
WafoL– a Wafo module for

Analysis of Random Lagrange Waves

Tutorial for WafoL version 1.2

by Georg Lindgren and Marc Prevosto

Lund, January 2016

Faculty of Engineering

Centre for Mathematical Sciences

Mathematical Statistics

Mathematical Statistics

Lund University

Box 118

SE-221 00 Lund

Sweden

http://www.maths.lth.se/

Tuesday 5th January, 2016 16:30

http://www.maths.lth.se/

Information on WAFO and WafoL

• This is the second version of a tutorial for how to use the Matlab Wafo-module

WafoL for analysis and simulation of random Lagrange waves. The module is (to

be) included in the Wafo toolbox in the folder lagrange. The module consists of

a number of Matlab m-files and it requires a standard Matlab setup together

with the Wafo25 toolbox. In some example we use routines from other Matlab

toolboxes, like the signal toolbox.

Compared to Version 1.0.2 from April 2015, the present WafoL version 1.2 con-

tains routines for generation of non-linear, second order 3D Stokes-Lagrange waves.

They are based on Matlab and Fortran routines written by Marc Prevosto,

IFREMER, Brest, France. The routines have been adapted to work together with

WafoL. The option to use the Matlab Parallel Computing toolbox has also been

introduced in this routine.

New in Ver 1.2 are also some hints on how to export wave movies from WafoL.

• On WafoL:

– Download the WafoL.zip file, unzip it to a suitable folder, and add to your

Matlab-path. Be sure to put it first in the path to avoid name conflicts.

– The Matlab code used for the examples in this tutorial can be found in

three script files WafoLChx.m. Some editing has been made on figures, and

some simulations have been run with more replicates than in WafoLChx.m.

– The standard for random number generator initiation was changed in Mat-

lab 2011. The simulation routines in WafoL work with both old and new

standard.

– Some changes in the graphics system were made with Matlab 2014b, which

caused warnings in some plotting routines in Wafo and WafoL. An update

of Wafo25 will come, but in the meantime you can comment out all ocurrences

of the command mkdeleteproxy in plotting routines to avoid the warnings.

– There are two routines for 2nd order Stokes-Lagrange waves, spec2ldat3DM

and spec2ldat3DP. They use a compiled Fortran routine that comes in two

versions, for 32-bit and for 64-bit Matlab called partkern.mexw32 and

partkern.mexw64. They come with the WafoL.zip and you have to put them

in the appropriate folders in your Wafo/exec folder.

i

ii

– The routine spec2ldat3DP is a version of spec2ldat3DM adapted for parallel

processing with the Parallel Computing Toolbox in Matlab.

– If you have many Matlab-toolboxes installed, name-conflicts may occur –

for example, a call to smooth will cause errors with wrong path priority.

Solution: arrange the Matlab-path with WAFO first. The routine initwafo

can do that for you.

– Valuable comments on the tutorial and the use of WafoL by associate pro-

fessor Ying-guang Wang at Shanghai Jiao Tong University, Department of

Naval Architecture and Ocean Engineering, are gratefully acknowledged.

– Comments on the tutorial and on the routines are appreciated to

georg@maths.lth.se

• On Wafo:

– The word WAFO, when used in path specifications, means the full name of the

Wafo main catalogue, for instance

C:/wafo25

– Wafo is built of modules of platform independent Matlab m-files and a set

of executable files from C++ and Fortran source files. These executables are

platform and Matlab-version dependent, and they have been tested with

recent Matlab and Windows installations.

– Wafo Version 2.5, was released in beta version in January 2009 and in stable

version in February 2011. It can be downloaded from

https://github.com/wafo-project

There you also find Pywafo, a Python version. The old repository,

http://code.google.com/p/wafo/

does not work any more.

Older versions of the toolbox can be downloaded from the Wafo homepage

http://www.maths.lth.se/matstat/wafo/

There you can also find links to exercises and articles using Wafo, and notes

about its history.

– For help on the toolbox, write help wafo25. Note, that in Windows, some

of the routines in Chapter 4 do not work with Matlab 2006 or earlier.

– Comments and suggestions on Wafo are solicited — send to

wafo@maths.lth.se

• The owners of the Wafo package are

Per Andreas Brodtkorb: per.andreas.brodtkorb@gmail.com

Georg Lindgren: georg.lindgren@gmail.com

Igor Rychlik: igor.rychlik@gmail.com

• New contributor: Marc.Prevosto@ifremer.fr

Contents

Information on WAFO and WafoL i

Contents iii

1 2D Lagrange waves 1

1.1 The 2D Gauss-Lagrange model . 1

1.1.1 The Gaussian model . 1

1.1.2 The Gauss-Lagrange model . 2

The response functions 3

1.2 Generating Lagrange waves with WafoL 3

1.2.1 The simulation options . 4

1.2.2 Generating the elementary processes 4

1.2.3 Generating the Lagrange wave . 5

The standard deviation 6

1.2.4 Depth dependence and loops . 6

1.2.5 Front-back asymmetry . 8

1.3 Slopes and asymmetry measures . 9

An argument for the Gauss-Lagrange model 9

1.3.1 Extracting slope characteristics from wave data 9

Empirical slope distribution 10

1.3.2 Theoretical slope distribution . 12

1.3.3 Asymmetry measures . 14

2 3D Lagrange waves 17

2.1 The 3D Lagrange model . 17

The 3D Lagrange wave field 17

The response functions 18

2.2 Generating 3D Lagrange waves with WafoL 18

2.2.1 Generating the elementary processes by spec2ldat3D 18

The directional spectrum 18

The simulation options 19

Generation of the elementary processes 20

iii

iv CONTENTS

2.2.2 Generating the Lagrange waves from the 3D fields 20

The generation options 20

Generating a single field 21

Generating a movie . 21

Generating time series 22

2.2.3 Generation of multiple time series from 3D spectrum 24

2.2.4 Run and export movies . 24

3 2nd order non-linear Lagrange waves 25

3.1 Euler, Gauss, Lagrange, and Stokes waves 25

3.1.1 Gauss and 2nd order Stokes interaction 25

3.1.2 Lagrange and 2nd order Stokes interaction 25

3.1.3 Wafo and WafoL routines for 1st and 2nd order waves 26

3.1.4 A comment on terminology . 27

3.2 Generating 1st order processes . 27

3.2.1 Introduction to the routines . 27

3.2.2 A comparison of execution times for 1st order models 28

3.2.3 Some differences between the two methods for 2D waves 30

3.2.4 Using the data from spec2ldat3DM/P 30

3.3 Generating 2nd order 2D waves . 31

3.3.1 2D Stokes time waves with spec2nlsdat 31

3.3.2 2D Stokes waves with spec2ldat3DM/P and ldat2lwav 31

3.3.3 Wave asymmetry in 2nd order waves 33

3.4 Generating 2nd order 3D waves . 34

A Commands for the examples 37

A.1 WafoLCh1, Commands for Chapter 1 . 37

A.2 WafoLCh2, Commands for Chapter 2 . 44

A.3 WafoLCh3, Commands for Chapter 3 . 46

B WafoL routines 51

Bibliography 82

Chapter 1

2D Lagrange waves

1.1 The 2D Gauss-Lagrange model

1.1.1 The Gaussian model

The 2D Gaussian wave model is a stationary homogeneous Gaussian process w(t, u)

depending on time t and location u. It describes the height of the water surface at

location u observed at time t. In Wafo the space coordinate u = u0 is assumed fixed

and w(t, u0) then resembles the waves observed by a stationary wave gauge, we denote

them w(t) for short.

The standard way in Wafo to generate a Gaussian time wave at location u0 = 0 is

as a sum of harmonics,

w(t) = m+
N∑
j=0

√
Sj Rj cos(−ωjt+ θj), (1.1)

with independent Rayleigh distributed amplitudes Rj =
√
A2
j +B2

j , Aj, Bj independent

and standard normal variables. The phases Θj are random, uniformly distributed in

(0, 2π), cf. the Wafo-tutorial [14, Sec. 2.2.2]1. The weight factors Sj are given by the

one-sided spectral density S(ω), ω ≥ 0, with frequency spacing ∆ω, Sj = ∆ω S(ωj) =

∆ω S(j∆ω). Note that both phases and amplitudes are random in the Wafo model. In

the future we set the mean level to m = 0.

The Gaussian wave in time t and space u is similar to (1.1),

w(t, u) = m+
N∑
j=0

√
Sj Rj cos(κju− ωjt+ Θj), (1.2)

1Note that the representation (1.1) has a minus sign for the frequency ωj = j∆ω > 0 where the

Wafo tutorial has a plus sign.

1

2 CHAPTER 1. 2D LAGRANGE WAVES

Figure 1.1: Lagrange wave in time with

slight front-back asymmetry. 0 10 20 30 40

−5

0

5

with wave-number κj related to the frequency ωj through the depth dependent dispersion

relation,

ω2 = gκ tanhhκ, (1.3)

with gravity g and water depth h. By convention in WafoL we choose κ and ω to both

be positive, leading to 2D waves moving “from left to right”.

1.1.2 The Gauss-Lagrange model

The stochastic Gaussian model only describes the random variations of the water surface.

The Gauss-Lagrange model describes the combined vertical and horizontal movements

of individual water particles. In WafoL we only consider particles on the surface, and

we further assume that there is no interaction between harmonics – this is “the 1st order

model”.

The 2D Gauss-Lagrange wave model consists of two correlated Gauss processes,

w(t, u) and x(t, u) which describe the vertical and horizontal movements of individual

particles with time t. The space parameter u is called the reference location, indicating

that it is the particle’s location “at rest” on the constant mean surface m = 0. The

process x(t, u) is the horizontal deviation of the particle from its reference location. A

particle with original still water location (u, 0) is, at time t located at (u+x(t, u), w(t, u)).

Here is a first example of how to generate a Lagrange wave in WafoL.

S = jonswap; S.h=20;

opt=simoptset(’dt’,1);

[w,x]=spec2ldat(S,opt,’lalpha’,1);

[L,L0] = ldat2lwav(w,x,’time’,[],10);

subplot(211)

plot(L.t,L.Z); hold on

plot(L0.t,L0.Z,’r’)

axis([0 40 -6 6]); hold off

Figure 1.1 shows a Lagrange time wave sampled at 1 Hz in blue and a spline smoothed

version in red. The parameter lalpha with value 1 gives the waves a slightly steeper

increase phase than decrease phase. The water depth is S.h=20 [m].

The horizontal process is completely determined by the vertical process.2 If w(t, u)

2In the most general form of a Lagrange model, extra independent random harmonics can be added

to the terms in x(t, u).

1.2. GENERATING LAGRANGE WAVES WITH WAFOL 3

is given by (1.2), then

x(t, u) =
N∑
j=0

√
Sj∆ω ρjRj cos(κju− ωjt+ Θj + θj), (1.4)

where ρj is called the amplitude response and θj is the phase response or “phase shift”.

The response functions

The horizontal process x(t, u) is a linear filtration of the vertical process w(t, u) and the

filter is defined by a frequency/wavenumber dependent complex response function

H(ω) = ρ(ω)eiθ(ω).

The amplitude and phase responses in (1.4) are then obtained as

ρj = ρ(ωj), θj = θ(ωj).

The response functions determine the non-Gaussian characters of the Lagrange

waves, in particular crest-trough and front-back asymmetry. In the standard Lagrange

model the filter response is depth and frequency dependent, given by

HM(ω) = i
cosh(hκ)

sinh(hκ)
, (1.5)

leading to a frequency independent phase shift of π/2 between vertical and horizontal

movements. The subscript M in (1.5) stands for Miche waves; see [10]. This choice

of response function results in waves with crest-trough asymmetry, with more peaked

crests and shallower troughs compared to the Gaussian waves. However, Miche waves a

front-back statistically symmetric; wave fronts and wave back distributions are mirror

images of each other; [1, 2].

In order to give wave front-back asymmetry the response function must give a fre-

quency dependent phase shift. In WafoL this is realized by adding a term α/ω2 to the

Miche response,

H(ω) = HM(ω) +
α

ω2
. (1.6)

This choice corresponds to a direct relation between the horizontal particle acceleration

and the vertical height,

∂2x(t, u)

∂t2
=
∂2xM(t, u)

∂t2
− αw(t, u) (1.7)

where xM(t, u) is the Miche solution; [5, 6, 7].

1.2 Generating Lagrange waves with WafoL

The basic routines in WafoL for simulation of Lagrange waves are spec2ldat and

ldat2lwav.

4 CHAPTER 1. 2D LAGRANGE WAVES

Figure 1.2: Front-back symmetric La-

grange space wave on shallow water

(h = 8 m); direct plot. 0 100 200 300 400 500

−10

0

10

1.2.1 The simulation options

The parameters for the simulations are set by an options structure. The default option
opt = simoptset gives the result

opt =

Nt: 2048

Nu: 2048

Nv: []

dt: 0.5000

du: 0.5000

dv: []

lalpha: 0

lbeta: 0

ffttype: ’ffttime’

iseed: ’shuffle’

plotflag: 0

with number of time and space points, the corresponding time and space steps, and

the value of the α parameter in (1.6), (β is not used in this tutorial). The ffttype

determines the hierarchy in the simulation – ffttime uses the FFT routine in time,

stepping over the different space values. The alternatives are fftspace and ffttwodim.

The iseed option shuffle sets the random number generator to, just, random.

1.2.2 Generating the elementary processes

The simulation routine spec2ldat is an expansion of the Wafo routines spec2sdat

and seasim. Figure 1.2 was generated by the following commands:

S = jonswap(1.5); S.h = 8;

opt = simoptset(’Nt’,256,’dt’,0.125,’Nu’,256*8,’du’,0.25,’iseed’,123791);

[w,x] = spec2ldat(S,opt,’iseed’,’shuffle’) ; % Keep [w,x]

subplot(211)

plot(x.u+x.Z(:,128),w.Z(:,128));

axis([0 500 -10 10]) % Keep the figure

Note how simoptset changes the default values of opt and how spec2ldat resets
seed option to ’shuffle’. The argument 1.5 in jonswap is a cut off frequency to remove
small ripples. The output [w,x] gives the vertical and horizontal fields as structures with
values at the selected space and time coordinates as fields ’Z’,’u’,’t’:

1.2. GENERATING LAGRANGE WAVES WITH WAFOL 5

0 100 200 300 400 500

−10

0

10

Figure 1.3: Front-back symmetric La-

grange space wave on shallow

water (h = 8 m) generated by

ldat2lwav.

w =

Z: [2048x256 double]

u: [2048x1 double]

t: [1x256 double]

note: ’JONSWAP, Hm0 = 7, Tp = 11, gamma = 2.3853’

x =

Z: [2048x256 double]

u: [2048x1 double]

t: [1x256 double]

note1: ’Horizontal Lagrange component’

note2: ’alpha=0, beta =0’

and the plot command plot(x.u+x.Z(:,128),w.Z(:,128)) plots the space wave ac-

cording to the definition, observed at time 16 = 128 * dt.

1.2.3 Generating the Lagrange wave

The WafoL routine ldat2lwav is used to construct Lagrange time or space waves from
the elementary processes. Keep the [w,x] from the previous session and compute the
space wave at time t0 = 16:3

[L,L0] = ldat2lwav(w,x,’space’,16)

subplot(212)

plot(L.u,L.Z,L0.u,L0.Z,’r’)

axis([0 500 -10 10])

The blue curve (almost invisible) in Figure 1.3 is the same space wave as is plotted
“by hand” in Figure 1.2. The red curve is a smoothed version; the two are almost
identical. The full call to the routine is

[L,Lsmooth]=ldat2lwav(w,x,type,tu0,dense)

where type can be ’time’ or ’space’ and tu0 is the space or time (in absolute units

meter or seconds), respectively, for which the wave is computed. The parameter dense

is the interpolation rate (a positive integer). The output Lsmooth is an interpolated and

smoothed version of L; see also Subsection 1.2.4 for exceptions where the Lagrange model

give unphysical results.

3If you run into Matlab error, make sure you use the smooth routine from Wafo; check your

Matlab path.

6 CHAPTER 1. 2D LAGRANGE WAVES

The mean water level

The Lagrange transformation acts on the Gaussian field w(t, u) by compressing the crest
parts of the waves, making them shorter in space or time, and expanding the trough
parts, making them longer. This affects the empirical mean surface level and makes it
(in general) negative. We illustrate this and take the mean of the Gaussian part and of
the generated space Lagrange wave, and obtain, for the example above,

MGauss = mean(w.Z(:))

MGauss = 1.2794e-16

MLagrange = mean(L0.Z)

MLagrange = -0.5025

The standard deviation

The distortion of the Gauss field also affects the standard deviation, making it smaller
for the Lagrange wave than for the Gauss wave. The theoretical standard deviation
for the Gaussian wave is obtained by the commands mom=spec2mom(S) and std =

sqrt{mom(1)}. Our simulation yielded

SGauss = std(w.Z(:))

SGauss = 2.0529

SLagrange = std(L0.Z)

SLagrange = 1.9376

For crest-trough asymmetric waves with peaked crests and flat troughs is it a general

rule that the ratio between standard deviation and average crest-trough wave height is

smaller than for a corresponding Gauss field.

1.2.4 Depth dependence and loops

The Lagrange transformation is sensitive to the water depth. For infinite water depth

the water particle will move in randomly perturbated circles. For decreasing depth the

particle paths will be more and more elongated and randomly deformated ellipses, [10].

For very small depths the model may produce typical loops at the wave crests, where

the water surface is folded. This is a consequence of the absence of physical constraints

in the model.

The interpolation and smoothing in the Wafo routine ldat2lwav does not accept

loops and will produce a smoothed version Lsmooth up to about a wave period/wave

length before the first loop. If the first loop occurs early in the series, then L0 will

be empty. The routine looptest(S,opt) simulates independent samples of [w,x] and

gives as output the observed number of x-fields in which loops has occurred.

The depth dependence for space waves is illustrated in Figure 1.4, generated by the
following code – to get time waves, just change the type option from ’space’ to ’time’

and plot with L0.t, etc. Note that the shallow water case S.h=3 will easily produce
folding. In the plot we therefore use a direct plot routine for that case.

1.2. GENERATING LAGRANGE WAVES WITH WAFOL 7

0 100 200 300 400 500

−5
0
5

Depth = ∞

0 100 200 300 400 500

−5
0
5

Depth = 32 m

0 100 200 300 400 500

−5
0
5

Depth = 8 m

0 100 200 300 400 500

−5
0
5

Depth = 3 m Figure 1.4: Crest-trough asymmetric

Lagrange space wave on different

water depth.

opt = simoptset(’Nt’,128,’Nu’,2048,’du’,0.25);

S = jonswap(1.5); S3 = S; S3.h = 3;

S8 = S; S8.h = 8; S32 = S; S32.h = 32;

[w,x] = spec2ldat(S,opt);

[w3,x3] = spec2ldat(S3,opt);

[w8,x8] = spec2ldat(S8,opt);

[w32,x32] = spec2ldat(S32,opt);

[L,L0] = ldat2lwav(w,x,’space’);

[L3,L03] = ldat2lwav(w3,x3,’space’);

[L8,L08] = ldat2lwav(w8,x8,’space’);

[L32,L032] = ldat2lwav(w32,x32,’space’);

figure(1); clf

subplot(411)

plot(L0.u,L0.Z); axis([0 500 -5 5]);

title(’Depth = \infty’)

subplot(412)

plot(L032.u,L032.Z); axis([0 500 -5 5]);

title(’Depth = 32 m’)

subplot(413)

plot(L08.u,L08.Z); axis([0 500 -5 5]);

title(’Depth = 8 m’)

subplot(414)

% 3m water depth may cause loops and ldat2lwav

% then gives only a short piece of L03.

% We plot space wave directly from w3,x3 as in Figure 1.2

plot(x3.u+x3.Z(:,64),w3.Z(:,64))

axis([0 500 -5 5])

title(’Depth = 3 m’)

Figure 1.5 shows the truncation effect of ldat2lwav with the following code.

S=jonswap(1.5); S.h=20;

opt=simoptset(’dt’,0.125,’lalpha’,2);

8 CHAPTER 1. 2D LAGRANGE WAVES

0 50 100 150 200
−10

−5

0

5

10
Time wave profile with plunging waves

0 50 100 150 200
−10

−5

0

5

10
Interpolated wave from ldat2lwav

0 200 400 600 800 1000
−5

0

5
Space wave profile with folding wave

0 200 400 600 800 1000
−5

0

5
Interpolated wave from ldat2lwav

Figure 1.5: Left: Time wave profile with plunging wave truncated by ldat2lwav. Right:

Space wave profile with folded wave truncated by ldat2lwav.

[w,x]=spec2ldat(S,opt);

[L,L0]=ldat2lwav(w,x,’time’,[],10,1)

pause

S=jonswap(1.5); S.h=4;

opt=simoptset(’dt’,0.125,’lalpha’,0,’ffttype’,’fftspace’);

[w,x]=spec2ldat(S,opt);

[L,L0]=ldat2lwav(w,x,’space’,[],10,1)

If no subplot(212) appears, L0 was empty – try again.

1.2.5 Front-back asymmetry

The main feature of the Lagrange approach is that it can easily generate waves with real-

istic front-back asymmetry.4 The asymmetry is controlled by the parameter opt.lalpha.

This example illustrates, in Figure 1.6, the effect of different α-values on the front-back

asymmetry,

opt = simoptset(’Nt’,2048,’dt’,0.125,’Nu’,512,’du’,0.25);

S = jonswap(1.5); S.h=20;

[w0,x0] = spec2ldat(S,opt);

[w1,x1] = spec2ldat(S,opt,’lalpha’,0.75);

[w2,x2] = spec2ldat(S,opt,’lalpha’,1.5);

[L0,L00] = ldat2lwav(w0,x0,’time’);

[L1,L01] = ldat2lwav(w1,x1,’time’);

[L2,L02] = ldat2lwav(w2,x2,’time’);

figure(1); clf

subplot(311); plot(L00.t,L00.Z);title(’\alpha = 0’);

axis([0 50 -10 10])

4The crest-trough asymmetry generated by the Lagrange transformation can also be found in the

2nd order Stokes waves; see Chapter 3.

1.3. SLOPES AND ASYMMETRY MEASURES 9

0 10 20 30 40 50

−10

0

10

α = 0

0 10 20 30 40 50

−10

0

10

α = 0.75

0 10 20 30 40 50

−10

0

10

α = 1.5
Figure 1.6: Front-back asymmetric La-

grange time waves with different α-

values. Water depth: S.h = 20[m].

subplot(312); plot(L01.t,L01.Z);title(’\alpha = 0.75’);

axis([0 50 -10 10])

subplot(313); plot(L02.t,L02.Z);title(’\alpha = 1.5’);

axis([0 50 -10 10])

Note that Figure 1.6 shows time waves where the steep wave side is facing left. You

should generate the corresponding space waves – then you can chose a smaller Nt and a

larger Nu-value.

1.3 Slopes and asymmetry measures

An argument for the Gauss-Lagrange model

To be really useful in practice any physical, mathematical or stochastic wave model

has to be calibrated against empirical data. The stochastic Gauss-Lagrange wave model

offers unique features, not shared by deterministic models, which can be used for cali-

bration. Some of these features are also useful in their own right, and most important

of these are the statistical distributions of different geometrical wave characteristics.

1.3.1 Extracting slope characteristics from wave data

WafoL offers two ways to extract slope values from wave data, one general and one

based on the special Lagrange format with separate vertical and horizontal components.

The general routine wav2slope can be applied to all types of wave data with the call

Slopes = wav2slope(L,absolutelevels,dense,p)

It takes a time or space wave L and extracts slope values at up- and downcrossings of

the levels defined by the vector absolutelevels, after interpolation with rate dense

and smoothing with parameter p with default value p = 1. The wave data L must be

a structure with values in L.Z and arguments in L.t or L.u, for time and space waves,

respectively. The arguments must be in increasing order, but need not be equidistant.

10 CHAPTER 1. 2D LAGRANGE WAVES

The second route is intended for simulated Lagrange wave data and it uses the basic
structure of the model. The call is

Slopes = ldat2lslope(w,x,type,absolutelevels)

Here w, x are the output of the simulation routine spec2ldat. This routine identifies

the x- and w-combinations that generate a time or space wave and computes the slope

according to equations (9) and (10) in [6]. It disregards crossings that are combined with

folding of plunging waves.

A special routine is available for simulation experiments with slope distributions
directly from the orbital spectrum S. The call

Slopes = spec2slopedat(S,Nsim,type,relativelevels,opt)

simulates Nsim independent samples of Lagrange waves with specified spectrum and

extracts the slopes, using wav2slope. The default choice of levels is relativelevels =

[-1 0 1 2] which will give slopes at crossing of the absolute levels [-1 0 1 2]*Hs/4

relative to the still water level mwl = 0; note Hs = 4*std. The routine spec2steepdat

is an extension of spec2slopedat and it will be described in Section 1.3.3.

Empirical slope distribution

To illustrate slope distributions in front-back asymmetric wave data we first generate
synthetic waves and then use the first routine on the data. We use the same models
as for Figure 1.6 and extract the slopes at the up- and downcrossings of levels [0 1

2]*std defined in units of standard deviations relative to the still water level. The call

opt = simoptset(’Nt’,2048*16,’dt’,0.125,’Nu’,512,’du’,0.25);

S = jonswap(1.5,[6 10]); S.h=20;

[w0,x0] = spec2ldat(S,opt);

[w1,x1] = spec2ldat(S,opt,’lalpha’,0.5);

[w2,x2] = spec2ldat(S,opt,’lalpha’,1);

[L0,L00] = ldat2lwav(w0,x0,’time’);

[L1,L01] = ldat2lwav(w1,x1,’time’);

[L2,L02] = ldat2lwav(w2,x2,’time’);

mom = spec2mom(S);

levels=[0 1 2]*sqrt(mom(1)); % wav2slope requires absolute levels

Slope0 = wav2slope(L00,levels);

Slope1 = wav2slope(L01,levels);

Slope2 = wav2slope(L02,levels)

will produce a result like (depending on the randomness)

Slope2 =

up: {[993x1 double] [560x1 double] [110x1 double]}

down: {[993x1 double] [560x1 double] [110x1 double]}

levels: [0 1.4800 2.9600]

1.3. SLOPES AND ASYMMETRY MEASURES 11

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

Figure 1.7: Empirical distributions of

up- an downcrossing (absolute val-

ues) slopes at still water level for

Lagrange time waves with different

degrees of front-back asymmetry;

α = 0, 0.5, 1.

The plot the empirical distributions in Figure 1.7 of the slopes of the mean level we
use the Wafo routine plotedf,

plotedf(Slope0.up{1}); hold on

plotedf(Slope1.up{1});

plotedf(Slope2.up{1});

plotedf(-Slope0.down{1},’r-.’)

plotedf(-Slope1.down{1},’r-.’);

plotedf(-Slope2.down{1},’r-.’);

axis([0 8 0 1])

Simulated slope distributions can be generated directly from the spectrum by the

routine spec2slopedat. As a by-product we also get the average shape of the waves

in the neighborhood of upcrossings and downcrossings of the mean waterlevel. We gen-

erate some such empirical distributions before we compute the exact theoretical ones.

Figure 1.8 shows, in the upper row, simulated CDF of slopes at up- and downcrossings

of different levels. The lower row shows the average wave shape near up- and downcross-

ing of the mean water level. (The downcrossing curves are mirrored in the origin to be

comparable with upcrossings ditto.) First compute the distributions,

S=jonswap(1.5,[6 10]); S.h=20;

opt=simoptset(opt,’Nt’,64,’dt’,0.25,...

’Nu’,2048*16,’du’,0.25,’ffttype’,’fftspace’);

Nsim=100; % Takes time; Nsim = 10 in the command script

Slopes=spec2slopedat(S,Nsim,’space’,[],opt)

Slopes1=spec2slopedat(S,Nsim,’space’,[],opt,’lalpha’,1)

and then plot the empirical CDF:s and the average waves; Fig 1.8.

figure(1); clf

subplot(221); box; hold on

for f=1:length(Slopes.levels),

if ~isempty(Slopes.up{f}

plotedf(Slopes.up{f})

end

if ~isempty(Slopes.down{f})

12 CHAPTER 1. 2D LAGRANGE WAVES

plotedf(-Slopes.down{f},’-.’)

end

end

axis([0 0.8 0 1])

subplot(222); box; hold on

for f=1:length(Slopes1.levels),

if ~isempty(Slopes1.up{f})

plotedf(Slopes1.up{f})

end

if ~isempty(Slopes1.down{f})

plotedf(-Slopes1.down{f},’-.’)

end

end

axis([0 0.8 0 1])

subplot(223); box; hold on

plot(Slopes.meanwavex,Slopes.meanwaveup); ax=axis;

axis([Slopes.meanwavex(1) Slopes.meanwavex(end) ax(3) ax(4)])

plot(Slopes.meanwavex,Slopes.meanwavedown,’-.’); grid

subplot(224); box; hold on

plot(Slopes1.meanwavex,Slopes1.meanwaveup)

axis([Slopes.meanwavex(1) Slopes.meanwavex(end) ax(3) ax(4)])

plot(Slopes1.meanwavex,Slopes1.meanwavedown,’-.’); grid

One can see from the upper left plot in Figure 1.8 that the slopes become steeper

with increasing level, in agreement with the crest-trough asymmetry of the Lagrange

waves.

Simulation with lalpha > 1 may generate warnings for double crossings (= folding

waves) and empty output. Such waves are discarded in the simulation which means that

the generated slopes are slopes in waves where no folding occurred. Each repetition in

the example corresponds to 8192 m of waves, and in a run with 400 repetitions with

α = 1.5 a total of 34 fields were discarded.5 To obtain sufficient accuracy, 50 repetitions

are sufficient.

Run a similar example with time waves with a larger opt.Nt and smaller opt.Nu –

see code in WafoL.m. Notice how downcrossing slopes are smaller than the upcrossing

ones for time waves, while the opposite holds for space waves.

1.3.2 Theoretical slope distribution

The WafoL module contains routines for computation of the exact theoretical slope

distribution at level crossings, based on the crossing theory in [5, 6].

The main routines to get the exact theoretical slope distribution CDF:s directly from

the orbital spectrum are spec2timeslopecdf and spec2spaceslopecdf and the related

5The reason to disregard folded waves is that slope distribution becomes less meaningful for such

waves.

1.3. SLOPES AND ASYMMETRY MEASURES 13

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

α = 0

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

α = 1

−200 −100 0 100 200
−2

−1

0

1

2

−200 −100 0 100 200
−2

−1

0

1

2

Figure 1.8: Space waves. Upper row: Simulated CDF of slopes at up (solid) and down

(dash-dotted) crossings of levels [-1 0 1 2]*standard deviation. Left: front-

back symmetric waves, α = 0, where up- and downcrossing profiles are identical.

Right: asymmetric waves, α = 1. Lower row: Average wave shape near up- (solid)

and down- (dash-dotted) crossings.

routines for the PDF-functions. We can now compare the empirical slop distributions

that we just obtained with the theoretical ones.
We use the observed (simulated) Slopes1 values from the previous example and com-

pare with the theoretical distribution. For time waves we use the following commands.
First, simulate slopes:

S=jonswap(1.5,[6 10]); S.h=20;

opt=simoptset(’Nt’,2048*16,’dt’,0.125,...

’Nu’,128,’du’,0.25,’ffttype’,’ffttime’);

Nsim=100; % Takes time; {\tt Nsim = 10} in the command script

lev=[-1:2]; % Relative levels

% Absolute levels will be computed from spectral moment

Slopes=spec2slopedat(S,Nsim,’time’,lev,opt)

Slopes1=spec2slopedat(S,Nsim,’time’,lev,opt,’lalpha’,1)

Then compute the theoretical CDF:s,

y=0:0.01:10;

[Fu,Fd] = spec2timeslopecdf(S,y,lev,opt);

[Fu1,Fd1] = spec2timeslopecdf(S,y,lev,opt,’lalpha’,1);

and compare the results for α = 1 in Figure 1.9 (for code, see WafoLCh1.m).

14 CHAPTER 1. 2D LAGRANGE WAVES

Figure 1.9: CDF for up- and downcrossing

(absolute values) slopes in asymmetric

time waves with asymmetry parameter

α = 1: red = theoretical, blue = simu-

lated, solid = upcrossing, dash-dotted =

downcrossing. Crossed levels = [-1 0 1

2]*standard deviation. Outer curves

= highest level.

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

x

F
(x

)

CDF of up− and downcrossing slopes

1.3.3 Asymmetry measures

Wave asymmetry and wave steepness can be summarised in many different ways, and

many measures have been suggested in the literature. To define the measures we need to

define some geometric wave characteristics. With notations as in Figure 1.10, we define

for time waves,

Slope ratio at down/up-crossings: λAL = −E(Lt(tdown))
E(Lt(tup))

≈ E(Hcb/Tcb)
E(Hcf/Tcf)

,

Front/back period ratio: λNLS = E(Tcf)/E(Tcb),

Hilbert transform: AH = E(L̂(t)3)/σ3.

−2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

mean water level

T’
T’’

T
cbT

cf

H
cf

H
cb

−150 −100 −50 0 50
−2

−1.5

−1

−0.5

0

0.5

1

mean water level

L
tc

=L
cb

L’
L"

L
ct

=L
cf

H
cf

H
cb A

Figure 1.10: Asymmetry characteristics for time (left) and space (right) waves moving

from left to right. The subscripts cb,cf refer to crest-back and crest-front defini-

tions, and the subscripts tc,ct refer to trough-crest and crest-trough definitions.

The measure λAL was defined in [7] and is based on the slopes Lt(tdown) and Lt(tup) at

down- and upcrossings of the mean level. If front and back crest amplitudes are about

the same, it is approximately equal to the index λNLS, proposed in [11]. The third

measure AH , introduced in [4], is based on the Hilbert transform L̂(t) and is defined

from its third moment and standard deviation.

1.3. SLOPES AND ASYMMETRY MEASURES 15

The three asymmetry measures can be computed by simulation from the spectrum
by the WafoL routine spec2steepdat with the call

[Slope, Steep, Data] = spec2steepdat(S,Nsim,type,relativelevels,opt)

The routine is an extended (and more time-consuming) version of spec2slopedat, the

routine that we used in Section 1.3.1. It generates, besides the slope characteristics

at level crossings, crest front/back period data, and a data structure with simulated

Lagrange data, together with first and second derivatives.
The structure Slope has fields with indices lambdaAL and AH, while the index

lambdaNLS is a field in Steep. The following time consuming commands were used to
generate the asymmetry data in Table 1.1. You may want to experiment with a smaller
(or larger!) Nsim.

S = jonswap(1.5,[6 10]); S.h=20;

opt = simoptset(’Nt’,2048*16,’dt’,0.125,...

’Nu’,321,’du’,0.125,’ffttype’,’ffttime’);

Nsim = 50; % Change this to Nsim = 10 or 20

[Slope0,Steep0,~] = spec2steepdat(S,Nsim,’time’,[],opt);

[Slope05,Steep05,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,0.5);

[Slope10,Steep10,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,1);

[Slope15,Steep15,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,1.5);

[Slope20,Steep20,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,2.0);

The λ-indices in Table 1.1 are easy to interpret. For example, λAL = 0.529 for α = 1

means that the time wave rate of increase is about twice as fast as the decrease at the

still water level. The value λNLS = 0.552 for α = 2 means that the time crom trough to

crest is about half the time from crest to trough, on average.

λAL λNLS AH
α = 0.0 1.005 1.002 0.005

α = 0.5 0.737 0.855 -0.191

α = 1.0 0.529 0.734 -0.386

α = 1.5 0.350 0.630 -0.588

α = 2.0 0.226 0.552 -0.644

Table 1.1: Simulated asym-

metry measures in time

waves for different α-

values.

16 CHAPTER 1. 2D LAGRANGE WAVES

Chapter 2

3D Lagrange waves

2.1 The 3D Lagrange model

The 3D Lagrange model consists of a Gaussian homogeneous random field w(t, u, v) for

the vertical movements of water particles and two correlated Gaussian fields x(t, u, v), y(t, u, v)

for the horizontal movements. The total energy of w(t, u, v) is distributed over elemen-

tary waves with frequency ω and direction θ according to a directional orbital spectrum

S(ω, θ), ω > 0, −π < θ ≤ π. The x-process describes the horizontal movements in the

directions θ = 0, π, and y the movements in the directions θ = ±π/2.

For simulation purposes in WafoL the spectrum is discretized over wave-numbers

κujk, κ
v
jk, and with related frequencies ωjk > 0, given by the dispersion relation,

ω2 = g|κ| tanhh|κ|, |κ| =
√
κ2u + κ2v.

In analogy with (1.2) and (1.4) the three components in the 3D model are

w(t, u, v) =
∑
j,k

√
Sjk Rjk cos(κujku+ κvjkv − ωjkt+ Θjk), (2.1)

x(t, u, v) =
∑
j,k

√
Sjk Rjk ρ

u
jk cos(κujku+ κvjkv − ωjkt+ Θjk + ψujk), (2.2)

y(t, u, v) =
∑
j,k

√
Sjk Rjk ρ

v
jk cos(κujku+ κvjkv − ωjkt+ Θjk + ψvjk), (2.3)

The 3D Lagrange wave field

The 3D lagrange wave field is a random time varying field L(t;x, y), t ∈ R, (x, y) ∈ R2

that, at time t, takes the value w(t, u, v) at location (x = x(t, u, v), y = y(t, u, v):

L(t;x(t, u, v), y(t, u, v)) = w(t, u, v). (2.4)

It may happen that there are more than one (u, v) for which (x(t, u, v), y(t, u, v)) =

(x, y); in that case L takes multiple values.

17

18 CHAPTER 2. 3D LAGRANGE WAVES

The response functions

The response functions are allowed to depend on frequency ω and direction θ, and

wave-number κ = (κu, κv) as in the 2D case. Now, there is more freedom to introduce

asymmetry, depending on wave direction, and the user can construct a model for any

special purpose. The standard implementation of WafoL uses the following generaliza-

tion of (1.6), introduced in [8, Eqn. (10)],

H(θ,κ) =

(
ρueiψ

u

ρveiψ
v

)
=

α

ω2
·
(

cos2(θ) | cos(θ)|
cos2(θ) sin(θ) sign(cos θ)

)
+ i

cosh |κ|h
sinh |κ|h ·

(
cos θ

sin θ

)
. (2.5)

This choice modifies the front-back asymmetry for waves with direction away from

θ = 0, π and blocks it completely at θ = ±π/2.

2.2 Generating 3D Lagrange waves with WafoL

2.2.1 Generating the elementary processes by spec2ldat3D

WafoL offers two routines for simulation of the 3D elementary processes, and in this

chapter we describe the 1st order routine, spec2ldat3D. The alternative routine is

called spec2ldat3DM and it can also generate non-linear, 2nd order Stokes variation,

both in vertical and horizontal dimension. That routine and its parallel companion

spec2ldat3DP will be described in Chapter 3.

The directional spectrum

The most important input variable is of course the directional orbital power spectrum

for the Gaussian wave field w(t, u, v). It can be given it either frequency-direction form

or in wave-number form, both supported by Wafo and WafoL.

The simplest way to produce a directional spectrum is illustrated by the example in
the Wafo-routine mkdspec,

S = jonswap

D = spreading(linspace(-pi,pi,51),’cos2s’)

Snew = mkdspec(S,D,1)

that will produce the left plot in Figure 2.1. The wave-number spectrum to the right is
produced by

Sk2d = spec2spec(Snew,’k2d’)

plotspec(Sk2d)

axis([-0.05 0.05 -0.05 0.05])

The general form of the spreading command is

D = spreading(directions,type,maindirection,spreading,frequencies,fdep)

2.2. GENERATING 3D LAGRANGE WAVES WITH WAFOL 19

For experiments with front-back asymmetry it is recommended to set maindirection

= 0. The parameter spreading defines the degree of directional spreading; spreading

= 0 gives isotropic waves with equal energy in all directions, a high value gives almost

uni-directional 3D waves moving from “right to left” – this convention differs from that

in Section 1.1.1. The default value is spreading = 15 as in the example. Observe that

frequencies must be the same as the frequencies in the spectrum, S.w; the standard

spectra in Wafo have the same default values as the spreading function. The last

parameter, fdep takes values 0, 1 for frequency independent or frequency dependent

spreading (default), respectively.

 0.2

 0.4

 0.6

 0.8

30

210

60

240

90

270

120

300

150

330

180 0

Directional Spectrum

Level curves at:

2
4
6
8
10
12

Level curves at:

500
1000
1500
2000
2500
3000
3500

Wave number [rad/m]

W
av

e
nu

m
be

r
[r

ad
/m

]

Wave Number Spectrum

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 2.1: Left: directional spectrum in frequency-direction form. Right: the same

spectrum in wave-number form.

The simulation options in spec2ldat3D

The options command opt = simoptset is used to define the number of time and

space coordinates, Nt, Nu, Nv, their spacings, dt, du, dv, the asymmetry parameter

lalpha, the seed for the random number generator iseed, (default shuffle), and the

plotflag. The simulation in spec2ldat3D is always done with a 2D FFT over space,

then looping over time, so the ffttype option is not relevant for the 3D model. The

simulation generates a large data set with three fields of size Nt x Nu x Nv each, and

there is a memory trade-off between time and space.

If one seeks a large wave field at only one time point, one can choose Nt = 1 and

Nu, Nv as large as needed. But if the goal is to get a set of long wave time series, i.e.

Nt large, at a modest number of locations, one must be sure not to take Nu x Nv too

small, and this for two reasons. First, both Nu and Nv must be big enough to cover the

full variation of the horizontal movements within the studied region. This means, for

example, that if one wants to generate wave a field over an area of size 200x100 meters

then one should have Nu x du at least 200 + 6 std(X) and similar for the Y-field.1

Second, the number of space points defines in a non-systematic way the periodicity

of the time waves. At present, there is no systematic study of how large space field is

1std(X) can be estimated by mean(mean(std(X.Z))).

20 CHAPTER 2. 3D LAGRANGE WAVES

needed to avoid bias caused by time periodicity. The user is advised not to generate

excessively long time series but rather generate many independent series.

In the examples we use the following options for time and space oriented problems:

optTime = simoptset(’Nt’,1001,’dt’,0.2,...

’Nu’,128,’du’,5,’Nv’,64,’dv’,5);

optSpace = simoptset(’Nt’,1,’dt’,0.5,...

’Nu’,1024,’du’,1,’Nv’,512,’dv’,1);

Generation of the elementary processes

The elementary processes are generated by the routine spec2ldat3D. First we define

the directional spectrum and then generate the elementary processes. We define two

spreading functions, one, D5, that gives moderate spreading, and one, D15, that gives

waves with more concentrated direction.

S = jonswap(1.5); S.h = 20;

D5 = spreading(101,’cos’,0,5,S.w,0);

SD5 = mkdspec(S,D5);

D15 = spreading(101,’cos’,0,15,S.w,0);

SD15 = mkdspec(S,D15);

The time option

[W,X,Y] = spec2ldat3D(SD5,optTime);

takes about 30 seconds and generates about 200 MB of wave data. The space option

[W,X,Y] = spec2ldat3D(SD5,optSpace);

takes less than 1 second and generates about 25 MB of wave data.

2.2.2 Generating the Lagrange waves from the 3D fields

The generation options

The 3D analogue to ldat2lwav in WafoL to generate wave fields from elementary wave
data is ldat2ldat3D with call

L = ldat2lwav3D(W,X,Y,options3D)

where the argument options3D defines the type and dimension of the output. The

routine can be used to generate single Lagrange fields or a series of fields that can be

used to create a movie of the time dependent wave field. It is also possible to extract

individual time series of point wave data from sets of locations.

The options3D structure can be set by an genoptset command as in this example:

2.2. GENERATING 3D LAGRANGE WAVES WITH WAFOL 21

opt3D=genoptset(’type’,’field’,’t0’,20)

opt3D =

type: ’field’

t0: 20

PP: []

start: [10 10]

end: []

rate: 1

plotflag: ’on’

There are three different types: field, moviedata, timeseries. In the example the

parameter t0 sets the time of observation of a single field. The parameters start, end

defines the absolute coordinates of the field or movie, that should be well inside area

spanned by Nu x du and Nv x dv; see text and footnote on page 19. The parameter PP

is a 2 x np array of coordinates for np observation points of time series, and rate is a

parameter for interpolation in time series.

Generating a single field

We use the options

optSpace = simoptset(’Nt’,20,’dt’,1,...

’Nu’,256,’du’,1,’Nv’,128,’dv’,1);

opt3D = genoptset(’type’,’field’,’t0’,10)

to generate 20 front-back asymmetric fields, estimate the standard deviations to decide
on cut off points and extract the field at time t0 = 10:

[W,X,Y] = spec2ldat3D(SD15,optSpace,’lalpha’,1)

Sx = mean(mean(std(X.Z))) % result = 4.6

Sy = mean(mean(std(Y.Z))) % result = 1.9

opt3D = genoptset(opt3D,’start’,[20 10])

Lfield = ldat2lwav3D(W,X,Y,opt3D)

Figure 2.2 shows the result – note the vertical scale.

Generating a movie

The option opt3D.type = ’moviedata’ (or simply ’movie’) generates data for a 3D

wave movie. The output from is a structure that can generate wave movie by means of

the routine seamovieL; this is a version of the Wafo routine seamovie adapted for the

dimension standard in WafoL.
We use the options

optTime = simoptset(’Nt’,1001,’dt’,0.2,...

’Nu’,128,’du’,10,’Nv’,64,’dv’,10);

opt3D = genoptset(’type’,’movie’)

22 CHAPTER 2. 3D LAGRANGE WAVES

Figure 2.2: A front-back asymmetric Lagrange field with strong directionality, gener-

ated by ldat2lwav3D.

to generate wave movie data

[W,X,Y] = spec2ldat3D(SD15,optTime,’lalpha’,1.5)

opt3D = genoptset(opt3D,’start’,[20 10])

Lmovie = ldat2lwav3D(W,X,Y,opt3D)

that, besides producing the movie structure Lmovie, plots that last frame of the movie.

The movie is generated and displayed by a command

Mv = seamovieL(Lmovie,displaytype)

where displaytype can take values 1, 2, 3. A value 1 gives a surf-type perspec-
tive movie like field in Figure 2.2, a value 2 gives moving contours at still vater level.
displaytype = 3 give a grayscaled movie. The last frames with the two latter options
are shown in Figure 2.3.

Mv2 = seamovieL(Lmovie,2); pause

Mv3 = seamovieL(Lmovie,3); pause

Beware that the movie structures are about 10 times bigger than the data structure

Lmovie that is used to generate the movie.

Generating time series

The third type option in genoptset is timeseries, used to extract pointwise time series
wave data obtained at one or more fixed locations. We illustrate how to obtain three
time series, observed at three locations along the center line of the area:

2.2. GENERATING 3D LAGRANGE WAVES WITH WAFOL 23

[m]

[m
]

200 400 600 800 1000 1200

−100

0

100

200

300

400

500

600

700

800

Figure 2.3: Frames of wave movie; option displaytype = 2 (left) and 3 (right).

opt3D=genoptset(’type’,’timeseries’,’PP’,[400 425 450; 300 300 300])

opt3D =

type: ’timeseries’

t0: []

PP: [2x3 double]

start: [10 10]

end: []

rate: 1

plotflag: ’on’

We use the elementary wave data W,X,Y from the movie example and generate the
three time series, and plot the result in Figure 2.4:

Lseries = ldat2lwav3D(W,X,Y,opt3D,’plotflag’,’off’)

subplot(311)

plot(Lseries.t,Lseries.Z{1},’r’)

grid on; hold on

plot(Lseries.t,Lseries.Z{2},’g’)

plot(Lseries.t,Lseries.Z{3},’b’)

0 20 40 60 80 100 120 140 160 180 200
−5

0

5

Figure 2.4: Three wave time series separated 25 meters in wind direction. Blue curve:

upwind station, red curve: downwind station.

Figure 2.5 shows the cross-correlation function between the upwind and the down-
wind series, taken at a distance of 50 meters. We use the Matlab routine xcov in the
signal processing toolbox.

24 CHAPTER 2. 3D LAGRANGE WAVES

Rx = xcov(Lseries.Z{1},Lseries.Z{3},200,’biased)

subplot(211)

plot((-200:200)/5,Rx,’LineWidth’,2,’FontSize’,15)

−40 −30 −20 −10 0 10 20 30 40
−1

−0.5

0

0.5

1

Figure 2.5: Cross-correlation function between upwind and downwind time series;

maximum correlation at time lag 3 seconds, in agreement with “average wave

speed” of 17 seconds and peak period of 11 seconds.

2.2.3 Generation of multiple time series from 3D spectrum

The routine spec2lseries generates several time series directly from the directional
3D spectrum without the route via spec2ldat3D and ldat2lwav3D. The call is

L = spec2lseries(Spec3D,PP,options)

where PP = [x1 x2 ... xn; y1 y2 ... yn] defines the coordinates for the observa-

tions. This direct routine will generate the same result and it takes about the same total

time as the combined route, but it is much less memory demanding. In particular, the

memory requirement is almost independent of the length and number of the time series.

If you want to compare the two methods, be sure to set options.iseed to a suitable

integer – the default value is shuffle, i.e. random and set opt3D.start = [0 0]. Note

that opt3D.start is not used in the direct routine; be sure that the observation points

are well inside the generated region.

2.2.4 Run and export movies

You might want to export a wave movie for use outside Matlab, for example, publish
it on a web-page or send it by e-mail. Then you can use the seamovieL to save the
movie as an avi-file. Just add a a name string, e.g. ’Wave.avi’ as a third argument:

Mv1 = seamovieL(L,1,’Wave.avi’);

If the current folder already contains a movie Wave.avi then a movie with a random

name is produced. The extension .avi will be automatically added if missing.

The routine seamovieL uses the Matlab-command movie2avi which puts restric-

tions on the Matlab-installation. It works without extra work, at least, with version

8.5. The movie structures are usually large files and the avi-files generated are even

larger. It is recommended that you edit them with a video editing program and save in

some other format, e.g. mp4, to facilitate distribution.

Chapter 3

2nd order non-linear Lagrange waves

3.1 Euler, Gauss, Lagrange, and Stokes waves

3.1.1 Gauss and 2nd order Stokes interaction

The Gaussian waves model (1.2) describes the water surface as the sum of statistically

independent harmonic components, acting without interaction between distinct frequen-

cies. The 2nd order Stokes model also contains sums of harmonics with frequencies equal

to the sums and differences, in simplified form,

1st order term : w1(t) = m+
∑

Aj cos(ωjt+ θj) = m+ <
∑

Zje
iωjt, (3.1)

2nd order term : w2(t) = <
∑

ZjZkH
+
jk e

i(ωj+ωk)t + <
∑

ZjZ
∗
k H

−
jk e

i(ωj−ωk)t, (3.2)

Total wave : w(t) = w1(t) + w2(t).

Here, the complex variables Zj define both amplitudes and phases of the harmonics and
∗ denotes complex conjugate. The factors H+

jk and H−
jk are “2nd order transfer factors”,

and they are quite complicated depth dependent functions of the frequencies ωj and

the corresponding wave-numbers κj; [9, 12, 13]. Equations (3.1-3.2) give an “Euler”

description of the water elevation at a fixed location.

3.1.2 Lagrange and 2nd order Stokes interaction

In the Gauss-Lagrange model the vertical and horizontal displacements are correlated

Gaussian processes. In the Stokes-Lagrange model, also the horizontal processes have an

added 2nd order term of the same type as (3.2), but with special transfer factors, [3, 12,

13]. The horizontal components furthermore contain a random drift term, dx(t), dy(t),

constant in time, called the “Stokes drift”.

Figure 3.1 illustrates the linear filters, L1
zw,L1

zw, between the generating elements

{Zj} and the Gaussian components, and the quadratic filters from w1, x1 to w2, x2.

25

26 CHAPTER 3. 2ND ORDER NON-LINEAR LAGRANGE WAVES
1

{Zj}

3L1
zw = 1

sL1,α
zx = H
in (1.6)

w1(t, u) -

L2
ww

w2(t, u)

?

6

x1(t, u) x2(t, u)-
L2

xx

L2
zw = L2

ww L1
zw

L2
zx = L2

xx L1,α=0
zx

Figure 3.1: Schematic view of the generation of wave components from {Zj} in (3.1).

3.1.3 Wafo and WafoL routines for 1st and 2nd order waves

The Wafo25 toolbox contains the routine spec2nlsdat for simulation of 2D Stokes-

Euler waves. It is an extension of the (Euler) routine spec2sdat whose WafoL version

is spec2ldat. The Wafo routine seasim has the WafoL extension spec2ldat3D; both

generate 3D waves.

The WafoL routines spec2ldat3DM and spec2ldat3DP are 3D Stokes-Lagrange

companions to spec2nlsdat. They can be used to produce the components for 2D and

3D Stokes-Lagrange waves, including the Stokes drift. spec2ldat3DM is a (M)odification

and extension of the WafoL routine spec2ldat3D and spec2ldat3DP is a version ar-

ranged for (P)arallel processing with the Parallel Computing Toolbox in Matlab.

Table 3.1 lists the capabilities of different Wafo and WafoL routines to simulate

the components of linear and non-linear waves, based on the Gaussian generator {Zj}.

G
a
u
ss

-

E
u

le
r

G
a
u
ss

-

E
u

le
r

G
a
u

ss
-

L
a
g
ra

n
g
e

G
a
u
ss

-

L
a
g
ra

n
g
e

S
to

k
e
s-

E
u

le
r

S
to

k
e
s-

E
u

le
r

S
to

k
e
s-

L
a
g
ra

n
g
e

S
to

k
e
s-

L
a
g
ra

n
g
e

2D 3D 2D 3D 2D 3D 2D 3D

Wafo

spec2sdat + − − − − − − −
seasim + + − − − − − −
spec2nlsdat + − − − + − − −
WafoL

spec2ldat (+) − + − − − − −
spec2ldat3D (+) (+) + + − − − −
spec2ldat3DM (+) (+) + + (+) (+) + +

spec2ldat3DP (+) (+) + + (+) (+) + +

Table 3.1: Spectral based simulation routines in Wafo and WafoL

3.2. GENERATING 1ST ORDER PROCESSES 27

3.1.4 A comment on terminology

In the table we have used the terms “Euler” and “Lagrange” in an un-orthodox way. In

hydrodynamics they denote two equivalent ways to define the physics of water waves,

where an Euler description is focused on the velocity field at each fixed coordinate,

while the Lagrange description integrates the velocity fields to get the trajectories of

individual particles. The Wafo routines are basically stochastic Euler routines, dealing

only with the statistical properties of the vertical variation of the free surface, in the

simplest form as a Gaussian process.

In the Lagrange wave model, as decribed in this tutorial, and in most publications

on the topic, one simply borrows the Gaussian process from the Euler description and

uses it as a Lagrange description of particle movements, with vertical and horizontal

proceses related by a hydrodynamicaly motivated linear filter equation. A quadratic filter

then brings the Gauss model into a Stokes model. The WafoL routines spec2ldat,

spec2ldat3D, spec2ldat3DM/P generate such 1st and 2nd order Lagrange data ldat.

The routines ldat2lwav and ldat2lwav3D bring Lagrange data (of any order) into

an easily observable Euler model. In fact, empirical Lagrange data on particle trajectoris

are rare, compared to the abundance of Euler data. Thus, our Lagrange routines not

only simulate trajectories, but, with some extra effort, also the Euler observables. This

explains the (+) notations in Table 3.1.

3.2 Generating 1st order processes

3.2.1 Introduction to the routines

The routine spec2ldat3DM generates 1st and 2nd order ingredients to a 3D Lagrange
field, with a call similar to that of spec2ldat3D but with an extra parameter, order:

[W,X,Y] = spec2ldat3DM(Spec,order,options); % order = 1

[W,X,Y,W2,X2,Y2] = spec2ldat3DM(Spec,order,options); % order = 2

The input directional spectrum is defined by a one-sided spectrum structure with
the direction dependence specified by a separate field.1 Set up the spectrum information
and simulation options as follows:

S = jonswap;

D = spreading(linspace(-pi,pi,91),’cos2s’,0,10,S.w,0); % Here, the last

% parameter is set to 0 to give frequency independent spreading

S.h = 40;

S.D = D; % This extra field carries the spreading information

Sdir = mkdspec(S,D);

plotspec(Sdir)

option = simoptset(’Nt’,1001,’dt’,0.2,’Nu’,300,’du’,1,’Nv’,100,’dv’,1);

1The WafoL version 1.1.1 of spec2ldat3DM does not allow input of a directional spectrum with

frequency dependent spreading. Thus, only frequency independent spreading is possible at present.

28 CHAPTER 3. 2ND ORDER NON-LINEAR LAGRANGE WAVES

Note that the spectrum structure S with the extra field S.D = D carries the same infor-

mation as the directional spectrum Sdir. They are used as input in spec2ldat3D and

in spec2ldat3DM, spec2ldat3DP, respectively.

Figure 3.2: Directional spectrum

with frequency independent

spreading; cf. Figure 2.1.

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Directional Spectrum

Level curves at:

2
4
6
8
10
12

3.2.2 A comparison of execution times for 1st order models

We start by comparing the execution times obtained with spec2ldat3D, spec2ldat3DM,

and spec2ldat3DP with parallel computing activated. The first routine uses a two-

dimensional FFT over space, looping over time, the two others use a one-dimensional

FFT over time, looping over x- and y-space directions.
First generate the elements by the different routines and compare the distributions;

they should be equal, but small differences must be expected.

[W1,X1,Y1] = spec2ldat3D(Sdir, option);

[W2,X2,Y2] = spec2ldat3DM(S,1, option);

% matlabpool local 4 % Run if PCT is available

%[W3,X3,Y3] = spec2ldat3DP(S,1, option);

figure(2), clf

subplot(221)

qqplot(W1.Z(:),W2.Z(:)); grid on

xlabel(’W1.Z quantiles’)

ylabel(’W2.Z quantiles’)

subplot(222)

plotnorm(W1.Z(:))

We have run each of the commands 100 times to get the execution time and total

standard deviation for each of the components, std(W.Z(:)), etc., for each simulation,

and then calculated the average and standard deviations.

We can draw two conclusions from the results in Table 3.2. As seen, the execution

time is about the same for spec2ldat3D, with two-dimensional FFT, and spec2ldat3DP,

with one-dimensional FFT and parallelization, while the non-parallelized version takes

3.2. GENERATING 1ST ORDER PROCESSES 29

−10 −5 0 5 10
−10

−5

0

5

10

W1.Z quantiles

W
2.

Z
 q

ua
nt

ile
s

qq−plot

−5 0 5
−4

−2

0

2

4
Normal Probability Plot

Q
ua

nt
ile

s
of

 s
ta

nd
ar

d
no

rm
al

0.01%
0.1%
0.5%1%2%
5%
10%
30%
50%
70%
90%
95%
98%99%99.5%
99.9%
99.99%

W1.Z quantiles

Figure 3.3: Right: normal plot of W1.Z generated by spec2ldat3D. Left: a qqplot com-

parison with W2.Z generated by spec2ldat3DM.

Routine spec2ldat3D spec2ldat3DM spec2ldat3DP

Relative exec time 1 (2.3%) 1.32 (0.9 %) 1.05 (1.5%)

Mean std W.Z 1.75 (0.26) 1.72 (0.19) 1.70 (0.17)

Mean std X.Z 4.36 (0.89) 4.26 (0.64) 4.20 (0.57)

Mean std Y.Z 1.53 (0.32) 1.46 (0.19) 1.46 (0.18)

Table 3.2: Relative execution times and obtained average standard deviations for the

three components, W.Z, X.Z, and Y.Z, simulated 100 times; numbers in parenthesis

are the observed relative standard deviation, and standard deviations of the mea-

sured quantities, respectively. The absolute execution time is about 35 seconds per

simulation with spec2ldat3D.

32% more time. One possible reason that spec2ldat3D can compete with spec2ldat3DP

is that in the first routine, the space grid internally is optimized for fft2, stepping only in

time, while in the second routine the parallelization is used in the u-variable, stepping

over the v-variable, to perform a less time-consuming fft in the time-variable. As a

consequence, the relative speed of the two routines will vary with the dimensions in

time and space.

One can also note that the observed standard deviation of W.Z is slightly less than

1.75 = Hs/4 for two of the routines. This is an effect of the relative sparsity of the

spectral density discretization, which is automatic from the time parameters, and leads

to a small loss in energy. This phenomenon can also occur for spec2ldat3D .

Regardless of how the ldat-strucures W,X,Y are generated, they can be used as in

Chapter 2 by ldat2lwav and ldat2lwav3D to generate a Lagrange wave or wave field.

The motivation for the routines spec2ldat3DM and spec2ldat3DP is that they can

generate 2nd order corrections both in the vertical component and in the horizontal

components; then the parallelization is very effective.

30 CHAPTER 3. 2ND ORDER NON-LINEAR LAGRANGE WAVES

3.2.3 Some differences between the two methods for 2D waves

The routines spec2ldat3DM/P can take a non-directional spectrum structure as spectral

argument and generate the vertical, W.Z, and horizontal, X.Z, components for a 2D

Lagrange wave. One should expect the result would be the same as that produced by

spec2ldat, but there are some differences.

• spec2ldat3DM/P use the number of frequences in the spectrum to decide on the

number of time points to be generated. The spectrum is interpolated to reach the

approximate time span as specified by W.t(end) = (opt.Nt-1) * opt.dt.

• spec2ldat change an odd value of Nt to the nearest greater even value; (similar

with Nu if ffttype = ’fftspace’).

We issue the following commands in order to simulate W, X over 250 seconds with
sampling rate 2 Hz, i.e. we set Nu=501, dt=0.5, and ask for the resulting W, Wm:

S = jonswap; opt = simoptset(’Nt’,501,’dt’,0.5,’Nu’,1001,’du’,1);

[W,X] = spec2ldat(S,opt); [Wm,Xm] = spec2ldat3DM(S,1,opt);

W =

Z: [1001x502 double]

u: [1001x1 double]

t: [1x502 double]

note: [1x41 char]

std: 1.6650

meanperiod: 8.4879

meanwavelength: 112.4406

Wm =

Z: [1001x516 double]

u: [1001x1 double]

t: [516x1 double]

We note the change in the number of time steps, while the number of space steps

is unchanged. The generated time spans are W.t(end) = 250.5000 and Wm.t(end) =

250.0145. Thus, neither routine gives the exact time span, 250, that we expected!

3.2.4 Using the data from spec2ldat3DM/P

The ldat produced by spec2ldat3DM/P have the same structure as that produced by

spec2ldat3D and it can be used as described in Chapter 2. However, since spec2ldat3D

usually is the faster routine one may prefer that for 1st order simulation.

3.3. GENERATING 2ND ORDER 2D WAVES 31

3.3 Generating 2nd order 2D waves

We now turn to the main theme of this chapter, generation of 2nd order Lagrange waves.

The Wafo toolbox contains the routine spec2nlsdat for generation of 2nd order 2D

Stokes-Euler waves. With spec2ldat3DM/P one can generate both 2D and 3D Stokes-

Lagrange waves, and we start with the 2D case.

3.3.1 2D Stokes time waves with spec2nlsdat

As listed in Table 3.1 there are two routines that generate 2D Stokes waves, the Wafo

routine spec2nlldat, which directly generate a Stokes time wave at a single point, and

the more general WafoL routines spec2ldat3DM/P, which give the Lagrange compo-

nents, which combined with ldat2lwav give the time wave.

We use the Jonswap spectrum without spreading, and set the depth to S.h=20.

S = jonswap; S.h = 20; np = 250; dt = 0.2;

[xs2 xs1] = spec2nlsdat(S,np,dt);

figure(1); clf

waveplot(xs1,’r’,xs2,’b’,1,1)

The result is the Gaussian time wave xs1, a two-column array with time in the first and

the vertical height in the second column, and the 2nd order Stokes wave xs2. We use

waveplot to show the result in Figure 3.4; see help waveplot.

3.3.2 2D Stokes waves with spec2ldat3DM/P and ldat2lwav

As shown in Chapter 2 the routine ldat2lwav3D can give all kinds of observable wave
data from the Lagrange components W,X,Y. The option opt3D.type = ’timeseries’

will lead to one or more timeseries, of the same type as the xs1,xs2 waves produced by
spec2nlsdat. In this section we want only 2D waves and use a uni-directional spectrum
and set opt.Nv = 1. Note the result, that the Stokes drift in X2 is negative directed in
the main wave direction.

0 10 20 30 40

−4

−3

−2

−1

0

1

2

3

4

− −2

− +2

Time (sec)

Surface elevation from mean water level (MWL).

D
is

ta
nc

e
fr

om
 M

W
L.

(m
)

S
ta

nd
ar

d
D

ev
ia

tio
n

Figure 3.4: A waveplot of lin-

ear (blue) and non-linear

(red) time wave generated by

spec2nlsdat.

32 CHAPTER 3. 2ND ORDER NON-LINEAR LAGRANGE WAVES

S = jonswap; S.h = 20;

opt = simoptset(’Nt’,250,’dt’,0.2,’Nu’,1001,’du’,1,’Nv’,1);

[W,X,~,W2,X2,~] = spec2ldat3DM(S,2,opt);

X2.drift(end,end)

Time waves

We now construct two sets of 2nd order components, one with Stokes drift and one
without, and generate the timeseries observed at location 250 and plot the three series:

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Wtot2d = Wtot2; % No Stokes drift in the vertical direction !

Xtot2 = X; Xtot2.Z = X.Z + X2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

[L,L0] = ldat2lwav(W,X,’time’,250,1,0);

[L2,L20] = ldat2lwav(Wtot2,Xtot2,’time’,250,1,0);

[L2d,L20d] = ldat2lwav(Wtot2d,Xtot2d,’time’,250,1,0);

plot(L0.t,L0.Z,’b’); hold on, grid on;

plot(L20.t,L20.Z,’r-.’)

plot(L20d.t,L20d.Z,’r’); hold off

Figure 3.5 shows the effect of the Stokes drift, shifting the peaks in time. Observe

that the shapes of shifted and non-shifted waves are different, since they have different

reference coordinates, i.e. they have different origin in space.

Space waves

We use the component processes to generate space waves by means of ldat2lwav, but
first we increase the time interval:

S = jonswap; S.h = 20;

opt = simoptset(’Nt’,1000,’dt’,0.2,’Nu’,1001,’du’,1,’Nv’,1);

[W,X,~,W2,X2,~] = spec2ldat3DM(S,2,opt);

Figure 3.5: Time waves: 1st

order (blue) and 2nd order

with (red, solid) and with-

out (red, dashed) Stokes

drift. 0 10 20 30 40 50
−4

−3

−2

−1

0

1

2

3

4

5

6
Surface elevation from mean water level (MWL)

Time (sec)

Blue solid = 1st order

Red solid = 2nd order, w

Red dashed = 2nd order, wo

3.3. GENERATING 2ND ORDER 2D WAVES 33

We generate the space waves at three timepoints, 50, 100, 150 to see the effect

of the Stokes in relation to the 2nd order effect, and plot the results in Figure 3.6, (for

plotting commands, see WafoLCh3.m).

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

[L50,L050] = ldat2lwav(W,X,’space’,50,1,0);

[L2d50,L20d50] = ldat2lwav(Wtot2d,Xtot2d,’space’,50,1,0);

[L100,L0100] = ldat2lwav(W,X,’space’,100,1,0);

[L2d100,L20d100] = ldat2lwav(Wtot2d,Xtot2d,’space’,100,1,0);

[L150,L0150] = ldat2lwav(W,X,’space’,150,1,0);

[L2d150,L20d150] = ldat2lwav(Wtot2d,Xtot2d,’space’,150,1,0);

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5
Surface elevation from mean water level (MWL)

Location (m) at time = 50 (sec)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

Location (m) at time = 100 (sec)

0 100 200 300 400 500 600 700 800 900 1000
−5

0

5

Location (m) at time = 150 (sec)

Figure 3.6: Space waves: 1st or-

der (blue) and 2nd order

with Stokes drift (red) at

three different time points.

Waves move from right to

left.

3.3.3 Wave asymmetry in 2nd order waves

The Wafo routine spec2nlsdat generates 2nd order time waves with typical crest-

trough asymmetry, and we saw one example in Section 3.3.1.

To generate front-back asymmetric waves we need the Lagrange technique in WafoL,

as was described in Sections 1.1.2 and 1.2.5. The degree of asymmetry is determined

by the parameter α, which enters into the transfer function L1,α
zx = H in Figure 3.1.

As illustrated in that figure, the α affects only the 1st order and not the 2nd order

X-component; of course also the Y -component is affected in an analogous way.

We illustrate the effect by simulating the components,

[W,X,~,W2,X2,~] = spec2ldat3DM(S,2,opt,’Nt’,250,’lalpha’,1.5);

and repeating the commands for the time waves in Figure 3.5 to get Figure 3.7.

34 CHAPTER 3. 2ND ORDER NON-LINEAR LAGRANGE WAVES

0 10 20 30 40 50
−5

0

5
Surface elevation from mean water level (MWL)

Time (sec)

Figure 3.7: Front-back asymmetric time wave with 2nd order components.

3.4 Generating 2nd order 3D waves

To simulate 2nd order 3D Lagrange waves with spec2ldat3DM/P we need a directional
spectrum specified by a spectral desity structure S with a direction field .D. We also set
a preliminary options structure, make a simulation and take a look at the drift in the
main wave direction:

S = jonswap; S.h=20;

D = spreading(linspace(-pi,pi,51),’cos2s’,0,15,S.w,0);

S.D = D;

opt=simoptset(’Nt’,250,’dt’,0.2,’Nu’,250,’du’,1,’Nv’,50,’dv’,1);

[W,X,W,W2,X2,Y2] = spec2ldat3DM(S,2,opt);

surf(X2.drift(1:2:end,1:2:end,end)) % To see the drift magnitude

We see in Figure 3.8 that in this simulation the maximal extension of the Stokes drift

in the x-direction at the end of the time interval is almost 20 meters. This means that

if we want to make a movie of the field over a certain region we have to extend the

reference region with at least this amount to be sure to capture the variation over the

whole region of interest. The drift in the y-direction is smaller and less than ±5 meters.

Figure 3.8: Stokes drift at the

end of the observation

interval 0
50

100
150

200
250

0
10

20
30

40
50

−20

−15

−10

−5

x (m)y (m)

To be on the safe side, we decide to extend the reference region by 100 meters at

the far end, by 10 meters at the near end, and by 15 meters both sideways. Thus, to

simulate a 50 seconds wave movie over a region 250 x 100 meters we choose opt.Nu=360,

opt.du=1 and opt.Nv=130,opt.dv=1.

3.4. GENERATING 2ND ORDER 3D WAVES 35

Figure 3.9: Last wave views from ldat2lwav3D and seamovieL; symmetric waves.

Note that if the reference region is defined too small strange patterns can appear at

the borders of the simulated region. Then one has to extend the reference region to the

expense of increased simulation time.

opt=simoptset(’Nt’,250,’dt’,0.2,’Nu’,360,’du’,1,’Nv’,130,’dv’,1);

[W,X,Y,W2,X2,Y2] = spec2ldat3DM(S,2,opt);

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

Ytot2d = Y; Ytot2d.Z = Y.Z + Y2.Z + Y2.drift;

opt3D = genoptset(’start’,[10 15],’end’,[260 115]);

figure(1); L=ldat2lwav3D(Wtot2,Xtot2d,Ytot2d,opt3D);

figure(2); Mv=seamovieL(L,1);

Figure 3.9 shows the last wave views in L and in Mv with different vertical scaling.

The right hand view has the correct vertical and horizontal scaling while the left hand

view exaggerates the vertical variation.
For comparison, we can generate front-back asymmetric waves by replacing opt by,

e.g.,

optasym = simoptset(opt,’alpha’,1.5);

and repeating the simulation. Figure 3.10 shows the result.

Figure 3.10: Last wave views from ldat2lwav3D and seamovieL; asymmetric waves.

36 CHAPTER 3. 2ND ORDER NON-LINEAR LAGRANGE WAVES

Appendix A

Commands for the examples

The command files WafoLChx.m contain the code for the examples in the tutorial. Some

of the examples take some time and generate big data arrays. You may need to reduce

the size of the problems, for example by using a smaller Nsim or reduce the dimension.

Figure titles and other editing are often not included.

The time to run WafoLCh1 in Windows 7 with Matlab 2013a on an Intel Core i7-

870, 2.93GHz, 16GB RAM, is about 30 minutes, the time for WafoLCh2 is less than one

minute, and that for WafoLCh3 is about 15 minutes.

The “pause-state” is set to off in the script. Set if to on if you want to pause between

tasks.

A.1 WafoLCh1, Commands for Chapter 1

% Script with commands for WafoL tutorial, Chapter 1

pstate = pause(’off’);

TSTART = cputime;

disp(’ Chapter 1: 2D Lagrange waves’)

disp(’ Section 1.1.2’)

% Figure: Lagrange time wave, example of asymmetry

S = jonswap; S.h = 20;

opt = simoptset(’dt’,1);

[w,x] = spec2ldat(S,opt,’lalpha’,1);

[L,L0] = ldat2lwav(w,x,’time’,[],10);

subplot(211)

plot(L.t,L.Z); hold on

plot(L0.t,L0.Z,’r’)

axis([0 40 -6 6]); hold off

pause

37

38 APPENDIX A. COMMANDS FOR THE EXAMPLES

disp(’ Section 1.2.2’)

% Figure: Lagrange space wave, direct plot

S = jonswap(1.5); S.h = 8;

opt = simoptset(’Nt’,256,’dt’,0.125,’Nu’,...

256*8,’du’,0.25,’iseed’,123791);

[w,x] = spec2ldat(S,opt,’iseed’,’shuffle’)

subplot(211)

plot(x.u+x.Z(:,128),w.Z(:,128))

axis([0 500 -10 10])

pause

disp(’ Section 1.2.3’)

% Figure: Lagrange space wave from [L,L0]

[L,L0] = ldat2lwav(w,x,’space’,16)

subplot(212)

plot(L.u,L.Z,L0.u,L0.Z,’r’)

axis([0 500 -10 10])

pause

MGauss = mean(w.Z(:))

MLagrange = mean(L0.Z)

SGauss = std(w.Z(:))

SLagrange = std(L0.Z)

pause

disp(’ Section 1.2.4’)

% Figure: Crest-trough asymmetry in space, depth dependence

opt = simoptset(’Nt’,128,’Nu’,2048,’du’,0.25);

S = jonswap(1.5);

S3 = S; S3.h = 3;

S8 = S; S8.h = 8;

S32 = S; S32.h = 32;

[w,x] = spec2ldat(S,opt);

[w3,x3] = spec2ldat(S3,opt);

[w8,x8] = spec2ldat(S8,opt);

[w32,x32] = spec2ldat(S32,opt);

[L,L0] = ldat2lwav(w,x,’space’);

[L3,L03] = ldat2lwav(w3,x3,’space’);

[L8,L08] = ldat2lwav(w8,x8,’space’);

[L32,L032] = ldat2lwav(w32,x32,’space’);

figure(1)

clf

subplot(411)

plot(L0.u,L0.Z); axis([0 500 -5 5]);

title(’Depth = \infty’)

A.1. WAFOLCH1, COMMANDS FOR CHAPTER 1 39

subplot(412)

plot(L032.u,L032.Z); axis([0 500 -5 5]);

title(’Depth = 32 m’)

subplot(413)

plot(L08.u,L08.Z); axis([0 500 -5 5]);

title(’Depth = 8 m’)

subplot(414)

% 3m water depth may cause loops and ldat2lwav give empty L3,L03

% We plot space wave directly from w3,x3

plot(x3.u+x3.Z(:,64),w3.Z(:,64))

axis([0 500 -5 5])

title(’Depth = 3 m’)

clear w x w3 x3 w8 x8 w32 x32

pause

% Figure: Truncation of time and space waves

S = jonswap(1.5); S.h=20;

opt = simoptset(’dt’,0.125,’lalpha’,2);

[w,x] = spec2ldat(S,opt);

[L,L0] = ldat2lwav(w,x,’time’,[],10,1)

pause

S = jonswap(1.5); S.h=4;

opt = simoptset(’dt’,0.125,’lalpha’,0,’ffttype’,’fftspace’);

[w,x] = spec2ldat(S,opt);

[L,L0] = ldat2lwav(w,x,’space’,[],10,1)

clear w x

pause

disp(’ Section 1.2.5’)

% Figure: Front-back asymmetric time waves, different alpha

opt = simoptset(’Nt’,2048,’dt’,0.125,’Nu’,512,’du’,0.25);

S = jonswap(1.5); S.h=20;

[w0,x0] = spec2ldat(S,opt);

[w1,x1] = spec2ldat(S,opt,’lalpha’,0.75);

[w2,x2] = spec2ldat(S,opt,’lalpha’,1.5);

[L,L0] = ldat2lwav(w0,x0,’time’);

[L1,L01] = ldat2lwav(w1,x1,’time’);

[L2,L02] = ldat2lwav(w2,x2,’time’);

figure(1)

clf

subplot(311)

plot(L0.t,L0.Z)

title(’\alpha = 0’)

axis([0 50 -10 10])

subplot(312)

plot(L01.t,L01.Z)

40 APPENDIX A. COMMANDS FOR THE EXAMPLES

title(’\alpha = 0.75’)

axis([0 50 -10 10])

subplot(313)

if ~isempty(L02),

plot(L02.t,L02.Z)

title(’\alpha = 1.5’)

axis([0 50 -10 10])

end

pause

disp(’ Section 1.3.1’)

% Figure: Empirical time slope CDF at crosings - different alpha

opt = simoptset(’Nt’,2048*16,’dt’,0.125,’Nu’,256,’du’,0.25);

S = jonswap(1.5,[6 10]); S.h=20;

[w0,x0] = spec2ldat(S,opt);

[w1,x1] = spec2ldat(S,opt,’lalpha’,0.5);

[w2,x2] = spec2ldat(S,opt,’lalpha’,1);

[L0,L00] = ldat2lwav(w0,x0,’time’); clear w0 x0

[L1,L01] = ldat2lwav(w1,x1,’time’); clear w1 x1

[L2,L02] = ldat2lwav(w2,x2,’time’); clear w2 x2

mom = spec2mom(S);

levels=[0 1 2]*sqrt(mom(1)); % wav2slope requires absolute levels

Slope0 = wav2slope(L00,levels); clear L00

Slope1 = wav2slope(L01,levels); clear L01

Slope2 = wav2slope(L02,levels)

clear L02

pause

% Plotting

figure(10)

clf

plotedf(Slope0.up{1}); hold on

%get(H101,’Children’)

plotedf(Slope1.up{1});

plotedf(Slope2.up{1});

plotedf(-Slope0.down{1},’r-.’)

plotedf(-Slope1.down{1},’r-.’);

plotedf(-Slope2.down{1},’r-.’);

axis([0 8 0 1])

pause

% Figure: Empirical space slope CDF at crossings - different alpha

% S=jonswap(1.5); S.h=20;

S=jonswap(1.5,[6 10]); S.h=20;

opt=simoptset(’Nt’,64,’dt’,0.25,...

A.1. WAFOLCH1, COMMANDS FOR CHAPTER 1 41

’Nu’,2048*16,’du’,0.25,’ffttype’,’fftspace’);

Nsim=10;

Slopes = spec2slopedat(S,Nsim,’space’,[],opt)

Slopes1 = spec2slopedat(S,Nsim,’space’,[],opt,’lalpha’,1)

figure(1); clf

subplot(221); box; hold on

for f=1:length(Slopes.levels),

if ~isempty(Slopes.up{f})

plotedf(Slopes.up{f}); grid on

end

if ~isempty(Slopes.down{f})

plotedf(-Slopes.down{f},’-.’); grid on

end

end

axis([0 0.8 0 1])

title(’\alpha = 0’)

subplot(222); box; hold on

for f=1:length(Slopes1.levels),

if ~isempty(Slopes1.up{f})

plotedf(Slopes1.up{f}); grid on

end

if ~isempty(Slopes1.down{f})

plotedf(-Slopes1.down{f},’-.’); grid on

end

end

axis([0 0.8 0 1])

title(’\alpha = 1’)

subplot(223); box; hold on

plot(Slopes.meanwavex,Slopes.meanwaveup)

ax=axis;

axis([Slopes.meanwavex(1) Slopes.meanwavex(end) ax(3) ax(4)]);

plot(Slopes.meanwavex,Slopes.meanwavedown,’-.’); grid on

subplot(224); box; hold on

plot(Slopes1.meanwavex,Slopes1.meanwaveup)

axis([Slopes.meanwavex(1) Slopes.meanwavex(end) ax(3) ax(4)]);

plot(Slopes1.meanwavex,Slopes1.meanwavedown,’-.’); grid on

pause

% Figure: Same as previous, but for time waves

S=jonswap(1.5,[6 10]); S.h=20;

opt=simoptset(’Nt’,2048*8,’dt’,0.125,...

’Nu’,321,’du’,0.125,’ffttype’,’ffttime’);

Nsim=10;

Slopes=spec2slopedat(S,Nsim,’time’,[],opt)

Slopes1=spec2slopedat(S,Nsim,’time’,[],opt,’lalpha’,1)

figure(1); clf

42 APPENDIX A. COMMANDS FOR THE EXAMPLES

subplot(221); box; hold on

for f=1:length(Slopes.levels),

if ~isempty(Slopes.up{f})

plotedf(Slopes.up{f}); grid on

end

if ~isempty(Slopes.down{f})

plotedf(-Slopes.down{f},’-.’); grid on

end

end

axis([0 10 0 1])

title(’\alpha = 0’)

subplot(222); box; hold on

for f=1:length(Slopes1.levels),

if ~isempty(Slopes1.up{f})

plotedf(Slopes1.up{f}); grid on

end

if ~isempty(Slopes1.down{f})

plotedf(-Slopes1.down{f},’-.’); grid on

end

end

axis([0 10 0 1])

title(’\alpha = 1’)

subplot(223); box; hold on

plot(Slopes.meanwavex,Slopes.meanwaveup);

ax=axis;

axis([Slopes.meanwavex(1) Slopes.meanwavex(end) ax(3) ax(4)]);

plot(Slopes.meanwavex,Slopes.meanwavedown,’-.’); grid

subplot(224); box; hold on

plot(Slopes1.meanwavex,Slopes1.meanwaveup);

axis([Slopes.meanwavex(1) Slopes.meanwavex(end) ax(3) ax(4)]);

plot(Slopes1.meanwavex,Slopes1.meanwavedown,’-.’); grid on

pause

disp(’ Section 1.3.2’)

% Figure: Comparison between empirical and theoretical slope CDF

S = jonswap(1.5,[6 10]); S.h=20;

opt = simoptset(’Nt’,2048*8,’dt’,0.125,...

’Nu’,321,’du’,0.125,’ffttype’,’ffttime’);

Nsim = 10;

Slopes = spec2slopedat(S,Nsim,’time’,[],opt);

Slopes1 = spec2slopedat(S,Nsim,’time’,[],opt,’lalpha’,1);

relativelevels = [-1:2];

y=0:0.01:10;

[Fu,Fd] = spec2timeslopecdf(S,y,relativelevels,opt);

[Fu1,Fd1] = spec2timeslopecdf(S,y,relativelevels,opt,’lalpha’,1);

pause

A.1. WAFOLCH1, COMMANDS FOR CHAPTER 1 43

% Plot the results

figure(1); clf

plotedf(Slopes1.up{4}); % Some very large values set the axis

clf

axis([0 10 0 1])

hold on; grid on

plot(Fu1.x,Fu1.f{4},’r’)

plot(Fu1.x,Fu1.f{3},’r’)

plot(Fu1.x,Fu1.f{2},’r’)

plot(Fu1.x,Fu1.f{1},’r’)

plotedf(Slopes1.up{4});

plotedf(Slopes1.up{3});

plotedf(Slopes1.up{2});

plotedf(Slopes1.up{1});

plot(Fd1.x,Fd1.f{1},’r-.’)

plot(Fd1.x,Fd1.f{2},’r-.’)

plot(Fd1.x,Fd1.f{3},’r-.’)

plot(Fd1.x,Fd1.f{4},’r-.’)

plotedf(-Slopes1.down{1},’-.’);

plotedf(-Slopes1.down{2},’-.’);

plotedf(-Slopes1.down{3},’-.’);

plotedf(-Slopes1.down{4},’-.’);

pause

disp(’ Section 1.3.3’)

% Table: Asymmetry measures

S = jonswap(1.5,[6 10]); S.h=20;

opt = simoptset(’Nt’,2048*8,’dt’,0.125,...

’Nu’,321,’du’,0.125,’ffttype’,’ffttime’);

Nsim = 10;

[Slope0,Steep0,~] = spec2steepdat(S,Nsim,’time’,[],opt);

[Slope05,Steep05,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,0.5);

[Slope10,Steep10,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,1);

[Slope15,Steep15,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,1.5);

[Slope20,Steep20,~] = spec2steepdat(S,Nsim,’time’,[],opt,’lalpha’,2.0);

disp(’End of Chapter 1’)

TSTOP=cputime

disp([’Total time = ’ num2str(TSTOP-TSTART) ’ sec’]);

pause(pstate)

44 APPENDIX A. COMMANDS FOR THE EXAMPLES

A.2 WafoLCh2, Commands for Chapter 2

% Script with commands for WafoL tutorial, Chapter 2

rng(’default’) % Reset the random number generator

pstate = pause(’off’);

TSTART = cputime;

disp(’ Chapter 2: 3D Lagrange waves’)

disp(’ Section 2.2.1 Spectrum and simulation options’)

% Directional spectrum

% Figure: Directional spectra in polar and Cartesian form

S = jonswap

D = spreading(linspace(-pi,pi,51),’cos2s’,0,15,S.w,0)

figure(1); clf

Snew = mkdspec(S,D,1)

Sk2d = spec2spec(Snew,’k2d’)

figure(2); clf

plotspec(Sk2d); clear Sk2d

axis([-0.05 0.05 -0.05 0.05])

pause

% Simulation options

optTime = simoptset(’Nt’,1001,’dt’,0.2,...

’Nu’,128,’du’,5,’Nv’,64,’dv’,5);

optSpace = simoptset(’Nt’,1,’dt’,0.5,...

’Nu’,1024,’du’,1,’Nv’,512,’dv’,1);

% Generation of the elementary processes

S = jonswap(1.5); S.h = 20;

D5 = spreading(101,’cos’,0,5,S.w,0);

SD5 = mkdspec(S,D5);

D15 = spreading(101,’cos’,0,15,S.w,0);

SD15 = mkdspec(S,D15);

% [W,X,Y] = spec2ldat3D(SD5,optTime);

[W,X,Y] = spec2ldat3D(SD5,optSpace);

pause

disp(’ Section 2.2.2 Generating the Lagrange waves from the 3D fields’)

% Generating a single field

optSpace = simoptset(’Nt’,20,’dt’,1,...

’Nu’,256,’du’,1,’Nv’,128,’dv’,1);

opt3D = genoptset(’type’,’field’,’t0’,10)

A.2. WAFOLCH2, COMMANDS FOR CHAPTER 2 45

% Figure: One front-back asymmetric field

[W,X,Y] = spec2ldat3D(SD15,optSpace,’lalpha’,1)

Sx = mean(mean(std(X.Z))) % result = 4.6

Sy = mean(mean(std(Y.Z))) % result = 1.9

opt3D = genoptset(opt3D,’start’,[20 10])

Lfield = ldat2lwav3D(W,X,Y,opt3D)

pause

% Generating a movie

optTime = simoptset(’Nt’,101,’dt’,0.2,...

’Nu’,128,’du’,10,’Nv’,64,’dv’,10);

opt3D = genoptset(’type’,’movie’)

[W,X,Y] = spec2ldat3D(SD15,optTime,’lalpha’,1.5)

opt3D = genoptset(opt3D,’start’,[20 10])

Lmovie = ldat2lwav3D(W,X,Y,opt3D)

pause

% Figure: Last frame of seamovie - two displays

Mv2 = seamovieL(Lmovie,2)

pause

Mv3 = seamovieL(Lmovie,3)

pause

% Generating time series

opt3D=genoptset(’type’,’timeseries’,’PP’,[400 425 450; 300 300 300])

% Figure: Three point time series at distance

Lseries = ldat2lwav3D(W,X,Y,opt3D,’plotflag’,’off’)

subplot(311)

plot(Lseries.t,Lseries.Z{1},’r’)

grid on; hold on

plot(Lseries.t,Lseries.Z{2},’g’)

plot(Lseries.t,Lseries.Z{3},’b’)

pause

% Figure: Cross-correlation function between time series

Rx = xcov(Lseries.Z{1},Lseries.Z{3},200,’biased’);

subplot(211)

plot((-200:200)/5,Rx)

disp(’End of Chapter 2’)

TSTOP=cputime

disp([’Total time = ’ num2str(TSTOP-TSTART) ’ sec’]);

46 APPENDIX A. COMMANDS FOR THE EXAMPLES

pause(pstate)

A.3 WafoLCh3, Commands for Chapter 3

% Script with commands for WafoL tutorial, Chapter 3

rng(’default’)

pstate = pause(’off’);

TSTART = cputime;

disp(’ Chapter 3: 2nd order non-linear Lagrange waves’)

disp(’ Section 3.2.1’)

% Figure: Directional spectrum

S = jonswap;

D = spreading(linspace(-pi,pi,91),’cos2s’,0,10,S.w,0);

S.h = 40;

S.D = D;

Sdir = mkdspec(S,D);

figure(1), clf

plotspec(Sdir)

option = simoptset(’Nt’,1001,’dt’,0.2,’Nu’,300,’du’,1,’Nv’,100,’dv’,1);

pause

disp(’ Section 3.2.2’)

% Figure: qq-plot

[W1,X1,Y1] = spec2ldat3D(Sdir,option);

[W2,X2,Y2] = spec2ldat3DM(S,1,option);

% Run if PCT is available

% matlabpool local 4

% [W3,X3,Y3] = spec2ldat3DP(S,1,option);

figure(2), clf

subplot(221)

plotqq(W1.Z(:),W2.Z(:)); grid on

xlabel(’W1.Z quantiles’)

ylabel(’W2.Z quantiles’)

subplot(222)

plotnorm(W1.Z(:))

pause

clear W1 W2 X1 X2 Y1 Y2

disp(’ Section 3.2.3’)

% Check changes in region

S = jonswap;

opt = simoptset(’Nt’,501,’dt’,0.5,’Nu’,501,’du’,1);

A.3. WAFOLCH3, COMMANDS FOR CHAPTER 3 47

[W,X] = spec2ldat(S,opt);

[Wm,Xm] = spec2ldat3DM(S,1,opt);

pause

disp(’ Section 3.3.1’)

% Figure: Linear and non-lines with spec2nlsdat

S = jonswap; S.h = 20;

np = 250; dt = 0.2;

[xs2, xs1] = spec2nlsdat(S,np,dt);

figure(1), clf

waveplot(xs1,’b’,xs2,’r’,1,1)

pause

disp(’ Section 3.3.2’)

% Time waves

S = jonswap; S.h = 20;

opt = simoptset(’Nt’,250,’dt’,0.2,’Nu’,1001,’du’,1,’Nv’,1);

[W,X,~,W2,X2,~] = spec2ldat3DM(S,2,opt);

X2 % The 2nd order x-components has a field ’drift’

pause

% Figure: Time waves with and without Stokes drift

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Wtot2d = Wtot2; % No Stokes drift in the vertical direction !

Xtot2 = X; Xtot2.Z = X.Z + X2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

[L,L0] = ldat2lwav(W,X,’time’,250,1,0);

[L2,L20] = ldat2lwav(Wtot2,Xtot2,’time’,250,1,0);

[L2d,L20d] = ldat2lwav(Wtot2d,Xtot2d,’time’,250,1,0);

figure(1), clf

plot(L0.t,L0.Z,’b’,’LineWidth’,2); hold on, grid on;

plot(L20.t,L20.Z,’r-.’,’LineWidth’,2)

plot(L20d.t,L20d.Z,’r’,’LineWidth’,2)

set(gca,’FontSize’,14)

title(’Surface elevation from mean water level (MWL)’)

xlabel(’Time (sec)’); hold off

pause

% Space waves

S = jonswap; S.h = 20;

opt = simoptset(’Nt’,1000,’dt’,0.2,’Nu’,1001,’du’,1,’Nv’,1);

[W,X,~,W2,X2,~] = spec2ldat3DM(S,2,opt);

% Figure: Space wave with Stokes drift

48 APPENDIX A. COMMANDS FOR THE EXAMPLES

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Wtot2d = Wtot2; % No Stokes drift in the vertical direction !

Xtot2 = X; Xtot2.Z = X.Z + X2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

[L50,L050] = ldat2lwav(W,X,’space’,50,1,0);

%[L250,L2050] = ldat2lwav(Wtot2,Xtot2,’space’,50,1,0);

[L2d50,L20d50] = ldat2lwav(Wtot2d,Xtot2d,’space’,50,1,0);

[L100,L0100] = ldat2lwav(W,X,’space’,100,1,0);

%[L2100,L20100] = ldat2lwav(Wtot2,Xtot2,’space’,100,1,0);

[L2d100,L20d100] = ldat2lwav(Wtot2d,Xtot2d,’space’,100,1,0);

[L150,L0150] = ldat2lwav(W,X,’space’,150,1,0);

%[L2150,L20150] = ldat2lwav(Wtot2,Xtot2,’space’,150,1,0);

[L2d150,L20d150] = ldat2lwav(Wtot2d,Xtot2d,’space’,150,1,0);

figure(1), clf

subplot(311)

plot(L050.u,L050.Z,’b’,’LineWidth’,2); hold on, grid on;

plot(L20d50.u,L20d50.Z,’r’,’LineWidth’,2)

set(gca,’FontSize’,12)

title(’Surface elevation from mean water level (MWL)’)

xlabel(’Location (m) at time = 50 (sec)’)

subplot(312)

plot(L0100.u,L0100.Z,’b’,’LineWidth’,2); hold on, grid on;

plot(L20d100.u,L20d100.Z,’r’,’LineWidth’,2)

set(gca,’FontSize’,12)

xlabel(’Location (m) at time = 100 (sec)’)

subplot(313)

plot(L0150.u,L0150.Z,’b’,’LineWidth’,2); hold on, grid on;

plot(L20d150.u,L20d150.Z,’r’,’LineWidth’,2)

set(gca,’FontSize’,12)

xlabel(’Location (m) at time = 150 (sec)’)

pause

disp(’ Section 3.3.3, Front-back asymmetry’)

% Figure: Front-back asymmetric 2nd order waves

S = jonswap; S.h = 20;

[W,X,~,W2,X2,~] = spec2ldat3DM(S,2,opt,’Nt’,250,’lalpha’,1.5);

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Wtot2d = Wtot2;

Xtot2 = X; Xtot2.Z = X.Z + X2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

[L,L0] = ldat2lwav(W,X,’time’,250,1,0);

[L2,L20] = ldat2lwav(Wtot2,Xtot2,’time’,250,1,0);

[L2d,L20d] = ldat2lwav(Wtot2d,Xtot2d,’time’,250,1,0);

A.3. WAFOLCH3, COMMANDS FOR CHAPTER 3 49

figure(1), clf

subplot(311)

plot(L0.t,L0.Z,’b’,’LineWidth’,2); hold on, grid on;

plot(L20.t,L20.Z,’r-.’,’LineWidth’,2)

plot(L20d.t,L20d.Z,’r’,’LineWidth’,2)

set(gca,’FontSize’,14)

title(’Surface elevation from mean water level (MWL)’)

xlabel(’Time (sec)’)

pause

disp(’ Section 3.4’)

S = jonswap; S.h=20;

D = spreading(linspace(-pi,pi,51),’cos2s’,0,15,S.w,0);

S.D = D;

opt=simoptset(’Nt’,250,’dt’,0.2,’Nu’,250,’du’,1,’Nv’,50,’dv’,1);

[W,X,Y,W2,X2,Y2] = spec2ldat3DM(S,2,opt);

% Figure: Check the Stokes drift

figure(1), clf

surf(X2.u(1:2:end),X2.v(1:2:end),X2.drift(1:2:end,1:2:end,end))

% Extend the reference region

opt=simoptset(’Nt’,250,’dt’,0.2,’Nu’,360,’du’,1,’Nv’,130,’dv’,1);

[W,X,Y,W2,X2,Y2] = spec2ldat3DM(S,2,opt);

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

Ytot2d = Y; Ytot2d.Z = Y.Z + Y2.Z + Y2.drift;

% and set the region of interest

opt3D = genoptset(’start’,[10 15],’end’,[260 115]);

% Figures: Fields and movies

figure(1), clf

L=ldat2lwav3D(Wtot2,Xtot2d,Ytot2d,opt3D)

drawnow

figure(2), clf

Mv=seamovieL(L,1)

pause

% Front-back asymmetry

optasym = simoptset(opt,’lalpha’,1.5);

[W,X,Y,W2,X2,Y2] = spec2ldat3DM(S,2,optasym);

Wtot2 = W; Wtot2.Z = W.Z + W2.Z;

Xtot2d = X; Xtot2d.Z = X.Z + X2.Z + X2.drift;

Ytot2d = Y; Ytot2d.Z = Y.Z + Y2.Z + Y2.drift;

figure(3), clf

50 APPENDIX A. COMMANDS FOR THE EXAMPLES

L2=ldat2lwav3D(Wtot2,Xtot2d,Ytot2d,opt3D)

drawnow

figure(4), clf

Mv2=seamovieL(L2,1)

disp(’End of Chapter 3’)

TSTOP=cputime

disp([’Total time = ’ num2str(TSTOP-TSTART) ’ sec’]);

pause(pstate)

Appendix B

WafoL routines

Matlab m-routines

% WAFOL = lagrange module for WAFO toolbox

% Version 1.2.1 05-01-2016

%

% WafoL contains routines for 1st and 2nd order random Lagrange waves

%

% dat2crossind - Finds indices to level v down and/or upcrossings from data

% disper2 - Dispersion relation with possible mean flow

% genoptset - Creates or alters 3D generation options structure

% ldat2lslope - Extracts slopes at level crossings in Lagrange model

% ldat2lwav - Finds time/space Lagrange process from simulated components

% ldat2lwav3D - Generates Lagrange 3D wave process from simulated components

% looptest - Simulates 2D Lagrange waves to estimate folding rate

% lwav2frontback - Gives front/back crest periods/wavelength of wave data

% pdfnorm2d - Bivariate Gaussian distribution

% seamovieL - Makes a movie of a 2D or 3D simulated sea structure

% simoptset - Creates or alters simulation options structure

% spec2lasym - Simulates asymmetry measures for Lagrange waves from spectrum

% spec2lcov - Calculates auto- and cross-covariance functions

% spec2ldat - Simulates w and x components of 2D Lagrange wave

% spec2ldat3D - Spectral simulation of components in 3D Lagrangian sea

% spec2ldat3DM - Particle trajectory simulation according to Marc Prevosto

% spec2ldat3DP - Parallel version of spec2ldat3DM for trajectory simulation

% spec2lseries - Spectral simulation of time series in 3D Lagrangian sea

% spec2slcomp - Compares 2nd order Stokes and 1st order Lagrange time waves

% spec2slopedat - Simulates Lagrange waves and extracts slopes at crossings

% spec2slopedat3D - Simulates values and slopes in 3D Lagrange field

% spec2spaceslopecdf - Computes cdf for slope at crossings of space waves

% spec2spaceslopepdf - Computes pdf for slope at crossings of space waves

% spec2steepdat - Simulates Lagrange waves and extracts steepness and slopes

% spec2timeslopecdf - Computes cdf for slopes at crossings of time waves

% spec2timeslopepdf - Computes pdf for slopes at crossings of time waves

% wav2slope - Extracts slopes at up- and downcrossings after smoothing

51

52 APPENDIX B. WAFOL ROUTINES

Scripts for examples

% WafoLCh1 - Script with commands for WafoL tutorial, Chapter 1

% WafoLCh2 - Script with commands for WafoL tutorial, Chapter 2

% WafoLCh3 - Script with commands for WafoL tutorial, Chapter 3

Executables

% partkern.mexw32 - mexw32 file for use with 32 bit systems

% partkern.mexw64 - mexw64 file for use with 64 bit systems

53

function [ind, Nc]= dat2crossind(x,v,wdef,nowarning)

%DAT2CROSSIND Finds indices to level v down and/or upcrossings from data

%

%CALL: [ind, Nc]= dat2crossind(x,v,wdef/cdef,warning);

%

% ind = indices to the level v crossings of the original sequence x

% Nc = number of crossings (i.e.length of ind)

%

% x = the surface elevation data

% v = the reference level (default v = mean of x)

% wdef = defines the type of wave. Possible options are

% ’dw’, ’uw’, ’cw’, ’tw’ or ’none’. (Default ’none’).

% If wdef=’none’ all crossings will be returned,

% otherwise only the crossings which defines a

% wave according to the wave definition will be returned.

% cdef = defines the type crossings returned. Possible options are

% ’d’ ’u’ or ’all’. (Default ’all’).

% If def=’d’ all down-crossings will be returned.

% Similarly if def=’u’ only the up-crossings will be returned

% otherwise ’all’ the crossings will be returned.

% nowarning = true suppresses warning for no crossings (default = false)

%

% Example:

% t = linspace(0,7*pi,250);

% x = sin(t);

% [ind, Nc] = dat2crossind(x,0.75,’u’)

% plot(t,x,’.’,t(ind),x(ind),’o’)

%

% See also findcross, wavedef, crossdef

54 APPENDIX B. WAFOL ROUTINES

function [l,res] = disper2(t,dt,niter,dx_rel)

%DISPER2 Dispersion relation with possible mean flow

%

% disper2: dispersion relation, Newton-Raphson

% with possible mean flow

%

% (2.pi.f-k.v)^2 = g.k.tanh(k.d)

%

%CALL: [l,res] = disper2(t[,d[,niter[,dx_rel]]])

%

% input: t : period vector

% dt : water depth vector [water depth d, mean flow v]

% or matrix same number of lines as length of t

% vector or matrix [water depth d, surface current ...

% speed, bottom current speed, type of profile]

% type of profile = 0 => uniform (bottom current ...

% speed is not used) (default value)

% type of profile = 1 => linear

% type of profile = 2 => exponential

% (default value [Inf,0])

%

% output: l : wavelength (same size as t)

% res : residue (om0-xk*v)^2-g0*xk*tanh(xk*d)

55

function options3D = genoptset(varargin)

%GENOPTSET Creates or alters 3D generation options structure

%

%CALL: options3D = genoptset(funcname,opts1,opts2,...,par1,val1,par2,val2,...);

%

% options3D = options structure in which the named

% parameters have the specified values.

% funcname = string giving the name of the function for which default

% values for the options structure should be extracted.

%

% par1,par2..= strings identifying the parameter to alter

% val1,val2..= corresponding values the parameters are altered to.

%

% GENOPTSET sets options for transformation of ldat3D (W,X,Y) to

% 3D Lagrange fields or 2D timeseries

%

% GENOPTSET with no input arguments and no output arguments displays all

% parameter names and their possible values.

%

% See also troptset and simoptset

56 APPENDIX B. WAFOL ROUTINES

function Slopes=ldat2lslope(w,x,typ,levels)

%LDAT2LSLOPE Extracts slopes at level crossings in Lagrange model

%

%Call: Slopes = ldat2lslope(w,x,type,levels)

%

% Slopes = struct array with observed slopes at the up- and

% downcrossings of specified levels

%

% w,x = vertical and horizontal component in Lagrange model

% type = ’space’ gives slopes in space waves

% ’time’ gives time slopes

% levels = vector of absolute levels relative mwl=0

% (no default)

%

% Example:

% S=jonswap; mom=spec2mom(S);

% opt=simoptset;

% opt=simoptset(opt,’dt’,0.25,’du’,0.25)

% [w,x]=spec2ldat(S,opt)

% levels=[0 1 2]*sqrt(mom(1));

% Slopes=ldat2lslope(w,x,’time’,levels)

57

function [L,L0]=ldat2lwav(w_in,x_in,type,tu0,dense,plott)

%LDAT2LWAV Finds time/space Lagrange process from simulated components

% This version returns true time or 2D space profile and

% the smoothed initial part until the first loop/break

%

%CALL: [L,L0]=ldat2lwav(w,x,type,tu0,dense,plotting)

%

% L = Lagrange process structure with fields

% L.type and L.t/L.u and L.Z

% L can contain loops and breaking waves

% L0 = a pruned and smoothed version of L without loops

%

% w = Gaussian vertical process structure w.Z, w.u, w.t

% x = Gaussian horizontal variation process structure

% x.Z, x.u, x.t

% type = ’time’ or ’space’

% tu0 = time t0 for space wave,

% = space coordinate u0 for time wave

% dense = interpolation rate for smoothing

% plotting = 0/false, no plotting (default),

% = 1/true, plot L (and L0 if not empty)

58 APPENDIX B. WAFOL ROUTINES

function L=ldat2lwav3D(W,X,Y,opt3D,varargin)

%LDAT2LWAV3D Generates Lagrange 3D wave process from simulated components

% from W,X,Y fields (as output from spec2ldat3D)

%

%CALL: L =ldat2lwav3D(W,X,Y,opt3D)

%

% L = Lagrange structure with fields

% L.Z, L.x, L.y, L.t, L.type

%

% W = Gaussian vertical process structure w.Z, w.u, w.t

% X/Y = Gaussian horizontal variation structures

% X.Z, X.u, X.v, X.t

% Y.Z, Y.u, Y.v, Y.t

% if X and Y are empty then output is Gaussian

% opt3D = structure (set by genoptset) with fields

% .type = ’movie’ gives time dependent wave fields over times W.t

% = ’field’ give wave field(s) at time(s) given by

% .t0 ’t0’ (string) or empty: gives t0 = W.t(end)/2 (default)

% = t0 (numeric): gives field at time t0

% .start = [startx starty] lower left corner of fields

% .end = [endx endy] upper right corner of fields

% if empty end is generated from start coordinates

% .plotflag = ’on’ plots one field - the last one

%

% OR

% .type = ’timeseries’ gives n time series at points

% with coordinates

% .PP = 2 x n array [p1,...,pn; q1,...,qn]’

% If n > 1 then output L.Z is is

% a cell array L.Z{1}, ..., L.Z{n}

% .rate = interpolation rate (default = 1) not yet implemented

% .plotflag = ’on’ plots one time series - the last one

%

% OR (NOT YET AVAILABLE)

% .type = ’swath’ gives encountered Lagrange sea elevation

% observed from a moving object with speed(s) --

% possible further fields for this option are

% .v [m/s]= along straight line(s) from

% .start = default = (W.u(1),W.v(1)/2) to

% .end default = (W.u(end),W.v(1)/2)

% OR (NOT YET AVAILABLE)

% .type = ’vfield’ gives velocity field

59

function Nloops = looptest(S,opt,varargin)

%LOOPTEST Simulates 2D waves to estimate folding rate

60 APPENDIX B. WAFOL ROUTINES

function Steep = lwav2frontback(L)

%LWAV2FRONTBACK Gives front/back crest periods/wavelength of wave data

%

%CALL: Steep =lwav2frontback(L)

%

% Steep = struct array with fields

% .ffull = full front period/wavelength

% .fhalf = half front period/wavelength

% .bfull = full back period/wavelength

% .bhalf = half back period/wavelength

%

% L = 2D wave L.t (L.u) and L.Z

61

function pdf = pdfnorm2d(X,m,S)

%PDFNORM2D Bivariate Gaussian distribution

%

%CALL: pdf = pdfnorm2d(X,m,S)

%

% X = 1x2 or n x 2 array of arguments

% m = 1x2 or nn x 2 array of mean values (default zero vector)

% S = 2x2 covariance matrix (default identity matrix)

% If nn=1 then m is filled to size n x 2

% else if n ~= nn then X is filled with first row to size nn x 2

%

% Example:

% x = linspace(-5,5);

% [X1 X2] = meshgrid(x);

% f = reshape(pdfnorm2d([X1(:),X2(:)]),100,100);

% [area,epsi] = simpson(x,f);

% [area2,epsi2] = simpson(x,area);

%

% See also: pdfnorm, pdfnormnd

62 APPENDIX B. WAFOL ROUTINES

function Mv=seamovieL(Y,s,Wavename)

%SEAMOVIEL Makes a movie of a 2D or 3D simulated sea structure

% and optionally saves it as an avi-file

%

%CALL: Mv = seamovieL(Y,s,Wavename)

%

% Mv = movie

%

% Y = struct with 2d or 3d simulation (from seasim)

% s = type of plot if 3d: if s=1 then surf-plot, if s=2 contour,

% else gray-scale overview with troughs dark and crests light

% (default 1)

% Wavename = optional namestring for avi-file (e.g. ’MyWave.avi’)

% If absent, no avi-file is produced

% The avi-option works for Matlab ver 8.5 but not for ver 8.1

%

% See also seasim, movie, getframe

63

function options = simoptset(varargin)

%SIMOPTSET Creates or alters simulation options structure

%

%CALL: options = simoptset(funcname,opts1,opts2,...,par1,val1,par2,val2,...);

%

% options = transformation options structure in which the named

% parameters have the specified values.

% funcname = string giving the name of the function for which default

% values for the options structure should be extracted.

% Options are ’dat2tr’, ’lc2tr’, ’reconstruct’.

% opts1,

% opts2.. = options structures

% par1,par2..= strings identifying the parameter to alter

% val1,val2..= corresponding values the parameters are altered to.

%

% SIMOPTSET combines the default options for a function given by FUNCNAME

% with new options structures (OPTS1,OPTS2,...) and/or with the named

% parameters (PAR1,PAR2,...) with the corresponding values (VAL1, VAL2,...).

% The parameters are set in the same order as the input arguments.

% Any parameters with non-empty values of the options struct overwrite

% the corresponding old parameters.

% The input arguments can be given in any order with one exception:

% PARx and VALx must be given in pairs in that order.

% Any unspecified parameters for PARx are set to [].

% Parameters with value [] indicate to use the default value for that

% parameter when OPTIONS is passed to the function. It is sufficient to

% type only the 2 first characters to uniquely identify the parameter

% or function name. Upper case letters for parameter names and values

% that are strings are ignored. If an invalid string is provided, the

% default is used.

%

% SIMOPTSET with no input arguments and no output arguments displays all

% parameter names and their possible values.

%

% SIMOPTSET with no input arguments creates an options structure

% OPTIONS where all the fields are set to []. ???

%

% See also troptset, genoptsetfunction options = simoptset(varargin)

64 APPENDIX B. WAFOL ROUTINES

function [Aa,Average]=spec2lasym(S,opt,alpha,Nsim)

%SPEC2LASYM Estimates asymmetry measures for Lagrange waves

%

% Useful to compute asymmetry measures for many degrees of asymmetry

% as specified by alpha = input vector of lalpha-values

% See help text for spec2slopedat

65

function [rww,rwx,rxx]=spec2lcov(spec,t,u,type,alpha,beta)

%SPEC2LCOV Calculates auto- and cross-covariance functions

% between W(0,0) and X(t,u)

% or selected derivatives in the 2D Lagrange model

%

%CALL: [rww,rwx,rxx]=spec2lcov(spec,t,u,type,alpha,beta)%

% For type==1

% rww = structure with fields rww.R, rww.t, rww.u

% with covariance values Cov(W(0,0),W(t,u))

% rwx, rxx = similar structures with Cov(W(0,0),X(t,u)) and

% Cov(X(0,0),X(t,u))

% For the other types the three covariance structures contain the

% covariance and cross-covariances indicated below

% spec = orbital spectrum structure with depth h

% t = vector of time values

% u = vector of space values

% type = 1,2,3,4,5,6,7

% alpha,beta = parameters in the linked model

%

% if type=1: W(0,0),X(0,0) and W(t,u),X(t,u)

% gives r^(ww),r^(wx),r^(xx)

% if type=2: dW/dt(0,0),dX/dt(0,0) and W(t,u),X(t,u)

% gives r^(ww)_(t0),r^(wx)_(t0),r^(xx)_(t0)

% if type=3: dW/du(0,0),dX/du(0,0) and W(t,u),X(t,u)

% gives r^(ww)_(u0),r^(wx)_(u0),r^(xx)_(u0)

% if type=4: dW/dt(0,0),dX/dt(0,0) and dW/dt(t,u),dX/dt(t,u)

% gives r^(ww)_(tt),r^(wx)_(tt),r^(xx)_(tt)

% if type=5: dW/du(0,0),dX/du(0,0) and dW/du(t,u),dX/du(t,u)

% gives r^(ww)_(uu),r^(wx)_(uu),r^(xx)_(uu)

% if type=6: dW/dt(0,0),dX/du(0,0) and dW/dt(t,u),dX/du(t,u)

% gives r^(ww)_(tu),r^(wx)_(tu),r^(xx)_(tu)

%

% NOTE: This routine works only for one-sided spectra

66 APPENDIX B. WAFOL ROUTINES

function [w,x]=spec2ldat(spec,options,varargin)

%SPEC2LDAT Simulates w and x components of 2D Lagrange wave

%

%CALL: [w,x] = spec2ldat(spec,options);

%

% w = Gaussian vertical process structure w.Z,w.u,w.t

% x = Gaussian horizontal process structure x.Z,x.u,x.t

%

% spec =S a frequency spectral density structure in

% angular frequency (’w’) or frequency (’f’) form

% options = struct with fields

% .Nt = giving Nt time points. (default length(S)-1=n-1).

% If Nt>n-1 it is assummed that S.S(k)=0 for k>n-1

% .Nu = giving Nu space points (defult = Nt)

% .dt = step in grid (default dt is defined by the Nyquist freq)

% .du = step in grid (default du is defined by the Nyquist freq)

% (.u = if non-empty and = [u1 u2 Nu] the u-vector will be set to

% u = linspace(u1,u2,Nu), ONLY TESTED for ffttype=’ffttime’

% if empty, then u = linspace(0,(Nu-1)*du,Nu))

% .lalpha = alpha value for modified Lagrange (default = 0)

% .lbeta = beta value for modified Lagrange (default =0)

% .iseed - method or starting seed for the random number generator

% (default = ’shuffle’)

% .ffttype - ’fftspace’, fft over space, loop over time

% generate space series with evolvement

% over time (useful if Nu > Nt),

% - ’ffttime’, fft over time, loop over space (default)

% generate time series with evolvement

% over space (useful if Nt > Nu),

% - ’ffttwodim’, 2D-fft over time and space.

%

% Example of spec2ldat and ldat2lwav

%

% S=jonswap; opt=simoptset;

% opt=simoptset(opt,’dt’,0.25,’du’,0.25);

% type=’time’;

% [w,x]=spec2ldat(S,opt)

% [L,Lsmooth]=ldat2lwav([w,x],type,[],10);

% subplot(211)

% plot(Lsmooth.t,Lsmooth.Z); axis([0 50 -6 6])

% [w,x]=spec2ldat(S,opt,’lalpha’,1)

% [L1,Lsmooth1]=ldat2lwav([w,x],type,[],10);

% subplot(223)

% plot(Lsmooth1.t,Lsmooth1.Z); axis([0 50 -6 6])

% [w,x]=spec2ldat(S,opt,’lalpha’,2)

% [L2,Lsmooth2]=ldat2lwav([w,x],type,[],10);

% subplot(224)

% plot(Lsmooth2.t,Lsmooth2.Z); axis([0 50 -6 6])

%

% Version corresponding to Applied Ocean Research 2009 with respect

% to .lalpha and .lbeta

% See also: spec2sdat,cov2sdat, gaus2dat

67

function [W,X,Y]=spec2ldat3D(Spec,options,varargin)

%SPEC2LDAT3D Spectral simulation of components in 3D Lagrangian sea

%

%CALL: [W,X,Y]=spec2ldat3D(Spec,options)

%

% W = Gaussian vertical process structure W.Z,W.u,W.v,W.t

% X = Gaussian horizontal process structure x.Z,x.u,x.v,x.t

% Y = Gaussian horizontal process structure y.Z,y.u,y.v,y.t

%

% Spec = a directional frequency spectral density structure in

% angular frequency (’w’) and directional (’theta’) form

% Alt. in wave number (’k’, ’k2’) form

% options = struct with fields

% .Nt = giving Nt time points. (default length(S)-1=n-1).

% If Nt>n-1 it is assummed that S.S(k)=0 for all k>n-1

% .Nu = giving Nu space points along x-axis (defult = Nt)

% .Nv = giving Nv space points along y-axis (defult = Nt)

% .dt = step in grid (default dt is defined by the Nyquist freq)

% .du = step in grid (default du is defined by the Nyquist freq)

% .dv = step in grid (default dv is defined by the Nyquist freq)

% .lalpha = alpha value for modified Lagrange (default = 0)

% .iseed = starting seed number for the random number generator

% (default ’shuffle’)

% .plotflag = 0 (no plotting)

%

% Version corresponding to Applied Ocean Research 2009 with respect

% to .lalpha

%

% Based on WAFO-routine seasim, version sept 2014, see documentation

% See also: spec2ldat,spec2sdat,cov2sdat, gaus2dat

68 APPENDIX B. WAFOL ROUTINES

function [W,X,Y,W2,X2,Y2] = spec2ldat3DM(Spec,order,options,varargin)

%SPEC2LDAT3DM Particle trajectory simulation according to Marc Prevosto

% 2D or 3D, first or second order Lagrange waves

%

%CALL: [W,X,Y,W2,X2,Y2] = spec2ldat3DM(spec,order,options)

%

% I - Spec : one-sided spectral structure with fields

% ’S’ : spectral density values

% ’freq’ : 1D frequency spectrum over ’w’/’f’

% ’D’ : spreading structure from D = spreading

% I - order : 1, first order (default), or 2, second order, waves

% I - options : struct with fields

% .Nt = minimum number of time points

% .Nu/.Nv = giving Nu/Nv space points along x/y-axis (default = 100)

% .dt = approximate time-step

% .du/.dv = step in grid (default du=dv=1)

% .iseed = starting seed number for the random number generator

% (default ’shuffle’)

% h = water depth (field in Spec, default = Inf)

%

% z0 = secret parameter = particle depth between 0 and -h

% can be set inside program, default = 0

% trf,tls = secret parameters for to truncate spectrum to avoid

% instability and increase speed,

% can be set inside program, default = 0.01,0.001

%

% O - W,X,Y = first order components

% O - W2,X2,Y2 = second order components

69

function [W,X,Y,W2,X2,Y2] = spec2ldat3DP(Spec,order,options,varargin)

%SPEC2LDAT3DP Parallel version of spec2ldat3DM trajectory simulation

% 2D or 3D, first or second order Lagrange waves.

% Same as spec2ldat3DM but with parallel looping in space

% using matlabpool - can reduce simulation time to

% the expense of heavy memory usage

%

%CALL: [W,X,Y,W2,X2,Y2] = spec2ldat3DP(spec,order,options)

%

% I - Spec : one-sided spectral density structure fields

% ’S’ : spectral density values

% ’freq’ : 1D frequency spectrum over ’w’/’f’

% ’D’ : spreading structure from D = spreading

% I - order : 1, first order (default), or 2, second order, waves

% I - options : struct with fields

% .Nt = minimum number of time points

% .Nu/.Nv = giving Nu/Nv space points along x/y-axis (default = 100)

% .dt = approximate time-step

% .du/.dv = step in grid (default du=dv=1)

% .iseed = starting seed number for the random number generator

% (default ’shuffle’)

% h = water depth (field in Spec, default = Inf)

%

% z0 = secret parameter = particle depth between 0 and -h

% can be set inside program, default = 0

% trf,tls = secret parameters for to truncate spectrum to avoid

% instability and increase speed,

% can be set inside program, default = 0.01,0.001

%

% O - W,X,Y = first order components

% O - W2,X2,Y2 = second order components

70 APPENDIX B. WAFOL ROUTINES

function L=spec2lseries(Spec,PP,options,varargin)

%SPEC2LSERIES Spectral simulation of time series in 3D Lagrangian sea

%

%CALL: L=spec2lseries(Spec,Points,options)

%

% L = struct with n time series

%

% Spec = a directional frequency spectral density structure in

% angular frequency (’w’) and directional (’theta’) form

% Alt. in wave number (’k’, ’k2’) form

% Points = [x1, ..., xn; y1, ..., yn] array with coordinates of

% measurement points

% options = struct with fields

% .Nt = giving Nt time points. (default length(S)-1=n-1).

% If Nt>n-1 it is assummed that S.S(k)=0 for all k>n-1

% .Nu = giving Nu space points along x-axis (default = Nt)

% .Nv = giving Nv space points along y-axis (default = Nt)

% .dt = step in grid (default dt is defined by the Nyquist freq)

% .du = step in grid (default du is defined by the Nyquist freq)

% .dv = step in grid (default dv is defined by the Nyquist freq)

% .lalpha = alpha value for modified Lagrange (default = 0)

% .iseed = starting seed number for the random number generator

% (default ’shuffle’)

% .plotflag = 0 (no plotting)

%

% Version corresponding to Applied Ocean Research 2009 with respect

% to .lalpha

71

function [s2,s1,L0]=spec2slcomp(S,options,varargin)

%SPEC2SLCOMP Compares 2nd order Stokes and 1st order Lagrange time waves

%

%CALL: [s2,s1,L0] = spec2slcomp(S,options,varargin)

%

% s2 = 2nd order Stokes wave structure s2.Z,s2.t

% s1 = Gaussian wave structure s1.Z,s1.t

% L0 = 1st order (smoothed) Lagrange wave structure L.Z,L.t

% spec = S a frequency spectral density structure in

% angular frequency (’w’) or frequency (’f’) form

% options = struct with fields

% .Nt = giving Nt time points. (default length(S)-1=n-1).

% If Nt>n-1 it is assummed that S.S(k)=0 for k>n-1

% .dt = step in grid (default dt is defined by the Nyquist freq)

% .u = [-u1 u1 Nu] gives u = linspace(-u1,u1,Nu) grid

% Nu should be an odd integer

% Generated waves are time waves observed at u = 0

%

% The routine is a combination of

% spec2nldat (Stokes) and spec2ldat/ldat2lwav (Lagrange)

%

% See also spec2nldat spec2linspec, spec2ldat

72 APPENDIX B. WAFOL ROUTINES

function Slopes=spec2slopedat(S,Nsim,type,lev,options,varargin)

%SPEC2SLOPEDAT Simulates Lagrange waves and extracts slopes at crossings

%

%CALL: Slopes = spec2slopedat(S,Nsim,type,levels,options)

%

% Slopes = struct array with observed slopes at the up- and

% down-crossings of specified levels

%

% S = orbital spectrum

% Nsim = number of replicates in simulation (default = 1)

% levels = vector of standardized levels relative to zero

% (default = [-1 0 1 2]*standard deviation)

% type = ’space’ (default), ’time’, or ’approxtime’

% options = struct with fields for individual replicates

% .Nt = giving Nt time points. (default length(S)-1=n-1).

% If Nt>n-1 it is assummed that S.S(k)=0 for all k>n-1

% .Nu = giving Nu space points (defult = Nt)

% .du = step in grid (default dt is defined by the Nyquist freq)

% .dt = step in grid (default dt is defined by the Nyquist freq)

% .lalpha = alpha value for modified Lagrange

% .lbeta = beta value for modified Lagrange

% .ffttype = ’ffttime’ (default), ’fftspace’, ’ffttwodim’

% .iseed - setting for random number generator,

% default = ’shuffle’, [int32]

% .plotflag - ’off’, no plotting (default)

% - ’on’

%

% Example:

% S=jonswap; opt=simoptset; mom=spec2mom(S);

% opt=simoptset(opt,’dt’,0.25,’du’,0.25)

% Nsim=100;

% levels=[0 1 2];

% Slopes=spec2slopedat(S,Nsim,’time’,levels,opt)

%

% Used by spec2lasym

% See also: spec2ldat, ldat2lwav, wav2slope

73

function Slope = spec2slopedat3D(Spec,Nsim,Points,options,varargin)

%SPEC2SLOPEDAT3D Simulates values and slopes in 3D Lagrange field

%

% with choice between

% GL, fft2 over space, stepping over t, if Spec is dirspec

% MP, fft in time, stepping over space, if Spec is onedim with field D

74 APPENDIX B. WAFOL ROUTINES

function [Fu,Fd]=spec2spaceslopecdf(S,y,lev,opt,varargin)

%SPEC2SPACESLOPECDF Computes cdf for slope at crossings of space waves

%

%CALL: [Fu,Fd] = spec2spaceslopepdf(S,y,type,levels,options,varargin)

%

% Fu, Fd = cdf for Lagrange space wave slopes

% at up- and down-crossings of specified levels

% For time waves, use spec2timeslopecdf

%

% y = cdf calculated at y

% levels = vector of relative levels (default = [-1 0 1 2]

% options = struct with fields (plus some more)

% .lp = if .p and .lbeta exist, the output x is modified

% Lagrange with extra -beta/(-i*omega)^p in the transfer

% function

% .lalpha = alpha value for modified Lagrange

% .lbeta = beta value for modified Lagrange

%

% Example:

% S=jonswap; mom=spec2mom(S);

% opt=simoptset(’du’,0.125,’Nt’,512,’dt’,0.25);

% levels=[0 1 2];

% y=linspace(-2,2,1001);

% [Fu,Fd]=spec2spaceslopecdf(S,y,levels,opt)

% clf

% subplot(211)

% plot(Fu.x,Fu.f{1},Fu.x,Fu.f{2},Fu.x,Fu.f{3}); hold on

% plot(Fd.x,Fd.f{1},’-.’,Fd.x,Fd.f{2},’-.’,Fd.x,Fd.f{3},’-.’)

% [Fu,Fd]=spec2spaceslopecdf(S,y,levels,opt,’lalpha’,1)

% title(’Slope CDF at space up- and downcrossings, symmetric waves’)

% axis([-2 2 0 1])

% subplot(212)

% plot(Fu.x,Fu.f{1},Fu.x,Fu.f{2},Fu.x,Fu.f{3}); hold on

% plot(Fd.x,Fd.f{1},’-.’,Fd.x,Fd.f{2},’-.’,Fd.x,Fd.f{3},’-.’)

% title(’Slope CDF at space up- and downcrossings, asymmetric waves’)

% axis([-2 2 0 1])

%

% See also: spec2spaceslopepdf, spec2timeslopecdf, spec2ldat,

% ldat2lwav, wav2slope

75

function [fu,fd]=spec2spaceslopepdf(S,y,levels,opt,varargin)

%SPEC2SPACESLOPEPDF Computes pdf for slope at crossings of space waves

%

%CALL: [fu,fd] = spec2spaceslopepdf(S,y,levels,options,varargin)

%

% fu, fd = pdf for Lagrange space wave slopes

% at up- and down-crossings of specified levels

% For time waves, use spec2timeslopecdf

%

% y = pdf calculated at y

% levels = vector of relative levels (default = [-2 -1 0 1 2])

% options = struct with fields (plus some more)

% .lp = if .p and .lbeta exist, the output x is modified

% Lagrange with extra -beta/(-i*omega)^p in the transfer

% function

% .lalpha = alpha value for modified Lagrange

% .lbeta = beta value for modified Lagrange

% .ltheta = if exist produces [w,x] to be transformed, theta =

% angle for the transformation

% .lp, .lbeta and .ltheta are empty ([]) by default

% .plotflag - ’off’, no plotting (default)

% - ’on’

%

% Example: See example for spec2spaceslopepdf

%

% Ref: Lindgren & Aberg, JOMAE, 131 (2009) 031602-1

% See also: spec2ldat, spec2timeslopecdf, ldat2lwav, wav2slope

76 APPENDIX B. WAFOL ROUTINES

function [Slopes,Steep,Data]=spec2steepdat(S,Nsim,type,lev,opt,varargin)

%SPEC2STEEPDAT Simulates Lagrange waves and extracts steepness and slopes

%

%CALL: [Slopes,Steep,Data] = spec2steepdat(S,Nsim,type,levels,options)

%

% Slopes = struct with fields

% .up = observed slopes at the up- and

% .down down-crossings of specified levels

% .meanup = average wave profiles near up- and crossings

% .meandown down-crossings of mean water level

% .meanx = at corresponding times

% .A = asymmetry measure by Hilbert transfor skewness

% .lambdaAL= asymmetry measure slope ratio at mean crossing

% Steep = struct with fields

% .ffull = full front steepness as measured by L’,L’’ etc

% .bfull = full back steepness

% .fhalf = half front steepness

% .bhalf = half back steepness

% .lambdaN = asymmetry measure according to front/back half period

% Data = struct Lagrange waves and two derivatives

%

% S = orbital spectrum

% Nsim = number of replicates in simulation (default = 1)

% levels = vector of standardized levels relative relative to

% (default levels = [-1 0 1 2 3]*standard deviation)

% type = ’time’, or ’space’

% options = struct with fields for individual replicates

% .plotflag - 0, no plotting (default)

% - 1, plotting of waves and cross-covariance

% - 2, plotting of average waves

% - 3, both the above

%

% See also: spec2ldat, ldat2lwav, wav2slope

77

function [TTFu,varargout]=spec2timeslopecdf(S,y,lev,opt,varargin)

%SPEC2TIMESLOPECDF Computes cdf for slopes at crossings of time waves

%

%CALL: [TTFu,TTFd,STFu,STFd,VTFu,VTFd] = ...

% spec2timeslopecdf(S,y,levels,options,varargin)

%

% XTFu, XTFd = cdf for slopes at up- and down-crossings of levels

% according to Sections 5.1.1, 5.1.2, 5.1.3 in

% Adv Appl Probab 42 (2010) 489-508.

% TT = time slopes at time crossings

% ST = space slopes at time crossings

% VT = velocity at time crossings

% Any number of output cdf:s can be specified,

% starting with TTFu, [with optional TTFd, ...]

% Note: Crossings with retrograd x-movement not included.

%

% For space waves, use spec2spaceslopecdf

%

% y = cdf calculated at y

% levels = vector of relative levels (default = [-1 0 1 2])

% options = struct with fields (plus some more)

% .lalpha = alpha value for modified Lagrange

% .lbeta = beta value for modified Lagrange

% .plotflag - ’off’, no plotting (default)

% - ’on’

%

% Example:

% S=jonswap; mom=spec2mom(S);

% opt=simoptset(’du’,0.125,’Nu’,512,’dt’,0.125);

% levels=[0 1 2]*sqrt(mom(1));

% y=linspace(0,8,1001);

% [TTFu,TTFd]=spec2timeslopecdf(S,y,levels,opt,’lalpha’,1)

% clf

% plot(TTFu.x,TTFu.f{1},TTFu.x,TTFu.f{2},TTFu.x,TTFu.f{3}); hold on

% plot(TTFd.x,TTFd.f{1},’-.’,TTFd.x,TTFd.f{2},’-.’,TTFd.x,TTFd.f{3},’-.’)

% title(’Slope CDF at up- and downcrossings, asymmetric time waves’)

% axis([0 8 0 1])

%

% See also: spec2ldat, spec2slopepdf, ldat2lwav, wav2slope

78 APPENDIX B. WAFOL ROUTINES

function [TTfu,varargout]=spec2timeslopepdf(S,y,levels,opt,varargin)

%SPEC2TIMESLOPEPDF Computes pdf for slopes at crossings of time waves

%

%CALL: [TTfu,TTfd,STfu,STfd,VTfu,VTfd] = ...

% spec2timeslopepdf(S,y,levels,options,varargin)

%

% XTfu, XTfd = pdf for slopes at up- and down-crossings of levels

% according to Sections 5.1.1, 5.1.2, 5.1.3 in

% Adv Appl Probab 42 (2010) 489-508.

% TT = time slopes at time crossings

% ST = space slopes at time crossings

% VT = velocity at time crossings

% Any number of output cdf:s can be specified,

% starting with TTFu, [with optional TTFd, ...]

% pdf is computed from a smoothed gradient of the

% simulated cdf; see spec2timeslopecdf

%

% For space waves, use spec2spaceslopepdf

%

% y = pdf calculated at y

% Note: the accuracy will depend on the y-spacing

% and on an interior smoothing parameter smoothp

% levels = vector of relaive levels

% (default = [-1 0 1 2])

% options = struct with fields (plus some more)

% .lalpha = alpha value for modified Lagrange

% .lbeta = beta value for modified Lagrange

%

% Example:

% S=jonswap; mom=spec2mom(S);

% opt=simoptset(’du’,0.125,’Nu’,256,’dt’,0.125);

% levels=[0 1 2]*sqrt(mom(1));

% y=linspace(0,8,101);

% [TTfu,TTfd]=spec2timeslopepdf(S,y,levels,opt,’lalpha’,1)

% clf

% plot(TTfu.x,TTfu.f{1},TTfu.x,TTfu.f{2},TTfu.x,TTfu.f{3}); hold on

% plot(TTfd.x,TTfd.f{1},’-.’,TTfd.x,TTfd.f{2},’-.’,TTfd.x,TTfd.f{3},’-.’)

% title(’Slope PDF at up- and downcrossings, asymmetric time waves’)

% axis([0 8 0 1])

%

% See also: spec2ldat, spec2slopepdf, ldat2lwav, wav2slope

79

function Slope=wav2slope(L,lev,dense,p)

%WAV2SLOPE Extracts slopes at up- and downcrossings after smoothing

%

%CALL: Slope=wav2slope(L,levels,dense,p)

%

% Slope = structure with observed up- and down-crossing slopes

%

% L = data with fields L.t/L.u and L.Z

% levels = vector with absolute levels; (required field, no default)

% dense = interpolation rate,

% []: no interpolation or smoothing

% positive integer: data are interpolated at rate

% dense at equidistant points (default: dense=20)

% p = [0...1] is a smoothing parameter (default=1)

% 0 -> LS-straight line

% 1 -> cubic spline interpolation

80 APPENDIX B. WAFOL ROUTINES

Bibliography

[1] S. Åberg. Wave intensities and slopes in Lagrangian seas. Adv. Appl. Probab.,

39:1020–1035, 2007. 1.1.2

[2] S. Åberg and G. Lindgren. Height ditributions of stochastic Lagrange ocean waves.

Prob. Eng. Mech, 23:359–363, 2008. 1.1.2

[3] S. Fouques, H. Krogstad, and D. Myrhaug. A second order Lagrangian model for

irregular ocean waves. J. Offshore Mech. Arct. Eng., 128:177–183, 2006. 3.1.2

[4] I. A. Leykin, M. A. Donelan, R. H. Mellen, and D. J. McLaughlin. Asymmetry of

wind waves studied in a laboratory tank. Nonlinear Proc. Geoph., 2:280–289, 1995.

1.3.3

[5] G. Lindgren. Exact asymmetric slope distributions in stochastic Gauss-Lagrange

ocean waves. Appl. Ocean Res., 31:65–73, 2009. 1.1.2, 1.3.2

[6] G. Lindgren. Slope distributions in front-back asymmetric stochastic Lagrange time

waves. Ann. Appl. Prob., 42:489–508, 2010. 1.1.2, 1.3.1, 1.3.2

[7] G. Lindgren and S. Åberg. First order stochastic Lagrange model for asymmetric

ocean waves. J. Offshore Mech. and Arctic Eng., 131:031602, 2009. 1.1.2, 1.3.3

[8] G. Lindgren and F. Lindgren. Stochastic asymmetry properties of 3D Gauss-

Lagrange ocean waves with directional spreading. Stochastic Models, 27:490–520,

2011. 2.1

[9] T. M. Marthinsen and S. R. Winterstein. On the skewness of random surface

waves. In Proc. 2’nd Int. Offshore and Polar Eng. Conf., ISOPE, San Francisco,

USA, volume III, pages 472–478, 1992. 3.1.1

[10] M. Miche. Mouvements ondulatoires de la mer on profondeur constante ou

décroissante. Forme limit de la houle lors de son déferlement. Application aux

digues marines. Ann. Ponts Chassées, 114:25–78, 1944. 1.1.2, 1.2.4

[11] J. M. Niedzwecki, J. W. van de Lindt, and E. W. Sandt. Characterizing random

wave surface elevation data. Ocean Eng., 26:401–430, 1999. 1.3.3

81

82 BIBLIOGRAPHY

[12] F. Nouguier, B. Chapron, and C. Guérin. Second-order Lagrangian description of

tri-dimensional gravity wave interactions. J. Fluid Mech., 772:165–196, 2015. 3.1.1,

3.1.2

[13] M. Prevosto. A second order, 3D, Lagrange wave model, 1998. 3.1.1, 3.1.2

[14] WAFO-group. WAFO - A Matlab Toolbox for Analysis of Random Waves and

Loads - a Tutorial. http://www.maths.lth.se/matstat/wafo/, 2011. Math. Stat.,

Center for Math. Sci., Lund Univ., Sweden. 1.1.1

http://www.maths.lth.se/matstat/wafo/

	Information on WAFO and WafoL
	Contents
	2D Lagrange waves
	The 2D Gauss-Lagrange model
	The Gaussian model
	The Gauss-Lagrange model
	The response functions

	Generating Lagrange waves with WafoL
	The simulation options
	Generating the elementary processes
	Generating the Lagrange wave
	The standard deviation

	Depth dependence and loops
	Front-back asymmetry

	Slopes and asymmetry measures
	An argument for the Gauss-Lagrange model
	Extracting slope characteristics from wave data
	Empirical slope distribution

	Theoretical slope distribution
	Asymmetry measures

	3D Lagrange waves
	The 3D Lagrange model
	The 3D Lagrange wave field
	The response functions

	Generating 3D Lagrange waves with WafoL
	Generating the elementary processes by spec2ldat3D
	The directional spectrum
	The simulation options
	Generation of the elementary processes

	Generating the Lagrange waves from the 3D fields
	The generation options
	Generating a single field
	Generating a movie
	Generating time series

	Generation of multiple time series from 3D spectrum
	Run and export movies

	2nd order non-linear Lagrange waves
	Euler, Gauss, Lagrange, and Stokes waves
	Gauss and 2nd order Stokes interaction
	Lagrange and 2nd order Stokes interaction
	Wafo and WafoL routines for 1st and 2nd order waves
	A comment on terminology

	Generating 1st order processes
	Introduction to the routines
	A comparison of execution times for 1st order models
	Some differences between the two methods for 2D waves
	Using the data from spec2ldat3DM/P

	Generating 2nd order 2D waves
	2D Stokes time waves with spec2nlsdat
	2D Stokes waves with spec2ldat3DM/P and ldat2lwav
	Wave asymmetry in 2nd order waves

	Generating 2nd order 3D waves

	Commands for the examples
	WafoLCh1, Commands for Chapter 1
	WafoLCh2, Commands for Chapter 2
	WafoLCh3, Commands for Chapter 3

	WafoL routines
	Bibliography

