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A B S T R A C T

We study a single trade ship routing and scheduling problem for a roll-on roll-off shipping company. Along
the given trade, there is a number of contracts for transportation of cargoes between port pairs. Each contract
states a minimum service frequency where the services should be evenly separated in time and possibly transit
time requirements. Current planning practice is to visit all ports along the trade every time it is serviced. Here,
we aim instead at determining the sailing route and schedule of each voyage along the trade, i.e., which ports
to visit when, which contracts to serve, and the sailing speeds, so that all contract requirements are satisfied at
minimum cost. To solve this problem, we have developed a three-phase MIP-based heuristic, where each phase
consists of solving dedicated a mixed-integer programming (MIP) model. The heuristic constructs solutions by
first identifying the most promising candidate routes along the trade. Next, a candidate route is allocated to
each available vessel. Finally, the heuristic determines the allocation of cargoes between the vessels, as well
as sailing speeds and arrival times. Computational tests show that the heuristic outperforms a commercial
MIP-solver and provides high-quality solutions to realistically sized instances in reasonable time.
1. Introduction

The ocean shipping industry is a major mode of transportation
carrying around 90% of the world trade (Christiansen et al., 2020).
Liner shipping is a mode of operation within the maritime industry
that is often used for transporting goods, with vessels sailing according
to a published schedule. Container shipping is the dominant segment
within liner shipping, and reviews on related optimization problems
are provided by Meng et al. (2014) and Christiansen et al. (2020). For
rolling cargo, such as cars, trucks, and other equipment on wheels, Roll-
on Roll-off (RoRo) vessels are the preferred choice. These vessels have
a large ramp where the cargo is rolled on board and multiple decks
where the rolling cargo is placed and fixed during the transport. With
a total of around 5000 vessels in the world fleet, RoRo-shipping is an
important segment within the maritime industry (ISL, 2017).

In this paper, we consider the single trade ship routing and schedul-
ing problem (STSRSP) for a shipping company in the RoRo-segment,
which was introduced by Hansen et al. (2019). In the STSRSP, a
shipping company has entered into a large number of agreements on
the transport of goods, contracts of affreightments, with different cus-
tomers. These contracts describe the quantity of goods to be transported
between specified ports within a given time frame. A contract also
specifies that the total volume should be split into several services or
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shipments, referred to as partial cargoes in the following. These partial
cargoes for each contract must be fairly evenly spread in time. We
consider the planning scenario for a single trade. Typically, a trade
connects two geographical regions, where a set of ports may be called in
each region, e.g., US–Europe. A number of vessels which are available
in the origin region of the given trade during the following planning
period are to be deployed. The objective is to minimize the sailing,
charter, and port costs while ensuring that all contractual terms are
fulfilled. The number of vessels and the exact sailing frequency are
not given a priori but are decisions to be made in the STSRSP. This
means that the trade may not necessarily be serviced with a fixed
frequency (e.g., one vessel per week), where each vessel visits each port
along the trade as is common in other shipping segments. In container
liner shipping, the trades are usually serviced on a weekly basis, see
for example Brouer et al. (2013), Ng (2015), Wang and Meng (2017),
and Wetzel and Tierney (2021). With vessels arriving at each port at a
specific time each week, the planning becomes simpler for the container
shipping companies and more predictable for the customers. However,
this regularity may come at a cost, such as unnecessary port calls
and lower capacity utilization. Compared to container liner shipping,
RoRo-shipping is usually more lenient both to how often each port is
visited and the frequency of sailings during the planning horizon. In the
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Fig. 1. On top, an example of the STSRSP for a trade from US to Europe with five ports and three contracts (a). On the bottom, a possible solution to the problem (b).
STSRSP, we aim to utilize this planning flexibility to reduce operational
costs while fulfilling all contractual demands. In order to do so, we aim
at determining the sailing route and schedule of each voyage along
the trade, i.e., which ports to visit when, which contracts to serve,
and the sailing speeds, so that all contract requirements are satisfied
at minimum cost.

Fig. 1a shows a tiny example of the STSRSP. The example is consid-
erably downscaled and its purpose is only to demonstrate the evenly
spread requirement. Therefore, we simplify the example and do not
consider capacities of vessels nor speed decisions along the routes. The
example considers the US–Europe trade, and the shipping company
must satisfy three contractual agreements along this trade. Contract 1
has a total demand of 1500 units to be transported from Savannah to
Zeebrugge. The total demand must be split into either two, three, or
four partial cargoes over the planning horizon, which is assumed to be
a month in this example (t = 30 days). Contract 2 from Baltimore to
Zeebrugge has a total demand of 200 and must be transported as one
cargo. Finally, contract 3 has a demand of 500 units which can be split
into one or two partial cargoes to be loaded in Brunswick and unloaded
in Bremerhaven.

Fig. 1b shows a possible solution to the example problem in Fig. 1a.
All sailings have to start within the planning horizon. In the solution,
three vessels are used to handle the demand. Vessel A visits all five
ports, starting the voyage from Brunswick on day 1. Vessel B visits
all ports except Baltimore, while vessel C only calls at Savannah and
Zeebrugge. Contract 1 is split among all vessels, resulting in three
partial cargoes, contract 2 is handled by vessel A (i.e., one partial
cargo), which is the only vessel to visit Baltimore, and contract 3 is
split into two partial cargoes serviced by vessels A and B.

One important aspect for the customers/contracts is the evenly
spread requirement. The vessels servicing contract 1 call at Savanna
(the loading port of contract 1) on days 3, 15, and 23 to pickup partial
cargoes of that contract. This is regarded as fairly evenly spread over
the planning horizon. Similarly, we see that the pickups of the two
partial cargoes of contract 3 are fairly evenly spread with 13 days
between the pickups. The spread is only measured using the pickup
time of each partial cargo of a contract for the following two reasons:
First, as many of the customers are manufacturers of vehicles, evenly
pickups of vehicles will maintain an even inventory at the loading
port. Second, if the pickups are evenly spread, the deliveries will show
a similar spread. This is due to the inherent trade structure, where
2

the sailing times between the loading and unloading port are rather
similar for each sailing. The threshold for what is considered fairly
evenly regarding the spread requirements and the modeling of these
requirements are described in more details in the next section.

Ensuring evenly spread pickups is an important aspect of many
maritime transportation problems. In previous studies, it has usually
been handled by either introducing time windows or voyage separation
constraints. Fagerholt et al. (2009), Andersson et al. (2015), and Dong
et al. (2020) use time windows for when each voyage along a trade
should start. For example, with time windows of 1 week, they ensure
that only one vessel starts sailing along a trade every week. However,
with this approach, one could get sailings on days 7, 8, 21, and 22,
alternating between starting the sailings at the end and the beginning
of the time windows. However, a customer may not consider this as
fairly evenly spread. The other commonly used approach is voyage
separation constraints, e.g., Norstad et al. (2015), Bakkehaug et al.
(2016), and Vilhelmsen et al. (2017). All these studies introduce sep-
aration requirements with a minimum acceptable time between the
start of two consecutive voyages on a given trade. With the starting
times of voyages being separated in time, the problem that could
occur with time windows as described above is eliminated. If the
separated voyages visit the same ports, this method could be sufficient
for ensuring fairly evenly spread pickups. However, in the STSRSP,
vessels may skip ports along the voyage. This means that while the
separation constraints can ensure that the start of each voyage is fairly
evenly spread, they do not necessarily ensure a fairly evenly spread on
a specific contract’s pickups, i.e., the service of the contract’s partial
cargoes. Hansen et al. (2019), which introduced the STSRSP, handled
the evenly spread requirements on a contractual level instead of the
more commonly used aggregated voyage level. This approach gives the
shipping company more flexibility regarding the starting time of each
voyage, the number of voyages to sail along a given trade, and which
ports to visit along each voyage while ensuring that all contractual
terms are complied with.

The aspect of ensuring services to be fairly evenly spread in time
also appears in other contexts of maritime transportation, as well as
in other modes of transportation, such as for example the routing of
supply vessels in the offshore oil and gas industry (Borthen et al., 2018;
Kisialiou et al., 2018), the periodic vehicle routing problem (Campbell
and Wilson, 2014), and in the airline industry (Ho-Huu et al., 2020).

Two other important characteristics of the STSRSP are the tran-
sit time requirements and speed optimization. In the STSRSP, some
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contracts have requirements on the maximum transit time for the
transportation between the contracts’ pickup and delivery ports. In the
example above, there could for example be a transit time requirement
for contract 1 of 15 days, meaning that no partial cargo for this
contract should spend more than this time in transit from its pickup
port, Savannah, to the corresponding delivery port, Zeebrugge. In the
example, we can see that this requirement is fulfilled as the three
partial cargoes of contract 1 spend 13, 12 and 15 days in transit,
respectively. Transit time requirements are also important in container
shipping (e.g., Reinhardt et al. (2020)). Speed optimization, where
optimal speeds along all voyages’ sailing are determined, is also an
important part of the STSRSP, like in many other maritime routing
problems (e.g., Reinhardt et al. (2020), Andersson et al. (2015) and
Eide et al. (2020)).

Two mixed integer programming (MIP) models for the STSRSP were
proposed by Hansen et al. (2019) and they showed that significant
gains could be obtained by utilizing the inherent planning flexibility
compared to the current planning practice of visiting all ports every
time a trade is serviced. However, Hansen et al. (2019) also showed
that large realistically sized instances could not be solved by com-
mercial solvers using any of these two models due to the complexity
of the STSRSP. Therefore, our main contribution in this paper is to
introduce a novel three-phase MIP-based heuristic for the STSRSP. We
show that the heuristic is capable of providing high-quality solutions
to large realistically sized instances in a short amount of time. As a
second contribution, based on a real situation for our case company,
we also present a study where we evaluate the potential gains of a
merger between two equally sized shipping companies. We study a
case where both companies operate their own trade between the same
regions and evaluate the effects of merging the two trades and operate
as one new merged company. Using the proposed heuristic, we show
that the operational costs can be substantially reduced if the potential
merger is performed and the potential benefits from the more flexible
way of planning is utilized.

The remainder of this paper is organized as follows: A description
of the problem is given in Section 2. In Section 3, the proposed solution
method is presented. Section 4 provides the computational study, while
concluding remarks are given in Section 5.

2. Problem definition and mathematical formulation

In this section, we give a formal definition of the STSRSP along
with the mathematical formulation developed by Hansen et al. (2019).
The MIP-based heuristic presented in Section 3 heavily relies on this
mathematical formulation, which is why we include it here for the sake
of completeness. The notation that is used for this model is summarized
in the tables in Appendix.

The shipping company is concerned with fulfilling the transporta-
tion tasks along a given trade within the planning period while respect-
ing frequency requirements. The problem consists of a set of contracts
(or cargoes)  to be transported along the trade. Let  be the set of
product types, while 𝑆

𝑝 is the subset of product types that can be stored
in the same space as product type 𝑝. As an example, cars can be stored
on decks facilitated for storing breakbulk cargo, but not the other way
around. See for example Pantuso et al. (2016) for more details. Each
contract (cargo) 𝑐 is a transportation task of one and only one product
type 𝑝. Let 𝐷𝑐𝑝 be the quantity of products of type 𝑝 in contract 𝑐 to
be transported during the planning horizon 𝑇 𝑃𝐻 . Let 𝑙(𝑐) and 𝑢(𝑐) be
the loading and unloading port of contract 𝑐, respectively. The set 𝐿

𝑖
consists of all cargoes that are to be loaded at port 𝑖. Similarly, let 𝑈

𝑖
be the set of cargoes to be unloaded at port 𝑖.

Whenever a contract 𝑐 is serviced by a vessel, the amount trans-
ported from that contract, i.e., a partial cargo, must be within a
minimum and maximum bound denoted by

̄
𝑄𝑐𝑝 and �̄�𝑐𝑝, respectively.

Furthermore, some contracts impose maximum transit times for the
transportation between the contract’s pickup and delivery ports. Let
3

𝑇 ⊆  denote the set of transit time contracts and let 𝑇 𝑇
𝑐 be the

maximum transit time of contract 𝑐. Most of the contracts are so-called
evenly spread contracts, given by the set 𝐸 ⊆ . For these contracts,
the contractual terms state that the pickups of their partial cargoes
should be fairly evenly separated throughout the planning horizon.
Additionally, the terms state a lower and an upper limit on the number
of partial cargoes the contract may be split into, represented by [

̄
𝑃𝑐 , 𝑃𝑐 ].

Hence, selecting the number of pickups (or partial cargoes) of these
contracts is a decision to be made within the STSRSP. Let 𝐿 be the
evenly spread threshold, i.e., the maximum total deviation in days from
the evenly spread requirement for all contracts.

The STSRSP can be defined on a graph 𝐺 = ( ,), where  ,
indexed by 𝑖, is the set of nodes and  ⊂  × is the set of arcs. The
arcs describe the feasible movements of vessels between the nodes. As
the vessels are to sail along trades, the ports may only be called in a
fixed and given order. Hence, the graph 𝐺 is both directed and acyclic.
Let  be the set of vessels that are available for being deployed on this
trade in the following planning horizon. Hence, the problem deals with
determining how we could utilize these vessels in the best possible way
to service the cargo contracts along the trade, while maintaining all
the contractual requirements, e.g., regarding evenly spread and transit
time. A starting position 𝑜(𝑘) and an artificial ending position 𝑑(𝑘) is
associated with each vessel 𝑘. The set  𝑃 ⊂  gives the possible port
calls but does not include the starting and artificial ending positions.
The set  𝑃

𝑘 ⊆  𝑃 consists of the ports which vessel 𝑘 may call, as
some vessels may not call at a certain port due to shallow water and
draft limitations. Further, let 𝑘 =  𝑃

𝑘 ∪ {𝑜(𝑘), 𝑑(𝑘)}, i.e., all nodes
that vessel 𝑘 may use and 𝑘 ⊂ 𝑘 × 𝑘 be the possible sailing arcs
for vessel 𝑘.

A vessel that is deployed and sails along a trade performs a voyage.
Let  be the set of voyages. Since each voyage can only be serviced
by one vessel and each vessel can also service at most one voyage
within the planning horizon due to the long sailing times, we define
one voyage for each vessel, so that || = ||, such that one voyage is
esigned in the STSRSP for every available vessel. It should be pointed
ut that (at least) one of these voyages can turn out in the optimal
olution to become an ‘‘empty’’ voyage, which does not include any
orts, i.e., it goes directly from 𝑜(𝑘) to 𝑑(𝑘) and has zero cost. If such
voyage is selected, it simply means that a vessel is not used. The

oyages are ordered, such that voyage 𝑣1 starts before voyage 𝑣2. All
oyages succeeding voyage 𝑣 are included in the set 𝑆

𝑣 . The fleet of
essels is heterogeneous, with each vessel having different capabilities.
ome vessels are designed to carry high and heavy product types,
hile other vessels may only transport vehicles. Ship 𝑘’s capacity of a

ertain product type 𝑝 is given by 𝐾𝑉
𝑘𝑝. The capacity intended for large

ulk products may be used for storing vehicles, but not the other way
round. The loading/unloading time per unit of product type 𝑝 is given
y the handling time parameter 𝑇𝐻

𝑝 . When chartering vessel 𝑘, a daily
harter rate of 𝐶𝐶

𝑘 is imposed. Further, each vessel may sail with speeds
n the interval [

̄
𝑔𝑘, �̄�𝑘]. We use the method proposed by Andersson

t al. (2015) to model the speed and fuel consumption. The speed
lternatives are discretized, represented by the set of discrete speed
lternatives , indexed by 𝑠. The sailing time from node 𝑖 to node 𝑗 for
essel 𝑘 using speed alternative 𝑠 is given by 𝑇 𝑆

𝑖𝑗𝑘𝑠. The corresponding
ost of sailing this arc for the given vessel and speed combination is
iven by 𝐶𝑆𝐶

𝑖𝑗𝑘𝑠, which includes both fuel and time charter costs. Let 𝐶𝑉
𝑖

be the cost of calling port 𝑖. Due to duties on other trades, the vessels
may not be available at the start of the planning horizon. The time a
vessel becomes available is given by 𝑇𝐴

𝑘 . The required piloting time at
port 𝑖 is given by 𝑇 𝑃

𝑖 .
Let binary variable 𝑥𝑖𝑗𝑣 be 1 if voyage 𝑣 uses the arc that connects

nodes 𝑖 and 𝑗, 0 otherwise. Further, let binary decision variable 𝑦𝑣𝑘
define whether voyage 𝑣 is sailed by vessel 𝑘 or not. Let 𝑤𝑖𝑗𝑣𝑘𝑠 be
a continuous variable, representing the weight of speed alternative
𝑠 used on voyage 𝑣 by vessel 𝑘, when sailing arc (𝑖, 𝑗). Note that
defining the variable for each arc (𝑖, 𝑗) allows to decide on an individual
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speed for each leg of a voyage, which helps to meet the evenly spread
requirement. The load of product type 𝑝 on the arc (𝑖, 𝑗) on voyage
𝑣 is given by 𝑙𝑖𝑗𝑣𝑝. The binary variable 𝛿𝑣𝑐 defines whether contract 𝑐
is handled on voyage 𝑣 or not. Let 𝜙𝑛𝑐 be 1 if contract 𝑐 is split into
𝑛 partial cargoes, 0 otherwise. The variable 𝑞𝑣𝑐𝑝 defines the quantity
of product 𝑝 in contract 𝑐 that is transported on voyage 𝑣. Let 𝑠𝑐 be
he maximum number of days contract 𝑐 deviates from the selected
ickup interval. The start of service at node 𝑖 on voyage 𝑣 is represented
y the time variable 𝑡𝑖𝑣. The continuous variable 𝑡𝐻𝑊

𝑘 give the total
aiting and handling time for vessel 𝑘. Finally, let the binary variable
𝑣𝑤𝑐 define whether voyage 𝑤 is the next voyage after voyage 𝑣 where
ontract 𝑐 is serviced or not. If 𝑧𝑣𝑤𝑐 = 1, we will refer to the pair of

voyages (𝑣,𝑤) as a spread pair for contract 𝑐.
With this notation, the problem can be described as follows:

in 𝑧 =
∑

𝑘∈

∑

(𝑖,𝑗)∈𝑘

∑

𝑣∈

∑

𝑠∈
𝐶𝑆𝐶
𝑖𝑗𝑘𝑠𝑤𝑖𝑗𝑣𝑘𝑠 +

∑

(𝑖,𝑗)∈

∑

𝑣∈
𝐶𝑉
𝑖 𝑥𝑖𝑗𝑣 +

∑

𝑘∈
𝐶𝐶
𝑘 𝑡

𝐻𝑊
𝑘

(1)

∑

𝑘∈

∑

𝑗∈ 𝑃
𝑘 ∪{𝑑(𝑘)}

𝑥𝑜(𝑘)𝑗𝑣 = 1, ∀𝑣 ∈  (2)

∑

𝑖∈
𝑥𝑖𝑗𝑣 −

∑

𝑖∈
𝑥𝑗𝑖𝑣 = 0, ∀𝑣 ∈  , 𝑗 ∈  𝑃 (3)

∑

𝑘∈

∑

𝑖∈ 𝑃
𝑘 ∪{𝑜(𝑘)}

𝑥𝑖𝑑(𝑘)𝑣 = 1, ∀𝑣 ∈  (4)

𝑖𝑗𝑣 =
∑

𝑘∈

∑

𝑠∈
𝑤𝑖𝑗𝑣𝑘𝑠, ∀(𝑖, 𝑗) ∈ , 𝑣 ∈  (5)

∑

𝑗∈𝑘

∑

𝑣∈
𝑥𝑜(𝑘)𝑗𝑣 = 1, ∀𝑘 ∈  (6)

∑

𝑖∈𝑘

∑

𝑣∈
𝑥𝑖𝑑(𝑘)𝑣 = 1, ∀𝑘 ∈  (7)

∑

𝑠∈
𝑤𝑖𝑗𝑣𝑘𝑠 ≤ 𝑦𝑣𝑘, ∀𝑘 ∈ , (𝑖, 𝑗) ∈ 𝑘, 𝑣 ∈ 

(8)
∑

𝑣∈
𝑦𝑣𝑘 = 1, ∀𝑘 ∈  (9)

∑

𝑘∈
𝑦𝑣𝑘 = 1, ∀𝑣 ∈  (10)

≤ 𝑙𝑖𝑗𝑣𝑝 ≤
∑

𝑘∈
𝐾𝑉

𝑘𝑝𝑦𝑣𝑘 −
∑

𝑝′∈𝑆
𝑝

𝑙𝑖𝑗𝑣𝑝′ , ∀(𝑖, 𝑗) ∈ , 𝑣 ∈  , 𝑝 ∈ 

(11)

𝑖𝑗𝑣𝑝 ≤ 𝑀𝐶
𝑝 𝑥𝑖𝑗𝑣, ∀(𝑖, 𝑗) ∈ , 𝑣 ∈  , 𝑝 ∈ 

(12)
∑

𝑗∈
𝑙𝑗𝑖𝑣𝑝 +

∑

𝑐∈𝐿𝑖

𝑞𝑣𝑐𝑝 −
∑

𝑐∈𝑈𝑖

𝑞𝑣𝑐𝑝 =
∑

𝑗∈
𝑙𝑖𝑗𝑣𝑝, ∀𝑖 ∈  , 𝑣 ∈  , 𝑝 ∈  (13)

∑

𝑘∈

∑

𝑗∈𝑘

𝑙𝑜(𝑘)𝑗𝑣𝑝 = 0, ∀𝑣 ∈  , 𝑝 ∈  (14)

𝑃 𝑐 ≤
∑

𝑣∈
𝛿𝑣𝑐 ≤ 𝑃 𝑐 , ∀𝑐 ∈  (15)

𝛿𝑣𝑐 ≤
∑

𝑖∈
𝑥𝑖𝑙(𝑐)𝑣, ∀𝑣 ∈  , 𝑐 ∈  (16)

𝛿𝑣𝑐 ≤
∑

𝑖∈
𝑥𝑖𝑢(𝑐)𝑣, ∀𝑣 ∈  , 𝑐 ∈  (17)

𝑄
𝑐𝑝
𝛿𝑣𝑐 ≤ 𝑞𝑣𝑐𝑝 ≤ 𝑄𝑐𝑝𝛿𝑣𝑐 , ∀𝑣 ∈  , 𝑐 ∈ , 𝑝 ∈  (18)

∑

𝑣∈
𝑞𝑣𝑐𝑝 = 𝐷𝑐𝑝, ∀𝑐 ∈ , 𝑝 ∈  (19)

𝑡𝑜(𝑘)𝑣 = 𝑇𝐴
𝑘 𝑦𝑣𝑘, ∀𝑣 ∈  , 𝑘 ∈  (20)
4
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𝑡𝑖𝑣 + 𝑇 𝑃
𝑖 𝑥𝑖𝑗𝑣 +

∑

𝑐∈𝐿𝑖 ∪𝑈𝑖

∑

𝑝∈
𝑇𝐻
𝑝 𝑞𝑣𝑐𝑝

+
∑

𝑘∈

∑

𝑠∈
𝑇 𝑆
𝑖𝑗𝑘𝑠𝑤𝑖𝑗𝑣𝑘𝑠 ≤ 𝑡𝑗𝑣 ∀(𝑖, 𝑗) ∈ , 𝑣 ∈ 

(21)

𝑙(𝑐)𝑣 + 𝑇 𝑇
𝑐 +𝑀𝑇

𝑐 (1 − 𝛿𝑣𝑐 ) ≥ 𝑡𝑢(𝑐)𝑣, ∀𝑣 ∈  , 𝑐 ∈ 𝑇 (22)

𝑗𝑣 −𝑀𝑆
𝑗𝑘(1 − 𝑥𝑜(𝑘)𝑗𝑣) ≤ 𝑇 𝑃𝐻 , ∀𝑘 ∈ , 𝑗 ∈  𝑃

𝑘 , 𝑣 ∈  (23)

𝐻𝑊
𝑘 ≥ 𝑡𝑑(𝑘)𝑣 − 𝑡𝑜(𝑘)𝑣 −

∑

(𝑖,𝑗)∈𝑘

𝑇 𝑃
𝑖 𝑥𝑖𝑗𝑣

−
∑

(𝑖,𝑗)∈𝑘

∑

𝑠∈
𝑇 𝑆
𝑖𝑗𝑘𝑠𝑤𝑖𝑗𝑣𝑘𝑠 −𝑀𝐿

𝑘 (1 − 𝑦𝑣𝑘), ∀𝑣 ∈  , 𝑘 ∈ 
(24)

∑

𝑘∈
𝑡𝐻𝑊
𝑘 ≥ 2 ⋅

∑

𝑐∈

∑

𝑝∈
𝑇𝐻
𝑝 𝐷𝑐𝑝, (25)

∑

𝑘∈

∑

𝑖∈ 𝑃
𝑘

𝑥𝑜(𝑘)𝑖(𝑣+1) ≤
∑

𝑘∈

∑

𝑖∈ 𝑃
𝑘

𝑥𝑜(𝑘)𝑖𝑣, ∀𝑣 ∈ ∖{||} (26)

∑

𝑣∈

∑

𝑤∈𝑆
𝑣

𝑧𝑣𝑤𝑐 ≥
∑

𝑣∈
𝛿𝑣𝑐 − 1, ∀𝑐 ∈ 𝐸 (27)

∑

𝑤∈𝑆
𝑣

𝑧𝑣𝑤𝑐 ≤ 𝛿𝑣𝑐 , ∀𝑣 ∈  , 𝑐 ∈ 𝐸(28)

∑

𝑤∈∖(𝑆
𝑣 ∪{𝑣})

𝑧𝑤𝑣𝑐 ≤ 𝛿𝑣𝑐 , ∀𝑣 ∈  , 𝑐 ∈ 𝐸(29)

𝑃𝑐
∑

𝑛=
̄
𝑃𝑐

𝑛𝜙𝑛𝑐 =
∑

𝑣∈
𝛿𝑣𝑐 , ∀𝑐 ∈ 𝐸 (30)

𝑃𝑐
∑

𝑛=
̄
𝑃𝑐

𝜙𝑛𝑐 = 1, ∀𝑐 ∈ 𝐸 (31)

𝑃𝑐
∑

𝑛=
̄
𝑃𝑐

𝑇 𝑃𝐻𝜙𝑛𝑐

𝑛
− 𝑠𝑐 −𝑀𝐸

𝑐 (1 − 𝑧𝑣𝑤𝑐 ) ≤ 𝑡𝑙(𝑐)𝑤 − 𝑡𝑙(𝑐)𝑣, ∀𝑣 ∈  , 𝑤 ∈ 𝑆
𝑣 , 𝑐 ∈ 𝐸

(32)
𝑃𝑐
∑

𝑛=
̄
𝑃𝑐

𝑇 𝑃𝐻𝜙𝑛𝑐

𝑛
+ 𝑠𝑐 +𝑀𝐸

𝑐 (1 − 𝑧𝑣𝑤𝑐 ) ≥ 𝑡𝑙(𝑐)𝑤 − 𝑡𝑙(𝑐)𝑣, ∀𝑣 ∈  , 𝑤 ∈ 𝑆
𝑣 , 𝑐 ∈ 𝐸

(33)

∑

𝑐∈𝐸
𝑠𝑐 ≤ 𝐿 (34)

𝑣𝑤𝑐 ∈ {0, 1}, ∀𝑣 ∈  , 𝑤 ∈ 𝑆
𝑣 , 𝑐 ∈ 𝐸 , (35)

𝑖𝑗𝑣 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ , 𝑣 ∈  (36)

𝑣𝑘 ∈ {0, 1}, ∀𝑣 ∈  ,∀𝑘 ∈  (37)

𝑣𝑐 ∈ {0, 1}, ∀𝑣 ∈  , 𝑐 ∈  (38)

≤ 𝑤𝑖𝑗𝑣𝑘𝑠 ≤ 1, ∀𝑘 ∈ , (𝑖, 𝑗) ∈ 𝑘, 𝑣 ∈  , 𝑠 ∈  (39)

𝑛𝑐 ∈ {0, 1}, ∀𝑐 ∈ 𝐸 , 𝑛 =
̄
𝑃𝑐 ..𝑃𝑐 (40)

𝑐 ≥ 0, ∀𝑐 ∈ 𝐸 (41)

The objective function (1) is to minimize the total costs, i.e., sailing
osts, ports fees, and time charter costs. Constraints (2)–(4) ensure
hat that each voyage 𝑣 flows on the predefined network. Constraints
5) connect the flow and speed variables by setting the sum of speed
ariables to 1 if arc (𝑖, 𝑗) is used on voyage 𝑣, 0 otherwise. Each vessel 𝑘
as to start at its origin and end at the artificial destination node 𝑑(𝑘),
ee Constraints (6)–(7). Constraints (8) ensure that the speed variables
f a vessel 𝑘 on the voyage 𝑣 take positive values only if the vessel 𝑘 is
eployed on the given voyage 𝑣. Constraints (9)–(10) ensure that each
essel is allocated to a voyage, and each voyage is sailed by only one
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vessel, respectively. Constraints (11)–(12) guarantee that the capacity
limit of each product type on each vessel 𝑘 is respected. The parameter
𝑀𝐶

𝑝 , which appears in Constraints (12), is an appropriately set big-M
value. It should be noted that the total capacity of the vessel is given
by the capacity of the product type ‘‘cars’’, which is the lightest product
type which can be placed anywhere on the vessels. As an example,
assume a total vessel capacity of 5000 (e.g., square meters). Assume
further that we have a product capacity of cars of 5000 and of ‘‘high
and heavy’’ of 1000 square meters. Then, we could for example either
load (a) 4000 square meters of cars and 1000 square meters of high
and heavy, (b) 5000 square meters of cars, or (c) any combination in
between (a) and (b). However, we cannot load 5000 square meters
of cars and 1000 square meters of high and heavy. Please note that
in Constraints (11), we subtract the load for larger product types to
accommodate for this.

There exists a load variable for each arc, voyage, product type com-
bination. The connections between these variables are handled by the
load balance Constraints (13). Constraints (14) define the initial load
to be 0 for all voyages and product types. Constraints (15) guarantee
compliance with the minimum and maximum number of partial car-
goes. Constraints (16) and (17) ensure that a contract 𝑐 is only picked
up on a voyage if the voyage calls at both the loading and unloading
port of contract 𝑐. Constraints (18) guarantee that if a partial cargo of
contract 𝑐 is picked up, the quantity transported is within the minimum
and maximum quantity of each partial cargo. Constraints (19) require
that all contracted demand is transported within the planning period.
Constraints (20) give the time vessel 𝑘 may start sailing. Constraints
(21) link the time-variables such that the time a vessel starts servicing
node 𝑗 must be greater than or equal to the start of service at the
previous node 𝑖, plus the sailing time, piloting time at node 𝑖, and cargo
handling time. Constraints (22) ensure that the transit time restrictions
are respected. 𝑀𝑇

𝑐 is the upper bound on the maximum time a ship
ay use between nodes 𝑙(𝑐) and 𝑢(𝑐), when transporting contract 𝑐.

Constraints (23) guarantee that every vessel deployed on the trade
starts sailing before the end of the planning horizon. An upper bound
on 𝑀𝑆

𝑖𝑘 is given by the maximum time ship 𝑘 may use from its origin
𝑜(𝑘) to port 𝑖. Constraints (24) set the time each vessel uses on handling
and waiting, where an upper bound on 𝑀𝐿

𝑘 is given by the latest time
ship 𝑘 may arrive at its artificial destination 𝑑(𝑘). Constraint (25) are
included to tighten the formulation by defining a lower bound on the
minimum time used to handle the contracts. The logic behind this is
that all cargo needs to be serviced over the planning horizon. This
means that the total handling time given by the left-hand-side of the
constraints cannot be less than the time it takes to load and unload all
cargo given by the right-hand-side, where the factor 2 is due to that
all cargo needs to be both loaded and unloaded. The constraints are
greater-than-or-equal since waiting can occur due to the evenly spread
requirements. Symmetry-breaking constraints (26) ensure that voyages
that visit ports are placed first in the voyage ordering. Please note again
that it is possible to have an ‘‘empty’’ voyage, which means that a vessel
𝑘 goes directly from its origin 𝑜(𝑘) to its artificial destination 𝑑(𝑘) at
zero cost. This can happen when it is possible and optimal to handle
all contractual requirements with a reduced number of voyages. Any
empty voyages are placed last in the voyage ordering.

Constraints (27)–(34) concern the evenly spread requirements. Con-
straints (27) ensure that the sum of spread pairs for a contract 𝑐 is at
least the number of partial cargoes for the contract minus 1. Constraints
(28) and (29) ensure that a voyage 𝑣 may only be included in a spread
pair for contract 𝑐 if the contract is serviced on voyage 𝑣, while also
ensuring that voyage 𝑣 is present in at most two spread pairs for each
contract. Constraints (30) and (31) guarantee that 𝜙𝑛𝑐 is 1 if contract 𝑐
is picked up 𝑛 times. Constraints (32) and (33) ensure that the evenly
spread requirement is complied with if partial cargoes of contract 𝑐
is picked up on the two voyages 𝑣 and 𝑤 and (𝑣,𝑤) is a spread pair
5

for contract 𝑐. If the desired spread is not achieved, the spread slack t
variable 𝑠𝑐 may take a positive value to correct for the deviation from
the desired spread. An upper bound on 𝑀𝐸

𝑐 is the latest time contract
𝑐 may be serviced plus 𝑇 𝑃𝐻 minus the earliest time contract 𝑐 may
e serviced. The sum of deviations for all contracts are limited by the
ervice level Constraint (34). Constraints (35)–(41) define the bounds
nd requirements of the variables.

. Three-phase MIP-based heuristic

In Hansen et al. (2019), it was shown that the proposed model could
e used to solve small and medium-sized instances by a commercial
IP solver. However, this approach was of limited use for larger

nstances, despite allowing prohibitively large run-times. In order to
olve larger instances and reduce the computational times to a practi-
ally acceptable level, we propose here a novel three-phase MIP-based
euristic for the STSRSP.

.1. Heuristic overview

The general idea behind the proposed MIP-based heuristic is to di-
ide the solution process into three phases which the algorithm iterates
etween: (1) Selection of candidate routes (Section 3.2), (2) allocation
f vessels to routes (Section 3.3), and (3) solving a reduced version of
he problem (Section 3.4). The motivation behind this approach is that
t is possible to get a useful estimate of the total cost of a solution just
y knowing the routes (phase 1) and then the vessels to sail these routes
phase 2), without dealing with the very complicating decisions related
o the evenly spread requirements (handled in phase 3).

The model presented in the previous section is an arc-flow model,
here the binary variables define whether a vessel sails on an arc
etween two nodes (ports) or not. Another commonly used approach
or formulating routing models is the path-flow formulation. Here, the
inary variables determine whether a vessel sails a certain preprocessed
oute or not. A route is here defined as a sequence of port calls. Our
pproach combines these formulations in order to solve the problem. In
hases 1 and 2, we generate several possible routes and the path-flow
ormulation is used to determine the route each vessel should sail. In
hase 3, we use the results from the previous phases to fix multiple
ariables and solve a reduced version of the STSRSP model. A flow
hart of the heuristic and how it iterates between the three phases is
hown in Fig. 2. Control parameters and implementation details are
iscussed in Section 3.5.

.2. Phase 1: Generation and selection of promising candidate routes

The first phase of the heuristic is to identify routes that may be
sed in a feasible, and hopefully good, solution to the problem. For
his, we first enumerate all feasible routes. We exclude routes that only
isit loading ports, or only visit unloading ports, as such routes cannot
oth pickup and deliver partial cargoes for any contract, which is why
hey never be part of a useful solution to the problem. Let  be the set
f all feasible routes, including an empty route that visits no ports for
essels that may not be used in a solution. For larger instances, this set
ay be huge. However, only a subset of these routes may be relevant

or compiling good solutions to the problem. The goal of phase 1 is
o identify such promising candidate routes, in order to avoid spending
omputational time on the evaluation of poor routes in the later stages.
et ′ be the set of these candidate routes, initially an empty set. The
odel presented subsequently is used for selecting the candidate routes,

nd the routes in the solution are added to this set.
At this stage, we aim to select a number of routes equal to the

leet size (number of voyages) ||. However, we are not yet concerned
ith determining which route each vessel should sail. Recall that for
ach contract 𝑐, there is a minimum pickup requirement, or number of
artial cargoes, which the selected routes must comply with. The model

hen selects routes together with the number of times the routes should
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Fig. 2. Flow chart of the MIP-based heuristic.
be sailed in order to minimize the cost of sailing cost, while respecting
the minimum pickup requirements.

In addition to the previously defined sets, we define the following
further parameters. Let 𝐶𝑟 be the minimum cost of sailing route 𝑟 with
a vessel, including sailing costs, port visit costs, and charter costs. This
minimum cost is calculated using the cheapest vessel sailing at the
speed at which the sum of fuel and charter costs are minimized. Let 𝐴𝑟𝑐
be a binary parameter equal to 1 if route 𝑟 visits both the loading and
the unloading port of contract 𝑐. Similarly, binary parameter 𝐴𝑇

𝑟𝑐 defines
whether route 𝑟 visits both the loading and unloading port within the
transit time requirement of contract 𝑐. It is here assumed that the fastest
possible sailing speed is used, as opposed to the calculation of the
minimum costs, to preserve the entire solution space. Let the integer
decision variable 𝑥𝑟 define the number of times route 𝑟 is sailed. The
candidate route selection model is then as follows:

min 𝑧 =
∑

𝑟∈
𝐶𝑟𝑥𝑟 (42)

subject to:
∑

𝑟∈
𝐴𝑟𝑐𝑥𝑟 ≥ 𝑃 𝑐 , 𝑐 ∈  (43)

∑

𝐴𝑇
𝑟𝑐𝑥𝑟 ≥ 𝑃 𝑐 , 𝑐 ∈ 𝑇(44)
6

𝑟∈
∑

𝑟∈
𝑥𝑟 = || (45)

∑

𝑟∈′
𝑥𝑟 ≤ || − 1 (46)

𝑥𝑟 ∈ Z≥0 𝑟 ∈  (47)

The objective function (42) minimizes the sailing cost. Constraints
(43) ensure that the selected candidate routes are sufficient to meet
contract 𝑐’s minimum number of visits 𝑃 𝑐 in the later phases of the
heuristic. Constraints (44) are similar to Constraints (43), but consider
transit time contracts. A route can be used to serve contract 𝑐 if it visits
both the loading and unloading port within the transit time require-
ment of contract 𝑐. Constraint (45) ensures that the number of selected
routes equals the number of voyages to be sailed over the planning
horizon. Constraint (46) guarantees that at least one route is used in
the solution, which is not already in the pool of candidate solutions ′.
This constraint plays a role in later stages of the heuristic, where model
(42)–(47) is solved repeatedly to diversify the search by adding further
routes to the candidate pool ′. Finally, 𝑥𝑟 is defined as a positive
integer by Constraints (47). Further details on the orchestration of the
generation of the candidate route set ′ are provided in Section 3.5.
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3.3. Phase 2: Assigning routes to vessels

The next phase of the heuristic is to assign a route to each vessel.
From phase 1, we now have a set consisting of promising routes
′. Given the routes in this set, the objective is to determine which
andidate route each available vessel should sail to minimize the sailing
osts, while respecting the minimum number of partial cargoes and
apacity requirements.

Let 𝐶𝑟𝑘 be the minimum cost of sailing route 𝑟 with vessel 𝑘,
ncluding sailing costs, port visit costs, and charter costs. As in phase
, we have to ensure that we respect the minimum number partial
argoes. Let binary parameter 𝑉𝑟𝑘𝑐 be 1 if route 𝑟 visits both the loading
nd the unloading port of contract 𝑐 and ship 𝑘 is able to carry the
roduct type of contract 𝑐, 0 otherwise. Similarly, let 𝑉 𝑇

𝑟𝑘𝑐 be 1 if
oute 𝑟 visits both the loading and the unloading port of contract
∈ 𝑇 , vessel 𝑘 is able to carry the product type, and vessel 𝑘 is

ble to comply with the transit time requirement of this contract if
ailing route 𝑟 at maximum speed. To ensure that the minimum capacity
equired is respected, the following parameters are defined. Let 𝑄T

𝑝
be

he minimum capacity of product type 𝑝 required to fulfill the demand.
ext, let 𝑄P

𝑖𝑝
be the accumulated minimum capacity of product type 𝑝

equired for the vessels visiting port 𝑖, in order to fulfill the demand.
These parameters establish lower bounds on the required capacities of
those ships and routes that are selected here in phase 2, which is a
prerequisite for finding a feasible overall solution in the subsequent
phase 3. They are computed by assuming a vessel with infinite capacity
that sails along the trade, visits all ports, and picks up all cargoes along
the trade. The observed load at each port for each product type then
serves as 𝑄P

𝑖𝑝
while 𝑄T

𝑝
is an aggregation of these values over all ports

. Finally, let parameter 𝐹𝑖𝑟 be 1 if route 𝑟 visits port 𝑖, 0 otherwise. We
efine the binary decision variable 𝑥𝑟𝑘 to be 1 if vessel 𝑘 sails route 𝑟,
otherwise. The route allocation model can be formulated as follows:

in 𝑧𝑚 =
∑

𝑟∈′

∑

𝑘∈
𝐶𝑟𝑘𝑥𝑟𝑘 (48)

subject to:
∑

𝑟∈′
𝑥𝑟𝑘 = 1, 𝑘 ∈  (49)

∑

𝑟∈′

∑

𝑘∈
𝑉𝑟𝑘𝑐𝑥𝑟𝑘 ≥ 𝑃 𝑐 , 𝑐 ∈  (50)

∑

𝑟∈′

∑

𝑘∈
𝑉 𝑇
𝑟𝑘𝑐𝑥𝑟𝑘 ≥ 𝑃 𝑐 , 𝑐 ∈ 𝑇 (51)

∑

𝑟∈′

∑

𝑘∈
𝐾𝑉

𝑘𝑝𝑥𝑟𝑘 ≥ 𝑄T
𝑝
, 𝑝 ∈  (52)

∑

𝑟∈′

∑

𝑘∈
𝐹𝑖𝑟𝐾

𝑉
𝑘𝑝𝑥𝑟𝑘 ≥ 𝑄P

𝑖𝑝
, 𝑖 ∈  , 𝑝 ∈  (53)

𝑥𝑟𝑘 ∈ {0, 1}, 𝑟 ∈ ′, 𝑘 ∈  (54)

The objective function (48) minimizes the sailing cost. Constraints
(49) ensure that exactly one route 𝑟 is assigned to each vessel 𝑘.
Constraints (50) and (51), similar to Constraints (43) and (44), ensure
that both the loading and unloading port are visited at least the
minimum number of partial cargoes for each contract. Additionally,
they guarantee that this is fulfilled by vessels able to carry the product
type 𝑝 of contract 𝑐. Constraints (52) ensure that the selected vessels
have enough capacity to transport the total demand of each product
type 𝑝. For this, the minimum required capacity 𝑄T

𝑝
has to be met by the

fleet of ships that is selected in the solution of the model. Constraints
(53) guarantee that the selected vessels have the capacity to transport
the demand at port 𝑖 of product type 𝑝, for which only those ships are
aken into account that actually visit port 𝑖 on their assigned routes.

Finally, binary restrictions are given by Constraints (54).
The route allocation model is solved multiple times in this heuristic

framework. Let  be the set of so far conducted iterations, indexed
by 𝑚′. Let  = {(𝑟, 𝑘) ∈ ′ ×  ∶ 𝑥𝑚′ = 1} be the solution from
7

𝑚′ 𝑟𝑘
iteration 𝑚′, where 𝑥𝑚′

𝑟𝑘 is the equivalent of the variable 𝑥𝑟𝑘 in iteration
𝑚′. For example, if the solution in iteration 4 is that vessel 1 sails route
14 and vessel 2 sails route 7, then 𝑂4 = {(14, 1), (7, 2)}. As we aim
to generate a new candidate solution for each iteration, all previously
found solutions have to be removed from the solution space. For this
purpose, Constraints (55) are added to the route allocation model to
guarantee that a new candidate solution is found in the next iteration
𝑚 = || + 1, i.e., that the solution differs in at least one of the
route-allocation decisions from all previous solutions 𝑚′.
∑

(𝑟,𝑘)∈𝑚′

𝑥𝑟𝑘 ≤ |𝑚′ | − 1, 𝑚′ ∈  (55)

3.4. Phase 3: Solving the reduced model

In this section we describe a modified and simplified version of the
mathematical model presented in Section 2. The general idea is to use a
solution 𝑚 from phase 2 to fix variables in the MIP-model, which then
reduces the computational time of solving the MIP. The MIP is solved
several times, i.e., once for each iteration 𝑚.

Given a solution 𝑚 from the 𝑚th iteration in phase 2, some of the
variables in the MIP-model may be fixed. Recall that an element (𝑟, 𝑘)
in this set gives the route 𝑟 vessel 𝑘 sails. As route 𝑟 defines a sequence
of port calls, we use each element in 𝑚 to fix variables 𝑥𝑖𝑗𝑣 and 𝑦𝑣𝑘
in the MIP-model. Let 𝑟0 be the route with zero port calls. If there is
one or more elements (𝑟0, 𝑘) ∈ 𝑚, these vessels 𝑘 are placed last in
the voyage ordering, as the vessels are not used, see Constraint (26).
For all vessels that sail any route 𝑟 ≠ 𝑟0, the vessels are allocated
to voyages in ascending order with respect to the time 𝑇𝐴

𝑘 at which
the vessels become available. Variables 𝑥𝑖𝑗𝑣 and 𝑦𝑣𝑘 are fixed based
on this voyage ordering and the elements in 𝑚. As these variables
are fixed, the following constraints may be removed from the model:
(2)–(4), (6), (7), (9), (10). With the routing and vessel selection fixed,
many binary variables are fixed or removed from the problem, which
drastically reduces the computational time of solving the problem. The
only remaining binary variables in the model are: Contract handled on
a voyage (𝛿𝑣𝑐), the number of cargo splits per contract 𝜙𝑛𝑐 , and the
spread pair variables (𝑧𝑣𝑤𝑐).

The reduced model is solved once in each iteration. If the objective
value is better than the best objective value, the solution is stored. Else,
the solution is rejected. A new candidate solution from phase 2 is then
selected, and the reduced model is solved again.

3.5. Control parameters and implementation details

While Sections 3.1–3.4 give a general outline of the method, this
sections provides further insights of the implementation of the MIP-
based heuristic. We do not intend to describe all aspects of the imple-
mentation but rather address essential control parameters and technical
clarifications. Various parameters control the heuristic, such as run-
times, size of solution pools, optimality gaps, and others. The parameter
values were obtained after preliminary testing where the parameter
values were varied within reasonable intervals. The ones selected in
the end were the combinations that performed best. We certainly do not
claim to have identified the optimal set of parameter choices, but the
selected values have shown to be well-functioning for all test instances.

In the first phase, we repeatedly solve the model (42)–(47) until 20
candidate routes have been selected. Preliminary testing showed that
this is usually a sufficient number of candidate routes to ensure that
a feasible solution can be compiled from these routes. If the candidate
route selection model is recalled in a later iteration, five new candidate
routes are identified and passed on to phase 2. As such, the number of
routes in the candidate pool is always a multiple of five. If the model in
phase 1 fails to provide a new candidate route as the problem instance
does not allow for further distinct routes, the model will never be called
again, as the model will then not achieve any progress at any later
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stage. This is for example the case for the smallest instances considered
in the later experiments, who only allow for 16 different routes, such
that even the first call of phase 1 creates a candidate route set with a
size of below 20. In other words, for such an instance, the candidate
route set involves all relevant routes and does not even constitute a
heuristic reduction of the solution process in itself. The solution time
of the model of phase 1 is negligible.

In phase 2, the route allocation model is used to generate candidate
solutions 𝑚. Whenever new candidate routes are added to the pool of
andidate routes in the first phase, 100 iterations of the route allocation
odel are initiated. For each iteration, the resulting candidate solution
𝑚 is stored in the pool of candidate solutions. The objective of the
odel of phase 2 associated with each candidate solution is a lower

ound to the objective value for the corresponding solution in phase
. Therefore, only solutions with better lower bound than the best-
nown solution are accepted. This means that any feasible solution to
he problem may be a new best solution in phase 3. As this stage aims
t identifying candidate solutions, we do not necessarily need to solve
or the optimal candidate solution in each iteration. Hence, we accept
ny feasible solution to the problem in each iteration, which greatly
educes the computational time for each iteration. As for phase 1, the
olution time of the model is negligible.

Preliminary testing showed that accepting any feasible solution both
mproves the final solution quality and reduces the run-time of the
euristic. The main reason for this is because a candidate solution
ay not be feasible when put in the phase 3 model. The feasible

ow-cost candidate solutions from phase 2 often have a higher chance
f violating constraints added in phase 3 than the more expensive
olutions that, e.g., have more port calls. For small instances, the choice
oes not matter, as all candidate solutions are evaluated within few
econds. For larger instances, selecting any feasible candidate solution
s the better choice as the best bound gradually improves, instead of
valuating a large number of optimal candidate solutions that all fail
n phase 3.

The MIP-based heuristic is designed to utilize multiple threads when
unning on a multi-core computer. One thread is used to handle phases
and 2. Thus, as the 100 iterations of the route allocation model are

inished in phase 2, the model loops back to phase 1 and generates five
ew candidate routes. Next, 100 new iterations of the route allocation
odel are initiated. This procedure continues until a stopping criterion

s met. If the route allocation model cannot find a feasible solution
n any iteration, new candidate routes are generated. When the route
llocation model has failed ten consecutive times, no further candidate
olutions are added to the pool of candidate solutions. If the pool of
andidate solutions now becomes empty, the heuristic terminates. The
euristic will also terminate if a preset maximum running time is met.

All other available threads are allocated for evaluating candidate
olutions in phase 3. For each available thread, a candidate solution
s pulled from the pool of candidate solutions and solved using the
odel described in Section 3.4, prioritizing the solution with best

ower bound. The maximum running time is set equal to the remaining
vailable time of the global heuristic running time. In most cases, only
fraction of the maximum time limit is used for this. As in phase 2,
constraint is added to ensure that the objective value is less than

he so far best-known objective value. Most often, no feasible integer
olution will be found, as it requires an optimal solution with a lower
bjective value than the best-known objective. If the objective value
s better than the best objective value, the solution is stored, and the
est bound is updated. A new candidate solution is then evaluated,
nd this procedure repeats until a stopping criterion is met. There are
wo stopping criteria in phase 3. First, the procedure terminates if the
aximum running time is met. Second, the search is stopped if the
ool of candidate solutions is empty and both the models of phases 1
8

nd 2 fail to generate new solutions. While designed to utilize multiple
Table 1
Overview of trades.

Size Regions # Loading ports # Unloading ports

Small (S) US–Japan 4 1
Medium (M) Asia–Europe 5 5
Large (L) Europe–US 5 10

threads, the heuristic may be modified to run on a single thread by
solving the reduced model of phase 3 after each iteration in phase 2.

4. Computational study

We perform several computational experiments in order to evaluate
the performance of the MIP-based heuristic. The generation of the test
instances is explained in Section 4.1. In Section 4.2, we compare the
heuristic with the best results reported in Hansen et al. (2019). Finally,
in Section 4.3, we study the potential gains of a merger of two equally
sized companies that serve the same trade regions.

For the experiments, the MIP-based heuristic was implemented in
Java, while the different models of the algorithm were solved with
Gurobi Optimizer version 8.1.0. We have used a computer with two
Intel Xeon E5-2670v3 2.3 GHz processors and 64 GB of RAM for the
testing.

4.1. Test instances

To evaluate the performance of our heuristic, we use the instances
of Hansen et al. (2019). These instances represent realistic planning sit-
uations and are generated based on data provided by the case company.
The instances are grouped into sets where three parameters are used to
define each set:

1. The size of the trade (S, M, L), see Table 1.
2. The number of contracts (50 or 100). For each contract, the

following parameters are defined: Loading and unloading port,
total demand, and minimum and maximum pickup quantity,
i.e., size of each partial cargo. For some contracts, a maximum
transit time may be given. For the evenly spread contracts, a
minimum and a maximum number of partial cargoes are set.
40% of the contracts have evenly spread requirements, 20% have
transit time requirements, while the remaining contracts do not
have any specific service requirements.

3. The service level requirement 𝐿 with regards to the evenly
spread of the contracts (N, M, H). For the instances with no
service level requirement (N), the evenly spread constraints are
relaxed by setting 𝐿 to a large value. For the medium (M)
and high (H) service level instances, a restricting service level
threshold 𝐿 is set for each instance where lower values of 𝐿 give
a higher service level, see constraint (34).

The combination of three trade sizes, two amounts of contracts, and
three service levels results in 18 sets of instances. Each set contains
five instances, resulting in a total of 90 test instances, i.e., 30 instances
for each of the trades shown in Table 1. The sets are named according
to the parameters used in the instance generation in the format’size-
contracts-service level’. Hence, set S-100-M refers to the set of instances
belonging to the small trade, 100 contracts, and a medium service level
requirement. The five instances within this set are labeled S-100-M-n,
where n is a number between one and five. The service level threshold
𝐿 is instance specific and is set in the following way for the high service
level (H): First, a given instance is solved (with the MIP-based heuristic)
without any service level restriction (N). The number of vessels used in
the optimal solution, 𝑁∗, is recorded. Next, a new constraint is added to
the problem, limiting the number of vessels used in any solution to 𝑁∗.

Finally, the problem is solved once more, with a new objective function:
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Table 2
Computational results for a comparison of the optimization models and the heuristic.

Set of instances VoyMod (1800 s) VoyMod (10,800 s) MIP-based heuristic (1800 s)

Sol time # Feasible Gap% Sol time # Feasible Gap% Sol time # Feasible Gap% Worse Equal Better Rel.imp.% Cost per contract

S-50-N 4.2 5 0.0 4.2 5 0.0 0.6 5 0.0 0 5 0 0.0 75.0
S-50-M 9.8 5 0.0 9.8 5 0.0 2.5 5 0.2 1 4 0 0.2 76.4
S-50-H 23.1 5 0.0 23.1 5 0.0 5.0 5 4.0 2 3 0 3.9 85.3
S-100-N 9.7 5 0.0 9.7 5 0.0 0.8 5 0.0 0 5 0 0.0 38.0
S-100-M 26.2 5 0.0 26.2 5 0.0 14.0 5 0.0 0 5 0 0.0 39.3
S-100-H 46.1 5 0.0 46.1 5 0.0 18.0 5 1.1 2 3 0 1.0 42.1
M-50-N 198.1 5 0.0 198.1 5 0.0 55.8 5 0.0 0 5 0 −0.4 129.1
M-50-M 868.0 5 0.0 868.0 5 0.0 946.9 5 0.2 1 4 0 −0.3 131.2
M-50-H 1800.0 5 4.6 6 154.8 5 4.1 1800.0 5 9,6 3 0 2 5.1 156.6
M-100-N 555.1 5 0.0 602.5 5 0.0 55.8 5 0.0 0 5 0 0.0 66.9
M-100-M 1754.0 5 1.9 4 870.3 5 0.3 571.9 5 0.3 0 1 4 −1.5 67.9
M-100-H 1800.0 1 81.7 10 799.9 5 19.0 1800.0 5 20.8 0 0 5 −1.5 83.4
L-50-N 1800.0 5 2.4 7 311.8 5 1.5 1498.4 5 2.1 3 1 1 −0.2 139.2
L-50-M 1800.0 5 14.1 10 800.0 5 6.9 1800.0 5 6.3 0 0 5 −6.6 144.1
L-50-H 1800.0 1 87.0 10 800.0 2 69.8 1800.0 5 26.0 0 0 5 −10.0 175.0
L-100-N 1484.5 5 1.7 8 078.3 5 1.5 1108.6 5 1.5 1 2 2 −0.2 74.6
L-100-M 1800.0 3 49.9 9 637.1 4 28.5 1800.0 5 5.9 0 0 5 −10.7 76.8
L-100-H 1800.0 0 100.0 10 800.0 0 100.0 1440.8 4 41.9 0 1 4 – 92.2
Avg./Sum 976.6 4.2 19.1 4 502.2 4.5 12.9 817.7 4.9 6.7 13 44 33 −1.2 94.2
min 𝐿 =
∑

𝑐∈ 𝑠𝑐 , for each instance. As such, the values of 𝐿 for the
high service level instances are the best possible service level that can
be offered using 𝑁∗ vessels. The medium service level threshold is
set in the following way: 𝐿𝑀 = 𝐿𝐻 + (𝐿𝑁 − 𝐿𝐻 )∕3, where 𝐿𝑁 and
𝐻 is the service level threshold for no service level and high service

evel, respectively. The vessels’ characteristics are provided by the case
ompany, and all vessels may visit all ports in the test instances, i.e., no
hallow water or draft limitations. For all test instances, the planning
orizon is set to 30 days. Within this time limit, all sailings must begin.
e refer to Hansen et al. (2019) for further details on the test instances.

.2. Computational results

To test the capabilities of the MIP-based heuristic, we have con-
ucted computational experiments on all 90 test instances. Hansen
t al. (2019) present two models for solving the problem, namely
he vessel- and the voyage-model. Thereby, the vessel-model is based
n a four-index decision variable 𝑤𝑖𝑗𝑘𝑠 whereas the voyage-model is

based on a five-index decision variable 𝑤𝑖𝑗𝑣𝑘𝑠. However, despite having
more decisions variables, the results show that the voyage-model,
hereafter referred to as VoyMod and which corresponds to the model
presented in Section 2, outperformed the vessel-model in computational
experiments. Hence, we only compare the results from VoyMod solved
with the commercial solver with the results from the heuristic. The
maximum running time used in Hansen et al. (2019) was 10,800 s
(3 h) per instance. For the heuristic, we set a maximum running time,
including the time for all three phases, of 1800 s (0.5 h). To evaluate
the heuristic’s performance in a fair way, we also consider the results
achieved by VoyMod after a running time of 1800 s. The corresponding
results for all sets of test instances are summarized in Table 2. For
each set of instances, we report the average solution times over the
five instance (‘Sol time’), the number of instances for which we have
obtained feasible integer solutions (‘# Feasible’), and the relative gap of
the obtained solutions. The gap is computed for all methods as follows:

Gap =
best solution - best lower bound from VoyMod after 10,800 s

best lower bound from VoyMod after 10,800 s

To further analyze the heuristic solutions, we present five additional
easures for them in Table 2. Columns ‘Worse’, ‘Equal’, and ‘Better’

how the number of instances per set where the quality of the heuristic’s
olutions is worse, equal, or better compared to the solutions of the
ptimization model under an identical runtime limit of 1800 s per
9

instance. Column ‘Rel.imp.%’ shows the relative improvement of the
heuristic solutions over the solutions of the optimization model, where
negative values indicate that a heuristic solution has lower cost than
the non-optimal solution achieved from solving the model under the
given runtime limit. This measure is only computed in case that both
approaches deliver an integer feasible solution, which is why no value
is reported for instance set L-100-H where the model does not deliver
a single feasible solution. Finally, column ‘Cost per contract’ shows
the average logistics cost per served contract in the solutions of the
heuristic.

For the sets of instances based on the small trade, all 30 instances
within these sets are solved to optimality by VoyMod. The heuris-
tic finds the optimal solution for 25 of these instances. The average
computational time used by the heuristic is 1/3 of VoyMod, with
an average gap of 0.9%. On the medium-sized trade, the heuristic
performs clearly better than VoyMod under the same running time
limit of 1800 s, though with a few exceptions. The average gap is
14.7% for VoyMod and only 5.2% for the heuristic, where the heuristic
has a clear advantage in the most challenging medium-sized instances
of set M-100-H. Out of the 30 instances for the medium trade size,
the optimal solution is known for 22 as obtained by VoyMod (10,800
s). The heuristic finds 18 out of these 22 optimal solutions. Finally,
for the largest trade, the heuristic outperforms VoyMod even more
clearly. Here, the average gaps are 42.5% for VoyMod and13.9% for
the heuristic. Only six large instances are solved to optimality by
VoyMod, and the heuristic finds the optimal solution to four of these.
Furthermore, the MIP-solver does not even find feasible solutions for 15
instances with a runtime of 1800 s and nine instances with a runtime
of 10,800 s whereas the heuristic fails for only one single instance.
From columns ‘Worse’, ‘Equal’, and ‘Better’, we find that the heuristic
solutions are worse in only 13 cases, equally good in 44 cases, and
better than the optimization model’s solutions in 33 cases. In more
detail, for the small instances the heuristic finds the same optimal
solution as the optimization model for 25 out of 30 instances. For the
medium instances, it even finds 11 better solutions in contrast to only
four worse solutions. For the largest instances, the heuristic clearly
reveals its advantageousness by producing better solutions in 22 out
of 30 cases. This finding is supported by the relative improvements of
the heuristic solutions, which reveal an average relative cost reduction
of 1.2% over all instances. We observe only four instance sets where
the heuristic performs on average worse than the optimization model
(positive values in column ’Rel.imp.%) whereas it provides solutions
of lower average cost for nine instance sets. In particular the solutions
to the largest instances reveal significant cost savings of up to 10.7%
(instance set L-100-M).
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Table 3
Average results, grouped by service level.

Set of instances VoyMod (1800 s) VoyMod (10,800 s) MIP-based heuristic (1800 s)

Sol time # Feasible Gap% Sol time # Feasible Gap% Sol time # Feasible Gap%

*-*-N 675.3 30 0.7 2700.8 30 0.5 453.3 30 0.6
*-*-M 1043.0 28 11.0 4368.6 29 5.9 856.0 30 2.1
*-*-H 1211.5 17 45.5 6437.3 22 32.2 1144.3 29 17.2
Average 976.6 25.0 19.1 4502.2 27.0 12.9 817.9 29.7 6.7

The asterisks (*) denote all instances within a certain set.
Eventually, column ‘Cost per contract’ shows the cost increase per
served contract under stricter service levels, which reveals to a com-
pany the marginal cost of promising such service quality features to
the customers. We also observe that the cost per contract reduces sig-
nificantly when turning from 50 contracts to 100 contracts for a same
trade, which reveals substantial economies of scale for the solutions.
The cost per contract also confirms the good quality of the heuristic
solutions. For example, the cost per contract increases by about 21%
when turning from M-50-N to the stricter service level of M-50-H where
the lower bound gap of the heuristic solutions for M-50-H is 9.6%.
When turning from L-100-N to L-100-H the cost per contract increases
by a similar percentage value (24%) even though the lower bound gap
of L-100-H is as high as 41.9%. This is a strong indicator that the large
gaps are caused by a weak lower bound whereas the heuristic solutions
are of consistently high quality even for the largest instances.

Table 3 shows the average results where instances are grouped by
service level. Recall that the only difference between instances S-50-
N-n, S-50-M-n, and S-50-H-n is the service level threshold, given by
the parameter 𝐿. A lower value of 𝐿 implies a higher service level,
i.e., more evenly spread services of the partial cargoes for the different
contracts. From the results in Table 3, we see that the service level
significantly affects all three performance measures: solution times,
number of feasible solutions, and gaps. We see that all methods perform
well for the instances without any service level requirement (*-*-N),
where the heuristic has a slight advantage with respect to solution
time. For the medium service level instances (*-*-M), the solution
times increase for all solution methods. The heuristic provides feasible
solutions to all instances, with both considerably lower average gap and
solution time than VoyMod.

We see that for the high service level instances (*-*-H), the heuris-
tic provides feasible solutions to 29 of the 30 instances within the
group. Within the same running time limit, VoyMod found only 17
feasible solutions. Furthermore, the heuristic achieves a much lower
average gap compared to VoyMod for the high service level instances
even though the gap significantly higher than for no requirement and
medium service level instances. An inferior lower bound may possibly
explain some of this larger gap. Additionally, we expect these instances
to have very few feasible solutions within a reasonable range of the
optimal solution value. Recall from Section 1 that for a given high
service level instance, we use the best possible service level that can
be offered using 𝑁∗ vessels, i.e., the number of vessels used in the
optimal solution for the corresponding no service level instance. For
many instances, the heuristic is able to find a solution using 𝑁∗ vessels.
However, for some of the instances, 𝑁∗ + 1 vessels are used, which
results in large gaps.

Overall, the heuristic is shown to be a very good solution method
for the STSRSP. It provides average gaps of 0.9% and 5.2% compared to
the lower bounds of the commercial solver for the small and medium in-
stances, respectively, compared to 0.0% and 14.7% for VoyMod. For the
largest instances, the heuristic excelled, with impressive computational
performance concerning both time and solution quality. For some of the
instances with very high service level demands, the heuristic could not
find near-optimal solutions. However, for a more normal service level,
the heuristic achieved an average gap of 2.1%, which is considerably
lower than VoyMod, with 11.0% and 5.9% for a computational time
limit of 1800 s and 10,800 s, respectively.
10
Fig. 3 illustrates the cost breakdown and the average number of
vessels (shown on top of each bar chart) for all the different instance
sets. In average over all instances, the total cost is distributed as
37% sailing (fuel) costs, 18% port costs, and 45% charter costs. More
interestingly, these results tell us that more ships are used to achieve a
high service level, which gives an increased charter costs of 27.4% for
the high service level instances (i.e., *-*-H) compared to the medium
ones (i.e., *-*-M). If we look further into the solutions, we also see that
the vessels in the high service level instances have more waiting and
sail at somewhat lower speeds to meet the time slots at the different
ports (i.e., to meet the strict service requirements). We can also note
from Fig. 3 that the average port costs are 14.4% higher for the high
service level instances compared to the medium ones. This is because
more port calls are needed to maintain the high service level. All
this information could be very useful for the case company when
negotiating new contracts with potential customers, as they can now
quantify the cost of having strict service level requirements.

4.3. Merger case

At the time of this study, the case company was in the process
of merging with another equally sized RoRo-shipping company. The
main motivation for this was to achieve economies of scale, especially
since the two shipping companies were servicing several of the same
trades and ports. Therefore, it was of great interest to see whether the
merged company could service given trades and their combined cargo
contracts along these trades more efficiently than the two companies
separately, e.g., by using a smaller number of vessels and voyages. In
this case study, the MIP-based heuristic is used to evaluate possible
merger scenarios, which is one of the main reasons for developing the
heuristic, as it was shown in preliminary testing that VoyMod struggled
with finding feasible solutions to these large-scale merger instances.

The case is to evaluate the potential gains of merging two equally
sized companies with regards to operating costs, which was a relevant
study for the case company at the time this research was started.
Both companies operate similar trades and transport similar amounts of
cargo using the same types of vessels. We have generated 30 instances
to evaluate this merger case’s potential gains. Each instance was created
as follows: First, two separate instances 𝐼𝐴 and 𝐼𝐵 were generated,
one for each of the companies A and B, respectively. Next, a merged
instance 𝐼𝑀 was generated by combining instances 𝐼𝐴 and 𝐼𝐵 . For ex-
ample, the merger instance ‘‘Merger-S-200-M’’ was created by merging
two instances of type S-100-M, representing the instances for each of
the two separate shipping companies within a single merged instance.
Note that while the trades size (S) and the service level (M) are the
same, the number of contracts in the merged instances is doubled.
The service level for these instances is set to medium. All further
instance data is generated using the procedure from Hansen et al.
(2019). The potential gains of a merger are evaluated by comparing the
objective values obj(𝐼𝑀 ) (Merger) and obj(𝐼𝐴)+obj(𝐼𝐵) (Individually).
The results are presented in Table 4, reported as the cost reduction in
percentage of the merger solution compared to the individual solutions,
defined as follows:

Cost reduction (%):
obj(𝐼𝑀 ) − (obj(𝐼𝐴) + obj(𝐼𝐵))
obj(𝐼𝐴) + obj(𝐼𝐵)
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Table 4
Relative reduction in operating costs caused by a merger.
Set of instances Total costs Charter costs Sailing costs Port fees

Merger-S-100-M −21% −17% −20% −36%
Merger-S-200-M −24% −22% −23% −36%
Merger-M-100-M −8% −9% −3% −18%
Merger-M-200-M −8% −6% −5% −18%
Merger-L-100-M −14% −14% −13% −15%
Merger-L-200-M −18% −17% −19% −18%

Average −16% −14% −14% −23%
Fig. 3. Cost breakdown and average number of ships (number above the stacked bars).
Fig. 4. On top, solutions to two separate instances are shown. At the bottom, a solution to the corresponding merger-instance is shown. Each circle represents a port visit. The
number above each arrow gives the ship’s capacity utilization on the sailing leg between the ports.
The results show that the merger of companies A and B gives an av-
erage cost reduction of 16% for the merger instances. For the instances
based on the smallest trade, the cost savings are on average 22%. For
many of these small instances, we observe that the merger-solutions
use one vessel/voyage less compared to the sum of vessels/voyage
used when solving for each company individually. Fig. 4 shows an
example of such a solution to an instance of type Merger-S-100-M.
When solved for the companies individually, we see that each company
11
deploys three vessels along three voyages. Company A skips only two
port calls, company B does not skip a single port call. At the bottom of
Fig. 4, we show the solution with coordinated freight operations as they
would result from the merger. Here, the merged company fulfills the
same demands, with the same service level requirements, and the same
planning horizon. We see major differences between the solutions. First,
the merged company uses one less vessel/voyage for transporting the
goods. One reason for this is that the merger solution uses other vessels
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Table A.1
Notation used in the model.

Mathematical sets:

 Set of available vessels.
 Set of nodes.
𝑘 Set of nodes that can be visited by vessel 𝑘.
 𝑃 Set of ports along the trade route.
 𝑃

𝑘 Set of ports that can be visited by vessel 𝑘.
 Set of feasible arcs.
𝑘 Set of feasible arcs for vessel 𝑘.
 Set of given contracts for cargoes to be transported along the trade during the planning horizon.
𝑇 Set of contracts with transit time restrictions.
𝐸 Set of contracts with evenly spread requirements.
𝐿
𝑖 Set of cargoes that are to be loaded at port 𝑖.

𝑈
𝑖 Set of cargoes that are to be unloaded at port 𝑖.

 Set of product types.
𝑆
𝑝 Set of product types that can be stored in the same space as product type 𝑝.

 Set of discrete speed alternatives.
 Set of voyages.
𝑆
𝑣 Set of voyages succeeding voyage 𝑣.

Parameters:

𝐾𝑉
𝑘𝑝 Capacity for product 𝑝 on ship 𝑘.

𝐷𝑐𝑝 Demand for the whole planning period for product type 𝑝 for contract 𝑐.

̄
𝑄𝑐𝑝 Minimum pickup quantity for product type 𝑝 for contract 𝑐.
�̄�𝑐𝑝 Maximum pickup quantity for product type 𝑝 for contract 𝑐.

̄
𝑃𝑐 Minimum number of pickups of contract 𝑐.
𝑃𝑐 Maximum number of pickups of contract 𝑐.
𝑇 𝑆
𝑖𝑗𝑘𝑠 Sailing time from a node (port) 𝑖 to node (port) 𝑗 for vessel 𝑘 using speed alternative 𝑠.

𝑇 𝐴
𝑘 The time vessel 𝑘 becomes available at its origin.

𝑇 𝑃
𝑖 Piloting time at port 𝑖.

𝑇𝐻
𝑝 The time used to handle, i.e. load or unload, one unit of product type 𝑝.

𝑇 𝑇
𝑐 Maximum transit time for contract 𝑐.

𝑇 𝑃𝐻 Length of the planning horizon.
𝐿 Evenly spread service level threshold.
𝑜(𝑘) Initial position of vessel 𝑘.
𝑑(𝑘) Artificial ending position of vessel 𝑘.
𝑙(𝑐) Loading port of contract 𝑐.
𝑢(𝑐) Unloading port of contract 𝑐.
𝐶𝐶
𝑘 Daily charter rate for vessel 𝑘.

𝐶𝑉
𝑖 Cost of calling port 𝑖.

𝐶𝑆𝐶
𝑖𝑗𝑘𝑠 Sailing and chartering costs corresponding to the piloting and sailing time from node 𝑖 to 𝑗 with

vessel 𝑘 using speed alternative 𝑠.

Big-M parameters:

𝑀𝐶
𝑝 The maximum capacity of product type 𝑝, for all vessels 𝑘.

𝑀𝑇
𝑐 Upper bound on the maximum time a ship may use between nodes 𝑙(𝑐) and 𝑢(𝑐), when transporting

contract 𝑐.
𝑀𝑆

𝑖𝑘 Upper bound on the maximum time ship 𝑘 may use from its origin 𝑜(𝑘) to port 𝑖.
𝑀𝐿

𝑘 Upper bound on the latest time ship 𝑘 may arrive at its artificial destination 𝑑(𝑘).
𝑀𝐸

𝑐 Upper bound on the latest time contract 𝑐 may be serviced plus 𝑇 𝑃𝐻 minus the earliest time contract
𝑐 may be serviced.

Decision variables:

𝑥𝑖𝑗𝑣 1 if voyage 𝑣 uses the arc between nodes 𝑖 and 𝑗, 0 otherwise.
𝑦𝑣𝑘 1 if vessel 𝑘 sails voyage 𝑣, 0 otherwise.
𝛿𝑣𝑐 1 if voyage 𝑣 serves contract 𝑐, 0 otherwise.
𝑤𝑖𝑗𝑣𝑘𝑠 Weight of speed alternative 𝑠 for vessel 𝑘 on the arc (𝑖, 𝑗) on voyage 𝑣.
𝑙𝑖𝑗𝑣𝑝 Load of product type 𝑝 on voyage 𝑣 on the arc (𝑖, 𝑗).
𝑞𝑣𝑐𝑝 Quantity of product 𝑝 in contract 𝑐 that is picked up on voyage 𝑣.
𝑡𝑖𝑣 Start time of service at node 𝑖 on voyage 𝑣.
𝑡𝐻𝑊
𝑘 Total time used on handling and waiting by vessel 𝑘.
𝑧𝑣𝑤𝑐 1 if voyage 𝑤 is the next voyage after voyage 𝑣, picking up contract 𝑐, 0 otherwise.
𝜙𝑛𝑐 1 if contract 𝑐 is picked up 𝑛 times during the planning horizon, 0 otherwise.
𝑠𝑐 Maximum number of days contract 𝑐 deviates from the evenly spread requirement.
from the available pool of vessels, increasing the average capacity per
vessel by 8% compared to the vessels used in the individual solutions.
This increased capacity comes at the cost of higher charter and sailing
costs per distance unit. Still, the total charter and sailing costs are
reduced by 19% in the merger case because of the reduced number of
used vessels. Second, the merger drastically reduces the number of port
calls by about 40%. This reduction furthermore reduces the overall time
spent on sailing and piloting at ports, reflected in both the charter and
sailing costs. The total cost reduction for this specific merger solution
is 22%.
12
For the medium and large instances, the merger-solutions deploy the
same number of vessels along the trade. However, we still see a signif-
icant reduction in total costs of about 8% for medium sized instances
and about 14% to 18% for large instances. There are several reasons
for this: fewer port visits, shorter voyage lengths, lower sailing speeds,
and less time spent on piloting. Of the three cost types distinguished in
the table, the highest relative reduction is achieved on port call fees.
However, as these fees only contribute about 10% to 15% to the total
operating costs, charter and sailing costs have a higher impact on the
total costs.
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Given the prerequisites for this case study, it is clear from our
analysis that there are significant gains of merging companies A and
B with regards to operational costs. However, the potential gains from
such a merger depend also on several other factors not modeled here,
which may be affected in either direction. For example, fewer port calls
may also reduce the total administrative costs associated with this.

5. Conclusions

In this paper we have presented a solution method for a single trade
ship routing and scheduling problem for a RoRo shipping company. The
goal is to determine which vessels to deploy along the trade within
the planning horizon to fulfill the company’s long-term contractual
obligations at minimum cost. To solve this problem, we proposed a
three-phase MIP-based heuristic. The heuristic solves two path-flow
models in the first two phases to generate potential routing solutions.
Next, these solutions are sent to a mathematical model that attempts to
create a feasible schedule while minimizing costs. The computational
results show that the heuristic provides high-quality solutions to in-
stances that represent real planning situations in a short amount of
time. The heuristic is especially useful for instances where commercial
solvers are even unable to provide feasible solutions.

One important reason for developing this heuristic was to evaluate
a possible merger case, which induced the need for solving larger
instances than what is typically solved in this industry. We considered
a potential merger of two equally sized companies and evaluated the
potential gains of planning for both companies combined, compared
to individually planning for each company. The results showed that
the merged company could achieve an average operational cost reduc-
tion of 16% for this specific case. With operational costs of several
million USD within each planning period, these potential savings are
substantial.

CRediT authorship contribution statement

Jone R. Hansen: Conceptualization, Methodology, Software, For-
mal analysis, Investigation, Validation, Writing – original draft. Kjetil
Fagerholt: Conceptualization, Methodology, Formal analysis, Investi-
gation, Writing – review & editing. Frank Meisel:Methodology, Formal
analysis, Investigation, Writing – review & editing.

Appendix. Notation used in the model

See Table A.1.
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