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FOREWORD

This is a preliminary manual and tutorial for the toolbox WAFO for use together with MATLAB. It
consists of a number of MATLAB m-files together with executable routines from FORTRAN source,
and it requires only a standard MATLAB setup, with no additional toolboxes.

The routines are based on algorithms for extreme value and crossing analysis, developed over
many years by the authors as well as results avilable in the literature. References are given to the
source of the algorithms whenever it is possible. These reference are given in the MATLABcode
for all the routines and they are also listed in the last section of this tutorial. If the reference is not
used explicitly in the tutorial it means that it is referred to in one of the MATLAB m-files.

The routines collected in the toolbox are specially designed for analysis of wave characteristics
and they are described in a series of examples on wave data from sea surface measurements and
other load sequences. There is sectiona for fatigue analysis and for general extreme value analysis.
The present toolbox represents a considerable development of two earlier toolboxes, the FAT and
WAT toolboxes, for fatigue and wave analysis, respectively. These toolboxes were both Version 1;
therefore WAFO has been named Version 2.

The persons that take actively part in creating this tutorial are:

� Per Andreas Brodtkorb 1, Pär Johannesson2, Georg Lindgren2, Igor Rychlik2, Jesper Rydén2,
Eva Sjö2, and Martin Sköld2.

Many people have contributed to our understanding of the problems dealt with in this text,
first of all Professor Ross Leadbetter at the Center for Stochastic Processes, University of North
Carolina at Chapel Hill, Professor Krzysztof Podgórski, Dept. of Mathematics IUPUI, USA. We
would also like to particularly thank Michel Olagnon and Marc Provosto, at Institut Francais de
Recherches pour l’Exploitation de la Mer (IFREMER), Brest, who have contributed with many
enlightening and fruitful discussions.

Other persons have put a great deal of effort into WAFO and its predecessors FAT and WAT are
Mats Frendahl, Finn Lindgren, and Ulla Machado, all at Mathematical Statistics at Lund Univer-
sity, and Sylvie van Iseghem, IFREMER.

�Department of Marine Hydrodynamics, NTNU, Trondheim, Norway
�Centre for Mathematical Sciences, Lund University, Sweden.





TECHNICAL INFORMATION

� For help on the toolbox, write help main_catalogue_for_WAFO.

� The MATLAB code used in this tutorial can be found in the WAFO catalogue WAFO/docs.

� The WAFO homepage http://www.maths.lth.se/matstat/wafo/ contains in-
formation on how to download WAFO, updates, known errors, etc. It also contains links to
exercises and articles using WAFO.

Comments and suggestions are solicited - send to wafo@maths.lth.se .

� The first two digits in the version number of this tutorial follows that of the toolbox, thus
Tutorial Version 2.0.xx goes with Toolbox Version 2.0.yy.

� Tutorial Version 2.0.01: This version of the Tutorial was printed and put on the Web July 6,
2000.





CHAPTER 1

INTRODUCTION

1.1 What is WAFO?

WAFO (Wave Analysis for Fatigue and Oceanography) is a toolbox of Matlab routines for sta-
tistical analysis and simulation of random waves and random loads. Using WAFO you can, for
example, calculate theoretical distributions of wave characteristics from observed or theoretical
power spectra of the sea or find the theoretical density of rainflow cycles from parameters of ran-
dom loads. These are just two examples of variety of problems you can analyze using this toolbox.

There are three major audiences to which this toolbox can have a great of appeal. First, ocean
engineers will find a very comprehensive set of computational tools for statistical analysis of ran-
dom waves and ship’s responses to them. Second, the toolbox contains a number of procedures
of the prime importance for mechanical engineers working in the areas of random loads as well
as damage and fatigue analysis. Finally, any researcher who is interested in statistical analysis of
random processes will find here an extensive and up-to-date set of computational and graphical
tools for her/his studies.

In a random wave model, like that for Gaussian or transformed Gaussian waves, the distribution
of wave characteristics such as wave period and crest-trough wave height can be calculated by high
accuracy for almost any spectral type. WAFO is a third-generation package of Matlab routines for
handling statistical modelling, calculation and analysis of random waves and wave characteris-
tics and their statistical distributions. The package also contains routines for cycle counting and
computation in random load models, in particular the rainflow counting often used in fatigue life
prediction.

Random wave distributions are notoriously difficult to obtain in explicit form from a random
wave model, but numerical algorithms, based on the so-called regression approximation, work
well. This method to calculate wave distributions is the only known method that gives correct an-
swers valid for general spectra. The theoretical background is reviewed in [32] and computational
aspects and algorithms in [52].

The algorithms are based on a specification of the random waves by means of their (uni-
directional or directional) spectrum, and on the underlying assumption of linear wave theory and
Gaussian distribution. However, a transformation of sea elevation data can be made to obtain a
desired (horizontal) asymmetric marginal distribution.

A first complete toolbox FAT (Fatigue Analysis Toolbox) was presented in 1993, [14]. It was
followed by WAT (Wave Analysis Toolbox) in 1995, [53] 1, being extended with routines for

�http://www.maths.lth.se/matstat/staff/georg/watinfo.html



probabilistic-modelling problems in oceanography. In WAFO, many new numerical routines have
been introduced, and a considerable improvement in computational speed and accuracy has been
achieved. WAFO allows treatment of more complicated problems; for example, spatial waves with
time dynamics can be handled, thus extending the analysis to random fields. Algorithms for rain-
flow analysis of switching Markov chains are included, as well as for decomposition of the rainflow
matrix. Many of the new tools are the result of recent research, e.g. [54], [42], [41], [22], and [7].

Further, WAFO has a modular structure, so users can easily add their own algorithms for special
purposes. The modules of the toolbox handle

� wave/load data analysis and estimation,

� spectral distributions,

� transformation to Gaussian marginals (exact distributions),

� simple parametric approximations to wave characteristic distributions,

� simulation of Gaussian and Markovian wave/load time series,

� extreme value and other statistical analysis,

� cycle counting,

� rainflow cycle analysis and calculation,

� fatigue life calculation,

� smoothing and visualization.

In the following section, we discuss in more detail the idea of the modular structure. That section
is followed by an overview of the organization of WAFO, presenting some of the capabilities of
the toolbox. Finally, we give a number of examples to demonstrate the use of some of the tools in
WAFO for analysis and modelling.

1.2 Philosophy – some features of WAFO

A common problem with research involving complex scientific (numerical) computations is that
when researchers try to advance and leverage their colleagues work, they often spend a consider-
able amount of time just reproducing it.

Often after few months since the completion of their own work, authors are not capable of
reproducing it without a great deal of agony, due to various circumstances such as the loss of the
original input data or/and parameter values etc. Thus many scientific articles are reproducible in
principle, but not in practice.

To deal with this and to organize computational scientific research and hence to conveniently
transfer our technology, we impose a simple filing discipline on the authors contributing to the
WAFO-toolbox. (A positive side effect of this discipline is a reduced amount of errors which are
prone to occur in computational science.)

This philosophy is adopted from the article by Matthias Schwab et al “Making scientific com-
putations reproducible” (http://sepwww.stanford.edu/research/redoc/).

The idea is to develop reproducible knowledge about the results of the computational experi-
ments (research) done at Lund University and to make it available to other researchers for their
inspection, modification, re-use and criticism.



As a consequence, WAFO is freely available through the Internet2. Other researchers can obtain
here the Matlab code which generated figures in articles and reproduce them. They can if they wish
modify the calculations by editing the underlying code, input arguments and parameter values.
They can use the algorithms on other data sets or they can try their own methods on the same data
sets and compare the methods in a fast and easy fashion.

This is the reason of existence for the WAFO/paper directory which contains subdirectories
including scripts for recreating figures in published articles and technical reports. Each article has
its own subdirectory. The directories contain demonstration scripts to generate individual figures
and (possibly) specialized tools/functions not available in the official release of WAFO for gener-
ating these figures.

Just like the WAFO/paper directory the WAFO/demos directory also contains different sub-
directories with scripts producing figures. The only difference is that it does not reproduce figures
from published articles but merely test and demonstrate various methodologies, highlight some
features of WAFO, and release code that approximately reproduces figures in other articles. The
important thing for both directories is not the printed figures, but the underlying algorithm and
code. In addition, the paper and demos scripts constitute an excellent starting point for the
novel user to learn about WAFO.

The documentation directory /WAFO/docs/ contains all the documentation available for the
toolbox. The contents of any of these files may be examined by typing its name for ascii files or
viewing in ghostview for postscript files. Also each function is well documented containing a help
header describing how the function works with a detailed list of input and output arguments with
examples of how to use the function.

The Matlab code to each function file also contains references to related functions and a com-
plete reference to published articles from which the user can obtain further information if such
exist.

One important enhancement of the new toolbox is the use of structure arrays in Matlab by
which several types of data can be stored as one object. This significantly simplifies the passing
of input and output arguments of functions and also makes the Matlab workspace much tidier
when working with the new toolbox compared to the old one. Three structures or object classes
are implemented and extensively used: the spectrum structure, covariance structure and probability
density function (hereafter denoted pdf) structure. Thus the toolbox requires Matlab Version 5 or
newer and is portable to any computational environment that supports Matlab, such as Unix or PC
with MS Windows. See Section 1.5 for a description of the datastructures in WAFO.

All the files in the package are located in subdirectories under the main directory. The following
directories are related to what has been discussed above. In the next section, we describe in more
details the directories (or modules) which contain routines for application.

/WAFO is the main directory containing different directories for the WAFO software, datasets and
documentation.

/WAFO/docs contains the documentation for the toolbox both in ascii and postscript format.

/WAFO/paper is a subdirectory including scripts for reproducing figures in various articles and
technical reports.

/WAFO/demos contains different demonstrations that illustrates and highlights certain aspects of
WAFO.

�http://www.maths.lth.se/matstat/wafo/



/WAFO/data contains datasets used in the demo and paper scripts.

/WAFO/source/ contains mex and Fortran source files.

/WAFO/exec/.. contains Fortran compiled executables for different computers and platforms.

1.3 Organization of WAFO

In this section, we make a brief presentation of each module. The text will not be a complete list
of routines; such a list may be found at the web site for WAFO. We want to emphasize that all
routines in WAFO work together – the division into sub-toolboxes is only to make it easier for the
user to find the routines for his actual problem.

Data analysis

The routines in this category treat data in the form of time series. As examples of routines, we
find procedures for extraction of so-called turning points, from which troughs and crests may be
obtained, as well as procedures for estimation of autocovariance function and one-sided spectral
density. One routine extracts wave heights and steepnesses. Numerous plotting routines are in-
cluded.

Spectrum

Computation of spectral moments and covariance functions, given a spectrum, is a necessary step
for calculation of exact probability distributions of wave characteristics. The spectrum structure
mentioned in the previous section allows this calculation to be performed for directional spectra
as well as encountered spectra. We present routines for calculations of commonly used frequency
spectra S���, e.g. JONSWAP, Torsethaugen. The spectra can be expressed in frequency as well as
wave number. Libraries of spreading functions D���, in some cases allowed to be also frequency
dependent, cf. [23], are included.

Transformed Gaussian processes

WAFO is mainly intended to model linear, Gaussian waves. For this cathegory of waves, the exact
distributions of wave characteristics can be calculated, given a spectrum; for example

� pdf for wavelength (period),

� joint pdf for wavelength (period) and amplitude,

� joint pdf of half wavelengths.

Routines for transformed Gaussian processes, cf. [54], are included.

Wave models

In WAFO, we have implemented certain models for distributions of wave characteristics found in
the literature. For example, one finds

� approximations of the density �Tc� Ac� in a stationary Gaussian transformed process proposed
by Cavanié, et al. [10], and Longuet-Higgins, [34],

� a model for the cdf/pdf of breaking limited wave heights proposed by Tayfun, [57],



� a model for the cdf/pdf of large wave heights by Tayfun, [58].

These are parametric models, where the calculation needs as input spectral moments, as opposed
to the algorithms in the previous module, where the whole spectrum is required.

Simulation of random processes

Efficient simulation of a Gaussian process X�t� and its derivative X ��t�, given the spectral den-
sity or the auto-correlation function, can be performed. A routine for simulation of a transformed
Gaussian process (and its derivative) is also included. For fast and exact simulation, some routines
use a technique with circulant embedding of the covariance matrix, [11]. More traditional spectral
simulation methods (FFT) are also used. Simulation of discrete Markov chains, Markov chains of
turning points, switching Markov chains etc. is possible.

Statistical tools and extreme value distributions

Certain probability distributions are extensively used in ocean engineering, e.g. Rayleigh, Gumbel,
Weibull. The generalized extreme-value distributions (GEV) and generalized Pareto distributions
(GPD) are also important. For the distributions mentioned, it is possible to estimate parameters,
generate random variables, evalute pdf and cumulative distribution function, and plot in various
probability papers. One cathegory of routines handles bivariate distributions. Besides having rou-
tines for estimation of parameters etc. for the two-dimensional Weibull distribution, bivariate mod-
elling is possible.

Kernel-density-estimation tools

The routines in this cathegory complement the ones found in ’Data analysis’ and, obviously, the
routines in ’Statistical tools and extreme value distributions. They are, however, also applicable to
multi-dimensional data, and hence very useful for smoothing purposes when comparing (theoreti-
cal) joint distributions of wave characteristics to data; cf. cf. [55], [61].

Discretization and cycle counting

After extraction of the so-called sequence of turning points (the sequence of local maxima and
minima) from data, cycle counts can be obtained, e.g. max-to-min cycles, trough-to-crest cycles,
rainflow cycles. For decriptive statistics, the counting distribution and the rainflow matrix are im-
portant; these can be obtained. Given a cycle matrix, one can obtain histograms for amplitude and
range, respectively.

Markov models

If the sequence of turning points forms a Markov chain (MC), it is called a MC of turning points
(MCTP). An important property is the Markov matrix: the expected histogram matrix of min2max
and max-to-min cycles. Given a rainflow matrix of a MCTP, one can find its Markov matrix. In
WAFO, algorithms are implemented to calculate the rainflow matrix for a MC and a MCTP; cf.
[13].

In some applications, one wants to model data, whose properties change according to an under-
lying, often unobserved process, called the regime process. The state of the regime process controls
which parameters to use and when to switch the parameter values. The regime process can be mod-
elled by a Markov chain, and this is the fundamental basis for the set of routines presented. For an
application with switching Markov models for fatigue problems; see [20, 22].



Fatigue and Damage

In WAFO, routines for calculation of the accumulated damage according to the Palmgren-Miner
rule have been implemented. It is possible to compute the total damage from a cycle count as well
as from a cycle matrix.

Miscellaneous routines

We find here various plot routines, algorithms for numerical integration, and functions for docu-
mentation of WAFO with modules.

1.4 Some applications of WAFO

In this section we demonstrate in examples some of the capabilities of WAFO. For further ex-
amples and knowledge about the algorithms used in the routines, we refer to the tutorial and the
documentation in the routines. Note that the necessary Matlab code for generation of the figures in
this paper is found in the directory WAFO/paper.
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Figure 1.1: Part of a simulation from S���, a Torsethaugen spectrum with Hm�
� � m, Tp � � s.

Total number of points � ����, �t � ��	 s.

We start by defining a frequency spectrum, S���, which will be used in many of the examples;
we choose a Torsethaugen spectrum with the parameters Hm�

� � m, Tp � � s, describing signifi-
cant wave height and primary peak period, respectively. The energy is divided between two peaks,
corresponding to contributions from wind and swell ([59]). WAFO allows spectra to be defined
simply by their parameters Hm�

and Tp.



1.4.1 Simulation from spectrum, estimation of spectrum

In Figure 1.1, plotted using waveplot, we have simulated a sample path from S���. The user
specifies the number of wanted points in the simulation. The following code in MATLAB generates
the 200 seconds of data sampled with 10 Hz from the discussed spectrum. More on simulation can
be found in Section 2.3.

S1=torsethaugen([],[6 8],1);
xs=spec2sdat(S1,[2000 1],0.1);
waveplot(xs,’-’)

In a common situation data is given in form of a time series, for which one wants to estimate
the related spectrum. We will now simulate 20 minutes signal sampled with 4 Hz, find an estimate
Sest��� and compare the result to the original Torsethaugen spectrum S���. The following code in
MATLAB was used to generate Figure 1.2, where the two spectra are displayed. The maximum lag
size of the Parzen window function used (here 400) can be chosen by the user or automatically by
WAFO.

xs=spec2sdat(S1,[20*60*4 1],0.25);
Sest = dat2spec2(xs,400)
wspecplot(Sest,1,’--’), hold on
wspecplot(S1,1), hold off
axis([0 3 0 5])
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Figure 1.2: Solid: original spectrum. Dashed: spectrum estimated from data (20 minutes of ob-
servations). Maximum lag size of the Parzen window � 
��.

1.4.2 Probability distributions of wave characteristics

WAFO gives the possibility to compute exact probability distributions for a number of wave char-
acteristics, given a spectral density. A wave characteristic as, for example, wave period, can be



defined in several ways, see Table 3.1 in Chapter 3, and WAFO allows the user to choose between
a number of definitions: trough-to-crest, down-to-up crossing, up-to-up crossing etc. Chapter 3
describes how to use WAFO to compute all wave characteristic distributions.

In the numerical example, we have chosen to consider the down-to-up crossing definition, rather
a trough period. The wave periods can be extracted from the realization in Figure 1.1, and are
shown as a histogram in Figure 1.3. This histogram may be compared to the theoretical density,
calculated from S���, and the estimated density Sest���; see Figure 1.3. Recall that for this spec-
trum, Tp � � s. In Figure 1.3, the density for the half period is shown; the results are in good agree-
ment with the original spectrum. The following are the code lines to produce the presented figure.
The different steps are: first extract half periods from the data by means of the routine dat2wa
and store in the variable T, then use spec2tpdf to calculate the theoretical distribution.

[T, index] = dat2wa(xs,0,’d2u’);
whisto(T,25,1,1), hold on
dtyex = spec2tpdf(S1,[],[],[0 10 51],0,3);
dtyest = spec2tpdf(Sest,[],[],[0 10 51],0,3);
pdfplot(dtyex)
pdfplot(dtyest,’-.’)
axis([0 10 0 0.35]), hold off
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Figure 1.3: Solid line: pdf for wave period, given S���. Dash-dotted line: pdf for wave period,
given Sest���. The histogram shows the wave periods extracted from simulated data.



1.4.3 Directional spectra

In WAFO one finds means for evaluation and visualization of directional spectra, that is

S��� �� � S���D��� ��

where S��� is a frequency spectrum and D��� �� is a spreading function. A number of common
spreading functions can be chosen by the user.

One way of visualizing S��� �� is a polar plot. In Figure 1.4 we show the resulting directional
spectrum (solid line) for the Torsethaugen spectrum used above. The spreading function is of the
cos-2s type, that is (in the frequency dependent case)

D��� �
��s� 	�

�
p
���s� 	���

cos�s
�
�

�

�

with s�	
. Note that the two peaks can be distinguished. The dash-dotted line is the corresponding
result when the spreading function is frequency dependent, cf. [23].

Here are a few lines of code which produce the graph of these directional spectra.

D1 = spreading(101,’cos’,pi/2,[15],[],0);
D12 = spreading(101,’cos’,0,[15],S1.w,1);
SD1 = mkdspec(S1,D1);
SD12 = mkdspec(S1,D12);
wspecplot(SD1,1), hold on, wspecplot(SD12,1); hold off

We finish this section with simulated sea surfaces on 128 [m] by 128 [m] for the sea with
directional spectra SD1 and SD2. The routine seasim simulates a sea surface with directional
spectrum.

Y1=seasim(SD1,2ˆ8,2ˆ8,1,0.5,0.5,0.25,2,1);
Y12=seasim(SD12,2ˆ8,2ˆ8,1,0.5,0.5,0.25,2,1);

The results are shown in Figure 1.5 and one can sea that waves are coming from different
direction. However, the frequency dependent spreading leads to a much more irregular surface so
the orientation of waves is less transparent. From Figure 1.5 it is not easy to deduce that both sea
surfaces have the same period distribution, but it is more obvious that the wavelength distributions
are different.

1.4.4 Fatigue, Load cycles, and Markov models

In fatigue applications the exact sample path is not important, but only the tops and bottoms of
the load, called the sequence of turning points (TP). From the turning points one can extract load
cycles, from which damage calculations and fatigue life predictions can be performed. In WAFO
there are numerous routines for evaluating fatigue measured loads, as well as making theoretical
calculations of distributions that are important for fatigue evaluation. A powerful technique when
analysing loads is to use Markov models as approximations, especially to model the sequence of
turning points by a Markov chain. For such models there exist many explicit results. Here we will
use this Markov approximation for computing the intensity of rainflow cycles and trough-to-crest
cycles for the Gaussian model in Figure 1.2.
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Figure 1.5: Simulated sea surfaces on a rectangle of 128 [m] by 128 [m] with directional spectrum
SD1, spreading independent of frequency (left), and SD12, frequency dependent spreading
(right).

For fatigue analysis the rainflow cycle, defined in Figure 4.1 in Chapter 4, is often used. The
Markov model is defined by the min-to-max pdf, which is obtained from the power spectral density
by using approximations in Slepian model processes, see e.g. [32] and references therein. Chapter 3
describes how WAFO routines can be used to find the min-to-max deistribution for Gaussian
loads. For the Markov model there is an explicit solution for the intensity of rainflow cycles, see
[13]. By using the routines in WAFO the intensity of rainflow cycles can be found using Markov



approximation; see Figure 1.6, where also the rainflow cycles found in the simulated load signal
are shown. The figure has been plotted using the following MATLAB commands:

frfc=spec2cmat(S1,[],’rfc’,[],[-6 6 61]);
pdfplot(frfc);
hold on
tp=dat2tp(xs);
rfc=tp2rfc(tp);
plot(rfc(:,2),rfc(:,1),’.’)
hold off
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Figure 1.6: Intensity of rainflow cycles computed from the psd through Markov approximation,
compared with the cycles found in the simulation.

The WAFO toolbox also contains routines for computing the intensity of rainflow cycles in more
complex load processes, for example for a switching Markov chain of TP. Details on fatigue load
analysis are given in Chapter 4.



1.5 Datastructures
help datastructures

DATASTRUCTURES of spectrum, covariance function and density (pdf) in WAFO

To represent spectra, covariance functions and probability density functions
in WAFO, the MATLAB datatype ’structured array’ is used. Here follows a list
of the fields in the struct representing S, cvf and pdf, respectively.

Spectrum structure
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
Requisite fields:
.type String: ’freq’, ’dir’, ’k2d’, k1d’, ’encdir’, ’enc’, ’rotdir’,

’rotk2d’ or ’rotk1d’.
.S Spectrum values (size=[nf 1] or [np nf]).
.w OR .f OR .k Frequency/wave number lag, length nf.
.tr Transformation function (default [] (none)).
.h Water depth (default inf).
.norm Normalization flag, Logical 1 if S is normalized, 0 if not
.note Memorandum string.
.date Date and time of creation or change.
Type-specific fields:
.k2 Second dim. wave number lag, if .type=’k2d’ or ’rotk2d’, length np.
.theta Angular lags, if .type=’dir’, ’rotdir’ or ’encdir’, length np.
.v Ship speed, if .type = ’enc’ or ’encdir’.
.phi Direction of ship if .type = ’enc’, ’encdir’,

or rotation angle if .type = ’rotdir’, ’rotk1d’ or ’rotk2d’.

See also: createspec, wspecplot

Covariance function (cvf) structure
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
.R Covariance function values. Size [ny nx nt], all singleton dim. removed.
.x Lag of first space dimension, length nx.
.y Lag of second space dimension, length ny.
.t Time lag, length nt.
.h Water depth.
.tr Transformation function.
.type ’enc’, ’rot’ or ’none’.
.v Ship speed, if .type=’enc’
.phi Direction of ship if .type=’enc’, rotation angle if .type=’rot’
.norm Normalization flag, Logical 1 if autocorrelation, 0 if covariance.
.Rx ... .Rtttt Obvious derivatives of .R.
.note Memorandum string.
.date Date and time of creation or change.

See also: createcov, spec2cov, cov2spec, covplot

Probability density function (pdf) structure
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
Describing a density of n variables:
.f Probability density function values (n-dimensional matrix)
.x Cell array of vectors defining grid for variables (n cells)
.labx Cell array of label strings for the variables (n cells)
.title Title string
.note Memorandum string.

See also: createpdf, pdfplot



CHAPTER 2

RANDOM LOADS AND STOCHASTIC WAVES -
MODELING

In this chapter we present some tools for analysis of random functions with respect to their cor-
relation, spectral, and distributional properties. We first give a brief introduction to the theory of
Gaussian processes and then we present programs in WAFO which can be used to analyze random
functions. The presentation will be organized in three examples; Example 1 is devoted to estima-
tion of different parameters in the model, Example 2 deals with spectral densities and Example 3
presents the use of WAFO to simulate samples of a Gaussian process.

2.1 Introduction and preliminary analysis

The functions we shall analyze can be measured stresses or strains, which we call loads, or other
measurements, where waves on the sea surface is one of the most important examples. We assume
that the measured data are given by one of the following forms:

1. In the time domain, as measurements of a response function denoted by x�t�, � � t � T ,
where t is time and T is the duration of the measurements. The x�t�-function is usually
sampled with a fixed sampling frequency and a given resolution, i.e. the values of x�t� are also
discretized. The effects of sampling can not always be neglected in estimation of parameters
or distributions. We assume that measured functions are saved as a two column ASCII or mat
file.

2. In the frequency domain, as a power spectrum, which is an important mode in systems anal-
ysis. This means that the signal is represented by a Fourier series,

x�t� � m�
NX
i��

ai cos��i t� � bi sin��i t��

where �i � i ����T are angular frequencies, m is the mean of the signal and ai� bi are Fourier
coefficients.

Some general properties of measured functions can be summarized by using a few simple char-
acteristics. Those are the mean m, defined as the average of all values, the standard deviation �,
and the variance ��, which measures the variability around the mean in linear and quatratic scale.
These quantities are estimated by



m� 	�T
Z T

�
x�t� dt� (2.1)

�� � 	�T
Z T

�
�x�t��m�� dt� (2.2)

Another important property is the crossing spectrum or crossing intensity 	�u� defined as the
intensity of upcrossings (= average number of upcrossings per time unit), of a level u by x�t� as
a function of u. The mean frequency f� is usually defined as the number of times x�t� crosses
upwards (upcrosses) the mean level m normalized by the length of the observation interval T , i.e.
f� � 	�m�. An alternative definition,1 which we prefer to use is that f� � max�	�u��, i.e. it is
equal to the maximum of 	�u�. The irregularity factor 
, defined as the mean frequency f� divided
by the intensity of local maxima (intensity of cycles) in x�t�. (Note, a small 
 means an irregular
process, �� � 
 � 	).)

Example 1. (Sea data) In this example we use a series with wave data sea.datwith time argu-
ment in the first column and function values in the second column. The data used in the examples
are wave measurements at shallow water location, sampled with a sampling frequency of 4 Hz,
and the units of measurement are seconds and meters, respectively. The file sea.dat is loaded
into MATLAB and after the mean value has been subtracted the data are saved in the two column
matrix xx.

xx = load(’sea.dat’);
me = mean(xx(:,2))
sa = std(xx(:,2))
xx(:,2) = xx(:,2) - me;
lc = dat2lc(xx);

Here me and sa are the mean and standard deviation of the signal, respectively. The variable
lc is a two column matrix with levels in the first column and the number of upcrossing of the
level in the second. In Figure 2.1 the number of upcrossings of xx is plotted and compared with
an estimation based on the assumption that xx is a realization of a Gaussian sea. The plot is
automatically drawn by dat2lc.

Next we compute the mean frequency as the average number of upcrossings per time unit of
the mean level (= 0); this may require interpolation in the crossing intensity curve, as follows.

T = max(xx(:,1))-min(xx(:,1))
f0 = interp1(lc(:,1),lc(:,2),0)/T

The process of fatigue damage accumulation depends only on the values and the order of the
local extremes in the load. The sequence of local extremes is called the sequence of turning points.
It is a two column matrix with time for the extremes in the first column and the values of xx in the
second.

tp = dat2tp(xx);
alfa = f0/(length(tp)/(2*T))

Here alfa is the irregularity factor. Note that length(tp) is equal to the number of local
maxima and minima and hence we have a factor 2 in the expression for alfa. �

�Still another definition, to be used in Chapter 4, is that f� is the average number of completed load cycles per time unit.
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nals, see (2.3).

We finish this section with some remarks about the quality of the measured data. Especially sea
surface measurements can be of poor quality. We shall now check the quality of the dataset xx. It
is always good practice to visually examine the data before the analysis to get an impression of the
quality, non-linearities and narrow-bandedness of the data.

Example 1. (contd.) First we shall plot the data and zoom in on a specific region. A part of the
sea data is presented in Figure 2.2 obtained by the following commands.

clf
waveplot(xx,tp,’k-’,’*’,1,1)
axis([0 100 -inf inf])

However, if the amount of data is too large for visual examination, or if one wants a more objec-
tive measure of the quality of the data one could use the following empirical criterion implemented
in WAFO:

� x��t� � 
 [m/s], since the raising speed of Gaussian waves rarely exceeds 5 [m/s],

� x���t� � ���	��, �m�s�� which is the limiting maximum acceleration of Stokes waves,

� if the signal is constant in some intervals, then this will add high frequencies to the estimated
spectral density; constant data may occur if the measuring device is blocked during some
period of time.

To find possible spurious points of the dataset use the following commands.

dt = diff(xx(1:2,1));
dcrit = 5*dt;
ddcrit = 9.81/2*dt*dt;
zcrit = 0;
[inds indg] = findoutliers(xx,zcrit,dcrit,ddcrit);
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Figure 2.2: A part of the sea data with turning points marked as stars.

The program will give the following list when used on the sea data.

Found 0 missing points
Found 0 spurious positive jumps of Dx
Found 0 spurious negative jumps of Dx
Found 37 spurious positive jumps of Dˆ2x
Found 200 spurious negative jumps of Dˆ2x
Found 244 consecutive equal values
Found the total of 1152 spurious points

The values for zcrit, dcrit and ddcrit can be chosen more carefully. However, small
changes of the constants are usually not so crucial. As seen from the transcripts from the program
a total of 1152 points are found to be spurious which is approximately 12 % of the data. Based on
this one may classify the datasets into good, reasonable, poor and useless. Obviously uncritical use
of data may lead to unsatisfactory results. We return to this problem when discussing methods to
reconstruct the data. �

2.2 Frequency Modeling of Load Histories

The most important characteristic of signals in frequency domain is their power spectrum

�si � �a�i � b�i ��������

where �� is the sampling interval in frequency domain, i.e. �i � i ���. The two-column matrix
�s��i� � ��i� �si� will be called the power spectrum of x�t�.

The sequence �i � arccos�ai�
p
��si��� is called a sequence of phases and the Fourier series

can be written as follows

x�t� � m�
NX
i��

q
��si�� cos��i t� �i��



If the sampled signal contains exactly �N � 	 points then x�t� is equal to its Fourier series at the
sampled points. In the special case when N � �k, the so-called FFT (Fast Fourier Transform) can
be used in order to compute the Fourier coefficients (and the spectrum) from the measured signal
and in reverse the signal from the Fourier coefficients.

As mentioned, the Fourier coefficient to the zero frequency is just the mean of the signal, while
the variance is given by �� � ��

P
�s��i� �

R�
� �s��� d�. The last integral is called the zero-order

spectral moment m�. Similarly, higher-order spectral moments are defined by

mi �
Z �
�

�i�s��� d��
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Figure 2.3: The observed spectrum in the data set sea.dat.

Example 1. (contd.) We give now the spectrum �s��� for the signal xx.

S = dat2spec2(xx,9500);
wspecplot(S)

In Figure 2.3 we can see that the spectrum is extremely irregular and probably it varies between
measurements of the sea even under almost identical conditions. This will be further discussed in
the following section. Next the spectral moments will be computed.

[mom text] = spec2mom(S,4)
[sa sqrt(mom(1))]

The vector mom now contains spectral moments m�� m�� m�, which are the variances of the
signal and its first and second derivative. We can speculate that the variance of the derivatives is
too high partially because of spurious points. For example, if there are several points with the same
value, the Gibb’s phenomenon leads to high frequencies in the spectrum. �



2.2.1 Random Functions in Spectral Domain - Gaussian processes

In the previous section we studied the properties of one specific signal in frequency domain. As-
sume now that we get a new series of measurements of a signal, which we are willing to consider
as equivalent with the first one. However, the two series are seldom identical and differ in some
respects which it is natural to regard as purely random. Obviously it will have a different spectrum
�s��� and the phases will be changed.

A useful mathematical model for such a situation is the random function (stochastic process)
model which will be denoted by X�t�. Then x�t� is seen as particular chosen randomly function.
The simplest model for a stationary signal with a fixed spectrum �s��� is

X�t� � m�
NX
i��

q
�si��

p
� cos��i t��i��

where �i are independent uniformly distributed phases. However, this is not a very realistic model
either, since in practice one often observes a variability in the spectrum �s��� between measured
functions. Hhence �si should also be modeled to include a certain randomness. The best way to
accomplish this is to assume that there exists a deterministic function S��� such that the average
value of �s��i��� between different observed series can be approximated by S��i���. In fact, in
many cases one can model �si as

�si � R�
i � S��i����

where Ri are independent random factors, all with a Rayleigh distribution. (Observe that the aver-
age value of R�

i is 2.) This gives the following random function as model for the series,

X�t� � m �
NX
i��

q
S��i���Ri cos��i t��i��

The process X�t� has many useful properties that can be used for analysis. In particular, for any
fixed t, X�t� is normally (Gaussian) distributed. Then, the probability of any event defined for
X�t� can, in principal, be computed when the mean m and the spectral density S are known.

In sea modeling, the components in the sum defining X�t� can be interpreted as individual
waves. By the assumption that Ri and �i are independent random variables one has that the indi-
vidual waves are independent stationary Gaussian processes with mean zero and covariance func-
tion given by

ri��� � �� S��i� cos��i ���

Consequently the covariance between X�t� and X�t� �� is given by

rX��� � E��X�t��m��X�t� ���m�� � ��
NX
i��

S��i� cos��i ���

More generally, for a stationary stochastic process with spectral density S���, the correlation struc-
ture of the process is defined by its spectral density function, also called power spectrum,

r��� � Cov�X�t�� X�t� ��� �
Z �
�

cos����S��� d��

The spectral density represents a continuous distribution of the wave energy over a continuum of
frequencies.



If Y �t� is an output of a linear filter with X�t� as input, then Y �t� is also normally distributed
and we need to derive the spectrum of Y �t� to be able to analyze its properties. This is a simple
task, since if the transfer function of the filter H��� is given, then the spectrum of Y �t�, denoted
by SY , is given by

SY ��� � jH���j�S����
For example, the derivative X ��t� is a Gaussian process with mean zero and spectrum SY ��� �

��S���. The variance of the derivative is equal to the second spectral moment,

��X� �
Z
SY ��� d� �

Z
��S��� d� � m��

The Gaussian process is a sum of cosine terms with amplitudes defined by the spectrum; hence,
it is not easy to relate the power spectrum and the fatigue damage. The crossing intensity 	�u�,
which yields the average number of upcrossings of the level u, contains some information also on
the fatigue properties. For a Gaussian process it is given by the celebrated Rice’s formula,

	�u� � f� exp���u�m�������� (2.3)

Using spectral moments we have that �� � m� while f� � �
��
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Figure 2.4: The estimated spectrum in the data set sea.dat with different degree of smoothing.

Example 1. (contd.) In order to estimate the spectrum of a Gaussian process one needs several
realizations of the process. Then one spectrum estimate can be made for each realization which are
then averaged. However, in many cases only one realization of the process is available. In such a
case one is often assuming that the spectrum is a smooth function of � and can use this information
to improve the estimate. Practically it means that one has to use some smoothing techniques. For
the sea data we shall estimate the spectrum by means of the WAFO function dat2spec which a
second parameter defining the degree of smoothing.



S1 = dat2spec2(xx,200);
S2 = dat2spec2(xx,50);
wspecplot(S1,[],’-.’)
hold on
wspecplot(S2)
hold off

In Figure 2.4 we see that with decreasing second input the spectrum estimate becomes smoother,
and that it in the end becomes unimodal.

Obviously knowing the spectrum one can compute the covariance function. The following code
in MATLAB will compute the covariance for the unimodal spectral density S2 and compare it with
estimated covariance in the signal xx.

R2 = spec2cov(S1,1);
Rest = dat2cov(xx,80,[],’- -’);
covplot(R2,80,[],’.’)
hold on
covplot(Rest)
hold off

We can see in Figure 2.5(a) that the covariance function corresponding to the spectral density
S2 significantly differs from the one estimated directly from data. It can be seen that the covariance
corresponding to S1 agrees much better with the estimated covariance function; see Figure 2.5(b),
which is obtained using the same code with S2 in spec2cov replaced by S1. �

(a) (b)
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Figure 2.5: The covariance function estimated in the data set xx, solid line, compared the theo-
retically computed covariance functions for the spectral densities S2 in (a) and S1 in (b).

Observe that the WAFO function spec2cov can be used to compute a covariance structure
which can contain covariances both in time and in space as well as that of the derivatives. The input
can be any spectrum structure, e.g. wave number spectrum, directional spectrum or encountered
directional spectrum; type help spec2cov for the detailed information.

2.2.2 Transformed Gaussian models

The standard assumptions for a sea state under stationary conditions are that the model X�t� is a
stationary and ergodic stochastic process with mean E�X�t�� assumed to be zero and a spectral



density S���. The knowledge of which kind of spectral density S��� are suitable to describe sea
state data is well established from experimental studies.

Real data x�t� seldom perfectly support the Gaussian assumption for the process X�t�. But
since the Gaussian case is well understood and there are approximative methods to obtain wave
characteristics from the spectral density S��� for Gaussian processes, one often looks for a model
of the sea state in the class of Gaussian processes. Furthermore, in previous work [54] we have
found that for many sea wave data, even such that are clearly non-Gaussian, the wavelength and
amplitude densities can be very accurately approximated using the Gaussian process model.

However, the Gaussian model can lead to less satisfactory results when it comes to the distri-
bution of crest heights or joint densities of troughs and crests. In that case we found in [54] that
a simple transformed Gaussian process used to model x�t� gave good approximations for those
densities.

Consequently, in WAFO we shall model x�t� by a process X�t� which is a function of a single
Gaussian process fX�t�, i.e.

X�t� � G�fX�t��� (2.4)

where G��� is a continuously differentiable function with positive derivative. We shall denote the
spectrum of X by S, while the spectrum of fX�t� by eS.

The transformation G performs all appropriate translation and scaling so that fX�t� is always
normalized to have mean zero and variance one, i.e. the first spectral moment of eS is one.

Note that once the distributions of crests, troughs, amplitudes or wavelengths in a Gaussian
process fX�t� are computed, then the corresponding wave distributions in X�t� are obtained by
simple variable transformations involving only the inverse of G, which we shall denote by g.
Actually we shall use the function g to define the transformation instead of G, and use the relationex�t� � g�x�t�� between the real sea data x�t� and the transformed data ex�t�.

If the model (2.4) is correct, then ex�t� should be a sample function of a process with Gaussian
marginal distributions. Obviously, a Gaussian model is obtained by using a linear function g�y� �
ay � b, where a� b are constants.

There are several different ways to proceed when selecting a transformation. The simplest al-
ternative is to estimate the function g directly from data by some parameteric or non-parametric
means. A more physically motivated procedure is to use some of the parametric functions pro-
posed in the literature, based on approximations of non-linear wave theory. The following options
are programmed in the toolbox:

dat2tr - non-parametric transformation g proposed by Rychlik,
hermitetr - transformation g proposed by Winterstein,
ochitr2 - transformation g proposed by Ochi et al.

The transformation proposed by Ochi, [39], is a monotonic exponential function while Winter-
stein’s model, [62], is a monotonic cubic Hermite polynomial. Both transformations use moments
of X�t� to compute g. Information about the moments of the process can be obtained by site spe-
cific data, laboratory measurements or by resort to physical models. Marthinsen and Winterstein
(1992), [37], derived an expression for the skewness and kurtosis for narrow banded Stokes waves
to the leading order and used these to define the transformation. The skewness and kurtosis (ex-
cess) of this model can also be estimated from data by the WAFO functions wskewness and
wkurtosis.



Example 1. (contd.) We begin with computations of skewness and kurtosis for the data set xx.
The commands

rho3 = wskewness(xx(:,2))
rho4 = wkurtosis(xx(:,2))

give the values rho3 = 0.25 and rho4 = 3.17, respectively, compared to rho3 = 0 and
rho4 = 3 for Gaussian waves. We can compute the same model using the spectrum �S using
the second order wave approximation proposed by Winterstein. His approximation gives suitable
values for skewness and kurtosis

[sk, ku ]=spec2skew(S1);

Here we shall use the Hermite transformation proposed by Winterstein and denote it by gh and
compare it with the linear transformation, i.e. when X�t� is Gaussian, denoted by g.

gh = hermitetr([],[sa sk ku me]);
g = gh; g(:,2)=g(:,1)/sa;
trplot(gh)

These commands will result in two column matrices, g, gh, with equally spaced y-values in
the first column and the values of g�y� in the second column.

Since we have data we may estimate the transformation directly by a method proposed by
Rychlik, [54].

[glc test0] = dat2tr(xx);
hold on
plot(gh(:,1),gh(:,2),’b-.’)
hold off

The same transformation can be obtained from the crossing intensity by use of the WAFO
function lc2tr.

In Figure 2.6 we compare the three transformations, the straight line is the Gaussian linear
model, the dashed dotted line is the Hermite transformation based on higher moments of the re-
sponse computed from the spectrum and the solid line is the direct transformation estimated from
crossing intensity. (The unsmoothed line shows the estimation of the direct transformation from
unsmoothed crossing intensity). We can see that the transformation derived from crossings will
give the highest crest heights. It can be proved that asymptotically the transformation based on
crossings intensity gives the correct density of crest heights.

The transformations indicates that data xx has a light lower tail and heavy upper tail compared
to a Gaussian model. This is also consistent with second order wave theory where the crests are
higher and the troughs shallower compared to Gaussian waves. Now the question is whether this
difference is significant compared to the natural statistical variability due to finite length of the
time series.

To determine the degree of departure from Gaussianity, we can compare an indicator of non-
Gaussianity test0 with calculated value obtained from Monte Carlo simulation. The value of
test0 is a measure of how munch the transformation g deviates from a straight line.

The significance test is done by simulating 50 independent samples of test0 from a true Gaus-
sian process with the same spectral density and length as the original data. This is accomplished
by the WAFO program mctrtest. The output from the program is a plot of the ratio test1

between the simulated (Gaussian) test0-values and the sample test0:
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Figure 2.6: Comparisons of the three transformations g, straight line - Gaussian model, dashed-
dotted line the Hermite transformation gh and solid line the Rychlik method glc.

N = length(xx);
test1 = mctrtest(S1,[N,50],test0);

The program gives a plot of simulated test values, see Figure 2.7. As we see from the figure
none of the simulated values of test1 is above 1.00. Thus the data significantly departs from
a Gaussian distribution; see [54] for more detailed discussion of the testing procedure and the
estimation of the transformation g from the crossing intensity.

We finish the tests for Gaussianity of the data by a more classical approach and simply plot
the data on normal probability paper. Then N independent observation of identically distributed
Gaussian variables forms a straight line in a normalplot. Now for a time series the data is clearly
not independent. However, if the process is ergodic then the data forms straight line as N tends to
infinity.

The command

wnormplot(xx(:,2))

produces Figure 2.8.
As we can see the normal probability plot is curved indicating than that the underlying distri-

bution has a “heavy” upper tail and a “light” lower tail. �

2.2.3 Spectral densities of sea data

The knowledge of which kind of spectral density S��� is suitable to describe sea state data is well
established from experimental studies. One often uses some parametric form of spectral density
functions, e.g. a JONSWAP-spectrum. This formula is programmed in a WAFO function jon-

swap, which evaluates the spectral density S��� with specified wave characteristics. There are
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several other programmed spectral densities in WAFO to allow for bimodal and finite water depth
spectra. The list includes the following spectra:

jonswap - JONSWAP spectral density
wallop - Wallop spectral density,
ohspec2 - Bimodal Ochi-Hubble spectral density,
torsethaugen - Bimodal (swell + wind) spectral density,
pmspec - Pierson-Moskowitz spectral density,
mccormick - McCormick spectral density,
tmaspec - JONSWAP spectral density for finite water depth,



WAFO also contains some different spreading functions; use help spec and help spread-
ing for more detailed information.

The spectrum of the sea can be given in many different formats, that are interconnected by
the dispersion relation. The spectrum can be given using frequencies, angular frequencies or wave
numbers, and it can also be directional.

A related spectrum is the encountered spectrum for a moving vessel. The transformations be-
tween the different types of spectra are defined by means of integrals and variable change defined
by the dispersion relation and the Doppler shift of individual waves. The function spec2spec
makes all these transformations easily accessible for the user. (Actually many programs perform
the appropriate transformations internally whenever it is necessary and for example one can com-
pute the density of wave-length from an input that is the directional spectrum in frequency domain.)
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Figure 2.9: The directional spectrum of JONSWAP sea (dashed line) compared with the encoun-
tered directional spectrum for heading sea, speed 10 [m/s] (solid line).

Example 2. (Different form of spectra) In this example we have chosen a JONSWAP spectrum
with parameters defined by significant wave height Hm0 = 7 [m] and peak period Tp = 11 [s].
This spectrum describes the measurements of sea evel at a fixed point (buoy).

Hm0 = 7; Tp = 11;
spec = jonswap([],[Hm0 Tp]);
spec.note

In order to include the space dimension, i.e. the direction in which the waves propagate, we
compute a directional spectrum by adding spreading; see dashed curves in Figure 2.9.



D = spreading(101,’cos2s’,0,[],spec.w,1)
Sd = mkdspec(spec,D)

Next we conside a vessel moving with speed 10 [m/s] against the waves. The sea measured from
the vessel will have a different directional spectrum, called the encountered directional spectrum.
The following code will compute the encountered directional spectrum and plot it on top of the
original directional spectrum. The result is shown as the solid curves in Figure 2.9.

Se = spec2spec(Sd,’encdir’,0,10);
wspecplot(Se), hold on
wspecplot(Sd,1,’--’), hold off

Obviously the periods of waves in the directional sea are defined by the JONSWAP spectrum
(spreading is not affecting the sea level at a fixed point), but the encountered periods will be shorter.
This can be seen by comparing the following three spectra:

S1 =spec2spec(Sd,’freq’);
S2 = spec2spec(Se,’freq’);
wspecplot(spec), hold on
wspecplot(S1,1,’.’),
wspecplot(S2),
hold off

We can see in Figure 2.10(a) that the spectra spec and S1 are identical (in numerical sense)
while spectrum S2 contains more energy at higher frequencies.

A similar kind of question is how much the wave length differs between a longcrested JON-
SWAP sea and a JONSWAP sea with spreading. The wavenumber spectra for both cases can be
computed by the following code, the result of which is shown in Figure 2.10(b).

Sk = spec2spec(spec,’k1d’)
Skd = spec2spec(Sd,’k1d’)
wspecplot(Sk), hold on
wspecplot(Skd,1,’--’), hold off

Finally we shall show how the JONSWAP spectrum can be corrected for a finite depth, see [9].
The following code computes spectrum for water of finite depth of 20 [m]. The resulting spectra
are shown in Figure 2.11.

wspecplot(spec,1,’--’), hold on
S20 = spec;
S20.S = S20.S.*phi1(S20.w,20);
S20.h = 20;
wspecplot(S20), hold off

�
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Figure 2.10: (a) The frequency JONSWAP spectrum compared with encountered frequency spec-
trum for heading sea speed 10 [m/s] (solid line). (b) The wave number spectrum for
longcrested JONSWAP sea (solid line) compared with wave number spectrum for JONSWAP
with spreading.
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Figure 2.11: Standard JONSWAP spectrum (dashed line) compared with the spectrum on finite
depth of 20 [m] (solid line)

2.3 Simulation of transformed Gaussian process

In this section we shall present some of the programs in WAFO that can be used to simulate random
signals, loads and waves; type help wsim for the complete list. We shall be mostly concerned
with simulation of the transformed Gaussian model for sea X�t� � G�fX�.

The first important case is when we wish to reproduce random versions of the measured sig-
nal x�t�. Using dat2tr one can first estimates the transformation g. Next, using a function



dat2gaus one can compute �x�t� � g�x�t�, which we assume is a realization of a Gaussian pro-
cess. From �x we can then estimate the spectrum �S��� by means of the function dat2gaus. The
spectrum �S��� and the transformation g will uniquely define the transformed Gaussian model.
A random function that models the measured signal can then be obtained using the program
spec2sdat. In the following example we shall illustrate this approach on the data set sea.dat.

Before we can start to simulate we need to put the transformation into the spectrum data struc-
ture, which is a MATLAB structure variable. Since WAFO is based on transformed Gaussian pro-
cesses the entire process structure is defined by the spectrum and the transformation together.
Therefore the transformation has been incorporated, as part of a model, into the spectrum struc-
ture, and is passed to other WAFO programs with the spectrum. If no transformation is given then
the process is Gaussian.

Observe that the possible nonzero mean m, say, for the model is included in the transformation.
The change of mean by for example 0.5 [m] is simply accomplished by modyfying the transfor-
mation, e.g. by executing the following command g(:,2)=g(:,2)+0.5;. Consequently the
spectrum structure completely defines the model.

IMPORTANT NOTE: The simulation routine spec2sdat assumes that the input spectrum is the
spectrum of a standardized process with spectral moment m� � 	, i.e. unit variance. The correct
standard deviation for the output should normally be obtained via a transformation spectrum.tr.
If you happen to use a transformation together with an input spectrum which does not have unit
variance, then you get the double scale effect, both from the transformation and via the standard
deviation from the spectrum. It is only the routine spec2sdat that works in this way. All other
routines, in particular those which calculate cycle distributions, perform an internal normalization
of the spectrum before the calculation, and then transforms back to the original scale at the end.

Example 3. (Simulation of a random sea) In Example 1 we have shown that the data set sea.dat
contains a considerable amount of spurious points that we would like to omit or censor.

The program reconstruct replaces the spurious data by simulated data (one is assuming
that no information about the removed points is known and one is filling up the gaps on the ba-
sis of the remaining data and fitted transformed Gaussian process; see [7] for more details. The
reconstruction is performed as

[y grec] = reconstruct(xx,inds);

where y is the reconstructed data and grec is the transformation estimated from the signal y.
In Figure 2.12 we can see the transformation (solid line) compared with the empirical smoothed
transformation, glc, which is obtained from the original sequence xx without removing the spu-
rious data (dash-dotted line). We can see that the new transformations has slightly smaller crests.
Actually it is almost identical with the transformation gh computed from the spectrum of the sig-
nal, however it can be only a coincident (due to random fluctuations) and hence we do not draw
any conclusions from this fact.

The value of the test variable for the transformation grec is 0.84 and, as expected, it is
smaller than the value of test0 = 1.00 computed for the transformation glc. However it is still
significantly larger then the values shown in Figure 2.7, i.e. the signal y is not a Gaussian signal.

We turn now to estimation of the spectrum in the model. First transform data to obtain a sample
�x�t�.
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Figure 2.12: The transformation computed from the reconstructed signal y (solid line) compared
with the transformation computed from the original signal xx (dashed dotted line).

x = dat2gaus(y,grec);
Sx = dat2spec(x,200);

The important remark here is that the smoothing of the spectrum defined by the parameter L,
see help dat2spec, is removing almost all differences between the spectra in the three signals
xx, y or x. (The spectrum Sx is normalized to have first spectral moment one and has to be scaled
down to have the same energy as the spectrum S1.)

Next we shall simulate a random function equivalent to the reconstructed measurements y. The
Nyquist frequency gives us the time sampling of the simulated signal,

dt = spec2dt(Sx)

and is equal to 0.25 seconds, since the data has been sampled with a sampling frequency of 4 Hz.
We then simulate 2 minutes (2*60*4 points) of the signal, to obtain a synthetic wave equivalent to
the reconstructed sea data, shown in Figure 2.13.

Sx.tr = grec;
ysim = spec2sdat(Sx,480);
waveplot(ysim,’-’)

�

In the next example we consider a signal with a theoretical spectrum. Here we have a problem
whether the theoretical spectrum is valid for the transformed Gaussian model, i.e. it is a spectrum
S��� or is it the spectrum of the linear sea eS. In the previous example the spectrum of the trans-
formed process was almost identical with the normalized spectrum of the original signal. In [54]
it was observed that for sea data the spectrum estimated from the original signal and that for the
transformed one do not differ significantly. Although more experiments should be done in order to
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Figure 2.13: Two minutes of simulated sea data, equivalent to the reconstructed data.

recommend using the same spectrum in the two cases, here, if we wish to work with non-Gaussian
models with a specified transformation, we shall derive the eS spectrum by dividing the theoretical
spectrum by the square root of the first spectral moment of S.

Example 3. (contd.) Since the spectrum S1 is clearly two-peaked with peak frequency Tp � 	�	

[Hz] we choose to use the Torsethaugen spectra. (This spectrum is derived for a specific location
and we should not expect that it will work for our case.) The inputs to the programs are Tp and Hs,
which we now compute.

Tp = 1.1;
H0 = 4*sqrt(spec2mom(S1,1))
St = torsethaugen([0:0.01:5],[H0 2*pi/Tp]);
wspecplot(S1)
hold on
wspecplot(St,[],’-.’)

In Figure 2.14 we can see that the Torsethaugen spectrum has too little energy on the swell
peak. Despite this fact we shall use this spectrum in the rest of this example.

We shall now create the spectrum �S���, i.e. the spectrum for the standardized geussian processfX�t� with standard deviation equal to one.

Snorm = St;
Snorm.S = Snorm.S/saˆ2;
dt = spec2dt(Snorm)

The sampling interval dt = 0.63 [s] is a consequence of our choice of cut off frequency in the
definition of the St spectrum. This will however not affect our simulation where any sampling
interval dt can be used.

Next we recompute the theoretical transformation gh.

[Sk Su] = spec2skew(St);
sa = sqrt(spec2mom(St,1));
gh = hermitetr([],[sa sk ku me]);
Snorm.tr = gh;
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Figure 2.14: Comparison between the estimated spectrum in the signal sea.dat (solid line) and
the theoretical spectrum of the Torsethaugen type (dashed dotted line).

The transformation is actually almost identical to gh for the spectrum S1, which can be seen in
Figure 2.6, where it is compared to the Gaussian model g, given by a straight line. We can see
from the diagram that the waves in a transformed Gaussian process X�t� � G�fX�t��, will have an
excess of high crests and shallow troughs compared to waves in the Gaussian process fX�t�. The
difference is largest for extreme waves with crests above 1.5 meters, where the excess is 10 cm,
ca 7 % . Such waves, which have crests above three standard deviations sa are quite rare and for
moderate waves the difference is negligible.

In order to illustrate the difference in distribution for extreme waves we will simulated a sample
of 4 minutes of X�t� with sampling frequency 2 Hz. The result are put into ysim_t. In order to
obtain the corresponding sample path of the process fX we use the transformation gh and put the
result in xsim_t.

dt = 0.5;
ysim_t = spec2sdat(Snorm,240,dt);
xsim_t = dat2gaus(ysim_t,Snorm.tr);

Since the process �X�t� has always variance one, in order to compare the Gaussian and non-
Gaussian models we need to scale the xsim_t to have the same first spectral moment as ysim_t,
which will be done by the following commands.

xsim_t(:,2) = sa*xsim_t(:,2);
waveplot(xsim_t,ysim_t,5,1,sa,4.5,’r.’,’b’)

In Figure 2.15 we have waves that are not extremely high and hence the difference between
the two models is hardly noticeable in this scale. Only in the second subplot we can see that
Gaussian waves (dots) has trough deeper and crest lower than the transformed Gaussian model
(solid line). This also indicates that the amplitude estimated from the transformed Gaussian and



Gaussian models are practically identical. Using the transformation glc instead of gh would give
errors of ca 11%, which for waves with higher significant wave heigh would give considerable
underestimation of the crest heigh of more extreme waves. Even if the probability for observing an
extreme wave during the period of 20 minutes is small, it is not negligible for safety analysis and
therefore the choice of transformation is one of the most important questions in wave modeling.
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Figure 2.15: SimulatedX�t� � G�fX�t�� (solid line) compared with fX�t� scaled to have the same
Hs as X�t� for a theoretical spectrum given by Torsethaugen spectrum St.

Since the difference between Gaussian and non-Gaussian model is not so big we may ask a
question whether 20 minutes of observation of a transformed Gaussian process presented in this
example is long enough to be able to reject the Gaussian model. Using the function mctrtest
we can sea rejection of Gaussian model would be very seldom. Observe that the sea.dat is 40
minutes long an that we clearly had rejected the Gaussian model. �

In WAFO there are several other programs to simulate the random functions or surfaces. Impor-
tant class used in fatigue analysis and in modeling the long term variability of sea state parameters
are Markov models. There is also a program to simulate the output of second order oscillators with
nonlinear spring, when external force which is white noise. The nonlinear oscillators can be used
to model nonlinear responses of sea structures.



CHAPTER 3

DISTRIBUTIONS OF APPARENT WAVE
CHARACTERISTICS

3.1 Introduction

In the previous chapter we discussed modeling of random function by means of Fourier methods.
The signal was represented as a sum of random cosine functions with random amplitudes and
phases. In linear wave theory those cosine functions are waves traveling in water. Waves with
different frequencies have different speeds, defined by the dispersion relation. This property causes
the characteristic irregularity of sea surface. Even if it were possible to arrange a very particular
combination of phases and amplitudes, so that the signal looks, for example, like a saw blade, it
will, after a while, change shape totally. The phases will be almost independent and the sea would
again look like a Gaussian random process. On the other hand an observer clearly can identify
moving sea waves. The shape of those waves, which are often called the apparent waves, since
theoretically, those are not mathematical waves, but are constantly changing up to the moment of
disappearing.

The waves action on marine structures is often modeled using linear filters. Then the sea spec-
trum gives a complete characterization of the structures responses. However, often such models are
too simplistic and non-linearities have to be considered to allow more complex responses. Then
one may not wish to perform a complicated numerical analysis to derive the complete response
but is willing to accept the simplification that the response is proportional to the waves. One may
also wish to identify some properties of waves that are dangerous in some way for the particular
ocean operation. Also the apparent waves themselves can be the reason for non-linear response.
For example, for waves with crests of apparent waves higher then some threshold, water may fill
a structure and change its dynamical properties. The combined effect of apparent waves, often de-
scribed by its height and wave period, is therefore important in ocean engineering. These aspects
are discussed in more detail in the textbook by Ochi (1998).

The apparent waves will be described by some geometric properties, which will be called wave
characteristics, while frequencies of occurences of waves with specified characteristics will treated
in the statistical sense and described by a probability distribution. Such distributions can then be
used to estimate the frequency of occurrences of some events important in the design of floating
marine systems, e.g. wave breaking, slamming, ringing, etc.

The wave surface is clearly a two-dimensional phenomenon that changes with time. Its study
should naturally deal with moving two-dimensional objects (surfaces). Theoretical studies of ran-
dom surfaces still face major difficulties and are a subject of ongoing research, for example see the
PhD thesis by Sjö (2000), [56], where some results concerning the combined time-space aspects of



waves are presented. At present there are only few programs in WAFO that handle the space-time
relations of waves, and hence in this tutorial, we shall not present any examples of waves in space
and time but limit the presentation to simpler cases of waves in one-dimensional records. By this
we mean the apparent waves extracted from functions (measured signals) with one-dimensional
parameter, either in time or in space. These functions can be extracted from a photograph of the
sea surface as, for example, the instantaneous profile along a line in some fixed horizontal direction
on the sea, or can be obtained directly as a record taken in time at a fixed position in space as by
means of a wave pole or distance meters. The encountered sea, another important one-dimensional
record, can be collected at a moving point as by means of a ship-borne wave recorder.

To analyze collected wave data we need natural and operational definitions of an individual
wave, its period, height, steepness, and possibly some other meaningful characteristic. There are
several possible definitions of apparent wave, and here we shall concentrate mostly on zero down-
crossing waves. Namely, the apparent individual wave at a fixed time or position is defined as
the part of the record that falls between two consecutive down-crossings of the zero seaway level
(the latter often more descriptively referred to as the still water level). For individual waves one
can consider various natural characteristics, among them apparent periods and apparent heights
(amplitudes). The pictorial definitions of these two characteristics are given in Figure 3.1.
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Figure 3.1: Wave parameters, definitions. In the list below, the notation for the parameters used
in our examples is given.

The definitions of the most common wave characteristics are given in Table 3.1. In the WAFO
toolbox the most important can be retrieved by the command help wavedef, help peri-

oddef, help ampdef, and help crossdef, producing the output in Section 3.5
Having precisely defined the characteristics of interest, one can extract their frequency (em-

pirical) distributions from a typical sufficiently long record. For example, measurements of the



upcrossing wave . . . . . . . . . . . . . . . . . . . a wave between two successive mean level
upcrossings

downcrossing wave . . . . . . . . . . . . . . . . a wave between two successive mean level
downcrossings

wave crest . . . . . . . . . . . . . . . . . . . . . . . . the maximum value between a mean level
upcrossing and the next downcrossing = the
highest point of a wave

wave trough . . . . . . . . . . . . . . . . . . . . . . . the minimum value between a mean level
downcrossing and the next upcrossing = the
lowest point of a wave

crest front wave period . . . . . . . . . . . . . Tcf time span from upcrossing to wave crest
crest rear wave period . . . . . . . . . . . . . . Tcr time from wave crest to downcrossing
crest period . . . . . . . . . . . . . . . . . . . . . . . Tc time from mean level up- to downcrossing
trough period . . . . . . . . . . . . . . . . . . . . . . Tt time from mean level down- to upcrossing
upcrossing period . . . . . . . . . . . . . . . . . . Tu time between successive mean level upcross-

ings
downcrossing period . . . . . . . . . . . . . . . Td time between successive mean level down-

crossings
crest-to-crest wave period . . . . . . . . . . Tcc time between successive wave crests
zero-downcrossing wave height . . . . . Hd height between trough and following wave

crest
crest amplitude . . . . . . . . . . . . . . . . . . . . Ac crest height above mean level
trough depth . . . . . . . . . . . . . . . . . . . . . . At through depth below mean level (note: At 


�)
upcrossing wave amplitude . . . . . . . . . Hu crest-to-trough vertical distance
downcrossing wave amplitude . . . . . . Hd trough-to-crest vertical distance
wave steepness . . . . . . . . . . . . . . . . . . . . S Generic symbol for wave steepness
min-to-max wave period . . . . . . . . . . . . time from local minimum to next local max-

imum
min-to-max wave amplitude . . . . . . . . height between local minimum and the next

local maximum
max-to-min wave period/amplitude . . similar to min-to-max definitions

Table 3.1: Wave characteristic definitions

apparent period and height of waves could be taken over a sufficiently long observation time to
form an empirical two-dimensional distribution. This distribution will represent some aspects of a
given sea surface. Clearly, because of the irregularity of the sea, empirical frequencies will vary
from record to record, however if the sea is in “steady” condition, which corresponds mathemati-
cally to the assumption that the observed random field is stationary and ergodic, their variability for
sufficiently large records will be insignificant. Such limiting distributions (limiting with respect to
observation time, for records measured in time, increasing without bound) are termed the long-run
distributions. Obviously in real sea we seldom have a so long periods of ”steady” conditions that
the limiting distribution will be reached. On average one may observe 400-500 waves per hour of
measurements, while the stationary conditions may rest from 20 minutes to only few hours.



Despite of this, a fact that makes these long-run distributions particularly attractive is that they
give probabilities of occurrence of waves that may not be observed in the short records but still
are possible. Hence one can estimate the intensity of occurrence of waves with special properties
and to extrapolate beyond the observed types of waves. What we shall be concerned with next is
to show how to compute such distributional properties.

In the following sections we shall consider three different ways to obtain the wave characteristic
probability densities (or distributions):

� To fit empirical distribution to the observed (or simulated) data in some parametric family of
densities, and then relate the estimated parameters to some observed wave climate described
by means of significant wave heigh and wave period. Algorithms to extract waves, estimate
the densities and compute some simple statistics will be presented.

� To simplify the model for the sea surface into such degree that explicit computation of wave
characteristic densities (in the simplified model) is possible. Some examples of proposed
models from the literature will be given.

� To exactly compute the densities from the mathematical form of a random seaway. For zero-
crossing waves there are explicit formulas for the densities of wave characteristics. The for-
mulas are in principal infinite dimensional integrals that have to be computed numerically.
In the toolbox there are efficient numerical algorithms to compute these integrals. The algo-
rithms do not require any particular form of the spectrum to be used to model the sea surface.
The method will be illustrated by computing densities of period, wavelength and amplitude,
in many standard types of wave spectra.

3.2 Estimation of wave characteristics from data

In this section we shall extract the wave characteristics from a measured signal and then use non-
parametric statistical methods to describe the data, i.e. empirical distributions, histograms, and
kernel estimators. (In the last chapter of this Tutorial we presents some statistical tools to fit para-
metric models. That chapter is not included in this preliminary manuscript).

It is generally to be advised that, before analyzing sea wave characteristics, one should check
the quality of the data by inspection and by the routine findoutliers used in Section 2.1.
Then one usually should remove any present trend from the data. Trends could be due to tides
or atmospheric pressure variations which affect the mean level. De-trending can be done using a
WAFO functions detrend or detrendma.

Wave period

Example 1. (contd.) We begin with extracting the apparent waves and record their period. The
signal sea.dat is recorded at 4 Hz sampling frequency. One of possible definition of a period is
the distance between the consecutive wave crests. For this particular variable it may be convenient
to have a higher resolution than 4 Hz and hence we shall interpolate signal to a denser grid. This
will be obtained by giving an appropriate value to the variable rate which can be used as input
to the WAFO-routine dat2wa. The following MATLAB code will return crest2crest waveperiods



Tcc in the variable Tcrcr and return the crest period Tc in Tc, i.e. the time from up-crossings to
the following down-crossing.)

xx = load(’sea.dat’);
xx(:,2) = detrend(xx(:,2));
rate = 8;
Tcrcr = dat2wa(xx,0,’c2c’,’tw’,rate);
Tc = dat2wa(xx,0,’u2d’,’tw’,rate);

Next we shall use a kernel estimator (KDE) to estimate the probability density function (pdf)
of the crest period and compare the resulting pdf with a histogram of the observed periods stored
in Tc. In order to define a suitable scale for the density we first compute the mean and maximum
of the observed crest periods.

mean(Tc)
max(Tc)
t = linspace(0.01,8,200);
L2 = 0;
ftc1 = kde(Tc,’epan’,[],[],L2,t);
pdfplot(ftc1), hold on
whisto(Tc,[],[],1)
axis([0 8 0 0.5]), hold off

(The parameter L2=0 is used internally in the function kde, and causes a logarithmic transfor-
mation of the data to ensure that the density is zero for negative values.)
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Figure 3.2: Kernel estimate of the crest period density observed in sea.dat (solid line) com-
pared with the histogram of the data.

In Figure 3.2 we can sea that many short waves have been recorded (due to relatively high sam-
pling frequency). The kernel estimate will be compared with the theoretically computed density in
the last section of this chapter. �

Remark 3.1. Note that the program kde can be quite slow for large data sets. If a faster estimates
of the pdf for the observations is preferred one can use kdebin, which is an approximation to the
true kernel density estimator. An important input parameter in the program, that defines the degree
of approximation, is inc which should be given a value between 100 and 500. ( A value of inc
below 50 gives fast execution times but can lead to inaccurate results.)



inc = 128;
ftc2 = kdebin(Tc,’epan’,[],[],L2,inc);

�

Extreme waves – model check

We turn now to joint wave characteristics, e.g. the joint density of half period and crest height
(Tc,Ac), or waveheight and steepness (Ac,S). The program dat2speed identifies waves and
for each wave gives several wave characteristics (type help dat2speed for a list of computed
variables).

We begin by examining profiles of waves having some special property, e.g. with high crests,
or that are extremely steep.

Example 1. (contd.) The following MATLAB code will find a sequence of waves and their wave
characteristics.

method = 0;
rate = 8;
[S, H, Ac, At, Tcf, Tcb, z_ind, yn] = ...

dat2steep(xx,rate,method);

The first preliminary analysis of the wave data is to find the individual wave which is extreme
by some specified criterion, e.g. the steepest or the highest wave etc. To do such an analysis one
can use the function spwaveplot(xx,ind), which plots waves in xx which are selected by
the index variable ind. For example, let us look at the highest and the steepest waves.

[Smax indS]=max(S)
[Amax indA]=max(Ac)
spwaveplot(yn,[indA indS],’k.’)

The two waves are shown in Figure 3.3 (a). The shape of the biggest wave reminds of the so
called ”extreme” waves. In the following we shall examine whether this particular shape contra-
dicts the assumption of a transformed Gaussian model for the sea.

This is done as follows. First we find the wave with the highest crest. Then we mark all positive
values in that wave as missing. Next we reconstruct the signal, assuming the Gaussian model is
valid, and compare the profile of the reconstructed wave with the actual measurements. Confidence
bands for the reconstruction will be also plotted. In the previous chapter we have already used the
program reconstruct, and here we shall need some additional output from the function, to be
used to compute and plot the confidence bands.

inds1 = (5965:5974)’;
Nsim = 10;
[y1, grec1, g2, test, tobs, mu1o, mu1oStd] = ...

reconstruct(xx,inds1,Nsim);
spwaveplot(y1,indA-10)
hold on
plot(xx(inds1,1),xx(inds1,2),’+’)
lamb = 2.;
muLstd = tranproc(mu1o-lamb*mu1oStd,fliplr(grec1));
muUstd = tranproc(mu1o+lamb*mu1oStd,fliplr(grec1));
plot (y1(inds1,1), [muLstd muUstd],’b-’)



(Note that we have used the function tranproc instead of gaus2dat, since the last function
require a two column matrix. Furthermore we have to use the index indA-10 to identify the
highest wave in y1. This is caused by the fact that interpolated signal yn has a few additional
small waves that are not in xx.)
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Figure 3.3: (a): Two waves, the highest and the steepest, observed in sea.dat. (b): Crosses
are observations removed from the highest wave, the reconstructed wave, using transformed
Gaussian model is given by the middle solid line. Upper and lower curves give the confidence
band defined as the conditional mean of the process plus minus two conditional standard
deviations.

In Figure 3.3 (b) the crosses are the removed values from the wave. The reconstructed wave,
plotted by a solid line, is almost identical to the measured. (Observe that this is a simulated wave,
using the transformed Gaussian model, and hence each time we execute the command the shape
will change.) The confidence bands gives limits containing 95% of the simulated values, pointvise.
From the figure we can deduce that ththis highest wave could have been even higher and that the
height is determined by the particularly high values of the derivatives at the zero crossings which
define the wave. The observed wave looks more asymmetric in time then the reconstructed one.
Such asymmetry is unusual for the transformed Gaussian waves but not impossible. By executing
the following commands we can see that actually the observed wave is close to the expected in
transformed Gaussian model. We shall not investigate this question further in this tutorial.

clf
plot(xx(inds1,1),xx(inds1,2),’+’), hold on
mu = tranproc(mu1o,fliplr(grec1));
plot(y1(inds1,1), mu)

�

Crest height

We turn now to the kernel estimators of the crest height density. As it is well known that for
Gaussian sea the tail of the density is well approximated by the Rayleigh distribution. Wand and



Jones (1995, Chap. 2.9) show that Gaussian distribution is one of the easiest distributions to obtain
a good Kernel Density Estimate from. It is more difficult to find good estimates for distributions
with skewness, kurtosis and multimodality. Here one can get help by transforming data. This can
be done choosing different values of input L2 into the program kde.

Example 1. (contd.) We shall continue with analysis of the crest height distribution. By letting
L2 = 0.6 we see that the normalplot of the transformed data is approximately linear. (Note: One
should try out several different values for L2. It is also always good practise to try out several
different values of the smoothing parameter; see the help text of kde and kdebin for further
explanation)

L2 = 0.6;
wnormplot(Ac.ˆL2)
fac = kde(Ac,’epan’,[],[],L2,linspace(0.01,3,200));
pdfplot(fac)
simpson(fac.x{1},fac.f)

The integral of the estimated density fac is 0.9675 but it should be one. Therefore, when we use
the estimated density to compute different probabilities concerning the crest height the uncertity
of the computed probability is at least 0.03. We suspect that the estimated density is erroneous for
small amplitudes. In order to check this we compute the cumulative distribution using the following
formula,

P �Ac � h� � 	�
Z ��

h
fAc�x� dx�

where fAc�x� is the estimated probability density of Ac. For the pdf saved in fac the following
MATLAB code gives an estimate of the cumulative distribution function (cdf) for crest height and
compares it with the empirical distribution computed from data by means of function empdistr.

Fac = flipud(cumtrapz(fac.x{1},flipud(fac.f)));
Fac = [fac.x{1} 1-Fac];
Femp = empdistr(Ac,Fac);
axis([0 2 0 1])

�

Since a kernel density estimator KDE in principal is a smoothed histogram it is not very well
suited to extrapolate the density to the region where no data are available, e.g. the heigh crests
in such a case a model should be used. In WAFO there is a function trraylpdf that combines
the nonparametric approach of KDE with a Rayleigh density. Simply, if the Rayleigh variable can
be used to described the crests of Gaussian waves then a transformed Rayleig variable should be
used for the crests of the transformed Gaussian waves. The method has several nice properties and
will be described more in the following section. Here we just use it in order to compare with the
nonparametric KDE method.

hold off
facr = trraylpdf(fac.x{1},’Ac’,grec1);
Facr = cumtrapz(facr.x{1},facr.f);
hold on
plot(facr.x{1},Facr(:,2),’.’)
axis([1.25 2.25 0.95 1])

Figure 3.4 (a) shows that our hypothesis that the fac pdf is slightly too low in the region of
small crest seems to be correct. Next from Figure 3.4 (b) we can see that even the tail is resonably
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Figure 3.4: (a) Comparison of the empirical distribution of the crest height with the cumulative
distribution computed from the KDE estimator. (b) Zooming in on the tails of distributions in
(a) together with the tail of the transformed Rayleigh approximation (dots) to the crest height
distribution.

modeled even if it is lighter than, i.e. gives smaller probabilities of high waves than, the one derived
from the transformed Gaussian model.

Joint crest period and crest height distribution

We shall use the kernel density estimator to find a good estimator of the central part of the joint
density of crest period and crest height. Usually, kernel density estimator gives poor estimates
of the tail of the distribution, unless large amounts of data is available. However, a KDE gives
qualitively good estimates in the regions of sufficient data i.e. in the main part of the distribution.
This is good for visualization (pdfplot) and detecting modes, symmetries (anti-symmetry) of
distributions.

Example 1. (contd.) The following command examines and plots the joint distribution of crest
period and crest height in the data sea.dat.

L2 = 0.5;
hs = [];
inc = 256;
Tc = Tcf+Tcb;
fTcAc = kdebin([Tc Ac],’epan’,hs,[],L2,inc);
fTcAc.labx={’Tc [s]’ ’Ac [m]’} % make labels for the plot
pdfplot(fTcAc)
hold on
plot(Tc,Ac,’k.’)
hold off

In Figure 3.5 there are 544 pairs of crest period and height plotted. We can see that the kernel
estimate describes the distribution of data quite well. It is also obvious that it can not be used to
extrapolate outside the observation range. In the following section we shall compute the theoretical
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Figure 3.5: Kernel estimate of the joint density of crest period Tc and crest height Ac in
sea.dat compared with the observed data (dots). The countour lines are drawn in such
a way that they contain specified (estimated) proportions of data.

joint density of crest period and height from the transformed Gaussian model and compare with
the KDE estimate. �

3.3 Explicit results - wave models

In this section we shall consider the Gassian sea. We assume that the reference level is zero and
that the spectrum is known. We will present some of the explicit form results which are known and
studied in the literature about wave characteristics. Some of them are exact, other are derived by
simplification of the random functions describing the sea surface.

3.3.1 The average wave

For Gaussian waves the spectrum and the spectral moments contain exact information about the
average behaviour of many of the wave characteristics. The WAFO programs spec2char and
spec2bw can compute a long list of different wave characteristic parameters from the spectrum

input. A list of available parameters can be found from help spec2char.

SPEC2CHAR Evaluates spectral characteristics and their variance

CALL: [ch r] = spec2char(S,fact,T)

ch = vector of spectral characteristics
r = vector of the corresponding variances given T
S = spectral struct with angular frequency

fact = vector with factor integers, see below. (default [1])
T = recording time (sec) (default 1200 sec = 20 min)

If input spectrum is of wave number type, output are factors for



corresponding ’k1D’, else output are factors for ’freq’.
Input vector ’factors’ correspondence:

1 Hm0 = 4*sqrt(m0) Significant wave height
2 Tm01 = 2*pi*m0/m1 Mean wave period
3 Tm02 = 2*pi*sqrt(m0/m2) Mean zero-crossing period
4 Tm24 = 2*pi*sqrt(m2/m4) Mean period between maxima
5 Tm_10 = 2*pi*m_1/m0 Energy period
6 Tp = Peak period
7 Ss = 2*pi*Hm0/(g*Tm02ˆ2) Significant wave steepness
8 Sp = 2*pi*Hm0/(g*Tpˆ2) Average wave steepness
9 Ka = Groupiness parameter

10 Rs = Quality control parameter
11 Tp = 2*pi*int S(w)ˆ4 dw Peak Period (more robust estimate)

------------------
int w*S(w)ˆ4 dw

Order of output is same as order in ’factors’
The variances are computed with a Taylor expansion technique
and is currently only available for factors 1,2 and 3.

Example 4. (Simple wave characteristics obtained form spectral density) We start by defining
a JONSWAP spectrum, describing a sea state with T_p = 10 s, H_{m_0} = 5 m. Type
spec2mom to see what spectrals moments are computed.

S = jonswap([],[5 10]);
[m mt]= spec2mom(S,4,[],0);

The most basic information about waves is contained in the spectral moments. The variable mt
now contains information about what kind of moments have been computed, in this case spectral
moments up to order four (m�� � � � � m�). Next, the irregularity factor 
, significant wave height,
zero crossing wave period, and peak period can be computed.

spec2bw(S)
[ch Sa2] = spec2char(S,[1 3])

The interesting feature of the program spec2char is that it also computes an estimate of the
variance of the characteristics, given the length of observations (assuming the Gaussian sea), see
[24], [60] and [64] for more detailed discussion. For example, for the JONSWAP Gaussian sea,
the standard deviation of significant wave height estimated from 20 minutes of observations is
approximately 0.25 meter. �

3.3.2 Explicit form approximations of wave characteristic densities

In the module wavemodels in WAFO, we have implemented some of the approximative models
found in the literature. To get an overview of the routines in the module, type help wavemod-

els.

We will investigate three approximate models for the joint pdf of �Tc� Ac� (for the nomenclature,
see the routines perioddef and ampdef in the module docs). Both of the functions need
spectral moments as inputs.



Model by Longuet-Higgins

Longuet-Higgins derives his distribution by considering the joint distribution of the envelope am-
plitude and the time derivative of the envelope phase. The model is valid for narrow-band pro-
cesses. It seams to give relatively accurate result for big waves, e.g. for waves with significant
amplitudes.

The spectral width parameter1 defined as

� �
m�m�

m�
�

� 	

appears in the model (for a narrow-band process, � � �), given by

fLH
Tc�Ac�t� x� � cLH

�
x

t

��

exp

�
�x

�

�
�	 � ����	� t�����

�
�

where

cLH �
	

�
������������	 � �	 � �����������

The density is calculated by the function lh83pdf.

Example 4. (contd.) For the Longuet-Higgins approximation we use the spectral moments just
calculated.

t = linspace(0,15,100);
h = linspace(0,6,100);
flh = lh83pdf(t,h,[m(1),m(2),m(3)]);
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Figure 3.6: Model by Longuet-Higgins for joint pdf of crest period Tc and crest height Ac. Spec-
trum: JONSWAP with Tp � 	� s, Hm�

� 
 m. (a) linear Gaussian sea, (b) transformed
Gaussian sea.

In WAFO we have modified the Longuet-Higgins density to be applicable for transformed Gaus-
sian models. Following the examples from the previous chapter we compute the transformation
proposed by Winterstein and combine it with the Longuet-Higgins model.
�The value of � may be calculated by spec2bw(S,’eps2’)



[sk, ku ]=spec2skew(S);
sa = sqrt(m(1));
gh = hermitetr([],[sa sk ku 0]);
flhg = lh83pdf(t,h,[m(1),m(2),m(3)],gh);

In Figure 3.6 the densities flh and flhg are compared. The countour lines are drawn in such
a way that they contain predefined proportions of the total probability mass inside the countours.
We can see that including some nonlinear effects gives somewhat higher waves for the JONSWAP
spectrum. �

Model by Cavanié et al

Another explicit density for the crest height was propsed by Cavanié et al (1976). Here any positive
local maximum is considered as a crest of a wave, then the second derivative (curvature) of the
local maximum defines the wave period by means of a cosine function with the same height and
curvature of its top.

The model uses the parameter � and a bandwidth parameter2 �, defined by

� �

s
	� m�

�

m�m�
�

hence, for a narrow-band process, � � �. The Cavanié distribution is given by

fCA
Tc�Ac�t� x� � cCA

x�

t�
exp

��	� x�

���t�


��t� � �	� ��

	 � ��

���

� ��

�
	� ��

	 � ��
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where

cCA �
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�	 � �	� �������

� � ����	� ���

The density is computed by

t = linspace(0,10,100);
h = linspace(0,7,100);
fcav = cav76pdf(t,h,[m(1) m(2) m(3) m(5)],[]);

and a contour plot of the pdf is obtained by pdfplot(fcav), cf. Figure 3.7.

Rayleigh approximation for wave crest height

There are several densities proposed in the literature to approximate the height of a wave crest
or its amplitude. Some of them are programmed in WAFO; execute help wavemodels for
a list of them. For Gaussian sea the most frequently used model is the Rayleigh density. The
standardized Rayleigh variable R has the density given by f�r� � r exp��r����. It is well kown

�The value of � may be calculated by spec2bw(S,’eps4’)
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Figure 3.7: (a) Contour lines of the joint density of crest period and crest height proposed by
Cavanié et al, for Gaussian sea with JONSWAP spectrum (Tp � 	� s, Hm�

� 
 m). (b) The
tail of the empirical distribution of crest height (top), trough height (middle) and amplitude
(bottom) compared with Rayleigh approximation (dots) and transformed Rayleigh model with
Hermite transformation.

that for Gaussian sea the Rayleigh approximation works very well for high waves, and actually it
is a conservative approximation since we have

P �Ac 
 h� � P �R 
 
 � h�Hs� � e��h
��H�

s �

see Rychlik and Leadbetter (1997). In the same paper it is shown that for any sea wave model
with crossing intensity 	�u�, one has P �Ac 
 h� � 	�u��	���. The approximation becomes more
accurate as the level h increases.

The crossing intensity 	�u� is given by Rice’s formula, Rice (1944), and it can be computed
when the joint density of sea level X�t� and its derivative �X�t� is known,

	�u� �
Z ��

�
zfX	t
� �X	t
�u� z� dz�

For Gaussian sea it can be computed explicitly

	�u� �
	

Tz
e
� �u�

H�
s �

For non-linear wave models with random Stoke’s waves the crossing intensity has to be computed
using numerical integration; see the Licentiate Thesis by Machado (2000).

Knowing the crossing intensity 	�u� one can compute the transformation g, by using the rouine
lc2tr, such that the transformed Gaussian model has crossing intensity equal to 	�u�. Conse-
quently, we have that P �Ac 
 h� � P �R 
 g�h�� � P �G�R� � h�� The function trraylpdf
computes the pdf of G�R�. (Obviously the function works for any transformation g.)

In previous examples we used the estimated crossing intensity to compute the transformation
and then approximated the crest height density using the transformed Rayleigh variable. The ac-
curacy of the approximation for the heigh crests in the data set xx = sea.dat was checked,



see Figure 3.4 (b). A more extensive study of the applicability of this approximation is done in
Brodkorp et al. (2000).

Example 5. (Rayleigh approximation of crest height from spectral density) In this example we
shall use a transformed Rayleigh approximation for crest height derived from the spectrum of sea.
In order to check the accuracy of the approximations we shall use the estimated spectrum from the
record sea.dat.

xx = load(’sea.dat’);
x = xx;
x(:,2) = detrend(x(:,2));
SS = dat2spec2(x);
[sk, ku, me, si ] = spec2skew(SS);
gh = hermitetr([],[si sk ku me]);
Hs = 4*si;
r = (0:0.05:1.1*Hs)’;
fac_h = trraylpdf(r,’Ac’,gh);
fat_h = trraylpdf(r,’At’,gh);
h = (0:0.05:1.7*Hs)’;
facat_h = trraylpdf(h,’AcAt’,gh);
pdfplot(fac_h)
hold on
pdfplot(fat_h)
hold off

Next we shall compare the derived approximation with the observed crest heights in x. As
before we could use the function dat2steep to find the crests. Here, for illustration only, we
shall use dat2tc to find the crest heights Ac and trough depth At.

TC = dat2tc(xx, me); % Note: explanation for ’wdef’ missing in help
tc = tp2mm(TC);
Ac = tc(:,2);
At = -tc(:,1);
AcAt = Ac+At;

Finally, the following commands will give the cumulative distributions for the computed densi-
ties.

Fac_h = [fac_h.x{1} cumtrapz(fac_h.x{1},fac_h.f)];
subplot(3,1,1)
Fac = empdistr(Ac,Fac_h);
hold on
plot(r,1-exp(-8*r.ˆ2/Hsˆ2),’.’)
axis([1. 2. 0.9 1])
Fat_h = [fat_h.x{1} cumtrapz(fat_h.x{1},fat_h.f)];
subplot(3,1,2)
Fat = empdistr(At,Fat_h);
hold on
plot(r,1-exp(-8*r.ˆ2/Hsˆ2),’.’)
axis([1. 2. 0.9 1])
Facat_h = [facat_h.x{1} cumtrapz(facat_h.x{1},facat_h.f)];
subplot(3,1,3)
Facat = empdistr(AcAt,Facat_h);
hold on
plot(r,1-exp(-2*r.ˆ2/Hsˆ2),’.’)
axis([1.5 3.5 0.9 1])



In Figure 3.7 (b) we can see some differences between the observed crest and trough distri-
butions and the one obtained using the transformation gh. However, it still gives a much better
approximation than using the standard Rayleigh approximation (dots). As it was shown before us-
ing the transformation computed from the crossing intensity, the transformed Rayleigh approach
is giving a perfect fit. Finally, one can see that the Rayleigh and transformed Rayleigh variables
give much too conservative approximations to the distribution of wave amplitude. �

3.4 Exact wave distributions in transformed Gaussian sea

In this section we shall demonstrate some functions for computation of exact probability densities,
marginal and joint, of crest period Tc, crest length Lc, and crest height Ac. The same functions
compute densities for trough period, lenght, and height, Tt, Lt, At, respectively. In WAFO there
are also functions computing exact densities for other wave characteristics, which will not be pre-
sented here; make help trgauss to see a list of them all. The functions are the results of long
time research at Lund University, see Podgórski et al, where a review of the historical development
and the mathematical tools behind the algorithms are given.

help trgauss

WAFO Toolbox /trgauss
Version 1.0.4 03-Jul-2000

createpdf - PDF class constructor
dat2gaus - Transforms x using the transformation g.
gaus2dat - Transforms xx using the inverse of transformation g.
hermitetr - Calculates the transformation g proposed by Winterstein
initdata - Initializes global constants used by the rind program
iter - Calculates a Markov matrix fmM given a rainflow

matrix frfc;
iter_mc - Calculates a kernel f_xy of a MC given a rainflow

matrix f_rfc;
ochitr - Calculates the transformation g proposed by Ochi et al.
ochitr2 - Calculates the transformation g proposed by Ochi et al.
pdfplot - Plot contents of pdf structures
rind - Computes E[Jacobian*Indicator|Condition ]*f_{Xc}(xc(:,ix))
spec2acat+ - Evaluates survival function R(h1,h2)=P(Ac>h1,At>h2).
spec2acdf+ - Evaluates cdf of crests Ac (trough At) P(Ac<=h) (P(At<=h)).
spec2cmat+ - Joint intensity matrix for (max,min)-, rainflow- and

(crest,trough)-cycles
spec2mmtpdf+ - Calculates joint density of Maximum, minimum and period.
spec2skew - Estimates the moments of 2’nd order waves due to

Marthinsen and Winterstein
spec2tccpdf+ - Evaluates densities of wave period Tcc, wave lenght Lcc.
spec2thpdf - Joint density of amplitude and period/wave-length

characteristics
spec2tpdf - Evaluates densities for crest-,trough-period, length.
spec2tpdf2 - Evaluates densities for various wave periods or wave lengths
spec2vhpdf - Joint density of amplitude and crest front

velocity Vcf=Ac/Tcf
trangood - Makes a version f of the transformation ff that is



tranproc - Transforms process x and up to four derivatives
trraylpdf - Calculates transformed Rayleigh approximation for amplitudes.

3.4.1 Density of crest period, crest length or encountered crest period

All of the three densities can be computed using the function spec2tpdf. The function computes
also the densities for waves with crest above a specified height h. This is a useful option allowing
computation of the probability that a crest is higher than a specified threshold. It can also be used to
provide information about the distribution of the period (lenght) of such high waves; see Brodkorb
et al (2000) for detailed presentation.

The function spec2tpdf performs all necessary transformations scalings etc. making it very
flexible. It handles different spectra as inputs. Which kind of the density is computed (output) is
defined by the variable def that takes values ’Tc’ for crest period, ’Lc’ for crest length, ’Tt’
for trough period and ’Lt’ for trough length. The transformation is only affecting the value of
the still water level u and the treshold h. The function spec2tpdf allows any value for the still
water level; if u it is not equal to the most frequently crossed level then the densities of Tc and Tt
are not identical.

Example 6. (Crest period and crest length) We start by defining a frequency spectrum, S���,
which was used in the Introduction; we choose a Torsethaugen spectrum with parameters Hm�

�

� m, Tp � � s, describing significant wave height and primary peak period, respectively. The energy
is divided between two peaks, corresponding to contributions from wind and swell. We shall also
use the two directional spectra from the Introduction.

S1 = torsethaugen([],[6 8],1);
D1 = spreading(101,’cos’,pi/2,[15],[],0);
D12 = spreading(101,’cos’,0,[15],S1.w,1);
SD1 = mkdspec(S1,D1);
SD12 = mkdspec(S1,D12);

We begin with the density of crest period, which (obviously) is identical for all three spectra S1,
SD1, and SD12. The computed density is a result of a numerical integration of the theoretically
derived formula. The algorithm gives upper (and if requested lower bound too) bound for the
density. Consequently, if the integral of the computed density, over all periods, is close to one it
implies that the density is computed with high accuracy.

f_tc = spec2tpdf(S1,[],’Tc’,[0 11 56],[],4);
pdfplot(f_tc)
simpson(f_tc.x{1},f_tc.f)

The crest period density is shown in Figure 3.8 (a). The integral of the density f tc computed
using the function simpson is 1.0012 showing the accuracy of the approximation. The computa-
tion time is 105 seconds on a PC, Pentium 450 Mhz. The plot of the density is shown in Figure 3.8.
The computation time depends on the required accuracy and how broad banded the spectrum is.
For example, the same accuracy is achieved for JONSWAP spectrum, used in the previous section,
in less than 5 seconds. The computation time increases if there is a considerable probability for
long waves with low crests.

We then turn to the density of crest length for the Torsethaugen spectrum. It can be computed
using the same function spec2tpdf, we just change the input ’Tc’ to ’Lc’.
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Figure 3.8: (a) The density of crest period Tc, (b) Densities of crest length (dashed dotted line)
compared to the density of crest length for waves with crest above 1.5 [m] (one standard
deviation above the still water level, for Gaussian sea with the Torsethaugen spectrum.

f_Lc = spec2tpdf(S1,[],’Lc’,[0 200 81],[],5);
pdfplot(f_Lc,’-.’)

The crest length density has a sharp peak for very short waves – the wave-number spectrum is
much more broad banded that the frequency spectrum. However, the short waves have small crests
and should be considered as ’noise’ rather than as apparent waves. Consequently we may wish to
compute the proportion of waves that has crest higher than one standard deviation (Hs�
) = 1.5 [m]
and give the density of the crest length for these waves.

f_Lc_1 = spec2tpdf(S1,[],’Lc’,[0 200 81],1.5,5);
hold on
pdfplot(f_Lc_1)

The result is presented in Figure 3.8 (b) and we can see that all short waves were small. The
proprtion of waves with crests above 1.5 [m] (one standard deviation) is computed next.

simpson(f_Lc.x{1},f_Lc.f)
simpson(f_Lc_1.x{1},f_Lc_1.f)

As we can see more than half of the waves are small, more precisely 46% of the waves have
crests above 1.5 [m].

We finish this example by considering the Torsethaugen spectrum with the two different spread-
ing functions SD1 and SD12. In Figure 1.5 we have presented simulations of the sea surfaces with
the spertrums. From the figure we expect that the two crest length distributions should be differ-
ent. (Obviously the crest period densities are identical). In the directional sea we have to define
the azimuth of the line for which the crest length should be computed (the default value is zero).
Now the directional spectra SD1 and SD12 has different main wave directions, ��o, �o degrees,
respectively, and hence we shall choose different azimuths for the spectra. More precisely for both
cases we shall consider heading waves, this is achieved using function spec2spec.



f_Lc_d1 = spec2tpdf(spec2spec(SD1,’rotdir’,pi/2),[],...
’Lc’,[0 300 121],[],5);

pdfplot(f_Lc_d1,’-.’)
hold on
f_Lc_d12 = spec2tpdf(SD12,[],’Lc’,[0 200 81],[],5);
pdfplot(f_Lc_d12)
hold off

(The last input in spec2tpdf, also called nit is defining the dimensionality of the computed
integral. Higher nit is required to get good approximation for long waves, but that also takes
long computing time. With low values of this parameter we obtain useful approximations that are
computed in 10 seconds or so.)

As expected, after examination of Figure 1.5, the crest lenght for the two directional spectra are
different. The sea with frequency dependent spreading seems to be more irregular. We can see in
Figuren 3.9 that waves are only slightly longer than the waves in unidirectional sea but the crest
lenght of both seas are much shorter than for frequency independent spreading. �
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Figure 3.9: (a) Comparison of crest length densities, heading waves, for unidirectional sea with
Torsethaugen spectrum (shortest waves) and two different spreading functions the frequency
independent spreading (longest waves), the frequency dependent spreading (intermegiate
waves). (b) A sequence of approxiamtions of the crest lenght for the directional spectrum
with frequency independent spreading is presented. The density with range ��� 
��� is com-
puted with negative nit.

Numerical accuracy

We finish this section with some comments about the program spec2tpdf, which is a MATLAB
interface to a FORTRAN 95 program. All programs computing ecact densities of different wave
characteristics can be reformulated in such a way that the density is written as a certain multidimen-
sional integral of a function of Gaussian variables. This integral is computed using a FORTRAN



module called RIND. There is also a MATLAB interface called rind which can be used to test
programs for new wave characteristics (before writting a more optimal code in FORTRAN).

An example is a function spec2tpdf2which uses the program rind. The program is slower
than the function spec2tpdf (and does not have an option that allows to choose waves with crest
above some level) but on the other hand it is easier to use for experimentation, and it can also be
used to learn how to create own programs.

In the examples presented in this section the last input into spec2tpdf was equal to 5. In the
help for spec2tpdf is called nit and besides the input speed it is the main tool to control the
accuracy of the computation. Using program simpson we can deduce that the density for crest
length above 250 meters in f_Lc_d1 is just slightly too large. In order to increase the accuracy
of the computed density one could increaae nit to six, but then the computation time probably
becomes un-acceptably long for a laptop computer.

The program also allows negative values for nit, values that switches to another technique
(based on importance sampling) to integrate Gaussian functions, see Brodkorb (2000) for a review
of different methods. (The important other references are [48], [3], [15]. ) Although the method
is based on simulation the accuracy is still controlled. If the number of simulation is too small to
achive the required accuracy the program gives an error statement with an estimate of the possible
error in the computed density. Different negative nit values, representing different integration
method and error messages with predicted errors, can be used as indicators to switch the method.
The method with positive nit values is very reliable and has been tested on different wave prob-
lems since 14 years (the first version was already used in [45]).

The integration methods corresponding to negative nit values are still under tests and modi-
fications. However, as will be shown next, those are often much faster and more accurate in cases
when the previous method is going into troubles with too long execution times.

Example 6. (contd.) We shall exemplify the use of the parameter NIT by computing the crest
length density for the directional spectrum with frequency independent spreading. We shall also
use the slower program spec2tpdf2 for illustration.

f_Lc_d1_5 = spec2tpdf(spec2spec(SD1,’rotdir’,pi/2),[],...
’Lc’,[0 300 121],[],5);

f_Lc_d1_3 = spec2tpdf(spec2spec(SD1,’rotdir’,pi/2),[],...
’Lc’,[0 300 121],[],3);

f_Lc_d1_2 = spec2tpdf(spec2spec(SD1,’rotdir’,pi/2),[],...
’Lc’,[0 300 121],[],2);

f_Lc_d1_0 = spec2tpdf(spec2spec(SD1,’rotdir’,pi/2),[],...
’Lc’,[0 300 121],[],0);

f_Lc_d1_n4 = spec2tpdf2(spec2spec(SD1,’rotdir’,pi/2),[],...
’Lc’,[0 400 161],-4);

pdfplot(f_Lc_d1_5)
hold on
pdfplot(f_Lc_d1_2)
pdfplot(f_Lc_d1_0)
pdfplot(f_Lc_d1_n4)
simpson(f_Lc_d1_n4.x{1},f_Lc_d1_n4.f)

The execution time was 1 hour 25 minutes, 3 minutes 20 seconds, 40 seconds, 8 seconds, and 10
minutes, respectively. The total probability mass of f_Lc_d1_n4 is 0.991, which is suprisingly
close to one, considering the complicated spectrum. In Figure 3.9 (b) the different approximation
are presented and we can see how with the increasing positive nit the density decreases. The



negative nit involves some random number integration methods, but we can hardly see that the
computed density is actually a random function. Most of problems are less numerical demanding
and nit=2 suffices, here clearly the negative nit is preferable. �

3.4.2 Density of wave period, wave length or encountered wave period

In the previous sections we have considered the densities of crest period Tc and trough period Tt.
We could also limit the population to such waves that the crest (trough) amplitude are above some
predescribed treshold.

The wave period Tcc = Tc+Tt can be computed using the function spec2tccpdf, giving
the probability density for the distance between upcrossings of the still water level u. The wave
length Lcc or encounterd wave period can also be computed using spec2tccpdf, with just a
few inputs to be modified. Hence, these variables shall not be discussed here any more. The com-
putations using spec2tccpdf are slower than using spec2tpdf, since one needs to compute
the joint density of Tc and Tt and then change variable (integrate the convolution) to get Tcc =

Tc+Tt. See also the discussion in the remark in the previous section about speed of programs. In
addition to the methods to reduce computation mentioned in the remark, one of the best methods
to speed speed up computations is to cut off high frequencies in the spectrum.

The syntax of spec2tccpdf is almost identical to that of spec2tpdf, and hence we limit
ourselves to a few examples. In order to be able to make comparisons with observations sea.dat
we shall use the estimated spectrum SS, see Example 1.

Example 7. (Crest period of high-crest waves) In this example we will compute the wave pe-
riod density for waves with significant crest, i.e. with Ac > Hs/2. We shall compare it with
the density of crest periods for the same type of waves. By integrating both densitities we obtain
the proportion of waves with significant crest. These two numbers should be the same, but for
numerical reasons, they will usually differ somewhat. The difference will be a measure of the ac-
curacy of the computation of the convolution Tcc = Tc+Tt. We can also compare the calculated
proportion of significant crest with the proportion observed in data and with linear approximation
(Rayleigh model). Finally we estimate the density using KDE from data and compare to the the-
oretically computed one, based on the transformed Gaussian model. We finish the example with
an even more intresting case, the density of wave period of waves with both significant crest and
significant trough, i.e. really big waves.

For completeness we again estimate the transformation and find wave characteristics in the
signal. The estimated and computed densities for the crest period Tc are almost identical, see
Figure 3.10 (a).

xx = load(’sea.dat’);
x = xx;
x(:,2) = detrend(x(:,2));
SS = dat2spec2(x);
si = sqrt(spec2mom(SS,1));
SS.tr = dat2tr(x);
Hs = 4*si
method = 0;
rate = 2;
[S, H, Ac, At, Tcf, Tcb, z_ind, yn] = dat2steep(x,rate,method);
t = linspace(0.01,8,200);
L2 = 0;



ftc1 = kde(Tc,’epan’,[],[],L2,t);
pdfplot(ftc1)
hold on
f_t = spec2tpdf(SS,[],’Tc’,[0 8 81],0,4);
simpson(f_t.x{1},f_t.f)
pdfplot(f_t,’-.’)
hold off

We next consider computation of the density of crest period and wave period, but now for waves
with significant crest height, i.e. waves for which Ac 
 Hs��. We start with crest period. In the
following call to spec2tpdf the restriction to Ac 
 Hs�� is indicated by the argument [Hs/2].

f_t2 = spec2tpdf(SS,[],’Tc’,[0 8 81],[Hs/2],4);
Pemp = sum(Ac>Hs/2)/sum(Ac>0)
simpson(f_t2.x{1},f_t2.f)
index = find(Ac>Hs/2);
ftc1 = kde(Tc(index),’epan’,[],[],L2,t);
ftc1.f = Pemp*ftc1.f;
pdfplot(ftc1)
hold on
pdfplot(f_t2,’-.’)
hold off

The observed frequency of significant crests is 0.1788 which is remarcably close to the theoret-
ically computed value 0.1800. (Observe that the Rayleigh approximation would give a probability
equal to 0.1353. This is not suprising since crests in non-Gaussian sea tend to be higher than those
in Gaussian sea.) Clearly, by canging the input Hs/2 to any other fixed level h, say, and integrating
the resulting density we obtain the approximation of the probability P �Ac 
 h�.

If h is a vector then it is more efficient to use a program spec2Acdf to computes P �Ac �
h�. However, before using the program it is important to use first spec2tp and check that the
computed density integrates to one. If not, the inputs param and nit have to be changed.

Observe that in this section we are analysing apparent waves in time. If the input ’Tc’ in
spec2tpdf is replaced by ’Lc’ then we would consider waves in space and the proportion of
significant crest would probably be different.

The computed crest period density for wave with Ac 
 Hs�� agrees also with the estimated
distribution, obtained by using KDE, from data, see Figure 3.10 (b). �

Example 8. (Wave period for high-crest waves) We turn now to the more difficult problem of
wave period density with wave with significant crest height. As mentioned, this differs from Ex-
ample 7 in that it involves the distribution of the sum Tc � Tt of two dependent random variables,
with the same marginal distribution. Since the computations need to be done with high accuracy
(the computed density is different for the two densities, the wave period density and wave period
density for waves with crest below a given treshold, see [8] for more detailed discussion), we need
to use a high nit value, so that the total sum of the density is 0.18. We begin with negative nit
which gives faster results very close to the true density.

f_tcc2 = spec2tccpdf(SS,[],’t>’,[0 12 61],[Hs/2],[0],-1);
simpson(f_tcc2.x{1},f_tcc2.f)
f_tcc3 = spec2tccpdf(SS,[],’t>’,[0 12 61],[Hs/2],[0],3,5);
simpson(f_tcc3.x{1},f_tcc3.f)
pdfplot(f_tcc2,’-.’)
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Figure 3.10: (a) Estimated density (KDE) of crest periods in sea.dat (solid line) compared
with theoretically computed using spec2tpdf (dashed line). (b) The same for the waves
with significant crest, i.e. Ac>Hs/2.

hold on
pdfplot(f_tcc3)
hold off

The integral of the density f_tcc2 is 0.1789 which agrees with the previously computed.
However the execution time was 40 minutes. We have checked the program with nit=3 and
the integral was 0.1664 (execution time 2 hours 30 minutes), indicating that the nit has to be
increased. The densities are shown in Figures 3.11 (a). We can see that the density computed using
nit=-1 (dashed-dotted line) is slightly wiggly (it is a random function with very small variance),
and errors compensate each other giving almost perfect total probability mass. Note that another
call of the program would give slightly different values and the total mass would also be changed.
One example gave the the value 0.1776.

Finally, we shall consider the case of waves with both significant crest and significant trough
higher then Hs/2 [m]. We first estimate the probability of such waves in the data.

[TC tc_ind v_ind] = dat2tc(yn,[],’dw’);
N = length(tc_ind);
t_ind = tc_ind(1:2:N);
c_ind = tc_ind(2:2:N);
Pemp = sum(yn(t_ind,2)<-Hs/2 & yn(c_ind,2)>Hs/2)/length(t_ind)
ind = find(yn(t_ind,2)<-Hs/2 & yn(c_ind,2)>Hs/2);
spwaveplot(yn,ind(2:4))
Tcc = yn(v_ind(1+2*ind),1)-yn(v_ind(1+2*(ind-1)),1);
t = linspace(0.01,14,200);
L2 = 0;
ftcc1 = kde(Tcc,’epan’,[],[],L2,t);
ftcc1.f = Pemp*ftcc1.f;
pdfplot(ftcc1,’-.’)

The probability is estimated to be 0.0368, which is slightly higher than what we could expect
if high crests and low troughs occur independently of each other (probability would then be less



(a) (b)

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0.06
Density of Tcc with Ac>0.94507 and At>0

T [s]
0 2 4 6 8 10 12 14

−2

0

2

4

6

8

10

12

14
x 10

−3

T [s]

Density of Tcc with Ac>0.94507 and At>0.94507

Figure 3.11: (a) Densities of period Tcc for waves with significant crest in the transformed Gaus-
sian model of the sea recorded in sea.dat computed with different degree of accuracy;
(dashed dotted line) nit=-1; the two solid lines are computed for nit=3,4. (b) Densities
of period Tcc for waves with significant crest and trough in the same model (dashed dotted
line) nit=-1; the solid line is estimated from the data with KDE.

than 0.025). We turn now to computation of the probability using spec2tccpdf with nit=-1.
However, we are here in a situation when the error in computations is of the order 	���, which is
comparable to the values of the density itself. Hence the computed function will look very noisy.

f_tcc22_1 = spec2tccpdf(SS,[],’t>’,[0 12 61],[Hs/2],[Hs/2],-1);
simpson(f_tcc22_1.x{1},f_tcc22_1.f)
hold on
pdfplot(f_tcc22_1)
hold off

The computed probability is 0.0348 which is well in agreement with the estimated number. In
Figure 3.11 (b) we see the density of wave period for these big waves. Those are well concentrated
around the mean value. It is compared with KDE estimator. We have not tried to tune up the
estimator that is based only on 20 values and hardly can be considered as accurate. However the
agreement with the computed density is good. Next one could compute the same density using
nit=4 but we go instead to some new problems. �

3.4.3 Joint density of crest period and crest height

In this section we shall present programs for joint characteristics of apparent waves. We shall
be mostly concerned with crest period, crest position, and crest height. Since we also want to
compare the theoretically derived densities with observations we wish to study a longer record
of measurements than we did in the previous section. By doing so we will have more reliable
statistical estimates of the densities, but on the other hand we face the problem that the sea state
can change during the measured period of time – the process is simply not stationary.



The data we are choosing is from Gullfaks C platform, see Figure 3.12 (a); help gfaksr89

gives a detailed description of the data and help northsea for the instructions how the map
showing location of the measurements place was drawn.
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Figure 3.12: Location of Gullfaks C platform (a). The estimated spectrum (b).

WARNING: In the following examples we run the programs with maximum accuracy and hence
we have long execution times. Usually one should use simpler and faster approximations at first
experiments with complicated distributions. When one is satisfied with the results, one should
compute the densities with the desired high accuracy. For testing own problems we recommend to
start execution of programs with input parameter speed=9,8 (maximal speed is 9, the default is
4 ) and nit=0,1 (default is 2). These choices will produce fast but still useful approximations.

Example 9. (Some preliminary analysis of the data) We begin with loading the data, estimating
spectrum, finding the transformation g, and checking crest period density. Observe that the data is
sampled with 2.5 [Hz], what may cause some interpolation errors in the estimated densities.

yy = load(’gfaksr89.dat’);
SS = dat2spec(yy);
si = sqrt(spec2mom(SS,1));
SS.tr = dat2tr(yy);
Hs = 4*si
v = gaus2dat([0 0],SS.tr);
v = v(2)

The spectrum has two peaks, see Figure 3.12 (b). We are not checking different options to estimate
the spectrum, but use the default parameters.

We shall now extract some simple wave characteristics Tc,Tt,Tcf,Ac,At. All these are
column vectors containing crest period, trough period, position of crest, crest height and trough
height, respectively. All vectors are ordered by number of a wave, i.e. all vectors contain charac-
teristic of the i’th wave in their position i .



[TC tc_ind v_ind] = dat2tc(yy,v,’dw’);
N = length(tc_ind);
t_ind = tc_ind(1:2:N);
c_ind = tc_ind(2:2:N);
v_ind_d = v_ind(1:2:N+1);
v_ind_u = v_ind(2:2:N+1);
T_d = yy(v_ind_d,1)- yy(v_ind_d,2)* ...

(yy(2,1)-yy(1,1))./(yy(v_ind_d+1,2)-yy(v_ind_d,2));
T_u = yy(v_ind_u,1)- yy(v_ind_u,2)* ...

(yy(2,1)-yy(1,1))./(yy(v_ind_u+1,2)-yy(v_ind_u,2));
Tc = T_d(2:end)-T_u(1:end);
Tt = T_u(1:end)-T_d(1:end-1);
Tcf = yy(c_ind,1)-T_u;
Ac = yy(c_ind,2)-v;
At = v-yy(t_ind,2);

We then turn now to computation of crest period density and compare it with that observed in
data.

t = linspace(0.01,15,200);
L2 = 0;
clf
ftc1 = kde(Tc,’epan’,[0.25],[],L2,t);
ftt1 = kde(Tt,’epan’,[0.25],[],L2,t);
pdfplot(ftt1,’k’)
hold on
pdfplot(ftc1,’k-.’)
f_tc4 = spec2tpdf(SS,[],’Tc’,[0 12 81],0,4,5);
f_tc = spec2tpdf(SS,[],’Tc’,[0 12 81],0,-1);
pdfplot(f_tc,’b’)
hold off

We do not present the graphical result for this computations but simply comment that the agree-
ment between these three densities is very good, except for observed long waves, which have
somewhat longer periods (about 0.25 s) than theoretically computed. It is not much for a signal
with 2.5 Hz sampling frequency. There is also the possibility that the swell peak in the spectrum is
too much smoothed. �

We turn now to the joint density for the variables which describe the wave crest Tc,Tcf,Ac.
We shall estimate the densities from the observations and compute them from for the transformed
Gaussian process with estimated spectrum and the transformation using function the WAFO func-
tion spec2thpdf. This function computes many joint characteristics of the half wave, i.e. the
part of the signal between the consecutive crossings of a still water level – most of them are simply
functions of the tripple Tc,Tcf,Ac. (Execute help spec2thpdf for a complete list).

In a special case ,when the so called crest velocity is of interest, Vcf=Ac/Tcf, the joint den-
sity of Vcf,Ac is computed by the program spec2vhpdf, which is a simplified and modified
spec2thpdf program.

Example 10. (Joint characteristics of a half wave - position and height of a crest for a wave with
given period) We shall first consider crest period, i.e. consider only waves with crest period Tc�
4.5 seconds. Obviously the position of the crest of such waves is not constant, but varies from wave
to wave. The following commands estimates the density of crest position and height for waves with
Tc � 4.5 seconds.



clf
ind = find(4.4<Tc & Tc<4.6);
f_AcTcf = kde([Tcf(ind) Ac(ind)],’epan’,[],[],0.5);
plot(Tcf(ind), Ac(ind),’.’);
hold on
pdfplot(f_AcTcf)

Next, we compare the observed distribution with the theoretically computed joint density of Tc,
Tcf, Ac for a fixed value of Tc. By this we mean that if we integrate the result we shall obtain
the value of the density. Note that Tc can be computed using the program spec2tpdf.

f_tcfac1 = spec2thpdf(SS,[],’TcfAc’,[4.5 4.5 46],[0:0.25:8],-1);
simpson(f_tcfac1.x{1},simpson(f_tcfac1.x{2},f_tcfac1.f,1))
f_tcfac2=spec2thpdf(SS,[],’TcfAc’,[4.5 4.5 46],[0:0.25:8],2);
simpson(f_tcfac2.x{1},simpson(f_tcfac2.x{2},f_tcfac2.f,1))
f_tcf4=spec2tpdf(SS,[],’Tc’,[4.5 4.5 46],[0:0.25:8],6);
f_tc4.f(46)
f_tcac1=spec2thpdf(SS,[],’TcAc’,[0 12 81],[0:0.25:8],-1);
plot(Tcf(ind), Ac(ind),’.’);
hold on
pdfplot(f_tcfac1,’-.’)
pdfplot(f_tcfac2)

First we conclude that the densities f_tcfac1 and f_tcfac2 really integrate to the marginal
density of Tc (f_tc4.f(46)) demonstrating the accuracy of the computed densities f_tcfac1
and f_tcfac2.
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Figure 3.13: (a) The estimated (KDE) density of crest position and height together with obseva-
tions (dots). (b) The theoretically computed density with nit = -1, 2 and the data.

In Figure 3.13 (a) the estimated (KDE) joint density is given and it should be compared with
Figure 3.13 (b) where the theoretical density is presented. Here we can really see the advantage of
the theoretically computed densities. Even if we have here used a long record of wave data, there is
not enough of waves to make a reliable estimate of the joint density, and in a standard 20 minutes
records there would be far too few observations. �



As we have mentioned already the integral over the position of the computed densities is equal
to the joint density of crest period and height. So in order to get the whole density of Tc, Ac

one needs to execute the previous program to obtain the density of Tc, Tcf, Ac for different
values of Tc and integrate out the variable Tcf. Clearly it will take some time. However the most
time is spent on the computation of density of long and small waves that are not interesting. Hence
we can start to compute the joint density of Tc, Ac for significant waves.

Example 10. (contd.) We compute the joint density of Tc, Ac of significant waves in the
Gullfaks data in order to compare the distribution with the Longuet-Higgins approximation; see
Section 3.3.2.

f_tcac_s = spec2thpdf(SS,[],’TcAc’,[0 12 81],[Hs/2:0.1:2*Hs],-1);

Next we find the modified Longuet-Higgins (L-H)-density, i.e. the density with transformed
crest heights. The original (L-H)-density is underestimating the high crest with up to one meter.
We can see that for significant waves and the present spectrum the Longuet-Higgins density is
quite accurate.

mom = spec2mom(SS,4,[],0);
t = f_tcac_s.x{1};
h = f_tcac_s.x{2};
flh_g = lh83pdf(t’,h’,[mom(1),mom(2),mom(3)],SS.tr);
clf
ind=find(Ac>Hs/2);
plot(Tc(ind), Ac(ind),’.’);
hold on
pdfplot(flh_g,’k-.’)
pdfplot(f_tcac_s)

In Figure 3.14 (a) the theoretical density is plotted with solid lines while the transformed L-H
density is a dashed dotted line. We can see that the simple approximation is working very well,
even if it gives slightly too short periods.

Finally, we compute the density for all wave heights. In Figure 3.14 (b) the theoretical density
is compared with the data, and as we see, the agrement is quite good.

f_tcac = spec2thpdf(SS,[],’TcAc’,[0 12 81],[0:0.2:8],-1);
pdfplot(f_tcac)

�

3.4.4 Joint density of crest and trough height

In previous sections we presented programs that compute joint densities of different wave charac-
teristics. We started with marginal densities of Tc crest, Tt trough periods, and then joint densities
of Tc, Tt were derived in order to get the wave period Tcc. Next we considered Tc, Tcr,

Ac - crest period, crest position, and crest height. (The same is possible for Tt, Ttb, At.)
However, in order to fully describe a wave we should compute the joint density of Tc, Tac,

Ac, Tt, Tat, At. It is possible to write a program that computes such six dimensional den-
sities and it would not take more then 10 minutes of computer time to compute the density for
200, say, different combinations of the characteristics. But in order to describe a six dimensional
density one needs may be 100 000 combinations of values and this is not practically possible yet.
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Figure 3.14: The joint density of Tc and Ac for the transformed Gaussian model of the sea mea-
surements from Gullfaks C platform (solid line) compared with the transformed Longuet-
Higgins density (dashed dotted line) and the data (dots) for waves with significant crest (a).

Observe that using numerical derivatives one can compute the joint density of Tc, Ac, Tt,

At using the program spec2tccpdf (or spec2AcAt) but it would still take one or two days to
do such computations.

There are however some alternatives. From previous studies we know that very high crests
(troughs) occur at the local maximum (minimum) closest to a zero crossing. We also know that it
is the derivative at the crossing that mainly determines the hight of the wave crest. Consequently,
the steepness of a wave is mainly determined by the hight and location of the last minimum before
and the first maximum after an upcrossing of the still water level. This particular type of min-to-
max wave is called a mean separated minimum-to-maximum wave. In general, we can introduce
a v-level separated min-to-max wave to be the last minimum before and the first maximum after
a level v upcrossing. The distance between the mean-level separated mininim and maxima, de-
noted TmM can be used to compute steepnes of a wave, see Brodkorb [6] for details. The function
spec2mmtpdf computes the joint density of v-separated wave length and other characteristics
of the v-separated minima and maxima. It also computes the coint density of all pairs of local
minima, maxima and the distance inbetween.

3.4.5 Min-to-max distributions – Markov method

We shall now investigate another of wave characteristic, namely the min-to-max wave distribution,
including the min-to-max period and amplitude. This requires the joint density of the height of
a local minimum (maximum) and the following maximum (minimum). The WAFO routine that
handles this is called spec2mmtpdf, and calculates, i.a. the joint density of the height of a
maximum and the following minimum; see help spec2mmtpdf.

One important application of the min-to-max distribution is for approximation of the joint den-
sity of Ac, At, the crest and trough amplitudes, by approximating the sequence of local extremes



in transformed Gaussian model by a Markov chain; see [54] for detailed description of the al-
gorithm. The approximation has been checked on many different sea data givning very accurate
results. It is also relatively fast.

Remark 3.2. There is also another program spec2cmatwhich is a function adaptet from WAT.
It is somewhat less accurate but even faster. It is used to compute the so called Markov matrices
and rainflow matrices used in fatigue. �

Example 11. (min-max problems with Gullfaks data) In this example we continue the analysis of
the Gullfaks C platform data. First we shall retrive the sequence of turning points, i.e. the minima
and maxima, in yy and calculate the theoretical distribution. In Figure 3.15 we can see that the
theoretically computed density agrees very well with the estimated one.

tp = dat2tp(yy);
Mm = fliplr(tp2mm(tp));
fmm = kde(Mm,’epan’);
f_mM = spec2mmtpdf(SS,[],’mm’,[],[-7 7 51],1);
clf
pdfplot(f_mM,’-.’)
hold on
pdfplot(fmm,’k-’)
hold off
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Figure 3.15: The joint density of maximum and the following minimum for the transformed Gaus-
sian model of the sea measurements from Gullfaks C platform (dashed-dotted line) compared
with the estimated (KDE) density from data.

We turn now to the joint density of crest and trough. We shall first compute the exact distribution
with the help of spec2mmtpdf, and then compare the obtained distribution with that obtained
from the min-to-max distribution by means of the Markov approximation for the min-max se-
quence. As we have mentioned before we do not use the full min-to-max distribution but instead
the ”still water separated” minima and maxima.



ind = find(Mm(:,1)>v & Mm(:,2)<v);
Mmv = abs(Mm(ind,:)-v);
fmmv = kde(Mmv,’epan’);
f_vmm = spec2mmtpdf(SS,[],’vmm’,[],[-7 7 51],1);
clf
pdfplot(fmmv,’k-’)
hold on
pdfplot(f_vmm,’-.’)
hold off

Then we compute the joint density of crest and trough using the Markov approximation to the
sequence of local extremes (sequence of turning points tp).

facat = kde([Ac At],’epan’);
f_acat = spec2mmtpdf(SS,[],’AcAt’,[],[-7 7 51],1);
clf
pdfplot(f_acat,’-.’)
hold on
pdfplot(facat,’k-’)
hold off

Now we are in the position to check our two methods, the Markov method, where the min-
to-max sequence is approximated by a Markov chain, and the replcement of the true min-to-max
transition probabilities by the transition probabilities which are valid for the ”still water separated”
min-to-max values. The results are presented in Figure 3.16. We see in (a) that the ”still water
separated” min-to-max distribution miss a considerable number of min-to-max values which fall
on the same side of the still water level. On the other hand, figure (b) indicates that the Markov
assumption is acceptable.
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Figure 3.16: (a) The joint density of ”still water separated” min-to-max values for the trans-
formed Gaussian model for the measurements from Gullfaks C (dashed-dotted line) compared
to the estimated density from data (KDE, solid line). (b) Markov approximation for the joint
density of crest and trough height Ac, At compared with the (KDE) estimator of the density.
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3.5 WAFO wave characteristics

3.5.1 wavedef
help wavedef

WAVEDEF wave definitions and nomenclature

Definition of trough and crest:
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
A trough (t) is defined as the global minimum between a
level v down-crossing (d) and the next up-crossing (u)
and a crest (c) is defined as the global maximum between a
level v up-crossing and the following down-crossing.

Definition of down- and up -crossing waves:
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
A level v-down-crossing wave (dw) is a wave from a
down-crossing to the following down-crossing.
Similarly a level v-up-crossing wave (uw) is a wave from a up-crossing
to the next up-crossing.

Definition of trough and crest waves:
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
A trough to through wave (tw) is a wave from a trough (t) to the
following trough. The crest to crest wave (cw) is defined similarly.

Definition of min2min and Max2Max wave:
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
A min2min wave (mw) is defined starting from a minimum (m) and
ending in the following minimum.
Similarly a Max2Max wave (Mw) is thus a wave from a maximum (M)
to the next maximum (all waves optionally rainflow filtered).

<----- Direction of wave propagation

<------Mw-----> <----mw---->
M : : c :
/ \ M : / \_ : c_ c

F \ / \m/ \ : /: \ /:\
------d--------u----------d-------u----d--------u---d-------- level v

\ /: \ : /: : :\_ _/ : :\_ L
\_ / : \_t_/ : : : \t_/ : : \m/
\t/ <-------uw---------> : <-----dw----->
: : : :
<--------tw--------> <------cw----->

(F= first value and L=last value).

See also: tpdef, crossdef, dat2tc, dat2wa, dat2crossind



3.5.2 perioddef

help perioddef

PERIODDEF wave periods (lengths) definitions and nomenclature

Definition of wave periods (lengths):
---------------------------------------

<----- Direction of wave propagation

<-------Tu--------->
: :
<---Tc-----> :
: : : <------Tcc---->

M : c : : : :
/ \ : M / \_ : : c_ c
F \ :/ \m/ \: :/ \ / \

------d--------u----------d-------u----d--------u---d-------- level v
\ / \ / :\_ _/: :\_ L
\_ / \_t_/ : \t_/ : : \m/

\t/ : : : :
: : <---Tt---> :
<--------Ttt-------> : :

<-----Td----->
Tu = Up crossing period
Td = Down crossing period
Tc = Crest period, i.e., period between up crossing and

the next down crossing
Tt = Trough period, i.e., period between down crossing and

the next up crossing
Ttt = Trough2trough period
Tcc = Crest2crest period

<----- Direction of wave propagation

<--Tcf-> Tuc
: : <-Tcb-> <->

M : c : : : :
/ \ : M / \_ c_ : : c
F \ :/ \m/ \ / \___: :/ \

------d---------u----------d---------u-------d--------u---d-------- level v
:\_ / \ __/: \_ _/ \_ L
: \_ / \_t_/ : \t_/ \m/
: \t/ : :
: : : :
<-Ttf-> <-Ttb->

Tcf = Crest front period, i.e., period between up crossing and crest
Tcb = Crest back period, i.e., period between crest and down crossing
Ttf = Trough front period, i.e., period between down crossing and trough
Ttb = Trough back period, i.e., period between trough and up crossing

Also note that Tcf and Ttf can also be abbreviated by their crossing
marker, e.g. Tuc (u2c) and Tdt (d2t), respectively. Similar applies to all the
other wave periods and wave lengths.



(The nomenclature for wave length is similar, just substitute T and
period with L and length, respectively)

<----- Direction of wave propagation

<--TMm-->
<-TmM-> : :

M : : M :
/ \ : M /:\_ : M_ M

F \ : / \m/ : \ : /: \ / \
\ : / : \ : / : \ / \
\ : / : \ : / : \_ _/ \_ L
\_ : / : \_m_/ : \m_/ \m/
\m/ : : : :

<-----TMM-----> <----Tmm----->

TmM = Period between minimum and the following Maximum
TMm = Period between Maximum and the following minimum
TMM = Period between Maximum and the following Maximum
Tmm = Period between minimum and the following minimum

See also: wavedef, ampdef, crossdef, tpdef



3.5.3 ampdef
help ampdef

AMPDEF wave heights and amplitude definitions and nomenclature

Definition of wave amplitude and wave heights:
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

<----- Direction of wave propagation

...............c_..........
| /| \ |

Hd | _/ | \ | Hu
M | / | \ |

/ \ | M / Ac | \_ | c_
F \ | / \m/ | \ | / \

------d----|---u------------------d---|---u----d------ level v
\ | /| \ | / \L
\_ | / | At \_|_/

\|/..| t
t

Ac = crest amplitude
At = trough amplitude
Hd = wave height as defined for down crossing waves
Hu = wave height as defined for up crossing waves

See also: wavedef, ampdef, crossdef, tpdef



3.5.4 crossdef
help crossdef

CROSSDEF level v crossing definitions and nomenclature

Definition of level v crossing:
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
Let the letters ’m’, ’M’, ’F’, ’L’,’d’ and ’u’ in the
figure below denote local minimum, maximum, first value, last
value, down- and up-crossing, respectively. The remaining
sampled values are indicated with a ’.’. Values that are identical
with v, but do not cross the level is indicated with the letter ’o’.

We have a level up-crossing at index, k, if

x(k) < v and v < x(k+1)
or if

x(k) == v and v < x(k+1) and x(r) < v for some di < r <= k-1

where di is the index to the previous downcrossing.
Similarly there is a level down-crossing at index, k, if

x(k) > v and v > x(k+1)
or if

x(k) == v and v > x(k+1) and x(r) > v for some ui < r <= k-1

where ui is the index to the previous upcrossing.

The first (F) value is a up crossing if x(1) = v and x(2) > v.
Similarly, it is a down crossing if x(1) = v and x(2) < v.

M
. . M M

. . . . . .
F d . . L
----------------------u-------d-------o--------------------- level v

. . . . u
. m
m

See also: perioddef, wavedef, tpdef, findcross, dat2tp



CHAPTER 4

FATIGUE LOAD ANALYSIS AND RAIN-FLOW CYCLES

4.1 Random fatigue

4.1.1 Random load models

This section is intended to present some tools from WAFO for analysis of random loads in order to
assess the fatigue damage. A complete list of fatigue routines can be obtained by help fatigue.

We shall assume that the load is given by one of three possible forms:

1. As measurements of the stress or strain function with some given sampling frequency in Hz.
Such loads will be called measured loads and denoted by x�t�, � � t � T , where t is time
and T is the duration of the measurements.

2. In the frequency domain (that is important in system analysis) as a power spectrum. This
means that the signal is represented by a Fourier series

x�t� � m �
NX
i��

ai cos��i t� � bi sin��i t�

where �i � i ����T are angular frequencies, m is the mean of the signal and ai� bi are Fourier
coefficients.

3. In the rainflow domain, i.e. the measured load is given in the form of a rainflow matrix.

We shall now review some simple means to characterize and analyze loads which are given in
any of the forms (1)–(3), and show how to derive characteristics, important for fatigue evaluation
and testing.

We assume that the reader has some knowledge about the concept of cycle counting, in particu-
lar rainflow cycles, and damage accumulation using Palmgren-Miners linear damage accumulation
hypotheses. The basic definitions are given in the end of this introduction. Another important prop-
erty is the crossing spectrum 	�u� defined as the intensity of upcrossings of a level u by x�t� as a
function of u.

The process of damage accumulation depends only on the values and the order of the local
extremes in the load. The sequence of local extremes is called the sequence of turning points. The
irregularity factor 
measures how dense the local extremes are relatively to the mean frequency f�.
For a completely regular function there would be only one local maximum between upcrossings of
the mean level, giving irregularity factor equal to one. In the other extreme case, there are infinitely
many local extremes giving irregularity factor zero. However, if the crossing intensity 	�u� is finite,



most of those local extremes are irrelevant for the fatigue and should be disregarded by means of
some smoothing device.

A particularly useful filter is the so-called rainflow filter that removes all local extremes that
builds rainflow cycles with amplitude smaller than a given threshold. We shall always assume that
the signals are rainflow filtered; see Section 4.2.1.

If more accurate predictions of fatigue life are needed then more detailed models are required
for the sequence of turning points. Here the Markov chain theory has shown to be particularly
useful. There are two reasons for this:

� the Markov models constitute a broad class of processes that can accurately model many real
loads

� for Markov models, the fatigue damage prediction using rainflow method is particularly sim-
ple, Rychlik [47] and Johannesson [22]

In the simplest case, the necessary information is the intensity of pairs of local maxima and the
following minima (the so-called Markov matrix or min-max matrix). The dependence between
other extremes is modeled using Markov chains, see Frendahl & Rychlik [13].

4.1.2 Damage accumulation in irregular loads

In laboratory experiments, one often subjects a specimen of a material to a constant amplitude load,
e.g. L�t� � s sin��t� where s and � are the constant amplitude and frequency, and one counts the
number of cycles (periods) until the specimen breaks. The number of load cycles N�s� as well
as the amplitudes s are recorded. For small amplitudes, s � s�, the fatigue life is often very
large, and is set to infinity, N�s� � �, i.e. no damage will be observed even during an extended
experiment. The amplitude s� is called the fatigue limit or the endurance limit. In practice, one
often uses a simple model for N�s�,

N�s� �

�
K��s�� s 
 s��
� s � s��

(4.1)

where K is a material dependent random variable, usually lognormally distributed, i.e. withK�� �
E��� where ln�E� � N��� ��

E�, and �, � are fixed constants.
For irregular loads, also called variable amplitude loads, one often combines the S-N curve with

a cycle counting method by means of the Palmgren-Miner linear damage accumulation theory, to
predict fatigue failure time. A cycle counting procedure is used to form equivalent load cycles,
which are used in the life prediction.

If the k � th cycle has amplitude sk then it is assumed that it causes a damage equal to 	�N�sk�.
The total damage at time t is then

D�t� �
X
tk�t

	

N�sk�
� K

X
tk�t

s�k � KD��t�� (4.2)

where the sum contains all cycles which have been completed up to time t. Then, the fatigue life
time T f , say, is shorter than t if the total damage at time t exceeds 1, i.e. if D�t� 
 	. In other
words, T f is defined as the time when D�t� crosses level 1 for the first time.



A very simple predictor of T f is obtained by replacing K � E��� in Eq. (4.2) by a constant,
for example the median value of K, which is equal to �. For high cycle fatigue, the time to failure
is long, more than 	���f�, and then for stationary (and ergodic and some other mild assumptions)
loads, the damage D��t� can be approximated by its meanE�D��t�� � d� �t. Here d� is the damage
intensity, i.e. how much damage is accumulated per time unit. This leads to a very simple predictor
of fatigue life time

�T f �
	

�d�
� (4.3)

4.1.3 Rainflow cycles and hysteresis loops

The now commonly used cycle counting method is the rainflow counting, which was introduced
by Endo [36] in 1968. It was designed to catch both slow and rapid variations of the load by
forming cycles by pairing high maxima with low minima even if they are separated by intermediate
extremes. Each local maximum is used as the maximum of a hysteresis loop with an amplitude that
is computed by the rainflow algorithm. A new definition of the rainflow cycle, equivalent to the
original definition, was given by Rychlik [46]. The formal definition is also illustrated in Figure 4.1.

Definition 4.1 (Rainflow cycle) From each local maximum Mk one shall try to reach above the
same level, in the backward (left) and forward (right) directions, with an as small downward ex-
cursion as possible. The minima, m�

k and m�
k , on each side are identified. That minimum which

represents the smallest deviation from the maximum Mk is defined as the corresponding rainflow
minimum mRFC

k . The k:th rainflow cycle is defined as �mRFC
k �Mk�.

m�k

m�k � m
rfc
k

Mk

Figure 4.1: Definition of the rainflow cycle, as given by Rychlik [46].

If tk be the time of the k:th local maximum and the corresponding rainflow amplitude is sRFC
k �

Mk �mRFC
k , the amplitude of the attached hysteresis loop, then the total damage by

D�t� �
X
tk�t

	

N�sRFC
k �

� K
X
tk�t

�sRFC
k �� � KD��t�� (4.4)

where the sum contains all rainflow cycles which have been completed up to time t.
To use (4.3) to predict the fatigue life we need the damage intensity d� i.e. the damage per

time unit caused by the rainflow cycles. If there are on the average f� maxima1 per time unit, and
�We have defined f� as the mean level upcrossing frequency, i.e. the mean number of times per time unit that the load upcrosses
the mean level. Thus there are in fact at least f� local maxima per time unit. Since the rainflow filter reduces the number of
cycles, we let f� here be defined as the averege number of rainflow cycles per time unit.



equally many rainflow cycles, and each rainflow cycle causes an expected damage �E�	�NSRFC� it
is clear that the damage intensity is equal to

d� � f�E
�
�SRFC��

�
�

Thus, an important parameter for prediction of fatigue life is the distribution of the rainflow am-
plitudes and in particular the expected value of the �-power of its inverted value. WAFO contains
a number of routines for handling the rainflow cycles in observed load data and in theoretical load
models.

4.2 Load cycle characteristics

4.2.1 Rainflow filtered load data

In previous chapters we have presented models for sea wave data, treated as functions of time. The
models can be used in response analysis for marine structures to sea forces or to compute wave
characteristics for specified random wave models, e.g. those defined by their power spectrum. In
particular, Gaussian models are very convenient as input to linear filters, since the output is again
a Gaussian process with easily computable power spectral density function.

The measured signals are often very noisy and need to be smoothed before further analysis. A
common practice is to use a bandpass filters to exclude high frequencies from the power spectrum
and to filter out slow trends. If the function is modeled by a transformed Gaussian process xx, such
a filtration is performed on the inverse transformed signal yy = g(xx). Obviously, one should
not oversmooth data since that will affect the height of extreme waves. Consequently, if the signal
is still too irregular even after smoothing, this is an indication that one should use the trough-to-
crest wave concept, defined as in Table 3.1, instead of the simpler min-to-max cycles. Chapter 3 of
this tutorial was aimed at showing how one can compute the crest-to-trough wave characteristics
from a Gaussian or transformed Gaussian model.

The trough-to-crest wave concept is a nonlinear means to remove small irregularities from a
wave series. Another nonlinear method to remove small waves from data is the rainflow filtering,
introduced by Rychlik, [51], and included in the WAFO toolbox. For completeness, we describe
the algorithm of the rainflow filter.

In this tutorial we have used a simple definition of rainflow cycles which is convenient for
functions with finitely many local maxima and minima. However, rainflow filters and rainflow
cycles can be defined for very irregular functions like a sample function of Brownian motion
where there are infinitely many local extremes in any finite interval, regardless how small. This is
accomplished by defining the rainflow minimum mRFC�t� for all time points t of a function x�t�

in such a way that the rainflow amplitude x�t� � mRFC�t� is zero if the point x�t� is not a strict
local maximum of the function; see Rychlik [51] for more detailed discussion. Now, a rainflow
filter with threshold h, extracts all rainflow cycles �mRFC�t�� x�t�� such that x�t� �mRFC�t� 
 h.
Consequently, if h � � then the signal is unchanged by the filter, if h � � we obtain a sequence
of turning points, and finally, if h 
 �, all small oscillations are removed, see Figure 4.7 for an
example.



4.2.2 Oscillation count and rainflow matrix

The rainflow count is a generalization of the crossing count. The crossing spectrum counts the
number of times a signal upcrosses any level u. More important for fatigue damage is the oscillation
count, NOSC�u� v� which counts the number of times a signal upcrosses an interval �u� v�. The
oscillation count is thus a function of the two variables u and v, and is plotted as a bivariate count.
The oscillation count is a counting distribution for the rainflow cycles. Consequently, if the matrix
Nosc with elements N OSC�uj� ui� is known we can compute the frequency (or rather histogram)
matrix of the rainflow count by means of the WAFO-function nt2fr and obtain the matrix Frfc
= nt2fr(Nosc), in fatigue practice called the rainflow matrix. Knowing the rainflow matrix of
a signal one can compute the oscillation count by means of the function fr2nt.

The rainflow matrix will play an important role in the analysis of the rainflow filtered sig-
nals. Let x�t� be a measured signal and denote by xh�t� the rainflow filtered version, filtered with
threshold h. Now, if we know a rainflow matrix Frfc, say, of x, then the rainflow matrix of xh
is obtained by setting some subdiagonals of Frfc to zero, since there are no cycles in xh with
amplitudes smaller than h. Obviously, the oscillation count of xh can then be derived from the
oscillation count of x.

Note that extracting a sequence of troughs and crests �mTC
i �M TC

i � from the signal is closely
related to rainflow filtering. Since given a reference level uTC, the sequence �mTC

i �M TC
i � can be

obtained by first removing all rainflow cycles �mRFC
j �Mj� such that Mj � uTC or mRFC

j 
 uTC and
then finding the min-to-max pairs in the filtered signal.

Clearly, the oscillation count is an important characteristic of irregularity of a sea level func-
tion and the expected oscillation count, also called an oscillation intensity matrix, is an important
characteristic of the random processes. Consequently we face two problems; how to compute the
oscillation intensity, for a specified model; and if knowing the oscillation intensity, how can one
find an explicit and easy to handle random process with this intensity. Note that by solving these
two problems one increases the applicability of rainflow filters considerably. Since then, given a
random process, one can find its oscillation intensity, and next one can compute the oscillation
intensity of the rainflow filtered random process, and finally, find a random process model for the
filtered signal.

4.2.3 Markov chain of turning points, Markov matrix

Since the oscillation intensity is closely related to the first passage problem it can be practically
handled if some Markov structure of the process is assumed. While Gaussian processes are an
important class of models for linear filtering, Markov processes are the appropriate models as far
as rainflow filtering is concerned. In this section a class of models, the so called Markov chain of
turnings points will be introduced.

For any load sequence we shall denote by TP the sequence of turning points. The sequence
TP will be called a Markov chain of turning points if it forms a Markov chain, i.e. if the distri-
bution of a local extremum depends only on the value of the previous extremum. The elements
in the histogram matrix of min-to-max cycles and max-to-min cycles are equal to the observed
number of transitions from a minimum (maximum) to a maximum (minimum) of specified height.
Consequently, the probabilistic structure of the Markov chain of turning points is fully defined by
the expected histogram matrix of min-to-max and max-to-min cycles; sometimes called Markov



matrices. Note that for transformed Gaussian process a Markov matrix for min-to-max cycles was
computed by means of the WAFO-function minmax. The max-to-min matrix is obtained by sym-
metry. Next, the function mctp2tc (= Markov Chain of Turning Points to Trough Crests), used to
compute the trough2crest intensity for transformed Gaussian model, uses a Markov matrix to ap-
proximate the sequence of turning points by a Markov chain. This approximation method is called
a Markov method.

Figure 4.2 shows the general principle of a Markov transition count between turning points of
local maxima and minima. The values have been discretized to levels 1, ..., n, from smallest
to largest.
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Figure 4.2: Part of a discrete load process where the turning points are marked with �. The scale
to the left is the discrete levels. The transitions from minimum to maximum and the transitions
from maximum to minimum are collected in the min-max matrix, F and max-min matrix, cF ,
respectively. The rainflow cycles are collected in the rainflow matrix, F RFC. The numbers in
the squares are the number of observed cycles and the grey areas are by definition always
zero.

Finding the expected rainflow matrix is a difficult problem and explicit results are known only
for special classes of processes, e.g. if x is a stationary diffusion, a Markov chain or a function
of a vector valued Markov chain. Markov chains are very useful in wave analysis since they form
a broad class of processes and for several sea level data, as well as for transformed Gaussian
processes, one can observe a very good agreement between the observed or simulated rainflow
matrix and that computed by means of the Markov method. Furthermore, Markov chains can be
simulated in a very efficient way. However, the most important property is that, given a rainflow
matrix or oscillation count of a Markov chain of turning points one can find its Markov matrix.
This means that a Markov chain of turning points can be defined by either a Markov matrix FmM
or by its rainflow matrix Frfc, which are connected by the following nonlinear equation

Frfc � FmM� F�FmM�� (4.5)



whereF is a matrix valued function, defined in [51], where also an algorithm to compute �I�F���

is given. The WAFO-function for computing Frfc from FmM is mctp2rfc while the inverse,
i.e. FmM as a function of Frfc, is computed by rfc2mctp.

4.3 Cycle analysis with WAFO

In this section we shall demonstrate how WAFO can be used to extract rainflow cycles from a load
sequence, and how fatigue life can be estimated. The Markov method is used for simulation and
approximation of real load sequences. We shall use three load examples, the deep water sea load,
a simulated transformed Gaussian model, and a load sequence generated from an special Markov
structure.

4.3.1 Crossing intensity

Basic to the analysis is the crossing intensity function 	�u�, i.e. the number of times per time unit
that the load up-crosses the level u, considered as a function ofu. We illustrate the computations
on the deep water sea waves data.

load sea.dat; xx_sea=sea;
tp_sea = dat2tp(xx_sea);
lc_sea = tp2lc(tp_sea);
T_sea = xx_sea(end,1)-xx_sea(1,1);
lc_sea(:,2) = lc_sea(:,2)/T_sea;
subplot(221), plot(lc_sea(:,1),lc_sea(:,2))
title(’Crossing intensity, (u, \mu(u))’)
subplot(222), semilogx(lc_sea(:,2),lc_sea(:,1))
title(’Crossing intensity, (log \mu(u), u)’)

The routine dat2tp andtp2lc take a load sequence and extracts the turning points, and
from this calculates the number of upcrossings as a function of level. The plots produced, Fig-
ure 4.3, show the crossing intensity plotted in two common modes, lin-lin of �u� 	�u�� and log-lin
of �log	�u�� u�.
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Figure 4.3: Level crossing intensity for sea data.

We shall also have use for the mean frequency f�, i.e. the number of mean level upcrossings per
time unit, and the irregularity index, 
, which is the mean frequency divided by the mean number



of local maxima per time unit. Thus 	�
 is the average number of local maxima that occur between
the mean level upcrossings.

To compute f� we use the Matlab function interp1, see help interp1.

m_sea = mean(xx_sea(:,2));
f0_sea = interp1(lc_sea(:,1),lc_sea(:,2),m_sea,’linear’);
f0_sea
extr_sea = length(tp_sea)/(2*T_sea);
alfa_sea = f0_sea/extr_sea

4.3.2 Extraction of rainflow cycles

We start by a study of rainflow cycles in the deep water sea data. Recall the definition of rainflow
and min-max cycle counts. The demo program democc illustrates these definitions. To use it to
identify the first few rainflow and min-max cycles, just use,

proc = xx_sea(1:500,:);
democc

Two windows will appear. In Demonstration Window 1, first mark the turning points by the
button TP. Then choose a local maximum (with the buttons marked �	��	��
��
) and find the
corresponding cycle counts, using the buttons RFC, PT. The cycles are visualized in the other
window.

We shall now examine cycle counts in the load xx sea. From the sequence of turning points
tp we find the rainflow and min-max cycles in the data set,

RFC_sea = tp2rfc(tp_sea);
mM_sea = tp2mm(tp_sea);

Since each cycle is a pair of a local maximum and a local minimum in the load, a cycle count
can be visualized as a set of pairs in the R�-plane. Compare the min-max and rainflow counts in
the load in Figure 4.4.

clf
subplot(121), ccplot(mM_sea)
title(’min-max cycles’)
subplot(122), ccplot(RFC_sea)
title(’Rainflow cycles’)

Observe that RFC contains more cycles with high amplitudes, compared to mM. This becomes
more evident in an amplitude histogram as seen in Figure 4.5.

ampmM_sea = cc2amp(mM_sea);
ampRFC_sea = cc2amp(RFC_sea);
clf
subplot(221), hist(ampmM_sea,25);
title(’min-max amplitude distribution’)
subplot(222), hist(ampRFC_sea,25);
title(’Rainflow amplitude distribution’)
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Figure 4.4: min-max and rainflow cycle plots for sea data.
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Figure 4.5: min-max and rainflow cycle distributions for sea data.

4.3.3 Simulation of rainflow cycles

Simulation of cycles in a Markov model

The most simple cycle model assumes that the sequence of turning points forms a Markov chain.
Then the model is defined by the min-max matrix, G. The matrix has dimension n	 n, where n is
the number of discrete levels (e.g. �� or �
). In this example the discrete levels u are chosen in the
range from �	 to 	. The matrix G will contain the probabilities of transitions between the different
levels in u.

n = 41; param_m = [-1 1 n]; param_D = [1 n n];
u_markov = levels(param_m);
G_markov = mktestmat(param_m,[-0.2 0.2],0.15,1);

The model is easy to simulate and this is performed by the simulation routine mctpsim. This
routine simulates only the sequence of turning points and not the intermediate load values.

T_markov = 5000;
xxD_markov = mctpsim({G_markov []},T_markov);
xx_markov = [(1:T_markov)’ u_markov(xxD_markov)’];

Here xxD markov takes values 	� � � � � n, and by changing the scale we get the load xx markov

which takes values between�	 and 1. The first 50 samples of the simulation is plotted in Figure 4.6
by

plot(xx_markov(1:50,1),xx_markov(1:50,2))
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Figure 4.6: Simulated Markov sequence of turning points.

We shall later use the matrix G_markov to calculate the theoretical rainflow matrix, but first
we construct a similar sequence of turning points from a transformed Gaussian model.

Rainflow cycles in a transformed Gaussian model

In this example we shall consider a sea-data-like series obtained as a transformed Gaussian model
with JONSWAP spectrum. Since the JONSWAP spectrum contains also rather high frequencies a
JONSWAP load will contain many cycles with small amplitude. These are often uninteresting and
can be removed by a rainflow filter as follows.

Let g be the Hermite transformation proposed by Winterstein, which we used in Chapter 2.
Suppose the spectrum spec is of the JONSWAP type. To get the transform we need as input the
approximative higher moments, skewness and kurtosis, which are automatically calculated from
the spectrum by the routine spec2skew. We define the spectrum structure, including the trans-
formation, and simulate the tranformed Gaussian load xx_herm. The routine dat2dtp extracts
the turning points discretized to the levels specified by the parameter vector param.

Note that when calling the simulation routine spec2sdat with a transformation the input
spectrum must be normalized to have standard deviation 1, i.e. one must divide the spectral values
by the variance saˆ2.

me = mean(xx_sea(:,2));
sa = std(xx_sea(:,2));
Hm0_sea = 4*sa;
Tp_sea = 1/max(lc_sea(:,2));
spec = jonswap([],[Hm0_sea Tp_sea]);

[sk, ku] = spec2skew(spec);
spec.tr = hermitetr([],[sa sk ku me]);
param_h = [-1.5 2 51];
spec_norm = spec;
spec_norm.S = spec_norm.S/saˆ2;



xx_herm = spec2sdat(spec_norm,[2ˆ15 1],0.1);
h = 0.2;
[dtp,u_herm,xx_herm_1]=dat2dtp(param_o,xx_herm,h);
clf
plot(xx_herm(:,1),xx_herm(:,2),’k’,’LineWidth’,2);
hold on;
plot(xx_herm_1(:,1),xx_herm_1(:,2),’k--’,’Linewidth’,2);
axis([0 50 -4 6]), hold off;
title(’Rainflow filtered wave data’)

The rainflow filtered data xx_herm_1 contains the turning points of xx_herm with rainflow
cycles less than h=0.2 removed. In Figure 4.7 the dashed curve connects the remaining turning
points after filtration.
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Figure 4.7: Hermite transformed wave data and rainflow filtered turning points, h = 0.2.

Try different degree of filtering on the Ochi transformed sequence and see how it effects the
min-max cycle distribution. You can use the following sequence of commands, with different h
-values; see Figure 4.8 for the results. Note that the rainflow cycles have their original values in
the left figure but that they have been discretized to the discrete level defined by param_o in the
right figure.

tp_herm=dat2tp(xx_herm);
RFC_herm=tp2rfc(tp_herm);
mM_herm=tp2mm(tp_herm);
h=1;
[dtp,u,tp_herm_1]=dat2dtp(param_o,xx_herm,h);
RFC_herm_1 = tp2rfc(tp_herm_1);
clf
subplot(121), ccplot(RFC_herm)
title(’h=0’)
subplot(122), ccplot(RFC_herm_1)
title(’h=1’)
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Figure 4.8: Rainflow cycles and rainflow filtered rainflow cycles in the transformed Gaussian pro-
cess.

4.3.4 Calculating the Rainflow Matrix

We have now shown how to extract rainflow cycles from a load sequence and to perform rainflow
filtering in measured or simulated load sequences. Next we shall demonstrate how the expected
(theoretical) rainflow matrix can be calculated in any random load or wave model defined either as
a Markov chain of turning points, or as a stationary random process. We do this by means of the
Markov method based on the max-min transition matrix for the sequence of turning points. This
matrix can either be directly estimated from or assigned to a load sequence, or it can be calculated
from the correlation or spectrum structure of a transformed Gaussian model.

Calculation of rainflow matrix in the Markov model

The theoretical rainflow matrix Grfc for the Markov model is calculated in WAFO by the routine
mctp2rfm. Let G markov be as in Section 4.3.3 and calculate the theoretical rainflow matrix
by

Grfc_markov=mctp2rfm({G_markov []});

A cycle matrix, e.g. a min-max or rainflow matrix, can be plotted by cmatplot. Now we will
compare the min-max and the rainflow matrices.

clf
subplot(121),cmatplot(u_markov,u_markov,G_markov),axis(’square’)
subplot(122),cmatplot(u_markov,u_markov,Grfc_markov),axis(’square’)

Both 2D- and 3D-plots can be drawn; see help cmatplot. It is also possible to plot many
matrices in one call.

cmatplot(u_markov,u_markov,{G_markov Grfc_markov},3)

A plot with method=4 gives contour lines; see Figure 4.9. Note that for high maxima and low
minima, the rainflow matrix has a pointed shape while the min-max matrix has a more rounded
shape.

cmatplot(u_markov,u_markov,{G_markov Grfc_markov},4)
subplot(121), axis(’square’), title(’min-to-max transition matrix’)
subplot(122), axis(’square’), title(’Rainflow matrix’)
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Figure 4.9: min-max-matrix and theoretical rainflow matrix for test Markov sequence.

We now compare the theoretical rainflow matrix with an observed rainflow matrix obtained in
the simulation. In this case we have simulated discrete Markov chain of turning points with states
1,...,n and put them in the variable xxD markov. It is turned into a rainflow matrix by the
WAFO-routine dtp2rfm). The comparison in Figure 4.10 between the observed rainflow matrix
and the theoretical one is produced as follows.

n = length(u_markov);
Frfc_markov = dtp2rfm(xxD_markov,n);
clf
cmatplot(u_markov,u_markov,{Frfc_markov Grfc_markov*T/2},3)
subplot(121), axis(’square’), title(’Observed rainflow matrix’)
subplot(122), axis(’square’), title(’Theoretical rainflow matrix’)

Note that in order to compare the observed matrix Frfc markov with the theoretical matrix
Grfc markov we have to multiply the latter by the number of cycles in the simulation which is
equal to T/2.
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Figure 4.10: Observed and theoretical rainflow matrix for test Markov sequence.

We end this section by an illustration of the rainflow smoothing operation. The observed rain-
flow matrix is rather irregular, due to the statistical variation in the finite sample. To facilitate com-
parison with the theoretical rainflow matrix we smooth it by the built in smoothing facility in the
routine cc2cmat; do help cc2cmat. To see how it works for different degrees of smoothing
we calculate the rainflow cycles by tp2rfc.



tp_markov = dat2tp(xx_markov);
RFC_markov = tp2rfc(tp_markov);
h = 1;
Frfc_markov_smooth = cc2cmat(param_m,RFC_markov,[],1,h);
clf
cmatplot(u_markov,u_markov,{Frfc_markov_smooth Grfc_markov*T/2},4)
subplot(121), axis(’square’), title(’Smoothed observed rainflow matrix’)
subplot(122), axis(’square’), title(’Theoretical rainflow matrix’)

Here, the smoothing is done as a kernel smoother with a bandwidth parameter h = 1. The
effect of the smoothing is shown in Figure 4.11.
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Figure 4.11: Smoothed observed and calculated rainflow matrix for test Markov sequence.

Rainflow matrix from spectrum

We are now ready to demonstrate how the rainflow matrix can be calculated in a load or wave model
defined by its correlation or spectrum structure. We chose the sequence transformed Gaussian
model with the Hermite transform xx_herm which was studied in Section 4.3.3. This model was
defined by its JONSWAP spectrum and the standard Hermite transform for asymmetry.

We first need to find the structure of the turning points which is defined by the min-to-max
density by the methods in Section 3.4.5. We start by computing an approximation GmM3 herm of
the min-max density by means of the cycle distribution routine spec2cmat. The type of cycle is
specified by a cycle parameter, in this case ’Mm’.

GmM3_herm = spec2cmat(spec,[],’Mm’,[],[],2);

The result is seen in Figure 4.12.
Then we approximate the distribution of the turning points by a Markov chain with transitions

between extrema calculated from GmM3 herm, and by (4.5) compute the rainflow matrix.

Grfc_herm = mctp2drfm({GmM3_herm.f,[]});

In WAFO, the rainflow matrix can be calculated directly from the spectrum by the cycle distri-
bution routine spec2cmat by specifying the cycle parameter to ’rfc’.

Grfc_direct_herm = spec2cmat(spec,[],’rfc’,[],[],2);



The output is a structure array which contains the rainflow matrix in the cell .f.
The min-max matrix GmM3 herm and the rainflow matrix Grfc herm are shown together in

Figure 4.12, obtained using the following commands.

clf
u_herm = levels(param_o);
cmatplot(u_herm,u_herm,{GmM3_herm.f Grfc_herm},4)
subplot(121), axis(’square’), title(’min-max matrix’)
subplot(122), axis(’square’), title(’Theoretical rainflow matrix’)
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Figure 4.12: min-max matrix and theoretical rainflow matrix for Hermite-transformed Gaussian
waves.

We can also compare the theoretical min-max matrix with the observed cycle count and the
theoretical rainflow matrix with the observed one. In both comparisons we smooth the observed
matrix to get more regular structure. We also illustrate the multi-plotting capacity of the routine
cmatplot.

tp_herm=dat2tp(xx_herm);
RFC_herm=tp2rfc(tp_herm);
mM_herm=tp2mm(tp_herm);
h = 1;
FmM_herm_smooth = cc2cmat(param_o,mM_herm,[],1,h);
Frfc_herm_smooth = cc2cmat(param_o,RFC_herm,[],1,h);
T_herm=xx_herm(end,1)-xx_herm(1,1);
clf
cmatplot(u_herm,u_herm,{FmM_herm_smooth GmM3_herm.f*T_herm/2;...

Frfc_herm_smooth Grfc_herm*T_herm/2},4)
subplot(221), axis(’square’), title(’Observed smoothed min-max matrix’)
subplot(222), axis(’square’), title(’Theoretical min-max matrix’)
subplot(223), axis(’square’), title(’Observed smoothed rainflow matrix’)
subplot(224), axis(’square’), title(’Theoretical rainflow matrix’)

4.3.5 Simulation from crossings or rainflow structure

In fatigue experiments it is important to generate load sequences with a prescribed rainflow or
other crossing properties. Besides the previously used simulation routines for Markov loads and
spectrum loads WAFO contains algorithm for generation of random load sequences which has
a specified average rainflow distribution or a specified irregularity and crossing spectrum. These
routines are rfc2load and lc2sdat, respectively.
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Figure 4.13: Observed smoothed and theoretical min-max matrix, (and bserved smoothed and
theoretical rainflow matrix for Hermite-transformed Gaussian waves.

Simulation from crossing structure

The routine lc2sdat simulates a load with specified irregularity factor and crossing spectrum.
We first estimate these quantities in the simulated Hermite transformed Gaussian load, and then
simulate series with the same crossing spectrum but with varying irregularity factor. The sampling
variability increases with decreasing irregularity factor, as is seen in Figure 4.14. The figures were
generated by the following commands.

clf
cross_herm=dat2lc(xx_herm);
alpha1=0.25;
alpha2=0.75;
xx_herm_sim1=lc2sdat(500,alpha1,cross_herm);
cross_herm_sim1=dat2lc(xx_herm_sim1);
subplot(211)
plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))
hold on
stairs(cross_herm_sim1(:,1),...

cross_herm_sim1(:,2)/max(cross_herm_sim1(:,2)))
hold off
title(’Crossing intensity, \alpha = 0.25’)
subplot(212)
plot(xx_herm_sim1(:,1),xx_herm_sim1(:,2))
title(’Simulated load, \alpha = 0.25’)

xx_herm_sim2=lc2sdat(500,alpha2,cross_herm);
cross_herm_sim2=dat2lc(xx_herm_sim2);
subplot(211)
plot(cross_herm(:,1),cross_herm(:,2)/max(cross_herm(:,2)))



hold on
stairs(cross_herm_sim2(:,1),...

cross_herm_sim2(:,2)/max(cross_herm_sim2(:,2)))
hold off
title(’Crossing intensity, \alpha = 0.75’)
subplot(212)
plot(xx_herm_sim2(:,1),xx_herm_sim2(:,2))
title(’Simulated load, \alpha = 0.75’)
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Figure 4.14: Upper figures show target crossing spectrum (smooth curve) and obtained spectrum
(wiggled curve) for simulated process shown in lower figures. Irregularity factor: left 
 �

���
, right 
 � ���
.

4.4 Fatigue damage and fatigue life distribution

4.4.1 Introduction

We shall now give a more detailed account of how WAFO can be used to estimate and bound the
fatigue life distribution under random loading. The basic assumptions are the Wöhler curve (4.1)
and the Palmgren-Miner damage accumulation rule (4.2),

N�s� �

�
K��s�� s 
 s��
� s � s��

(4.6)

D�t� �
X
tk�t

	

N�sk�
� K

X
tk�t

s�k � KD��t�� (4.7)

Here N�s� is the fatigue life expected from constant amplitude test with amplitude s, and D�t� is
the total damaged at time t caused by variable amplitude cycles sk, which have been completed
before time t. The damage intensity d� � D�t��t for large t is the amount of damage per time unit.

Most information is contained in the cycle amplitude distribution, in particular in the rainflow
cycles, in which case (4.7) becomes,
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The rainflow cycle count RFC can directly be used for prediction of expected fatigue life. The
expression (4.3) gives the expected time to fatigue failure in terms of the material constant � and
the expected damage per cycle d�. The parameters � and � can be estimated from an S-N curve.
In the examples here we will use � � 
�
 � 	����, � � ���; see Section 4.4.4. For our sea load
xx sea the computations go directly from the rainflow cycles as follows:

beta=3.2; gam=5.5E-10; T_sea=xx_sea(end,1)-xx_sea(1,1);
d_beta=cc2dam(RFC_sea,beta)/T_sea;
time_fail=1/gam/d_beta/3600

giving the time to failure 5.9693e+006 when time to failure is counted in hours (= 3600
sec). Obviously this load causes little damage to the material with the specified properties, since
the failure time is almost 700 years.

4.4.2 Level Crossings

We have in Section 4.3.5 seen how the crossings intensity contains information about the load
sequence and how it can be used for simulation. We shall now investigate the relation between the
crossing intensity, the rainflow cycles and the expected fatigue life.

We use the Markov model from Section 4.3.3 for the sequence of turning points as an example.
First we go from the rainflow matrix to the crossing intensity.

mu_markov = cmat2lc(param_m,Grfc_markov);
muObs_markov = cmat2lc(param_m,Frfc_markov/(T_markov/2));
clf
plot(mu_markov(:,1),mu_markov(:,2),...

muObs_markov(:,1),muObs_markov(:,2),’--’)
title(’Theoretical and observed crossing intensity ’)

The plot, shown in Figure 4.15, compares the theoretical upcrossing intensity mu markov

with the observed upcrossing intensity muObs markov, as calculated from the theoretical and
observed rainflow matrices.

4.4.3 Damage

The WAFO toolbox contains a number of routines to compute and bound the damage, as defined
by (4.7), inflicted by a load sequence. The most important routines are cc2dam and cmat2dam
which give the total damage from a cycle count and from a cycle matrix, respectively. More detailed
information is given by cmat2dmat, which gives a damage matrix, separated for each cycle, from
a cycle matrix. An upper bound for total damage from level crossings is given by lc2dplus.

We first calculate the damage by the routines cc2dam for a cycle count (e.g. rainflow cycles)
and cmat2dam for a cycle matrix (e.g. rainflow matrix).

beta = 4;
Dam_markov = cmat2dam(param_m,Grfc_markov,beta)
DamObs1_markov = cc2dam(u_markov(RFC_markov),beta)/(T_markov/2)
DamObs2_markov = cmat2dam(param_m,Frfc_markov,beta)/(T_markov/2)

Here Dam_markov is the theoretical damage per cycle in the assumed Markov chain of turn-
ing points, while DamObs1 and DamObs2 give the observed damage per cycle, calculated from
the cycle count and from the rainflow matrix, respectively. For this model the result should be
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Figure 4.15: Crossing intensity as calculated from the Markov matrix (solid curve) and from the
observed rainflow matrix (dashed curve).

Dam_markov = 0.0073 for the theoretical damage and very close to this value for the simu-
lated series.

The damage matrix is calculated by cmat2dmat. It shows how the damage is distributed
among the different cycles as illustrated in Figure 4.16. The sum of all the elements in the damage
matrix gives the total damage.

Dmat_markov = cmat2dmat(param_m,Grfc_markov,beta);
DmatObs_markov = cmat2dmat(param_m,Frfc_markov,beta)/(T_markov/2);}
clf
subplot(121), cmatplot(u_markov,u_markov,Dmat_markov,4)
title(’Theoretical damage matrix’)
subplot(122), cmatplot(u_markov,u_markov,DmatObs_markov,4)
title(’Observed damage matrix’)
sum(sum(Dmat_markov))
sum(sum(DmatObs_markov))

It is possible to calculate an upper bound on the damage intensity from the crossings intensity
only, without using the rainflow cycles. This is done by the WAFO routine lc2dplus, which
works on any theoretical or observed crossing intensity function.

Damplus_markov = lc2dplus(mu_markov,beta)

4.4.4 Estimation of S-N curve

WAFO contains routines for computation of parameters in the basic S-N curve (4.1), for the rela-
tion between the load cycle amplitude s and the fatigue life N�s� in fixed amplitude tests.

N�s� �

�
K��s�� s 
 s��
� s � s��

(4.8)
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Figure 4.16: Distribution of damage from different RFC cycles, from calculated theoretical and
from observed rainflow matrix.

where K is a material dependent random variable. The variation of K is often taken to be lognor-
mal,

K � E����

where � is a fixed parameter, depending on material, and lnE has a normal distribution with mean
� and standard deviation �E . Thus, there are three parameter, �, �, �E , to be estimated from an S-N
experiment. Taking logarithms in (4.1) the problem turns into a standard regression problem,

lnN�s� � � lnE � ln �� � ln s�

in which the parameters can easily be estimated.
The toolbox contains a data set SN with fatigue lives from 40 experiments with s = 10, 15, 20,

25, and 30 MPa, in groups of five. The estimation routine is called snplot, which performs both
estimation and plotting; see help snplot.

First load SN-data and plot in log-log scale.

load SN
clf
loglog(N,s,’o’), axis([0 14e5 10 30])

To further check the assumptions of the S-N-model we plot the results for each s-level sepa-
rately on normal probability paper. As seen from Figure 4.17 the assumptions seems acceptable
since the data fall of almost parallel straight lines.

wnormplot(reshape(log(N),8,5))

The estimation is performed and fitted lines plotted in Figure 4.18, with linear and log-log
plotting scales:

[e0,beta0,s20] = snplot(s,N,12)
title(’S-N-data with estimated N(s)’,’FontSize’,20)
set(gca,’FontSize’,20)

gives linear scale and

[e0,beta0,s20] = snplot(s,N,14)
title(’S-N-data with estimated N(s)’,’FontSize’,20)
set(gca,’FontSize’,20)

gives log-log scales.
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Figure 4.17: Check of S-N-model on normal probability paper.
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Figure 4.18: Estimation of S-N-model on linear and log-log scale.

4.4.5 From S-N-curve to fatigue life distribution

The Palmgren-Miner hypothesis states that fatigue failure occurs when the damage exceeds one,
D�t� 
 	. Thus, if the fatigue failure time is denoted by Tf then

P �Tf � t� � P �D�t� 
 	� � P �K � �D��t���

Here K � E��� takes care of the uncertainty in the material. In the previous section we used
and estimated a lognormal distribution for the variation of K around �, when we assumed that
lnK � ln �� lnE is normal with mean ln � and standard deviation �E .

The cycle sum D��t� is the sum of a large number of damage terms, only dependent on the
cycles. For loads with short memory one can assume that D��t� is approximately normal,

D��t� � N�d�t� �
�
� t��

where



d� � lim
t��

D��t�

t
and ��

� � lim
t��

V �D��t��

t
�

Thus the fatigue life distribution can be computed by combining the lognormal distribution
for K with the normal distribution for D��t�. Denoting the standard normal density and distribu-
tion functions by ��x� and ��x�, respectively, an approximate explicit expression for the failure
probability within time t is

P �T f � t� �
Z �
��

�

�� ln � � lnd�t � ln�	 �
��
d�
p
t
z�

�E

�A��z� dz� (4.9)

We have already estimated the material parameters � = e0, � = beta0, and ��
E = s20, in

the S-N data, so we need the damage intensity d� and its variability �� for the acting load.
We first investigate the effect of uncertainty in the �-estimate.

beta = 3:0.1:8;
DRFC = cc2dam(RFC_sea,beta);
dRFC = DRFC/T_sea;
plot(beta,dRFC), axis([3 8 0 0.25])
title(’Damage intensity as function of \beta’)

The plot in Figure 4.19 shows the increase in damage with increasing �.

3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25
Damage intensity as function of β

Figure 4.19: Increasing damage intensity from sea-load with increasing �.

Next, we shall see how the load effect variability affects the fatigue life. We use three different
values for ��

�, namely �, ��
, and 
. With beta0, e0, s20 estimated in Section 4.4.4, we compute
and plot the following three possible fatigue life distributions.

dam0 = cc2dam(RFC_sea,beta0)/T_sea;
[t0,F0] = ftf(e0,dam0,s20,0.5,1);
[t1,F1] = ftf(e0,dam0,s20,0,1);
[t2,F2] = ftf(e0,dam0,s20,5,1);
plot(t0,F0,t1,F1,t2,F2)
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Figure 4.20: Fatigue life distribution with sea load.

Here, the fourth parameter is the value of ��
� used in the computation; see help ftf.

The resulting fatigue life distribution function is shown in Figure 4.20. As seen, the curves are
identical, indicating that the correct value of ��

� is not important for such small �-values as are
at hand here. Hence, one can use ��� � �, and assume that the damage accumulation process is
proportional to time.

4.4.6 Fatigue analysis of complex loads

Loads which cause fatigue are rarely of the homogeneous and stationary character as the loads
used in the previous sections. On the contrary, typical load characteristics often change their value
during the life time och a structure, for example, load spectra on an airplane part have very different
fatigue properties during the different stages of an air mission. Marin loads on a ship are quite
different during the loading and unloading phase, compared to a loaded ocean voyage, and the
same holds for any road vehicle.

The WAFOcan be used to analyze also loads of complex structure and we shall illustrate some
of these capabilities in this section. The To be eligible for WAFO-analysis the loads has to have a
piecewise stationary character, for example the mean level or the standard deviation may take two
distinct levels and change abruptly, or the frequency content can alternate between two modes, one
irregular and one more regular. Such processes are called switching processes. A flexible family
of switching loads are those where the change between the different stationary states is governed
by a Markov chain. WAFO contains a special package of routines for analysis of such switching
Markov loads, based on methods from [20, 22].

In the following example the load alternates between two different mean levels, corresponding
to one heavy-load state (1) and one light-load state (2). In Figure 4.21 the observed load is shown



in the upper part. The alternating curve in the lower part shows where the load switches between
the two states.
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Figure 4.21: Simulated switching load with two states. Upper graph shows the load, and the states
are indicated in the lower graph.

As long as the load is in one of the states the rainflow cycles are made up of alternations between
turning points belonging only to that part of the load. When the state changes there is introduced
extra rainflow cycle with larger amplitude amplitude. These extra cycles can be seen in the total
rainflow matrix, shown in Figure 4.22. The two large groups of cycles around (min,max) = (0.5,
0.75) and (min,max) = (0, 0) come from states (1) and (2), respectively. The contribution from the
switching is seen in the small assembly of cycles around (min,max) = (-0.5, 1).

More details on how to analyse and model switching loads can be found in [19].
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Figure 4.22: 3D-plot (left) and isolines (right) of calculated rainflow matrix for switching load in
Figure 4.21. The dots in the right figure are the observed rainflow cycles.





CHAPTER 5

EXTREME VALUE ANALYSIS

Of particular interest in wave analysis is how to find extreme quantiles and extreme significant
values for a wave series. Often this implies going outside the range of observed data, i.e. to predict,
from a limited number of observations, how large the extreme values might be. Such analysis is
commonly known as Weibull analysis or Gumbel analysis, from the names of two familiar extreme
value distributions. WAFO contains routines for fitting of such distributions, both for the Weibull
and Gumbel distributions, and for two more general classes of distributions, the Generalized Pareto
Distribution (GPD) and the Generalized Extreme Value distribution (GEV).

5.1 Weibull and Gumbel papers

The Weibull and Gumbel distributions, the latter also called the extreme value distribution, are two
extreme value distributions with distribution functions

Weibull: FW �x� a� c� � 	� e�	x�a

c

� x 
 �� (5.1)

Gumbel: FG�x� a� b� � exp
�
�e�	x�b
�a

�
� �� � x ��� (5.2)

The Weibull distribution is often used as distribution for random quantities which are the minimum
of a large number of independent (or weakly dependent) identically distributed random variables. It
is often used as a model for random strength of material, in which case it was originally motivated
by the principle of weakest link. Similarly, the Gumbel distribution is used as a model for values
which are maxima of a large number of independent variables.

Since one gets the minimum of variables x�� x�� � � � � xn by changing the sign of the maximum
of �x���x�� � � � ��xn, one realises that distributions suitable for the analysis of maxima can also
be used for analysis of minima. Both the Weibull and the Gumbel distribution are members of the
class of Generalized Extreme Value distributions (GEV), which we shall describe in Section 5.2.

We begin here with an example of Weibull and Gumbel analysis, where we plot data and empiri-
cal distribution and also estimate the parameters a� b� c in (5.1) and (5.2). The file atlantic.dat
contains significant wave-height data recorded approximately 14 times a month in the Atlantic
Ocean in December – February during seven years and at two locations. The data is stored in the
vector Hs. We try to fit a Weibull distribution to this data set:

Hs = load(’atlantic.dat’);
wei = wweibplot(Hs)



This will result in a two element vector wei = [ahat chat] with estimated values of the
parameters �a� c� in (5.1). The empirical distribution function of the input data is plotted automat-
ically in a Weibull diagram with scales chosen to make the distribution function equal to a straight
line. The horizontal scale is logarithmic in the observations x, and the vertical scale is linear in the
reduced variable log�� log�	� F �x���; see Figure 5.1(a). Obviously, a Weibull distribution is not
very well suited to describe the significant wave-height data. To illustrate the use of the Gumbel
distribution we plot and estimate the parameters �a� b� in the Gumbel distribution (5.2) for the data
in Hs. The command

gum=wgumbplot(Hs)

results in a vector gum with estimated values [ahat bhat] and the plot in Figure 5.1(b). Here
the horizontal axis is linear in the observations x and the vertical axis carries the reduced variable
� log�� log�F �x���. The data shows a better fit to the Gumbel than to a Weibull distribution.
A distribution which is often hard to distinguish from the Gumbel distribution is the Lognormal
distribution, and making a Normal probability plot of the logarithm of Hs in Figure 5.1(c) also
shows a good fit:

wnormplot(log(Hs),1,0);

The parameter estimation in wgumbplot and wweibplot is done by fitting a straight line to
the empirical distribution functions in the diagrams and using the relations

logf� log�	� FW �x� a� c��g � c log�x�� c log�a� (5.3)

and
� logf� log�FG�x� a� b��g � x�a� b�a� (5.4)

to relate parameters to intercepts and slopes of the estimated lines. In the following section we shall
describe some more statistical techniques for parameter estimation in the Generalized Extreme
Value distribution.

5.2 Generalized Pareto and Extreme Value distributions

The Generalized Pareto Distribution (GPD) has the distribution function

GPD: F �x� k� �� �

��		� �	� kx�����k � if k �� ��

	� expf�x��g� if k � ��
(5.5)

for � � x � � if k � � and for � � x � ��k if k 
 �. The Generalized Extreme Value
distribution (GEV) has distribution function

GEV: F �x� k� 	� �� �

��	exp
n
��	� k�x� 	������k

o
� if k �� ��

exp f� expf��x� 	���gg � if k � ��
(5.6)

for k�x� 	� � �� � 
 �� k� 	 arbitrary. The case k � � is interpreted as the limit when k � � for
both distributions.
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Figure 5.1: (a) Significant wave-height data on Weibull paper, (b) on Gumbel paper and (c) loga-
rithm of data on Normal probability paper.

Note that the Gumbel distribution is a GEV distribution with k � � and that the Weibull dis-
tribution is equal to a reversed GEV distribution with k � 	�c, � � a�c, and 	 � �a, i.e. if W

has a Weibull distribution with parameters �a� c� then �W has a GEV distribution with k � 	�c,
� � a�c, and 	 � �a.

The estimation of parameters in the GPD and GEV distributions is not a simple matter, and
no general method exists which has uniformly good properties for all parameter combinations.
WAFO contains algorithms for plotting of distributions and estimation of parameters with four
different methods, suitable in different regions.

5.2.1 Generalized Extreme Value distribution

For the Generalized Extreme Value (GEV) distribution the estimation methods used in WAFO
are the Maximum Likelihood (ML) method and the method with Probability Weighted Moments
(PWM), described in [43, 17]. The programs have been adapted to MATLAB from a package of
S-Plus routines described in [4].

We start with the significant wave-height data in Hs. The command

[gev cov]=wgevfit(Hs);



will give estimates gev = [khat sigmahat muhat] of the parameters �k� �� 	� in the GEV
distribution (5.6) based on data Hs. The optional output matrix cov will contain the estimated
covariance matrix of the estimates. The program also gives a plot of the empirical distribution
together with the best fitted distribution; see Figure 5.2.
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Figure 5.2: Empirical distribution of significant wave-height with estimated Generalized Extreme
Value distribution.

The default estimation algorithm for the GEV distribution is the method with Probability Weighted
Moments (PWM). An optional second argument, wgevfit(Hs, method), allows a choice
between the PWM-method (when method = ’pwm’) and the alternative ML-method (when
method = ’ml’). The variances of the ML estimates are usually smaller than those of the PWM
estimates. However, it is recommended that one first uses the PWM method, since it works for a
wider range of parameter values.

5.2.2 Generalized Pareto distribution

For the Generalized Pareto distribution (GPD) the WAFO uses the method with Probability Weighted
Moments (PWM), described in [18], and the standard method of Moments (MOM), as well as a
general method suggested by Pickands in [40]. S-Plus routines for these methods are described in
[4].

The GPD is often used for exceedances over high levels, and it is well suited as a model for
significant wave heights. To fit a GPD to the exceedances of thresholds 3 and 7 of values in Hs,
one uses thecommands

[gpd3 cov] = wgpdfit(Hs(Hs>3)-3);
figure
[gpd7 cov] = wgpdfit(Hs(Hs>7)-7);

This will give estimates gpd = [khat sigmahat] of the parameters �k� �� in the Generalized
Pareto distribution (5.5) based on exceedance data Hs(Hs>u)-u. The optional output matrix cov
will contain the estimated covariance matrix of the estimates. The program also gives a plot of the
empirical distribution together with the best fitted distribution; see Figure 5.3. Here the fit is better
for exceedances over level 7 but there are less data available.
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Figure 5.3: (a) Exceedances of significant wave-height data over level 3, (b) over level 7.

The choice of estimation method is rather dependent on the actual parameter values. The
default estimation algorithm in the WAFO for estimation in the Generalized Pareto distribu-
tion is the Pickands’ (PKD) estimator. This estimator gives generally good estimates of the pa-
rameter k in (5.5) for �
 � k � 
, and it is also recommended for estimation of � if k �

���
. The optional second argument, wgpdfit(Hs(Hs>u)-u, method), gives a choice be-
tween Pickands’ method (when method = ’pkd’), the Moment method (when method =

’mom’), and the PWM-method (when method = ’pwm’). It is recommended that one first
uses Pickands’ method to get an estimate of k, and then if necessary, improves the estimates by
means of the PWM or Moment method.

It is possible to simulate independent GEV and GPD observations in WAFO. The commands

Rgev = wgevrnd(0.3,1,2,1,100);
empdistr(Rgev);
hold on
gp = wgevfit(Rgev,’pwm’,[],0);
x=sort(Rgev);
plot(x,wgevcdf(x,gp(1),gp(2),gp(3)))
gm = wgevfit(Rgev,’ml’,gp,0);
plot(x,wgevcdf(x,gm(1),gm(2),gm(3)),’--’)
hold off

simulates 100 values from the GEV distribution with parameters ����� 	� ��, then estimates the
parameters using two different methods and plots the estimated distribution functions together
with the empirical distribution. Similarly for the GPD distribution;

Rgpd = wgpdrnd(0.4,1,1,100);
empdistr(Rgpd);
hold on
gp = wgpdfit(Rgpd,’pkd’,0);
x=sort(Rgpd);
plot(x,wgpdcdf(x,gp(1),gp(2)))
gm = wgpdfit(Rgpd,’mom’,0);
plot(x,wgpdcdf(x,gm(1),gm(2)),’--’)
gw = wgpdfit(Rgpd,’pwm’,0);
plot(x,wgpdcdf(x,gw(1),gw(2)),’:’)
hold off



with the three different methods of parameter estimation. The results are shown in Figure 5.4(a)
and (b).
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Figure 5.4: Empirical distributions and estimated distribution functions for 100 observations of
GEV (a) and GPD (b) variables.

WAFO contains random number generators from a broad variety of distributions; see help
Contents and Section 5.4.

5.3 POT-analysis

Peaks Over Threshold analysis (POT) is a systematic way to analyse the distribution of the ex-
ceedances over high levels in order to estimate extreme quantiles outside the range of observed
values. The method is based on the observation that the extreme tail of a distribution often has a
rather simple and standardized form regardless of the shape of the more central parts of the distribu-
tion. One then fits such a simple distribution only to those observations which exceed some suitable
level, with the hope that this fitted distribution gives an accurate fit to the real distribution also in
the more extreme parts. The level should be chosen high enough for the tail to have approximately
the standardized form, but not so high that there remains too few observations above it. After fitting
a tail distribution one estimates the distribution of the (random) number of exceedances over the
level, and then combines the tail distribution of the individual exceedances with the distribution
for the number of exceedances to find the total tail distribution.

The simplest distribution to fit to the exceedances over a level u is the Generalized Pareto
distribution, GPD, with distribution function (5.5). Note that if a random variable X follows a
Generalized Pareto distribution F �x� k� �� then the exceedances over a level u is also GPD with
distribution function F �x� k� �� ku� with the same k-parameter and with scale parameter �� ku,

P �X 
 u� y j X 
 u� �

�
	� k u�y

�

���k
�
	� k u

�

���k �
�
	� k

y

� � ku

���k
�



Another important property of the Generalized Pareto Distribution is that if k 
 �	, then the
mean exceedance over a level u is a linear function of u:

E�X � u j X 
 u� �
� � ku

	 � k
�

The following commands illustrate this for the significant wave height data:

u=linspace(2,10,200);
for i=1:length(u)

m(i)=mean(Hs(Hs>u(i)));
end
plot(u,m-u)
xlabel(’u’)
title(’Mean exceedance over level u’)

The result is plotted in Figure 5.5, and seems for u 
 � exhibit an almost linear relationship.
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Figure 5.5: Estimated expected exceedance over level u as function of u.

If one is successful in fitting a Generalized Pareto distribution to the tail of a set of data, one
would like to use the GPD to predict how extreme values might occur over a certain period of
time. One could e.g. want to predict the most extreme wave height that will appear during a year.
If the distribution of the individual significant wave height exceedances is GPD one can easily find
e.g. the distribution of the largest value of a fixed number of exceedances. However, the number of
exceedances is not fixed but random, and then one has to combine the distribution of the random
individual exceedances with the random number of exceedances N before one can say anything
about the total maximum. If the level u is high we can, due to the Poisson approximation of
the Binomial distribution and neglecting the dependence of nearby values, assume N to have an
approximate Poisson distribution.

Now there is a nice relationship between the Generalized Pareto distribution and the General-
ized Extreme Value distribution in this respect: the maximum of a Poisson distributed number of in-
dependent GPD variables has a GEV distribution. This follows by simple summation of probabili-
ties: if N is a Poisson distributed random variable with mean 	, and MN � max�X�� X�� � � � � XN�

is the maximum of N independent GPD variables then,

P �MN � x� �
�X
n��

P �N � n� � P �X� � x�X� � x� � � � � Xn � x�
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which is the Generalized Extreme Value distribution with b � ��	k and a � ��	� 	�k��k.
This means that we can estimate the distribution of the maximum significant wave height during

a winter (December – February) month from our data set Hs by fitting a GPD to the exceedances
over some level u, estimating 	 by the number of exceedances N divided by the number of months
(�	 �	 � � 
�) and use the above relation to fit a GEV distribution:

gpd7=wgpdfit(Hs(Hs>7)-7,’pwm’,0);
khat=gpd7(1);
sigmahat=gpd7(2);
muhat=length(Hs(Hs>7))/(7*3*2);
bhat=sigmahat/muhatˆkhat;
ahat=7-(bhat-sigmahat)/khat;
x=linspace(5,15,200);
plot(x,wgevcdf(x,khat,bhat,ahat))

We have here used the threshold u � � since the exceedances over this level seems to fit well to a
GPD distribution in Figures 5.3(b) and 5.5. A larger value will improve the Poisson approximation
to the number of exceedances but give us less data to estimate the parameters.

Since we have data to compute the monthly maxima mm over 42 months we can also try to fit a
GEV distribution directly:

for i=1:41 % Last month is not complete
mm(i)=max(Hs(((i-1)*14+1):i*14)); % Approx. 14 values each month

end
gev=wgevfit(mm);
hold on
plot(x,wgevcdf(x,gev(1),gev(2),gev(3)),’--’)
empdistr(mm)
hold off

The results of the two methods agree very well in this case as can be seen in Figure 5.6 where
the estimated distributions are plotted together with the empirical distribution of mm.

In practice, one does not always find a Poisson distribution for the number of exceedances.
Since extreme values sometimes have a tendency to cluster, some declustering algorithm could be
applied to identify the largest value in each of the clusters, and then use a Poisson distribution for
the number of clusters.
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Figure 5.6: Estimated distribution functions of monthly maxima with the POT method (solid),
fitting a GEV (dashed) and the empirical distribution.



5.4 Summary of extreme value procedures

help wstats

WAFO Toolbox /wstats
Version 1.0.2 20-June-2000

Parameter estimation
wgevfit - Parameter estimates for GEV data
wgevlike - Is an internal routine for wgevfit
wgpdfit - Parameter estimates for GPD data
wgumbfit - Parameter estimates and confidence intervals for Gumbel data
wgumblike - Is an internal routine for wgumbfit
wraylfit - Parameter estimates and confidence intervals for Rayleigh data
wweibfit - Parameter estimates for Weibull data
wweibcfit - Is an internal routine for wweibfit
wkurtosis - Computes sample kurtosis
wskewness - Computes sample skewness

Probability density functions (pdf)
wchi2pdf - Chi squared probability density function
wgampdf - Gamma probability density function
wgevpdf - Generalized Extreme Value probability density function
wgpdpdf - Generalized Pareto probability density function
wgumbpdf - Gumbel probability density function
wnormpdf - Normal probability density function
wraylpdf - Rayleigh probability density function
wweibpdf - Weibull probability density function

Cumulative distribution functions (cdf)
wchi2cdf - Chi squared cumulative distribution function
wgamcdf - Gamma cumulative distribution function
wgevcdf - Generalized Extreme Value cumulative distribution function
wgpdcdf - Generalized Pareto cumulative distribution function
wgumbcdf - Gumbel cumulative distribution function
wnormcdf - Normal cumulative distribution function
wraylcdf - Rayleigh cumulative distribution function
wweibcdf - Weibull cumulative distribution function

Inverse cumulative distribution functions
wchi2inv - Inverse of the Chi squared distribution function
wgaminv - Inverse of the Gamma distribution function
wgevinv - Inverse of the Generalized Extreme Value distribution function
wgpdinv - Inverse of the Generalized Pareto distribution function
wgumbinv - Inverse of the Gumbell cumulative distribution function
wnorminv - Inverse of the Normal distribution function
wraylinv - Inverse of the Rayleigh distribution function
wweibinv - Inverse of the Weibull distribution function

Random number generators
walpharnd - Random matrices from a symmetric alpha-stable distribution
wchi2rnd - Random matrices from a Chi squared distribution
wgamrnd - Random matrices from a Gamma distribution
wgevrnd - Random matrices from a Generalized Extreme-Value distribution
wgpdrnd - Random matrices from a Generalized Pareto Distribution
wgumbrnd - Random matrices from the Gumbel distribution.
wmnormrnd - Random vectors from the multivariate Normal distribution
wnormrnd - Random matrices from the Normal distribution



wraylrnd - Random matrices from a Rayleigh distribution
wweibrnd - Random matrices from the Weibull distribution

Statistical plotting
wgumbplot - Plots data on a Gumbel distribution paper
wnormplot - Plots data on a normal distribution paper
wqqplot - Plots empirical quantile vs empirical quantile
wraylplot - Plots data on a Rayleigh distribution paper
wweibplot - Plots data on a Weibull distribution paper
whisto - Plots a histogram
empdistr - Computes and plots the empirical CDF
cempdistr - Computes and plots the conditional empirical CDF

Statistics
wchi2stat - Mean and variance for the Chi squared distribution
wgamstat - Mean and variance for the Gamma distribution
wgevstat - Mean and variance for the GEV distribution
wgpdstat - Mean and variance for the Generalized Pareto distribution
wgumbstat - Mean and variance for the Gumbel distribution
wnormstat - Mean and variance for the Normal distribution
wraylstat - Mean and variance for the Rayleigh
wweibstat - Mean and variance for the Weibull distribution

Hypothesis Tests
wgumbtest - Tests whether the shape parameter in a GEV is equal to zero
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