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This short course is based on the course “Load and Fatigue Analysis” developed by Par
Johannesson, Igor Rychlik, Georg Lindgren, and Jesper Rydén at Mathematical Statistics,
Lund Institute of Technology, where it was given in January 2000. The goal of the the course
is to demonstrate the use of the Matlab toolbox WAFO, Wave Analysis for Fatigue and
Oceanography (www.maths.Ith.se/matstat/wafo/ ), in the areas of fatigue analysis
and modelling of random loads.

The course took place at Fraunhofer-Chalmers Centre at Chalmers Science Park with lec-
tures on Wednesdays 15-17 and computer exercises on Thursdays 10-12 March 2 and 3,
April 6,7, 13 and 14, 2005.

0. General Introduction. Introducing some basic concepts used in the following analy-
sis.

1. Analysis of Load Data. Analyse a load signal by means of turning points, rainflow
filter, level crossings, irregularity, rainflow cycles, load spectrum, Palmgren-Miner
damage, upper and lower bounds for rainflow damage. Fatigue life evaluation for
constant and variable amplitude loads.

2. Markov modelling of loads. A Markov chain of turning points is used for the mod-
elling. The limiting rainflow matrix can be computed, and sample paths simulated.
The concept of switching loads is combined with the Markov model, and decompo-
sition of a mixed rainflow matrix is treated.

3. Spectral modelling of loads. A load is specified by its power spectrum. Its limiting
rainflow matrix is computed through Markov approximation. Further, the expected
damage can be computed using the narrow band approximation, or accurate numer-
ical approximations.

4. Analysis of Measured Loads. Analysis of a measured switching load. Estimation
from measured time signal and from observed rainflow matrix. Decomposition of
the mixed rainflow matrix into stationary blocks.



Computers

The students are supposed to bring their own laptops equipped with Matlab and WAFO
(Download: www.maths.Ith.se/matstat/wafo/ ).

Starting Matlab with WAFO

In order to access the routines needed for the exercises and start Matlab, and add the path
to the WAFO-root directory. At the Matlab prompt, type

>> initwafo('full’) % Initiate WAFO toolbox
>> itmlab % Initiate Course files

Use the command help whenever you need, e.g.

>> help

>> help wafo % Contents of WAFO toolbox

>> help initwafo % Help about initwafo

>> help fatigue % Help about the fatigue part of WAFO
>> help dat2tp % Help about routine dat2tp

>> help tp2rfc % Help about routine tp2rfc
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General Introduction

This course is intended to present some tools for analysis of (random) loads in order to
assess the fatigue damage. Throughout the course we will use the Matlab toolbox WAFO
(Wave Analysis for Fatigue and Oceanography). We shall assume that the load is given by
one of three possible forms:

1. As measurements of the stress or strain function with some given sampling frequency
in Hz. Such loads will be called measured loads and denoted by z(t), 0 < ¢t < T,
where ¢ is time and T is the duration of the measurements.

2. In the frequency domain (that is important in system analysis) as a power spectrum.
This means that the signal is represented by a Fourier series

N
x(t) = m+ Z a; cos(w; t) + b; sin(w; t)
i=1

where w; = i - 2 /T are angular frequencies, m is the mean of the signal and a;, b; are
Fourier coefficients.

3. In the rainflow domain, i.e. the measured load is given in the form of a rainflow
matrix.

We shall now review some simple means of characterizing and analysing loads that are
given in forms 1)-3), and how to derive some characteristics, important for fatigue evalua-
tion and testing. More details will also be given in exercises.

We assume that the reader has some knowledge about the concept of cycle counting, in par-
ticular rainflow cycles, and damage accumulation using Palmgren-Miners linear damage
accumulation hypotheses. The basic definitions are given in the end of this introduction.

Parameters for Measured Load Histories

Some general properties of measured loads can be summarized by using a few simple
characteristics. Those are the mean m, defined as the average of all values, which is ap-
proximately equal tom = 1/T foT xz(t) dt, and the variance o that measures the variability
around the mean and is defined as 0? = 1/T fOT(x(t) — m)?dt, the mean frequency fo de-
fined as the number of times z(t) crosses upwards (upcrosses) the mean m normalized by
the length of the observation interval 7', and the irreqularity factor o, defined as the intensity
of mean upcrossings fy divided by the intensity of local maxima (intensity of cycles) in z(t).
(Note, a small a means an irregular process, (0 < o < 1).) Another important property is
the crossing spectrum s:(u) defined as the intensity of upcrossings of a level u by x(t) as a
function of u. Obviously fy = p(m).

The process of damage accumulation depends only on the values and the order of the local
extremes in the load. The sequence of local extremes is called the sequence of turning points.
The irregularity factor a is measuring how dense the local extremes are relatively to the
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mean frequency fy. For a regular function it would be only one local maximum between
upcrossings of the mean level giving irregularity factor equal to one. In the other extreme
case, there are infinitely many local extremes giving irregularity factor zero. However,
if the crossing intensity s(u) is finite, most of those local extremes are irrelevant for the
fatigue and should be disregarded. A particularly useful filter is the so-called rainflow
filter that removes all local extremes that builds rainflow cycles with amplitude smaller
than a given threshold. We shall always assume that the signals are rainflow filtered.

Fatigue Life Prediction

Obviously when the signal is given, the rainflow cycles can be extracted and fatigue dam-
age analysis performed. However, often the observed function is too short to contain all
possible cycles that a structure can experience and there is a need to model the damage
when z(t) is modelled as a possible outcome of a “random” measurement or, more pre-
cisely, as a random process, denoted in the following by X (¢). The main objective is then
to predict the fatigue life from the specification of a random load X (¢). This problem is
resolved on several levels of complexity.

First we shall use the fact that the crossing intensity can be used to give a conservative
estimate (overestimation) of the accumulated damage caused by X (¢), see Rychlik [9] for
algorithm and more detailed discussion. Now the crossing intensity can be computed us-
ing the so-called Rice’s formula. Another possibility is to include the intensity in the model
specification as is done for the so-called transformed Gaussian loads.

If more accurate predictions of fatigue life are needed then more detailed models are re-
quired for the sequence of turning points. Here the Markov chain theory has shown to be
particularly useful. There are two reasons for this:

e the Markov models constitute a broad class of processes that can accurately model
many real loads

e for Markov models, the fatigue damage prediction using rainflow method is particu-
larly simple, Rychlik [8] and Johannesson [4]

In the simplest case, the necessary information is the intensity of pairs of local maxima and
the following minima (the so-called Markov matrix or min-max matrix). The dependence
between other extremes is modelled using Markov chains, see Frendahl & Rychlik [1].

Frequency Modelling of Load Histories

The important characteristic of signals in frequency domain is their power spectrum §; =
(a? + b?)/(2Aw), where Aw is the sampling interval in frequency domain, i.e. w; = i - Aw.
The two-column matrix §(w;) = (w;, §;) will be called the power spectrum of x(t).

The sequence §; = arccos(a;/v/25;Aw) is called a sequence of phases and the Fourier series
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can be written as follows

N

x(t) = m+ Z V' 28;Aw cos(w; t + 0;).

=1

If the sampled signal contains exactly 2V + 1 points then z(t) is equal to its Fourier series
at the sampled points. In the special case when N = 2F, the so-called FFT (Fast Fourier
Transform) can be used in order to compute the Fourier coefficients (and the spectrum)
from the measured signal and in reverse the signal from Fourier coefficients.

As we have written before, the Fourier coefficient to the zero frequency is just the mean of
the signal, while the variance is given by 02 = Aw " §(w;) ~ [;° §(w) dw. The last integral
is called the zero-order spectral moment \g. Similarly higher-order spectral moments are
defined by

)\i—/ w's(w) dw.
0

Random Functions in Spectral Domain

Assume that we get new measurements of a signal that one is willing to consider as equiv-
alent, but it is seldom identical to the first one. Obviously it will have a different spectrum
$(w) and the phases will be changed. A useful mathematical model for such a situation
are the so-called random functions (stochastic processes) which will be denoted by X (t).
Here z(t) is seen as particular randomly chosen function. The simplest case that models
stationary signals with a fixed spectrum §(w) is

N
X(t)=m+ Y VéAwv2cos(wit + ;)
=1

where ©; are independent uniformly distributed phases. However, it is not a very realistic
model, since in practice we often observe variability in spectrum $(w) between measured
functions and hence 3; should be modelled as random variables too. Here we assume
that there is a deterministic function S(w) such that the average value of §(w;)Aw can be
approximated by S(w;)Aw and in many cases one can model 3, = R? - S(w;)/2 where R;
are independent random factors, all Rayleigh distributed. (Observe that the average value
of R? is 2.) This gives the following random function

N
X(t)=m+ Z V S(wi) AwR; cos(w; t + ©;).
i=1

The process X (¢) has many useful properties that can be used in analysis like: for any fixed
t, X (t) isnormally distributed, called also Gaussian distributed. A probability of any event
defined for X (¢) can, in principal, be computed when the mean m and the spectral density
S are known.

If Y(¢) is an output of a linear filter with X (¢) on the input, then Y'(¢) is also normally
distributed and we need to derive the spectrum of Y (¢) to be able to analyse its properties.
This is a simple task, since if the transfer function of the filter H(w) is given, then the
spectrum of Y (¢), denoted by Sy, is given by Sy (w) = |H(w)2S(w). For example, the



6 General Introduction

derivative X'(t) is a Gaussian process with mean zero and spectrum Sy (w) = w?S(w). The
variance of the derivative is 0%, = [ Sy (w) dw = Xs.

The Gaussian process is a sum of cosine terms with amplitudes defined by the spectrum;
hence, it is not easy to relate the power spectrum and the fatigue damage. The crossing
intensity .(u), which yields the average number of upcrossings of the level v, is given by
the celebrated Rice’s formula

p(u) = foexp(—(u—m)®/207).

Using spectral moments we have that 0 = Ao while fy = 5,/ :\\—(2)

Another approach is to model the turning points of a Gaussian process by a Markov chain,
where the so-called Markov matrix is computed from the specified spectrum S(w). Then
calculation of rainflow matrices and fatigue damages are possible. This approach requires
a considerable amount of computation, but often renders accurate results, see Rychlik [8]
and Rychlik et al. [10] for extension to transformed Gaussian processes.

Fatigue Life Prediction — Rainflow Method

In laboratory experiments, one often subjects a specimen of a material to a constant am-
plitude load, e.g. L(t) = ssin(wt) where s and w are constants, and counts the number of
cycles (periods) until it breaks. The number of load cycles N (s) as well as the amplitudes
s are recorded. Note that for small amplitudes, s < s, N(s) = oo, i.e. no damage is ob-
served. The amplitude s is called the fatique limit or the endurance limit. In practice, one
often uses a simple model for N(s),

K ls b8 s> Seo
N(s) = ’ 1
(5) { o0 § < Soo, M

where K is a (material dependent) stochastic variable, usually lognormally distributed, i.e.
with K~ = Fy~! where In(E) € N(0,0%), and v, 3 are fixed constants.

For irregular loads, also called variable amplitude loads, one is often combining the S-N
curve with a cycle counting method by means of the Palmgren-Miner linear damage ac-
cumulation theory, to predict fatigue failure time. The cycle counting forms equivalent
load cycles. The now commonly used cycle counting method is rainflow counting and was
introduced by Endo [6] in 1968. It was designed to catch both slow and rapid variations
of the load by forming cycles by pairing high maxima with low minima even if they are
separated by intermediate extremes. More precisely, each local maximum is a top of a hys-
teresis loop with an amplitude that is computed using rainflow algorithm. The definition
of rainflow cycles as illustrated in Figure 1 is due to Rychlik [7].

Let t;, be the time of the k:th local maximum and s;, the amplitude of the attached hysteresis
loop. Define the total damage by

Dit)y=>" le =K sy =KDg(t) @)

tp<t (5%) ti<t

where the sum contains all cycles up to time t. The fatigue life time 7"/, say, is shorter than
tif D(t) > 1. In other words, T/ is defined as the time when D(t) crosses level 1. A very
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Figure 1: Definition of the rainflow cycle, as given by Rychlik [7]. From each local maximum M, one
shall try to reach above the same level, in the backward(left) and forward(right) directions, with an as small
downward excursion as possible. The minimum, of m;, and m;;, which represents the smallest deviation
from the maximum M), is defined as the corresponding rainflow minimum mic. The k:th rainflow cycle is
defined as (mfe, My).

simple predictor of 7/ is obtained by replacing K in Eq. (2) by a constant, for example the
median value of K equal to v. For high cycle fatigue, the time to failure is long (more than
10°/fo). Then for stationary (and ergodic and some other mild assumptions) loads, the
damage Dgs(t) can be approximated by its mean E[Dg(t)] = dg - t. Here dg is the damage
intensity, i.e. how much damage is accumulated per time unit. This leads to a very simple
predictor of fatigue life time

. 1
= —. (3)
vdg

Switching Loads — Rainflow Matrices

Often the real measurements are gathered in the forms of rainflow matrices. In the same
time there is a need of modelling real loads that leads to the observed rainflow matrix. In
particular the load can be built up by blocks of stationary load conditions that switch be-
tween each other. The rainflow matrix is then a nonlinear mixture of the rainflow matrices
for the stationary models and for switching between them. The objective is to model the
real loads, see Johannesson [4] for detailed presentation.

When studying switching loads one has to model both the switching between the subloads
and the characteristics of the different subloads. We will use a hidden Markov model
(HMM) to describe the switching load. This means that the switching is controlled by
a Markov chain, called the regime process, which can not be observed and therefore is
called hidden. Only the switching load process can be observed, see e.g. Figure 2.1. The
regime process is defined by the conditional probabilities of switching between the differ-
ent regime states. This determines the mean length of each subload and the proportion of
the different subloads. The length of a subload is geometrically distributed (~ exponen-
tial). The subloads are modelled by min-Max (and Max-min) matrices, see Figure 2. This
means that the sequence of local extremes (also called turning points) are discretized to
fixed levels (often 64 or 128 levels in practice). The transitions from a local extreme to the
next local extreme are approximated by a Markov chain. This is a 1-step Markov approx-
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imation, as the distribution of the next turning point only depends on the current turning
point and not on the whole history of turning points. For a thorough description of the
models and the algorithms see Johannesson [4, 3]. A summary without any mathematical
details is found in Johannesson et al. [5].
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Figure 2: Part of a discrete load process where the turning points are marked with e. The scale to the left
is the discrete levels. The transitions from minimum to maximum and the transitions from maximum to
minimum are collected in the min-max matrix, F and max-min matrix, F', respectively. The rainflow cycles
are collected in the rainflow matrix, F™. The figures are the number of observed cycles and the grey areas
are by definition always zero.



Computer Exercise 1

Analysis of Load Data

1.1 Measured data

Here we will consider a measured wave load from deep water. The load signal x(¢) is the
level of the sea-surface (measured in meters) at a fixed point. A measurement of x(t) is
saved in the file deep.dat . The first column contains the time and the second values of
the load. Plot the whole load and zoom in the first 1000 values

\Y

>> |oad deep.dat

>> X = deep;

>> plot(x(:,1),x(:,2))

>> plot(x(1:1000,1),x(1:1000,2))

VvV Vv

The duration of the measurements in seconds, 7', is computed by

>> T=x(end,1)-x(1,1);

You can view the variables in the workspace by typing

>> whos

Estimate the mean and the standard deviation of X (¢). (Hint: Use mean and std . Start
with help mean .)

When analyzing load data only the sequence of turning points (i.e. the sequence of local
extremes) is of interest and not the exact path between the local extremes. Obtain the
turning points for deep and compare with the original time signal:

>> tp = dat2tp(x);

>> plot(x(:,1),x(:,2),tp(:,1),tp(:,2),".-")
>> axis([0 100 -20 20])
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To store the turning points instead of the original time signal is a good way to compress
load data. When analyzing the power spectrum of the load, one needs the whole time
signal, but when analyzing the level crossings and the rainflow cycles, then the turning
points yield sufficient information.

It is also possible to apply a rainflow filter (also called hysteresis filter), which removes
small oscillations from the signal. All rainflow cycles with amplitudes below the threshold
h are removed.

>> tpl = dat2tp(x,1);

>> plot(x(:,1),x(:,2),tp(:,1),tp(:,2),tp1(:,1),tp1(:,2))
>> axis(0 100 -20 20])

Next we shall compute the mean frequency fy and the irregularity factor «, see Introduc-
tion for definitions.

First we compute a two column matrix with levels and number of upcrossings of these lev-
els. Then the crossings will be divided by the time duration 7" in order to get the intensity
of crossings; “how many per time unit (second)”.

>> |c = tp2lc(tp);

>> |c(:,2)=lc(:,2)IT;

>> plot(lc(:,1),Ic(:,2))
>> semilogx(lc(;,2),lc(;,1))

\Y

In order to obtain the mean frequency fy we will use the Matlab function interpl . Type
help interpl to read about the routine. (You are recommended to use help whenever
a new function or routine is introduced.)

>> m=mean(x(:,2));
>> f0 = interpl(lc(:,1),lc(;,2),m,linear’);
>> f0

Finally we compute the irregularity factor .. The intensity of local maxima is equal to the
number of local extremes in the sequence of turning points divided by 27", so the parameter
a can be computed by

>> extrO=length(tp)/2/T;
>> alfa=f0/extr0

1.2 Gaussian process as a model for the deep water data

Wave data for deep water is often modelled as a Gaussian process, see Introduction for
definitions and simple properties. The most important notion is the pdf function! for the

! probability density function



Computer Exercise 1. Analysis of Load Data 11

normal distribution with mean m and standard deviation o computed in the previous sec-
tion.

Using normal probability paper, we can check the agreement between data and the as-
sumed, normal model.

>> wnormplot(x(:,2))

Although the pdf function is important in fatigue analysis it is more important that the
crossing intensity derived from the model is in agreement with the one observed from the
signals, see Computer Exercise 3 for more detailed discussion.

We shall use Rice’s formula, given in the Introduction, to compute the theoretical crossing
intensity for Gaussian processes. It contains the two spectral moments Ay and A2 and in or-
der to compute them we need to estimate the spectrum of the load z. Estimate the spectral
density of the deep water data

>> S = dat2spec(deep);
>> wspecplot(S);

The spectral density S is saved as a Matlab structure containing some additional informa-
tion; to observe the structure and plot the estimated density, just execute

>> S
>> plot(S.w,S.S)

The spectral moments can be computed from the estimated spectral density by means of
numerical integration by using spec2mom.

>> lam = spec2mom(S,4); LO=lam(1); L2=lam(2); L4=lam(3);

The variables LO, L2, and L4 contain the spectral moments Ao, A2, and )4, respectively.
Now we can compare the intensity of level crossings from Rice’s formula with the observed
number of level crossings. First we compute the mean frequency fy, then the crossing
intensity function p(u). (Note that we assume that the mean of signal m is zero.)

>> f0=1/(2 =pi) *sqrt(L2/L0O)

>> ux = -20:0.1:20;

>> ricex = f0 *exp(-ux. =*ux./(2 =L0));
>> plot(lc(:,1),Ic(:,2),’-",ux,ricex,’--")

>> semilogx(lc(:,2),lc(:,1),- ricex,ux,’--)

1.3 Rainflow Cycles

Recall the definition of rainflow and min-max cycle counts. The demo program democc
illustrates these definitions. Use it to identify the first few rainflow and min-max cycles in
X.
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>> proc = x(1:500,:);
>> democc

Two windows will appear. In Demonstration Window 1, first mark the turning points by
the button TP. Then choose a local maximum (with the buttons marked +1, —1, 45, —5) and
find the corresponding cycle counts (with the buttons RFC,TP). The cycles are visualized
in the other window.

We shall now examine cycle counts in the load X. From the sequence of turning points tp
we can find the rainflow and min-max cycles in the data set

>> RFC = tp2rfc(tp);
>> mM = tp2mm(tp);

Since each cycle is a pair of a local maximum and a local minimum in the load, a cycle
count can be visualized as a set of pairs in the R?>-plane. Compare the rainflow and min-
max counts in the load.

>> subplot(1,2,1), ccplot(RFC)
>> subplot(1,2,2), ccplot(mM)

Observe that RFCcontains more cycles with high amplitudes, compared to mM This be-
comes more evident in an amplitude histogram.

>> ampRFC = cc2amp(RFC);
>> ampmM = cc2amp(mM);
>> subplot(1,2,1), hist(ampRFC)
>> subplot(1,2,2), hist(ampmM)

1.3.1 Turning Points & Rainflow Filter

Which threshold ranges are appropriate for our signal? A rule of thumb is about 10% of
the total range. Try some thresholds, and compare the results. How large reduction do we
obtain? How much damage is kept in the signal?

>> h1=2; h2=5; h3=10; % Threshold ranges for the rainflow filter
>> tp_0 = dat2tp(x); % No rainflow filter
>> tp_1 = dat2tp(x,hl); % Rainflow filter, h1
>> tp_2 = dat2tp(x,h2); % Rainflow filter, h2
>> tp_3 = dat2tp(x,h3); % Rainflow filter, h3

>> whos % How large reduction in number of cycles?

% How much damage do we loose?

>> peta = 5; % Define a damage exponent

>> dam_0 = cc2dam(tp2rfc(tp_0,'CS’),beta); dam_1 = cc2dam(tp2rfc(tp_1,'CS’),beta);
>> cc2dam(tp2rfc(tp_1,'CS’),beta); dam_2 = cc2dam(tp2rfc(tp_2,'CS’),beta);

>> cc2dam(tp2rfc(tp_2,'CS’),beta); dam_3 = cc2dam(tp2rfc(tp_3,'CS’),beta);
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>> [dam_1 dam_2 dam_3] % Damage
>> [dam_1 dam_2 dam_3]/dam_0 % Relative damage
Questions:

e How large reduction in number of cycles did you obtain?

e How much of the damage was kept?

e Which threshold would you like to chose?

Choose a threshold value.

>>

>>
>>
>>

>>
>>
>>
>>

>>

h = ... your choice ...

tp = dat2tp(x,h); % Rainflow filter

rfc = tp2rfc(tp,’CS’); % Rainflow cycles

dam = cc2dam(rfc,beta); % Damage

dam/dam_0 % Relative damage

length(tp_0) % Number of turning points
length(tp) % Number of TP after rainflow filter
length(tp_0)/length(tp) % Relative length
plot(x(:,1),x(:,2),tp(:,1),tp(:,2)) % Compare signals before/after rainflow filter

1.3.2 Rainflow Matrix

There are different ways of plotting the rainflow matrix.

>>
>>

n = 64; % Number of discrete levels
[RFM,u,param] = dat2rfm(tp,h,n);% Rainflow matrisx

% Draw the rainflow matrix in Min-Max-format

>>

cmatplot(u,u,RFM,3), colorbar

% Draw the rainflow matrix in Mean-Amplitude-format

>>
>>
>>

[RFMrm,paramM,paramR,paramA] = cmat2rmcmat(RFM,param);
ua=levels(paramA); um=levels(paramM); cmatplot(um,ua,RFMrm’,3), colorbar
xlabel('Mean’), ylabel('’Amplitude’)

% It is also possible to define the discretization levels directly

>>
>>

param = [-150 150 100]; % Define discretization
[RFM,u,param] = dat2rfm(tp,h,param);

% Draw the rainflow matrix in Min-Max-format

>>

cmatplot(u,u,RFM,3), colorbar
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From the rainflow matrix the level crossings can be obtained. How is the level crossings
calculated from the rainflow matrix?

>> |c = cmat2lc(param,RFM); % Calculate the level crossing spectrum
% Plot the load spectrum in different ways
>> figure(2),

>> plot(lc(;,1),Ic(:,2)) % Frequency function
>> semilogy(lc(:,1),lc(:,2)) % Frequency function (log-scale)
>> semilogx(lc(:,2),lc(:,1)) % The fatigue way of plotting

The rainflow amplitude histogram can obtained from the rainflow matrix. How?

>> amp = cmat2amp(param,RFM); % Calculate the amplitude histogram
>> figure(3)

>> plot(amp(:,1),amp(:,2)); % Plot the frequency function

>> semilogy(amp(:,1),amp(;,2),’ *");% Frequency function in log-scale

The load spectrum is the most common way to present the rainflow amplitudes, where the
cumulative number of cycles above a certain amplitude is plotted versus the amplitude,
i.e. the load spectrum is the survival function.

>> [splot(amp); % Cumulative number of cycles
>> [splot(amp,0,0); % Histogram of the number of cycles
>> |splot(amp,0,0,beta); % Damage histogram

1.3.3 Calculation of damage intensity

In the section with optional exercises one can estimate parameters in the S-N curve. The
estimated parameters are: v = 5.5 - 10710, 8 = 3.2, and 0% = 0.06. These numerical values
will be used in the examples below. For our load x the intensity is estimated as follows

>> bheta=3.2; gam=5.5E-10;
>> d_beta=cc2dam(RFC,beta)/T;
>> time_fail=1/gam/d_beta/3600 %in hours of the specific storm

1.4 Additional exercises, Optional

In the following exercises we shall use a slightly different parameterization of the S-N curve
than given in Introduction, viz.

~1,~1.-f
N(S):{ K™ e s 8> 800, (1.1)

00 S < S00,
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where K is a lognormally distributed random factor, i.e. In(K) € N(O, a%(), and ¢, § are
fixed material dependent constants.

1.4.1 Estimation of S-N curve
Taking the logarithm of Eq. (1.1) and assuming that In(K) € N(0, 0%;) we obtain
In(N(s)) = —In(K) — In(e) — BIn(s) € N(=In(e) — BIn(s),0%), (1.2)

for every fixed s > s, e and /3.

Let T be the fatigue life time. Since the frequency of the load oscillation w is constant we
have

P[T <t]=P[N(s) < £t] =P[K < es’£t],

where 52t is the number of cycles in the interval [0, ¢].

In the following exercises we shall estimate the parameters in the model (1.1).

Load the SN-data by typing

>> |oad SN

There are two variables s and Nrepresenting s and N (s). Plot N(s) against s by
>> plot(N,s,’0’)

>> axis([0 14e5 5 35 ])
>> loglog(N,s,'0")

In the following we assume that s, = 0.

The plotted data consist of 5 groups at s = 10, 15, 20, 25 and 30 MPa. Each group has 8
observations of N (s) making a total of 40 observations. Assume that the observations are
independent, that the model (1.1) holds and K is a lognormal variable.

1. Propose an estimation procedure for ¢, 3 and o2 .
2. Check the applicability of (1.1) by using normal probability paper,

>> wnormplot(reshape(log(N),8,5))

3. Use snplot  to get estimates of ¢, 8 and o%. (Try help snplot )
e~ , B~ U%{ ~

Solution:
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>> [e0,beta0,s20] = snplot(s,N,12)

>> [e0,beta0,s20]
= 5.5361e-10
beta0 = 3.2286

el

s20

snplot(s,N,14)

1.4.2 Calculation of the 95% quantile for the fatigue life time

Estimate t 95 defined by

P[T > t0_95] = 0.95,

for s =22 MPa and w = 10 - 27.

Solution: We want to solve the equation

Since

we have

which gives

a=P[T>ty] =1—-P[T <ta].

T<ta) & {N(s)<gta)

1—-P[T <t,]=1-P[N(s) < £t,]=1-P[L; < £¢,]

esP 2
In(esPwty /(2
1—P[K§6352";’rta]_1_@<n(68wa/( T))
oK
ﬁta
(5 gy o g = ZTOPR)
OK esBw

where ), is the a-quantile of N(0,1), i.e. P(X > \,) = a where X € N(0,1).

1.4.3 Fatigue life distribution under variable random load

Compare the total damage caused by rainflow cycles for loads L1 and L2.

>> DO = e0x*cumsum((RFC(:,2)-RFC(:,1)).”beta0);

>> plot(DO)

Let T be the fatigue failure time. The failure time distribution is computed as follows

P[T/ <t]=P[D(t) > 1] = P[K < eDs(t)],

where Dj(t) is defined by (2). For loads with short memory the damage Dg(t) is asymp-

totically Gaussian, i.e.

Dgs(t) =~ N(dgt, O'%t), for large values of ¢.
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where dg is called the damage intensity

Dgs(t
dg = lim ﬂ and

t—00 t

Since ¢ is small and InK € N(0, 02)

Fri(t) =P[TY <t]=P[D(t) > 1] = P[K < eDs(t)] ~

~ P [KS 6(d5t+05\/7€Z>:| :/OO P[K < e(dst +osVtz)] d(2)dz =
00 Ine+Ind In(1+ Z L
_/ @(n +1n gt+an( + 4 \/Ez)> o) dz. L3)

where we used that Dg(t) ~ dgt +o5v/tZ, Z € N(0, 1). If the cycle count {(z, y)y, } is given,
then the damage intensity dg is estimated by using the function cc2dam.

Estimate the damage intensity, dg, (as a function of parameter /) due to the rainflow count
in load x.

>> peta = 3:0.1:8;

>> DRFC = cc2dam(RFC,beta);
>> dRFC = DRFC/T

>> plot(beta,dRFC)

Recall that for the S-N data we have e = 5.5-10719, 3 = 3.2 and ¢ = 0.06. Further we have
estimated ag = 0.5. Estimate the failure distribution, using formula (1.3) implemented in
the function ftf

>> help ftf
>> [t0,F0] = ftf(e0,cc2dam(RFC,beta0)/T,s20,0.5,1);

Check the influence of the parameter o on the T/-distribution by putting g5 = 0 and
a; = 5, respectively.

>> [t1,F1] = ftf(e0,cc2dam(RFC,beta0)/T,s20,0,1);
>> [t2,F2] = ftf(e0,cc2dam(RFC,beta0)/T,s20,5,1);
>> plot(t0,FO0,t1,F1,t2,F2)

Since € is small, o—g has little influence on the T/ -distribution and can be omitted, i.e. og = 0.

Under the assumption that 062 = 0 compute the ¢, quantile, i.e.

P[T/ > t,] = a.

Solution: ¢, = efldgle’\&" where )\, is the a-quantile of N(0, 1)-distribution.

Plot tg.99 for 3 < § < 8 and rainflow count RFG and min-max count mM
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>> taRFC = exp(-1.96 =*sqrt(0.06))/e0./dRFC;
>> DmM = cc2dam(mM,beta);

>> dmM = DmM/T

>> tamM = exp(-1.96 *sqrt(0.06))/e0./dmM;
>> plot(beta,taRFC,beta,tamM,’r’)

1.4.4 Crack growth data

In some applications the degradation of material is defined as the length of a crack. The
strength of a material is assumed to be zero when the length of the crack reaches a critical
level acrt. In laboratory experiments one is subjecting a specimen to a constant amplitude
load. The length of a crack as a function of the number of periods is recorded. A set of crack
length data with very high accuracy of measurement was presented by Virkler et al. [11] in
1979. We shall briefly analyse this data set.

Load Virkler data by

>> clear
>> |oad virkler

The material is saved as a 164 x 69 matrix with the crack length in the first column and the
number of the cycles for the 68 specimens in the following columns. Plot the first column
against the second by

>> plot(v(:,2),v(:,1))

The figure shows typical non-linear character of crack growth phenomena. Plot all 68 data
series on one plot by

>> plot(v(:;,2:69),v(;,1),'b-")

Define the life time T}, as the number of cycles needed to get a crack with length a. For each
specimen one obtains an independent observation of T}, defined as the number of cycles
when the crack growth curve crosses the level a.

Use the function alevel to get the life time 7}, for a = 15 by

>> N = alevel(v,15);

and view the material graphically by

>> plot(N,ones(1,length(N)),’0’)
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1. For a fixed level a = 20, choose an appropriate model for the life time distribution 7,.
Check extreme value, lognormal, etc. Use the commands wnormplot , gumbelplot
and weibplot . Which distribution gives a good fit?

2. Let ay denote the crack length after N cycles. From each specimen we can get an
observation of ay. The function nlevel returns the crack length of the specimens
after a specified number of cycles, here with N = 2 - 10°.

>> a = nlevel(v,2e5);

>> plot(a,ones(1,length(a)),’o’)

Find a model for the distribution of the crack length—check the proposed model in
Example 2, Chapter 2 (lognormal).
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Computer Exercise 2

Switching Markov Loads and
Rainflow Analysis

2.1 Introduction

In the PhD thesis “Rainflow Analysis of Switching Markov Loads”, Johannesson [4] algo-
rithms were developed for calculating the theoretical rainflow matrix for switching processes,
and for decomposing a mixed rainflow matrix. (Some of the material is also found in the
Licentiate thesis “Rainflow Cycles for Random Loads with Markov Regime”, Johannes-
son [2]) These algorithms were implemented in Matlab, and is included in the WAFO tool-
box.

2.2 Markov Chains of Turning Points
First we will examine a non-switching load, modelled as a Markov chain of turning points.

2.2.1 Model Definition

The model is defined by the min-max matrix, G The matrix has dimension n x n, where
n is the number of discrete levels (e.g. 32 or 64). Here the discrete levels are chosen in the
range from —1 to 1.

>> n = 32; param = [-1 1 n]; % Define discretization
>> u = levels(param); % Discrete levels
>> G = mktestmat(param,[-0.2 0.2],0.15,1); % min-max matrix

The command mktestmat (try help mktestmat ) creates a test matrix according to the
model in [4, p. 127, Egs. (8.15,8.16)].

2.2.2 Simulation
The model is easy to simulate and this is performed by the routine mctpsim

21
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>> T = 5000; % Length of simulation (humber of TP)
>> xD = mctpsim({G []},T); % Simulate
>> x = u(xD); % Change scale to levels -1,..,1
and returns the discrete load XD, which takes values 1,...,n. By changing the scale of XD

the load X takes values between —1 and 1. The first 200 samples of the simulation is plotted

by

>> t=1:200; plot(t,x(t))

2.2.3 Computation of the Limiting Rainflow Matrix

The limiting rainflow matrix Grfc for the Markov model is calculated by the routine
mctp2rfm .

>> Grfc=mctp2rfm({G,[]});

A cycle matrix, e.g. a min-max or rainflow matrix, can be plotted by cmatplot . Now we
will compare the min-max and the rainflow matrices

>> subplot(1,2,1),cmatplot(u,u,G),axis('square’)
>> subplot(1,2,2),cmatplot(u,u,Grfc),axis('square’)

Both 2D- and 3D-plots are possible draw, see help cmatplot . It is also possible to plot
many matrices in one call.

>> cmatplot(u,u,{G Grfc},3)

Try also to plot with method=1 , which gives a 3D-plot, and with method=4 , which gives
contour lines. Note that for high maxima and low minima, the rainflow matrix has a
pointed shape while the min-max matrix has a more rounded shape.

Calculate the observed rainflow matrix obtained from the simulation (using dtp2rfm ).
Compare it with the theoretical one.

>> FrfcObs = dtp2rfm(xD,n);
>> cmatplot(u,u,{FrfcObs Grfc *T/2})

In order to compare the observation FrfcObs with the theoretical rainflow matrix Grfc
we have to multiply it by the number of cycles in the simulation which is equal to T/2 .

2.3 Switching Markov Chains of Turning Points

Here we will examine an example of a switching load modelled by a switching Markov
chain of turning points. This is the same model as used in [4, p. 57, Example 4.1]. The load
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will be a mixture of two subloads specified via its min-max matrices. First we will define
the model and make a simulation. Then we will calculate the limiting rainflow matrix for
the model and compare it with a simple superposition of the two subloads and also with
the observed rainflow matrix from the simulation. Finally, we will examine level crossings
and damage. See also the demo rfcdemo2 which considers the examples shown below of
switching Markov chains of turning points.

2.3.1 Model Definition

The model is defined by the min-max matrices for each subload together with the transition
matrix P for the regime process. Here we consider a mixture of two subloads, which are
defined according to model A in Table 2.1. (We will examine model B later on.) By using

Model A Model B
subload z || =1, | 22, Sy | Ay || T12 | 222 Sy | As
1 -041-03(015]101 -01| 011 0.28 | 0.5
2 03| 04]015]|1.0 00| 00012120

Table 2.1: Parameters for the subloads of models A and B. The min-max matrix G for each subload is given
by the templates describes in [4, p. 127, Egs. (8.15,8.16)]. The subloads are assumed to be time-reversible,
and hence the max-min matrix is G = G".

the routine mktestmat , we specify the min-max matrices, G1 and G2 They both have
dimension n x n, where n = 32 is the number of discrete levels, ranging from —1 to 1.

>> n=32; param = [-1 1 nJ; % Define discretization
>> u=levels(param); % Discrete levels

>> G1 = mktestmat(param,[-0.4 -0.3],0.15,1); % regime 1

>> G2 = mktestmat(param,[0.3 0.4],0.15,1); % regime 2

Plot the matrices G1and G2by using cmatplot

Next we specify a transition matrix for the regime process. (You may choose a different
one if you like.)

0.90 0.10
P = (2.1)
0.05 0.95
>> pl1=0.10; p2=0.05;
>> P=[1-pl pl; p2 1-p2] % Transition matrix
>> statP=mc2stat(P) % Stationary distribution

which has stationary distribution statP , equal to p = (1/3, 2/3). This means that (in
mean) 1/3 of the time is spent in regime 1 and 2/3 of the time in regime 2.

2.3.2 Simulation

The model is simulated by the routine smctpsim
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>> T=5000; % Length of simulation (number of TP)
>> [xD,z] = smctpsim(P,{G1 []; G2 []},T); % Simulate
>> x=u(xD)’; % Change scale to levels -1,..,1
and returns the switching load XD, which takes values 1, ...,n, and the regime process z.

By changing the scale of XD the switching load x takes values between —1 and 1. The first
400 samples of the simulation is plotted by

>> t=1:400;
>> hmmplot(x(t),z(t),t,[1 2]) % Same colour
>> hmmplot(x(t),z(t),t,[1 2],”,”,1) % Different colours

and a simulated load is shown in Figure 2.1. The regime process z controls the current
characteristics of the switching load X, which is clearly seen as changes of the mean level.
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Figure 2.1: The first 400 samples from a simulation of model A. The upper graph shows the turning points
X and the lower the regime process Z.

2.3.3 Computing the Limiting Rainflow Matrix

The two subloads are described by G1 and G2, respectively, and their limiting rainflow
matrices can be calculated by the routine mctp2rfm . The rainflow matrix for the switching
load is calculated by the routine smctp2rfm  which takes the transition matrix P together
with Gland G2as input.

>> Grfc=smctp2rfm(P,{G1,[];G2,[I});

>> Grfcl=mctp2rim({G1,[]});

>> Grfc2=mctp2rim({G2,[]});

>> GrfcSum=statP(1) * Grfcl+statP(2) * Grfc2;

The matrix GrfcSum is a superposition of the rainflow matrices for subloads 1 and 2, re-
spectively. This is the rainflow matrix we obtain if we don’t take the switching into account.
The rainflow matrices can be plotted by cmatplot

>> cmatplot(u,u,{Grfcl Grfc2; GrfcSum Grfc})
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Note that, if the rainflow matrices for the two regimes are superimposed like GrfcSum,
then the largest cycles (low minima and large maxima) are lost, compare the two lower
plots.

2.3.4 Model B (Optional)

Skip this section if you don’t have time, and come back to it later.

Here we shall examine model B in Table 2.1, the same model as in [4, p. 61, Example 4.2].
For this model the subloads have the same mean level, equal to zero, but different standard
deviations. The transition matrix P for the regime process will be the same as before. By
using the routine mktestmat , we specify the min-max matrices, G1Band G2B

>> G1B
>> G2B

mktestmat(param,[-0.1 -0.1],0.28,0.5); % regime 1
mktestmat(param,[0 0],0.12,2); % regime 2

Plot the matrices G1Band G2Bby using cmatplot . Simulate a load and plot it:

>> [xDB,zB] = smctpsim(P,{G1B []; G2B []},T); % Simulate
>> xB=u(xDB)’; % Change scale to levels -1,..,1
>> hmmplot(xB(t),zB(t),t,[1 2],”,”,1) % Different colours

A simulated signal is shown in Figure 2.2.
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Figure 2.2: The first 400 samples from a simulation of model B. The upper graph shows the turning points X
and the lower the regime process Z.

Next we calculate the rainflow matrices for the switching load, for the subloads, and the
superposition of the two subloads.

>> GrfcB=smctp2rfm(P,{G1B,[];G2B,[]});

>> Grfc1B=mctp2rfim({G1B,[1});

>> Grfc2B=mctp2rfim({G2B,[]});

>> GrfcSumB=statP(1) *GrfclB+statP(2) * Grfc2B;

Plot the matrices and compare GrfcB with GrfcSumB. What is your observations and
conclusions? Can you see the switching when looking at the rainflow matrix?



26 Computer Exercise 2. Switching Markov Loads and Rainflow Analysis

2.3.5 Observed Rainflow Matrix and Smoothing

Now we consider model A again. From the simulated load we can find the rainflow cycles
and then compute the observed rainflow matrix FrfcObs0O .

>> TP = dat2tp([(1:T) xD]); % Turning points

>> RFC = tp2rfc(TP); % Rainflow cycles

>> paramD = [1 n nJ;

>> FrfcObs0 = cc2cmat(parambD,RFC); % Observed rainflow matrix

For a discrete sequence of turning points (which XD is) one can perform the above operation
by one command

>> FrfcObs = dtp2rfm(xD,n); % Observed rainflow matrix

Compare the observed rainflow matrix FrfcObs with the theoretical one Grfc .

>> cmatplot(u,u,{FrfcObs/(T/2) Grfc},1)

If the observed rainflow matrix is too wiggly it can be smoothed using smoothcmat to
obtain a better estimate of the limiting rainflow matrix. The smoothing procedure can also
be used to extrapolate (and interpolate) the observed rainflow matrix to cycles that were
not observed.

>> h=0.8; FrfcSmooth = smoothcmat(FrfcObs,1,h);
>> cmatplot(u,u,{FrfcObs/(T/2) FrfcSmooth/(T/2) Grfc},1)

The so called bandwidth h is a smoothing parameter. Try different values of the smoothing
parameter h and see the difference. A small h gives little smoothing, while a large h gives
much smoothing.

2.3.6 Level Crossings
Information about level crossings is contained in the rainflow matrix.

>> mu = cmat2lc(param,Grfc);

>> muSum = cmat2lc(param,GrfcSum);

>> muObs = cmat2lc(param,FrfcObs/(T/2));

>> subplot(2,1,1), plot(mu(:,1),mu(:,2),muSum(:,1),muSum(:,2),--)
>> subplot(2,1,2), plot(mu(:,1),mu(:,2),muObs(:,1),muObs(:,2),--")

The first plot compares the upcrossing intensity muof the switching load with the upcross-
ing intensity muSunof the superimposed rainflow matrix. Observe that, as expected, the
switching gives rise to more zero upcrossings than in the weighted sum of the individ-
ual upcrossing intensities. In the second plot the observed upcrossing intensity muObsis
shown together with the theoretical one mu
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2.3.7 Damage

The toolbox contains routines for calculating the damage of a load. The Palmgren-Miner
damage hypothesis together with the Wohler curve is used. This leads to the damage

Dy=Y ]\1 =Y K (s;fC)ﬁ, Srfe — (MZ- - m;fC) /2 (2.2)

where K and [ are material parameters. (The routines use K = 1.) The routines are
cc2dam for a cycle count (e.g. rainflow cycles) and cmat2dam for a cycle matrix (e.g. rain-
flow matrix).

>> beta = 4;

>> Dam = cmat2dam(param,Grfc,beta)

>> DamSum = cmat2dam(param,GrfcSum,beta)
>> DamObs = cc2dam(u(RFC),beta)/(T/2)

The calculated damages are scaled to damage per cycle, giving the results Dam=0.0098 ,
DamSum=0.0017 and for the simulation DamObs=0.0097 . The damage from the simula-
tion can also be computed from FrfcObs by using cmat2dam.

The damage matrix is calculated by cmat2dmat and shows how the damage is distributed
among the different cycles. The sum of all the elements in the damage matrix gives the
total damage.

>> Dmat = cmat2dmat(param,Grfc,beta);

>> DmatSum = cmat2dmat(param,GrfcSum,beta);

>> subplot(1,2,1), cmatplot(u,u,Dmat), axis('square’), v=axis;

>> subplot(1,2,2), cmatplot(u,u,DmatSum), axis(’square’), axis(v)

\Y

Note that the rainflow matrix for the switching process gives much more damage than that
of the simple superposition.

2.4 Decomposition of a Mixed Rainflow Matrix

When collecting a load history, in the form of a rainflow matrix, all the cycles of the switch-
ing load are stored in one mixed rainflow matrix. Hence, there is a need to interpret the
mixed rainflow matrix, and e.g. tell how much of the different load types a vehicle has
experienced.

Here we will see that one can use the methods in [4, Chapter 8] for decomposition of a
mixed rainflow matrix, i.e. methods for estimation of a SMCTP model given a measure-
ment of a mixed rainflow matrix. Hence, the task is to estimate the characteristics of
the different subloads as well as the characteristics of the switching between the differ-
ent subloads. The fact that we are able to calculate the mixed expected rainflow matrix
for a SMCTP model makes this estimation possible. The principle of the decomposition is
to find the best fit between the measured rainflow matrix and the theoretically computed
one, i.e. the expected rainflow matrix. One problem is to decide what to mean by “best fit”.
The maximum likelihood (ML) method is often the best method and yields the model that
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is “the most probable one”. We will propose an approximate ML estimator. There is also
the possibility to minimize the distance between the measured and the theoretical rainflow
matrices. We will propose three such distances, namely the chi-square, the Hellinger, and
the Kullback-Leibler distances.

2.5 Model and Estimation

We want to estimate a SMCTP model, where the number of regime states r is fixed. The
model is parametrized by the min-max and the max-min transition matrices

QW,...,Q™M and Q(l), cee Q(r)
respectively, and the transition matrix P for the regime process.

Obviously, one would like to estimate the whole model, i.e. the P-matrix, and the subloads.
However, this is not possible, since the number of parameters in the SMCTP model is
larger than the number of observations, i.e. the number of elements in the rainflow matrix.
Therefore, one needs to impose some additional structure on the model in order to get
fewer parameters to estimate.

Sometimes the min-max matrices of the subprocesses are known (or can be considered
known) and thus the parameters of the subloads are given. Hence, in this case, only the
transition matrix P needs to be estimated. For a SMCTP with two regime states we have a
model with the parameters

1 — A(1 (2
P:< b P ) Q",4",@®,0"
p2 1—po

and when the models of the subloads are known, then only the parameters @ = (p1, p2)
need to be estimated. One such case is when the measured rainflow matrix is believed to
be a mixture of known standard rainflow matrices, which could e.g. reflect different parts
of a testing track. The goal is then to find the proportion and the switching frequency of
the different subprocesses. All this information is contained in the P matrix.

Define a SMCTP model and simulate it in order to obtain an observed mixed rainflow
matrix.

>> n = 8; param = [-1 1 nJ;

>> M1.x0=[-0.4 -0.3]; M1.s=0.15; Ml.lam=1;
>> M2.x0=[0.3 0.4]; M2.s=0.15; M2.lam=1;

>> G1 = mktestmat(param,M1.x0,M1.s,M1.lam);
>> G2 = mktestmat(param,M2.x0,M2.s,M2.lam);

>> P=[1-0.1 0.1; 0.05 1-0.05] % Transition matrix
>> [xD,z] = smctpsim(P,{G1 []; G2 []},5000); % Simulate
>> Fobs = dtp2rfm(xD,n); % observed mixed rainflow matrix

In order to get reasonably short computing times in Matlab when doing the decomposition,
we have chosen only 8 discrete levels. However, the programs for doing the decomposition
don’t have any limitations in the size of the model.
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Three Scenarios

We will consider three cases of specifying the parameter vector 6, that we want to estimate,
depending on how much knowledge we have on the min-max matrices. The approximate
ML method will be used.

1. The min-max matrices of the subloads can be considered known, so that only the
regime process is unknown, and only the parameters p; and ps need to be estimated.

0= (p17 p?)
>> knownl.F = {G1 []; G2 []}; % known min-max and max-min matrices
>> jnitl.P = P; % initial guess of P-matrix
>> [Festl,Estl] = estsmctp(Fobs,’P’,’ML’,knownl,[],initl);
>> Estl.P % Estimated P-matrix

2. Here the min-max matrix for each subload z is specified, but we allow a translation
m, and a scaling 5, which are used as parameters for the subloads. The translation
m, corresponds to a change of the mean level and the scaling 5, corresponds to a
change in the variance for the subload, i.e. a transformation of the form X *)(¢) =
5, X®)(t) + 1., where X () (t) is the process according to the specified min-max ma-
trix. Now we have six parameters to estimate,
0= (pl, P2, TNrLl, §1, 7”712, 52).

. Estimate ...

3. Here we will use, for each subload, the parametric model described by Egs. (8.15,8.16)
with four parameters. In total this gives ten parameters to estimate,

0 = (p1, p2, T11 ,%21,51 , A1, T12 , %22 , 52, A2).

>> known3.Ffun = 'f_funm’; % Function for calculating a submodel

>> known3.trModel2X = 'tr_m2x’; % transform from Model to X-vector

>> known3.trX2Model = 'tr x2m’; % transform from X-vector to model

>> known3.param =param;

>> jnit3.P = P; % initial guess of P-matrix

>> jnit3.M = {M1 M2}; % initial guess of Models for min-max mat
>> [Fest3,Est3] = estsmctp(Fobs,’P,CalcF’,’ML’,known3,[],init3);

>> Est3.P % Estimated P-matrix

>> Est3.M{:} % Estimated parameters in models

Estimation from a Measurement of the Regime Process

If the regime process {Z},} itself is observed, then one has as much information about the
switching that one can possibly get. The ML estimates of p; and p, can easily be obtained
from the observed regime process, z = {zk}{zo, see [4, Appendix A].
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>> Pest z = estmc(z,2)

Compare the estimated stationary distributions and the true one:

>> mc2stat(Estl.P)
>> mc2stat(Est3.P)
>> mc2stat(Pest_z)
>> mc2stat(P)

Methods for Estimation (Optional)

The four methods for estimation, described in [4, Section 8.2], will now be examined. The
tirst method is the approximate maximum likelihood (AML) estimator, where we assume
that the sample of the rainflow matrix is a sample from a multinomial distribution. The
next three methods are based on minimizing the distance between the measured rainflow
matrix and the expected rainflow matrix. The distances that will be used are, the chi-
square distance (x?), the Hellinger distance (HD), and the Kullback-Leibler distance (KL).
The estimates are obtained by numerical optimization by using the routine fmins , see [4,
Section 8.6] for further details.

>> known.F = {G1 []; G2 [} % known min-max and max-min matrices
>> jnit.P = P; % initial guess of P-matrix

>> [Fest,Est] estsmctp(Fobs,’P’,’ML’,known,[],init); Est.P

>> [Fest,Est] estsmctp(Fobs,’P’,’chi2’,known,[],init); Est.P

>> [Fest,Est] = estsmctp(Fobs,’P’,’HD’,known,[],init); Est.P

>> [Fest,Est] estsmctp(Fobs,’P’,’KL’ known,[],init); Est.P



Computer Exercise 3

Power Spectrum and Rainflow
Analysis

In this exercise we present tools for computation of rainflow matrices (and consequently
fatigue failure predictors) for Gaussian random loads. As was mentioned in Introduction,
a Gaussian load is uniquely defined by its mean value m and spectrum S(w). For simplicity
only, the mean is assumed to be zero; hence, the spectrum is the single input argument into
the model. The spectrum can be estimated from a measured record (as we did in Computer
Exercise 1) or theoretically derived, as it is often the case in fatigue damage analysis of sea
vessels.

3.1 Power Spectrum

Choose any spectrum you wish to analyse. It can be an estimated spectrum from Lab 1 or
some standard spectra given in WAFO. Four examples are given below:

>> S=jonswap;

>> S=0SCSspec;

>> S=torsethaugen;

>> |oad deep.dat, S=dat2spec(deep);

Compute mean frequency fy, standard deviation o, and irregularity factor « for the Gaussian
process with computed spectrum S. Solution:

>> |=spec2mom(S,4);

>> fO=sqrt(L(2)/L(1))/2/pi

>> s=sqrt(L(1))

>> alfa=f0/(sqrt(L(3)/L(2))/2/pi)

The four spectra are unimodal and only the estimated spectrum can be considered as a
broad band spectrum. For narrow band spectra, with one mode, the mean frequency fj is
close to the the mode of the spectrum. Check it for your choice of spectrum.

>> wspecplot(S);
>> 2+pi 0
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Remark. The parameters fj and o are important to perform a crude analysis of the damage

intensity of the load. The mean frequency indicates a rate of bigger cycles while o is the
scaling factor for amplitudes. The so-called moment method postulates that amplitudes of
these cycles are o - R, Rayleigh distributed (the pdf for a Rayleigh variable is r exp(—0.5r2)).
This gives a very simple predictor of fatigue life time 7"/

) 1 1
YHEoR)P]  ~ foof28/20(8 + 1)

As a matter of fact, one can prove that this predictor is always conservative (gives too short
fatigue life than the one obtained by means of rainflow method). Summarizing, knowing
fo and o, the upper bound for the damage intensity can be calculated. This is what the
function spec2dplus is computing. If the spectrum is unimodal and particularly if it
is narrow banded, the method gives very accurate results. Observe that in some special
cases, when 5 = 1 and as 3 goes to infinity, the method is exact. In addition, this approach
can be extended to non-Gaussian loads; then the crossing spectrum lc(u) has to be given.
When the crossing spectrum lc(u) is known, one can compute conservative bounds for the
damage intensity by means of Ic2dplus . (Obviously for Gaussian loads, Ic2dplus  gives
the same results as spec2dplus ).

For the chosen spectrum, compute the conservative bound for the predictor of 7/, time to
fatigue failure. Use 8 = 3.0,3.1,3.2,...,5.0 and v = 5 - 10~. (Obviously, our examples are
somewhat artificial since the signals are not stresses and the parameters 3 and ~ are not
based on real tests.) Computation of 7"/

>> beta=3:0.1:5;

>> gam=5E-9;

>> dpl=gam * spec2dplus(S,beta);
>> Tfpl=(1./dpl)/3600/24 %in days
>> clf, plot(beta,Tfpl)

3.2 Simulation of X and the damage intensity

In this section we shall simulate X (¢), extract rainflow cycles, estimate damage intensity
and derive an estimate of time to fatigue failure 7. If your spectrum is narrow banded,
you should obtain results close to the conservative bounds from the previous subsection.
For broad banded spectra the difference can be more relevant and one may need to use
other methods to derive estimates or 7.

Suppose that one wishes to simulate X (¢) with approximatively 1000 non-negligible cycles.
The duration time T of the signal is then 7" = 1000/ fo. Compute (approximatively) the
proportion of fatigue lifetime consumed by X (¢),0 < ¢t < T',in % (100% T/T7), for § = 4.22
and v = 5- 1077, Solution:

>> T=1000/f0 % in seconds
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>> gam=5E-9;
>> 100 =* T+ gamx spec2dplus(S,4.22) % in percent

Remark. When one wishes to simulate the process X (¢) for a given spectrum S, it may
not be obvious how to choose an appropriate sampling frequency. One possibility is to
use the highest angular frequency in the spectrum wy,,;, say. Then a natural sampling
frequency would be f = w4, /27. However, this is often a too low frequency to get correct
values of rainflow amplitudes. Simply, one would miss exact positions of local maxima
and minima in X, leading to underestimation of rainflow amplitudes. In many cases the
choice of between 50 to 100 times higher frequency than the mean frequency is giving good
results. In the following example we will use f = 60 fo, that gives 60000 observations for
the chosen T value.

We will simulate five sample paths of loads and compute the damage intensity. The sam-
pling interval is chosen to dt = 1/(60f;). For fast and accurate simulation, the spectrum
is recomputed so that the highest frequency wyq, = 27/dt. Then X (¢) is simulated. From
the sample path, turning points are extracted and the rainflow cycles are calculated. The
damage intensity can then be computed, and a prediction of the fatigue failure time 7"/
obtained.

>> max(S.w)/pi

>> dt=1./f0/60

>> Sl=specinterp(S,dt);

>> [max(S1.w) pi/dt]

>> clf, wspecplot(S), hold on, wspecplot(S1,1,r.)
>> clf, plot(beta,Tfpl)

>> hold on

>> for =15

>>  X=spec2sdat(S1,60000);

>> tp=dat2tp(X);

>> rfc=tp2rfc(tp);

>> db=cc2dam(rfc,beta);

>> plot(beta,(1000/f0) *(1./db) *(1/gam)/3600/24,r.) % Tf in days
>> end

3.3 Theoretical computation of damage intensity

For more complicated spectra that are not unimodal, the moment method can be too con-
servative. In order to illustrate this we choose the following spectrum

S(w) = 9exp(—8(w — 0.5)?) 4 2exp(—2|w — 2|*4).
It can be created as follows

>> S=createspec;
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>>
>>
>>
>>
>>
>>

w=levels([0 4 253));

S.S=2 xexp(-2 *abs(w-2)."1.4);

S.5=S.5+9 *exp(-8 *(w-0.5).72);

S.w=w;

S.note=['S(w)=9 * exp(-8(w-0.5)"2)+2 * exp(-2|w-2[.71.4)]
wspecplot(S)

Check the accuracy of the conservative bound for the damage intensity by simulating 10
sample paths of the load.

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

L=spec2mom(S,4);

fO=sqrt(L(2)/L(1))/2/pi

dpl=gam =* spec2dplus(S,beta);

Tfpl=(1./dpl)/3600/24 %in days

dt=1./f0/60

Sl=specinterp(S,dt);

figure(1)

clf, plot(beta, Tfpl)

hold on

for i=1:10
X=spec2sdat(S1,60000);
tp=dat2tp(X);
rfc=tp2rfc(tp);
db=cc2dam(rfc,beta);
plot(beta,(1000/f0) *(1./db) = (1/gam)/3600/24,r.) % Tf in days

end

We turn now to alternative method of computation of the rainflow matrix and damage in-
tensity. The method consists of two steps. First, the transition matrix from maximum to
the following minimum fMm, say, in X, is computed using a generalized Rice’s formula.
(Since numerical integrations are needed, this step is relatively slow. The accuracy parame-
ter is called nit =0, ...,5. Higher nit gives better approximation). Next, the sequence of
turning points is approximated by a MCTP. The methods presented in Computer Exercise
2 then give the rainflow matrix.

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

a=sqrt(L(3)/L(2))/2/pi

s=sqrt(L(1))

help spec2cmat

paramu=[-4.5 s 4.5 xs 46];

nit=2;

figure(2), clf

[frfc fMm]=spec2cmat(S,[], rfc’,[],paramu,nit);
hold on, plot(rfc(:,2),rfc(:,1),.")

clf, pdfplot(fMm)

dg=a* cmat2dam(paramu,frfc.f,beta);
figure(1), plot(beta,(1./dg) * (1/gam)/3600/24,'g’) % Tf in days

For this broad banded spectrum the parameter nit = 2 is too low; we propose to use
nit = 3, but it can take 4 minutes to get the results.

>>

figure(2), clf
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>

\

[frfcl fMm1]=spec2cmat(S,[], rfc’,[],paramu,3);

>> dgl=a*cmat2dam(paramu,frfcl.f,beta);

>> figure(1)

>> plot(beta,(1./dgl) * (1/gam)/3600/24,’k’) % Tf in days

We turn now to some additional applications of the computed matrix fMm (Those exercises
are optional.)

First, the matrix can be used to simulate much longer and faster sequences of turning points
of X, than using spec2sdt

>> help mctpsim

>> F{1,1}=fMm.f;

>> F{1,2}=fMm.f’;

>> mctp=mctpsim(F,1000);
>> clf,plot(mctp(1:40))

Next, if the simulated sequence contains too many small amplitudes one can derive the
Markov matrix for the rainflow filtered sequence. It can be done as follows: replace a few
sub-diagonals in the frfc  matrix by zeros, then invert it to get the new transition matrix.
Now you can use it to simulate the filtered sequence of turning points.

>> frfcl=zeros(size(frfc.f));

>> fricl=triu(frfc.f,5);

>> fMml=iter(frfcl,fMm.f,20,0.001);
>> clf,contour(fMm.f,20)

>> hold on, contour(fMm1,20)
>> F{1,1}=fMm1,;

>> F{1,2}=fMm1’;

>> mctpl=mctpsim(F,1000);

>> clf, subplot(2,1,1)

>> plot(mctp(1:40))

>> subplot(2,1,2)

>> plot(mctpl(1:40))
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Computer Exercise 4

Modelling of Measured Loads

We want to model a measured load signal that changes characteristics over time. Suppose
that a switching process would be an appropriate model for the load. Our strategy is
then to fit a switching Markov chain of turning points (SMCTP) to the measurements. This
model can then be used to calculate the expected rainflow matrix for the load, or to simulate
load processes. The procedure is illustrated in the form of a flow chart in Figure 4.1, which
is explained and commented below.

Estimate
SMCTP
subprocesses

and
regime process

Measure-
ments

ofa
load

Figure 4.1: Flow chart for the modelling of measurements of a load.

4.1 Estimation from Time Signal

In this example we have a measurement of a truck load, with the truck driving on a road
that consists of curves and straights with some small bends, see [4, Example 6.3]. The same
piece of road has been measured twice. The time signal is stored in the variable X0 with
time (seconds) in the first column and the load values in the second column. Load and plot
the data.

>> load switchingload
>> plot(x0(:,1),x0(:,2))

The load changes between two duty cycles which can be observed as changes in mean and
standard deviation.

Does it seem appropriate to model the load by a SMCTP model with two regime states?
The two regime states represent straights (regime 1, low mean, large variation), and curves

37



38 Computer Exercise 4. Modelling of Measured Loads

(regime 2, high mean, low variation).

First, we will remove small oscillations in the load, which either come from measurement
noise, or are irrelevant to the fatigue damage. This is done by a rainflow filter, which deletes
all rainflow cycles with ranges smaller than a given threshold, which is often chosen as the
discretization step. Define the discretization and apply a rainflow filter:

>> n = 32; param = [-1 1.2 n]; % Define discretization

>> u = levels(param); % Discrete levels

>> delta = u(2)-u(1) % Discretization step

>> TP = dat2tp(x0,delta); % Get turning points and rainflow filter

Compare the turning points of the original time signal with the rainflow filtered turning
points. How much does the rainflow filter reduce the amount of data?

>> TPO = dat2tp(x0);
>> plot(x0(:,1),x0(:,2),TPO(;,1), TPO(;,2),TP(:,1),TP(:;,2))
>> |ength(x0), length(TPO), length(TP)

Check the rainflow cycles and the damage before and after rainflow filtering. Is there any
significant difference? Try different values of the damage exponent beta .

>> RFCO = tp2rfc(TPO); subplot(1,2,1), ccplot(RFCO)

>> RFC = tp2rfc(TP);  subplot(1,2,2), ccplot(RFC)

>> bheta = 6; % Damage exponent

>> Dam0 = cc2dam(RFCO0,beta) % Damage

>> Dam = cc2dam(RFC,beta) % Damage, after rainflow filter
>> Dam/DamO

Examine the level crossing spectrum of the load by using tp2lc , both for the original
sequence TPO and for the rainflow filtered sequence TP. Is there any difference between the
two crossing spectra? Is it possible, from the level crossings, to see that the load consists of
two subloads?

Examine if the load can be modelled as a Gaussian process by using e.g. wnormplot . Also
compare the level crossing spectrum with the one obtained from Rice’s formula, see Com-
puter Exercise 1.

Now we will discretize the load by using dat2dtp , which makes discretization to the
nearest discrete level.

>> dtp = dat2dtp(param,TP,delta); % Discretized turning points
>> tp = [dtp(;,1) u(dtp(;,2))]; % Discretized turning points

>> T = length(dtp); % Number of turning points
>> clf, plot(x0(:,1),x0(:,2), TP(:,1),TP(:,2),tp(:,1),tp(:,2))

>> v=axis; hold on,

>> plot([v(1:2)],[u(2:end)’-delta/2 u(2:end)’-delta/2],’k:")

>> hold off, axis([v(1:2) param(1:2)])

\

What is the error in damage due to the discretization?
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>> rfc = tp2rfc(tp); % Get rainflow cycles
>> dam = cc2dam(rfc,beta) % Damage, after discretization & rainflow filter
>> dam/Dam0

Next we will (by hand) identify the two duty cycles in the load signal. Find the times when
load switches regime state, and split up the load by using the routine splittoad . The
first column of tz contains times (in seconds) and the second column contains the regime
state that the load switches to.

>> tz = [2 2; 46.40 1; 1145 2; 161 1; 225.1 2; 270 1; 3375 2; ...
>> 384.8 1; 433.2 2; 600 1J;

>> [xxd,xd,z] = splitload(dtp,tz);

>> plot(xxd{1}(;,1),xxd{1}(:,2))

>> plot(xxd{2}(:,1),xxd{2}(:,2))

>> hmmplot(xd(:,2),z,xd(:,1),[1 2],",”,1)

VvV Vv

Here xxd{1} and xxd{2} contain subload 1 and 2, respectively, xd the switching load,
and z the regime process.

Estimation of the Subloads

Now assume that the subloads are time-reversible, which implies that their expected max-
min matrices can be obtained from their respective expected min-max matrix through G =
G For each subload we need to calculate the min-max and max-min transition matrices
Q and Q, respectively. This can be done in the following three steps:

1. Calculation of min-max matrix F. This is no problem if we have a measurement of
F. (If instead we have measured the rainflow matrix F™ it can be inverted to find
the min-max matrix F, see [4, Chapter 7], and see also the routines rfm2mctp and
arfm2mctp .) In our case the subloads have been measured as time series and then it
is straightforward to calculate the min-max matrix F' (and max-min matrix F).

>> dtpl = dat2tp(xxd{1});

>> [mMM1,Mm1] = tp2mm(dtpl);
>> F1 = dcc2cmat(mMi,n);
>> dtp2 = dat2tp(xxd{2});

>> [mM2,Mm2] = tp2mm(dtp2);
>> F2 = dcc2cmat(mMz2,n);

>> cmatplot(u,u{F1 F2})

2. Estimate G through smoothing. To obtain an estimate of the expected min-max matrix
G, the min-max matrix F' is smoothed using a 2-dimensional kernel smoother, see [4,
Appendix D].

>> [G1s,hl] = smoothcmat(F1);
>> G1 = smoothcmat(F1,1,1.0,0);
>> [G2s,h2] = smoothcmat(F2);
>> G2 = smoothcmat(F2,1,0.8,0);
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>> cmatplot(u,u,{G1ls G2s; G1 G2})
>> cmatplot(u,u,{F1 F2; G1 G2})

Choose appropriate values of the smoothing parameter h. (Here we can improve
T

4

the estimates, if the max-min matrix F' is also used, by smoothing the sum F' + F
instead of smoothing only F'.)

3. Normalizing. The min-max and max-min transition matrices Q and Q, respectively,
are obtained from the expected min-max and max-min matrices G and G = G7,
respectively, by normalizing each row sum to 1. This is done automatically by the
programs (mctp2rfm  and smctp2rfm ).

Estimation of the Regime Process

The P-matrix for the regime process is obtained through ML-estimation

pr—( 1 P2 P2 (4.1)
P21 1 —py
where
. Nig  #{Jumps from 1 to 2} 4
Pr2 N N N, — 0013 #2)
. No1 #{Jumps from 2 to 1} 4
P Ny Ny N, U008 (43)

where N;; is the number of switches from regime state 7 to state j, and NV; is the total
number of turning points in regime state i. Now we estimate P from the rainflow filtered
and discretized load signal.

>> N1 = length(dtpl), N2 = length(dtp2)

>> N12 = 4; N21 = 4,

>> pl=N12/N1; p2=N21/N2;

>> P = [1-pl pl; p2 1-p2] % P-matrix

>> statP = mc2stat(P) % Stationary distribution

From the estimated SMCTP model (P, G1, and G2), we can calculated the expected rainflow
matrix

>> GG = {G1 [; G2 [I}

>> [Grfc,mu_rfc] = smctp2rfim(P,GG);
>> cocc(param,RFC,Grfc)

>> Frfc = dtp2rfm(dtp(:,2),n);

>> cmatplot(u,u,{Frfc Grfc *T/2})

Calculate the damage and the damage matrix.

>> peta = 6;
>> DamO0O, Dam, dam
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>> damG = cmat2dam(param,Grfc,beta) *T/2
>> damG/DamO

>> beta = 4;

>> Dmat = cmat2dmat(param,Frfc,beta);

>> DmatG = cmat2dmat(param,Grfc,beta) *T/2;
>> cmatplot(u,u,{Dmat,DmatG},3)

Simulate the estimated SMCTP model and compare it with the measured signal.

>> [xsim,zsim] = smctpsim(P,GG,T);
>> figure(1), hmmplot(u(xd(:,2))’,z,1:length(xd),[1 2],”,”,1)
>> figure(2), hmmplot(u(xsim)’,zsim,1:T,[1 2],”,",1)

Make some more simulations and compare the simulated load signals.

4.2 Decomposition of a Mixed Rainflow Matrix

The goal of this example is to make a decomposition of the measured mixed rainflow
matrix, see [4, Example 8.1]. The measurement is is the same truck load as before. We
will make the decomposition with different assumptions on the parametrization of the
subloads, according to scenarios 1 and 3, see Section 2.4.

In this example we will discretize the measured load by n = 16 discrete levels, ranging
from u; = —1.0 to u,, = 1.2. The pre-processing of the time signal is performed in the same
way as previously.

>> n = 16; param = [-1 1.2 n]; % Define discretization

>> u = levels(param); % Discrete levels

>> delta = u(2)-u(l) % Discretization step

>> TP = dat2tp(x0,delta); % Get turning points and rainflow filter

Check the difference in damage between the original load history and the rainflow filtered
one.

Next we will discretize the load and compute its damage.

>> dtp = dat2dtp(param,TP,delta); % Discretized turning points

>> tp = [dtp(:;,1) u(dtp(:,2))]; % Discretized turning points

>> T = length(dtp); % Number of turning points

>> rfc = tp2rfc(tp); % Get rainflow cycles

>> beta = 6;

>> dam = cc2dam(rfc,beta) % Damage, after discretization & rainflow filter
>> dam/Dam0

From the discretized load we compute the observed rainflow matrix, which will be the
input to the decomposition.

>> Frfc = dtp2rfim(dtp(:,2),n); % Observed rainflow matrix
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For scenario 1, the min-max matrices Gland G2 for the subloads will be treated as a priori
information, and will hence be considered known. Therefore, for scenario 1, we only need
to estimate the P-matrix with two parameters p; and p;. To obtain G1and G2 we split the
time signal, and estimate them (and then forget about the time signal).

>> tz = [2 2; 46.40 1; 1145 2; 161 1; 225.1 2; 270 1; 3375 2; ...
>> 384.8 1; 433.2 2; 600 1];

>> [xxd,xd,z] = splitload(dtp,tz);

>> hmmplot(xd(:,2),z,xd(:,1),[1 2],”,”,1)
>> dtpl = dat2tp(xxd{1});

>> [mM1,Mm1l] = tp2mm(dtpl);

>> F1 = dcc2cmat(mMi,n);

>> G1 = smoothcmat(F1,1,1.0,0);

>> dtp2 = dat2tp(xxd{2});

>> [mMM2,Mm2] = tp2mm(dtp2);

>> F2 = dcc2cmat(mM2,n);

>> G2 = smoothcmat(F2,1,0.8,0);

Plot the estimated matrices Gland G2

By using the observed rainflow matrix Frfc (and Gland G2) we do the decomposition.

>> knownl.F = {G1 []; G2 [[}; % known min-max and max-min matrices
>> jnitl.P = P; % initial guess of P-matrix

>> warning off % Don't display warnings
>> [Festl,Estl] = estsmctp(Frfc,’P’,’ML’,known1,[],initl);
>> Estl.P % Estimated P-matrix

>> mc2stat(Est1l.P) % Estimated stationary distribution

For scenario 3, we will for each subload use the simple parametric model, which we used
in Computer Exercise 2. Hence, for scenario 3, we have 10 parameters to estimate: p;, po,
and 4 parameters for each subload,

0 = (pla P2, T11 ,221 ,951 7)‘1a 12,222 ,52 7)\2)-

>> known3.Ffun = 'f_funm’; % Function for calculating a submodel
>> known3.trModel2X = 'tr_ m2x’; % transform from Model to X-vector
>> known3.trX2Model = 'tr_x2m’; % transform from X-vector to model
>> known3.param = param;

>> jnit3.P = P; % initial guess of P-matrix

>> M1.x0=[0.1 0.1]; M1.s=0.15; Ml.lam=2; % submodel 1

>> M2.x0=[0.5 0.7]; M2.s=0.1; M2.lam=1; % submodel 2

>> nitd.M = {M1 M2}; % initial guess of Models for min-max matrices

To shorten the computation time you can lower the accuracy by setting the input OPTIONS
which is used by fmins . See help options  for more details.

>> OPTIONS(2)
>> OPTIONS(3)

le-1; % the termination tolerance for x;
le-1; % the termination tolerance for F(x);
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>
>>
>>
>

\

\Y

[Fest3,Est3] = estsmctp(Frfc,’P,CalcF’,’ML’,known3,[],init3);

Est3.P % Estimated P-matrix
mc2stat(Est3.P) % Estimated stationary distribution
Est3.M{:} % Estimated parameters in models

Compare the results (Festl , and Fest2 ) in terms of estimated P-matrices and there sta-
tionary distributions. Remember that the model estimated from the time signal has tran-
sition matrix P and stationary distribution statP . Hopefully, you can observe that even
though the estimates of the parameters p; and p, differs from P, the estimates of the sta-
tionary distribution are quite accurate.

For each estimated SMCTP model we can compute its expected damage as a function of
the damage exponent 3. We can also compute the damage from the measured time signal.

>>
>>
>>
>>
>>
>>
>>
>>

beta = 3:0.2:8;

Dam0 = cmat2dam(param,Frfc,beta)/(T/2); % Damage from load signal
FrfcEstl = smctp2rfm(Festl.P,Festl.F);

Daml = cmat2dam(param,FrfcEstl,beta); % Damage, scenario 1
FrfcEst3 = smctp2rfm(Fest3.P,Fest3.F);

Dam3 = cmat2dam(param,FrfcEst3,beta); % Damage, scenario 3
plot(beta,Dam0,’b’,beta,Dam1,’r’,beta,Dam3,'g")
plot(beta,Dam1./Dam0,’r’,beta,Dam3./Dam0,'g")

Are the results, in terms of damage, acceptable? Do they agree better for small or for large
values of the damage exponent (.
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