship
overtaking an obstacle and being the give-way vessel for another obstacle
(COLREGS rules 13, 15 and 16-17).

9. Combined crossing starboard side and port side scenario (COLREGS rules
15 and 16-17).

Furthermore, COLREGS rule 7 on adequate collision risk assessment and rule 8 on
performing apparent actions in ample time are also relevant for all the scenarios.

For each scenario, the chosen trajectory of the Milliampere 2 ferry together with the
different prediction scenarios is shown at three different time instants. The thickness
of the dashed lines, representing the different prediction scenarios, are scaled based
on their likelihood as evaluated by the DOII. Additionally, how the intention states
develop through the scenarios are shown together with the course and speed of all
vessels involved. The priority state indicates whether the vessel will act as if it has
a higher priority (ignoring its obligations to give way) or lower priority (ignoring
its obligation to stand on). The COLREGS-compliant state indicates whether the
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vessel will ignore all the specifications in COLREGS, but still try to avoid collision.
Good seamanship indicates whether or not the ship shows how it is going to act.
Unmodelled behavior indicates all other non-compliant behavior.

In the two-ship scenarios, Havfruen was used as the dynamic obstacle i = 1. In
the three-ship scenarios, the Cyberotter is the second dynamic obstacle i = 2.
Milliampere 2 was set to track a desired speed of 1m/s in all scenarios, except
when it was overtaking another vessel, and in the combined overtaking and port
side crossing scenario, where reference speeds of 2.0m/s and 1.5m/s were used,
respectively. Low speeds were used due to the experiments being performed in
confined waters, and because Milliampere 2 has a max speed limitation of 2.5m/s.
The dynamic obstacles speeds vary from 0.5m/s to 3.0m/s.

The PSB-MPC COLAV planning algorithm was tuned to reflect the confined space
Milliampere 2 was to operate in. Two sequential maneuvers (nm = 2) was consid-
ered in the horizon of the MPC, where the second maneuver is taken after tts = 60 s.
Thus, the own-ship is planned to perform an initial maneuver at t0, and a corrective
one at t0+ tts, which does not necessarily return the ship to its nominal trajectory.
The own-ship safety zone was set to dsafe = 8.6m. The algorithm parameters for
grounding cost were chosen to allow the own-ship to maneuver within a margin of
approximately 5m to nearby grounding hazards.

7.5.1 Scenarios

Head-on With a Compliant Dynamic Obstacle

Results from the compliant head-on scenario are given in Fig. 7.7 and show that
the own-ship performs a COLREGS-compliant evasive maneuver. Shortly after the
40 s mark, the intention model starts to infer that the obstacle ship acts as if it
has a higher priority than the own-ship. This is due to the ships getting quite close
without the dynamic obstacle taking action. Once the dynamic obstacle takes an
evasive action, the probability of it having higher priority quickly drops to 0.

Head-on With a Non-compliant Dynamic Obstacle

Results from the non-compliant head-on scenario is given in Fig. 7.8. The scenario
shows that the own-ship starts to perform a COLREGS-compliant evasive maneu-
ver. Similar to the previous scenario, the probability of the dynamic obstacle acting
as if it has higher priority increases for a short time as the dynamic obstacle acts
quite late. Once the dynamic obstacle changes course to port, the intention model
switches between the dynamic obstacle either not being COLREGS-compliant or
showing unmodelled behavior. At t = 50 s it has concluded on the dynamic ob-
stacle not being COLREGS-compliant. The knowledge of the obstacle being non-
compliant enables the own ship to disregard COLREGS as well and avoid collision
through a port avoidance maneuver.
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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(b) Dynamic obstacle inten-
tion states.
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and speed.
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Figure 7.7: Head-on scenario with a compliant dynamic obstacle (DO). The dots on the
lower subfigures show the values at the three time instants in (a).

Crossing With the Own-ship as Give-way Vessel, and a Compliant
Stand-on Dynamic Obstacle

Fig. 7.9 shows results for the starboard side crossing. The own-ship performs a
COLREGS-compliant evasive maneuver by changing its course to starboard and
reducing its speed to avoid collision. Reducing the speed is the most effective action
in this case as the confined spaces make larger course changes more susceptible to
grounding. Furthermore, the Milliampere 2 thruster configuration and DP-system
are configured for small heading changes and slow movements, which makes it
easier to change speed than to alter the course. The collision avoidance algorithm
is tuned such that Milliampere 2 should still try to change its course as this can
be easier to see from the other vessel‘s point of view.

Crossing With the Own-ship as Stand-on Vessel, and a Compliant
Dynamic Obstacle

Results from this scenario are given in Fig. 7.10. The intention model correctly
predicts that the obstacle ship will make a starboard maneuver to avoid collision.
The own-ship can therefore keep its course and speed without increasing the risk of
collision. This fulfills the requirements that stand-on vessels shall keep their course
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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(b) Dynamic obstacle inten-
tion states.
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Figure 7.8: Head-on scenario with a non-compliant dynamic obstacle. The dots on the
lower subfigures show the values at the three time instants in (a).

and speed (unless forced to give way), as specified in COLREGS rule 17.

Crossing With the Own-ship as Stand-on and a Non-compliant
Dynamic Obstacle

Results from the port side crossing scenario with a non-compliant dynamic obstacle
are given in Fig. 7.11. The probability of the dynamic obstacle acting as if it has
a higher priority gradually increases as the obstacle ship comes closer without
significantly changing its course or speed. Once it is quite likely that the dynamic
obstacle will not give way, the own-ship decides to half its speed to avoid a potential
collision. This shows that the resulting algorithm is able to deviate from the stand-
on requirements when needed, as specified in COLREGS rule 17(b). The algorithm
also adheres to rule 17(c) by not changing its course to port.

Overtaking

Results from the overtaking scenario are given in Fig. 7.12. The scenario shows that
the own ship is able to avoid collision while overtaking, but the intention predictions
are not ideal. This is due to the intention module interpreting all course changes
larger than some threshold as being done with an intention. This does not work well
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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(b) Dynamic obstacle inten-
tion states.
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Figure 7.9: Crossing starboard side scenario with a compliant stand-on dynamic obstacle.
The dots on the lower subfigures show the values at the three time instants in (a).

in this scenario as the dynamic obstacle is holding a too low velocity for keeping
its course steady enough, as can be seen in Fig. 7.12(c). This experiment could not
be performed at a higher speed due to the speed limitations of Milliampere 2.

The intention module concludes at the 40 s mark that the dynamic obstacle is
displaying unmodelled behavior. This state can explain all possible behaviors and
thus gives all future scenarios equal likelihood. The variations in the rest of the
states after the 40 s mark can therefore not be caused by new observations as the
observations are already explained by the unmodelled behavior state, nor do they
affect the likelihood of different scenarios. We believe that these variations are
computational quirks caused by the states being unobservable.

Overtaken

The COLAV system is shown to also handle its stand-on role when being over-
taken, with results given in Fig. 7.13. A bit after the t = 60 s mark the dynamic
obstacle changes course toward the own-ship. This is to avoid collision with float-
ing platforms not shown in the figure. As the intention model observed that the
dynamic obstacle changes course towards what seems like a collision course with

154



7.5. Experimental Results

(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.

0 20 40 60 80 100 120

Time [s]

0

0.5

1

P
ro

b
a

b
ili

ty

DO 1

COLREGS compliant

Good seamanship

Unmodelled behavior

0 20 40 60 80 100 120

Time [s]

0

0.5

1

P
ro

b
a

b
ili

ty

DO 1

Lower priority

Similar priority

Higher priority
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tion states.
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Figure 7.10: Crossing port-side scenario with a compliant dynamic obstacle. The dots
on the lower subfigures show the values at the three time instants in (a).

the own-ship, it marks the dynamic obstacle as showing unmodelled behavior. The
good seamanship decreases right before it is marked as unmodelled behavior as the
dynamic obstacle changes course to port while still planning to cross with the own-
ship on its port side. Similar variations in intention states as discussed in section
7.5.1 are observed once unmodelled behavior becomes equal to 1.

The scenario also shows a weakness in the current PSB-MPC dynamic obstacle
prediction setup described in Section 7.3.1, where obstacles are predicted to follow
alternative trajectories about a nominal straight line from their current course and
speed when the COLREGS situation starts. The waypoints set for the nominal
straight line path of DO 1 did here not properly reflect the ground truth planned
trajectory of the obstacle, as it changed course northwards when starting the over-
taking maneuver. An improved approach would be to update the dynamic obstacle
nominal straight line trajectory at regular intervals, especially after a COLREGS
situation has ended. This would make the alternative prediction scenarios better
reflect the possible maneuvering areas in the vicinity of the obstacle.
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.11: Crossing port-side scenario with a non-compliant dynamic obstacle. The
dots on the lower subfigures show the values at the three time instants in (a).

Combined Overtaking and Crossing Port Side

Results from the first three-ship scenario is given in Fig. 7.14. Milliampere 2 has a
stand-on role towards Havfruen (DO 1), and a give-way role towards the Cyberotter
(DO 2). The PSB-MPC shows compliance with COLREGS rule 17(d) by ignoring
its stand-on role and performing an evasive starboard maneuver. The intention
inference module is able to estimate that Havfruen will make a give-way maneuver
by passing behind both ships. For the Cyberotter, the intention model starts by
correctly predicting that it will keep its course and speed. At the time t = 50 s the
intention module notices that the Cyberotter changes its course towards starboard.
As this is a change in course towards a collision, the intention module concludes
with unmodelled behavior.

Combined Crossing Starboard Side and Port Side

Results from the second three-ship scenario are given in Fig. 7.15. The own-ship
running the COLAV system initially slows down and then changes its course to
pass behind the Cyberotter. The intention model initially predicts correctly that
the Cyberotter will keep its course and speed, while Havfruen will cross behind
the own-ship. A bit before the 50 s mark the Cyberotter is observed changing its
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.12: Scenario where the own-ship overtakes a dynamic obstacle. The dots on
the lower subfigures show the values at the three time instants in (a).

course towards a collision, which makes the intention model mark it as unmodelled
behavior.

7.5.2 Discussion

Experiment Outcome

From gauging the experimental results, the COLAV system using the PSB-MPC as
a deliberate planning algorithm with a DBN for intent information shows promise
and results in increased situational awareness for the own-ship. In the two crossing
situations where the own-ship has a stand-on role, the intention-aware COLAV
system enables the own-ship to keep its course and speed, as it predicts that the
obstacle will perform an evasive maneuver. When it is apparent that the obstacle
will not perform an evasive maneuver, the COLAV system makes use of its inten-
tion model to better avoid collision. In the head-on situation with a non-compliant
dynamic obstacle, the intention module estimated that the dynamic obstacle was
not adhering to the COLREGS, which enabled the PSB-MPC to ignore COLREGS
as well to plan a collision-free trajectory. In the trials, the own-ship running the
COLAV system is shown to comply with the COLREGS rules 8 and 13-17. Fur-
thermore, better adherence with COLREGS rule 7 is also achieved, as the intention
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes.
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Figure 7.13: Scenario where the own-ship is overtaken by a semi-compliant dynamic
obstacle. The dots on the lower subfigures show the values at the three time instants in
(a).

module enables better collision risk assessment and COLREGS situation evaluation
in the PSB-MPC planning algorithm.

Uncertainty Management

As the own-ship uses GNSS with a VRS for real-time corrections, the navigation
data for the ferry has negligible uncertainty compared to the safety margin (dsafe)
set for the ferry. On the other hand, no corrections were applied to the GNSS
data from the two dynamic obstacles, and we thus relied on the Kalman-filter
performing adequately. The filter was tuned such that positional estimates with
standard deviations around 0.7m were obtained, which was verified to be correct
before the experiments started. Furthermore, the kinematic uncertainty associated
with dynamic obstacle estimates was handled through the collision probability
estimation in the PSB-MPC, through usage of the CE-method.

Regarding the map data used for avoiding grounding hazards in the PSB-MPC,
a manual drive-through of the Nyhavna basin boundary was done to verify the
data accuracy. As the map data did not include newer static obstacles such as the
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7.5. Experimental Results

(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes. The
Havfruen vessel (DO 1) is shown in green, whereas the Cyberotter (DO 2) is shown in purple.
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Figure 7.14: Overtaking and crossing port-side scenario with compliant dynamic obsta-
cles. The dots on the lower subfigures show the values at the three time instants in (a).

Havet sauna platform, a new land filling on the western side, and a few docked
vessels along the basin boundary, un-mapped hazards were added manually before
the experiment.

Limitations

There are a few limitations to the experiments in this work. Firstly the collision
avoidance algorithm was designed for ships meeting on open seas, where COL-
REGS is normally considered. Due to the limitations of the Miliampere 2 ferry, the
experiments had to be done in inland areas where the sea was sufficiently calm. The
largest available area in Trondheim was quite small making it difficult to realisti-
cally test the algorithm. Secondly, the Milliampere 2 platform with its commercial
DP-system was not designed for agile ship maneuvering, and this put a limitation
on the performance one could extract from the vessel. The DP-system was over-
damped, tuned for passenger comfort and small, slow movements as a ferry should
perform. The vessel slows down substantially when performing heading maneuvers,
which made the trajectory tracking challenging. For the overtaking scenarios, the
own-ship had problems keeping to its speed due to the platform being designed
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(a) Situation plot at multiple time instants. The vessels are scaled for visualization purposes. The
Havfruen vessel (DO 1) is shown in green, whereas the Cyberotter (DO 2) is shown in purple.
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Figure 7.15: Crossing on both starboard and port side, with compliant dynamic obsta-
cles. The dots on the lower subfigures show the values at the three time instants in (a).

and tuned for keeping speeds of nominally 1.0m/s.

These concerns made the limitations of the intention inference module affect the ex-
periments more than we would expect it to do in open waters. With low velocities,
the dynamic obstacles had problems keeping a constant course. As the intention
inference module interprets all course changes larger than a threshold as deliberate
actions taken by the dynamic obstacle, it often had to default to the unmodelled
behavior state to explain its observations. This was especially apparent when using
the Cyberotter (Sections 7.5.1 and 7.5.1) and for Havfruen in the overtaking sce-
nario (Section 7.5.1) when its speed was reduced to 1m/s. One could increase the
course change threshold to filter away more of the random course changes. How-
ever, this has the drawback of making the module potentially miss actual course
changes that it should consider. A smarter method for ignoring random motions
is therefore warranted. Furthermore, the intention model does not consider land
and static obstacles. This was especially noticeable in the overtaken scenario (Sec-
tion 7.5.1) when the dynamic obstacle changes its course to avoid collision with a
floating platform.
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7.6. Conclusion

The intention inference module had little knowledge on neither its own nor the
dynamic obstacle ship-type. Thus, the estimation of the dynamic obstacle acting as
if it has higher priority, essentially means the module believes that the encountered
obstacle is a ferry or other utility transport, which other leisure or smaller sized
vessels have give-way obligations for in Norway. These cases would therefore still
be COLREGS-compliant, despite the obstacle standing on in situations where it
nominally has give-way obligations. However, future work would be to take ship-
type information into account in the intention inference, as the obstacle would then
be classified as a non-compliant ship because it in reality will have similar priority
to the own-ship in these experiments. This will also make adherence to COLREGS
rule 18 regarding vessel priorities easier.

While doing the experiments it became apparent that being able to use the heading
of the other ships would be better than using the course. While supervising the
experiments on board Milliampere 2 we could see that the heading of the dynamic
obstacle had changed long before it became apparent when looking at the course
alone. Enabling an autonomous ship to track the heading of the other ship, by for
example using extended object tracking [167], could enable the inference module to
more quickly realize what the other ship is doing and thereby enable the collision
avoidance module to respond quicker.

7.6 Conclusion

In this chapter, a dynamic obstacle intention-aware PSB-MPC-based COLAV sys-
tem has been presented, using a DBN for intention inference online. The resulting
system is verified in experimental trials to show compliance with COLREGS rules
7-8, 13-17. The results presented show that incorporating a way of inferring the
intentions of nearby dynamic obstacles proves to give COLAV planners such as the
PSB-MPC improved situational awareness. This results in more efficient trajec-
tory planning, where COLREGS-compliant maneuvers can be aborted if the other
vessel is shown or estimated to be non-compliant. It also better enables stand-on
compliance for autonomous agents, as it is necessary to infer to which degree a
give-way vessel will perform proper maneuvering.

Future work involves also incorporating ship-type information in the intention in-
ference and testing the intention-aware COLAV system in a more open sea en-
vironment, as the intention inference algorithm was originally not designed for
situations in confined space with limited maneuvering possibilities. The presented
COLAV system should also be tested in a less pre-planned setting, with target
tracking in real maritime traffic. Further developments are needed to make the
intention inference more robust to natural variations in the measured course of
other ships. Furthermore, work is needed to improve the prediction of alternative
obstacle maneuvering scenarios to also consider nearby grounding hazards and the
current COLREGS situation.
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Chapter 8

Vessel Destination and Kinematics
Prediction Using a Maritime Traffic
Graph

This chapter is based on the publication

[101] T. Tengesdal, L. Millefiori, P. Braca, and E. F. Brekke, "Joint Stochastic
Prediction of Vessel Kinematics and Destination based on a Maritime Traf-
fic Graph", in 2nd International Conference on Electrical, Computer, Com-
munications and Mechatronics Engineering (ICECCME), Maldives, 2022. In
press.

and details a method for long-term vessel prediction and inference of its destina-
tion. More accurate vessel predictions for longer time horizons, and infering their
intended destination is useful in a COLAV setting, as the own-ship can better
pro-actively plan an informed and efficient avoidance trajectory to follow.

Note that the notation is changed somewhat in this chapter, with the subscript i
here denoting a destination, and not a dynamic obstacle as in the previous chapters.

8.1 Introduction

8.1.1 Motivation

Predicting the states of maritime vessels in long time horizons is important for
ensuring safety at sea and efficient voyaging. This is especially the case for au-
tonomous ship technology, where the situational awareness of the autonomous ship
is dependent on the prediction quality of nearby vessel states. As the amount
of ships at sea increases, it increases also the risk of collisions, which necessitates
proper surveillance systems for vessels and also for onshore stations. However, given
the ubiquity and volume of (live and historical) AIS data available on commercial
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traffic, data-driven methods have the potential to improve vessel predictions con-
sidering traffic patterns, thus alleviating the risk of collisions.

8.1.2 Previous Work

The problem of long-term prediction of vessel kinematic states from AIS data has
been receiving much attention in the scientific literature recently. In [133], a ves-
sel state prediction algorithm considering Single Point Neighbor Search (SPNS)
around the current predicted state is used to find likely next-step state candidates.
The main idea is that the next predicted state is calculated from the mean speed
and course of the nearest neighbor set; If no data is available, the method defaults
to a CV model. The major drawbacks of this method are that there is no clear
uncertainty representation accompanying the prediction, and that it requires suf-
ficient data to perform satisfactorily. The Neighbor Course Distribution Method
(NCDM) is presented in [134], where a Gaussian Mixture Model (GMM) for pre-
diction, with each component of the mixture representing a branch in a prediction
tree. Nearest neighbor search is again applied to find likely prediction candidates,
and Expectation Maximization (EM) is used to fit the GMM for all the branches
in the tree, at each time step in the prediction. As in [133], the method performs
poorly in areas with little historical data, but was an improvement in terms of
having an uncertainty description.

With a purely model-based approach, in [79], [116] it has been proposed to rep-
resent a vessel’s velocity with an OU stochastic process. This has been shown to
work quite well with approximately non-maneuvering vessels, but the approach
was also extended in [168] to account some vessel maneuvering. The advantage of
using an OU process to model the ship‘s velocity is the limited growth in prediction
uncertainty when compared with that of the CV model, thanks to the presence of
a feedback loop on the target‘s velocity. Thanks to the presence of an additional
parameter, the long-run mean velocity, which represents the desired (cruise) ve-
locity of a vessel, the model can be used [168] to create a graph representation
of maritime traffic, where major sea lane patterns are captured. More recently,
the problem of vessel trajectory prediction has also been approached with recur-
rent neural networks (RNNs) in a Bayesian learning fashion; more specifically, an
encoder-decoder structured Long Short-Term Memory (LSTM) architecture was
introduced in [169]. The method, which is fully data-driven, is dependent upon an
initial training phase, which requires adequate volume of training data in order to
learn the predictive distribution of maritime trajectories. One interesting advantage
of such neural architectures in this context is that additional information, such as
the destination of the vessel, can be easily used to increase the prediction accuracy,
for example discarding sea lanes that are not compatible with the destination.

Concerning the problem of destination inference, a Bayesian solution is proposed
in [102]. A classical Bayesian framework is used to infer the most likely vessel
endpoint out of a set of Nd a priori known destinations by creating bridged models
connecting predicted states to the set of possible endpoints, eventually reducing
the state prediction uncertainty. This method implicitly assumes that the initial
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state, the destination and the time of arrival are all independent. Even if this
can be approximately true in many scenarios, it is not compatible with a Markov
state process. This limitation has been overcome in [103], where the destination
information was introduced in the form of pseudo-measurements, and the method
was here shown to be more computationally efficient as the state space dimension
is reduced compared to [102]. Recent work [170] has however showed that the two
mentioned methods have practical challenges in more complex situations.

8.1.3 Contributions

The main contribution of this Chapter is the development of a Bayesian frame-
work for destination inference utilizing a piecewise OU processes for capturing the
destination information. The method relies on a directed maritime graph describ-
ing the major sea lanes or possible change points for vessels in a region, and uses
it to construct sets of stochastic processes toward each possible destination di.
Each process is then described by a combination of an OU-process with piecewise
long-run mean velocity values guiding the vessel along common sea-lanes, and a
destination-reverting model towards the endpoint. The long-run mean velocities
are taken from the maritime graph, which in turn is created from historical traffic
data. This makes the Bayesian inference indirectly being able to account for ship
maneuvering and better discount destinations that are passed by.

8.1.4 Chapter Overview

The Chapter is structured as follows. Section 8.2 contains information on the mod-
els used in this work, including details on the general bridging model format, the
piecewise OU process and the ERV bridging model. In Section 8.3, background on
maritime graphs are presented, and the graph used in in this Chapter is detailed.
Utilizing the maritime graph information, the presented method for destination
conditioned state prediction in Section 8.4 is detailed, which is used in the desti-
nation inference presented in Section 8.5. Results are then presented in Section 8.6
before conclusions are given in Section 8.7.

8.2 Models

8.2.1 Bridging Model

For the bridging processes to given destinations, the following Gaussian Linear
Time Invariant (LTI) model is considered

xk = F (h,d)xk−1 +M(h,d) +wk (8.1)
yk = Hxk + ϵk (8.2)

to represent the Markovian transition density p(xk|xk−1,d) and measurement like-
lihood p(yk|xk). The destination d is a variable vector in the model, and does in
general contain the destination location position with zero velocity. The vessel kine-
matics are described by the state vector xk = x(tk) = [sTk ṡTk ]

T consisting of the
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r = 2 two-dimensional position sk and velocity ṡk of the maritime vessel in a suit-
able planar coordinate system. The term wk ∼ N (wk;0r×1,Q(h,d)) in (8.1) is the
Wiener process noise, and ϵk ∼ N (ϵk;0r×1,R(h,d)) in (8.2) is the measurement
noise. The subscript in 0r×1 denotes the r-dimensional null vector. The matrices
F , M and Q describe the bridging model, and are in general functions of the time
step h = tk − tk−1 and the destination d. For the measurement model, the matrix
H depends on available information, but typically position plus SOG and COG
can be used if AIS data is considered. A projection is then needed to transform
the reported position from AIS in latitude and longitude to the planar reference
system used. Here, R describe the measurement noise covariance.

8.2.2 The Equilibrium Reverting Velocity Model

The ERV model was introduced in [102] for destination inference applied to pointing
tasks on in-car displays. The model is given through the following SDE

dx(t) = AERV (µd − x(t))dt+BERV dw(t) (8.3)

where w(t) is the Wiener process noise, µd = [pT
d 0T

r×1]
T is the mean of the

destination d consisting the position pd and zero speed, and where B = [02r×r σ]
is a matrix that governs the noise on the state velocity, with σ as the r-dimensional
velocity noise covariance, often taken as diagonal. The system matrix is given
through

AERV =

[
0r×r −Ir×r

η ρ

]
(8.4)

where η and ρ are the r-dimensional matrices of mean revertion strengths and drag
coefficients in each spatial dimension, often taken as diagonal. In the form of (8.1),
the discrete time system matrices can be written as

FERV (h,d) = e−Ah (8.5)

MERV (h,d) = (I2r×2r − e−Ah)µd (8.6)

QERV (h,d) =

∫ t+h

t

e−A(t+h−l)σσT e−AT (t+h−l)dl (8.7)

where the ERV covariance matrix QERV (h,d) can be calculated using matrix ex-
ponentials as in [171]. The model can be viewed as if the state x(t) is being pulled
by a virtual spring towards the destination by the η factor, and with damping
given by the ρ factor constraining the velocity.

8.2.3 The Piecewise Ornstein-Uhlenbeck Process

As described in Section 2.4.2, the OU process has beneficial uncertainty propa-
gation properties and validity when used for modelling non-maneuvering vessels
[115]. Since commercial traffic vessels normally follow patterns where they keep
their current speed, with changes in course at selected waypoints, the case when
the OU mean velocity can change is considered. Here, piecewise mean velocities
vj , ∀j ∈ {1, 2, 3, ..., Nw} for each segment from waypoint with index j to j + 1 are

166



8.3. Maritime Graph Representation

considered, which will coincide with the edges in the maritime graph described in
the next section. The detection of mean velocity changes can be done using Page’s
test as in [168].

Then, considering an OU process as in (2.14) with piecewise constant mean veloc-
ities, the expected predicted state arriving at the final waypoint in the path xNw

from the current time tk is given by [172]

xNw
= Φ(∆Nw

)xk +Ψ(∆Nw
)vNw

+

Nw−1∑
n=k

[
Nw∏

m=k+1

Φ(∆m)

]
Ψ(∆n)vn (8.8)

= Φ(∆Nw
)xk + cNw

, (8.9)

with

cNw
= Ψ(∆Nw

)vNw
+

Nw−1∑
n=k

[
Nw∏

m=k+1

Φ(∆m)

]
Ψ(∆n)vn, (8.10)

where ∆Nw
= tNw

− tk, ∆n = tn − tn−1 and vn is the mean velocity relevant on
the time span ∆n from tn−1 to tn.

8.3 Maritime Graph Representation

8.3.1 Description and Creation

As the majority of traffic at sea is regular, one can utilize historical AIS data from
multiple vessels to construct a graph G, which represents recurrent traffic patterns
in a region of choice. The creation of the graph can be done using unsupervised
learning and piecewise OU processes [168], but will not be elaborated here. From
such a maritime graph, one can extract the required components used in the pro-
posed destination inference method:

• The set of NC waypoints where vessels change their velocity direction.

• An adjacency matrix ΛADJ = (τnm) ∈ NNC×NC which determines if there is
a connection or not between waypoints n and m.

• Distances Dnm between connected waypoints n and m.

• The OU mean velocity angle or direction ∠vnm on an edge between connected
waypoints n and m.

It is assumed that the vessels considered in the inference are associated with an
edge in the maritime graph, i.e., that the vessel velocity is compatible with the OU
mean velocity along its associated waypoint segment. If that is not the case, one
can perform track-to-graph association as in [173].

For the purpose of testing the destination inference method in this chapter, a mar-
itime graph manually based on an AIS dataset from 2015 in the Trondheimsfjord
was constructed. The result can be seen in Fig. 8.1, where all the destinations with
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Figure 8.1: Overview of a manually created maritime graph based on AIS data from
the Trondheimsfjord, with the data points shown as blue dots. The orange circles and
lines denote graph nodes and the directional edges between them. Red ellipses describe
the prior on all the destinations D1 to D12 shown in the fjord, where the red lines mark
the bidirectional edge from a close graph node to a destination.

their priors are also shown, for the destination set described in Table 8.1. The
graph nodes are put at common change points for vessels, with directional edges
in between which shows the major maritime traffic lanes.

8.3.2 Destination-conditioned Paths

To predict a vessel trajectory long-term from an initial state x0, the maritime graph
is used to find the set of Nd shortest paths from x0 to each di, using Dijkstra’s
algorithm [174]. Each path Pi = {Wi,∠νi, T i

OU} consists of

• Its waypoints Wi = {W i
1 , ...,W

i
j , ...,W

i
Ni

w
}.

• The angles of the mean velocity ∠νi = {∠vi1, ...,∠vij , ...,∠viNi
w−1} along each

waypoint segment.
• The predicted times T i

OU = {T i
OU,1, ..., T

i
OU,j , ..., T

i
OU,Ni

w
} for the vessel to

arrive at each waypoint.

The number of waypoints in the path towards the i-th destination, excluding the
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destination itself, is denoted with N i
w. The angles of the mean velocity for each

leg are found through ∠vij = atan2(yij+1 − yij , x
i
j+1 − xij), where atan2(y, x) is

the four-quadrant inverse tangent function, and xij and yij are the north and east
coordinates of waypoint W i

j . The predicted waypoint arrival times for the vessel are
found heuristically through T i

OU,j = distj,j+1/
∥∥vi

j

∥∥, where distj,j+1 is the distance
between waypoint W i

j and W i
j+1 and

∥∥vi
j

∥∥ is the mean velocity modulus. For the
initial segment, the time T i

OU,j is calculated using the distance from the vessel
to the waypoint. Note that these arrival times are a priori and uses the current
OU mean velocity estimate for the vessel. To remedy this, the shortest paths are
recomputed on regular intervals, to take into account changes in vessel speed and
position.

For this reason, the long-run mean velocity is estimated as follows: the long-run
mean speed is estimated from AIS with a running average of the reported speed,
while the course is given by the angle of the long-run mean velocity at the closest
waypoint segment.

8.4 Path-conditioned Prediction

What separates the approach presented here from [102] and [103] is that, given a
destination di, a bridging process such as ERV is only considered for destination
inference from the last waypoint node W i

Ni
w

in the graph G, which is closest to
the considered destination node. Before that stage, when the vessel is not on the
navigational leg from waypoint W i

Ni
w

to di, piecewise OU processes are used for
prediction.

Thus, using the bridging model in (8.1) together with the piecewise OU predicted
state (8.9) at the final waypoint in the graph G closest to a destination di, the
mean state of the prediction from the current state xk to an arrival time state xk

at destination i can be written as

µi
K = F (∆Ki ,di)

[
Φ(∆Ni

w
)xk + cNi

w

]
+M(∆Ki ,di)

= F (∆Ki ,di)Φ(∆Ni
w
)xk + ζi

(8.11)

with ∆Ki = tK − tNi
w
, ζi = M(∆Ki ,di) + F (∆Ki ,di)cNi

w
. The term ζi will here

be a factor reflecting convergence effect the piecewise OU process has, combined
with the pull tendency from the ERV bridge model.

Σi
K = F (∆Ki ,di)P

i
Ni

w
F (∆Ki ,di)

T +Q(∆Ki ,di) (8.12)

where PNi
w

is the predicted covariance at the last waypoint using the piecewise OU
process, initialized at the current time tk to a destination conditioned Kalman-
filtered estimate Σi

k. The KF used to track the vessel then uses the combined
piecewise OU model and bridge model as basis.

When tk > T i
OU,Ni

w
, meaning the vessel is on the bridge process from the last

waypoint in the path to destination di, the prediction in (8.11) reduces to the
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bridge model prediction in (8.1). For the uncertainty prediction initialization, the
covariance Σk obtained from the KF would then be used instead. Prediction with
the proposed method for the case when tk ≤ T i

ou,Ni
w

is illustrated in Fig. 8.2 for
two destinations.

Thus, the predictive distribution p(xK |xk) from the current state xk to an arrival
time state xK at destination i is

p(xK |xk) = N (xK ;F (∆Ki ,di)Φ(∆Ni
w
)xk + ζi,ΣKi), (8.13)

with moments found in (8.11) and (8.12).

8.5 Destination Inference

8.5.1 Bayesian Framework

The goal is to infer the posterior destination weights. Using Bayes’ rule, one can
write the posterior destination weights as

p(d = di|y1:k) ∝ p(d = di)p(y1:k|d = di) (8.14)

with p(d = di) as the destination prior. For simplicity and in the interest of light
notation, p(di) is used to denote p(d = di).

A similar approach as in [103] is considered, where the a-priori information on
destinations is incorporated as pseudo-observations ỹi

K at unknown random arrival
time tK = T , with prior distributions

p(ỹi
K = ai|xK ,d = di) = N (ỹi

K = ai|G̃xK ,Σi), (8.15)

where the observation matrix G̃ depends on available information about the posi-
tion and speed of the vessel at the destinations. This entails that each destination
di has prior di ∼ N (ai,Σi).

As the arrival time is included in the conditioning and considered a random vari-
able, one must marginalize out T through

p(y1:k|di) =

∫
p(y1:k|di, T )p(T |di)dT (8.16)

in order to calculate the destination weights in (8.14). This one-dimensional integral
is in general non-trivial, and one typically consider a quadrature approximation
such as Simpsons’ method with a fixed set of quadrature points {T1, T2, ..., TNq

}
in order to approximate (8.16). More information can be found in [102]. Again, in
order to simplify notation, the conditioning on the arrival time T is omitted in the
remaining text.

The incorporation of pseudo-observations for each destination is done by using that
p(y1:k|di) = p(y1:k|, ỹi

K = ai) [103]. Then, the Predicted Error Decomposition
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Figure 8.2: Illustration of the proposed method with two arbitrary destinations di and
di+1. An example maritime graph with waypoints of indices j, j+1 and j+2, and the OU
mean velocities vj and vj+1 along each leg are also shown. The sample vessel track starts
in x0, and is estimated using the measurements marked as circles up until the illustrated
current time red vessel position. From there, sample predictions for each destination are
shown. As the leg from j to j + 1 is closest to the initial position at x0, previous graph
legs are not considered.
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(PED) p(yk|y1:k−1,di) is calculated as

p(yk|y1:k−1,di) =

∫
p(yk|xk)p(xk|y1:k−1, ỹ

i
K = ai)dxk

=

∫
p(yk|xk)

p(xk|y1:k−1)p(ỹ
i
K = ai|xk)

p(ỹi
K = ai|y1:k−1)

dxk

=

∫
N (yk;Hx,R) · N (xk;µ

i
∗,Σ

i
∗)dxk

= N (yk;µ
i
y,Σ

i
y),

(8.17)

where µi
y = Hµi

∗ and Σi
y = HΣi

∗H
T +R. Similarly to [103], by using the path-

conditioned prediction in (8.13), the moments µ∗ and Σ∗ can be found to be

µi
∗ = µi

k|k−1 +Li
∗

[
ai −B∗µ

i
k|k−1 − G̃ζi

]
,

Li
∗ = Σi

k|k−1B
T
∗

[
B∗Σ

i
k|k−1B

T
∗ + G̃ΣKiG̃T +Σi

]
,

Σi
∗ = (Ir×r −Li

∗B∗)Σ
i
k|k−1,

B∗ = G̃F (∆Ki ,di)Φ(∆Ni
w
)

(8.18)

The terms µi
k|k−1 and Σi

k|k−1 are the predicted mean and covariance in the distri-
bution p(xk|y1:k−1,di), which is given by

p(xk|y1:k−1,di) =

∫
p(xk|xk−1,di)p(xk−1|y1:k−1,di)dxk−1 (8.19)

with moments calculated through Nd KFs [125] using the estimates µi
k and Σi

k at
the previous time step. Note that the moments µi

k|k−1 and Σi
k|k−1 are different

from the moments µi
∗ and Σi

∗ in that the latter also incorporate conditioning on
the arrival time T , which is not explicitly reported for simplicity in notation.

8.5.2 Method

The destination inference method is split into three stages: The first stage concerns
the initialization of the method; then, for each destination, the two next stages deal
with the case of the estimated vessel state at the current time being on a waypoint
leg in the maritime graph, or on a bridge process from a graph waypoint W i

Ni
w

to
di. The stages are further elaborated below, with the entire approach summarized
in Algorithm 5.

Initialization

The method requires a maritime graph, which is used to calculate the set of short-
est paths from the considered initial vessel state to each destination. Each path
Pi = {Wi,∠νi, T i

OU} is then used to predict the vessel state conditioned on each
destination, and in the PED calculation. A KF with the piecewise OU model and
ERV bridging model as basis is used to track the vessel trajectory and calculate
the predicted moments µi

k|k−1, Σ
i
k|k−1 and corrected moments µi

k|k, Σ
i
k|k.
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On a Waypoint Segment

If tk ≤ T i
OU,Ni

w
, where T i

OU,Ni
w

is the a priori predicted time that the vessel will
arrive at the start of the bridging leg from waypoint W i

Ni
w

to di, the predictive
distribution p(xK |xk) from (8.13) is calculated. Then, the PED is calculated using
the moments in (8.18).

On a Bridge Segment

If the vessel at the current time tk ≥ tNi
w

is on a bridging process between waypoint
W i

Ni
w

and di, one can use destination inference for di as in [103], calculating the
PED using only the bridging model.

Algorithm 5 Destination inference with the piece-wise OU, ERV bridging model
and pseudo-observations

Require: {Graph G; Pseudo-obs.: {ỹi
K = ai,Σi}1≤i≤Nd

; Obs.: {y1:k} }
1: Compute shortest path from the initial vessel state x0 to di, ∀ i along graph
G

2: Set likelihoods Li,q
0 = 1, ∀ i, q.

3: for k = 2 : K do
4: for i = 1 : Nd do
5: Predict and correct µi

k|k−1, Σ
i
k|k−1 and µi

k|k,
6: Σi

k|k using a KF
7: for q = 1 : Nq do
8: if tk < T i

ou,Ni
w

then
9: Compute µi

∗ and Σi
∗ from (8.18)

10: else
11: Compute µi

∗ and Σi
∗ as in [103]

12: end if
13: Compute li,qk = p(yk|y1:k−1,di) from (8.17)
14: Compute Li,q

k = li,qk · L
i,q
k−1

15: end for
16: Compute likelihood p(y1:k|di) from (8.16) as in [102]
17: end for
18: Compute p(di|y1:k) ≈

p(y1:k|di)p(di)∑Nd

i=1 p(y1:k|di)p(di)
19: end for

8.6 Experimental Results

The proposed method for destination inference is tested on an AIS dataset from
the Trondheimsfjord. The testing is based on the maritime graph created in Fig.
8.1 with the chosen set of 12 total destinations. For the geographically interested
reader, the description of the destination set considered are given in Table 8.1.
In the results below, the method is compared to the methods in [102], [103] in
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Table 8.1: Full set of considered destinations in the Trondheimsfjord.

Destination Description
D1 Buvika
D2 Børsa
D3 Orkanger
D4 Stadsbygd
D5 Rørvik ferry dock
D6 Vanvikan
D7 Towards Levanger
D8 Stjørdal
D9 Muruvik
D10 Hommelvik
D11 Trondheim
D12 Flakk

all scenarios. A linear KF using the piecewise OU model and bridging model is
employed for tracking the vessel using the AIS measurements with position, SOG
and COG available, whereas a CV model is used for the methods in [102], [103].

Fig. 8.3 shows the results on destination inference for a trajectory going from
North to South towards Orkanger (D3), considering a subset of Nd = 4 destina-
tions. Because of the consideration of common vessel traffic patterns along the
created maritime graph, one is able to exclude passed destinations faster, as these
destinations will have low likelihood under the piecewise OU model assumption.
Likewise, one can more accurately predict vessel trajectories towards di that take
into account the common turning points and thus also indirectly land. The current
state of the art in [102], [103] either predicts straight lines or uses a bridging model
directly from the current state, which will be inaccurate. This is partially reflected
in the shown figure displaying the mean prediction error given the true destination.

8.7 Conclusion

In this chapter, a destination inference method for maritime vessels, which takes
into account historical traffic patterns through the usage of a maritime graph,
whose nodes represent common navigational waypoints and whose edges contain
information on the direction and possible connections between waypoints. By con-
structing shortest paths through the graph to each considered endpoint, described
by an OU-process and an ERV-process for the final segment, one can take typi-
cal ship maneuvering into account. The method is shown to perform better than
current state of the art methods for destination inference on an experimental AIS
dataset.

The main limitation of the prediction approach proposed here is that it only applies
to typical trajectories (i.e., trajectories that are coherent with historical patterns
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(a) North east plot showing the destination subset considered. The relevant
part of the maritime graph is given in orange with red edges toward destina-
tions. The AIS trajectory considered is shown through the black dots.
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Figure 8.3: Destination inference results for a north-south going vessel towards destina-
tion D3 in Orkanger.

represented in the maritime traffic graph). Future research directions on this topic
include the extension of the method to consider off-pattern trajectories whose be-
havior is not perfectly compatible with the maritime graph, nor conforms to having
a constant speed profile.
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Chapter 9

Conclusions

9.1 Summary and Discussion

This thesis has shown original contributions on topics within risk-based maritime
COLAV for autonomous ships, with the specific aim of improving the collision risk
assessment, situational awareness aspects and computational feasibility of such
systems.

Results demonstrated in this work show the importance of performing adequate
collision risk assessment in adherence with COLREGS rule 7, in order for the
COLAV system to make safe and efficient maneuvering decisions. To enable this,
uncertainty related to any hazardous situation at sea must be managed.

The first way towards uncertainty management for COLAV presented in this the-
sis, was through the development of two sampling-based CPEs for collision risk
assessment in the PSB-MPC. By utilizing the uncertainty estimates accompanied
with the kinematic state estimates from a tracking system, one essentially achieves
a dynamical adjustment of the safety margins in the COLAV system. This is a
step towards properly addressing research question RQ-1 on adequate collision
risk assessment, which in turn can result in better adherence to COLREGS rule
7. Using collision probability estimates in risk-based COLAV is advantageous as
it is an intuitive way of considering uncertainty, which can be more easily inter-
preted than ad hoc risk functions that produce values with less root in reality.
The disadvantage is on the other hand the COLAV’s dependence on the modelling
assumptions and definition of the probability underlying the estimator, which can
often give conservative estimates. Furthermore, for sampling-based estimators, an
adequate trade-off between high accuracy and low computational cost can be hard
to find. The CPE will be another module to tune in the COLAV, the latter being
a system of systems, which increases complexity.

Improving dynamic obstacle predictions and utilizing information on their intents
has also been a large part of this work, which links to having adequate situational
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awareness in the COLAV system. A general Bayesian framework for obstacle intent
inference was proposed, and lead to a DBN being developed in collaboration with
Rothmund in [96]. The framework was used to provide the PSB-MPC with intent
information, through e.g. the use of obstacle maneuvering scenario probabilities.
To allow for using this information, an enhanced prediction scheme capable of
predicting multiple alternative maneuvering scenarios for an obstacle was developed
for the PSB-MPC, using the OU process, and then also as a combination with LOS-
based guidance. The OU model made it possible to predict the obstacle uncertainty
over longer time horizons with limited growth compared to if the classic CV model
was used, which made it easier to use the CPE for probability estimation, and also
to select an adequate number of obstacle maneuvering scenarios to consider. The
resulting COLAV system was then capable of making more informed avoidance
maneuvers, but at the cost of increased system complexity. The improvement of
dynamic obstacle predictions and intent considerations in the PSB-MPC algorithm
addresses many of the limitations with current state of the art in risk-based COLAV
planning, and thus answers many of the concerns raised by research question RQ-
2. Furthermore, improved dynamic obstacle prediction quality and knowledge on
their intents will also help in achieving better collision risk assessment, thus also
addressing research question RQ-1.

Integrating a CPE in the deliberate ship COLAV system adds a computational
cost, as it is used to estimate the probability of collision between predicted tra-
jectory pairs. This cost further increases with larger sets of obstacle maneuvering
scenarios being considered. Using it bona-fide in the PSB-MPC on a sequential
computation platform, the resulting run-time can be prohibitive for deploying the
COLAV on a vessel. This is also the case when considering anti-grounding in MPC,
as one typically has to calculate distances from the own-ship to possibly large num-
bers of static obstacles, for all considered avoidance trajectories. Depending on the
grounding hazard representation and prediction horizon considered, this can also
increase the COLAV run-time drastically. Thus, by developing a version of the PSB-
MPC which utilizes a parallelized computing environment for its cost evaluation,
the method can not only achieve reduced run-times, but also consider increasing
amounts of information and explicitly account for the effect of uncertainty in haz-
ardous situations at sea. By showing a detailed run-time analysis with respect to
increasing situational information and own-ship decision candidates, the real-time
computational feasibility of the algorithm is also demonstrated, which addresses
research question RQ-3. Finally, experimental results using the PSB-MPC with a
DBN for intention inference demonstrates that the deliberate COLAV planner also
can be used in practice.

When travelling with a larger ship along a coast, there is a limited number of likely
ports that can be considered for docking, with specific sea lanes typically being
followed toward these ports. Knowing these sea lanes and the intended port of the
ship is valuable, as one can better predict its future route, which again can be
used in COLAV systems to increase their situational awareness. For this topic, a
Bayesian inference approach informed by a maritime traffic graph was developed,
in order to both predict the vessel kinematics in a longer time horizon, and also its
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intended destination. Historical traffic patterns was captured by the graph, making
it possible to predict the vessel trajectory along common sea lanes towards con-
sidered destinations. This work on long-term prediction and destination inference
also addresses the research question RQ-2, by improving on the vessel prediction
quality compared to current state-of-the-art, and by capturing the intended ship
destination.

9.2 Reflections and Future Work

The developed CPEs and intent information for use in a real-time feasible risk-
based COLAV show promise when used in simulation for the assessment of difficult
situations at sea, involving grounding hazards and maneuvering dynamic vessels,
and where the target tracking performance of these vessels is limited. The experi-
mental results with the PSB-MPC and DBN showed improved situational aware-
ness and better risk assessment in a more pre-planned setting. However, work
is needed to also demonstrate the the proposed intention-aware COLAV system
can function in a less rehearsed setting at open sea, when faced with maritime
traffic, environmental disturbances and variable target tracking performance. Fur-
thermore, work is needed to integrate the Bayesian joint destination inference and
long-term prediction method from Chapter 7 into the PSB-MPC. The work in this
thesis further illuminates that topics within uncertainty management for COL-
REGS-compliant COLAV need to be more addressed in future research, to fully
enable autonomous ship technology.

As the research on deliberate and risk-based COLAV progressed, the non-triviality
of finding a proper tuning for such systems was quickly realized, which is a two-
fold problem: Firstly, the tuning of the PSB-MPC algorithm itself is challenging,
as a good trade-off between low dynamic collision risk, multi ship COLREGS com-
pliance and minimal path deviation is hard to find for any given situation, when
subject to a large number of adjustable parameters. One tuning for the PSB-MPC
in an open sea situation with few dynamic and static obstacles can be inadequate
when the autonomous ship approaches a confined environment near a harbour,
with multiple dynamic obstacles. Furthermore, the tuning is made more difficult
by considering multiple trajectory scenarios for nearby dynamic obstacles, which
should in theory have associated uncertainties covering the entire maneuvering
space for each obstacle. As the formulation of the PSB-MPC have non-trivial cost
function terms and complex predictions to setup, future work is needed to inves-
tigate whether or not there exist easier and more comprehensible formulations to
easier incorporate probabilistic risk assessment, traffic rules compliance and in-
tent information. The development of an adaptive version of the PSB-MPC is also
needed, which can adjust its behaviour based the changing environment. This is a
future research direction which can also alleviate some tuning issues for COLAV.
Another approach is to develop a supervisory control layer in the COLAV, with
different tunings or versions applied in different settings.

Secondly, the ship collision avoidance system depends on multiple subsystems, in-
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cluding the dynamic obstacle management system, the autopilot GNC system and
the grounding hazard management system. Ensuring a harmoneous interaction be-
tween these subsystems and the COLAV system is important to enable a fully
functional and safe autonomous platform. The COLAV planning algorithm such as
the PSB-MPC should be robust towards varying performance in these subsystems,
and the CPE is here a way to enable this with respect to dynamic obstacles. How-
ever, work is needed to ensure this is also enabled with respect to also grounding
hazards, where adequate sensors such as lidar and radar should be used to detect
and estimate the location of unmapped or inaccurately mapped static hazards.

In terms of COLREGS adherence, most of the results in this thesis have demon-
strated explicit compliance with rules 7-8 and 13-17. However, consideration of the
ship types involved in collision situations is also needed, to comply with rule 18
dealing with responsibilities between vessels. This rule has mostly been ignored
in research on maritime COLAV planning [31]. Also, consideration of rule 9 when
voyaging in more narrow channels needs to be better addressed in future improve-
ments on the PSB-MPC and other COLAV algorithms. Another point is that the
developed method for joint vessel destination and kinematics prediction can be
used to better enable COLAV systems to explicitly adhere to COLREGS rule 10
when following traffic separation schemes, as nearby dynamic vessels will then be
more accurately predicted to follow these existing sea lanes.
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Intention modelling and inference for autonomous collision
avoidance at sea⋆
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aCenter for Autonomous Marine Operations and Systems (NTNU AMOS), NTNU Norwegian University of Science and
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ABSTRACT
The open wording of the traffic rules of the sea, COLREGS, and the existence of unwritten rules,
make it essential for an autonomous ship to understand the intentions of other ships. This article
uses a dynamic Bayesian network (DBN) to model and infer the intentions of other ships in
open waters based on their observed real-time behavior. Multiple intention nodes are included to
describe the different ways a ship can interpret and conflict with the behavioral rules outlined in
COLREGS. The prior probability distributions of the intention nodes are adapted to the current
situation based on observable characteristics such as location and relative ship size. The resulting
model is able to identify situations that are prone to cause misunderstandings and infer the state
of multiple intention variables that describe how the ship is likely to behave. Different collision
avoidance algorithms can use the resulting intention information to better know if, when, and
how to act.

1. Introduction
When navigating at sea, understanding the intentions of other ships can be crucial for avoiding accidents (Chauvin,

2011). Blindly assuming that the other ship will follow the traffic rules put forth by the Convention on the International
Regulations for Preventing Collisions at Sea (COLREGS)(IMO, 1972) is insufficient as shown in Chauvin and Lardjane
(2008). They demonstrated the existence of local unwritten rules and agreements between captains that went contrary
to the rules specified by COLREGS. Furthermore, COLREGS is open to disagreements making it unsafe to act only
based on your own interpretation of the situation (Clawson Jr, 2013;Woerner, Benjamin, Novitzky and Leonard, 2019).
For an autonomous ship to safely operate in these conditions, it is essential that the ship can pick up on the intentions
of other ships.

A large variety of ship collision avoidance algorithms exists in the literature (Huang, Chen, Chen, Negenborn
and van Gelder, 2020; Vagale, Oucheikh, Bye, Osen and Fossen, 2021). Most algorithms that consider COLREGS
handle ships that do not fulfill the traffic rules by executing reactive evasive actions when the ships get close enough.
In Eriksen, Bitar, Breivik and Lekkas (2020) this is handled by having a separate short-term controller, in addition
to their COLREGS compliant controller, which disregards COLREGS when the ships are close enough. A different
approach is taken in Johansen, Perez and Cristofaro (2016) where they have a separate collision risk and COLREGS
compliance penalties. The collision risk penalty increases when the ships get closer, ensuring that an evasive action
will be taken even if it conflicts with the main COLREGS rules.

A different approach is taken in Tengesdal, Johansen and Brekke (2020) where they instead simulate multiple
possible future trajectories the other ships can follow. The probabilities of the different trajectories are based upon the
likelihood of the other ships having different intentions, such as being COLREGS compliant. This enables the collision
avoidance algorithm to take early and substantial actions if the intentions are uncertain or if it becomes apparent that the
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other ship does not act according to the rules. However, Tengesdal et al. (2020) does not consider how these intentions
can be identified.

Different methods exist for identifying the intentions of other ships (Du, Goerlandt, Valdez Banda, Huang,Wen and
Kujala, 2020; Woerner et al., 2019; Cho, Kim and Kim, 2021). Du et al. (2020) presents a method to identify whether
the give-way ship is doing an evasive action or not. This enables the ship to comply with CORLEGS rule 17, which
states that stand-on ships should act if the give-way ship is not taking appropriate action. Cho et al. (2021) presents a
Bayesian model that evaluates the probability that the other ship follows its obligations as specified by COLREGS rules
14 to 17 based on its observed motion. Woerner et al. (2019) develop a scoring system to evaluate to what degree ships
follow COLREGS rules 7, 8, and 13-17. This method is designed to evaluate different collision avoidance algorithms
but can also be used online to evaluate how well other ships are acting in accordance with the rules.

These articles (Du et al., 2020; Woerner et al., 2019; Cho et al., 2021) evaluate whether the other ship is acting as
expected based on the own-ships interpretation of the situation. They do not model the underlying causes making the
ship not act as expected. These underlying causes could, for example, be a disagreement of the situation or one of the
ships having priority over the other.

Works on intention modeling exist for air traffic (Krozel and Andrisani, 2006; Yepes, Hwang and Rotea, 2007),
road traffic (Hardy and Campbell, 2013), and for robot pedestrian interactions (Chen, Zhao and Lou, 2021; Hashimoto,
Gu, Hsu and Kamijo, 2015). These works show different ways of inferring the goal, behavior, or trajectories of the other
agents in the encounter. Only Hashimoto et al. (2015) consider underlying causes that affect how an agent acts. They
use information on whether a pedestrian is alone or in a group to affect the prior probability that it will hurry over at a
flashing green light.

The present article uses a dynamic Bayesian network (DBN) to model and infer the intentions of other ships in
open waters. Different intention variables are defined based on the different ways ships can interpret and conflict with
the behavioral rules specified by COLREGS. The DBN combines these intention variables with a model based on
COLREGS Rule 7, 8, 11, and 13 to 18 to define the possible ways the ship can act. A ship’s intentions are gradually
inferred by ruling out all possible combinations of intention states that contradict the observed course and speed. This
way of modeling ensures that the intention probabilities are independent of how often the model is updated with new
observations.

The contribution of this article and the novelty compared to earlier literature is a modeling framework that considers
how underlying causes affect a ship’s behavior and which can infer the state of multiple different intention variables
based on measured properties. Modeling the underlying causes enables the model to identify situations that can cause
misunderstandings, making it possible to take early actions to avoid a potentially dangerous situation. Furthermore,
it enables the model to adapt to the current situation by letting additional information, such as relative ship size and
location, affect the intentions. Being able to infer the state of multiple intention nodes enables the model to describe the
future motion of other ships with higher fidelity than simply being COLREGS compliant or not. The resulting intention
probabilities can be used for collision avoidance with algorithms that explicitly consider the intentions (Tengesdal et al.,
2020) or as decision criteria replacing the static distance used to decide when to always act to avoid collision (Eriksen
et al., 2020).

The rest of the article is structured as follows. Section 2 give background information on Bayesian networks. Section
3 presents the proposed DBNwhich is demonstrated in section 4. The results are discussed in section 5 and a conclusion
is given in section 6.

2. Background
Bayesian belief networks (BBN) are directed acyclic graphs (DAG) that model probabilistic relations. These

networks consist of nodes that can be in a discrete set of states and arcs that define dependencies between nodes.
An arc points from a parent node to a child node. Conditional probability tables (CPT) are supplied for all nodes and
define the probability of the node being in a particular state as a function of the states of its parent nodes. If the nodes
do not have a parent node, then the CPT defines the prior distribution of that node.

The Bayesian probability law is used to evaluate a node’s probability distribution, given some evidence. Evidence
is the set of information about the state of one or more nodes. If this information is uncertain, then virtual evidence
can be used. Virtual evidence specifies the probability of observing this particular observation, given the state of the
node. A state unlikely to result in the observation will be given a low probability, while one likely to result in the
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t=0 t=1 t=2

Figure 1: Example of dynamic Bayesian network (DBN) consisting of three time-dependent nodes and two time-independent
nodes. Two time steps are shown.

observation will be given a high probability. A thorough explanation of virtual evidence can be found in Ben Mrad,
Delcroix, Maalej, Piechowiak and Abid (2012).

BBNs can be made dynamic by repeating some or all of the nodes for each time step. Fig. 1 shows an example
of the resulting DBN. DBNs make it possible to model how a system develops over time. The DBN can consist of
time-independent nodes as well as time-dependent nodes.

Software libraries such as BAYESFUSION LLC (b) include different general solvers for evaluating DBNs and
natively support the use of virtual evidence. More information on BBNs and DBNs can be found in Fenton and Neil
(2018) and Russell and Norvig (2014).

3. Method
This section presents a DBN used to model and infer the intention of meeting ships. The term intentions will be

used for a ship’s internal states that we wish to infer such that we can understand how the ship will act. Examples of
different intention variables are what the ship considers to be a safe distance, what priority it thinks it has relative to
the other ships, and what it thinks that the COLREGS situation is.

The DBN model takes the perspective of a single ship, which will be called the reference ship, and models its
relation to all other ships in the area. The index i will be used to identify the other ships in the area. To model multiple
ships, the model must be repeated for each ship. How to make inference using the model is described in section 3.1.

Each of the intention variables are modeled as nodes in the DBN. These nodes are stochastic variables as the
intention is unknown. The intention nodes are modeled as time-independent nodes as it is assumed that the intentions
do not change within one encounter. The prior distribution of the intention nodes describes how often the different
intentions are encountered in situations similar to this one. How these priors are designed is described in more detail
in section 3.4.

The intentions are updated based on different measured properties that can be evaluated based on the relative
position between the ships, theirs course, and their speed. The different measured properties are given in Table 3. A
tracking system is assumed to be used to evaluate the ships course, speed, and position. The tracking system is assumed
to give high quality tracks, such that the intention module does not need to account for measurement uncertainty.

The DBN evaluates the probability that a particular combination of measurements and intention node states are
compatible. Which combinations that are compatible are defined by COLREGS and are described in section 3.2 using
logic statements. How these can be translated into CPTs is described in section 3.3. The resulting DBN is shown in
Fig. 5.

When a new observation is made, the different measured properties are inserted as evidence on the measurement
nodes in a new time-step of the DBN. These measurement nodes are time-dependent, thereby enabling the system to
combine information over time. The network can be used to evaluate the probability that the observation is compatible
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COLREGS role

stand-on

give-way

Intends to ful ll

its obliga ons

false 0.05

true 0.95

Ample me 

inten on

0-5 min 0.01

5-10 min 0.05

10-15 min 0.15

15+ min 0.79

Time un l

CPA

0-5 min

5-10 min

10-15 min

15+ min

Can wait

false Time un l CPA 

Ample me inten on

true Time un l CPA >

Ample me inten on

Will give way

false COLREGS role == stand-on ∨

¬Intends to ful ll its obliga ons

true COLREGS role == give-way ∧

Intends to ful ll its obliga ons

Must give way now

false ¬Will give way ∨ Can wait

true Will give way ∧ ¬Can wait

Is giving way

false

true

Behavior compa ble with inten ons

false ¬Is giving way ∧ Must give way now

true Is giving way ∨ ¬Must give way now

Figure 2: A simplified example network used to illustrate the proposed inference method. Measurement nodes are shown in
green, intention nodes in orange, and modelling nodes in blue. The initial probability distribution is shown for the intention
nodes.

with the prior distribution of the intention nodes. The distribution of the intention nodes can be updated by eliminating
all combinations of intentions that contradict the observation. This is achieved by inserting evidence in the network
stating that intentions and observed measurements are, in fact, compatible. The updated posterior distribution of the
intention nodes can be used to give an updated prediction on how the reference ship will act. Two different ways of
using the updated intention probability distributions for collision avoidance are outlined in section 3.5.

Modeling whether a particular combination of observations and intention node states are compatible enables the
system to gradually infer the reference ship’s intentions without considering how often observations are given to the
system. Giving the exact same observation multiple times to the systemwill not affect the probability distribution of the
intention nodes, as the first observation has already eliminated all combinations of intentions that would be eliminated
by the second observation.

A simplified example can illustrate this procedure. Fig. 2 shows a simplified network that only considers when the
ship will act. COLREGS rule 8(a) states that a ship should act in “ample time". Two intention nodes are then needed,
one modeling the reference ship’s definition of ample time and the other modeling whether the reference ship intends to
follow this rule. When an observation is made, the following evidence is inserted: time until closest point of approach
(CPA), which role the reference ship has according to COLREGS, and whether the reference ship is giving way. In this
example, the observation is only compatible with the intention of the reference ship if either of the following is true: it
is giving way, it has a stand-on role, if it does not intend to follow the rules, or if the time until CPA is longer than the
reference ships definition of ample time.

The intention probabilities can be updated to reflect the observation by inserting evidence on the “Behavior
compatible with intentions" node stating that it must be in the “true" state. If it, for example, is observed that the
time until CPA is 10 minutes, the reference ship has a give-way role, and it is not giving way, then the model can
exclude the possibility that the ship intends to follow its obligation to give way while at the same time considers ample
time to be more than 10 minutes. It is left with the possibility that it will not follow its obligations at all or that it
considers ample time to be shorter than 10 minutes. For this example, the updated probability that the reference ship
does not intend to fulfill its obligations evaluates to 47%. This is due to the prior likelihood that the reference ship will
give way at a short distance (0.01 + 0.05 = 0.06) is similar to the prior likelihood that it will not fulfill its obligations
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Table 1
Abbreviations

Abbreviation Description
CPA Closest point of approach
SO Stand-on
GW Give-way
HO Head-on
OT_ing Overtaking
OT_en Overtaken
CR_SS Crossing with other ship on starboard side
CR_PS Crossing with other ship on port side

Table 2
Intention variables

Symbol Description StatesAT What time until CPA the reference ship
considers ample time

real valued

C Whether the reference ship acts accord-
ing to COLREGS

binary

CSi What COLREGS situation the reference
ship thinks it has towards ship i

“OT_ing"/“OT_en"/
“HO"/“CR_PS"/
“CR_SS"GS Whether the reference ship acts accord-

ing to good seamanship
binary

Pi Relative priority the reference ship has to
ship i

“higher"/“similar"/
“lower"RC What distance at CPA the reference ship

considers a risk of collision
real valued

RCF How far in front of a ship the reference
ship considers a crossing as risky

real valued

SD What the reference ship considers a safe
distance at CPA

real valued

SDF How far in front of a ship the reference
ship considers a crossing as safe

real valued

SDM What the reference ship considers a safe
distance at CPA to the current midpoint
(See 3.2.12).

real valued

SS At what distance the reference ship con-
sider that the situation starts

real valued

U Whether the reference ship acts in an
unmodelled way

binary

(0.05). This simplified example is unable to model the underlying causes that influence how a ship will act. The rest
of this section handles this by considering many more of the COLREGS rules.
3.1. Basic procedure

For every new observation:
1. Insert information from observed position, course, and speed as evidence on the measurement nodes
2. Insert evidence stating that the compatible to all node (C) is in the state true.
3. Evaluate the updated probabilities for the different intention states
4. Expand the network with a new time-step

3.2. Intention model logic
This section presents a series of logic statements that define which combinations of intentions and observations

that are compatible. These statements are based on the behavioral rules specified by COLREGS Rule 7, 8, 11, and 13
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Table 3
Measurement variables. The values are evaluated based on the measured position, speed, and course of the different ships
in an encounter. Measurements that cannot be directly evaluated based on the position, speed, or course are described
when the measurement is first used in section 3.2.

Symbol Description StatesC [t] Current course of the reference ship real valuedS [t] Current speed of the reference ship real valuedCSi [t] Current COLREGS situation refer-
ence ship has towards ship i (See
3.2.15)

“OT_ing"/“OT_en"/
“HO"/“CR_PS"/
“CR_SS"Di [t] Current distance between the refer-

ence ship and ship i
real valued

DCPAi [t] Distance between reference ship and
ship i at CPA assuming both will keep
their current course and speed

real valued

DF i [t] How far the reference ship crosses in
front on ship i assuming both keep
their current course and speed. This
value is set to ∞ if the ship does not
cross in front of ship i

real valued

DM i
[t] Distance at CPA to the current mid-

point between the reference ship and
ship i, assuming constant course and
speed for the reference ship. (See
3.2.12)

real valued

Pi [t] Whether reference ship has passed
ship i. (See 3.2.6)

binary

TCPAi [t] Time until CPA between reference
ships and ship i assuming both will
keep their current course and speed

real valued

AF i [t] Whether the reference ship will pass
aft or in front of ship i assuming both
keep their current course and speed.
(See 3.2.13)

“Aft"/“Front"

to 18. Rules regarding traffic separation schemes (Rule 10), narrow channels (Rule 9), and sailing vessels (Rule 12)
are not considered in this article.

The section is structured following a top-down approach where the statement describing the most general model
variable is presented first. Model variables that are used in more general statements are then gradually introduced. The
different model variables are given in Table 4, intention variables in Table 2, measurement variables in Table 3, and
parameters in Table 5. See Table 1 for abbreviations used in this model.
3.2.1. C[t] - Compatible to all

An observation is compatible with the intention states of the reference ship at time step t if it is compatible towards
all ships in the area at that time step. The area considered must be large enough to encompass all ships that potentially
affect how the reference ship acts. All observations are also considered compatible if the ship intends to act in an
unmodelled manner (U ). This state works as a catch-all for behavior that does not fit the behavioral rules describedin this section. Mathematically, this is expressed through the following logical clause:

C[t] =
(
∧ni=1Ci[t]

)
∨ U (1)

3.2.2. Ci[t] - Compatible towards ship i
An observation is compatible with the intention states of the reference ship towards ship i if either of the following

is true:
• The collision avoidance situation has not started yet (SSi).
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Table 4
Model variables

Symbol Description States
C[t] Observation compatible with the in-

tentions of the reference ship
binary

Ci[t] Observations and intentions compati-
ble towards ship i

binary

CEM i[t] Correct evasive maneuver towards
ship i

binary

C_CR_SS i[t] Correct crossing evasive maneuver
with ship i on the starboard side

binary

C_CR_PS i[t] Correct crossing evasive maneuver
with ship i on the port side

binary

C_HOi[t] Correct head-on evasive maneuver to-
wards ship i

binary

C_OT i[t] Correct overtaking evasive maneuver
towards ship i

binary

CIC i[t] Change in course towards ship i “starboard"/
“straight"/“port"

CIS i[t] Change in speed towards ship i “higher"/
“none"/“lower"

GS i[t] Good seamanship towards ship i binary
GW C i[t] Gives way correctly towards ship i binary
IC i[t] Initial course when the situation

started towards ship i. Course is given
in the NED frame.

real valued

IS i[t] Initial speed when the situation
started towards ship i

real valued

Pi[t] Has passed ship i safely binary
PAi[t] There has been a port action towards

ship i
binary

Ri Role towards ship i “GW"/“SO"
RC i[t] There is currently a risk of collision

with ship i
binary

RS i[t] It is a risky situation towards ship i binary
SOCi[t] Stands on correctly towards ship i binary
SDi[t] The reference ship will cross at a safe

distance towards ship i
binary

SS i[t] Situation has started towards ship i binary
SAi[t] There has been a starboard action

towards ship i
binary

WGW i Will give way towards ship i binary

• The ships have passed each other safely (Pi)
• The ships will pass each other in such a manner that it is not a risky situation (RSi).
• If the reference ship has a give-way role (Ri) and gives way correctly (GW C i) towards ship i.
• If the reference ship has a stand-on role (Ri) and stands on correctly (SOC i) towards ship i.

Ci[t] =¬SSi[t] ∨ Pi[t] ∨ ¬RS i[t]

∨
((
Ri == “GW") ∧ GW C i[t]

)

∨
((
Ri == “SO") ∧ SOC i[t]

)
(2)
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Table 5
Example parameters chosen for demonstrative purposes. The parameters can be modified based on properties of the current
situation, such as ship size, speed, and weather. The minimal acceptable definition of ample time (AT min), safe distance
at CPA (SDmin), safe distance front (SDF min) and safe distance to the current midpoint (SDMmin), should be based on
the maneuverability of the own-ship and how risk averse the operation should be.

Symbol Description ValueCIC Max change in course that is considered as keeping the
course

10°
CIS Max change in speed that is considered as keeping the

speed
2m∕s

AT min Ownships minimal accepted definition of ample time 60 s
SDmin Ownships minimal accepted definition of safe distance

at CPA
75m

SDF min Ownships Minimal accepted definition of safe distance
to cross in front

100m

SDMmin Ownships minimal accepted definition of safe distance
to midpoint

75m

3.2.3. SS i[t] - Situation started
According to COLREGS Rule 11, the behavioral rules only apply for ships in sight of each other. COLREGS Rule

3 specifies that a ship is in sight if it can be seen visually. At what distance the reference ship sees ship i is unknown
and modeled with the intention variable SS . The situation starts whenever the distance between the ships (Di ) isshorter than the situation start intention. Map data can be used to evaluate at which distance the ships are likely to see
each other.

SSi[t] =SSi[t − 1] ∨
(Di [t] < SS) (3)

3.2.4. RS i[t] - Risky situation
If there is a risk of collision (RC i) at one point of time after the situation starts (SSi), then the situation should beconsidered as risky.

RS i[t] =

{
“false" if ¬SSi[t]
RC i[t] ∨ RS i[t − 1] otherwise

(4)

3.2.5. RC i[t] - Risk of collision
Actions to avoid collision are only needed if the reference ship considers that there is a risk of collision (COLREGS

Rule 7, 12, and 14). According to COLREGS Rule 7(i), a risk of collision exists if the compass bearing from the
reference ship to ship i “does not appreciably change" (IMO, 1972). How much change that is sufficient would depend
on the distance between the ships, as one would experience a quicker bearing change once the ships get closer. To
simplify this requirement, the expected crossing distance is used to evaluate whether there is a risk of collision. The
acceptable distance when crossing in front can be larger than what is acceptable to the side of the ship. This is handled
by defining two different intention variables, one specifying how far in front of a ship the reference ship considers it
risky to cross (RCF ) and one specifying the distance at CPA that is considered risky (RC ). These are compared to
the expected crossing distance in front (DF i ) and at CPA (DCPAi ) assuming both ships keep their current course
and speed.

RC i[t] =
(DCPAi [t] < RC) ∨ (DF i [t] < RCF ) (5)

3.2.6. Pi[t] - Safely passed
If the reference ship has passed ship i (Pi ) and is at a safe distance (SDi), then the reference ship does not needto consider the ship any longer. A ship is considered as passed if the time until closest point of approach, assuming

constant course and speed for all ships, is negative.
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Pi[t] =Pi [t] ∧ SDi[t] (6)
3.2.7. SOC i[t] - Stands on correctly

The reference ship stands on correctly towards ship i if it does not change its course (CIC i) or speed (CIS i), or ifit does a correct evasive maneuver (CEM j) towards another ship (j) it has a give-way role (Rj) for (Rule 17).

SOC i[t] =
((
CIC i[t] == “straight") ∧ (

CISi[t] == “none")
)

∨nj=1
((
Rj == “GW") ∧ CEM j[t]

)
(7)

3.2.8. GW C i[t] - Gives way correctly
The reference ship gives way correctly towards ship i if it is executing a correct evasive maneuver CEM i.According to COLREGS Rule 8, the ship must take evasive actions in what it considers “ample time" (AT ). The“time" in ample time is measured as the time until CPA assuming both ships keep their current course and speed

(TCPAi ). How long before CPA the reference ship consider as “ample time" is modeled with the intention variableAT . The ship is allowed to stand on correct (SOC i) before what it considers “ample time".

GW C i[t] =CEM i[t] ∨
((TCPAi [t] > AT ) ∧ SOC i[t]

)
(8)

3.2.9. CEM i[t] - Correct evasive maneuver
For an evasive maneuver to be correct, it must comply with “good seamanship" (GSi) (COLREGS Rule 8) if

the reference ship has an intention to act with “good seamanship" (GS ). Additionally, the maneuver must fulfill the
requirements specified by COLREGS if the reference ship has an intention to follow COLREGS (C ). COLREGSspecify a set of situations and how to act in each scenario. These consist of overtaking (OT _ing, Rule 13) another
vessel, being overtaken (OT _en, Rule 17), head-on (HO, Rule 14), crossing with the other ship on the starboard side
(CR_SS, Rule 15), and crossing with the other ship on the port side (CR_PS, Rule 17). What COLREGS situation the
reference ship believes it has towards ship i is denoted as CSi .

CEM i[t] =
(
¬GS ∨ GSi[t]

)
∧
(
¬C ∨

((
(CSi == “OT_ing")

∨ (CSi == “OT_en")) ∧ C_OT i[t]
)

∨
((CSi == “HO") ∧ C_HOi[t]

)

∨
((CSi == “CR_SS") ∧ C_CR_SSi[t]

)

∨
((CSi == “CR_PS") ∧ C_CR_PSi[t]

))
(9)

3.2.10. SDi[t] - Safe distance
According to COLREGS Rule 8, actions to avoid collision shall result in the ships passing at a safe distance.

Whether the reference ship and ship i will pass at a safe distance is evaluated by assuming that both ships will keep
their current course and speed. This assumption holds for ship i if it has a stand-on role, as stand-on ships are required
to keep their course and speed (COLREGS Rule 17). If the reference ship has a give-way role, then it is expected to
mark its intent by substantially changing its course or speed (COLREGS Rule 8) before returning to the initial course.
Assuming that it will keep its course and speed should result in passing at a safe distance if the ship has started to act
to avoid a collision. As with risk of collision (RC i[t]), different intention and measurement nodes are included for a
safe crossing distance in front (DF i , SDF ) and at CPA (DCPAi , SD).

SDi[t] =
(DCPAi [t] > SD) ∧ (DF i [t] > SDF ) (10)
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3.2.11. C_OT i[t] - Correct overtaking evasive maneuver
COLREGS Rule 13 specifies that the overtaking vessel shall keep out of the way of the vessel being overtaken.

Checking that the ships are crossing at a safe distance (SDi) is therefore sufficient.

C_OT i[t] = SDi[t] (11)
3.2.12. C_HOi[t] - Correct head-on evasive maneuver

For head-on situations, COLREGS Rule 14 specifies that the ships must make a starboard turn such that they pass
each other port to port. As both ships have to give way in this situation, assuming that ship iwill keep its current course
is unrealistic. Instead, a new measurement is used that considers the distance at CPA to the current midpoint between
the ships (DM i

). As the current midpoint does not change when the ships courses change, considering a safe distance
to the current midpoint thereby requires that the reference ship has to do an evasive maneuver even though ship i has
already changed its course. The distance at CPA to the current midpoint is evaluated assuming the reference ship will
keep its current course and speed. The distance to the midpoint is set to 0 if the ship passes with the midpoint on the
starboard side. This ensures that the ship has to pass on the correct side. Which distance to the midpoint the reference
ship considers as safe is denoted as SDM .

C_HOi[t] =
(DM i

[t] > SDM) (12)
3.2.13. C_CR_SS i[t] - Correct crossing starboard-side evasive maneuver

In a crossing situation, Rule 15 of COLREGS specifies that a ship should, in addition to cross at a safe distance
(SDi), avoid crossing in front of another ship it has on its starboard side. Whether the reference ship crosses aft or
front of ship i (AF i ) is evaluated by first finding the intersection point of the paths followed by the ships assuming
that they keep their current course. Which ship that first arrives at this point crosses in front of the other.

C_CR_SSi[t] =
(AF i [t] == “aft") ∧ SDi[t] (13)

3.2.14. C_CR_PS i[t] - Correct crossing port-side evasive maneuver
If a ship with the other on its port side is forced to take action, then COLREGS Rule 17(c) specifies that it, in

addition to cross at a safe distance (SDi), should avoid changing its course (CIC i) towards port.

C_CR_PSi[t] =
(
CIC i[t] ≠ “port") ∧ SDi[t] (14)

3.2.15. CS i[t] - COLREGS situation
According to COLREGSRule 13(b), a ship is overtaking another when it is coming up on the ship “from a direction

more than 22.5 degrees abaft her beam" (IMO, 1972). Uncertainty in the heading of the other ship can lead to different
interpretations of the situation. Uncertainty in whether it is an overtaking situation is modeled by using the classifier as
shown in Fig. 3. The size of the uncertainty region can be based on a combination of historical data and expert opinion.
Different situations could be presented to different experienced captains where they could express their trust that other
ships would identify this situation correctly. The values used in this article are chosen for demonstrative purposes.

A head-on situation is defined by COLREGS Rule 14(a) to be when two vessels are meeting on “nearly reciprocal
courses", while Rule 14 (b) specifies when a head-on situation exists based on the visibility of different lights of the
other ship. This opens up for disagreements from different definitions of “nearly reciprocal" and how the ships observe
each other. With the presence of current and winds, a ship observing the course of the other by radar or AIS might come
to a different conclusion than one observing the heading of the other ship based on the visibility of lights (Woerner
et al., 2019). Furthermore, measurement uncertainties in the course of the other ship can lead to misunderstandings.
The classifier shown in Fig. 4 is used to accommodate this uncertainty. Identifying the uncertainty and mean of which
angle a head-on situation starts can be evaluated similarly to the overtaking case. In addition, the mean can be chosen
based on case law and certifying agency requirements as proposed in Woerner et al. (2019).

The probability that the reference ship evaluates the current situation as an overtaking or head-on situation is based
on the two classifiers given in Fig. 3 and Fig. 4. The remaining probability gives the probability that the reference ship
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Figure 3: Classifier giving the probability that it is an overtaking situation. Relative bearing is defined as the bearing from
the ship being overtaken to the overtaking ship relative to the heading of the ship being overtaken. 22.5° abaft the beam
as specified in COLREGS Rule 13 is the same as ±112.5° relative to the heading. This classifier considers a 15° uncertainty
in the situation.
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Figure 4: Classifier giving the probability that it is a head-on situation. The relative heading between the two ships defined
the probability. This classifier considers a 10° uncertainty in the situation.

evaluates the situation to be a crossing situation. Whether the reference ship is in front or back of the other ship when
the situation starts defines whether it is overtaking (“OT_ing) or being overtaken (“OT_en"). Whether the other ship is
on the port or starboard side defines whether it is a crossing port side (“CR_PS") or crossing starboard side (“CR_SS")
situation. This information is inserted as virtual evidence on the measured COLREGS situation node,CSi .According to COLREGS Rule 13(d), subsequent alterations in bearing do not change the situation. The situation is
therefore defined when the situation starts, which can lead to misunderstandings as the different ships may define that
the situation starts at different time points (Clawson Jr, 2013). To model the uncertainty caused by when the reference
ship thinks that the situation starts, a situation measurement node (CSi ) is introduced. The state of this node is equalto the state of the situation intention node (CSi ) only at the time-step where the reference ship thinks that the situation
starts. At all other time-steps, the probability of measuring the different states of the measurement node is unaffected by
the state of the intention node. Which time-step the reference ship thinks that the situation starts is uncertain, making
it uncertain which measurement that defines the intention state. There should be an equal probability of measuring all
states when the measurement node is independent of the intention node.
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CSi [t] =

{CSi if SSi[t] ∧ ¬SS i[t − 1]
[0.2, 0.2, 0.2, 0.2, 0.2] otherwise

(15)

3.2.16. Ri - Role
A ship must give way if it has lower priority (Pi ), either as specified in COLREGS Rule 18 or due to unwritten

rules (Chauvin and Lardjane, 2008). If the ship has higher priority, it must stand on. If the priority is similar, then the
role is given by Rule 13 to 15. In a head-on situation, both ships must give way (Rule 14). In an overtaking situation,
the overtaking vessel must give way (Rule 13). In a crossing situation, the one with the other ship on its starboard side
must give way (Rule 15).

Ri =

⎧⎪⎪⎨⎪⎪⎩

“GW"
if
(Pi == “lower") ∨

((Pi == “similar")
∧
(
(CSi == “HO") ∨ (CSi == “CR_SS")

∨ (CSi == “OT_ing"))
)

“SO" otherwise

(16)

3.2.17. GS i[t] - Good seamanship
Good seamanship is difficult to define and can contain many different behaviors. In this article, good seamanship

restricts the ship from changing which side it turns towards to avoid collision. The ship is not allowed to have made
both a starboard action (SA) and a port action (PA) during a collision encounter.

GSi[t] = ¬
(
SAi[t] ∧ PAi[t]

) (17)

SAi[t] =

{
“false" if ¬SSi[t](
CIC i[t] == “starboard") ∨ SAi[t − 1] otherwise

(18)

PAi[t] =

{
“false" if ¬SSi[t](
CIC i[t] == “port") ∨ PAi[t − 1] otherwise

(19)

3.2.18. CIC i[t] - Change in course
A change in course is evaluated by comparing the initial course (IC i) with the measured course (C ). The initialcourse is saved when the situation starts (SSi). If the change in course is less thanCIC then it is considered as keeping

the course. CIC should be chosen small enough to ensure that all intended course changes are marked as such, while
being large enough to ensure that measurement uncertainty and small oscillations due to waves are not marked as a
course change.

IC i[t] =

{C [t] if ¬SSi[t]
IC i[t − 1] otherwise

(20)

CIC i[t] =
⎧⎪⎨⎪⎩

“starboard" if C [t] >
(
IC i[t] + CIC)

“port" if C [t] <
(
IC i[t] − CIC)

“straight" otherwise
(21)

3.2.19. CIS i[t] - change in speed
The initial speed (ISi) and change in speed are evaluated in the same manner as for the course. The same

considerations should be made when choosing CIS .

IS i[t] =

{S [t] if ¬SSi[t]
IS i[t − 1] otherwise

(22)
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Figure 5: Figure showing the topography of the resulting DBN for a single ship encounter. Nodes related to situation start
(SS , SS i[t]) are omitted to reduce complexity. See Table 2, Table 3, and Table 4 for abbreviations. Subscript 1 indicates
that this model considers the relation between the reference ship and ship with index 1. In a multi-ship encounter, all nodes
with index subscript would be repeated for any additional ship in the encounter. Green nodes represent measurements,
orange node intentions, and blue nodes model variables. All nodes inside the box are time-dependent and are repeated for
each time step. Circular arrows indicate connections between subsequent time steps.

CISi[t] =
⎧⎪⎨⎪⎩

“higher" if S [t] >
(
IS i[t] + CIS)

“lower" if S [t] <
(
IS i[t] − CIS)

“none" otherwise
(23)

3.3. Translation into DBN
A DBN is made from the logic statements given in section 3.2. A node is introduced for each intention variable,

measurement variable, and model variable. Arcs are introduced based on the dependencies given by the equations in
section 3.2. The resulting topology can be seen in Fig. 5.

The logical statements given in section 3.2 need to be translated into CPTs to be used by the DBN. This can be done
by evaluating whether the output is “true" or “false" for all combinations of inputs. This results in CPTs consisting of
0/1 probabilities. Nodes that according to Table 2, Table 3, and Table 4 are real-valued must be discretized. A suitable
range and discretization step must be defined. The software GeNIe (BAYESFUSION LLC, a) allows the user to specify
equations and to use real-valued nodes. It can then automatically discretize and translate these equations into CPTs.
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Table 6
Factors that can influence the intentions of the reference ship. Tab. 7 specifies and quantifies the dependencies.

Factor Reason States
Maneuver-
ability

A poor maneuverability requires earlier actions
and larger margins

low/medium/
high

Location Ships tend to act earlier and have larger
margin in open seas than inland waterways

open sea/
innland

Ship type A leisure craft is less likely to know and follow
rules and best practice

commercial/
leisure

Relative
ship size

Larger ships tends to have priority over smaller
ships (Chauvin and Lardjane, 2008)

smaller/
similar/larger

Speed Ships require larger safety margins when going
at a fast speed

slow/fast

3.4. Priors
Information from the current situation, such as ship types and the type of environment, can improve the prior

distributions of the intention nodes. Examples of different factors that could be considered are shown in Table 6. These
influencing factors can be included as time-independent nodes that affect the intention states.

Different approaches can be followed to identify factors that affect the intentions. One way is to have a workshop
with experts in the field, such as experienced captains. This workshop can be similar to risk analysis workshops such
as Hegde, Utne, Schjølberg and Thorkildsen (2018) and Rokseth, Utne and Vinnem (2017). Another option is to study
captains during operation as done in Chauvin and Lardjane (2008). This has the advantage of being more correct than
a workshop, but some factors might not show up during the study. A last option is to analyze historical data logged
with the automatic identification system (AIS) that larger vessels are required to be equipped with (IMO). This method
would be more general as much more data from different ships and situations could be analyzed. It will, however, be
limited to the information that is logged with the AIS, which does not necessarily include all factors that could be of
interest. A combination of the three approaches is preferable to maximize correctness and completeness.

The same methods can be used for quantifying how the intention nodes are affected by the identified factors. AIS
data could be used to build prior distributions on, among others, how far before CPA different types of ships tend to
give way and how close they tend to be at CPA. This information could be supplemented with data from operation
studies and expert judgment to model how factors not included in the AIS affect the distribution. Different methods
for building CPTs based on expert information are analyzed in Mkrtchyan, Podofillini and Dang (2016).

Performing a thorough identification and quantification is outside the scope of this article. Table 7 shows the
quantification used to produce the results presented in section 4.
3.5. Using the intentions

This section presents two different ways of using the evaluated intention probabilities for collision avoidance.
3.5.1. Decision criteria

The first approach considers whether the own-ship should consider the reference-ship in the collision avoidance
algorithm. Collision avoidance algorithms similar to Eriksen et al. (2020) do not need to consider the reference ship
if the own-ship has a stand-on role, and the reference ship is planning to give way. A new node can be introduced into
the network to evaluate whether the reference ship is planning to give way or not. A threshold can be proposed that
defines how likely it must be that the reference ship will give way for it to be safely ignored by the collision avoidance
algorithm.

The node representing whether the reference ship is planning to give way depends on whether the reference ship
has a give-way role (Ri), and if its definitions of ample time (AT ), safe-distance at CPA (SD), safe distance whencrossing in front (SDF ), and safe distance to the current midpoint (SDM ) are acceptable. Additionally, the reference
ship is assumed not to give way if it acts in an unmodelled manner (U ). Equation 24 shows the logic statement that
defines whether the ship will give way towards ship i (WGW i).

WGW i =
(
Ri == “GW") ∧ (AT > ATmin)
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Table 7
Prior probability distribution used in the simulation study for the different intention states as a function of the influencing
factors. To keep the list short, factors are only included that were of relevance to the scenarios presented in section 4.
States marked in bold are used unless otherwise specified.  (�, �) indicates a truncated normal distribution with expected
value �, standard deviation �, and limited to be larger than 0. For binary states the probability of “true" is given. Discrete
states are given in the order specified in Table 2.

Intention Influencing factor Prior distributionAT Maneuverability: low  (480 s, 80 s)
Maneuverability: medium  (360 s, 75 s)C Ship type: commercial 0.99CSi None [0.2, 0.2, 0.2, 0.2, 0.2]GS Ship type: commercial 0.995Pi Relative ship size: similar [0.05, 0.90, 0.05]
Relative ship size: larger [0.01, 0.59, 0.4]RC Maneuverability: medium,
Location: open sea

 (1 km, 175m)

RCF Maneuverability: medium,
Location: open sea

 (1.5 km, 250m)

SD Maneuverability: medium,
Location: open sea,
Speed: slow

 (300m, 75m)

Maneuverability: low,
Location: open sea,
Speed: slow

 (700m, 100m)

SDF Maneuverability: medium,
Location: open sea,
Speed: slow

 (500m, 120m)

SDM Maneuverability: medium,
Location: open sea,
Speed: slow

 (300m, 75m)

SS Maneuverability: medium,
Location: open sea

 (7 km, 1.7 km)

U None 0.9999

∧
(SD > SDmin

)
∧
(SDF > SDFmin)

∧
(SDM > SDMmin

)
∧ ¬U (24)

3.5.2. Candidate trajectories
The second approach evaluates whether a candidate trajectory for the reference ship is compatible with the estimated

intentions.Measurements can be evaluated based on the candidate trajectory and inserted into the network. The network
can then be used to evaluate the probability that this trajectory is compatible with the reference ship’s intentions
(C[t]). These candidate trajectories with corresponding probability can be used as scenarios in scenario-based collision
avoidance algorithms similar to Tengesdal et al. (2020)

Minor alterations are needed to evaluate the measurements based on trajectories. All measurements that consider
that the reference ship is keeping its course and speed are instead evaluated using the candidate trajectory of the
reference ship while only assuming that all other ships in the encounter will keep their course and speed. The current
course (C ) and speed (S ) must be evaluated a bit into the candidate trajectory so that the ship has time to execute
the potential evasive action. If the situation has not started, then a trajectory keeping the course and speed will be
wrongly given a high probability. This is avoided by setting the current distance (Di [t]) to zero. The time until CPA
(TCPAi ) is not relevant for the candidate trajectories as the entire future motion of the ship is considered as known.
Instead, this measurement is set to the minimum acceptable time (ATmin). An intention to give way at a shorter time
than acceptable will evaluate a high probability for trajectories that keep the course and speed. This makes the collision
avoidance algorithm take evasive actions if it is likely that the reference ship will give way at an unacceptable short
time before CPA. The rest of the measurements can be evaluated as usual.
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Figure 6: Scenario 1. Two ships are meeting on a collision course in a clear crossing situation. The figure shows the different
candidate trajectories (dashed lines). The probability at the end of each trajectory and the thickness of the line shows the
probability that the trajectory is compatible with the ship’s intentions (C[t]). Trajectories with reduced speed are shown
with a lighter color. The ship symbols are scaled for visualization purposes and do not represent the true ship size.

There are many different ways of generating candidate trajectories. This article generates trajectories based on
line-of-sight guidance, as proposed in Johansen et al. (2016). These trajectories are generated by simulating a simple
ship model that uses a line-of-sight guidance rule to evaluate a reference course that gradually converges towards the
nominal path (Fossen, 2011). The nominal path is assumed to go in a straight line going through the position where
the ship was first observed, pointing in the same direction as the ship’s course at this point. Adding different constant
offsets to the reference course generates different trajectories that quickly move away from and then align parallel to
the original course. Fig. 6 to Fig. 16 shows the resulting trajectories with a constant offset in speed or course. All the
trajectories assume that evasive actions are done at the current time-step and not at future time-steps. This assumption
can be acceptable for collision avoidance, as it is enough to know if the other ship will give way in time and to what
side it will give way.

4. Results
This section presents different simulation scenarios that demonstrate the capabilities of the intention model. For

each scenario, the probabilities of the different candidate trajectories being compatible with the reference ship’s
intentions (C[t]) are presented, together with the probability that the ship will give way (WGW i). The probabilitiesfor all trajectory candidates do not need to sum to 1 as there can be multiple trajectory candidates that are compatible
with the intentions of the reference ship. The DBN is in each scenario evaluated using the SMILE (BAYESFUSION
LLC, b) library for C++. A separate instance of the model is run for all ships in the encounter.
Scenario 1 - Gradual inference

This scenario demonstrates an ability to identify the intentions based on observations. Fig. 6 shows two ships
meeting on a collision course. The situation is a clear crossing situation where, according to COLREGS Rule 15, the
blue ship is responsible for giving way while the red should stand on. The model evaluates a 93% chance that the blue
ship will give way (WGW ) and a 6% chance that the red ship will give way. The blue ship can give way either by
reducing its speed or making a starboard turn.

Fig. 7 shows the same situation at a later time-point. As the blue ship has not yet done any action to avoid collision,
it becomes more likely that it believes it has a higher priority making it not give way at all. The model, therefore,
evaluates a 68% chance that the blue ship will give way. As the red ship has not changed its course or speed, it becomes
less likely that it thinks it has lower priority, which results in a 1% chance that it will give way.

When the red ship starts to make an evasive maneuver, as shown in Fig. 8, it becomes more likely that the red ship
acts to avoid collision. Note that the candidate trajectories are generated relative to the nominal path of the ship, which
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Figure 7: Scenario 1. Shows the same encounter as Fig. 6 at a later time-point. The figure shows the different candidate
trajectories (dashed lines). The probability at the end of each trajectory and the thickness of the line shows the probability
that the trajectory is compatible with the ship’s intentions (C[t]). Trajectories with reduced speed are shown with a lighter
color. The ship symbols are scaled for visualization purposes and do not represent the true ship size.
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Figure 8: Scenario 1. Shows the same encounter as Fig. 6 and Fig. 7 at a later time-point. The red ship has changed
its course 45°to starboard and halved its speed. The figure shows the different candidate trajectories (dashed lines). The
probability at the end of each trajectory and the thickness of the line shows the probability that the trajectory is compatible
with the ship’s intentions (C[t]). Trajectories with reduced speed are shown with a lighter color. The ship symbols are
scaled for visualization purposes and do not represent the true ship size.

is assumed to continue northwards. As the time until CPA is very short, it is unlikely that the red ship has such a short
definition of ample time. The model, therefore, evaluates a 32% chance that the red ship acts in an unmodelled manner.
The probability that the red ship will give way is evaluated to be 29%.
Scenario 2 - COLREGS incompliant action.

This scenario demonstrates the modeling of incompliant behavior. Fig. 9 shows two ships meeting on a collision
course where the blue ship has turned its course to port to cross in front of the red ship. The model predicts that the
blue ship will continue to cross in front even though this is COLREGS incompliant.
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Figure 9: Scenario 2. The ships approached in the same manner as shown in Fig. 6. The blue ship performed a COLREGS
incompliant maneuver by changing course to port to avoid collision. The figure shows the different candidate trajectories
(dashed lines). The probability at the end of each trajectory and the thickness of the line shows the probability that the
trajectory is compatible with the ship’s intentions (C[t]). Trajectories with reduced speed are shown with a lighter color.
The ship symbols are scaled for visualization purposes and do not represent the true ship size.
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Figure 10: Scenario 3. The red ship is approaching the blue ship with a higher speed and a relative bearing of 113 degrees
relative to the heading of the blue ship. The bearing is close to the limit between overtaking and crossing, which can
cause uncertainty. The figure shows the different candidate trajectories (dashed lines). The probability at the end of each
trajectory and the thickness of the line shows the probability that the trajectory is compatible with the ship’s intentions
(C[t]). Trajectories with reduced speed are shown with a lighter color. The ship symbols are scaled for visualization purposes
and do not represent the true ship size.

Scenarios 3, 4, and 5 - Uncertain COLREGS situation
These scenarios demonstrate how uncertainty in the COLREGS situation affects themodel. Fig. 10 shows a scenario

where the red ship is approaching the blue ship from an angle that is close to the border between an overtaking and
crossing situations. The situation metric evaluates a 54% chance of it being an overtaking situation, in which case the
red ship should give way to either side. The remaining 46% is evaluated as a crossing situation, in which case the blue
ship should give way behind the red ship. This results in a substantial probability for both keeping the course and speed
and taking evasive actions. For the blue ship, none of the candidate trajectories where course alone was changed made
the blue ship cross behind the red ship at a safe distance. The only option among the candidate trajectories that gave
way behind the red ship was for the blue ship to reduce its speed.
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Figure 11: Scenario 4. The red ship is approaching the blue ship with a higher speed and a relative bearing of 123 degrees
relative to the heading of the blue ship. The bearing is closer to an overtaking situation than for Fig. 10 making it more
likely that the red ship will give way. The figure shows the different candidate trajectories (dashed lines). The probability
at the end of each trajectory and the thickness of the line shows the probability that the trajectory is compatible with the
ship’s intentions (C[t]). Trajectories with reduced speed are shown with a lighter color. The ship symbols are scaled for
visualization purposes and do not represent the true ship size.
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Figure 12: Scenario 5. The red ship is approaching the blue ship with a higher speed and a relative bearing of 103 degrees
relative to the heading of the blue ship. The bearing is closer to a crossing situation than for Fig. 10 making it more likely
that the blue ship will give way. The figure shows the different candidate trajectories (dashed lines). The probability at
the end of each trajectory and the thickness of the line shows the probability that the trajectory is compatible with the
ship’s intentions (C[t]). Trajectories with reduced speed are shown with a lighter color. The ship symbols are scaled for
visualization purposes and do not represent the true ship size.

Fig. 11 shows a similar situation but with the red ship approaching at a steeper angle, making it more likely to be
an overtaking situation. Similarly, Fig. 12 shows a situation with the red ship approaching at a shallower angle, making
it more likely to be a crossing situation.
Scenario 6 - Risk of collision

This scenario demonstrates uncertainties that arise from whether there is a risk of collision (RC i). Fig. 13 shows
two ships meeting in a head-on situation. The model evaluates a 61% chance that there is a risk of collision, and a 86%
chance that either ship will give way. If there is no risk of collision, then all actions that keep the ships at a risk-free
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Figure 13: Scenario 6. Two ships are approaching in a head-on situation where it is uncertain whether there is a risk of
collision (RC i). The figure shows the different candidate trajectories (dashed lines). The probability at the end of each
trajectory and the thickness of the line shows the probability that the trajectory is compatible with the ship’s intentions
(C[t]). Trajectories with reduced speed are shown with a lighter color. The ship symbols are scaled for visualization purposes
and do not represent the true ship size.
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Figure 14: Scenario 7. Same situation as Scenario 1. Information that the blue ship is substantially larger than the red
ship is inserted as prior information. The figure shows the different candidate trajectories (dashed lines). The probability
at the end of each trajectory and the thickness of the line shows the probability that the trajectory is compatible with the
ship’s intentions (C[t]). Trajectories with reduced speed are shown with a lighter color. The ship symbols are scaled for
visualization purposes and do not represent the true ship size.

distance are acceptable. Either way, making a large starboard turn is acceptable as it results in crossing as specified in
COLREGS Rule 14.
Scenarios 7 and 8 - Effect of priors

These scenarios demonstrate how utilizing prior information to modify the prior probability distributions affects
the model. Fig. 14 shows the same scenario as Scenario 1 but utilizes information that the blue ship is significantly
larger than the red ship. The model, therefore, evaluates a substantially larger probability that the blue ship has priority
over the red, which results in a 58% chance that the blue ship will give way and a 40% chance that the red ship will
give way. Similarly, Fig. 15 shows the same scenario as Scenario 1 but with the maneuverability of both ships set to
low. This makes it more likely that the blue ship will try to cross with a larger distance between the ships.
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Figure 15: Scenario 8. Same situation as Scenario 1. Information that both ships have a low maneuverability is inserted as
prior information. The figure shows the different candidate trajectories (dashed lines). The probability at the end of each
trajectory and the thickness of the line shows the probability that the trajectory is compatible with the ship’s intentions
(C[t]). Trajectories with reduced speed are shown with a lighter color. The ship symbols are scaled for visualization purposes
and do not represent the true ship size.
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Figure 16: Scenario 9. A collision encounter consisting of three ships. The figure shows the different candidate trajectories
(dashed lines) with their respective probability of being compatible with the ship’s intentions (C[t]). The thickness of the
line is proportional to the probability of that trajectory being compatible with the ship’s intentions. The ship symbols are
scaled for visualization purposes and do not represent the true ship size.

Scenario 9 - Multi-ship encounters
Fig. 16 shows an encounter with three ships, where the red and green ship have a head-on encounter, while the blue

ship has an overtaking encounter with the red ship and a head-on encounter with the green ship. If the blue ship had
only considered the red ship, then it would be allowed to cross on either side of the ship. As the evasive maneuver has
to be correct towards both ships, it can only change its course towards starboard.

5. Discussion
Scenario 1 demonstrates that themodel is able to infer the intentions of a ship based on its observed position, course,

and speed. The blue ship did not change its course as it approached. This behavior could be explained by the blue ship
having high priority or by having a short ample time. Once the ships came closer, the probability that the blue ship had
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a definition of ample time that was lower than the remaining time until CPA decreased. This increased the probability
that the blue ship had higher priority. The red ship changed its course and speed shortly before CPA to avoid collision.
Before this point in time, the model did not increase the chance that the red ship would give way as it did not give
any indications of giving way. When the red ship finally changed course, the time until CPA was very short, making it
quite unlikely that the red ship had such a short definition of ample time. As this behavior does not fit very well with
the model, a high chance was evaluated that the red ship acts in an unmodelled way. A collision avoidance algorithm
using this intention inference module should display conservative behavior when unmodelled behavior is observed.
This will be the case when evaluating candidate trajectories, as all trajectories will have an increased probability of
being compatible. When using the intentions as decision criteria, unmodelled behavior will count as not giving way,
thereby making the own-ship give way.

Scenario 1 and Scenario 2 show that having multiple different intention variables that can explain a ship’s behavior
increases the fidelity of the model. In both scenarios, the blue ship acted in a COLREGS incompliant manner. Modeling
how the ships are incompliant enables the model to distinguish between Scenario 1 where the blue ship will stand on
and the red ship must give way, and Scenario 2 where the blue ship does an evasive maneuver, although to the wrong
side.

Modelling of the underlying causes that can causemisunderstandings is demonstrated in Scenario 3, Scenario 4, and
Scenario 5. Having a clear distinction between the different COLREGS situations is prone to cause misunderstandings,
as it is unlikely that the ships will evaluate borderline situations exactly the same. By modeling this uncertainty, it
becomes clear that its insufficient to blindly trust the own-ships interpretation of the situation.

In Scenario 6 the uncertainty stems from whether there is a risk of collision. This scenario gives an example where
it is insufficient to consider a single parameter for collision avoidance, such as if the ship will give way. In most other
situations, the own-ship must give way if the other ship does not fulfill its obligation. In this situation, the opposite is
true; if the other ship fulfills its obligations, then both ships must give way. If the other ship keeps its course, then the
own-ship can turn a safe situation into a potentially dangerous one by giving way with a significant starboard maneuver,
which is required by COLREGS rule 14.

Scenario 7 and Scenario 8 show that additional information, such as the relative ship size or ship maneuverability,
can be used to affect the intention probabilities. Having a collision avoidance algorithm that adapts to the current
situation is crucial as ships act in very different manners in different situations, such as open waters and inland
waterways. The proposed intention model presented in this article is a step towards this ability as it gives the collision
avoidance algorithm an understanding of how the other ship will act in the current situation.

Scenario 9 demonstrates that the model can consider encounters with multiple ships. The model considers whether
an observed position, course, and speed are compatible with the intention towards all vehicles. The model does not
consider that the reference ship has an idea of what the other ships plan to do. This could, for example, be that the
blue ship in Fig. 16 predicts that the red ship will make a starboard turn and therefore chooses to take an even larger
starboard turn.

The different scenarios were chosen to illustrate how the model is sensitive to the choice of prior parameters.
Scenario 3, Scenario 4, and Scenario 5 demonstrates the sensitivity to the situational classifier given in Fig. 3. The
scenarios demonstrate how the gradual transition in the classifier causes a gradual transition in the predicted intention
and future behavior. Scenario 7 and Scenario 8 show how modifying the prior distributions affected the behaviour.
Scenario 7 showed how changing the probability that a ship had higher priority affected the probability that the ship
would stand on. Scenario 8 showed how increasing the expected value of what was considered a safe distance made
trajectories that crossed at a shorter distance less likely.

Evaluating different candidate trajectories has some advantages, such as being able to better portray situations such
as the one shown in Scenario 6. For the trajectories to realistically portray how the reference ship will act, there must be
a candidate trajectory that adequately describes the other ship’s trajectory. The candidate trajectory and actual trajectory
must be close enough to result in the correct collision avoidance behavior for a collision avoidance algorithm utilizing
these intentions. Choosing suitable candidate trajectories is not a trivial task. The ones used in this article cannot handle
more complicated situations, such as those where the ship is unable to act at the initial time-step but can act at a later
one and where the reference ships make more drastic or sequential changes in course or speed.

The probabilities associated with each candidate trajectory do not represent the probability that the reference ship
will follow this trajectory. Instead, it represents the probability that this trajectory is something the reference ship would
consider acceptable when only considering properties related to COLREGS. If it is known that the ship will follow
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A. Attached Articles

COLREGS and how it defines the different ambiguities such as ample time and safe distance, then all trajectories that
adhere to this definition of the rules will be given a 100% probability of being compatible with the intentions.

This article has not considered grounding risk or the COLREGS rules regarding traffic separation schemes (Rule
10), narrow channels (Rule 9), and sailing vessels (Rule 12). Regarding traffic separation schemes and grounding risk,
generating candidate trajectories will be more challenging as the trajectories must cover the ship’s different options,
such as following and leaving the traffic separation scheme correctly. In these situations, it might be necessary to
dynamically generate the trajectories based on the current circumstances. An additional challenge arises in narrow
channels due to stand-on vessels being allowed to change their course to follow the channel (Woerner et al., 2019).

Furthermore, the model does not explicitly consider measurement uncertainties. This should not be a problem as
long as the noise is less than CIC and CIS . If the noise is substantial, then measurement uncertainty should be
modeled as well. This can be achieved by having separate nodes representing the measured state and the measurement
itself. The measurements themselves should be child nodes of the measured state, and their CPTs should describe the
measurement uncertainty. This way of modeling is called the measurement idiom (Fenton and Neil, 2018).

The model assumes all initial changes in course are large enough to avoid collision without requiring additional
course changes. This assumption does not hold if the model is fed an observation in the middle of a course change. The
model can then evaluate that the ship is not standing on correct (as it changed its course), nor is it giving way correct
(as the course change is too small to avoid collision). This can be handled by introducing a node indicating whether
the other ship is currently changing its course.

To have acceptable computational time, the number of time-steps in the DBNmust be limited. This can be achieved
with a sliding window approach where only the last couple of observations are considered. The priors for the intention
nodes must be updated to represent the information that is no longer inside the window. This is done by setting the
intention priors equal to what the posterior was at the last time-step that is no longer in the window. With a limited
window, the frequency of new observations inserted into the model must be considered. Feeding information more
often makes the window consider a shorter time span which will contain more similar observations. This will reduce
the inference capabilities of the model. Feeding information less often makes the model respond to changes slower.
Not all measurements need to be saved as a time-step in the DBN. The newest time-step of the DBN could be updated
at a quick frequency and then only saved as a new time-step if it contained substantial new information relative to
the previously saved time-steps. This should make the DBN respond quickly and keep a high inference quality with a
limited window.

6. Conclusion
This article presents a novel approach for modeling and inferring the intentions of other ships in a potential collision

encounter at sea. The simulation study shows that the method is able to infer the state of different intention nodes,
identify situations that are likely to lead to misunderstanding, and adapt the intention probabilities to the current
situation. This opens up for new possibilities for collision avoidance algorithms. It could enable collision avoidance
algorithms to act more safely and predictably as they will better understand the future motion of meeting traffic. They
could become able to take early proactive actions to turn a situation prone to misunderstandings into a clear situation
where all ships agree on how to act. Lastly, it opens up for collision avoidance algorithms to adapt to the current
situation, such as relative ship size and locations. This is an essential feature for collision avoidance algorithms working
in multiple different situations where different tuning parameters are needed.

The focus of this article is the enhancedmodeling and inference capabilities achieved with the proposed framework.
Future work is needed on expanding the model to include the parts of COLREGS that were not considered, to consider
grounding, to consider factors outside of COLREGS that affect how ships behave, and to validate the model with
historical data. Furthermore, work is needed on gathering the statistics that work as priors for the different intention
states and on identifying how they are affected by available information on the current situation. Lastly, collision
avoidance algorithms must be developed that can utilize the increased situational awareness provided by this model.
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