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Abstract

Many children spend much time online, watching videos, playing games,
or talking with friends or strangers on social media. Many di�erent online
platforms are created targeted at children. The Internet has enabled
kids to meet new friends and stay in touch with each other without
physically meeting. Although these platforms may contribute significantly
to children’s social life, they may also pose threats to the children. The
online platforms give easy access to conversations with children, even for
people with bad intentions. On these platforms, predators can come in
contact with children with a low risk of getting disclosed. This master
thesis aims to find a method for recognizing predators online using a
graph-theoretical approach.

There are research projects that have already studied online predator
detection. Most of the research in this area uses textual analysis for
the task, many with promising results. The methods involve recognizing
specific words or phrases that a predator would use that are unusual
for children. There are multiple challenges with this approach. First,
when making a predator detection system that analyses text, it can only
function if used in the language it was developed for. It will be impossible
to create such a system independent of the language. Secondly, the text
messages on a chat platform are often informal and contain many slang
words. This makes it challenging for machines to interpret what the
messages mean.

To avoid the challenges posed by the textual analysis, we use a graph-
theoretical approach to detect predators online. Using a real-world data
set collected from a social network for children, graph representations of
the network will be used to detect predators. The users will be represented
as nodes, and the messages between the users as edges. The main goal of
the thesis is to study if it is possible to recognize a predator by studying
the properties of the nodes in the graph.

We have, throughout the study, designed and implemented a set of
features that has been used in various clustering algorithms. From the
results of the clustering algorithms, we have discovered multiple users
that we considered likely to be predators. To assess some specific users
in more detail, we studied anonymized text messages from relevant users
and concluded whether the users were predators or not.



We concluded that a graph theoretical approach can be used for
online predator detection. However, in the future, both unsupervised
and supervised learning in static and dynamic graphs should be studied
further for predator detection to find more precise methods to find users
with abnormal behavior.



Sammendrag

Mange barn bruker mye tid på nettet, enten de ser på videoer, spiller
spill eller snakker med venner eller fremmede over sosiale medier. Mange
ulike plattformer er skapt med barn som målgruppe. Dette har muliggjort
at barn kan tre�e nye venner og holde kontakt med de uten fysisk å
møtes. Selv om disse plattformene kan bidra til å øke barns sosiale krets,
kan de òg ha mørkere sider ved seg. Plattformer på nett gir tilgang til
samtaler med barn for folk med dårlige hensikter. På disse plattformene
kan overgripere komme i kontakt med barn med lav risiko for å bli avslørt.
Denne masteravhandlingen forsøker å finne en metode for å gjenkjenne
overgripere på nett ved hjelp av grafteori.

Det eksisterer prosjekter som studerer deteksjon av overgripere på nett
fra før av. Størsteparten av disse benytter tekstlig analyse, og flere kan
vise til gode resultater. Analysene går ut på å finne ord eller fraseringer
som er mer typisk for en overgriper å bruke enn et barn. Det er flere
utfordringer med å analysere tekst i overgrepsdeteksjon. Når man lager
et system for analyse av tekstmeldinger vil analysen kun fungere på
det språket som systemet ble laget i. Det vil ikke være mulig å lage et
deteksjonsprogram som kan fungere uavhengig av språket. En annen
utfordring er mengden uformelt språk i tekstmeldinger. Tekstmeldinger
inneholder gjerne mer slang, skrivefeil og generelt uformelt språk, som er
utfordrende for maskiner å tolke.

For å unngå utfordringene som er beskrevet i prosjekter med tekst-
analyse for overgrepsdeteksjon, vil vi bruke grafteori for deteksjon av
overgripere på nett. Et datasett fra en chatteplattform med barn som
målgruppe, vil presenteres som en graf. Brukerne blir representert av
noder, og meldingene som sendes mellom brukerene representeres av
kanter. Hovedmålet med arbeidet er å finne ut om det mulig å gjenkjenne
en overgriper ved å studere egenskapene til de ulike nodene i grafen.

Vi har gjennom studiet designet og implementert et sett av funksjoner
som har blitt brukt i flere forskjellige klyngealgoritmer. Fra resultatene av
klyngealgoritmene har vi funnet flere brukere som vi anser som sannsynlige
overgripere. Vi har til slutt studert anonymiserte tekstmeldinger som er
sendt fra relevante brukere for å konkludere om de er overgriper eller
ikke.

Gjennom denne studien, har vi funnet ut at grafteori kan brukes som
metode for overgrepsdeteksjon på nett. Videre bør både ikke-overvåket



og overvåket maskinlæring i statiske og dynamiske grafer bli studert
videre for å finne en mer presis metode for å finne brukere med unormal
oppførsel.
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Chapter1Introduction

The purpose of this master thesis is to determine if it is possible to use a graph-
theoretical approach to detect predators in an online chat network created for children.
The thesis aims to detect anomalies in the chat network, which later need to be
revisited by a human to determine further if a user is a predator or not. In this
chapter, the motivation of the study will be presented. Before the research questions
are provided, an explanation of deviations from the problem description will be given.
Lastly, the outline for the thesis will be represented, followed by a short disclaimer.

1.1 Motivation

The first known written text was from over 5000 years ago, and since then, the way
humans communicate has developed and is still in continuous development. Less than
50 years ago, the Internet was invented. The Internet has provided accessible and fast
communication between anyone anywhere. Great benefits have been made possible,
such as easy sharing of information, meeting new people, staying in touch with people,
and more. Endless social media platforms have been created to enable friends and
strangers to communicate with each other by text or multimedia. Facebook and
YouTube are examples of widely known and used social networks. In addition, small
networks such as dating websites and online games can also be considered social
media.

A large number of social media platforms are targeting children. For instance,
game platforms that provide chats between the players are popular amongst children.
They can meet peers from far away, talk with each other and play games together.
These games allow children to find friends, and many kids meet most of their friends
online. These social media platforms are thus essential for many children’s social life.

Despite the clear advantages of social media created for children, they also pose
threats to the users. The platforms give easy access to conversations with children
for anyone, also people with bad intentions. Predators can create fake profiles,

1



2 1. INTRODUCTION

masquerading as a child, and quickly start conversations with children with the goal
of abusing them sexually. Children who use these kinds of platforms are exposed
and vulnerable to predators. According to a report from the National Society for
the Prevention of Cruelty to Children from 2014, 12% of children aged 11 to 16
in the UK have received unwanted messages online [CFA14]. An online assault on
a child may negatively a�ect its life, both psychologically, physically, emotionally,
behaviorally, and psycho-socially [ZLA+18]. Preventing sexual abuse online and
detecting predators is hence crucial.

There already exists some research on predator detection. Most of the studies are
based on analysis of the written text between two users, aiming to define language or
behavior typical for predators [Mor13; BK19; ZLA+18]. The research projects show
that it is possible to achieve good performance with lexical analysis for predator
detection. However, there are some disadvantages to analyzing the text between
social media users. Firstly, the textual detection systems are built up with a given
language. Translating a detection system to a new language is demanding, as there
is no one-to-one relation between words of di�erent languages. Hence, the detection
system will not work globally. Another challenge is the informal language in online
chats. The wide use of incorrect spelling, slang, and informal language in the chats,
makes it challenging for computers to interpret what is communicated between two
users. With a graph theoretical approach, we will only analyze the chat behavior
between users on the platform. By recognizing patterns of how the users communicate
with each other, this thesis aims to detect users displaying behavior that deviates
from normal behavior. Predators will most likely display this abnormal behavior,
but the behavior may also, for instance, display spammers or other types of users.
No other studies are known to use the same methods for predator detection, so this
study will provide new insights into the field of online predator detection.

The data set that we will use for this master thesis is from a children’s game
called MovieStarPlanet1. The game is targeted at children aged 8 to 15 years and
allows the users to chat and play games with each other. The data set is real-life
chat data collected over five months from the game. All data used for the study is
pre-processed and anonymized before being analyzed. The data used for the analysis
is users represented by a randomized ID number and the number of messages between
the di�erent users. A graph representation of the chat network will be created using
this information. Nodes represent the users, and the chats with other users are
represented with edges labeled with the number of messages sent. No actual text
messages were used to do the graph analysis, solely the chat patterns of the users.
Text messages were used later in the process to analyze whether there was predatory
behavior from relevant nodes. The study’s main hypothesis is that a predator will
behave di�erently than a child on social media. For example, a predator might want

1https://moviestarplanet.com/
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to contact many di�erent users aiming to get a satisfying response from some of the
children, resulting in a lot of short conversations. On the other hand, a child might
contact fewer other children but have more extended conversations with them. These
di�erences may be visible in graph patterns of the network.

1.2 Deviations from the problem description

The problem description stated that both supervised and unsupervised learning
algorithms would be used for predator detection. We initially planned to use a set of
known predators as training data for the supervised learning algorithms. However,
we did not get access to the set of known predators, so the supervised learning
algorithms were never tested. The problem description also states that time will
be spent on finding a way of measuring the performance of the algorithms. It did
not make sense to measure the performance of the unsupervised learning algorithms.
The unsupervised algorithms do not give all users a class the same way as supervised
learning. Hence, this part of the thesis was also dropped.

1.3 Research questions

With the MovieStarPlanet data set, we will create a graph consisting of nodes
representing users and weighted, directed edges representing the number of messages
sent between users. The main data set used consists of private chats on the platform
over five months. All data is unclassified and may contain both children and
predators. After pre-processing and structuring the data, di�erent graph features
will be extracted, and all users will be represented with a feature set. Unsupervised
clustering algorithms will be used to find abnormal user behavior in the network.
By analyzing text messages, users with abnormal behavior will be classified as
predators or not. The thesis consists of one main research question with three sub-
research questions. Research questions were created and carried out in the pre-project
proceeding of this master thesis [Aar21]. The research questions were later revisited
and modified after more insights about the project’s limits were known.

RQ: Can we detect predators in online chats for children by using a

graph-theoretical approach?

The main goal of this thesis is to investigate if the graph-theoretical approach can
be used to detect predators online. The study focuses on finding users that behave
di�erently than regular users, and these users should be investigated further by a
human evaluator. The study uses real-life data with graph-theoretical concepts and
machine learning algorithms for predator detection. To answer this research question,
the following three sub-research questions are formulated.
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RQ a: Which graph features can be used to detect predators in an online

chat network for children?

The nodes of a graph can be represented with a set of features. There are endless
di�erent features that can be used to describe a node in a graph, or this case, a user
on a chat platform. There is thus a need to investigate which features describe the
user in a manner that separates children from predators. The goal is to find a set
of features that works well at detecting predators. The feature set will be based on
related research and be developed through a manual investigation of visualizations
of the chat network.

RQ b: Can unsupervised clustering algorithms be used to detect predators

in an online chat network for children?

Predators may behave very di�erently from each other. Some may send out many
messages to find a suitable victim, while others may carefully choose victims in other
ways. Using clustering, we will obtain groups of users with similar behavior. Both
predator users and regular users may have contrasting behavior and can be clustered
into several di�erent clusters. Hence, the clustering results may disclose di�erent
types of predatory and normal behavior. Small clusters point to abnormal behavior
and might be related to predatory or other unwanted behavior in the game. Hence,
the thesis should investigate if unsupervised clustering algorithms can be used to
detect predators.

RQ c: How does the length of the time frame for the data set influence

predator detection in an online chat network for children?

The data set used in the thesis consists of chat data collected over relatively small,
continuous periods. The smaller data sets are also concatenated to make a more
extensive, non-continuous set. The thesis should investigate how data analysis with
di�erent lengths of time frames influences how well the clustering algorithms find
anomalies.

1.4 Outline

Chapter 2 resents some background theory on predator detection and graph theoretical
concepts, and chapter 3 describes a selection of state-of-the-art research on predator
detection and related research with graph theoretical approaches. The methodology
used in the thesis will be presented in Chapter 4, and Chapter 5 describes the results.
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Lastly a general discussion is provided in Chapter 6, followed by conclusion and
future work in Chapter 7.

1.5 Disclaimer

This thesis aims to examine new methods to detect predators online. As no clas-
sification data was made available to us, we can only look for predatory behavior.
Whenever in this thesis we claim that a user is a predator, we do not refer to a
convicted person, but we mean a person that shows predatory behavior based on
the user’s chat patterns and human interpretation of the user’s text messages. The
classifications of predators in the thesis were confirmed by experts who have read
many predatory conversations in the past.





Chapter2Background

This chapter will first present the background for the master thesis. Firstly, some
background theories about sexual predators and their psychology and behavior will be
provided. Then, a brief introduction to basic graph theoretical concepts will be given
together with a description of some central graph features. Lastly, an introduction
to Machine Learning (ML) is presented, and some relevant ML algorithms will be
described briefly.

2.1 Sexual predators

Morris [Mor13] defines sexual predatory by identifying two characteristics. The first
characteristic is named "age disparity" and revolves around the age of the people
involved. A predator is an adult that has conversations with one or more underaged
children or teenagers. The second characteristic is named "inappropriate intimacy".
The interaction between the adult predator and the underaged child must contain
conversation on intimate topics introduced or encouraged by the predator. To
summarize, a sexual predator is an adult that encourages intimate conversations with
a child. The term predator is often related to the term pedophile; however, it has a
slightly di�erent meaning. A pedophile is physically attracted to children and may
want to start long-term relationships with children. Predators do not necessarily
have the same physical attraction toward children, but they may abuse a victim
when they see an opportunity that they can utilize. Predator is a broader term, and
it covers more types of abuse cases and will hence be used as a collective name for
adults that sexually abuses children in this paper.

Many predators will go through a specific process when abusing a child online,
referred to as online grooming. Craven et al. [CBG06] define sexual grooming of
children as: "A process by which a person prepares a child, significant adults, and the

environment for the abuse of this child. Specific goals include gaining access to the

child, gaining the child’s compliance, and maintaining the child’s secrecy to avoid

7
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disclosure. This process serves to strengthen the o�ender’s abusive pattern, as it may

be used as a means of justifying or denying their actions." The goal of the grooming
process is to be able to abuse the victim without being caught. Without the victim’s
trust, there is a more significant risk of being disclosed, and predators will hence
make an e�ort to gain trust. Online grooming refers to sexual grooming of a child
over the Internet. Craven et al. [CBG06] also define di�erent types of grooming.
The first type of grooming is self-grooming. Self-grooming is the process where the
predator will try to justify their actions for themselves. The second grooming type
is the grooming of the environment. This type refers to ensuring that the victim’s
environment won’t disclose the predator. The environment includes parents and
other people close to the victim child. The last grooming type is the grooming of the
child, which is the most recognized form of grooming. This type involves gaining the
trust of children to later be able to exploit them without being disclosed. Without
the child’s trust, the risk of the child ending the conversation or talking to its parents
gets bigger.

Several research projects have studied the grooming process and have described
di�erent stages that the predator will use in a conversation with a victim child
[OCo03; Kon09; GACS16; PGS15]. Some of the papers describe three stages, while
others list up to six stages. While there are di�erences in details in the di�erent
articles, they all describe a process of firstly creating friendship and trust with the
victim before gathering information about the child’s environment and assessing the
risk. Lastly, they introduce sexual topics in the conversation. Table 2.1 summarizes
the grooming process in six stages.

Several research projects have aimed to define typical characteristics common to
predators. Babchishin et al. [BKH11] studied demographical variables of sexual of
online o�enders. The study shows that most predators are male, and most of them
are in their late 30s. Around 30% of the o�enders in the study were not married,
and approximately 15% were unemployed.

Malesky [Mal07] studied the modus operandi of convicted sex o�enders. The
goal was to be able to identify potential victims of online abuse. Malesky gives
insights into the typical characteristics of victims of online abuse and insights into
how predators typically choose victims. The study suggests that three main themes
characterize a victim. The first theme is when a child mentions sex. The child may
use their profile biography or profile name to say something related to sex, which
some predators will find as motivation for the abuse. The second theme described
in the study is when the child is behaving submissive or needy. The third theme is
when the child has a young-sounding name. The child may have a profile name that
sounds young to the predator, for instance, "sophie11", which could motivate the
predator to reach out to that specific child. The study claims that child’s willingness
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Table 2.1: Stages of online grooming

Stages Description
1: Friendship forming
stage

The predator will try getting to know the child, and
both the child and predator may exchange personal
information such as location, age, and family situa-
tion.

2: Relationship forming
stage

The predator will ask questions to the child about
their home- and school situation. By giving compli-
ments and conversations about topics that interest
the child, the predator tries to gain trust.

3: Risk assessment stage The predator will try to gather information to deter-
mine the likelihood of getting detected by the child’s
surroundings, such as parents or siblings.

4: Exclusivity forming
stage

The goal of this stage is often to make the child believe
that the predator is to be trusted and to establish a
feeling of love and exclusiveness in the relationship.

5: Sexual stage The predator will ask questions and introduce topics
related to sex, body, and intimacy. The predator may
ask the child to participate in sexual activities online,
such as sending sexual pictures.

6: Conclusion stage The predator may try to organize further contact and
physical meetings

to talk about sex was the most common characteristic of the victims. In addition, the
paper states that some predators will send messages to many potential victims and
choose the victim based on the response the predator receives. O’Connell [OCo03]
describes a similar behavior, where predators will typically send out a short message
to many children and wait for the children to respond before deciding which children
to start long conversations with. The decision will then be based on the answer from
the children.

Olson et al. [ODER07] studied how a predator chooses a victim and which
properties victims typically possess. The study shows that children with low self-
esteem or a lack of confidence, naive and without knowledge about abuse, and
children with dysfunctional family dynamics are typical traits of abuse victims.

When predators wish to exploit a child, they may either present themselves as
who they are, or they can masquerade as a child or as another adult. Malesky’s paper
on the modus operandi of sex o�enders states that 29% of the predators in the study
presented themselves as children when communicating with children [Mal07]. On
the other hand, Wolak et al. report that only 5% of o�enders present themselves as
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children [WFMY10]. The number of predators presenting themselves as children will
vary depending on the online chat platform. Some platforms will not allow adults to
play, which will force predators to masquerade as children.

2.2 Graph theory

This section will present an overview of graph theory and an introduction to some
basic graph theoretical concepts. Graph theoretical concepts were studied, and
identification of relevant background material was carried out in the project preceding
this thesis [Aar21]. This is amended with a discussion of a few additional concepts
that have shown to be relevant after the project.

2.2.1 Introduction to graph theory

According to [Tru13] a graph is defined as "an object consisting of two sets called its

node set and its edge set. The node set is a finite nonempty set. The edge set may be

empty, but otherwise its elements are two-element subsets of the node set." Graphs
are typically presented as G = (V, E) where V is the set of nodes, and E is the set
of edges. Each edge is connecting two nodes, called the endpoints of the edge. Two
nodes joined by an edge are neighbor nodes, and two edges that share the same node
as an endpoint are neighbor edges. A node, v, that is an endpoint of an edge, e, is
incident on e and e is similarly incident on v.

Graphs are divided into undirected graphs and directed graphs. In undirected
graphs, the edges will have no specific direction, but the edges have a specified
direction for directed graphs, presented with arrows. For example, in a chat network,
the nodes can represent users of the chat platform, and the edges can represent the
conversation between two users. A directed edge would indicate messages sent from
one user to another. If the other user is sending messages back, there will be another
edge in the other direction between these two nodes. So then, the two nodes would
be connected with two edges. The graph can also have edges with weights linked to
it. The weights give some extra information about the data being represented in the
graph. For example, the weight may represent the number of messages sent from
one person to another in a chat network. Figure 2.1 shows examples of the di�erent
types of graphs. In Figure 2.1a, there is communication between user a and user c
and between user b and user c. In Figure 2.1b, user c sends messages to user a, and
users b and c send messages to each other. Finally, in Figure 2.1c, user c has sent
four messages to user a and two to user b, while user b sends fifteen messages back
to user c.

A path in a graph is a sequence of distinct edges that connects a series of distinct
nodes [BW10]. The shortest path between two nodes in the graph is the path with
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(a) Undirected graph (b) Directed graph

(c) Weighted graph

Figure 2.1: Comparison of di�erent types of graphs

the smallest set of edges in unweighted graphs or the path with the lowest sum of
weights in weighted graphs. In directed graphs, a path needs to follow the direction
of the path. For example, in the graph in Figure 2.1a, there is a path from a to b
and a path from b to a, but in Figure 2.1b, there is a path from b to a, but no path
from a to b.

2.2.2 Selection of graph theory concepts

In graph theory, di�erent concepts describe the characteristics of the data presented.
Some of the relevant concepts to this research will be discussed further.

A subgraph GÕ = (V Õ, EÕ) of the graph G = (V, E) is a graph where the nodes, V Õ

are a subset of V and the edges EÕ are a subset of E. A clique is a subgraph of a
graph G where all the nodes are connected.

Node degree is the number of edges incident on a specific node. The degree of
a node can also be interpreted as the number of neighbors of a node. It may be
interesting to also look at the in-degree and out-degree values in directed graphs.
In-degree is the sum of all edges incident on a node where the direction of the edges
is leading into the node. Out-degree is the sum of all edges incident on a node
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where the direction of the edges is outgoing from the node. In weighted graphs, the
weight of the edge can be summarized to calculate the weighted degree, in-degree, or
out-degree value.

Di�erent types of centrality rank the importance of nodes in the graph by
various indicators. Degree centrality, betweenness centrality, closeness centrality, and
eigenvector centrality are examples of di�erent ways of calculating centrality.

A Clustering Coe�cient (CC) is a measure of the influence a node has in a
network. It measures if the node is a part of a highly connected group of nodes
in the graph, also known as a cluster. The CC of a node v is based on the degree
deg(v) of the node and the number of edges connecting the neighbors of v, N(v).
The following formula can be used to calculate the CC of a node v:

CC(v) = 2N(v)
deg(v) · (deg(v) ≠ 1)

Figure 2.2 shows the CC calculated on the red node in three di�erent cases.

Figure 2.2: Clustering coe�cient for the red node in three di�erent graphs

An outlier is a node that lies outside of the typical pattern of the nodes in a graph.
Outliers will typically be interesting nodes to investigate in anomaly detection.

2.3 Machine learning

Machine Learning (ML) is the science of giving computers the capability to make
predictions based on past information without being explicitly programmed [MRT18,
p. 1]. ML can be used to do various tasks, from document and text classification to
spam filtering, detection of criminals, risk analysis, or clustering of user groups.



2.3. MACHINE LEARNING 13

In ML, all data set items that shall be classified are represented by the same set
of features. The features may be binary, categorical, or continuous, depending on the
data set. ML is divided into supervised, reinforcement, and unsupervised learning.
The latter ML type will be used to classify the data set in this project and will be
explained in more detail in this section, together with some examples of relevant
algorithms. Lastly, supervised learning will be explained briefly.

2.3.1 Unsupervised learning

Unsupervised learning aims to find patterns in the data set to classify the di�erent
data points [BvLR11]. Unsupervised ML uses only unclassified data without any
training data as input for classification. Clustering is a technique of unsupervised
learning that is widely studied and used. In general, clustering and unsupervised
learning are suitable methods to find unknown properties of the data of the given
data set. This subsection describes a selection of clustering algorithms relevant to
this thesis.

k-means

k-means clustering is a widely used clustering algorithm that aims to cluster the data
set into k number of clusters [HW79]. The algorithm takes the number of clusters, k,
as a parameter. The algorithm starts by selecting k random data points as starting
points and calculates the distance between each data point in the data set to the
k starting points. The data points in the data set will then be clustered with the
starting point it is closest to. The mean data point for the new clusters, the centroids,
is calculated. New clusters are then calculated by using the computed centroids as
starting points. And again, new centroids are calculated, and new clusters are formed
based on the centroids. This iterative process will be repeated until the mean values
do not change from one iteration to another or until the number of iterations reaches
a maximum limit. The whole process will be repeated with new random starting
points a given number of times. The algorithm will choose the clustering that gives
the least variation.

The advantages of the k-means algorithm are that it is simple, robust, e�cient,
and can work with various data points. However, the algorithm works poorly for
clusters with non-spherical shapes and is sensitive to outliers [Wu12].

Gaussian Mixture Model

Gaussian Mixture Model (GMM) [Rey09] uses a mixture of Gaussian distributions
to cluster data, where each of the distributions represents a cluster. The algorithm
works similarly to the k-means algorithm, but in GMM, both the mean value and
covariance are used to calculate the centroids, where k-means only uses the mean
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value. The algorithm has a probabilistic approach, i.e., it calculates the probability
that a given data point is in the di�erent classes. The probability calculation
is done through the probability density function. The data points are clustered
with the class with the highest probability. For a given data set, the algorithm
will produce k Gaussian distributions (clusters), where each of them has a mean
vector and a covariance matrix. The mean and covariance are calculated through
the Expectation-Maximization, a technique for finding the proper parameters for a
model.

GMM is a relatively easy algorithm to implement as it requires few parameters.
Furthermore, it does not need the data to have a specific geometry, unlike k-means,
which assumes the clusters to have a circular form.

Agglomerative clustering

Agglomerative clustering performs hierarchical clustering with a bottom-up approach
[SB13]. The algorithm uses a distance measure, for instance, the Euclidean distance,
to cluster the data. First, the distance between all data points of the data will
be calculated, and the two data points closest will be clustered. Then the same
procedure will repeat, but with the new cluster calculated as one instance. Next, the
distances are recalculated with the new cluster and then new the smallest distance
will form a cluster. This will be repeated until all data points are in one cluster.
Figure 2.3 shows how the algorithm works. Node a and b are the closest, thus will be
clustered together first. Then, c and d will be clustered, and lastly, the two clusters
will be clustered into one large cluster. The algorithm takes the number of clusters
as a parameter, and it ends when the chosen number of clusters is achieved.

Figure 2.3: Example of the agglomerative clustering algorithm
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The agglomerative clustering algorithm is simple to implement and can be a
nice way to structure data. However, it is slow and not suitable for larger data sets
[WBKP08].

BIRCH

Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) is a hierar-
chical clustering algorithm created to handle large amounts of data points [ZRL97].
The algorithm aims to create many small radius groups and later cluster these small
groups into larger clusters by using other clustering algorithms such as agglomerative
clustering. The algorithm takes in three parameters, a threshold T , and a branching
factor, B and the number of clusters, k. The BIRCH algorithm will first scan the
data set and build a Cluster Feature (CF) tree. CF is a set of three values describing
a cluster: CF = (N, L̨S, SS), where N is the number of data points in the cluster,
L̨S is the linear sum of the N data points, and SS is the squared sum of the N data
points. Using the CF values makes it possible to calculate the distance between two
clusters. The nodes in the CF tree are called CF nodes. When a new data point is
clustered, it will start at the root CF node and traverse the tree to find the leaf CF
node it is closest to. If the radius to the nearest cluster in the CF node is larger than
the square of the threshold, T , the data point will form a new cluster at the same
CF node. If the number of clusters in the CF node exceeds the branching factor, the
node will split and form two new children nodes. After the CF tree is created, the
clusters will be clustered further into k clusters with another clustering algorithm.

BIRCH is an algorithm created to handle large data sets e�ciently [ZRL97].
However, the algorithm is a bit complex to use as it takes three parameters which
can make it challenging to optimize.

Mean shift

In similarity to the k-means algorithm, mean shift is a centroid-based algorithm
[Car15]. The algorithm consists of iterations until the centroids converge. During one
iteration, all data points will shift towards the mean of the neighborhood surrounding
them. The neighborhood is a circle shape with the relevant data point as the center
and the parameter bandwidth as the radius. For each iteration, the mean is found
by calculating the maximum of a density function which includes a kernel function.
The kernel function, K, is used to calculate the weight between the center and the
data points in the neighborhood. The mean is calculated with the following formula.

m(xi) =
q

xjœN(xi) K(xj ≠ xi)xjq
xjœN(xi) K(xj ≠ xi)

, (2.1)
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where xi is the centroid in the i’th iteration, and N(xi) is the neighborhood of
data points within a the radius from the centroid.

An advantage of the algorithm is that the number of clusters does not need to be
predefined; it can calculate the number of clusters that best fits the given data set.
However, the algorithm does not scale with a high number of dimensions [CM02].

DBSCAN

Density Based Spatial Clustering of Applications with Noise (DBSCAN) is a clus-
tering algorithm is a density-based algorithm that separates di�erent clusters from
each other where there are continuous regions of objects with low density [EKSX96].
The data points within these regions will be classified as outliers. The DBSCAN
algorithm takes two values as input. minPts is a threshold for the minimum points
that need to be directly connected to a data point for it to be considered as a core
point. eps is a distance threshold that decides the distance between two points for
them to be considered directly connected. The algorithm will find core data points
based on the input values, minPts, and eps. Core points are points that has more
than minPts of points directly connected to themselves. After all core points are
calculated, all connected core points will be assigned to the same cluster. After
the core points are given clusters, all non-core points are assessed. The non-core
points directly connected to a core point will also be assigned the same cluster as the
relevant core point; however, the non-core point will not be further used to expand
the cluster. The non-core points that are too far away to be assigned a cluster will
be classified as outliers. Figure 2.4 shows an example of DBSCAN clustering. The
dark red points are core data points, while the lighter red and the green are non-core
data points. minPts in the example is 4, and eps is marked in Figure 2.4a and 2.4b.
The light red points are close to core data points and will join the cluster but do not
have enough directly connected data points to be core data points. The green points
are classified as outliers. Figure 2.4c marks the cluster created from DBSCAN.

Advantages of the DBSCAN algorithm are that it can cluster data of arbitrary
shapes, and it is robust towards outliers. However, it is sensitive to the two parameters
minPts and eps and does not work with data sets with altering densities [AD15].

2.3.2 Supervised learning

Supervised machine learning algorithms classify data based on prior information
[KZP+07]. The algorithms use a set of instances with known labels to further predict
the classes of the instances with unknown labels. A label is the correct output for an
instance of the data set. The set of instances with known labels is called the training
set, while the data to be classified is called the testing set.
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(a) A core data point with at least
minP ts = 4 points closer than eps

(b) A non-core data point with less than
minP ts = 4 points closer than eps

(c) The cluster created from the
algorithm

Figure 2.4: DBSCAN example

The classification rules are built from one or more classes depending on the
training data set. For example, if there is information about only one class in the
data set, the algorithm should be a one-class algorithm, but the algorithm can also
be based on two or more classes. No supervised learning algorithms were used in this
study due to the lack of ground truth needed for training data. Some supervised ML
algorithms that could have been used are Naive Bayes, k-NN, decision trees, random
forest, SVM, and neural networks.





Chapter3Related Work

This chapter describes the state-of-the-art and related work for the thesis. Firstly,
papers concerning predator detection will be presented. Next, a collection of studies
that have utilized graph theory for detection problems related to this thesis will
be discussed before presenting a research project that studied a graph-theoretical
approach to predator detection. The state-of-the-art was reviewed, and a selection
of relevant background material was described in the project preceding this thesis
[Aar21]. This is amended with a review of a few papers that have been discovered
after the project.

3.1 Predator detection

Former research on detecting predators in platforms for children has used di�erent
approaches and methods. Many studies have analyzed the linguistic features in the
text written between a child and a predator. Various methods have been developed
for detecting predator conversations and identifying predators based on the written
text. Other papers focus on the di�erent users’ behavior and author analysis for the
same overall goal. Some of the most promising research for predator detection will
be presented in this section.

The research done by Villatoro et al. [VJE+12] placed 1. at the PAN-2012
competition [IC12] with an F0.5 score of 0.93. The study uses a two-stage approach
for detecting predators; the Suspicious Conversations Identification (SCI) stage and
the Victim from Predator disclosure (VFP) stage. For the SCI stage, Bag of Words
(BoW) was used as a feature extraction method, employed with both binary and Term
Frequency-Inverse Document Frequency (TF-IDF) weighting schemes. Similarly,
for the VFP stage, the study tested BoW with binary and TF-IDF employment.
Two di�erent classification algorithms were tested: Support Vector Machine (SVM)
and Neural Networks (NN). Villatoro et al. achieved the best result using NN
classification and BoW with binary weighting scheme on both the SCI stage and
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VFP stage, which gave an F0.5 score at 0.93, placing the research at the top of the
competition.

Cardi and Rebedea [CR17] is a more recent study using the two-stage classification
approach. The study uses the SVM classifier to detect the predator conversations in
the first stage, and a Random Forest classifier is used for the identification in the
second stage. For feature extraction, behavioral features and interactional attributes
are studied alongside BoW features with binary weighting. Behavioral features are
not directly related to the words used by the di�erent participants but rather the
behavior of the users. Examples of behavior features are question ratio (the number
of questions a user asks), slang ratio, and sexual word ratio. The paper results show
that the inclusion of behavioral features is beneficial compared with the user of only
lexical features.

Fauzi and Bours also studied a two-step approach for Predator identification;
however, the research included ensemble strategies aiming to improve detection
accuracy [FB20]. For both the Predatory Conversations Identification (PCI) and
Victim from Predator Distinction (VPD) phases, di�erent feature sets and classifi-
cation methods were tested. In addition, ensemble methods were introduced, and
comparisons between classification with and without ensemble methods were studied.
Ensemble methods take multiple classifiers, which "vote" to classify the text. In the
research, the ensemble classifiers vote for predator or non-predatory, both with hard
and soft voting, and the classification is then based on the votes. The ensemble
method gave promising results in the PCI stage with an F0.5 score of 0.99, which
outperformed the other classifiers working alone. For the VPD stage, the Naive
Bayes classification performed better than the ensemble methods.

Another approach for detecting predators through lexical analysis is author
attribution, which is the "task of assigning an author to an unknown text" [MDRR19].
Author attribution can be done in several ways, for instance, with keystroke dynamics
or linguistic analysis. Much of the author’s analysis research for predator detection
is based on lexical analysis. One challenge of author attribution in chat networks
is the short length of the text messages, which leads to precise classification being
more complex. Several papers on author attribution for short messages have used
the merging of all messages from one person into one larger text as a method to
circumvent this challenge [Bou11; MP13].

Bours and Kulsrud [BK19] compare the author-based approach with the message-
and conversation-based approach for detection. The method includes merging the
messages from one author into one larger text. The author-based method obtained
an F0.5 = 0.891 by using Neural Networks classification and TF-IDF features. The
research paper concludes that the Author-Based Detection method gives the most
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promising results alongside the Conversation-Based Detection method.

Misra et al. [MDRR19] used author attribution with the use of Convolution
Neural Networks (CNN). The research proposed two models for the author analysis.
Both models did the author analysis with CNN, but one model focuses on Authorship
Attribution (AA-CNN) and the other on Predator Classification (AA-CNN-PC). The
proposed method showed to be comparable to state-of-the-art research and a simpler
method compared with previous work.

One of the main challenges of analyzing textual messages is many misspellings,
slang, and informal language. Cheong et al. describe some of these challenges in a
paper on detecting predatory behavior in game chats [CJG+15]. Cheong et al. used
a data set from the game MovieStarPlanet, which is the only paper to our knowledge,
that studies predator detection and uses real-life data in the research. The writing
style is highlighted as one of the main challenges in the study, as there seems to be
a high level of misspellings, slang, errors, and meaningless symbols in game chats.
Another challenge discussed in the paper is that the nature of the game causes normal
users to have a language that may be similar to the predator’s language. Ordinary
users are likely to form virtual relationships in the game, and typical chats revolve
around being boyfriends, girlfriends, introducing role play, etc. Thus, it gets more
challenging to recognize the predator in the game chats.

3.2 Graph-based network analysis

Graph theory has been used to analyze and detect anomalies in many di�erent
research projects and areas. In this study, we use graph theory in a game chat,
which can be defined as a social network. Several papers study graph features,
characteristics, and how to detect anomalies and outliers in social networks. For
example, Panzarasa et al. [POC09] analyze the patterns of user behavior in a social
network. One of the main takeaways from the study is that the studied social
network has a "small-world" characteristic, which means that there are relatively
small shortest paths between the majority of the nodes in the network. The paper
also emphasizes the uneven characteristics among regular users. For example, some
users are more popular or gregarious than the average user, which causes the graph
to exhibit a fat-tailed degree distribution.

DeBarr and Wechsler [DW10] used social network analysis in their research on
improving spam detection. The paper proposes to use the degree centrality of the
sender’s message transfer agent and the path length between the sender and receiver
as graph features. The research classifies the test data with the machine learning
algorithm, LogitBoost. The results show that including social network analysis
improves spam detection significantly.
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Similar to DeBarr and Wechsler, Fire et al. [FKE12] studied how to detect
spammers and fake profiles in social networks with a graph-theoretical approach.
Four features were extracted and used for the detection: the user’s degree, the
user’s connected communities number, the number of connections between a user’s
friends, and the average number of friends inside connected communities. Decision
trees and Naive Bayes were used as classifiers. To evaluate the performance of the
proposed method, a random control group of most likely fake profiles was collected
and assessed manually by an expert group. The proposed algorithm gave good results
with F-scores up to 0.999. The paper concludes with the method being su�cient for
small to medium-sized social networks.

Almaatouq et al. [ASN+16] also studied how to detect spammers. The research
tests di�erent kinds of features, content features, profile features, and social interaction
features, which correspond to graph features. Degree-, density- and centrality values
are examples of features included in the social interaction category. The performance
of the classification of users is compared based on the di�erent feature types. When
using combinations of the di�erent categories, the classification is the most precise.
Social interaction features outperform the other categories when looking at the
performance individually. Di�erent supervised learning algorithms are also tested for
classification in the research. The decision tree performed the overall best out of the
classification methods tested.

Johnsen [Joh16] analyzed cybercrime networks seeking to identify interesting users
within a social network. He studied which features could be used to identify central
individuals in the network and how graph theory could be used in identification.
The method included using several features and neighborhood approaches: k-NN
and e-neighborhood. Some of the di�erent features analyzed in the thesis were
degree, in-degree, out-degree, betweenness, and closeness. The results suggested that
betweenness, closeness, and in-degree were the features that gave the most accurate
indications of the interesting users in the social network.

3.3 Graph-based predator detection

Matteini Palmerini [Mat21] is, to the best of our knowledge, the only research on
detecting sexual predators online through graph analysis. He studied if a graph
theoretical approach could contribute to detecting sexual predators. The data set
used in the study was gathered from an online game where users communicate in
private chats. Two classification approaches were used; the neighbors’ approach and
the cliques approach. Both classification methods used betweenness- and closeness
centrality features.

The neighbors’ approach uses classification in two steps, firstly creating subsets of
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the graph and then subgraphs. The first step uses the di�erence between unweighted
in-degree and out-degree values to create subsets. The step divides the data into
users that behave more like spammers, regular users, and users that mainly receive
messages. The next step divides the normal users based on three attributes: the total
number of edges, the messages per link, and the variation between in-degree and
out-degree values. Outliers were detected by using both betweenness- and closeness
centrality features. The two di�erent types of centrality measures showed di�erent
kinds of outliers. With betweenness centrality, outliers had high centrality values
but a low centrality value when closeness centrality was used. The paper concludes
that the neighbors’ approach is appropriate for getting a network’s local views.

The cliques’ approach is based on the assumption that a clique is the most
realistic represent a group chat in the game. Betweenness- and closeness centrality
was calculated concerning the cliques and used to find outliers. The same result
regarding betweenness and closeness centrality was found in the cliques’ approach:
betweenness centrality showed outliers with high centrality values, and closeness
centrality showed low centrality values for the outliers. The cliques’ approach was
concluded to suit best as a global approach.

One limitation of the thesis was the data set that was used. All sensitive
information in the game was encrypted, and there was little information about the
game itself. Thus, the object of the project was moved to "test key features for
abnormal behaviors detection investigating the number of edges and the number of
the messages" [Mat21]. There was no conclusion on how well the methods described
would detect predators.





Chapter4Methodology

This chapter describes the methodology used for the master thesis. The preprocessing
phase will be described, followed by a section on how the data set was manually
studied before choosing the feature set. Section 4.3 goes more into detail about how
the feature set was formed. Next, section 4.4 describes how the Machine Learning
(ML) algorithms were implemented and tested. Lastly, the limitations of the thesis
will be presented.

4.1 Preprocessing

The data set used in this master thesis is from the online children’s game MovieStar-
Planet. The game is aimed at children between the ages of 8 and 15. In the game,
the users play a character in a virtual world, where they can play games and meet
other users. The game allows for private chats and chats in groups and forums. A
part of the game revolves around forming relationships and friendships with other
users. Thus, many of the conversations in the chats revolve around topics such as
relations and romance. To protect the users of the game, MovieStarPlanet filters
out words that may appear inappropriate in chats1. Many of the text messages are
characterized by circumventions of the filters, for instance, intended misspelling or
separating of words.

MovieStarPlanet has provided a data set collected from the USA in over five
months, between January and May 2021. The data set consists of chat data from
private chats, such as text messages and usernames, from users of the game. No
data used for the thesis is from group chats or chats in forums. The data set is not
continuous over five months but split into five di�erent continuous sets. In addition
to the five-month data set, we got access to a data set from one separate day. This
data set was accessible to us before we got the five-months data set. It was used to

1https://moviestarplanet.zendesk.com/hc/en-us/articles/115000385689
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prepare the software used for visualization and clustering, and it was used for feature
extraction. The data were collected was from 31/12/21.

The preprocessing of the data revolved around making the data anonymous. This
was done outside of this master thesis by the thesis supervisor. All users were given
a randomized ID, and the only information used for the predator detection was the
IDs and the number of messages sent between di�erent user IDs. The anonymous
user IDs can only be linked to the original usernames by the supervisor. So if a
node has abnormal behavior, it can be investigated further by reading the messages
sent to and from the related user. None of the data used to examine if graph theory
could be used for predator detection could identify any user of the game. However,
the anonymized data provides enough information to create a graph of users and to
study the properties of the di�erent anonymous users. Figure 4.1 shows a part of
the data file used. Column 1 and 2 shows user IDs, and the third column shows the
number of messages sent from the user in column 1 to the user in column 2.

Figure 4.1: Snippet from the data set file



4.2. STUDY OF THE DATA SET 27

4.2 Study of the data set

At the beginning of the project, we had only access to a data set collected from one
day of the game. The data set consists of 18 364 users and 1 130 468 messages. This
data set was used to learn about the properties of the nodes of the game network.
Di�erent charts of properties were created to identify important aspects of the data
further.

When using clustering algorithms, a set of features is needed. The feature set was
based on looking at the graph, but also on assumed behavior of normal and anomaly
users. To learn about the properties of a user in the game, we visualized parts of
the graph. We used a data set from one day to visualize a network of chats between
users. The graph was built with nodes representing the users, and with the number
of messages sent between users as the weight of the directed edges. This network was
too large to extract any helpful information. Therefore, we created subgraphs based
on ego graphs for particular nodes in the graph from one day in the game. These
ego graphs were created by choosing a node and a depth. Then the subgraph would
consist of the node and its neighbors if the depth is 1, the same set of nodes plus
all the user’s neighbors’ neighbors if the depth is two, and so on. The blue nodes
around node n in Figure 4.2 shows n’s ego graph with depth 1. The rest of the nodes
except node 10 and 13 belongs to n’s ego graph with a depth of 2. These subgraphs
were able to give some more information about the nodes. It was, for instance, easy
to see how many other users the node was talking to, how long the conversations
were, how many of the nodes were communicating, and more.

Figure 4.2: Example demonstrating ego graph around node n [AIP+18]

We used the python library Pyvis2 to visualize the graph representation of the
networks. The graphs were visualized with nodes labeled with their ID, and the

2https://pyvis.readthedocs.io/en/latest/index.html
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edges between the nodes were labeled with the number of messages between the
users. A color system was also created to separate central and less central nodes.
Nodes with a higher out-degree value than 12 were colored red, and nodes with
an out-degree value between 5 and 12 were colored purple. Nodes with out-degree
between 1 and 5 were colored yellow, while nodes with only 1 or 0 outgoing edges
were colored green. Figures 4.3 and 4.4 show one example of a visualized subgraph
created from a random node, node 13458, with a depth of 2. The visualizations
show more prominent edges where the conversation consists of relatively many
messages compared to other conversations in the graph. Figure 4.4 demonstrates
this property. When the larger data sets were studied, the boundaries for the colors
in the visualizations were adjusted. Nodes with an out-degree value higher than 32
were colored in red. Nodes with an out-degree value between 7 and 32 were colored
purple. Nodes with out-degree between 1 and 7 were colored yellow, while nodes
with only 1 or 0 outgoing edges were still colored green.

Figure 4.3: Example of visualization. The graph is the ego graph for node 13458
with depth 2

.

When studying the di�erent subgraphs, nodes with many neighbors, i.e., with
a high degree value, stand out. Also, nodes with many incoming and few outgoing
messages and vice versa are interesting. We created plots that could visualize the
density of the degree of the nodes. Figure 4.5 shows a plot of the density of the
degree, in-degree, and out-degree values from the one-day data set in the same plot.
From the plot, we can see that most users had less than ten conversations that day.
We made similar observations on the number of messages, where most conversations
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Figure 4.4: Zoomed-in example of visualization. The graph is the ego graph for
node 13458 with depth 2.

consisted of less than 50 messages that day. The weighted degree distribution, shown
in Figure 4.6, is similar to the plot without weights. This observation can indicate
that users with either many neighbors or with a lot of sent and received messages
might be unusual.

Figure 4.5: The density of degree
values from one day in
MovieStarPlanet

Figure 4.6: The density of weighted
degree values from one day in
MovieStarPlanet

We also looked at the number of incoming and outgoing messages related to the
total number of messages for nodes individually. Figure 4.7 shows the distribution
of incoming messages divided by the total number of messages from a node to all
its neighbors and outgoing messages divided by the total number of messages. We



30 4. METHODOLOGY

Figure 4.7: Number of incoming and outgoing messages divided by the total number
of messages

observed that many users send approximately the same number of messages as they
receive. In addition, some users only send messages, and many users only receive
messages. The two di�erent graphs in the plot are opposite from one another:

#outgoingMessages

#totalMessages
= 1 ≠ #incomingMessages

#totalMessages

Thus, there is no additional information gained by using both as individual features
for the clustering algorithms.

Another node characteristic that was interesting to investigate was whether the
node’s neighbors were chatting with each other. If a user of the game is part of
a group of friends, it is natural to think that that user’s friends are also friends.
Therefore, a node in the network with many connected neighbors might indicate that
the node is a user playing with its group of friends. This property was visualized
by using the Clustering Coe�cient (CC). The CC compares the number of possible
edges between neighbors of a node with the number of edges between the neighbors.
Figures 4.8 and 4.9 show the density of the CC calculated with and without the
weights of the edges. The plots show that most users did not have many neighbors
talking with each other during the one day of the game. This property might change
when the data set is collected over a more extended period.

Lastly, we studied the distribution of the number of messages in the di�erent
conversations belonging to a user. We divided the conversations into four categories
based on the number of messages. The four categories were: conversations with
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Figure 4.8: Clustering coe�cient
from one day in MovieStarPlanet

Figure 4.9: Weighted clustering coe�-
cient from one day in MovieStarPlanet

one message, conversations with two to five messages, conversations with six to 20
messages, and conversations with more than 20 messages. For each node, a vector of
four values was calculated. For instance, a node with the vector (4, 6, 2, 1) has four
conversations containing one message, six conversations with less than or equal to
five messages, two conversations with less than or equal to 20 messages, and one
conversation with more than 20 messages. A similar vector was created but only
containing the number of outgoing messages, and one additional vector containing
the same data but in percent was calculated. The corresponding vector in percent
would then be (0.30, 0.47, 0.15, 0.08). Di�erent plots were created to visualize the
normal behavior of a node. Figures 4.10 and 4.11 show the message distribution
plots. The plots are a bit cluttered, but it is possible to see that it is more usual with
short conversations than longer ones. The box plot also indicates that most users
have only a few conversations at all lengths. These properties may change when the
data set is collected over more extended periods.

Figure 4.10: Box plot of the distribution
of messages

Figure 4.11: Plot of distributions of mes-
sages from all nodes

Figures 4.12 and 4.13 show the data but with percentage. It shows that con-
versations consisting of one message are a large part of the conversations for many
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users. The more extensive conversations are usually a smaller part of the users’
conversations. The plot shown in Figure 4.13 is more challenging to analyze, and
gives little useful information.

Figure 4.12: Box plot of percentage
of message distribution

Figure 4.13: Plot of the percentages of
message distribution

4.3 Feature extraction

In the feature extraction phase, 22 features were selected to be tested in the clustering
algorithms. The feature extraction were based on the analysis of features from the
previous section.

The first six features were related to the node’s degree. The degree of the node
is the number of conversations a user has or the number of neighbors of the node
representing the user. In-degree and out-degree were also included as features. The
in-degree value corresponds to the number of conversations where messages are sent to
the user, and the out-degree value corresponds to the number of conversations where
messages exist sent from the user. In addition to these values, the corresponding
values with weights were included, namely weighted degree, weighted in-degree, and
weighted out-degree. The weighted degree is the number of messages sent to and from
the user. The weighted in-degree value is the number of messages the user received.
The weighted out-degree value is the number of messages the user sent to other users.

The next feature is the proportion of outgoing messages. It is also based on the
degree values, the weighted out-degree value related to the weighted degree. The
value is calculated with Equation 4.1.

degWout(n)
degW (n) (4.1)

degWout(n) is the number of messages sent from node n and degW (n) is the total
number of messages sent between node n and its neighbors.
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The two next features is Clustering Coe�cient (CC) and weighted CC. The
python library, NetworkX, was used to calculate values3. The CC and weighted CC
are calculated with Equations 4.2 and 4.3, respectively.

ccnu = 2T (u)
deg(u)(deg(u) ≠ 1) ≠ 2deg¡(u) (4.2)

wccu =
q

vw
(ŵuvŵuwŵvw)1/3

deg(u)(deg(u) ≠ 1) ≠ 2deg¡(u) (4.3)

T (u) is the total number of edges between node u’s neighbors, deg(u) is node u’s
total degree value. deg¡(u) is the reciprocal degree of u, which is the proportion of
edges in both directions related to the total number of edges incident on u. v and w
are neighbors of node u, and ŵuv is the normalized weight on the edge, calculated
with the maximum weight in the network: ŵnu = wnu/max(w).

The next feature is called non-common neighbors. For all neighbors of a node
n, the non-common neighbors calculates the number of neighbors the neighbor has
that is not shared with node n. The number is calculated for each node and is then
divided by the degree of the node n. To exemplify, if a node is a part of a close group
of friends that all are users of the game, it is likely that all the users talk with each
other, and might talk to few other users. Then the non-common neighbors value
would be small. However, if the node is not a part of a group of friends, the number
will possibly be more prominent as its neighbors probably talk with other users than
the node’s neighbors.

The remaining features capture the distribution of the length of the conversations
between a user and its neighbors. The size of a conversation is measured by the
number of messages in a conversation. To measure this distribution, the conversations
were split into four features; conversations consisting of one message, conversations
of two to seven messages, conversations of eight to 32 messages, and conversations of
more than 32 messages. Each node will then have four di�erent values representing
the distribution of the length of conversations. In addition, four new values only
calculating the outgoing messages are included in the same manner. Lastly, we
calculated the distribution in percent. So the first value would represent the number
of conversations with one message related to the total number of conversations and
equivalent for the other three features. The boundary values were adjusted from the
one-day data set as the conversations between users are likely to get longer over time.
The adjustment was made by looking at the number of messages in the five month

3https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.
cluster.clustering.html#networkx.algorithms.cluster.clustering
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data set. Table 4.1 sums up all feature values calculated for each node. The set of
features from the table will be calculated for all nodes and form a feature vector used
in the clustering algorithms.

Table 4.1: Initial set of features

Feature Equation Explanation
Degree deg(n) The number of conversations

containing messages to or from
user n

In-degree degin(n) The number of conversations
containing messages to user n

Out-degree degout(n) The number of conversations
containing messages from user
n

Weighted
degree

degW (n) The number of messages sent to
or from user n

Weighted
in-degree

degWin(n) The number of messages sent to
user n

Weighted
out-degree

degWout(n) The number of messages sent
from user n

Proportion
of outgoing
messages

degWout(n)
degW (n) The number of outgoing message

divided by the total number of
messages

Clustering
Coe�cient

2T (u)
deg(u)(deg(u)≠1)≠2deg¡(u) The degree to which node n’s

neighbors are connected to each
other

Weighted
Clustering
Coe�cient

q
vw

(ŵuvŵuwŵvw)1/3

deg(u)(deg(u)≠1)≠2deg¡(u) The degree to which node n’s
neighbors are connected to each
other in a weighted graph

Non-common
Neighbors

non_common_neighbors(n)
deg(n) The sum of node n’s neighbors’

neighbors that are not directly
connected to the node n, divided
by the degree of the node.

#Conversations
of 1 message

deg1(n) The number of conversations
with node n consisting of one
message
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#Conversations
of less than 7
messages

degÆ7(n) The number of conversations
with node n consisting of two
to seven messages

#Conversations
of less than 32
messages

degÆ32(n) The number of conversations
with node n consisting of eight
to 32 messages

#Conversations
of more than 32
messages

degØ32(n) The number of conversations
with node n consisting of more
than 32 messages

#Conversations
of 1 outgoing
message

degout,Æ1(n) The number of conversations
consisting of one or zero outgo-
ing message from node n

#Conversations
of less than 7
outgoing mes-
sages

degout,Æ7(n) The number of conversations
consisting of two to seven out-
going message from node n

#Conversations
of less than 32
outgoing mes-
sages

degout,Æ32(n) The number of conversations
consisting of eight to 32 outgoing
messages from node n

#Conversations
of more than
32 outgoing
messages

degout,Ø32(n) The number of conversations
consisting of more than 32 out-
going messages from node n

Proportion of
conversations of
1 message

deg1(n)
deg(n) The proportion of conversations

with node n consisting of one
message

Proportion of
conversations
of less than 7
messages

degÆ7(n)
deg(n) The proportion of conversations

with node n consisting of two to
seven messages

Proportion of
conversations
of less than 32
messages

degÆ32(n)
deg(n) The proportion of conversations

with node n consisting of eight
to 32 messages



36 4. METHODOLOGY

Proportion of
conversations of
more than 32
messages

degØ32(n)
deg(n) The proportion of conversations

with node n consisting of more
than 32 messages

4.4 Implementation and testing of clustering algorithms

Throughout testing the clustering algorithms, we used di�erent data sets. Firstly,
the data set from one day in the game was used to study the properties of the nodes
in the network and to get an understanding of which features should be included
in the testing. Later, a non-continuous data set from 2 months was used to test
the algorithms on a more significant amount of data. The data set from 2 months
is a subset of a larger data set collected from a five-month period. While testing
clustering algorithms for predator detection, we used only data sets collected from
the five months. The data collected over five months was not collected continuously,
meaning that there were gaps of several days where no data was collected. Hence,
we both run the cluster algorithms on the whole non-continuous five-month set, and
five smaller sets consisting of continuous data from smaller periods. Table 4.2 shows
an overview of all the di�erent data sets and some of their properties. Although the
smaller periods are under one month of data, they will be referred to as month 1,
month 2, and so on as they were collected in their respective months. All the data
sets except the one from one day are from the same five months and contain many of
the same users. The di�erent users have the same user ID across the di�erent data
sets from the five months.

Table 4.2: Overview of the di�erent data sets

Data set Time
period

Continuous Number
of nodes

Number
of edges

Number of
messages

One day 24 hours yes 18 364 65 968 1 130 468
Five
months

5 months no 272 699 2 449 064 65 663 048

Two
months

2 months no 142 695 1 047 646 32 538 059

Month 1 6 days yes 86 639 534 343 12 835 006
Month 2 8 days yes 84 113 545 633 13 716 358
Month 3 9 days yes 81 353 558 461 14 299 596
Month 4 7 days yes 68 482 410 984 10 018 760
Month 5 11 days yes 84 968 586 012 14 789 416
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4.4.1 Implementation

Agglomerative clustering, BIRCH, k-means, mean shift, DBSCAN, and Gaussian
Mixture Model (GMM) are the clustering algorithms tested for predator detection.
All clustering algorithms were programmed in python using the Scikit-Learn library
[PVG+11]. The programs that run the algorithms take in a CSV file containing nodes
represented by a feature vector. The clustering scripts normalize the features and do
clustering with Scikit-Learn. The normalization scales the di�erent feature values,
so all features share the same scale. The scaling was done with the StandardScaler
from the Scikit-Learn library [PVG+11]. The normal score for a feature sample, x,
is calculated with the formula:

z = (x ≠ µ)/‡,

where µ is the mean of all samples and ‡ is the standard deviation of the samples.
The scripts then make two output files, one containing the nodes sorted by their
cluster, and the other is a new CSV file containing the same rows and columns as
the input file but with a new column named "Cluster", which contains the cluster
assigned to the node. The next sections describe some details on how we implemented
the di�erent algorithms. All algorithms are explained in more detail in Section 2.3.1

k-means

The k-means algorithm takes the number of clusters as a parameter to the algorithm,
and 10, 7, and 5 were tested as values for the number of clusters. The algorithm
takes in an init parameter that decides how the initial centroids are calculated. The
parameter was set to "k-means++", an algorithm to choose the initial centroid seeds,
to make the algorithm converge faster than with random seeds. n_init, the number of
times the algorithm is run with di�erent centroid seeds, was set to 10. The maximum
number of iterations in the algorithm was set to 300.

Gaussian Mixture Model

GMM takes the number of components as parameters, corresponding to the number
of clusters. 10, 7, and 5 were tested for the number of components. When first
running the algorithm with 10 clusters on the largest data set with data from all five
months, there were no clusters that stood out. Therefore, we tested the algorithm
with 15 clusters, aiming to get smaller clusters. Hence, the algorithm was run with
15 clusters instead of 7 and 5 clusters for the 5-months data set.

Agglomerative clustering

The agglomerative clustering algorithm takes the number of clusters as a parameter.
The algorithm was tested with di�erent parameters for the one-day data set but was
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not used further on the larger sets as it was too slow. The Euclidian distance was
used to calculate the distances.

BIRCH

The BIRCH algorithm takes a threshold value, branching factor, and the number of
clusters as parameters. 1.5 was used as the threshold and 50 as the branching factor.
10, 7, and 5 were tested as values for the number of clusters. The agglomerative
clustering algorithm is used for the last clustering part after the initial grouping of
the nodes.

Mean shift

Mean shift does not need the number of clusters as input to the algorithm, as it
iterates to the clusters converge. Instead, the parameter that is central for the mean
shift is the bandwidth. This was calculated through a bandwidth estimator but later
adjusted to avoid creating too many di�erent clusters. The bandwidth used was 12.
The maximum number of iterations was set to 300.

DBSCAN

DBSCAN takes eps (a distance threshold) and minpts (the minimum number of
points required to form a dense region) as parameters. The algorithm does not
require the number of clusters as input. The minpts was set to #features + 20. eps

was calculated using an elbow method on the nearest neighbors for the data points,
which gave the value 3. The elbow method is a method that can be used to select the
optimal value for a parameter. The KneeLocator from the kneed library [SAIR11]
calculated the eps value. The distances were calculated with the Euclidean distance
metric.

4.4.2 Testing

The two-months months data set was used at the start of the testing period to
test how well the di�erent algorithms could handle the larger data sets. Various
parameters were tested with this data for di�erent algorithms. We decided to drop
the agglomerative algorithm for clustering in this phase as it was too slow.

DBSCAN was run with di�erent values for eps and minpts. Using eps = 3 and
mipts = #features + 20, we got one large and one small cluster together with a
group of outliers. This was the most useful clustering we achieved with DBSCAN,
and hence these parameters were used with the other data sets as well.

Mean shift was also tested with di�erent bandwidth parameters with the two-
months months data set. An estimator was used to calculate the appropriate value
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for bandwidth, but the algorithm produced over 100 di�erent clusters. Hence, the
bandwidth was adjusted up to 12. With this parameter, the algorithm created 22
clusters.

After testing the di�erent algorithms with the two-months months data set, the
five-months set was tested on the algorithms. The data set was a good way to get
an overview of how the users behave over a more extended period. However, the
fact that the data set contained data from 5 di�erent periods with longer periods
in between the data set made the large set a bit more challenging to analyze. The
challenge of analyzing data collected over a long period is that users will behave
more similarly over time. For example, while it may be abnormal behavior to have
many di�erent conversations in a short period, it is not unusual to have the same
amount of di�erent conversations over a more extended period. It was, therefore,
easier to separate abnormal behavior in shorter periods. Furthermore, the fact that
the large set is non-continuous may give the nodes di�erent feature values than what
is most suitable. Hence, the most e�ort went into analyzing the continuous data sets
collected in the various months.

After the di�erent algorithms on the various data sets were run, key numbers
from the clustering were calculated. Since we had no ground truth, much of the
analysis was based on assumptions and hypotheses. For example, clusters containing
few nodes, large average degree, large average weighted degree, or mismatched values
for the degree and weighted degree were considered suspicious. High or low values
from the other features were also used to find anomalies in the data sets. The clusters
that stood out were visualized to understand the properties of the clusters better. A
group of randomly chosen nodes was visualized with their ego graphs from most of
the clusters that stood out.

Some of the nodes were also investigated further to determine if there was
predatory activity or any other illegal activity happening in the relevant conversations.
For these nodes, conversations between the associated user and its neighbors were
read through to identify if the user was a predator or engaged in other illegal activities.
Before the chats were studied, the project’s supervisor did rigorous anonymization
of all users involved. As a result, there were no possibility to identify the users
participating in the chats that were investigated in the thesis.

4.5 Limitations

The most prominent limitation of the thesis was the lack of ground truth. Initially,
we planned to have a set of users that were classified as predators by MovieStarPlanet.
However, we were not successful in getting the set and hence had no ground truth to
work with. As a result, we were limited to only using clustering algorithms as we did
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not have any data to train supervised learning algorithms. In addition to dropping
the supervised ML algorithms, the lack of ground truth made assessing the clustering
algorithms more complex. Instead of looking at where the classified predators would
be clustered, we had to manually investigate all interesting clusters or nodes, reading
chats from relevant users. This process is time-consuming and not very e�ective.
Also, it is likely that we have missed interesting clusters as a result of this. However,
the method used in the thesis is adequate for answering the main research question.

The feature script that calculates the features of the nodes initially took more
than 25 hours to complete on the data set containing chat data from 2 months. The
script was changed to only handle 1/8 of the nodes to shorten the period. The script
was then run in 8 parallels, and it took about four hours to complete. The feature
script created the list of nodes in unique ways from each time it was run, so not all
nodes were calculated during the first run of the scripts. A new script to find the set
of forgotten nodes was written, and the feature script was then run with that specific
set. Overall, running scripts in parallel was essential for testing all the di�erent data
sets for predator detection.



Chapter5Results

This chapter describes the results of testing the machine learning algorithms with
di�erent data sets and parameters. The results from the di�erent algorithms are
summarized in tables, where key data from the di�erent clusters are provided. For
each algorithm in each data set, the result clusterings with di�erent parameters are
shown and discussed. More extensive tables including more information about the
distinct clusterings, are found in the Appendix A, B, and C. The extensive tables
consists of key values from all features in all clusterings, together with standard
deviation for each feature value.

Throughout the analysis of the results from the clustering, some nodes that are
likely to be predators were found. We can not say with certainty whether a user is a
predator, but we will refer to the users that are likely to be predators as predators,
to simplify the read. In addition to predators, some users send out one or a few
messages to a large set of users, often with the exact text sent to all users. These
kinds of users will be referred to as spammers, and the activity they do will be
referred to as spamming. To discuss the di�erent findings and nodes, we will include
visualizations of relevant nodes. This is done by displaying ego graphs based on the
nodes, always with the depth of 1.

5.1 One-day data set

At the beginning of the thesis, we had access to the data set collected in one day.
This data set was visualized and analyzed. Nodes 15451 and 8902 stood out from this
set as they were the most prominent nodes when visualizing the whole data set. Both
nodes had many neighbors, meaning the two users had a lot of di�erent conversations
in one day. Figures 5.1a and 5.1b shows the ego graphs from the two nodes that
stood out. The two nodes are both colored in red as they have sent messages to more
than 20 users. The neighbors do not seem to be tightly connected, which may result
from the small time frame of the data set. For example, the neighbors of a node
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(a) Node 15451 (b) Node 8902

Figure 5.1: Ego graph for two central nodes from the one-day data set

might usually chat with each other but might not have done that this specific day.

We tested the k-means algorithm with the feature set described in Table 4.1 on
this data set to test the clustering software created. The algorithm was run with
10 clusters as a parameter. Table 5.1 shows the clustering. Nodes 15451 and 8902
were clustered with no other nodes in cluster 9. The nodes could not be confirmed as
predators or regular users, as we could not find the related user from the randomized
ID for this data set. This is also why we did not investigate the other algorithms.
Table A.1 contains some additional values from the clustering.

From Table 5.1, cluster 9 stands out, both for being a small cluster and because of
the significant average degree value and average weighted degree value. In addition,
cluster 7 is relatively small and would be interesting for further investigation if we
had access to the chats from this data set.

5.2 Five-months data set

As described in Chapter 4, the feature set consisted of all features listed in Table 4.1.
With this set of features, the algorithms were run multiple times. The parameter
giving the number of clusters was adjusted in iterations to optimize the clusterings.
However, as we did not have any ground truth, it was challenging to compare
the di�erent clusterings e�ectively. Generally, it made the most sense to look
at the clusterings with more significant numbers of clusters as they often gave
smaller clusters with properties that were easier to recognize. Therefore, mainly
the clusterings containing 10 clusters for k-means, GMM, and BIRCH were studied,
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Table 5.1: k-means on data from one day

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

10 Clusters
0 2294 2.68 8.07 4.95 0.01
1 1678 14.46 202.79 102.77 0.04
2 1682 3.24 132.75 65.83 0.03
3 3886 1.33 1.85 0.09 0.0
4 4759 2.3 9.62 4.4 0.01
5 224 2.44 75.18 36.92 0.88
6 349 23.74 891.21 451.87 0.04
7 176 45.82 401.49 207.28 0.02
8 3314 3.33 28.51 13.76 0.03
9 2 252.0 1198.0 676.5 0.0

The entire data set
18364 4.38 61.56 30.78 0.03

together with DBSCAN and mean shift which does not require the number of clusters
as input. The clusterings with a smaller number of clusters were studied to some
degree and compared with the 10-cluster clusterings.

The rest of this section presents the results from clustering the data collected over
five months. Firstly, results from testing the clustering algorithms on the complete
data set will be given. This data set is not continuous and contains data from 5
di�erent continuous periods. We will then analyze the five smaller continuous periods.
When analyzing the complete data set from five months, it became evident that
time played an important role. It was more challenging to detect abnormal behavior
when the data set was collected over a long and noncontinuous period. The clusters
became more extensive and had more similar traits. Therefore, more e�ort went into
analyzing the smaller individual continuous data sets. When working with this set,
we had access to the chats belonging to the user represented by a randomized ID.

5.2.1 Data set from all five months

k-means, GMM, and BIRCH were the only algorithms run on this data set. This
is because the remaining algorithms were too slow for a data set of that size. The
results of the di�erent clustering algorithms are summarized in tables and discussed
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in this section. Appendix B contains more extensive tables from the clustering with
the complete five-months data set.

k-means

Table 5.2 shows an overview of the clusterings made by the k-means algorithm with
10, 7, and 5 as the number of clusters. An extended table is found in Table B.1.

Table 5.2: k-means on data from 5 months

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

Clustering 1: 10 Clusters
0 60477 2.13 10.78 4.94 0.01
1 3750 161.02 3975.94 1991.4 0.04
2 33241 2.84 39.87 20.05 0.02
3 790 212.79 15067.58 7483.89 0.04
4 56312 1.49 2.08 0.12 0.0
5 87363 8.74 111.86 56.7 0.04
6 248 538.91 10645.54 5322.83 0.02
7 9323 2.73 262.7 129.77 0.03
8 14855 56.93 1429.15 718.29 0.04
9 6340 2.77 104.66 51.45 0.86

Clustering 2: 7 Clusters
0 76328 1.83 4.48 1.6 0.01
1 3708 164.89 5392.81 2700.76 0.04
2 90250 3.98 27.32 13.34 0.02
3 14834 60.51 1435.46 720.89 0.04
4 591 387.21 15119.6 7491.94 0.03
5 69957 8.2 133.35 67.63 0.04
6 17031 3.19 193.83 96.21 0.38

Clustering 3: 5 Clusters
0 9557 101.85 2873.75 1441.55 0.04
1 77453 1.84 4.13 1.4 0.01
2 85774 3.3 17.48 8.48 0.03
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3 1313 303.37 11322.85 5623.38 0.03
4 98602 10.82 218.18 109.89 0.09

The entire data set
272699 10.5 240.79 120.39 0.04

When running the k-means algorithm on the data set with 10 clusters, clusters
3 and 6 stood out based on their small sizes. Table 5.2 shows that the nodes in
both clusters have approximately 20 and 50 times as high degree values on average,
compared to the rest of the data set. 5 randomly chosen nodes from cluster 6
were visualized. Node 146547 is one example of the nodes from cluster 6, and the
visualization of the node’s ego graph is shown in Figure 5.2. As the figure shows, the
node has many neighbors, and many neighbors are also connected.

Figure 5.2: Ego graph for node 146547

Cluster 3 is the second smallest cluster, with 790 nodes, only containing around
0,3% of the nodes in the data set. The key values from Table 5.2 show that these
nodes have smaller ego graphs than the nodes in cluster 6. The neighbors of the
nodes in this cluster also seem to be relatively tightly connected. This shows in
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the average CC value, which is 0.04, relatively high for nodes with many neighbors.
Figure 5.3 shows one example of a node from cluster 3.

Figure 5.3: Ego graph for node 904994

Gaussian Mixture Model

Table 5.3 shows the overview of the clusters created by running the GMM algorithm
on the five-month data set. The algorithm was firstly run with 10 clusters. However,
the result from the clustering was ten relatively large clusters. Therefore, we tested
the algorithm with 15 clusters instead of 5 and 7. Table B.2 shows some additional
values for the clusterings.

Table 5.3: GMM on data from 5 months

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

Clustering 1: 15 Clusters
0 11100 6.1 109.68 56.2 0.07
1 16161 1.3 3.12 0.06 0.0
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2 4528 5.9 793.11 391.38 0.22
3 48321 1.13 1.13 0.0 0.0
4 38375 2.48 21.47 10.71 0.0
5 10382 31.08 297.89 149.35 0.03
6 8251 81.43 1438.16 722.51 0.04
7 4469 178.8 6498.82 3231.48 0.04
8 9830 2.37 51.17 26.07 0.45
9 29654 8.23 44.23 21.78 0.14
10 7992 31.12 1324.23 671.1 0.06
11 33116 1.25 4.47 2.47 0.0
12 12126 13.4 219.99 112.44 0.05
13 4092 1.06 134.23 66.62 0.0
14 34302 2.38 4.69 2.52 0.0

Clustering 2: 10 Clusters
0 30262 8.08 55.56 27.4 0.1
1 8267 6.85 585.63 292.34 0.18
2 81539 1.71 4.3 2.07 0.0
3 14304 45.27 864.7 436.97 0.04
4 50254 1.16 1.22 0.0 0.0
5 19232 17.51 229.18 116.69 0.04
6 18599 2.44 53.04 26.9 0.32
7 5686 115.1 5886.81 2935.03 0.05
8 40681 2.76 22.73 11.33 0.0
9 3875 146.92 1694.97 844.49 0.02

The entire data set
272699 10.5 240.79 120.39 0.04

Neither the clustering with 10 nor 15 clusters gave any clusters that stood out
from the rest. Therefore, we spent no additional time analyzing the results of this
algorithm on the large data set.

BIRCH

Table 5.4 shows key values from clustering with the BIRCH algorithm with the
five-month data set. More details about the clusterings are found in Table B.3.
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Table 5.4: BIRCH on data from 5 months

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

Clustering 1: 10 Clusters
0 268 382.76 20308.22 10050.93 0.03
1 21189 56.09 1399.7 702.81 0.04
2 502 317.77 6096.02 3016.91 0.03
3 1860 181.44 3931.03 1969.98 0.04
4 59 701.44 7556.44 3794.73 0.02
5 387 158.66 14801.19 7399.09 0.04
6 2 2.5 2399.0 1312.5 0.75
7 1 2701.0 13738.0 6146.0 0.01
8 248344 3.91 56.05 27.93 0.04
9 87 2.55 906.17 415.09 0.85

Clustering 2: 7 Clusters
0 60 734.77 7659.47 3833.92 0.02
1 23049 66.21 1603.97 805.07 0.04
2 502 317.77 6096.02 3016.91 0.03
3 268 382.76 20308.22 10050.93 0.03
4 248431 3.91 56.35 28.06 0.04
5 387 158.66 14801.19 7399.09 0.04
6 2 2.5 2399.0 1312.5 0.75

Clustering 3: 5 Clusters
0 889 248.51 9885.56 4924.56 0.03
1 60 734.77 7659.47 3833.92 0.02
2 248433 3.91 56.36 28.07 0.04
3 268 382.76 20308.22 10050.93 0.03
4 23049 66.21 1603.97 805.07 0.04

The entire data set
272699 10.5 240.79 120.39 0.04

The BIRCH algorithm gives several smaller clusters. Cluster 7 is the smallest
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cluster containing only one node. This node has 2701 neighbors, meaning that the
related users have conversations with 2701 di�erent users. The node from this cluster
is node 52855. The node is visualized in Figure 5.4 where we see that the ego graph
for the node is extensive. By reading the chats from this user, it was evident that it
was a spammer. However, no illegal sexual activity was detected.

Figure 5.4: Ego graph for node 52855

Cluster 6 in clustering 1 is the second smallest cluster with only two nodes. The
nodes in this cluster have, in contrast to cluster 7, only 2.5 neighbors on average.
Despite the low number of nodes, the average weighted degree is 2399, which means
that the nodes have few but long conversations. The average CC is the value that
stands the most out. This is at 0.75, which is significantly higher than the average
CC value for the entire set at 0.04. Figure 5.5 shows the two nodes. In node 24463,
the average CC value will be 1 as all neighbors to the node are connected. Node
108108 has CC= 0.5, which also is relatively high. It is easy to achieve a higher CC
value for nodes with few neighbors, and it does not make the relevant users more
suspicious.

Apart from clusters 6 and 7, several of the other clusters could be interesting
to investigate further. All clusters except 1, 3, and 8 are small enough to examine.
When comparing the clustering with clustering 3, most of the small clusters were
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(a) Ego graph for node 108108 (b) Ego graph for node 24463

Figure 5.5: Two nodes from cluster 6 in clustering 1 for using BIRCH

in clusters 0, 1, and 3. These clusters are relatively small, and the nodes in these
clusters have many neighbors and might be interesting nodes. However, since the
data set is so large, it is expected that many users will have conversations with many
di�erent users. Hence, no further investigation was done with this data set.

5.2.2 Data sets from individual months

The data sets from individual months are five di�erent sets from di�erent periods
that all are collected continuously. Therefore, for each algorithm, results from
month 4 are presented as an example. However, all months were studied, and the
resulting clusterings are provided in Appendix C. For these data sets, we studied
the results closer and investigated written messages between anonymized users to
identify predators.

k-means

Table 5.5 shows a overview of the clusterings made by the k-means algorithm with
10, 7, and 5 as the number of clusters. Tables C.1, C.2, C.3, C.4, and C.5 in the
Appendix C shows the more extensive tables for all of the months.

Table 5.5: k-means on data from the 4th month
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Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

Clustering 1: 10 Clusters
0 23649 3.27 22.05 10.84 0.02
1 218 103.68 6484.11 3217.22 0.03
2 3666 3.71 243.59 120.9 0.03
3 5501 27.07 445.86 224.06 0.05
4 12351 4.04 54.32 27.54 0.03
5 1549 47.55 1977.69 994.97 0.04
6 1370 2.81 93.33 46.99 0.83
7 459 122.85 1733.96 870.61 0.03
8 19716 1.68 3.64 1.33 0.01
9 3 880.33 2761.33 1465.33 0.01

Clustering 2: 7 Clusters
0 21574 2.76 13.64 6.58 0.02
1 3967 40.96 1066.61 536.73 0.04
2 708 110.4 3645.05 1818.57 0.04
3 19745 1.67 3.28 1.11 0.01
4 1431 2.87 105.49 52.61 0.81
5 21054 6.75 127.7 64.08 0.04
6 3 880.33 2761.33 1465.33 0.01

Clustering 3: 5 Clusters
0 38377 4.56 47.65 23.85 0.02
1 4406 39.19 1000.92 503.54 0.04
2 19592 1.6 3.21 1.08 0.0
3 714 113.8 3620.8 1807.18 0.04
4 5393 4.02 209.92 104.57 0.28

The entire data set
68482 7.04 146.3 73.15 0.04

Cluster 9 from clustering 1 and 6 from clustering 2 contains the same three nodes.
These nodes are also found in other clustering algorithms and will be reviewed at
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the end of this section.

Two other clusters from the first clustering are small and have a significant average
degree value, clusters 1 and 7. The nodes from cluster 1 have 104 neighbors on
average and over 6400 messages sent and received. The nodes from cluster 7 have
123 neighbors on average, but this cluster has a lower average weighted degree value
of 1733.

Five randomly selected nodes from cluster 1 were investigated by visualizing the
nodes and looking at the chats containing the nodes. Figure 5.6 shows nodes 201563
and 47777, which both were a part of the five investigated nodes from cluster 1. Both
nodes had a couple of extensive conversations and many smaller ones. This pattern
was also found for the other nodes investigated from the cluster. None of the nodes
was considered a predator based on the text messages sent.

(a) Ego graph for node 201563 (b) Ego graph for node 47777

Figure 5.6: Two nodes from cluster 1 in clustering 1 using k-means

Two nodes, 246889 and 106005, from cluster 7 were studied closer, and the
visualizations of the ego graphs from the nodes are shown in Figure 5.7. Node 106005
seemed to want pictures from the users it talked with. There is a possibility this user
is a predator, but the user’s age was challenging to confirm. The user claims to be
16, which is likely to be accurate, making the user less likely to be a predator. Node
246889 did not have chats indicating predatory, but we found spamming from the
user.

From month 1, cluster 5 is the smallest, with 273 nodes. From this cluster, node
113379 was investigated by looking into the user’s chats. This user was concluded
to be a predator. The user claimed to be a 23-year-old male wanting sexualized
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(a) Ego graph for node 246889 (b) Ego graph for node 106005

Figure 5.7: Two nodes from cluster 7 in clustering 1 using kmeans

relations with 13-year-old girls. Node 113379 is visualized in Figure 5.8. The figure
shows that the node has a relatively similar pattern to the nodes that stood out from
month 4. The user had 223 conversations that month and 1737 messages sent to or
from the user. 28% of the user’s conversations consisted of one message, and 40% of
the conversations were between 2 and 7 messages. This means that almost 70% of
the conversations are relatively short. Figure 5.9 shows a part of the chats between
user 113379 and other users. All Personal Identifiable Information (PII) have been
covered because of the anonymization in the figure of the chat. From the figures, we
see that the user wants to add young girls on Snapchat1 ("sc") and that he wants
some sexualized role play, including a sister/brother relation. In the chats, he sent
many messages to many users hoping that some would be interested in participating
in the activities he wanted them to. The same node was also found in cluster 7 for
the third, fourth, and fifth months, all relatively small clusters. He was highly active
in all five months studied.

k-means clustering did also help disclose a suspect user from the fifth month.
Node 6255 claimed to be a male, and he wrote messages to other female users
indicating that he wanted sexualized pictures. The user’s age was claimed to be
around 16 to 17 years old, and he asked girls aged 12 years old for pictures. Figure
5.10 shows the visualization of the ego graph created by the user, and Figure 5.11
shows how the user communicates with other users. From the chats, we see that
the user claims to be 17 years, and he wishes to "have fun" with girls at the age
of 12. Based on the thesis’ supervisor’s extensive experience in reading predatory

1https://www.snapchat.com/
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Figure 5.8: Ego graph for node 113379

conversations, "having fun" is a very strong indicator of pointing to sexual activities
online. This user was, therefore, considered a predator. The user participated in
47 conversations that month, and he sent and received 248 messages. 35% of the
conversations contained only one message, and 36% of the conversations consisted of
between 2 and 7 messages.

No other users examined from the k-means clusterings were assumed to be
predators. However, some other activities that are against the game’s rules were
found, such as giving out personal information and sexting.

When comparing clustering 1 with clustering 2 from Table 5.5, we saw that the
clusterings had a similar form. 100% of the nodes from cluster 1 were in cluster 2 in
the second clustering. Over 70% of the nodes from cluster 7 were also in cluster 2 in
the second clustering. We see that the 7 clusters make a bit bigger clusters, but it
seems to separate most of the nodes that stand out in the first clustering. The third
clustering has a similar form to the second one, where all nodes from cluster 1 in
clustering 1 are clustered in cluster 3, while 73% of the nodes from cluster 7 were
clustered in cluster 3. So even if the clusterings in k-means have a smaller number of
clusters, they seem to group the nodes in valuable manners.
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(a) Chat showing conversations with 13 year old user

(b) A selection of conversations with the user

Figure 5.9: Chats with node 113379

Gaussian Mixture Models

Table 5.6 shows the clusterings from the GMM algorithm with 10, 7 and 5 clusters
on the data set from month 4. Tables C.6, C.7, C.8, C.9, and C.10 in the Appendix
C shows more extensive tables for all of the months.
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Figure 5.10: Ego graph for node 6255

Figure 5.11: Chats with node 6255

Table 5.6: GMM on data from the 4th month
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Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

Clustering 1: 10 Clusters
0 21584 1.64 4.18 2.03 0.0
1 1640 80.72 2409.53 1202.3 0.03
2 2482 3.16 53.51 27.17 0.55
3 15347 4.22 28.15 13.85 0.04
4 2207 11.7 887.67 445.13 0.11
5 3 880.33 2761.33 1465.33 0.01
6 4520 14.35 167.77 84.7 0.05
7 4137 3.4 115.91 58.2 0.0
8 13119 1.13 1.17 0.0 0.0
9 3443 34.6 636.51 320.48 0.04

Clustering 2: 7 Clusters
0 17290 1.74 4.88 2.21 0.0
1 7276 19.55 316.02 159.89 0.05
2 15952 4.39 28.82 14.19 0.04
3 17424 1.16 1.22 0.32 0.0
4 3111 4.14 231.23 114.96 0.45
5 4188 3.59 111.75 56.51 0.0
6 3241 59.07 1840.96 920.01 0.04

Clustering 3: 5 Clusters
0 26924 2.13 11.89 5.78 0.0
1 7059 3.03 86.9 43.86 0.25
2 5510 44.79 1365.26 683.46 0.05
3 18468 1.22 1.38 0.35 0.0
4 10521 12.7 146.11 73.35 0.05

The entire data set
68482 7.04 146.3 73.15 0.04

Cluster 5 from clustering 1 stands out. The cluster has only three nodes, and the
average degree is significantly higher than the other clusters. This particular cluster
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is found in other algorithms as well and will be reviewed later in this section.

The other clusters from month 4 are large, and no other cluster stands out.
Therefore, the most interesting clusters from the first clustering were collected and
further clustered to get a more helpful clustering. Clusters 0, 2, 3, 7, and 8 were not
included for the new clustering since they all contained nodes with few neighbors,
which is normal behavior. The nodes in the rest of the clusters were clustered again,
aiming to get more useful clusters. Table 5.7 shows the key data from the new
clustering with fewer nodes. Table C.11 shows an extended version of the table
including more key values from the clustering.

Table 5.7: GMM on parts of data from the 4th month

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

10 Clusters
0 2591 15.73 122.78 59.91 0.05
1 1420 44.82 637.04 319.04 0.04
2 909 7.02 439.51 221.32 0.16
3 482 117.96 1690.88 851.65 0.03
4 1126 67.72 2769.72 1382.51 0.04
5 544 12.7 1802.56 889.63 0.05
6 1885 11.61 250.89 129.15 0.07
7 1330 24.79 303.09 153.76 0.03
8 3 880.33 2761.33 1465.33 0.01
9 1523 23.98 950.72 480.54 0.06

The entire data set
11810 28.97 750.26 375.99 0.06

This clustering gave some smaller clusters; however, the algorithm still produces
clusters of large sizes. Cluster 8 contains the same nodes given by the original run of
the GMM algorithm. The next smallest cluster is cluster 3. This cluster seems to
have relatively large average degree and weighted degree values. Five nodes from
the cluster were randomly chosen and visualized. Figure 5.12 shows examples of
two nodes, 40881 and 249130, from cluster 3. None of the users investigated showed
predatory behavior in the text messages.
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(a) Ego graph for node 40881 (b) Ego graph for node 249130

Figure 5.12: Two nodes from cluster 3 using GMM

None of the chosen nodes from cluster 3 showed predatory behavior in chats
that were investigated. However, comparisons of this clustering with the k-means
clustering show that 67% of the nodes in cluster 7 were in cluster 3 for the new GMM
cluster. This shows that the clustering in two steps might be able to find similar
users that the k-means algorithm found.

The other clusterings from other months gave similar results as in month 4, i.e.,
many large clusters where no cluster stands out. Therefore, no other months were
analyzed in depth further.

BIRCH

Table 5.8 shows the clusterings from the BIRCH algorithm with 10, 7 and 5 clusters
on the data set from month 4. Tables C.12, C.13, C.14, C.15, and C.16 in the
Appendix C shows the extended tables for all months.

Table 5.8: BIRCH on data from the 4th month

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

Clustering 1: 10 Clusters
0 63079 3.57 45.07 22.33 0.04
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1 312 112.63 1303.2 653.83 0.03
2 39 172.64 9732.36 4847.46 0.03
3 46 219.26 2626.78 1308.67 0.02
4 2772 29.83 1263.99 638.58 0.05
5 3 880.33 2761.33 1465.33 0.01
6 9 2.11 829.22 412.56 0.96
7 279 91.8 3227.96 1632.78 0.04
8 110 78.13 6697.15 3287.8 0.03
9 1833 46.39 606.51 301.18 0.04

Clustering 2: 7 Clusters
0 358 126.33 1473.27 737.97 0.03
1 389 87.94 4208.96 2100.78 0.04
2 39 172.64 9732.36 4847.46 0.03
3 63079 3.57 45.07 22.33 0.04
4 4605 36.42 1002.28 504.28 0.04
5 3 880.33 2761.33 1465.33 0.01
6 9 2.11 829.22 412.56 0.96

Clustering 3: 5 Clusters
0 428 95.65 4712.26 2351.06 0.04
1 63088 3.57 45.19 22.39 0.04
2 3 880.33 2761.33 1465.33 0.01
3 358 126.33 1473.27 737.97 0.03
4 4605 36.42 1002.28 504.28 0.04

The entire data set
68482 7.04 146.3 73.15 0.04

From Table 5.8, cluster 5 stands out, having only three nodes. This cluster is
also found in other clusterings from other algorithms and will be reviewed later in
this section.

Cluster 6 is also small. However, the nodes of the clusters have few neighbors,
which makes the nodes less suspicious. The average CC is significantly higher than
the average, with 0.96 compared to 0.04 on average. However, when a node has such
few neighbors, it is easier to achieve a higher CC value, so this does not make the
cluster suspicious. This cluster was hence not studied further.
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Clusters 1 and 2 are, on the other hand, more interesting. These have a high
average degree, and both are relatively small clusters. From these clusters, seven
nodes in total were investigated further. The nodes investigated from cluster 1
behaved normally and are considered normal users. None of the nodes from cluster 2
were deemed predators, but one of the users was having inappropriate conversations.
The users wanted sexualized pictures from underage girls, and there was an exchange
of personal information, which is against the game rules. However, the user’s age
was claimed to be 17, and the user mostly looked for girls of similar ages and was
hence not deemed a predator. The claimed age of the user is not certain, but we
found no other indication in the chats that the age was not correct. On the other
hand, sexting in MovieStarPlanet is considered against the rules, so the user showed
not-allowed behavior regardless of whether the user was a predator. Node 63953 is
the related node to the user, and it is visualized in Figure 5.13. The node has no
activity in the first three months and is most active in month 4. There is also some
activity from month 5. The node has 151 neighbors, and there are 6451 messages
sent to and from the user.

Figure 5.13: Ego graph for node 63953

BIRCH was also run with the other months. From month 1, there was one cluster
containing one node. This node had many conversations, and an investigation of
the node showed that the user was a spammer, but no illegal activity was found.
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In addition, clusters 1 and 2 stood out. No illegal predatory activity was disclosed
from nodes from cluster 1. However, in cluster 2, one node, node 261700, wanted
sexualized pictures from girls. The user claimed to be a male, and he claims to have
di�erent ages with di�erent users, so there is a significant probability that the user is
an adult. In addition to the user’s age being challenging to determine, it was also
challenging to determine the age of the users he was communicating with, as he often
did not ask for their age. This may indicate that the user is interested in girls of all
ages, also younger ones, since it is a game aimed at children from 8 to 15 years old.
Figure 5.14 shows the visualization of the ego graph for the node.

Figure 5.14: Ego graph for node 261700

In month 2, node 201279, from cluster 9 was discovered having inappropriate
conversations. The user’s age was not determined, and the user claimed to be of
di�erent ages towards di�erent users. The user wanted to participate in sexual
activity with girls of seemingly all ages. It was determined that the user could be a
predator, but the user might also be a hormonal teenager. Figure 5.15 shows the
visualization of the ego graph for the node, and Figure 5.16 shows some conversations
the user has started. From the figure, we see that the user invites to sexual activities
and that it wishess to switch media to Snapchat (here abbreviated to "sn"). This
user was primarily active in month 2 and had little activity in the other four months.
The node’s properties changed substantially from month 2 to the other months,
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and it was therefore clustered in larger clusters for the other months. 48% of the
conversations with this users contained only one message, and 43% under 8 messages.
The user seems to send the same message to a lot of users hoping some will reply.

Figure 5.15: Ego graph for node 201279

Figure 5.16: Chats with node 201279

The clustering from month 3 also provided a node with illegal activity in the chats.
The user represented by node 62508 wanted girls to join zoom calls, most likely for
sexual reasons. The user sent out a short message containing just "hi" and approached
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the users that replied. Figure 5.17 shows the visualization and Figure 5.18 shows
some one of the chats with the user. As the chats also confirm, the user sends out
many messages and get relatively few replies. Over half of the conversations that the
user has, consists of only one message. The user has a behavioral pattern close to
how we expect predators to behave, namely sending out many similar messages and
trying to groom the users that reply. We considered thus this user a predator.

Figure 5.17: Ego graph for node 62508

Figure 5.18: Chats with node 62508

Month 5 gave interesting results for the BIRCH algorithm. From cluster 4, three
nodes disclosed illegal chats, namely nodes 113379, 32357, and 255808. Node 113379
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is found from other months and other algorithms and is considered a predator. The
two other nodes also included inappropriate conversation, but the age was di�cult
to determine for both. Investigation of node 32357 shows a user that directly asks
for sexualized pictures from other players. The user states to be of di�erent ages
to di�erent players, so the age is challenging to determine. The node might be a
predator, but no evidence suggests that the user is significantly older than its peers.

Investigation of node 255808 showed that the user expresses interest in sexual
activities with 5-year-old children or even younger. However, no users in the conver-
sation with this user were this young; hence no proof that the user would engage in
intimate conversations with children this young. Nevertheless, this user may be a
predator. Figure 5.19 shows the visualization of the node from the fifth month. The
node is active from the fourth month but is most active in the midst of month 5.
The node has 407 di�erent conversations where the user sent at least one message
in 401. In comparison, the user received messages in only 227 of the conversations.
Another interesting feature for the node is the percent of conversations containing
one message, which is 43%. The high percentage may indicate that the user send
out many messages to try to get answers from a few that will fulfill its wishes.

Figure 5.19: Ego graph for node 255808

Comparing the di�erent clusterings, the algorithm uses hierarchical clustering,
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which produces the same result every time it is run. The clusters from clustering 1
are subsets of the clusters from clustering 2 and 3. From month 4, the nodes from
cluster 1 from clustering 1 were clustered in cluster 0 for clustering 3 and 2 in cluster
3.

Mean Shift

The mean shift algorithm calculates the number of clusters without it being given
as input. Therefore, there are some di�erent numbers of clusters for the di�erent
clusterings produced by the mean shift algorithm. For month 4, 22 clusters were
created as shown in Table 5.9. More extencive tables for this and the other months,
are found in Tables C.17, C.18, C.19, C.20, and C.21.

Table 5.9: Mean shift on data from the 4th month

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

22 Clusters
0 68032 6.21 120.37 60.27 0.04
1 12 2.17 633.75 309.92 0.92
2 35 159.31 8055.43 3980.17 0.03
3 5 283.6 2950.2 1584.8 0.01
4 29 180.07 4157.03 2062.28 0.03
5 69 152.65 2052.84 1026.68 0.03
6 1 1121.0 4223.0 1921.0 0.01
7 1 806.0 2008.0 1133.0 0.0
8 1 714.0 2053.0 1342.0 0.01
9 1 524.0 3372.0 1768.0 0.0
10 1 399.0 7414.0 3665.0 0.04
11 1 397.0 10111.0 5962.0 0.04
12 1 331.0 3141.0 1912.0 0.01
13 1 308.0 913.0 150.0 0.01
14 4 259.5 1915.25 1015.0 0.01
15 1 294.0 9730.0 5289.0 0.02
16 6 202.0 1583.83 809.5 0.01
17 3 176.67 2406.67 1280.33 0.01
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18 193 118.18 2709.59 1358.18 0.03
19 3 132.67 18677.67 9230.33 0.02
20 81 67.02 7602.04 3721.84 0.04
21 1 2.0 1074.0 603.0 1.0

The entire data set
68482 7.04 146.3 73.15 0.04

There are several clusters containing one node, 21 of the clusters consist of less
than 200 nodes, and 20 of them consist of less than 100. This means that only one
cluster is large compared with other clusterings from other algorithms. Clusters 6,
7, and 8 consist of the three nodes clustered alone in k-means, GMM and BIRCH.
These three nodes will be studied later in this section.

From the small clusters, four nodes from three clusters disclosed interesting users.
Firstly, cluster 14 contained four nodes, and one of them was node 113379, which was
previously identified as a predator. One other node, node 232499, from the cluster
was interesting. The text messages written by the user indicated that he wanted
sexualized pictures from other users down to 13 years old. The user might be a
predator, but its age is challenging to determine as it changes between conversations.
The user had conversations with 298 di�erent users, and most of the activity from
the user was in months three and four. Over half of the conversations with the user
contains less than eight messages. Figure 5.20 shows the visualization of the node
and Figure 5.21 shows chats with the user. With "pictures", we interpret that the
user refers to sexualized pictures. The chats disclose that the user wants pictures of
girls as young as 13.

Two other interesting nodes are two nodes from clusters 3 and 16. Both of them
have similar behavior to node 232499, where the user’s main goal seems to be to get
girls to send pictures of themselves. However, the age of the users is challenging to
determine, and it is hence di�cult to determine if the users are predators or not.
The two nodes are visualized in Figure 5.22.

The other small clusters had normal and often highly active users or spam users
aiming to achieve progress in the game.

DBSCAN

Table 5.10 shows key data from the DBSCAN clustering on month 4. The clustering
for this month only gave one cluster, cluster 0, and outliers. The outliers are the
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Figure 5.20: Ego graph for node 232499

Figure 5.21: Chats with node node 232499

nodes that were given cluster -1. The algorithm were run on the other months as
well. The result from this can be found in Tables C.22, C.23, C.24, C.25, and C.26.
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(a) Ego graph for node 210526 from cluster 3 (b) Ego graph for node 5444 from cluster 16

Figure 5.22: Nodes from cluster 3 and 16 using mean shift

Table 5.10: DBSCAN on data from the 4th month

Cluster Number
of nodes

Average
degree

Average
weighted
degree

Average
weighted
out-
degree

Average
CC

Clustering 1: 1 Cluster plus outliers
-1 1131 87.0 2879.1 1435.84 0.11
0 67351 5.69 100.41 50.27 0.04

The entire data set
68482 7.04 146.3 73.15 0.04

For this clustering, the outliers are the most interesting to examine. The number
of outliers is high, and it is too time-consuming to investigate all nodes manually. To
further determine if the clustering algorithm is possible to use for predator detection,
it will be compared with the k-means and BIRCH clustering algorithms.

Firstly, the algorithm was compared with the k-means algorithm for month 4
from Table 5.5. All nodes from clusters 1 and 9 were in the outlier group. 93 % of
nodes from cluster 7 were also considered outliers with the DBSCAN algorithm. The
rest of the clusters from the k-means algorithms were primarily clustered in cluster
0. This shows that the clusters that were small and interesting from the k-means
algorithm to a large extent were labeled outliers when using DBSCAN



70 5. RESULTS

Comparing the clusters from the BIRCH algorithm (Table 5.8) also gave results
indicating that the DBSCAN can give some relevant information. From the BIRCH
algorithm, the nodes from cluster 1, 2, 3, 5, 6, 7, 8 were mostly considered outlier by
the DBSCAN algorithm. These clusters were the ones considered interesting when
investigating the BIRCH algorithm.

The comparison of DBSCAN with k-means and BIRCH shows that the algorithm
could be helpful in predator detection as many predators will be considered outliers
of the graph. However, more adjustments to the algorithm or other feature sets
might produce clusters that give more helpful information. Another solution could
be to combine the algorithm with another one by using, for example, k-means on the
outliers to sort them into helpful clusters further.

Investigation and comparison of the clusterings

One cluster containing three nodes stood out from multiple clusterings from the
fourth-month data set. The cluster was present in k-means with 10 and 7 clusters,
GMM with 10 clusters, and in BIRCH in all three clusterings. Mean shift clustered
the three nodes in three clusters with no other nodes. The three nodes in the clusters
were nodes 21889, 52855, and 252962. The average degree value for the cluster is
880.33, more significant than the average for the data set. The average number of
messages is 2761.33, which is not too high compared with other clusters. On average,
the conversations consist of only 3 messages. Figure 5.23 shows the visualizations of
the three nodes.

We observed that the three nodes have similar patterns by looking at the visu-
alizations. The nodes have many neighbors, and many of the neighbors are also
connected. They were also investigated in the other months to see if they had similar
activity in all months. Nodes 21889 and 252962 did not have much activity other
than month 4. On the other hand, 52855 had much activity all months. The k-means
algorithm with 10 clusters clustered the node in relatively small clusters in the first
and fifth months. The node were in cluster 5 with 273 nodes from month 1 and
cluster 7 with 219 nodes from month 5. From the first month, cluster 5 is the smallest
cluster where the average degree is the highest. The same was the case for month 5.

The chats of the users related to the three nodes were investigated. All three
users turned out to be spammers. The users sent out the same message to as many
users as possible, asking for favors that would help them progress in the game. This
activity is not considered against the rules by MovieStarPlanet.

To further compare the di�erent clusters, we looked at three predator nodes and
where they were clustered in the di�erent algorithms and months.
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(a) Ego graph for node 21889 (b) Ego graph for node 252962

(c) Ego graph for node 52855

Figure 5.23: Ego graph for nodes 21889, 252962, and 52855

The user represented by node 113379 was concluded to be a predator. The node
was initially found by using k-means in cluster 5 from month 1, but also with BIRCH
from month 5 and month 4 from mean shift. Table 5.11 shows where the node was
clustered all month for all clustering algorithms. The BIRCH algorithm clustered
the node in small clusters for all months. Especially, month 5 gave small clusters.
k-means and mean shift clustered the node in relatively small clusters for all months
except month 2. Mean shift clusters the node in clusters containing only four and
seven nodes for months 4 and 5, respectively. Finally, DBSCAN clustered the node
as an outlier in all months, and GMM clustered the node in a relatively small cluster
for the new run of the algorithm in month 4. This shows that multiple algorithms
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consider this predator node as abnormal and could potentially be used to detect the
predator.

Table 5.11: Node 113379 in di�erent months and clustering algorithms

Algorithm Month Cluster (size)

k-means

1 5 (273)
2 9 (2105)
3 7 (137)
4 7 (459)
5 7 (219)

GMM

1 6 (1528)
2 4 (2110)
3 4 (1666)
4 3 (482)
5 5 (2177)

BIRCH

1 6 (131)
2 4 (167)
3 4 (32)
4 3 (46)
5 4 (27)

Mean shift

1 1 (111)
2 0 (83795)
3 1 (36)
4 14 (4)
5 4 (7)

DBSCAN

1 -1 (2078)
2 -1 (1398)
3 -1 (1204)
4 -1 (1131)
5 -1 (1329)

Node 62508 is also considered a predator node. The node had either 1 or 0
messages sent or received in months 1, 2, and 4; hence these months were not
interesting to analyze. The user was more active in months 3 and 5, and we studied
the node in clusters for di�erent algorithms for these two months. Table 5.12 shows
the overview of the node in the cluster. All algorithms except GMM cluster the
predator node in small clusters in the third month. Only BIRCH and DBSCAN seem
to view the node as an outlier for the fifth month. The node is less active in month 5
compared with month 3, which may cause the node to be clustered in larger groups
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in the last month.

Table 5.12: Node 62508 in di�erent months and clustering algorithms

Algorithm Month Cluster (size)

k-means 3 7 (137)
5 8 (2030)

GMM 3 4 (1666)
5 5 (2177)

BIRCH 3 3 (67)
5 5 (487)

Mean shift 3 6 (5)
5 0 (84628)

DBSCAN 3 -1 (1204)
5 -1 (1329)

6255 is the last node that was compared for di�erent clusterings. The node had no
activity before the third month and little activity in month 4. Thus, only clusterings
from months 3 and 5 will be shown in Table 5.13. The table shows that the node is
clustered mainly in small clusters for the di�erent algorithms.

Table 5.13: Node 6255 in di�erent months and clustering algorithms

Algorithm Month Cluster (size)

k-means 3 0 (1436)
5 7 (219)

GMM 3 4 (1666)
5 5 (2177)

BIRCH 3 6 (2884)
5 2 (167)

Mean shift 3 0 (80933)
5 5 (10)

DBSCAN 3 -1 (1204)
5 -1 (1329)

By looking at the three nodes in Tables 5.11, 5.12, and 5.13, we see that the
nodes are generally clustered in small clusters in di�erent algorithms. This shows
that several di�erent clustering algorithms can be used for predator detection.





Chapter6Discussion

This chapter will discuss the results related to the research questions. Firstly, the
discussion around research questions will be presented, followed by some discussion
on the limitations of the thesis.

6.1 Research questions

6.1.1 RQ a: Which graph features can be used to detect
predators in an online chat network for children?

Table 4.1 shows all features that were used to do the clustering in the thesis. This
set was the only one tested out during the study. The feature set used did contribute
to detecting predators.

The di�erent degree measures were a large part of the set and seemed to be an
essential part of the clustering. The di�erent clusters were often characterized by the
number of neighbors and messages of the di�erent users. However, including both
in-degree, out-degree, weighted in-degree, and weighted out-degree may have been
unnecessary. For instance, the weighted in-degree value is already represented by the
weighted degree and weighted out-degree, and excluding it from the feature set could
influence the clustering results.

One feature that could be interesting to include is the number of connections
between a user’s neighbors. The CC value gives the connection between neighbors
related to the number of possible connections. However, when the number of neighbors
gets large, the possible number of connections between neighbors grows aggressively.
For example, if a node has 30 neighbors, there are 870 possible connections between
the neighbors. Therefore, the feature will often be relatively low for nodes with
many neighbors despite there might be many connections between the neighbors.
Nodes with two or three neighbors will achieve larger CC values, although those
nodes might be less interesting. If a feature only calculates the connection between

75
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the neighbors, nodes with more neighbors can get larger values. Additionally, the
weighted CC value seems to influence the clustering minimally as all the values from
the features are neglectable.

The feature called "Out/Total", calculating weighted out≠degree

weighted degree
, seemed to con-

tribute little to the clusterings. The value is mostly around 0.5 for most clusters. The
clusters with deviating values are often too large to be interesting. However, nodes
with a large portion of messages sent out are abnormal and interesting for further in-
vestigations. A similar feature that could give interesting results is out≠degree

degree
instead

of weighted out≠degree

weighted degree
. out≠degree

degree
could detect users who have many conversations

where the other user has not replied. This is typical for users who spam a lot, which
some predators do.

Non-common neighbors seem to not influence the clustering too much as the
standard deviation for that value is generally high, and the di�erent clusters have a
similar number of non-common neighbors values on average.

The distribution of messages, the last 12 features from Table 4.1, seems to
influence the clustering to some degree. The di�erent distribution values inside the
di�erent features vary significantly for di�erent clusters.

Despite some features possibly being unnecessary for predator detection in online
chat platforms for children, the feature set successfully detected some predators and
other users committing illegal activities.

6.1.2 RQ b: Can unsupervised clustering algorithms be used to
detect predators in an online chat network for children?

Mostly 5 clustering algorithms were tested for predator detection in the thesis; k-
means, GMM, BIRCH, mean shift and DBSCAN. Agglomerative clustering was
partially tested out for the smallest data set but was not included further due to its
slow run time.

Using k-means, we discovered one predator and several other suspicious users
that might be predators. The clustering algorithm gave clusters of di�erent sizes,
some small and interesting, to investigate further, which led us to a predator.

The GMM algorithm gave few interesting results. The clustering contained
relatively equal-sized clusters, making them challenging to interpret. Some of the
clusters were further clustered to make the results easier to analyze. This gave smaller
clusters than the initial clustering, but no predators or users with other illegal or
suspect behavior were found. On the other hand, when we searched for predator
nodes in the GMM clustering, the nodes were found in smaller clusters.
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The BIRCH clusterings lead to multiple predator users for multiple months. In
addition, the clustering gave a wide spread of clusters of di�erent lengths, making it
more intuitive to choose clusters to investigate further.

Mean shift calculates the number of clusters without having it as a parameter,
making the clusterings di�erent for the various months. The clusterings from the
individual months consisted of 22 to 29 clusters. This is many clusters compared with
the other algorithms. However, it was not too challenging to analyze the clustering
as many of the clusters only contained one or just a few nodes. This prevented the
workload on assessing the di�erent clusters from increasing extensively. Multiple
suspect users were found in some of the small clusters, where one of them was
a predator. One downside of the clustering algorithm was that it might exclude
many interesting nodes by creating small clusters. Another disadvantage is that the
disclosure of a predator will not lead to any other predators if it is clustered alone.
If the predator is clustered in a cluster containing other users, the cluster could be
further analyzed to find additional predators.

Clusterings from the DBSCAN stand out from clusterings from other algorithms
as the algorithm created only one to three clusters plus groups of outliers. The groups
of outliers from the various months were interesting, but they were also large groups.
The outliers were not investigated extensively, but comparing the di�erent clusters
showed that the algorithm categorized the predator users and other suspicious users
as outliers.

Generally, clustering algorithms can be used for predator detection. We used
multiple clustering algorithms, and several of them did disclose predators. Especially
BIRCH disclosed many di�erent users that were predators or that had other illegal
activities in the chats. Predators were found by examine small clusters and assess
nodes within these clusters. The small clusters might detect normal users in addition
to unwanted behavior. Nonetheless, if some unwanted behavior is detected, it can be
useful for a platform such as MoviStarPlanet.

6.1.3 RQ c: How does the length of the time frame for the data
set influence predator detection in an online chat network
for children?

When testing the algorithms, we used a data set consisting of five shorter time frames
studied individually and concatenated to a large set. We also had one data set from
one day that was used to study the properties of the graph.

It was challenging to analyze the results when using the complete data set. Firstly,
the clusters were larger when using a large data set, making the investigation of the
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nodes more time-consuming. Simultaneously, BIRCH created several clusters that
were small enough to investigate. The positive aspect of using the more extensive
data set is that the set gives a more stable impression of the di�erent users. If a
user, for instance, has a very active or inactive day, this will not a�ect the overall
impression of the user much. However, this might also a�ect the analysis negatively.
For example, popular users will have many chats with many di�erent users over time,
and the chats may contain only lawful conversations. This is not a behavior that we
want to detect with the clustering algorithms. However, the pattern of a popular
user over time may be very similar to a user with much activity only in short periods,
which is abnormal behavior. The results also show that some predator users were
most active in shorter periods. The clustering on the more extensive data set may
struggle to detect these kinds of abnormal behavior.

The one-day data set was also studied to some extent in the beginning. The
downside of such small data sets is that they may give inaccurate graph patterns. It
may be a bit arbitrary who is talking with each other on a particular day compared
to a more extended period. For example, if a user is inactive for a day, it may cause
a lot of received messages and none sent. This pattern can also be the opposite.
However, a user with much activity will still be suspicious as sending out a significant
number of messages in a short period is unusual. Simultaneously, one might miss
multiple interesting users by only looking at data from one day.

The clusterings from the individual months gave the most valuable clusterings.
The clusters were often not too large to look into, and the data sets were better at
capturing abnormal behavior.

6.1.4 RQ: Can we detect predators in online chats for children by
using a graph-theoretical approach?

Throughout the thesis, we have studied many di�erent clustering results created
by di�erent clustering algorithms. From the study, some users have been ana-
lyzed through visualizations of the nodes’ ego graphs and a thorough assessment of
anonymized text messages sent to and from the relevant users. Some of these users
are regular users, some have behaved like spammers, some have predatory behavior,
and others performed other illegal activities. All the di�erent users are categorized
based on our interpretation of the text messages.

The users we found most likely to be predators had similar approaches when
talking with other users. They would start the conversations di�erently, but eventually,
they would try to convince the other party to join them on another social media
platform. We believe that are mainly two reasons for this. Firstly, MovieStarPlanet
censors many words that could be interpreted as sexual or o�ensive, so changing
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the chat platform would make it possible to have conversations without words being
censored. Secondly, other social media platforms facilitate sharing pictures and
videos, which might be a goal for a predator or other users. The switching of media
makes it challenging to determine the real intentions of a user. Hence, categorizing
the di�erent users was, to some extent, based on intuition and interpretation of the
conversations before switching media.

Although we cannot be entirely sure if a user is a predator or not, we find
several users that we believe to be predators. The users were found using the graph-
theoretical approach described in Chapter 4. In addition to predators, we found
other users that broke the game’s rules. For example, many users were sexting with
each other, and some users were giving out personal information, such as phone
numbers and email addresses, which are rule breaks in MovieStarPlanet.

6.2 Limitations

As mentioned in Chapter 4, the main limitation of the thesis is the lack of ground
truth. When beginning the research, the plan was to use a list of known predators
as the base for predator detection. We planned to use known predators to train
supervised learning algorithms and learn which graph patterns predators typically
have. The ground truth could also contribute to the work on clustering algorithms.
Instead of looking into interesting clusters, we could look for the known predators
and see where they were clustered and if they were clustered together. This method
could further be used to find similar nodes. However, without the set of known
predators, this was not possible, and supervised algorithms were dropped from
the study. Therefore, the predator detection was solely based on clustering and
investigations heavily based on assumptions about predators and expected behavior.

The lack of ground truth also made it challenging to say anything about the
performance of the algorithms. Initially, the plan was to classify the nodes as regular
and abnormal users. This kind of classification is typically the result of supervised
learning algorithms. By using classification algorithms, it would be interesting
to measure the performance of the algorithms. However, this measurement was
challenging when only using clustering algorithms. Few clusters contained only
predator nodes, and none of the clusters were concluded only to contain normal
users. The clustering in this research consisted of finding valuable clusters, finding
interesting nodes within these clusters, and investigating whether there is any illegal
or predatory behavior in the chats. It did not make sense to measure any performance
on this, as we only looked into a small part of the nodes.

Another limitation to the thesis is the degree of assumptions and subjective
perspective throughout the study. Especially when the clusters were investigated,
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the nodes and clusters for further analysis were chosen based on a hypothesis about
how predators might behave. Results from other research projects supported the
hypothesis. However, we have likely missed out on some predators’ features and
properties because of this limitation. Also, due to the limited time we had on the
research, we could not investigate all clusters from all clusterings, which could have
disclosed properties of predators that we did not expect. In addition to basing the
choice of interesting nodes and clusters on assumptions, we concluded if the users
were predators based on our interpretation of the chats between the users. A part
of the game is to form relationships with other players, and hence much of the
conversations between the users revolved around romance, relations, and similar
topics. Also, lying about age and other personal information is easy since it is a
virtual world. Separating who are regular users and who are predators was hence
sometimes challenging. The users that were said to be predators or normal users
from this research might be wrongfully classified, as it is based on our interpretation
of the conversations. However, the classification of the chats done in this thesis was
in line with experts that have already seen many predatory conversations in the past.
Other activities against the game rules were easier to recognize, such as sharing
private information and sexual conversations.



Chapter7Conclusion and future work

This chapter concludes the thesis and presents some areas that should be studied
further in future projects.

7.1 Conclusion

Throughout the thesis, we used graph theory and clustering algorithms aiming to
detect predators. We did find several users likely to be predators, and hence the
answer to the main research question is yes, it is possible to use graph theory to
detect predators in online chat networks for children.

The feature set described in Table 4.1 was used in the clustering algorithms to
detect predators. This set is hence usable for predator detection. However, the set
was static and not adjusted throughout the testing of the clustering algorithms, and
iterations with di�erent feature sets could have given more valuable results. With
useful results, we refer to clusterings with separate clusters containing, for example,
primarily predators, regular users, and spammers. The clusterings in this thesis led
us to predators, but few clusters seemed to contain only predators.

This thesis shows that it is possible to use clustering algorithms to find predators
in a social network created for children. We used k-means, GMM, BIRCH, mean
shift, and DBSCAN aiming to detect predators. k-means and BIRCH were the
two algorithms that gave the most valuable results. These clusterings gave some
clusters of small sizes which were possible to investigate. Both of the algorithms
led to predators. The mean shift algorithm also clustered the data in valuable
clusters, with many small clusters often containing only one node. Some of the small
clusters did contain predator nodes. We did not find any predators using the GMM
algorithm. This clustering gave relatively large clusters, making examining the results
challenging. Nevertheless, when we further clustered a subset of the initial clusters,
we got one smaller cluster that contained multiple of the predator nodes found in
other algorithms. The DBSCAN gave results that were demanding to analyze due
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to the few clusters generated. The algorithm gave a set of outliers that were too
large to investigate manually, but it did contain all predator nodes found in other
clusterings. Overall, clustering was used to divide the users of the data set based on
the users’ behavior, and the di�erent clusters did lead us to users that are likely to
be predators.

The time frame of the length of the data set did influence how well the clus-
tering performed at disclosing predators. We found using data sets collected over
approximately seven days most beneficial. A data set collected over a long period
made separating the di�erent behavior of more users challenging. The clusters got
extensive, and it was challenging to analyze the results. The smallest data sets were
challenging to analyze as there was too little data on the di�erent users to conclude
their behavior.

This thesis is the first study using this approach to detect predators, and there is
still much research that should be done further to utilize this research on a social
media platform.

7.2 Future work

Several di�erent research topics could be interesting for future studies. First of all,
supervised learning algorithms would be interesting to investigate. The plan was
initially to include the supervised learning algorithms in the thesis, but we did not
have any data to train the supervised learning algorithms due to the lack of ground
truth. However, it would be interesting to study how supervised learning could detect
predators. The performance of the algorithms would then be possible to calculate,
and the method could be compared with state-of-the-art approaches.

In this thesis, only predator detection in static graphs has been studied. However,
it could be interesting to study if anomaly detection in dynamic graphs could
contribute to detecting predators. Dynamic graphs describe how components change
over time and in di�erent periods, unlike static graphs that utilize only one period.
There is a chance that predators behave di�erently than normal users over time. For
instance, a predator might send many messages at once, which might be unusual for
non-predatory users. They might also use platforms in untypical time slots for a
child, such as during school or at night. These features are impossible to detect in a
static graph but may help detect predators.

When creating the feature sets, we only looked at features that can be calculated
with only the knowledge of neighbors and neighbors’ neighbors. Centrality features
were not included as they were too computationally slow to calculate for the extensive
network. However, they might give helpful information about the data, and it could
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be interesting to test out the ML algorithms with centrality features as a part of the
feature set.

Only one feature set was tested out in this study. Other features or subsets of the
used feature set should be studied to get more valuable clusters. A more valuable
way to calculate how tightly neighbors are connected could, for instance, replace or
add to the CC features for a more relevant result. Also, using subsets of the feature
set used in this study could be interesting. Studying di�erent feature sets could
indicate which features perform best at predator detection.

Exploring a broader spectrum of ML algorithms could also be interesting. As this
thesis is the first study to use a graph-theoretical approach for predator detection,
only well-known ML algorithms were tested. However, di�erent algorithms and
optimizations of the used algorithms could be investigated to get a more accurate
result. Also, the parameters of the algorithms could be adjusted further to optimize
the results. The algorithms could also be used together to find valuable clusters.
For instance, the outliers of DBSCAN could be clustered with another algorithm to
utilize it better. Multiple iterations of the clusterings with the same algorithm could
also be tested further. This was studied to some degree when using GMM, and the
results showed that using multiple iterations could sometimes be valuable.

Future work should also include research on determining a suitable timeframe for
predator detection. A suitable timeframe would be a long enough period to have
representative data of the users. However, the period should not be so long that
predator detection is too late to prevent online grooming.
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94 B. RESULTS FROM THE CLUSTERING ALGORITHMS THE FIVE-MONTHS
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96 C. RESULTS FROM THE CLUSTERING ALGORITHMS FROM THE
INDIVIDUAL MONTHS
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