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a b s t r a c t

The accurate detection of the mobile context information of public transportation vehicles and their
passengers is a key feature to realize intelligent transportation systems. A topical example is in-vehicle
presence detection that can, e.g., be used to ticket passengers automatically. Unfortunately, most existing
solutions in this field suffer from low spatiotemporal accuracy which impedes their use in practice.
In previous work, we addressed this challenge through a deep learning-based framework, called
DeepMatch, that allows us to detect in-vehicle presence with a high degree of accuracy. DeepMatch
utilizes the smartphone of a passenger to analyse and match the event streams of its own sensors
with the event streams of counterpart sensors provided by a reference unit that is installed inside
the vehicle. This is achieved through a new learning model architecture using Stacked Convolutional
Autoencoders to compress sensor input streams by feature extraction and dimensionality reduction
as well as a deep convolutional neural network to match the streams of the user phone and the
reference device. The sensor stream compression is offloaded to the smartphone, while the matching is
performed in a server. In this paper, we introduce DeepMatch2. It is an amended version of DeepMatch
that reduces the amount of data to be transferred from the user and reference devices to the server
by the factor of four. Further, DeepMatch2 improves the already good accuracy of DeepMatch from
97.81% to 98.51%. Moreover, we propose a travel inference algorithm, based on DeepMatch2, to detect
the duration of whole passenger trips in public transport vehicles with a high degree of precision. This
is needed to create intelligent and highly reliable auto-ticketing systems. Thanks to the high accuracy
of 98.51% by DeepMatch2, the inferences can be carried out with a negligible error rate.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, the rapid development of mobile technolo-
ies, IoT and cellular network infrastructures has led to new
nprecedented opportunities for making public transportation a
ery environment-friendly mode of travelling more attractive.
he fact that more than 3.8 billion people in the world own
martphones [1], provides a very worthwhile research and devel-
pment area already utilized by public transportation providers
n many areas of the world, e.g., in Northern Europe. For instance,
martphone applications, that provide passengers the option to
uy tickets and offer them other context-aware services such as
ath-finding and travel planning, are quite common nowadays.

∗ Corresponding author at: Norwegian University of Science and Technology
NTNU), Trondheim, Norway.

E-mail addresses: magnukop@ntnu.no (M. Oplenskedal),
errmann@ntnu.no (P. Herrmann), amirhost@ifi.uio.no (A. Taherkordi).
Please cite this article as:M. Oplenskedal, P. Herrmann and A. Taherkordi,DeepMatch2:
Information Systems (2021) 101927, https://doi.org/10.1016/j.is.2021.101927.

https://doi.org/10.1016/j.is.2021.101927
0306-4379/© 2021 The Authors. Published by Elsevier Ltd. This is an open access art
However, the next generation of context-aware service within
public transportation will require data sources providing an ex-
tremely high degree of precision and sophistication. In particular,
one may consider the mobile context, i.e., all kinds of spatiotem-
poral properties of the participating passengers and vehicles [2].
For example, if we know whether a person is inside a vehicle
or not at a certain time and place, services such as dynamic
vehicle-route planners based on passenger load and route op-
timization can be realized. We can detect this kind of mobile
context by precise in-vehicle detection systems. These systems can
also make the ticketing of passengers considerably simpler. In to-
day’s smartphone applications, the passengers have to remember
buying tickets before starting a ride. Further, they often need in-
depth knowledge about the ticketing system to buy the correct
ticket for the planned trip. In contrast, using a highly accurate
in-vehicle presence detection solution, a so-called Be-In/Be-Out
(BIBO) system [3], tickets can be issued automatically to the
passengers based on the exact duration of their journey. This way,
A comprehensive deep learning-based approach for in-vehicle presence detection,

the passengers can conveniently enter and leave public transport
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ehicles without having to deal with planning and purchasing
ickets in advance.

In-vehicle presence detection has attracted the attention of
he research community and industry. Early approaches like [4,5]
tilize communication systems such as Radio Frequency Identi-
ication (RFID) or Bluetooth Low Energy (BLE). While travelling,
emporary connections are built up between the user’s mobile de-
ice and certain fixed vehicle equipment to detect the passengers
resence inside the vehicle. Other approaches, for instance [6,
], analyse event streams from smartphone sensors for certain
roperties. Modern smartphones are equipped with a variety
f sensors such as magnetometers, accelerometers, gyroscopes,
PS, and barometers which offer unprecedented opportunities
o analyse mobile context information from the user’s environ-
ent. Finally, machine learning techniques have recently been

everaged to analyse sensor events for detecting mobile contexts,
.g., [8]. We will argue later that the accuracy of works within the
bove categories is still not good enough to make them suitable
or auto-ticketing in practice.

To realize in-vehicle presence detection with a high degree
f accuracy, in our previous work, we proposed a deep learning-
ased framework, called DeepMatch [9]. Each vehicle is equipped
ith a stationary Reference Device (RefDev) (e.g., an Android
hone). We record the streams of sensor events gauged in both,
he RefDev and the smartphones of potential passengers. In a so-
alled in-vehicle presence detection process, the stream generated
n a smartphone is then compared with the one from the RefDev
o find out if both devices are in the same vehicle. If that is the
ase, the owner of the smartphone is necessarily a passenger
n the vehicle containing the stationary RefDev and can, e.g., be
illed for the journey. The in-vehicle presence detection process
s realized by data compression using Stacked Convolutional Au-
toencoders as well as a deep neural networkmatching component
that matches compressed sensor samples to find out if they
were taken from within the same vehicle. The data compression
is offloaded to the users’ smartphones and reference devices,
while the matching process is performed in a server that can
be external, e.g., in a cloud, or within the vehicle realizing an
Edge computing solution [10]. By training both parts of our model
together, i.e., the compression and matching parts, we achieve
that the matching process does not need the full smartphone and
reference data for its comparison but can rely on the compressed
versions.

Since the design and development of DeepMatch, we continu-
ously iterated and improved our deep learning model to improve
its efficiency and accuracy. Moreover, we enhanced the original
framework with inference algorithms that allow us to deduce
the period of time that passengers travel in public transportation
ith a very high accuracy. DeepMatch lacks this feature which

is highly needed, e.g., in automatic ticketing. The result of the
improvements is a new version of our deep learning-based frame-
work that we call DeepMatch2. It is introduced in this paper. In
contrast to the original framework, DeepMatch2 incorporates the
ollowing amendments:

• The efficiency was enhanced by reducing the amount of data
necessary for in-presence detection by a factor of four, i.e.,
from previously 512 float values in DeepMatch to just 128
float values in DeepMatch2.

• Considering accuracy, we gradually amended the original
layer structure, and for each change, trained and evaluated
the results using the designated performance metrics. In
spite of the concomitant reduction of the size of the input
parameters, we further managed to increase the accuracy of
DeepMatch2 to 98.51% in comparison to the accuracy value

of 97.81% in DeepMatch.

2

• In [9], we provided only a short sketch about how one
can use the results of DeepMatch to detect whole trips of
passengers in public transport vehicles with a high degree of
precision. In this paper, we go much deeper into this topic
and discuss travelling user inference systems that are based
on DeepMatch2 and can infer if and for which period of time
a passenger makes a trip in a public transportation vehicle
with a very low error rate.

The rest of this paper is organized as follows. In Section 2,
we discuss existing solutions followed by the presentation of
the original method DeepMatch in Section 3. In Section 4, we
elaborate on the improvements made in DeepMatch2. Thereafter,
we report the experimental evaluation results for the variants of
our deep learning model and some baseline methods in Section 5.
The travelling user inference algorithms that allow us to detect
whole passenger trips, are introduced in Section 6. Finally, we
conclude our paper in Section 7 with a discussion on the results
gained so far and a look at our future plan.

2. Related work

In-vehicle presence detection solutions can be classified into
three different categories. The first category is focused purely
on utilizing communication technologies, while the second one
is based on analysing mobile sensor events to detect in-vehicle
presence. The third category consists of some recent works that
leverage deep learning to analyse mobile contexts. In the follow-
ing, we discuss each category in detail.

2.1. Communication technology-based solutions

Early in-vehicle presence detection systems were imple-
mented using Radio Frequency Identification (RFID) with active
tags carried by the passengers, and a single communication unit
in the centre of a vehicle. To track the RFID devices, contactless,
mid-range radio-based identification and communication pro-
tocols were used. One of the first solutions was EasyRide [4],
developed by the Swiss Railways Association. Allfa [11] is another
RFID-based system, tested in busses, trams and trains in Dresden,
Germany, for half a year. In total, the system covered about
120,000 trips carried out by 2000 users. Unfortunately, testing
these systems proved that they were too unreliable to be used for
in-vehicle presence detection in practice. The main reason for that
is the weak transmitter strengths of the active RFID-tags, which
makes it difficult to detect them reliably in all areas of the vehicle.
As discussed in [4], this affords not only one but a vast number
of readers in the vehicle, at least one at each door. But even that
does not seem to be sufficient to make the passenger assignment
sufficiently predictable. For instance, Allfa has an accuracy rate of
just 68% making it unsuitable for practical use.

Other approaches focus on Bluetooth Low Energy (BLE)-based
automated in-vehicle detection. Compared with active RFID ap-
proaches with battery-powered tags, BLE-based BIBO systems
can utilize smartphones with additional monitoring options, the
possibility to measure signal strengths for proximity determi-
nation, larger distribution channels, etc. One of the early works
on Bluetooth-based public transport ticketing system was car-
ried out by the authors of [12]. Their system was in charge
of collecting only the source and destination of each passenger
journey. The first BLE-based solution is proposed in [3], where the
authors are cautiously optimistic that BLE might work for BIBO
systems. Nevertheless, the chassis of a vehicle does not limit the
accessibility of a BLE transmitter which makes it possible that
somebody close to it, e.g., a person in another vehicle, is wrongly
detected. On the other hand, objects in a vehicle may inhibit a BLE

connection such that devices in the vehicle may not be detected.
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his is confirmed by the authors of [13] who found out that BLE
s not well suited for indoor localization. As reasons preventing
onnections, they name the position of a device as well as human
ody obstacles like the hand carrying the device. The authors
f [14] suggest a ticketing system adding a custom profile on
op of the BLE specification to fulfil the payment procedure. In
EAT [5], a BLE-enabled smartphone communicates with devices
nstalled in the vehicles to track the journey for automatic pricing.
he main focus of the authors, however, is on security, perfor-
ance, and battery friendliness but not on the accuracy of the

n-vehicle presence detection. To conclude, BLE-based solutions
re also suffering from low accuracy values making them less
uited for in-vehicle presence detection scenarios.

.2. Mobile sensor data analytics-based solutions

Works in this category analyse the data of the sensors in
ser smartphones to detect mobile contexts in transportation.
he authors of [15] focus on context detection using only the
martphone barometer as it is independent of the phone’s po-
ition and orientation. They demonstrate that the barometer can
e applied to detect user activities of IDLE, WALKING, and VEHI-
LE at low-power. Likewise, in [16], user activities are classified
sing the barometer sensor on smartphones. This approach lever-
ges Bayesian networks, decision trees, and RNN as inference
odels to predict user action, e.g., riding or leaving a cable-
ar. The authors of [17] demonstrate how the pressure data
ollected from a smartphone barometer can be utilized to accu-
ately track driving patterns based on the pressure data collected
rom the smart phone’s barometer. By correlating pressure time-
eries data against topographic elevation data and road maps for
given region, a centralized server can estimate the possible

outes through which users have travelled. Another barometer-
ased mobile system is HybridBaro [7] that features a hybrid
lgorithm to adaptively utilize GPS data to increase the detection
ccuracy in flat areas. RoadSphygmo [18] uses the barometer in
martphones to detect traffic congestion. RideSense [6] is aimed
o match a passenger’s sensor trace against the traces of busses
o determine the riding and leaving times. The authors of [19]
resent a vertical location system for vehicles in metropolises.
n particular, they utilize the barometers and gravity sensors of
martphones to remedy the deficiency of vertical localization
uch as GPS. To achieve that, several novel algorithms are used
e.g., height and angle detection, relative height measurement,
nd tracking) to build a highly accurate detection system.
While better than RFID and BLE, the accuracy promised by the

pproaches mentioned above is still not good enough to fulfil the
emands of transportation systems. For example, the accuracy of
ideSense [6] collected from five bus lines over more than 20 h,
s between 84 to 98%. As pointed out in [9], only the uppermost
alue of 98% would be sufficient for using this technology in
ractice.

.3. Mobile sensor events and deep learning

Recently, deep learning has been leveraged to analyse sen-
or events for detecting mobile contexts. In [20], the authors
eport on the accuracy of models such as RNN, CNN, various
ybrid models, Restricted Boltzman Machines, and Autoencoders
ith respect to their ability to classify human activities from
ody-worn sensors. They conclude that, compared to traditional
attern recognition methods, deep learning reduces the depen-
ency on human-crafted feature extraction and achieves better
erformance by automatically learning high-level representations
f the sensor events. The authors also state that, from a technical
 s
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viewpoint, there is no model outperforming all the others in gen-
eral. Thus, they recommend to choose the models based on the
requirements of specific scenarios. DeepSense [8] uses CNN and
RNN to provide an estimation and classification framework for
car tracking with motion sensors and human activity recognition.
In [21], DeepSleepNet, a deep learning framework for automatic
sleep stage scoring based on electroencephalogram data, is pro-
posed. The authors show that the model automatically learns fea-
tures for different datasets without utilizing any hand-engineered
features. The model achieves an accuracy that is similar to the
state-of-the-art methods using hand-engineering. Some works in
this category focus on detecting the transportation mode using
machine learning techniques and sensors data on smartphones
such as [22,23]. From the ML-based stream matching perspective,
StreamLearner [24] is a distributed Complex Event Processing
(CEP) system proposed for scalable and low-latency event detec-
tion on streaming data that uses neural networks. It is mainly
designed for systems with multiple event sources causing diverse
patterns in the event streams. As a case study, the authors discuss
anomaly detection (i.e., finding abnormal sequences of sensor
events) in smart factories.

The important finding of most works in this category is that
deep learning can outperform hand-crafted feature extraction
methods when applied to mobile sensor event streams. This can
be used to deduce valuable information about the mobile context.
We aim to exploit this power of deep learning in DeepMatch2
to build a model capable of highly accurate in-vehicle presence
prediction solely based on sensor event streams. On the other
side, the limited number of works, yet carried out on machine
learning-based sensor streammatching, focus mainly on the qual-
ity aspects of stream matching, e.g., to provide high throughput.
In contrast to this paper, the efficiency and accuracy of these
approaches are only superficially discussed in most cases.

3. DeepMatch

As we will discuss later, our deep learning method Deep-
Match2 enhances its predecessor DeepMatch in both, in-vehicle
presence detection accuracy and in the amount of data transfer
needed. Nevertheless, the basic structures of DeepMatch and
DeepMatch2 are very similar. Therefore, we decided to introduce
the fundamentals for the architecture of both DeepMatch and
DeepMatch2 in this section. Thereafter, we discuss the changes
leading to DeepMatch2 in Section 4.

In the following, we start with a general overview of the
model architecture of our deep learning model, followed by a
discussion of the hardware and software settings, on which our
approach has been built. Thereafter, we describe how DeepMatch
conducts the analysis of the mobile data sensed, followed by the
design considerations and architecture of our learning model, and
a discussion on how the learning model is trained. Finally, we
present the design rationale and experimental settings behind the
DeepMatch deep learning model.

3.1. Overview

Fig. 1 depicts the equipment needed in a bus1 to realize our
approach. The bus is equipped with a Bluetooth Low Energy (BLE)
transmitter as well as a so-called Reference Device (RefDev). The
RefDev can be a smartphone mounted onto the bus or any other
kind of hardware providing the same type of sensors, that can be
found in a modern smartphone. These sensors include but are not
limited to accelerometers, magnetometers, gyroscopes, barometers,

1 The realization of DeepMatch in other types of public transport like
ubways, trams, or trains is similar.
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Fig. 1. DeepMatch bus scenario.
and GPS receivers. The passengers travelling with the bus carry
smartphones in which a special application is installed realizing
parts of the DeepMatch deep learning model.

The BLE-transmitter continuously transmits a special ID that is
unique to the bus it is installed in. Due to the low signal strength,
this signal can be only detected by devices that are either inside
the bus or nearby. When a passenger’s phone picks up the BLE-
transmitted signal for the first time, its operating system starts
the DeepMatch application. From that moment, the sensors of
the phone sample values that are forwarded to the deep learning
model of DeepMatch running in the smartphone application.
DeepMatch extracts relevant features from the sensed events and
compresses them through dimensionality reduction. Finally, the
compressed data are timestamped and tagged with the IDs of the
BLE-transmitters, the phone is currently receiving.

In a similar way, the RevDef is used to continuously stream
events from its own sensors and compresses them through Deep-
Match. The compressed data is also timestamped and tagged but,
in contrast to the user phones, only the tag of the BLE transmitter
installed in the same vehicle is used.

Both, the RevDef and the user phones send the compressed
sensor data to a server. Following the wishes of the public trans-
port operators, we may realize DeepMatch using different hard-
ware configurations. For instance, the server functionality can
be realized using a cloud provider. Alternatively, following the
principle of fog computing [10], it can be a unit locally installed
in the vehicle, e.g., together with the RevDef.

The server matches the data of the RevDef and the user
phones, that carry the same BLE-transmitter IDs and timestamps,
against each other by a special module of DeepMatch. If the
module reports a match, we assume that both datasets were
sensed within the same vehicle. Since the RevDef can be unam-
biguously allocated to a particular bus, we can then assume that
the smartphone and its carrier are in the same bus.

3.2. Hardware requirements and system settings

As mentioned above, all vehicles using DeepMatch to pro-
vide automated in-vehicle presence prediction, require both, a
BLE-transmitter and a Reference Device (RevDef). In contrast
to the communication technology-based approaches discussed
in Section 2, the BLE-transmitter is not directly used for in-
vehicle detection. Instead, we apply it to perform a coarse-grained
guess in which vehicle a passenger might be inside. In this way,
the server only needs to match the user data with those from
RefDevs, that are related to the sensed BLE ID received by the
user phone, and not with the data of all RefDevs in the transport
network. An additional advantage of this approach is that we can
reduce the time DeepMatch is required to run on a user phone.

Both Android and iOS provide the ability to awaken applications

4

in smartphones when detecting a BLE-signal with a pre-defined
ID. This provides us with the ability to run the application only if
the user is either very close to a vehicle, or inside it. Thus, both
computation overhead and battery consumption is at a minimum.

The authors of [25] show that BLE offers a good reliability
also in noisy in-house environments like those we might come
across in public transport vehicles. In their tests, at least 99.45%
of all packets were transmitted within the expected delay bounds.
Based on these numbers we expect that the phone of a passenger
receives a fair number of the packets broadcasted by the BLE-
transmitter within in the first seconds after entering the vehicle.
Therefore, DeepMatch will almost certainly be started timely.

As we discuss to greater detail in Section 5.3, we found out
through experiments, that using only the barometric sensor pro-
vides by far the best matching accuracy. Using DeepMatch alone
with the barometric sensor provides an accuracy of 97.81% while
no other combination of sensor data exceeds 80.82%. Moreover,
performance tests show that registering barometer events with a
frequency of 10 Hz incurs a very low battery consumption. The
battery drain on the phones we tried in our tests is between
15 and 25 mAh while continuously registering events from the
barometer. This equals a drain of between 0.6% and 0.8% of the
total battery capacity per hour. That is described more closely in
Section 5.8.

In the case that a vehicle enters a dead spot, i.e., an area with no
cellular network coverage, we temporarily store the compressed
data locally until connectivity is regained and the data can be
transmitted to the server for a delayed matching.

3.3. Mobile data analysis

The deep learning model performing the in-vehicle presence
prediction, i.e., the matching of sensor events, is trained on real
sensor events that were collected from Android-based smart-
phones in the public transport systems of the Norwegian cities
Oslo and Trondheim. In the following, we sketch the process of
collecting the data and converting it to training and evaluation
sets.

The datasets used to train the deep learning model were built
from sensor events gathered by the means of an Android appli-
cation, called Datacollector, that we developed for this purpose.
Datacollector registers events from all sensors available in the
phone, timestamps them, and stores them locally as data points.
Further, we can use the application to upload the data points to
our Data Analysis centre. There, the data points can be processed
further into training and testing samples that are used to train
and evaluate our deep learning network.

To allow the parallel collection of sensor data by several
phones, multiple devices running the Datacollector can be con-
nected using a simple client–server communication protocol. This
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llows us to synchronize the clocks of the various phones. Further,
e can tag all events registered by the connected devices with
unique trip ID. When a data collection session is initiated, the

rip ID is generated by the initiating device and propagated to all
evices taking part in the collection.
Android provides developers with a sensor framework where

he sampling rate of each available sensor can be separately
efined. The effective sampling rate, however, comes usually with
standard deviation of one to two milliseconds. In addition, even
hough each sensor is collecting events at the provided sampling
ate, there is often a shift of the exact sensing times (e.g., while
oth, the barometer and accelerometer sensors collect data every
0 ms, the exact points of time, the samplings take place, deviate
rom each other by a few milliseconds). On the other hand, two
ata streams can be matched best when the sensors in both
evices carry out their sampling steps at exactly the same points
f time t . To dissolve this contradiction between precise sam-
ling times and the aforementioned shortcomings of the Android
ramework, we implemented an interpolation technique in our
ata Analysis tool which is described in detail in [9].
The deep learning model in DeepMatch was created to sup-

ort travel times of varying lengths, and to reduce the amount
f data to be transmitted from the devices in the public trans-
ort vehicles to the server, as well as the number of operations
equired by the server. To fulfil these requirements, we train our
odel to perform predictions on smaller segments of the collected
vents. In Section 5.4, we report the results from training the
odel on segment sizes of five, ten and 15 s. As elaborated in
ection 5.4, our tests showed that the model being trained on
egments consisting of ten seconds of barometer sensor events
rovides the best results.

.4. Design and architecture of the learning model

The goal of the deep learning model of DeepMatch is to
redict the in-vehicle presence of a device by matching its sen-
or events against the sensor events generated by the on-board
eference Device (RefDev). The deep learning model consists of
hree modules, an encoder, a decoder, and a matching module.
ll three modules are trained jointly as one large neural net-
ork. In practice, however, the in-vehicle presence predictions
an be achieved by utilizing only the encoder and the matching
odule. Therefore, we use the full model that also includes the
ecoder, only during the training phase. When our deep learning

model is sufficiently trained, we extract the encoder and match-
ing modules from it. Copies of the encoder are then used in the
RefDev and the passenger devices, while the matching module is
executed in the server.

The distribution of the modules is depicted in Fig. 2.Here, the
reen networks in the passenger and reference devices illustrate
hat the encoders are residing on these devices. In contrast, the
lue network illustrates the matching module that runs on the
erver.
Fig. 3 provides a sketch of the neural network used in Deep-

Match. The coloured boxes represent layers of the neural net-
work that can be trained while the grey boxes refer to model
layers that do not contain trainable parameters. The green boxes
describe trainable layers of the encoder, the orange ones trainable
layers of the decoder, and the blue boxes trainable layers of the
matching module. The hyperparameters of each layer in the neu-
ral network are represented as numbers next to the description
of the layer. More specifically, in the boxes representing the conv
layers, the size of each filter in the layer is represented as width
x height, whilst the number on the right side of a box refers to
the number of filters used. For instance, in the uppermost layers
of the Stacked Convolutional Autoencoders in Fig. 3, there are
5

Fig. 2. Overview of the DeepMatch distributed framework. (For interpretation
f the references to colour in this figure legend, the reader is referred to the
eb version of this article.)

28 filters of size 8 × 1. Furthermore, for the dense layers, the
number of neurons in the layer is described by the number at
the end of the layer description, e.g. in the first dense layer in the
matching module the number of neurons is 256. The properties
and utilization of the various layers are discussed below.

Since the matching module has to compare the sensor data
from two devices, the RefDev and a passenger phone, we show
two copies of the encoder and decoder in Fig. 3. This type of
neural network topology is generally known as a Siamese Archi-
tecture and has been successfully used to solve other matching
problems such as face recognition [26], gait recognition for person
identification [27], and signature verification [28].

Configuring the deep learning model as a Siamese architecture
provides the model with the ability to receive two simultaneous
inputs, e.g. sensor data segments Xa and Xb. Since the two Con-
volutional Autoencoders share the same weights, the mapping
performed by the encoders on the two inputs are identical. In
consequence, two matching input segments, i.e., samples of Class
1, result in latent representations ea and eb that are also matching.
The same is true for not matching samples belonging to Class 0.
Here, the two latent representations are dissimilar as well.

3.5. Encoder and decoder

We use an architecture called autoencoder [29]. This kind of
neural network consists of two parts, that directly reflect our
encoder and decoder. The encoder transforms the input of the
autoencoder into an internal representation often referred to as
the latent representation in latent space, whilst the decoder aims
to reconstruct the original input from its latent representation.

The loss, i.e., the error of encoding and later decoding data,
s calculated by comparing the input with the output of the
utoencoder. The goal of training the autoencoder with a large
et of samples is to keep this error minimal. As depicted in Fig. 3,
utoencoders usually consist of several encoder and decoder lay-
rs through which the input data is sequentially forwarded. The
uality of an autoencoder often depends on the arrangement of
hese layers. Usually, the length of the data forwarded between
wo layers is restricted such that the neural network needs to
earn to prioritize the most important characteristics of its input,
.e., the encoder must learn which features of its input are most
elevant to perform a correct matching.

This feature extraction, can be seen as a compression algorithm.
hen, the latent representation corresponds to the compressed
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Fig. 3. Original architecture of DeepMatch. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
rticle.)
ata while the decoder is the corresponding decompression al-
orithm. In addition, the encoder provides input noise reduction
ince the compression forces it to learn the most important
eatures of its input and to discard irrelevant features.

In DeepMatch, the ability to compress data is utilized to
educe the amount of transmitted information from the user
hones and the RefDev to the external server. To let the autoen-
oder learn to prioritize those parts of the input data, that are
ost relevant, we train it together with the matching module

n a single neural network. In this way, it learns to discard only
hose parts of the sensor events that are less important for the
n-vehicle presence detection, but to keep all relevant data in the
atent representation. This allows us to run the matching module
ased on the latent representation of the sensor such that the
erver does not need to decode them first.
As shown in Fig. 3, we created our autoencoder using alter-

ating convolutional (conv) and maxpooling layers in the encoder
6

part. Here, the conv layers are responsible for the feature extrac-
tion while the maxpool layers reduce the size resp. dimensions of
the input. In the decoder, the conv layers alternate with upsample
layers that are responsible for reverting the maxpool operation in
the decoder.

We use the convolutional layers since they are especially suit-
able to detect and extract time-invariant features in sequences,
see [20,30–32]. Of course, this time-invariance is very important
for our in-vehicle presence detection problem since we want to
find out whether two devices are at the same place, i.e., the
same vehicle, independent from temporal influences like those
caused by the distance between the phones in the vehicle. The
maxpool layers reduce the size of their input data by a factor of
two using themax operator. The upsample layers make it possible
to reverse this process by duplicating each value in its input
sequence, e.g., upsample(x, y, z) = x, x, y, y, z, z. An autoencoder
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consisting of conv, maxpool, and sample layers, is called a Stacked
onvolutional AutoEncoder (CAE) [31].
Each layer of our CAE consists of three or four more elemental

achine learning operations. At first, a convolution is carried out
ollowed by a Rectified Linear Unit (ReLU) activation. If the layer
as maxpooling or upsampling functionality, this is executed after
he ReLU. Finally, in each layer a batch normalization is carried
ut.

.6. Matching module

As previously mentioned, the matching predictions to find out
f a smartphone is in the same vehicle as a RefDev, are performed
y the matching module residing in a server. To match the sensor
7

data previously compressed by the encoders, without having first
to decompress them, the matching module needs to be able to
compare the latent representations. To achieve this, we trained
it to learn an accurate spatiotemporal threshold for separating
instances of Class 1, i.e., sensor events gathered by two devices in
he same vehicle at the same time, from instances of Class 0, i.e.,
pair of sensor event sequences collected during different trips
r at different locations.
The functionality of the matching module is represented by

he blue boxes in Fig. 3. It consists of two Dense layers using the
eLU activation function, and finally another dense layer using
he Sigmoid activation function. The Sigmoid function converts
ny real number into a value between zero and one. It is used in
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eepMatch to describe whether the deep learning model believes
hat its input pairs belong to Class 1 or Class 0.

.7. Model training

As discussed above, the three modules of the DeepMatch deep
earning model are jointly trained using the configuration shown
n Fig. 3. In our Siamese architecture, we observe two separate
opies of the CAE that compress the sensor data segments Xa
nd Xb. Both CAEs share the same set W of trainable parameters
ausing the model to perform identical mappings for its two
nputs. The CAEs produce the latent representations ea and eb that
we illustrate as dark green squares in the figure. In the training
phase, the latent representations are propagated through the
layers of the decoders mapping them to the recreated segments
X ′
a and X ′

b. In parallel, ea and eb are also sent to the matching
module that is depicted by the blue boxes in Fig. 3. Here, the
latent representations are being matched and the class prediction
Y ′ is being produced. It assigns the value Y ′

= 1 if the model
predicts that ea and eb are matches, and Y ′

= 0 if they are not.
The values of Y ′ correspond to the ground truth labels Y of our
sample pairs since we assign Y = 1 to a pair Xa and Xb if the
samples are from Class 1. Likewise, for a sample pair of Class 0,
we use Y = 0.

The goal of the training regime is now to train the layers of
the matching module such that their computed values Y ′ are
mostly identical to the ground truth labels Y of the training
sample pairs. This kind of training utilizing external information
about the training samples, i.e., the ground truths, is usually called
Supervised Learning. Formally, we describe the deviation between
the ground truth Y and its prediction using the Binary Cross
Entropy L:

L = −Y · log(Y ′) + (1 − Y ) · log(1 − Y ′) (1)

The goal of the training is to find weights for the layers of the
matching module such that the prediction renders values of L
close to zero.

In the same step, the layers of the encoder and decoder are
trained by reducing the disagreements between the original seg-
ment pairs Xa and Xb and the recreated ones X ′

a and X ′

b. This
improves the quality of the sample compression and decompres-
sion steps. Since neither the ground truths of the samples nor
other external information is used, this training regime is re-
ferred to as Unsupervised Learning. We quantify the disagreements
between the original and recreated segments using the Mean
Squared Error MSE:

MSE =
1
n

n∑
t=1

(X ′

a[t] − Xa[t])2 (2)

In formula (2), n is the duration of the sensor event sequence Xa
while X ′

a[t] is the recreation of the value Xa[t] ∈ Xa at time t .
The disagreements between original and recreated samples as

well as those between the ground truths and the values predicted
by the matching module are used to update the weights of the
neural network through the machine learning technique Stochas-
tic Gradient Descent. In this technique, both the gradients from the
mean squared error calculations and the Binary Cross Entropy loss
functions are backpropagated to the neurons of the encoders. This
enables our encoder to extract both, the most important features
of the input segments for a good recreation and the features that
are relevant for an accurate matching prediction. In consequence,
it is sufficient to use the latent representations ea and eb instead of
the original sample pairs Xa and Xb to conduct the matchings. This
is the reason that, when executing DeepMatch to detect real in-
vehicle presence of passengers, we only need to use the encoder
of the CAE in passenger smartphones and in the RefDev as well
as the matching module in the server, while the functionality of
the decoder module is not needed.
8

3.8. Design rationale and experimental settings behind the Deep-
Match model

In our quest to find the best model, we conducted hundreds
of experiments on various model design and hyperparameter
configurations. Our approach relied on starting with smaller, shal-
lower neural networks, before expanding them by adding layers,
filters within the CONV layers, and by increasing the size of
these filters. To keep track of the various experiments, every
configuration and design of the network was evaluated using the
performance metrics described in Section 5.2. During this work,
we also experimented with various activation functions for both
CONV and dense layers. Moreover, we tried swapping the CONV
layers in the Autoencoders with dense layers and exchanging
the Matching Module with a function calculating the Euclidean
Distance between the latent representations, respectively. Fur-
thermore, we experimented on how we trained the modules of
the network, e.g. we tried training the autoencoders separately
from the matching module. This was done by first training the
autoencoders, and thereafter using the autoencoders to create
datasets consisting of encoded samples. These encoded samples
where then used to train the matching module. In addition to
design, architectural, and training experiments, we tested a large
number of hyperparameter settings, e.g. the number of neurons
in each dense layer, the size of batches used during training,
the number of epochs for each training session and so on. From
the experiments conducted for our previous work in [9], the
model architecture shown in Fig. 3, using the hyperparameter
settings described in Section 3.4, gave us the pest performance.
All experiments were conducted on a desktop PC with an Intel
i7 4.00 GHz CPU, 16 GB memory, and a Nvidia GTX 1080 GPU.
The models were created, trained and evaluated using Google
tensorflow 2.0, version 2.0.0-rc0 [33].

4. DeepMatch2

Since the original publication of DeepMatch in [9], we con-
tinuously iterated and improved our deep learning models. That
has led to several improvements that we could incorporate into
the new version DeepMatch2 of our in-vehicle presence detection
system. In particular, we amended the layer structure of the
architecture. In the following, we will discuss the improvements
in greater detail.

4.1. Design rationale and experimental settings of the DeepMatch2
model

We started the work on our new model basing it on the orig-
inal architecture of DeepMatch, depicted in Fig. 3. We followed
the approach described in Section 3.8 by gradually making incre-
mental changes to the model architecture, and for each change,
training and evaluating the results using the performance metrics
described in Section 5.2. Moreover, we investigated adapting the
numbers of convolutional layers and filters within the CONV
layers as well as changing the sizes of the individual filters.
Thereafter, we experimented with the ratio between the numbers
of CONV and maxpool layers used by the CAEs. In particular, the
structure of the matching module was modified. DeepMatch2
uses another method to concatenate the two latent representa-
tions, the module receives from the autoencoders. This is de-
scribed in detail in Section 4.3. Our experiments revealed that
the model architecture and the model parameters depicted in
Fig. 4 yielded the best results. Also for these experiments, we
used the desktop PC and Google tensorflow version described in
Section 3.8.
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.2. Dimensionality reduction

During the initial development of our original deep learning
odel, we were not aware that the best in-vehicle detection
ccuracy could be achieved using events from the barometer
ensor alone. We learned this fact through the empirical studies
escribed in Section 5.3, for which a first version of DeepMatch
as needed.
After gaining the insight that just barometer events would

e sufficient for inference, we started to refine and restructure
arts of the model in order to better accommodate samples
ontaining only this type of data. Our aim hereby was to utilize
he limitation to barometer inputs for a reduction of the size of
ata transmitted between the distributed computational units. Of
ourse, this should happen without worsening the accuracy of the
n-vehicle prediction, but rather with an improvement.

Our first major change was to reduce the size of the model
nputs, from previously 512 float values in DeepMatch to just 128
loat values in DeepMatch2. The model of the previous version
as laid out to accept events from multiple smartphone sensors
hat publish events at fixed rates but possibly with different
aximum frequencies and varying reading points in time. In each

ayer of our model, the maxpool operator reduces the size of
ts input by the factor of two such that the input length needs
o be a multiple of two. However, the output of a layer must
lso be a multiple of two since it is directly used as the input
or the maxpool operator of the next layer. To guarantee this
roperty for a number of subsequent layers, we therefore need
he size of the initial encoder input to be an exponent of two.
he highest frequency of the sensors tested in DeepMatch was
0 Hz, and the first sample size, we aimed to create, was 10 s
orth of sensor data resulting in 500 events. Considering the
forementioned requirement that the input must be an exponent
f two, the closest sample size to 500 was 512 events, resulting
n an actual sample size length of 10.24 s.

On the other hand, the barometer sensor conducts its sensing
ith a maximum frequency of 10 Hz such that a sample of 10 s
nly needs 100 events. To fulfil the demand of using a number
f events that is an exponent of two, we decided to increase
he sample period to 12.8 s such that a sample processed in
eepMatch2 contains 128 barometer events. That is just a quarter

of the original sample size.

4.3. Accuracy improvement

While the accuracy of 97.81% of the original deep learning
odel is quite good, we aimed to make it even better in Deep-

Match2. The most impactful change, we made to improve the
accuracy of our deep learning model architecture, was altering
the way the matching module concatenates its two inputs. These
changes are illustrated in Fig. 5. As shown at the top of the figure,
in DeepMatch, the two input samples were simply concatenated
along the first axis. That means that two float vectors that both
had the length x, were transformed into one vector of the length
2x. This concatenation, however, usually creates a large spatial
distance between the pairs of values that need to be compared
by the matching module.

To reduce this distance, we altered the concatenation by trans-
forming two input vectors of length x into a matrix with the
ize (x, 2) which is shown at the bottom of Fig. 5. This adapta-
ion to the input of the matching module allowed us to replace
ome of the dense layers by convolutional layers. As discussed in
ection 3.5, convolutional layers are well suited to handle time-
nvariant features in different sequences such that they promise
o be a better fit than the dense layers.

As a result, we achieved the layer structure that is illustrated

y the blue boxes in Fig. 4. Its uppermost layer is a concatenate

9

Table 1
Smartphones used by volunteers to collect data.
Brand Model

LG Nexus 5X
Huawei Nexus P6
Samsung Galaxy S8
Sony Z3 Compact
Google Pixel XL
Google Pixel 3a

layer that concatenates the inputs from the two encoders by
transferring them into a matrix of the size (x, 2). This matrix
then forms the input of the first of two convolutional layers.
Thereafter, a Flatten layer flattens its n-dimensional input into a
one-dimensional vector. Finally, a dense layer uses the Sigmoid
function explained in Section 3.6. This amended layout led to an
improved accuracy of 98.51% which we discuss in greater detail
in Section 5.6.

5. Evaluating the deep learning models

Our evaluation effort includes three main steps. First, we ex-
lain how we created our training data, and present the perfor-
ance metrics used to evaluate different models. Thereafter, we

eport on the experiments carried out to find which sensor data
re best for in-vehicle presence detection and the best segment
ize (cf. Sections 5.1—5.4). Second, we evaluate the prediction
performance of both DeepMatch and DeepMatch2. To this end,
we compare several versions of the original deep learning model
DeepMatchwith varying sample lengths. This is followed by com-
parison of DeepMatch with two well-known baseline methods
and, of course, with our updated version DeepMatch2 (cf. Sec-
tions 5.5 and 5.6). Third, we investigate and discuss the execution
time overhead of the matching module on the server, and the
battery consumption as well as the CPU run-time overhead for
the smartphones of the passengers (cf. Sections 5.7—5.9). Note
that the evaluation results, in this step, apply to both versions of
our learning models, namely, DeepMatch and DeepMatch2.

5.1. Data collection and dataset creation

The data used to develop and evaluate our deep learning
model was collected in various public transportation vehicles (i.e.,
trains, subways, busses and trams) in the Norwegian cities of
Oslo and Trondheim by volunteers. They used different Android
phones that are listed in Table 1. All these phones were provided
with the Datacollector application introduced in Section 3.3 such
that their clocks could be synchronized and common trip IDs
assigned.

In total, our volunteers collected 212,520 s of unique sensor
data events from the magnetometer, accelerometer, gyroscope
and barometer sensors. Segments of sensor events from two
different sources were paired in each dataset sample to model
that DeepMatch and DeepMatch2 match pairs of sensor data
segments from a user’s phone and a RefDev. Moreover, the pairs
of sensor event segments were classified as illustrated in Fig. 6.
Thus, sensor event segments with identical trip IDs and beacon
identifiers, i.e., segments computed by different devices in the
same vehicle at the same time, were labelled as positive samples,
i.e., Class 1. In contrast, event segment pairs with differing trip
IDs or beacon identifiers were fetched at different times or in
different vehicles. Therefore, they are labelled as negative samples,
i.e., Class 0.

Following common practice in machine learning, we shuffled
the samples of our dataset. Thereafter, we normalized the data

using minmax and, finally, we split our samples into training
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Fig. 5. Old and new matching module input concatenation strategy.
Fig. 6. Matching samples created from trip segments.
nd testing ones. The training set consisted of around 70% of the
verall data. The other 30% were used to create testing sets for
he purpose of model evaluation. By completely separating the
raining from the testing samples, we avoided to use the same
ensor events in both phases. Further, we made sure that the
istribution of Class 1 and Class 0, were about 50/50 in both
atasets.

.2. Metrics to evaluate learning models

To evaluate the different versions of our deep learning model
ith each other and with other methods introduced later, we use
he four metrics precision, recall, accuracy, and F1-score that all are
opular means to evaluate machine learning models. In order to
efine these metrics, we use four binary classifiers that describe
f a sample is positive or negative in reality, and if it is correctly
lassified:

• True Positive(TP): A correctly classified positive sample,
• True Negative(TN): A correctly classified negative sample,
• False Positive(FP): A negative sample that is falsely classified

as a positive one,
• False Negative(FN): A positive sample that is wrongly classi-

fied as a negative one.

With the help of these classifiers, we can now introduce the
our metrics used to evaluate the models:

• Precision (PR): The ratio of correct positive predictions to the
total number of predicted positive samples, i.e., out of all
samples classified as positive, how many belong to Class 1:

PR =
TP

TP + FP
(3)
10
• Recall (RE): The ratio of correct positive predictions to the
total number of positive samples, i.e., out of all samples
in the dataset that are indeed positive, how many were
correctly classified as such by the model:

RE =
TP

TP + FN
(4)

• Accuracy (ACC): This metric states how good the model
classifies samples from all classes, i.e., it describes howmany
of all predictions are correct:

ACC =
TP + TN

TP + FP + TN + FN
(5)

The accuracy results are usually only reliable if the number
of members from Class 0 and Class 1 are about equal. That
is the reason for using equal representation of Class 1 and
Class 0 in our training and testing sets (see Section 5.1).

• F1-score (F1): The harmonic mean between precision and
recall.

F1 = 2 ·
PR · RE
PR + RE

(6)

In the various experiments introduced in the next subsections, we
compare the different methods using these four metrics.

5.3. Sensor modality experiments

In a first set of experiments, we wanted to find out which
combinations of smartphone sensors are most suited to be used
in our deep learning model. To be able to compare various sensor
mixes, we created the following seven sensor modality combi-
nations: Accelerometer (A), Magnetometer (M), Barometer (B),
Barometer and Accelerometer (BA), Barometer and Magnetome-
ter (BM), Accelerometer, Magnetometer, and Gyroscope (AMG),
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able 2
erformance comparison between various sensor combinations.
Model PR RE ACC F1

DeepMatch 10 A 0.5065 0.9531 0.5122 0.6615
DeepMatch 10 M 0.5064 0.9280 0.5118 0.6553
DeepMatch 10 B 0.9751 0.9812 0.9781 0.9781
DeepMatch 10 BA 0.7332 0.9697 0.8082 0.8350
DeepMatch 10 BM 0.7081 0.9708 0.7853 0.8189
DeepMatch 10 AMG 0.5011 0.9646 0.5020 0.6595
DeepMatch 10 AMGB 0.7079 0.9892 0.7905 0.8253

and Accelerometer, Magnetometer, Gyroscope, and Barometer
(AMGB).

We trained and tested each of these modality combinations
ith our original deep learning method DeepMatch using sample

engths of 10 s. The test results of these experiments are depicted
n Table 2. From the table, we can see that the models trained
n datasets of type DeepMatch 10 B containing sensor events
nly from the barometer, have a significantly higher precision,
ccuracy, and F1-scores than the other models. The recall values
re much closer for all models but also here DeepMatch 10 B
inishes in the top two, albeit a little behind DeepMatch 10
MGB.
We believe, the reason for the good result of just using the

arometer is that this sensor particularly suited to capture the
ovements of the vehicle rather than those of the smartphone
ser. For instance, it is position independent, i.e., the precision
f the barometer events is not affected by the location of the
ensor. This is especially important for the use in underground
ransportation, e.g., in subways, where the GPS performs poorly.
urther, the barometer is highly resistant to vibrations as well as
ovements of the smartphone user. This in stark contrast to the
ccelerometer and gyroscope which are more strongly affected by
he movements of the user than by those of the vehicle. Unlike
he barometer, the magnetometer is highly sensitive to magnetic
bjects in the environment like the power unit of the vehicle. All
hese traits make the barometer perfectly suited to capture just
he movements of the vehicle and to ignore the movements and
mmediate surroundings of the carrier of the smart device.

The absence of the mentioned weaknesses of the other sensors
akes it easier for our deep learning model to learn how to
eparate instances of Class 1 and Class 0 only using the barometer
vents. This is confirmed by the overall good values for Deep-

Match 10 B in comparison to the other sensor combinations. The
fact, that DeepMatch 10 AMGB has a little better recall value,
results probably from a tendency to classify samples as positive
even if they are negative in reality. This is not punished by the
recall value but by the precision and accuracy values that are
meager for DeepMatch 10 AMGB.

Altogether, our sensor modality experiments led to the de-
cision to consider only the barometer sensor data for our deep
learning method. This is in accordance with most of the other
works introduced in Section 2.2 which also claim that the barom-
eter data are best for classifying in-vehicle detection, e.g., [15,
16].

5.4. Segment size experiments

After deciding to base the deep learning model just on the
barometer input, we wanted to find the sample length for which
DeepMatch renders the best results. Therefore, we trained and
tested the model with different sample lengths of five, ten, and
15 s. The results are shown in the first three lines of Table 3.

We see that variant DeepMatch 10 with its ten seconds long
samples outperforms DeepMatch 5, the model trained on match-

ing samples of five seconds. The cause is most likely the greater

11
Table 3
Performance comparison of the barometer-based DeepMatch with various
sample lengths as well as with baseline methods and DeepMatch2.
Model PR RE ACC F1

DeepMatch 5 0.9408 0.9765 0.9574 0.9583
DeepMatch 10 0.9751 0.9812 0.9781 0.9781
DeepMatch 15 0.9348 0.9816 0.9566 0.9576
NORM_CORR 0.9174 0.9595 0.9393 0.9380
DTW 0.9810 0.7350 0.8136 0.8404
DeepMatch2 0.9769 0.9935 0.9851 0.9851

number of sensor events contained in a DeepMatch 10 sample.
his provides a better foundation for training the neural network
n DeepMatch 10 than in DeepMatch 5.

Following this logic, however, we should expect that Deep-
atch 15, the model trained on 15 s long matching data, out-
erforms DeepMatch 10 since it has an even higher number of
ensor events available in a sample. Yet, this is not the case for
he precision, accuracy, and F1-score performance metrics, while
he recall values are basically even. Like with DeepMatch AMGB
n the tests discussed in Section 5.3, it seems that DeepMatch 15
s biased towards classifying samples as positive since it produced
ood recall but bad precision values. The most likely reason for
his surprising effect is that we have fewer 15 s long samples
vailable than shorter ones in our training set. In consequence,
here might be simply too few sample pairs available to train the
eural network well.
Due to the ongoing Covid-19 pandemic, our volunteers were

ot able to collect more data from public transport vehicles.
hen the pandemic is over, however, we intend to collect a

arger number of longer samples expecting that DeepMatch 15
ill outperform DeepMatch 10 when the new samples can also
e used for training and testing.

.5. Comparing DeepMatch with two baseline methods

In order to get a better comparison of our deep learning
ethod with other possible approaches, we also employed two
ell-known baseline methods that seem to be suited to per-

orm sensor event matching for in-vehicle presence prediction.
ne of the selected baseline methods is Normalized Correlation
NORM_CORR). It calculates the correlation between two vectors
y comparing the values in the same position. The other baseline
ethod is Dynamic Time Warping (DTW). In DTW, all values in

he two vectors are compared by warping the temporal dimen-
ion until the best correlation for any data point is found. In
onsequence, DTW does not inherently describe the correlation
etween two vectors but the distance between them, and a large
istance equals a small correlation. Thus, to use DTW as a mea-
ure of correlation on par with NORM_CORR, we had to inverse
he results produced by it.

In both baseline methods, we need to find a threshold value α
uch that all sample pairs with a correlation c larger than α are
rom Class 1 and all others from Class 0. This corresponds to the
ollowing equation:

= f (Xa, Xb) Y ′
=

{
1 if c > α

0 else
(7)

ere f represents the baseline method used. To find a good
hreshold α, we first applied f to all samples of our training set
nd added the resulting c-values to a sorted array. Thereafter, we
earched the sorted array for an optimal delimiting value that
inimizes the number of falsely grouped sample pairs. In the

inal step, α was set to this delimiter.
The results of our baseline methods tests are shown in the

ourth and fifth lines in Table 3. We see that, except for the
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Fig. 7. Execution time to execute matchings in parallel.

precision of DTW, the two baselines are clearly outperformed by
DeepMatch with the different sample sizes.

The reason for the poor performance of NORM_CORR is most
ikely its sensitivity to potential time-lags between its input se-
uences. This is due to the fact that two passengers, who are
t different locations in a public transportation vehicle, register
hanges in altitude with a time-lag that corresponds with the
uotient of the spatial distance between them and the speed of
he vehicle. This time-lag produces a lower correlation value for
ORM_CORR even though the passengers are in the same vehicle.
On the other hand, the poor results of DTW are most likely

aused by its insensitivity to the temporal dimension. Warping
he temporal dimension can cause the function to achieve a very
igh correlation value for some negative samples which increases
he number of false positives. While this error is rewarded by the
recision metric, it makes it very hard to find a good delimiter
alue α. This is the likely reason that the other three metrics are
articularly bad for DTW.
Altogether, it seems that the baseline methods are less suited

o perform in-vehicle presence detection on barometer data than
eepMatch.

.6. Prediction performance of DeepMatch2

We also trained our updated version DeepMatch2 with the
vailable data. The performance results of our tests are listed in
he last row of Table 3. We can see that, except for the precision
alue of DTW that was already discussed above, DeepMatch2
utperforms all other tested models for all four performance
etrics used. If we take a closer look at the results, we see that

he largest change between DeepMatch 10 and DeepMatch2 is
he increase of the recall value by more than a percentage point.
he likely reason is that the improvements we made to the model
see Section 4), increased the ability of DeepMatch2 to correctly
lassify positive samples of the dataset. This could be achieved
ithout classifying too many samples as positive, as can be seen
y its precision value that is also slightly better than the one of
eepMatch 10.
Achieving good results for both the precision and recall means

hat DeepMatch2 is good at separating the samples in our eval-
ation dataset. That is also proved by the very high accuracy and
1-scores of DeepMatch2 which are both around 0.7% better than
heir counterparts in DeepMatch 10. Thus, in spite of increasing
he compression of the sensor data by the factor of four, we
anaged to improve the performance metrics of DeepMatch2.

.7. Execution time in the server

Since usually a lot of passengers use public transportation
hroughout the day, particularly during the rush hour, the server
12
able 4
ndroid phones used in battery tests.
Brand Age Battery capacity

LG nexus 5X 5 years 2700 mAh
Huawei nexus P6 4 years 3450 mAh
Samsung galaxy S8 3 years 3000 mAh
Sony Z3 compact 6 years 2600 mAh
Google pixel 3a 0 years 3000 mAh

Table 5
Battery consumption per hour.
Brand Data collection Learning Complete

Samsung 25 mA 26 mA 31 mA
LG 23 mA 24 mA 26 mA
Huawei 22 mA 23 mA 25 mA
Google 16 mA 17 mA 18 mA
Sony 15 mA 18 mA 21 mA

of a public transport authority performing the matching calcula-
tions of DeepMatch or DeepMatch2, needs to be able to handle
large amounts of concurrent data simultaneously. To test the
expected load for such a central server, we exploited a feature of
Tensorflow that allows the matching module to accept multiple
inputs. Further, we used the powerful parallel computational
capabilities of Tensorflow that make it possible to calculate the
matchings for all received inputs simultaneously.

Fig. 7 depicts the execution time of the matching module
performing its matches based on latent data, after it has been
extracted from the overall deep learning model of DeepMatch2.
t reveals that 50,000 matching calculations can be executed in
arallel in 1560 ms all running on a single five years old GTX
080 GPU. Due to the fact that the matching calculation is only
erformed once for every 12.8 s of collected data per passenger,
data centre consisting of only three such GPUs could serve a
ity like Oslo with its 960,000 daily passenger trips even if all
assengers travel at the same time. Running these calculation
n a newer GPU with improved concurrency and computational
apabilities, would improve these results even further.

.8. Battery consumption on smartphones

Power consumption is an important issue when using deep
earning models on mobile devices that run on rechargeable
atteries since the models often require a large number of cal-
ulations at high speed, which usually demands a lot of power.
ortunately, we do not require the encoders executed on the
martphones to run continuously in our approach. Even if the
hone is in close proximity to a BLE-transmitter (see Section 3.1),
e only carry out the encoder in certain intervals corresponding
o the lengths of the samples to be matched, e.g., every 12.8 s
hen using DeepMatch2.
In addition to running the deep learning model, the continuous

sensor event generation and the transmission of the compressed
data to the server are power consuming tasks the smartphones
will have to perform. To ensure that our approach does not cause
an excessive drain on the batteries of the smartphones, we con-
structed three test scenarios that reflect the battery consumption
factors mentioned above:

• Complete scenario: All three factors of battery consumption,
i.e., the barometer data collection, data processing by the
encoder, and data transmission,

• Learning scenario: Barometer data collection and data pro-
cessing,

• Data collection scenario: Only barometer data collection.
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Table 6
Run time and CPU overhead.
Brand CPU Mean run time Overhead

Samsung 2.3 GHz + 1.7 GHz, Cortex-A53 49 ms 1–2%
LG 1.4 GHz + 1.8 GHz, 64-Bit Hexa-Core 46 ms 1–2%
Huawei 2.0 GHz + 1.55 GHz, 64-Bit Octa-Core 52 ms 1–2%
Google 2.0 GHz + 1.7 GHz, 64-Bit Octa-Core 19 ms 0–1%
Sony 2.5 GHz Quad-Core, 400 Krait 73 ms 3–4%
Fig. 8. Matching sequence output from the matching module.
q
w

To ensure diversity in our testing devices, we used five An-
roid smartphones from five different manufacturers. To ensure
ge diversity, these phones are between zero and six years old,
s can be seen in Table 4. To make sure that the test results were
ot influenced by the environments in which the tests were run,
e performed all tests indoors with a constant temperature of
9 ◦C, representing the indoor temperature of a typical public
ransportation vehicle in Norway.

To measure the battery power usage, we used the tools Bat-
terystats and Battery Historian provided by Google to log the
battery consumption of all processes running on an Android
device [34]. The tests were run in the background with the wake
lock parameter enabled. This allowed us to simulate an environ-
ment in which our application retrieving sensor inputs, encoding
them, and forwarding the encoded data to the server, runs in the
background of a user phone.

The results of our tests are depicted in Table 5. They clearly
show that for all devices used in the tests, our learning mod-
els influence the battery consumption on a smart device only
marginally. Considering a passenger travelling with a public
transportation vehicle for over two hours, measuring, encoding
and transmitting barometer sensor events, only around 62 mAh
will be used for the Samsung Galaxy S8, the phone with the
highest power usage. With a battery capacity of 3000 mAh, this
equals to the use of 2.1% of the overall battery capacity. Compared
to the numbers reported in [35], this is substantially lower than
most smartphone applications.

As a result of our tests, we consider that our approach has no
significant negative impact on the overall battery consumption of
the user smartphones. For the reference devices, we expect that
they have a power connection with the battery of the transport
vehicle.

5.9. Computational overhead on smartphones

As mentioned above, deep learning models are often large
complex computational units. Thus, in addition to affecting the
battery consumption of the devices running the model, the com-
putations might influence their CPU usage such that a smart-
phone is not able to support other applications, that the user
13
likes to run in parallel to our learning models DeepMatch or
DeepMatch2. Therefore, we evaluated also the computational
overhead of the models executed on smartphones. For these
experiments, we used the same five devices listed in Table 4. We
analysed both, the CPU usage and the time, the encoder module
needed to process one sample of input. Table 6 shows the results
of these tests. We can clearly see from the mean run time and
CPU overhead produced for the devices, that the overhead of
our models are barely noticeable and should not impact other
functions executed on the phone in parallel.

6. Travelling user inference

Up to now, DeepMatch and DeepMatch2 can determine with
a high accuracy whether a person’s smartphone is in the same
public transport vehicle as a RefDev over a fixed time interval
of, e.g., 12.8 s. To make our approach useable for, e.g., automatic
ticketing, however, a solution is required to find out, over which
time period the owner of the phone effectively travels in the
vehicle.

To infer the duration of being in the vehicle, we can utilize
that a normal trip in a city bus may be up to an hour such that
DeepMatch2 can conduct hundreds of samples. The samples of
the user’s phone taken on a trip and the corresponding ones
produced by the reference device are paired and merged to a
so-called matching sequence. This is illustrated in Fig. 8.

As an example, let us assume that a passenger travels with
a bus for 20 min. That gives DeepMatch2 the necessary time to
generate a matching sequence containing 93 successive matches.
Due to the accuracy of 98.51% for DeepMatch2, the likelihood
that all these matches are correctly detected as being in-vehicle
(i.e., Class 1), however, is only 24.76%. Thus, in more than three
uarters of trips with a 20 min duration, at least one matching
ill be falsely declared as being out of the vehicle (i.e., Class 0).

Similarly, if a person rides in a car next to a bus for 20 min,
e.g., due to slow moving traffic, the chance that all matches are
Class 0, is also only around 25%. Thus, we need an algorithm that
can infer passenger trips from matching sequences with a high
degree of precision in spite of occasional matching errors. In this
section, we describe how one can develop and evaluate such an
inference algorithm.
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Fig. 9. Number of times any vehicle travelled a route segment in x seconds.

In the following, we first describe how we gathered the data
that explains the travel time between two adjacent stops for
busses in Norway’s capital Oslo. Thereafter, we introduce some
concepts based on which the algorithm is designed and pre-
sented. A relevant parameter of this algorithm is the degree of
fault tolerance it supports, which is investigated at the end of this
section.

6.1. Travelling times between adjacent bus stops

To get the travelling times between two adjacent stops for
busses in Oslo, we gathered all real-time data of the bus net-
work of Oslo over twelve hours on a normal Monday. ENTUR,
a government-funded organization, gathers and openly shares
traffic data from all public transportation operators in Norway.
In particular, it offers an API [36] which is based on the SIRI 2.0
standard [37].

The collected data allows us to understand the distribution
of the travelling times between two adjacent stops. To this end,
we aggregated the arrival and departure times for all buses at
all stops throughout the recorded 12-hour slot. From this, we
calculated for all bus trips the times needed to travel between two
adjacent stops. The results were summed up, and we obtained the
distribution depicted in Fig. 9. The x axis refers to travelling times
n seconds while the y axis shows how often busses needed a
articular time segment between two neighbouring stops during
he 12-h slot. As can be seen, the most prevalent travelling time
etween two adjacent stops is between 40 s and 50 s. Another
nteresting fact is that in less than 2% of the gathered cases, the
ravelling time between two stops is less than 40 s. We will show
ow these facts can be utilized to provide good results.

.2. Matching sequences and travel inference algorithms

As introduced above and illustrated in Fig. 8, a matching se-
uence is the sequence of outputs generated by the matching
odule of DeepMatch2. It is basically a sequence of ones and
eros that forms the input of the inference algorithm. Based on this
nput, the inference algorithm decides whether the user travelled
n the vehicle for the duration of the matching sequence, or not.

To better understand the possible errors that the inference
lgorithm could make, we classify its results (in analogy to the
rue and false positives and negatives introduced in Section 5.2)
s follows:

• True Travelling user (TT ) denotes an actual passenger who is
correctly inferred as a traveller.

• False Travelling user (TF ) is a person not using the pub-
lic transport vehicle, but who was falsely inferred to be
travelling in it.
14
Fig. 10. Example travellers and expected matching sequence. (For interpretation
of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

• True Non-Travelling user (NTT ) is a user not travelling with
the vehicle in question who is correctly inferred as being not
in the vehicle.

• False Non-Travelling user (NTF ) is an actual travelling user
who was, however, falsely inferred as not travelling with the
vehicle.

In Fig. 10, the four types of travellers are illustrated, where
green dashed lines indicate the time period that the passengers
are inside the vehicle, while red dashed lines refer to the phases
they are outside. The orders of white boxes beneath the dotted
lines represent the matching sequence for each passenger. The
goal of the algorithm is to detect true travelling and true non-
travelling users with a high accuracy. In particular, it should keep
the number of false travelling users very low since billing people
who do not use public transport, may easily lead to complaints,
lawsuits, and bad press for the operator. Moreover, false non-
travelling users shall be avoided since they end up with travelling
for free.

6.3. User travel inference algorithm

In this section, we describe our methodology to design and
evaluate the inference algorithm. It shall take the accuracy of
DeepMatch2 of 98.51% into account. While this accuracy is rela-
tively high, it is not perfect as matching sequences can occasion-
ally contain a mix of ones and zeros, and the inference algorithm
should be able to perform inference with a high accuracy even
from such mixed sequences. Overall, our goal is to find an infer-
ence strategy that keeps the number of false non-travellers and
false travellers low.

We first need to calculate the accuracy of an inference algo-
rithm based on the accuracy of DeepMatch2. We use the binomial
experiment to calculate the likelihood of occurring a certain ratio
of ones and zeros in a matching sequence:

P(k) =

(
n
)
pk(1 − p)n−k (8)
k
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ere, n denotes the number of trials, i.e., the length of the match-
ng sequence, while k refers to the number of successful trials,
.e., the number of correct matchings in the sequence. Finally,
states the probability of a successful trial which, in our case,

orresponds to the accuracy of DeepMatch2, i.e., 0.9851.
With the binomial experiment, we can compute the two prob-

bilities that a certain proportion of ones and zeros in a matching
equence is rightfully inferred to be in or out of the vehicle. From
hat, we can easily determine the likelihoods for the four user
ypes introduced in Section 6.2.

As an example, let us assume that, in fear of inferring false
ravelling users, the public transport authority decides to bill a
assenger when all the six entries in the matching sequence are
nes. Using formula (8) leads to the following likelihoods for the
our inference results:

PTT (6) = 0.98516
= 0.9139

PNTF (6) = 1 − PTT (6) = 0.0861

PTF (0) = (1 − 0.9851)6 = 1.09 · 10−11

NTT (0) = 1 − PNTF (0) = 0.999999999989

he likelihood, that DeepMatch2 produced all six Class 1 pre-
ictions wrongly and with that infers a false travelling user, is
TF (0) = 1.09 · 10−11. In correspondence, the likelihood to detect
true non-traveller is very high since our strategy declares all
assengers who produced at least one zero in their matching
equences, as not travelling. The corresponding probability is 1−

TNF (0) = 0.999999999989.
The price of this very rigid approach is the relatively high rate

f false non-travelling users which is calculated as 1 − PTT (6) =

.0861. Thus, nearly every twelfth passenger gets a free ride
hich might be unacceptable for most operators. In consequence,
he likelihood for a true travelling user is only PTT (6) = 0.9139.
o avoid such a large rate of false non-travelling users, we need
o bring some tolerance into our inference algorithm. To achieve
hat, we extend Eq. (8) for the binomial probability to the so-
alled cumulative binomial probability, that is described by the
ollowing formulas:

(k ≥ M) =

n∑
k=M

(
n
k

)
pk(1 − p)n−k (9)

(k ≤ M) =

M∑
k=0

(
n
k

)
pk(1 − p)n−k (10)

n formula (9), M refers to the minimum and in (10) to the
aximum number of trials that have to be successful in order
o accept a trip as in-vehicle. The other symbols used in these
ormulas are identical to those introduced for formula (8).

The cumulative binomial probability provides the means to
alculate the probabilities for more fault-tolerant inference algo-
ithms, e.g., accepting matching sequences of the length six as
n-vehicle, when they contain at least five ones. This algorithm
eads to the following results for the four inference results:

TT (k ≥ 5) = 0.98516
+ 6 · 0.98515(1 − 0.9851) = 0.9968

PNTF = (1 − PTT (k ≥ 5)) = 0.0032

PTF (k ≤ 1) = (1 − 0.9851)6 + 6 · 0.9851(1 − 0.9851)5

= 4.35 · 10−9

PNTT = (1 − PTF (k ≤ 1)) = 0.9999999957

his more fault-tolerant algorithm reduces the likelihood of false
on-travelling users to just around 0.3%. While the number of
alse travelling users is increased by two digits compared to
he more rigid algorithm described above, it is still very low.
herefore, this more tolerant inference algorithm seems to be
15
Fig. 11. Probability of predicting a False Non-Travelling user (PNTF ) over varying
matching sequence lengths. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

a better fit for a billing system than the stricter one discussed
above.

The fact is that we still do not know if this algorithm is the
best, or if more fault-tolerant policies render even better results.
Moreover, for most passenger trips, DeepMatch2 produces much
longer matching sequences than ones with just six matching
pairs. Utilizing the data from the public transportation behaviour
analysis discussed in Section 6.1, we conducted several experi-
ments to find out the best inference algorithm solutions, which
are discussed below.

6.4. Considering different forms of fault tolerance

The aforementioned comparison of two algorithms for match-
ing sequences of length six shows that there is a trade-off be-
tween false travellers and false non-travellers based on the de-
gree of fault tolerance—the percentage of zero values that a
matching sequence may contain whilst still being inferred as in-
vehicle. In the rigid example in Section 6.3, the fault tolerance
was 0, while for the second case it was 1

6 = 16.6̄%. The value M
in the cumulative binomial probability formulas (9) and (10) can
be calculated from the fault tolerance as follows:

M =

⌊
(1 − fault_tolerance) · n +

1
2

⌋
(11)

hus, the higher the fault tolerance is, the more occasional zeros
re allowed in the matching sequence when the inference algo-
ithm infers that the user is inside the vehicle. In consequence,
y using a higher fault tolerance, we reduce the number of false
on-travellers, albeit at the cost of more false travellers.
To analyse the influence, we calculated the likelihoods of false

on-travellers and false travellers for different fault tolerances
anging from 0% to 90% in steps of 10% and for all matching
equence lengths from 1 to 100. Fig. 11 depicts the probabilities
or non-travelling users depending on the lengths of the matching
equences. The dark blue curve, showing no fault tolerance at
ll, rises towards 1 while all other trajectories converge towards
. The interesting observation is how early the approximation
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Fig. 12. Probability of predicting a False Travelling user (PTF ) over matching
sequence lengths.

towards 0 starts: Even with a fault tolerance of just 10%, the
likelihood for producing non-travelling users is next to nothing
for trips that produce more than 40 matchings. Thus, for trip
lengths longer than nine minutes, this low fault tolerance would
be sufficient.

The curves show that the selection of a good fault tolerance
value is only relevant for short trips for which relatively short
matching sequences are produced by DeepMatch2. To make the
differences of the curves for short journeys more legible, we show
a zoomed-in version in the lower part of Fig. 11. In Section 6.1,
we claimed that less than 2% of all time periods between adjacent
bus stops is lower than 40 s. Since passengers can enter and leave
the vehicle only at bus stops, we can therefore assume that for
nearly every trip, at least three matchings are produced. From our
curves, one can see that with a fault tolerance of 40%, it is enough
to produce nearly no false non-travellers.

Fig. 12 shows the same curves for false travelling users. Sim-
ilarly to the false non-travelling users, the likelihood of creating
false travelling users is negligible if a smartphone user is close to a
vehicle for a longer time period. Thus, even with a fault tolerance
of 90%, the inference is enough if the length of the matching
sequence is at least 30, which corresponds to 6.4 min.

Yet, a non-travelling user will usually be close to a vehicle
only for a relatively short time period, e.g., less than a minute.
Therefore, it is particularly important that the inference algorithm
handles those cases correctly. The zoomed-in curves in the lower
part of Fig. 12 show that the fault tolerance of 40%, that we al-
ready mentioned as sufficient for false non-travellers, is very close
to zero for all matching sequences except for those consisting of
just one matching.

Our findings about false non-travelling and false travelling
users provide useful hints for the configuration of the inference
algorithm. Since nearly no distances between two stops are less
than 30 s (cf. Fig. 9), if our algorithm declares all matching
sequences of lengths one and two as out-of-vehicle, it will hardly
affect the overall accuracy of the algorithm. For all matching
sequences of lengths three or larger, the policy may use a fault
tolerance of 40%, which should lead to excellent results with very
few false non-travellers and false travellers.
16
Table 7
Weighted averages for all matching sequences with lengths between one and
21.
Fault PNTF PTF 0.5 · PNTF 0.1 · PNTF
tolerance + 0.5 · PTF + 0.9 · PTF
0% 31.22957% 0.15125% 15.69041% 3.25908%
10% 8.49190% 0.15125% 4.32158% 0.98532%
20% 1.73878% 0.15126% 0.94502% 0.31001%
30% 0.95806% 0.15139% 0.55473% 0.23206%
40% 0.46660% 0.15828% 0.31244% 0.18911%
50% 0.15829% 0.46545% 0.31187% 0.43473%
60% 0.15796% 0.48792% 0.32294% 0.45492%
70% 0.15139% 0.96164% 0.55652% 0.88062%
80% 0.15125% 2.54341% 1.34733% 2.30419%
90% 0.15125% 10.11554% 5.13340% 9.11911%

6.5. A more formal look at the trade off between NTF and TF

The discussion above to determine a good fault tolerance
eems coherent, however, it is not very formal. A public transport
uthority that has resilient statistics about the travelling times
f its passengers, can therefore go a step further and determine
he trade offs between NTF and TF for different fault tolerance
ercentages more formally.
To be able to assess false travellers differently than the po-

entially less problematic false non-travellers, we use a weight
actor w ∈ [0, 1] that describes the weight that TF shall have in
comparison to NTF . With P ft

NTF
(ft,msl) and P ft

TF
(ft,msl), we state

the probabilities for NTF resp. TF for a certain fault tolerance ft
and message sequence length msl that can be calculated using the
formulas (9), (10), and (11). Moreover, pl refers to the likelihood
that the travelling time of a passenger has a certain length such
that the corresponding matching sequence has l-many entries.
Finally, Maxmsl describes the maximum length of matching se-
quences that can occur in practice. These values can be computed
from the operator’s travelling time statistics. Theweighted average
Av between NTF and TF can be computed as follows:

Av(ft, w) =

Maxmsl∑
l=1

pl · (w · P ft
TF
(ft, l) + (1 − w) · P ft

NTF
(ft, l)) (12)

With formula (12), one can compare different fault tolerances
and select the one ft that gives the lowest value Av(ft, w) for the
desired weight w.

Unfortunately, in spite of an in-depth search and requests to
some public transportation authorities, we could not get access to
meaningful statistics about usual travel durations of passengers.
Thus, we based our calculations on the worst case scenario in
which every passenger travels only between a stop and the ad-
jacent one. We also assume that the number of people travelling
are evenly distributed among the operator’s buses. Then, we can
use the distribution presented in Fig. 9 to calculate the likelihoods
pl for the lengths of the matching sequences.

The result of applying formula (12) to these values and the
10 different fault tolerant values 0% to 90% is listed in Table 7.
The columns show the likelihoods for false non-travellers and
false travellers as well as the weighted averages for the weights
w = 0.5 and w = 0.9. Non-surprisingly, the likelihood for NTF
is lower if a higher degree of fault tolerance is allowed, while
it is the opposite for TF . If we weight both error cases equally
(i.e., w = 50%), fault tolerances of 40% and 50% render the best
trade off results closely followed by 60%. When we consider false
travellers as more important and set the weight to w = 90%,
the result is much clearer. Here, 40% is the winner followed by
30%. These results foster our assumption from Section 6.4 that
40% seems to be a efficient fault tolerance value.
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Fig. 13. Total number of erroneous travel predictions over MS lengths using a
ault Tolerance of 40% and the average weight w set to 50% (blue) and 90%
orange). (For interpretation of the references to colour in this figure legend,
he reader is referred to the web version of this article.)

In a final step, we checked the probability of errors for certain
atching sequence lengths l, i.e., w ·P ft

TF
(ft, l)+ (1−w) ·P ft

NTF
(ft, l).

he results for the two weights and a fault tolerance of 40% are
hown in Fig. 13. We see in both curves that the two shortest
atching sequence lengths 1 and 2 are responsible for nearly all
f the errors, while all the others give good results. This confirms
he suggestion of our inference algorithm to bill only passengers
or which at least three matchings were generated. The only
osses are for passengers that travel only between two adjacent
tops with less than 40 s distance. Assuming an average bus speed
f 27 km/h between these stops, they are just 300 metres apart.
n reality, people would walk this distance instead of waiting for
bus.
It would be nice to repeat our trade off calculations based on

eal travelling time statistics, and we will do so as soon as we
et our hands on such data. However, we do not expect very
ifferent results since, in reality, the average travelling times will
e much longer than in our thought experiment, and the graphs
n Figs. 11 and 12 show that the inference is becoming better with
onger matching sequences. Therefore, the likelihoods for the
rrors would probably be lower than in Table 7. However, based
n the considerations from Section 6.4 and in this subsection, we
till expect that 40% will be the winning fault tolerance value in
ost cases.

. Conclusions and future work

To address the challenge of in-vehicle presence detection as
n important aspect of mobile context analysis, we introduced
ur proposed deep learning-based approach, called DeepMatch
nd its improved version DeepMatch2. Our approach utilizes the
ensor event streams of smartphones to predict their presence
nside public transportation vehicles with an accuracy of 98.51%
n the case of DeepMatch2. The deep learning model consists
f custom made Stacked Convolutional Autoencoders for feature
xtraction and dimensionality reduction configured in a Siamese
rchitecture, and a matching module consisting of several layers
f stacked Convolutional Layers for event stream matching. The
eep learning model is distributed among the smartphones car-
ied by passengers, a reference device installed in public transport
ehicles, and a central server. The Stacked Convolutional Autoen-
oders allow for compressing the sensor events through feature
xtraction and dimensionality reduction on the smartphone and
he reference device, while the event matching is performed on
he server. Through dimensionality reduction, the input data is
educed by the factor eight such that the bandwidth of the data
ransferred to the server is considerably reduced without losing

he information of the data necessary to perform the matching.

17
Furthermore, we discussed how the deep learning-based ap-
roach can be used to create inference algorithms that deduce
he travel time duration for passengers travelling in public trans-
ortation with a very high accuracy. In particular, we presented
theoretical framework that can be used to configure the infer-
nce algorithms to weight the various types of potential erro-
eous inferences, and thus accommodate the needs of the public
ransportation providers.

As our future plan, we intend to implement a pilot of Deep-
atch2 together with a public transportation provider in Nor-
ay. Moreover, we intend to research on the optimum length of
he data segments and the frequency of data gathering (from the
eference devices and the smartphones) in order to minimize the
mount of data needed for in-vehicle presence detection.
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