
In the mid-1980s, we realized that our labo-
ratory’s researchers often had difficulty re-
producing their own computations without
considerable agony. We also noticed that

junior students, who typically build on the work
of more advanced students, frequently spent a
great deal of time and effort just to reproduce
their colleagues’ computational results.

Reproducing computational research poses
challenges in many environments. Indeed, the
problem occurs wherever people use the tradi-
tional methods of scientific publication to de-
scribe computational research. For example, in a
traditional article, the author simply outlines the
relevant computations—the limitations of a pa-
per medium prohibit complete documentation,
which would ideally include experimental data,
parameter values, and the author’s programs.
Readers who wish to use and verify the work
must reimplement it, which is often a painful
process. Even if readers have access to the au-
thor’s source files (a feasible assumption given re-

cent progress in electronic publishing) they can
only recompute the results by invoking the vari-
ous programs exactly as the author invoked them;
such information is something that is usually un-
documented and difficult to reconstruct.

To address these problems, we developed Re-
Doc, a system for reproducing scientific compu-
tations in electronic documents. Since imple-
menting it in the early 1990s, ReDoc has become
our principal means for organizing and transfer-
ring our laboratory’s scientific computational re-
search.

ReDocs are best defined operationally: After
an author completes a ReDoc, readers can de-
stroy all existing results—principally the illustra-
tions—and rebuild them using the author’s un-
derlying programs and raw data. Using ReDoc,
authors describe their computations and preserve
their details in fully functional examples. Authors
can also test their archived research software by
occasionally removing and regenerating the doc-
ument’s results using ReDoc’s standardized in-
terface commands. ReDoc also lets authors de-
velop automatic scripts to verify any document’s
completeness and reproducibility before its pub-
lication. Scientific journal publishers might also
use ReDoc in the referee process to test the re-
producibility of illustrations.

ReDoc benefits readers in several ways. Just
as a driver wants to find the brake pedal in the

NOVEMBER/DECEMBER 2000 61

MAKING SCIENTIFIC COMPUTATIONS
REPRODUCIBLE

To verify a research paper’s computational results, readers typically have to recreate them
from scratch. ReDoc is a simple software filing system for authors that lets readers easily
reproduce computational results using standardized rules and commands.

S C I E N T I F I C
C O M P U T A T I O N S

MATTHIAS SCHWAB, MARTIN KARRENBACH,
AND JON CLAERBOUT

Stanford University

1521-9615/00/$10.00 © 2000 IEEE

62 COMPUTING IN SCIENCE & ENGINEERING

same location in every car, readers benefit by
having a few standard commands that let them
explore any document’s scientific contents. Con-
sistent, standard commands to remove and re-
produce a document’s result files help readers ac-
cess and study an unknown document.

ReDoc overview

In essence, ReDoc is a filing system that makes
research cooperation effortless: Researchers can
publish their results and colleagues can imme-
diately build upon them, adding improvements
and innovations. To create a ReDoc, authors
combine project-specific rules with general,
standard rules and naming conventions to offer
readers a simple set of commands to remove and
rebuild the author’s results. ReDocs become
reservoirs of easily maintained, reusable soft-
ware, and thus authors, along with readers, ben-
efit from using the system.

In our laboratory, using ReDoc has tremen-
dously increased the amount of software that is
readily accessible to researchers. Students can
now take up former students’ projects and eas-
ily remove and recompute the original result
files. Students who graduate and leave our lab-
oratory can seamlessly continue their research
at new locations. Although the effort to gener-
ate reproducible research documents is typically
directed at helping other people use existing
work to further their own, authors also benefit.
Because many researchers typically forget details
of their own work, they are not unlike strangers
when returning to projects after time away.
Thus, efforts to communicate your work to
strangers can actually help you communicate
with yourself over time.

ReDoc’s current reader interface is implemented
in the platform-independent GNU make, which
excels in efficiently maintaining even complex soft-
ware packages. Conceptually, the ReDoc reader
interface is independent of both document format
(TeX, HTML, and so on) and the underlying
computational software, whether it be Matlab or
Mathematica, or C and Fortran programs. Al-
though we restrict our focus here to Unix systems
and the make utility, the concept—using a reader
interface to reproduce a document’s computational
results—should apply to electronic documents in
other computer environments as well. The GNU
↑ code that implements the ReDoc rules, this arti-
cle, and the accompanying example is freely avail-
able on our Web site at http://sepwww.stanford.
edu/research/redoc.

ReDoc features

In addition to a traditional article and the ap-
plication’s source code, a ReDoc features three
main components: makefiles, a small set of uni-
versal make rules (less than 100 lines), and nam-
ing conventions for files. ReDoc offers a reader
four standard commands:

• burn the figures,
• build the figures,
• view the figures, and
• clean up and remove all intermediate results.

These four commands are centered around three
types of files:

• Fundamental files are data sets, programs,
scripts, parameter files, and makefiles (any file
not generated by some computer process).

• Result files are typically plot files, which can
come in various formats including postscript
or gif files.

• Intermediate files are the files that a computer
process generates when computing the re-
sult files from the corresponding funda-
mental files. Examples include object files,
executables, and partially processed data.

ReDoc’s naming conventions let a community
formulate universal rules that recognize a file’s
type and thus permit the system to handle it ap-
propriately. For example, a cleaning rule uses a
community naming convention to identify and
remove all intermediate files, such as those with
suffix .0 (object files) or files with the name stem
junk (temporary files). The clean rule leaves a
tidy directory without any distracting clutter. We
also use naming conventions for result files. We
base our rules for displaying, removing, or re-
computing a result file on the result file’s name.
For example, our result files are always figure files
and can have various formats, such as PostScript
or GIF. Our naming conventions require that au-
thors indicate the result file’s format by a suffix,
such as .ps or .gif. Consequently, we can supply a
universal format-independent rule for displaying
result files: The rule identifies the result file’s suf-
fix, concludes the file’s format, and invokes the
appropriate viewing program, such as Ghostview
for PostScript or Xview for GIF files.

ReDoc rules are easy to implement. As the ex-
ample in the box, “Creating a ReDoc” explains,
authors who already use makefiles need only ad-
here to the ReDoc naming conventions and in-
clude the ReDoc rules to make a traditional doc-

NOVEMBER/DECEMBER 2000 63

ument reproducible. We now describe ReDoc
makefiles and rules in more detail.

Makefile
A makefile is a standard Unix utility for soft-

ware maintenance and contains the commands
to build a software package. More powerful than
a simple command script, a makefile indicates
that result files (targets) are up-to-date when
they are younger than their corresponding
source files (dependencies). (For more informa-
tion, see the “clean, up-to-date support” side-
bar.) Because maintaining a reproducible re-
search project resembles maintaining software,
the make utility solves our problem elegantly.

Fortunately, fine tutorial books exist on the make
language,1,2 and students can easily begin using
make without a formal introduction.

Because our laboratory deals with computa-
tional problems of various sizes that use a diverse
collection of software and hardware tools, not
every reader will be able to easily reproduce all
result files. Consequently, authors typically de-
fine their application makefiles as one of three
result list variables—RESULTSER, RESULTSCR,

and RESULTSNR—with the ending letters indi-
cating the degree of reproducibility:

• ER: Easily reproducible result files that can
be regenerated within 10 minutes on a stan-

Creating a ReDoc
Because an author’s rules deal with a document’s appli-

cation, we can best illustrate ReDoc creation using an
actual example. The electronic version of this article is ac-
companied by a subdirectory called Frog. Frog contains a
complete, albeit small, ReDoc that discusses a finite-differ-
ence approximation of the 2D surface waves caused by a
frog hopping around a rectangular pond. The files paper.
latex and paper.ps contain two formats of the short scientific
article describing the finite-difference approximation. Some
Ratfor files implement the 2D wave propagation code (Rat-
for is a Fortran preprocessor that provides control flow con-
structs similar to C; Ratfor is freely available at our Web
site). The Fig directory contains the result files: a figure
(PostScript and GIF versions) of the pond after some wild
frog hops, and the output (two float numbers) of a dot-
product test of the linear finite-difference operator and
its adjoint. To organize the document’s files, the Frog ex-
ample’s author wrote the makefile shown in Figure A.

The variable RESULTSER contains the list of the docu-
ment’s easily reproducible results, frog, and dot.

The next rule contains the commands to build the
PostScript and GIF versions of the frog result. Such a rule
is application-specific and cannot be supplied by existing
default rules. The target names comprise the directory
RESDIR, which contains the result files and file suffixes
(.ps and .gif), which indicate the file formats. The rule
depends on an executable frog.x, which it executes
during result computations.

A shared include file, Prg.rules.std, supplies default
rules for compilation and linking of executables such as
frog.x. Compilation and link rules are compiler-depen-
dent. In this example, we include some generic Fortran
rules. At our laboratory, compilation rules depend on an
environment variable that indicates compiler type.
The author must define the executable’s dependency

on its subroutine object files (as in the case of frog.x) be-
cause it depends on the application-specific file names.

In the case of the dot result file, the author-supplied
rules reflect the reader-interface commands: dot.build cre-
ates the result file, dot.view displays it, and dot.burn
removes it.

Finally, the target clean invokes the included default
target jclean, which removes intermediate files based on
our laboratory’s naming conventions.

SEPINC = ../rules
include ${SEPINC}/Doc.defs.top

RESULTSER = frog dot

col = 0.,0.,0.-1.,1.,1.
${RESDIR}/frog.ps ${RESDIR}/frog.gif: frog.x

frog.x > junk.pgm
pgmtoppm ${col} junk.pgm > junk.ppm
ppmtogif junk.ppm > ${RESDIR}/frog.gif
pnmtops junk.pgm > ${RESDIR}/frog.ps

objs = copy.o adjnull.o rand01.o wavecat.o \
pressure.o velocity.o viscosity.o wavesteps.o

frog.x: ${objs}

dot.build ${RESDIR}/dot.txt : dot.x
dot.x dummy > ${RESDIR}/dot.txt

dot.view: ${RESDIR}/dot.txt
cat ${RESDIR}/dot.txt

dot.burn:
rm ${RESDIR}/dot.txt

dot.x : ${objs}

clean: jclean

include ${SEPINC}/Doc.rules.red
include ${SEPINC}/Doc.rules.idoc
include ${SEPINC}/Prg.rules.std

Figure A. The makefile that organizes the Frog files.

64 COMPUTING IN SCIENCE & ENGINEERING

dard workstation.
• NR: Nonreproducible result files that cannot

be recalculated (examples include hand-
drawn illustrations or scanned figures).

• CR: Conditionally reproducible result files
that require proprietary data, licensed soft-
ware, or more than 10 minutes for recompu-

tation. The author nevertheless supplies a
complete set of source files; this ensures that
readers can reproduce the results if they pos-
sess the necessary resources. Authors list the
required resources in a warning file (such as
myresult.warning), which accompanies
the CR result file (myresult.ps). In indus-
trial-scale geophysical research, many inter-
esting results are conditionally reproducible.

Following this usage, the standard make targets
burn and build, which we describe below, are
complemented by targets burnER, burnCR,
burnNR, and buildER, buildCR, buildNR. For
example, burnCR burns all conditionally repro-
ducible result files. The target burn defaults to
burnER to restrict the standard removal of result
files to easily reproducible ones. The target build
defaults to buildER to recompute the result files
that make burn removes.

Make rules
ReDoc’s third component is a small, consis-

tently available set of standard make rules. These
rules let readers interact with the document
without knowing the underlying application-
specific commands or files. In the Frog example
(see the box, “Creating a ReDoc”), a reader in-
vokes targets, such as build, that are not listed
in the author’s application makefile. Standard
laboratory rules supply these targets, which the
researcher includes in the document’s makefile
(Doc.defs.top, Doc.rules.red, and
Doc.rules.idoc).

Standard rules ensure a consistent reader in-
terface and free authors from the need to reim-
plement the ReDoc rules in every makefile, let-
ting them concentrate exclusively on the
makefile’s application-specific aspects. Although
we formulated the rules so that individual au-
thors can override them, in our experience this is
rarely necessary or desirable. Furthermore, a
central rules set accumulates the community’s
wisdom on how to organize a ReDoc.

Our laboratory offers about 100 lines of GNU
make code that constitutes our ReDoc rules. The
ReDoc rules facilitate four commands: make
burn, which removes the result files (usually fig-
ures); make build, which recomputes them;
make view, which displays the figures; and make
clean, which removes all files other than source
or result files. Although authors and readers do
not need to understand the implementation de-
tails of the ReDoc rules to use them (most re-
searchers at our laboratory have never inspected

burn: burnER

burnER: ${addsuffix .burn, ${RESULTSER}}
burnCR: ${addsuffix .burn, ${RESULTSCR}}

%.burn:
${foreach sfx, ${RES_SUFFIXES} , \

if ${EXIST} ${RESDIR}/$*${sfx} ; then\
${RM} ${RESDIR}/$*${sfx} ; fi; \

}

Figure 1. make burn finds and removes all easily reproducible
result files.

view : ${addsuffix .view, ${RESULTSALL}}

%.view: FORCE
if ${CANDO_GIF} ; then \

${MAKE} $*.viewgif ; \
elif ${CANDO_PS} ; then \

${MAKE} $*.viewps ; \
else \
echo “can’t make $*.viewps $*viewgif”;\

fi

(a)

%.viewgif : ${RESDIR}/%.gif FORCE
${XVIEW} ${UXVIEWFLAGS} ${RESDIR}/$*.gif

%.viewps : ${RESDIR}/%.ps FORCE
${GVIEW} ${UGVIEWFLAGS} ${RESDIR}/$*.ps

(b)

Figure 3. The view rule (a) updates and displays results. When the
%.view rule finds a workable version, it invokes %.viewgif or
%.viewps, which updates and displays the result file (b).

build: buildER
buildER: ${addsuffix .build, ${RESULTSER}}
buildCR: ${addsuffix .build, ${RESULTSCR}}

%.build: ${RESDIR}/%.ps

Figure 2. Implemented much like the burn rule, the build rule
updates easily reproducible result files.

NOVEMBER/DECEMBER 2000 65

them), we describe the rules in detail here so that
you can understand their operation and adapt
them to your own computational environment.

Burn. As Figure 1 shows, make burn invokes
a chain of rules, which ultimately finds and re-
moves all easily reproducible result files. Every
application makefile contains the burn target as
part of the ReDoc rules.

The burn target invokes its dependency
burnER. The burnER rule selects the easily re-
producible result files for removal. The burnER
rule uses GNU make’s built-in function
addsuffix to generate its dependency list. Each
entry of burnER’s dependency list is a concate-
nation of the name of an easily reproducible file
and the suffix .burn. In the Frog example,
burnER depends on frog.burn and dot.burn.
The dependency frog.burn invokes the pattern
rule %.burn, which removes the result files cor-
responding to the result frog. At our labora-
tory, a single result name such as frog usually
denotes several result files of identical contents
but differing format, such as PostScript or GIF.
The %.burn rule scans a list of possible suffixes
(RES_SUFFIXES = .ps .gif) and removes all
related result files: frog.ps and frog.gif.

Because text result files, such as dot.txt, are
rare at our laboratory, our ReDoc rules do not
contain laboratory-wide rules for handling them.
Given this, the Frog document’s author supplies
an explicit dot.burn rule in the makefile. This
explicit dot.burn rule overrides the default
%.burn pattern rule, which generates PostScript
result files.

The standard burn rule exclusively removes
the easily reproducible result files. Readers can
remove conditionally reproducible result files by
invoking make burnCR and can exclusively re-
move the result files related to the frog result
by invoking make frog.burn.

Build. Figure 2 shows the build rule, which
updates the document’s easily reproducible re-
sult files. The build rule’s implementation re-
sembles the burn rule’s implementation.

At our laboratory, almost every result file is a
figure in PostScript format. Consequently, the
ReDoc %.build rule updates the PostScript ver-
sion of any easily reproducible result, such as
${RESDIR}/frog.ps. ReDoc typically gener-
ates additional versions of the result (such as
frog.gif) as a side effect of the rule that computes
the PostScript version (frog.ps).

As in the case of dot.burn, authors must sup-

ply an explicit dot.build rule for the nonstan-
dard text result dot.

View. As Figure 3a shows, the view rule up-
dates and displays the results.
RESULTSALL lists all result files; we define it

as the concatenation of RESULTSALL, RE-
SULTSCR, and RESULTSER.

At our laboratory the %.view rule checks for
the various formats of a result and chooses the
first version that the makefile can generate. The
variable CANDO contains the return value of a re-
cursive gmake -n call. This return value indi-
cates whether the system can build that particu-
lar version of the result. As Figure 3b shows,
once it finds a workable version, the %.view rule
invokes another rule (%.viewgif or %.viewps)
that updates and displays the result file.

In the Frog example, the frog.view rule
finds a rule for computing a .gif version of frog.
It then invokes the GIF rule frog.viewgif. In
return, frog.viewgif executes Xview, a .gif
viewer, to display the result file frog.gif. If

Clean, up-to-date support
Keeping documents clean and up to date has obvious benefits

in terms of order and reader confidence. Furthermore, we found
that only clean documents function on a CD-ROM; intermediate
files stored in a CD-ROM’s read-only memory cannot be overwrit-
ten when readers later regenerate the files. Unfortunately, in early
versions of ReDoc, we found that popular make dialects did not
support rules to keep documents simultaneously clean and up-to-
date. Such dialects considered a result file outdated when certain
intermediate files were missing (for example, GNU make consid-
ered a result file outdated when a nonpattern rule formulated a
missing file’s dependency). Treating intermediate files this way
was convenient for software maintenance, but unsuitable for re-
producible electronic documents.

Today, ReDoc rules maintain a clean, up-to-date document in
the GNU make dialect. At our request, Richard Stallman enhanced
GNU make to adequately handle the ReDoc rules’ intermediate
targets (GNU make refers to intermediate files as secondary files,
as it uses “intermediate” in a slightly different, more restrictive
sense). Stallman added a special built-in target, .SECONDARY,
that lets authors choose GNU make’s behavior with respect to its
missing intermediate files. If a makefile includes a .SECONDARY
target without dependencies (the default at our laboratory), every
missing intermediate file is presumed up to date. We implemented
the .SECONDARY target in GNU make versions higher than 3.74.
The current GNU make version we use is available on our Web
site, http://sepwww.stanford.edu/research/redoc.

66 COMPUTING IN SCIENCE & ENGINEERING

your computer system does not support XView,
you must supplement the %.viewgif rule with
your own display command. To display the re-
sult file frog.ps, frog.viewps executes
Ghostview.

Clean. A cleaning rule is important because a
cleaned directory is more accessible and inviting
to readers than a cluttered one. Furthermore, a
cleaning rule saves resources, such as disk mem-
ory, by removing superfluous files.

In theory, a community’s cleaning rule would
remove the intermediate files and thereby iso-
late the source and result files; a universal clean-
ing rule would recognize the intermediate files
according to the community’s naming conven-
tions. Unfortunately, such a rule cannot possi-
bly anticipate all the names authors might
choose for intermediate files. Consequently, our
laboratory does not supply a fixed, universal
clean rule, but rather a Jon’s clean (jclean)
rule. jclean removes the files that adhere to
our laboratory’s naming convention for inter-
mediate files. Authors are responsible for imple-
menting their own clean rules, and most accept
the default cleaning rule by defining clean as
clean: jclean.

Some of our authors append the default
jclean with a command to remove additional
files that do not adhere to the naming conven-
tions. Very few authors ignore the jclean tar-
get (and its communal wisdom) and design their
own rule.

Because the author of the Frog example ad-
heres strictly to the ReDoc file naming conven-

tions, the default jclean mechanism suffices to
remove the intermediate files, as Figure 4 shows.

The jclean target uses two methods to iden-
tify intermediate files. The first method,
klean.usual, simply removes files whose
names fit one of the rule’s name patterns, such
as the executable frog.x, or the intermediate
bitmap files junk.pgm and junk.ppm. The sec-
ond method, klean.fort, removes Fortran
files, such as frog.f, if Ratfor versions of the
program, such as frog.r, exist.

We have successfully used the Re-
Doc rules in our laboratory’s
most recent sponsor report (14
articles by 15 authors) and three

of Jon Claerbout’s textbooks on seismic imaging.
These documents contain a total of 483 result
files: 276 easily reproducible, 21 conditionally
reproducible, and 186 nonreproducible figures.
Before publication, automatic scripts removed
and rebuilt all 276 easily reproducible result files
(see Figure 5). We use the same scripts and doc-
uments to benchmark computer platforms. Our
laboratory has also published 12 PhD theses us-
ing an earlier version of the user interface based
on cake.3 The theses are available on CD-
ROM.

Researchers in our laboratory greatly enjoy
and benefit from using ReDoc, and we continue
to employ reproducibility to check the quality of
all our laboratory’s publications. Although we
believe that reproducible documents represent
promising opportunities for Web publications,
we are not currently pursuing concrete solutions
to this end.

Acknowledgments
We appreciate Richard Stallman’s advice and his
implementation of the special built-in target
.SECONDARY. Joel Schroeder conceived the three result
lists and understood precedence of GNU make definitions.
Dave Nichols discovered cake and taught our laboratory
how to use it. Steve Cole and Dave Nichols wrote xtpanel
(http://sepwww.stanford.edu/ oldsep/dave/xtpanel) and
helped wrap our tools into an interactive, electronic book.

jclean : klean.usual klean.fort ;

KLEANUSUAL := core a.out paper.log *.o *.x *.H *.ps *.gif
klean.usual :

@-${TOUCH} ${KLEANUSUAL} junk.quiet
@-${RM} ${KLEANUSUAL} junk.*

FORT_FILES = $(patsubst %.f,%,$(wildcard *.f)) junk.quiet
klean.fort:

@\
for name in ${FORT_FILES} ; do \

if ${EXIST} $${name}.r ; then \
${TOUCH} $${name}.f ; \
${RM} $${name}.f ; \

fi ; \
done

Figure 4. The default jclean mechanism removes intermediate
files from the Frog example.

NOVEMBER/DECEMBER 2000 67

References
1. M. Stallman and R. McGrath, GNU Make, Free Software Foun-

dation, Boston, 1991.

2. A. Oram and S. Talbott, Managing Projects with Make, O’Reilly &
Associates, Sebastopol, Calif., 1991.

3. Z. Somogyi, “Cake: A Fifth Generation Version of Make,” Aus-
tralian Unix System User Group Newsletter, Vol. 7, No. 6, April
1987, pp. 22–31; http://www.cs.mu.oz.au/~zs/ papers/pa-
pers.html (current Oct. 2000).

Matthias Schwab works in the Frankfurt office of the
Boston Consulting Group. He received his Vordiploma
in mathematics and geophysics from the Technical
University Clausthal-Zellerfeld, following which he
studied on a Fulbright Scholarship with Gerry Gardner
at the University of Houston and Rice University. He re-
ceived a PhD in geophysics from the Stanford Explo-
ration Project. He is a member of the Deutsche Studi-
enstiftung, Society of Exploration Geophysicists,
American Geophysical Union, and European Associa-
tion of Geoscientists and Engineers. Contact him at
matt@sep.stanford.edu.

Martin Karrenbach is vice president of seismic mod-
eling at Paulsson Geophysical Services, where he
works in large-scale seismic modeling and full wave-
form modeling for preacquisition, interpretation, and
feasibility studies for high-resolution seismic imaging.
His other professional interests are in software devel-
opment and signal processing. He received his MS in
geophysics from the University of Houston and his
PhD in geophysics from Stanford University, where he
was a member of the Stanford Exploration Project. He
is a member of the Society of Exploration Geophysi-
cists, the European Assn. of Geoscientists & Engineers,
and the American Geophysical Union. Contact him at
martin@sep.stanford.edu.

Jon Claerbout is a professor of geophysics at Stanford
University, where he founded the Stanford Exploration
Project. He has consulted for Chevron and was elected
to the National Academy of Engineering. He is an hon-
orary member of the Society of Exploration Geo-
physicists, which awarded him both its highest award,
the Maurice Ewing Medal, and the SEG Fessenden
Award for outstanding and original work in seismic
wave analysis. He is also an honorary member of the
European Assn. of Geoscientists & Engineers and re-
cipient of its Erasmus Award. He received his BS in
physics and his MS and PhD in geophysics from MIT.
Contact him at claerbout@stanford.edu.

Test iterations

120

100

80

60

40

20

N
um

be
r

of
 fi

gu
re

s
re

pr
od

uc
ed

1st test
2 May

2nd test
4 May

3rd test
6 May

4th test
9 May

Reproduced figures

Total figures

Figure 5. Successfully reproduced figures in a sample document
containing 14 articles with 112 easily reproducible figures. To test a
document’s reproducibility, we use a cycle of burning and rebuilding
its results. A simple script can implement such a reproducibility test
by invoking the ReDoc rules, which remove and regenerate the
document’s results independent of the document’s content. After
each test, the authors had time to make corrections. After the first
test, only 60% of the document’s easily reproducible figures were in
fact reproducible. After the fourth test, almost all figures were
reproducible and we published the document.

A comprehensive, peer-reviewed
resource for the scientific
computing field.

A comprehensive, peer-reviewed
resource for the scientific
computing field.

COMPUTER.ORG/CISEPORTAL

