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Abstract

Computational Fluid Dynamics (CFD) is the numerical study of fluid flow,
heat transfer, turbulence modelling and several conservation laws. The fluids
can be liquids, gases and even plasmas. There is a vast number of differential
equations describing the physical problems in specific situations, and many
of them have a nonlinear structure. The main goals of CFD are constructing
an efficient and stable numerical technique for discretizing the equations
with respect to space and time, and then solving the (nonlinear) algebraic
systems of equations arising from the discretization as quick and accurate as
possible. This might not be straightforward because the procedure always
depends on the specific situation. The simulations are often carried out over
long time intervals, and that will make high accuracy in space and time
desirable. Furthermore, nonlinearity and local instabilities can also slow
down the computational speed. When we couple several equations together,
the solution procedure becomes even more complex.

The most common numerical procedures utilized in CFD are the Finite
Difference Method (FDM), the Finite Volume Method (FVM) and the Finite
Element Method (FEM). The latter one is most the general and widespread
because we can apply it on arbitrary complex domains that are sufficiently
smooth, and it can perform local refinement in those parts of the domain
where the unknown solution lacks sufficient regularity. There are a lot of
similar FEM-approaches, and they differ most with respect to the choice of
basis functions. One such method is called Isogeometric Analysis (IGA). It
has superior approximation properties compared with classical FEM, and its
signature ability is creating an exact mesh of the domain’s geometry. The
discretized equations can be solved quickly, and all these advantages make
IGA well-suited for CFD applications.

The main focus of the thesis is solving the hydrodynamic Boussinesq
equations for buoyancy-driven flow numerically. The PDE system consists
of the Navier-Stokes equation and Advection-Diffusion equation coupled
together. In particular, our research emphasizes adaptive error estimation
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Abstract

and local refinement using isogeometric discretization. Adaptive refinement
originated in the late 1970s. It was designed for reducing approximation
error by generating a new mesh repeatedly until it resembled the unknown
solution’s physical structure. In classical FEM, the theory of a posteriori
error estimation is complete and has been applied widely to large classes of
differential equations. This method is far better than a priori error estimation
because it allows us to analyse local parts of the solution effectively and
determine the corresponding local error. In CFD, there are many well-known
situations where adaptive refinement and error estimation are desirable. We
need a suitable method for reducing the error quickly without too much
computational effort at the same time.

We consider qualitative analysis of efficient a posteriori error estimators
for IGA. This topic is still in a development stage although the classical
refinement theory is compatible with the isogeometric paradigm. Splines
are in general not interpolatory like the shape functions from FEM. Since
they have higher continuity and better approximation properties, there is a
good reason to believe that isogeometric refinement yields very good results
for smooth problems. We will investigate whether some of these classical
error estimators can be adapted directly to IGA, and then test them on some
major PDEs in CFD: the Stokes equation, the Navier-Stokes equations, the
Advection-Diffusion equation, and the Boussinesq equations.
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Preface

This thesis is submitted in partial fulfilment of the requirements for the
degree of Philosophiae Doctor (PhD) in mathematics at the Norwegian
University of Science and Technology (NTNU). The work was carried
out at the Department of Mathematical Sciences (IMF), NTNU, and the
Department of Applied Mathematics and Cybernetics, SINTEF Digital, both
in Trondheim, from August 2016 to June 2022.

I was introduced to Isogeometric Analysis (IGA) in May 2015 by my
supervisor, Professor Trond Kvamsdal. At that time, I had some knowledge
of the Finite Element Method (FEM) and fluid mechanics (CFD), so we
decided that the topic of my master’s thesis should be isogeometric analysis
of the Boussinesq equations. This system of partial differential equations
has been solved with finite and spectral elements before, and it has a wide
range of applications. But it had never been solved with IGA, which would
be unique for my research.

In my master’s thesis, I demonstrated that the Boussinesq equations
can be solved with IGA, and the numerical results are far better than those
ones obtained with classical FEM. Therefore, Kvamsdal proposed that our
next step should be solving this equation system with adaptive refinement.
Instead of the traditional approach with classical FEM, we chose IGA as
our tool. To simplify the working process optimally, we decided to apply
the same flexible and effective strategy from my master’s thesis: analyse
and solve the Navier-Stokes equation and Advection-Diffusion equation
separately, and then combine their solution strategies together.

With this strategy in mind, I could decide each article’s topic early, find
relevant literature quickly, and choose benchmark problems for comparing
numerical simulations. The simulation software was ready, but it had to be
continuously refined and improved. It also took much time to figure out the
best adaptive strategy, especially for the first article. After this clarification,
the other simulations went fast. The first three articles constitute the basis
for the final one, which covers the main topic of the thesis.
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1 Historical background

1 Historical background

We present some important historical facts on the development of finite
element modelling that are relevant for the background of the thesis before
starting with the formal introduction of the theoretical parts. The focus is
the transition from the Finite Element Method to Isogeometric Analysis.

1.1 A brief history of the Finite Element Method

The Finite Element Method (FEM) is a major numerical procedure used for
solving partial differential equations. It can handle any boundary conditions
and discretize arbitrary domains with a complex and reasonably smooth
geometrical structure. The main idea is converting a PDE from its original
strong form into its equivalent weak form, and afterwards we approximate
the weak solution as a finite linear combination of shape functions.

FEM originated as an ad hoc numerical technique in computational
mechanics, particularly for structural engineering, thanks to the work of
Galerkin. A groundbreaking development took place during the 1940s and
1950s, when Courant and Argyris formalized and generalized the finite
element modelling concept by equipping it with a consistent and rigorous
mathematical foundation. Consequently, it was demonstrated that FEM
could be applied to any type of PDE arising in various physical sciences.
This influential paradigm gave the impetus of constructing various families
of shape functions with special characteristic properties.

A fundamental paradigm was launched in the 1960s, when Zienkewicz
and his collaborators introduced the well-known isoparametric concept, one
of the most important facilities of modern FEM technology. It requires
that we use the same basis functions for approximating the PDE’s unknown
solution field and generating a suitable mesh on the physical domain. This
new point of view became prominent due to many underlying factors like
creating direct geometry-to-mesh mappings, developing flexible elements
with curved edges, and avoiding inefficient conversions between different
types of shape functions [43]. All these factors were quite time-consuming,
and their influence needed to be reduced.

Another ground-breaking leap occurred in the 1970s with the invention
of the Mixed Finite Element Method (MFEM) for high-order PDEs and
systems of PDEs. The main focus was creating sophisticated approximation
spaces for special variational formulations in order to provide both effective
discretization and good preservation of physical structures. This paradigm
had a profound influence on computational multi-physics problems. It also
gave rise to many new finite element functions, thanks to leading experts
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Introduction

like Babuška, Brezzi, Nédélec, Fortin, Raviart and many others [16].
Since the 1980s, several new variants and pitchforks of finite element

modelling have been invented and developed extensively, like the Spectral
Element Method (SEM), Boundary Element Method (BEM), Multiscale
Finite Element Method (MsFEM) and Infinite Element Method (IEM), just
to mention a few. Today, there are many coexisting paradigms in the finite
element hierarchy. The method of discretization depends on the specific
problem, making the techniques more flexible.

Despite its strengths and advantages, FEM had many shortcomings and
drawbacks. The isoparametric concept was only applicable for C0-elements,
and transferring it to high order continuity became very complicated and
expensive with respect to implementation. Babuška demonstrated with his
famous paradox that curved boundaries can never be represented exactly by
straight-edged elements. They are just approximated. High accuracy was
also difficult and inefficient to obtain with respect to computational effort,
and the preclusion of spurious error propagation was not so straightforward
either. These disadvantages sparked the motivation for creating more robust
basis functions for the existing paradigms. A potential solution for this
challenge was proposed in 2005 by Thomas Hughes, a well-known leading
expert on finite element modelling [29].

1.2 A brief history of Isogeometric Analysis

In 2005, Hughes, Cottrell and Bazilevs introduced a new finite element
method which they called Isogeometric Analysis (IGA) [62]. The main idea
is using splines as basis functions. They can represent complex geometries
exactly and have superior approximation properties. For example, splines
are isoparametric for any level of continuity, and they provide direct and
efficient geometry-to-mesh mappings. High continuity increases numerical
accuracy very fast, ensures enhanced stability, and smooths out global error
propagation quickly. Splines can even handle discontinuous data without
many complications [12, 111, 31, 36, 64, 63, 74, 92]. This finite element
paradigm has now received widespread recognition and experienced a rapid
development since its launch.

The most characteristic feature of IGA is the exact representation of the
domain’s geometry, from which the term "isogeometric" arises. In classical
FEM, we must interpolate the solution field with a certain type of basis
functions, and they are used later for constructing a suitable mesh on the
domain. In IGA, this process is totally reversed. We create an exact mesh
on the domain with the help of appropriate basis functions first, and then
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1 Historical background

we apply them afterwards for approximating the solution field. As a result,
the numerical strategy is geometry independent. The domain’s geometry
determines which type of spline function it is most convenient to use [29].
New research has also shown that IGA works well for large general classes
of PDEs [11, 32, 78, 119].

Another remarkable advantage of IGA is the reduced computational
running time. Splines have high continuity, so there is a great overlapping
between the elements. Hence, the systems of equations arising from the
isogeometric discretization are sparse, have lower spectral radius, and are
significantly smaller than those from classical finite element discretization.
Iterative solution algorithms will work faster for such discrete systems [50,
49, 96]. This increased computational speed is not possible to achieve with
classical FEM. As a consequence of all these new benefits, IGA has given
impetus for extensive research in numerical linear algebra [25, 4, 3, 46, 47,
60, 58, 59, 115].

Splines were originally invented as computational geometry tools, with
focus on Computer Assisted Design (CAD). Finite Element Analysis (FEA)
was designed as an equipment for solving PDEs. In a historical perspective,
FEA and CAD evolved in separate communities with different purposes,
but they are both essential for modern product development. The efficient
interoperability between these two important technologies was disturbed
because each community focused on how to improve disjoint stages in the
product development instead of relating these stages to each other. But the
invention of the isogeometric paradigm provides full interoperability, and
therefore, IGA bridges the gap between FEA and CAD. The other current
development trend in IGA is to generalize, combine and improve all the
other well-established facilities of classical FEM.

The idea of discretizing PDEs by splines has existed for many years, and
there has also been some sporadic research on this topic before 2005. But the
further systematic development has been quite limited. Thanks to the emerge
of efficient object-oriented programming languages and powerful computers,
it has now been possible to carry out thorough analysis [88, 97]. IGA has
also contributed to extensive research in several disciplines of computational
mechanics like electromagnetism [23, 24, 95], fluid dynamics [13, 21, 37, 38,
39], structural engineering [28, 27, 89, 114], and biomechanics [118]. There
have also been creative attempts to combine spline technology with other
techniques like the Finite Volume Method (FVM) [55, 86] and Boundary
Element Method (BEM) [41, 42, 82, 90, 108].

5



Introduction

1.3 A brief history of local refinement

Local refinement, which is used in the Adaptive Finite Element Method
(AFEM), is a special process where we solve a PDE on a coarse mesh, and
then we loop over each element and estimate the numerical approximation
error locally. If this error exceeds a predefined tolerance, the corresponding
element is subdivided into smaller elements with almost the same shape as
the original one. All the other elements with sufficiently low estimated error
remain unchanged. Afterwards, we solve the PDE and repeat the subdivision
procedure again until the global error is low enough. Just by splitting some
selected elements where the estimated error is too high, we can increase the
accuracy faster. At the end, the mesh will resemble the unknown solution’s
physical structure, from which the term adaptive refinement originates. In
comparison with uniform refinement, where every single element is divided,
the total computational effort is significantly reduced.

This procedure of local refinement and adaptive mesh generation is fully
available in classical FEM and has been studied extensively by many leading
experts like Zienkiewicz, Babuška, Demkowicz and Oden. Both B-splines
and NURBS have better approximation properties than the classical finite
element interpolants, but they only provide tensor refinement. This means
that if we subdivide an arbitrary element, all the other adjacent elements
must also be divided to preserve the conformal mesh, for any mesh line on
the domain traverses the whole length. This approach increases the running
time substantially.

A natural question is whether the local refinement technique can be
transferred to IGA, and this is indeed possible. Although the concept of
adaptive refinement in the isogeometric context is still in the development
phase, there has been a lot of progress. Parts of the theoretical foundation
for adaptive isogeometric refinement was established in other contexts.

Hierarchical B-splines (HB-splines), proposed by Forsey and Bartels
[44], were the first attempt to permit local refinement for splines, and this has
been studied further in [30, 22, 48, 66, 77, 85, 112]. Giannelli et al. [52, 51,
53] developed this new idea further by introducing Truncated Hierarchical
B-splines (THB-splines) to ensure partition of unity. Finally, Dokken et
al. proposed Locally Refined (LR) B-splines for making CAD and FEA
interoperable with respect to local refinement [35]. A systematic description
and numerical verification of local refinement in IGA has also been studied
by Johannessen et al. in [69, 70, 68, 75, 76].

T-splines are the corresponding attempt for providing local refinement
for NURBS, introduced by Sederberg et al. in 2003 [107]. Developed as a
tool for computational geometry, it provides good representation of objects
with complicated geometrical structure. Unfortunately, these basis functions

6
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are linearly dependent, so M. Scott introduced Analysis Suitable T-splines
(AS T-splines) for ensuring compatibility with FEA [106, 80]. A rational
analogue of HB-splines, hierarchical NURBS, is studied in [102, 116].
In addition to LR- and T-splines, there has also been some efforts to make
other classes of splines applicable to local isogeometric refinement, like
hierarchical box-splines [71], Multi-Patch B-splines (MPB-splines) [20] and
Polynomial splines over Hierachical T-meshes (PHT-splines) [109, 120].
Scott et al. [105] introduced Isogeometric spline forests as a new tool for
adaptive refinement. In [56, 100, 101, 117], many types of splines permitting
local refinement have been compared in a systematic way with respect to
several features like approximation properties, computational effort, and
underlying linear algebra structure.

1.4 A brief history of error estimation

Error estimation is a standard subroutine of local refinement in AFEM. First,
we detect parts of the domain where the numerical solution might be too
inaccurate, and then we subdivide the selected elements to reduce the error.
This process is repeated several times, so we need to construct an efficient
error estimator which can be calculated very fast and straightforwardly.
Babuška and Rheinboldt were among the first ones to study this topic [5, 6].
Today, there are two general families:

• Residual estimators: The FEM-solution does not satisfy its governing
PDE, and the corresponding residual error is estimated by solving
local problems where load functions are given by local residuals.

• Recovery estimators: Projection is used to recover post-processed
quantities from the solution, and the error is estimated by taking the
difference between recovered solution and current FEM-solution.

The development of a posteriori estimators was initially unsystematic due
to focus on special individual BVPs. Since the 1990s, the theory has been
applied to more general and larger classes of PDEs. Demkowicz and Oden
were among the leading figures in the creation of residual estimators. The
Zienkiewicz-Zhu estimator from Superconvergent Patch Recovery (SPR),
based on the improved gradient, is a very common error estimator in AFEM.
It is effective, requires little implementation effort, and is most robust for
smooth problems approximated by linear and quadratic shape functions
[8, 9, 7, 121, 122]. This has been verified for B-splines and LR B-splines.
Many recent studies have demonstrated that the classical theory of adaptive
refinement can be incorporated and improved in IGA [2, 76, 73].
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2 Isogeometric Analysis

This chapter highlights the most important facilities of the shape functions
utilized in the isogeometric finite element discretization. Splines have many
advantages not shared with their predecessors from classical FEM. We
present their characteristic properties and illustrate how they are related
to each other. Much of the relevant theory described here will be invoked
later when the main research of the thesis really begins, in particular the
derivation and reliability analysis of error estimators applied in the adaptive
isogeometric mesh refinement.

2.1 Introduction to B-splines

The basics of B-splines

Let Δx be a uniform partition on the compact interval [a, b] ⊂ R such that

Δx = {xi}Ni=0 , a = x0 < x1 < x2 < · · · < xN−1 < xN = b

Then, we split [a, b] into N disjoint subintervals {Ii}Ni=1 as follows:

[a, b] =

N⋃
i=1

Ii , Ii = [xi−1, xi]

i �= j =⇒ Ii ∩ Ij = ∅

A knot vector is a sequence of nondecreasing knots Ξ = {ξi}n+p+1
i=1 on the

partition Δx such that the knots ξi equal the grid points xi. It is used for
creating a spline function, a piecewise defined and globally differentiable
function which is expressed as a linear sum of n B-spline basis functions of
polynomial degree p [17, 84]:

s(x) =
n∑

i=1

ciNi,p(ξ)

The B-spline basis functions are uniquely represented by the Cox-de
Boor formula. This recursive relation is defined as follows:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (1a)

Ni,0(ξ) = χ[ξi,ξi+1) =

{
1 ξi ≤ ξ < ξi+1

0 otherwise
(1b)
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(a) N1,0 (b) N2,0 (c) N3,0 (d) N4,0

Figure 1. Plot of the four constant B-spline basis functions on the open knot vector
{0, 1, 2, 3, 4}.

(a) N1,4 (b) N2,4 (c) N3,4 (d) N4,4

(e) N5,4 (f) N6,4 (g) N7,4 (h) N8,4

Figure 2. Plot of the eight quartic B-spline basis functions on the open knot vector
{0, 0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4, 4}.

(a) N4,4 (b) N6,4 (c) N9,4 (d) N10,4

Figure 3. Plot of some selected quartic B-spline basis functions on the knot vector
{0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4}.

9



Introduction

The first-order derivatives are similarly given by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)−

p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (2)

The derivative formula (2) can be generalized to any order [91]:

dα

dξα
Ni,p(ξ) =

p!

(p− α)!

α∑
j=0

aα,jNi+j,p−α(ξ) (3a)

a0,0 = 1 (3b)

aα,0 =
aα−1,0

ξi+p−α+1 − ξi
(3c)

aα,j =
aα−1,j − aα−1,j−1

ξi+p+j−α+1 − ξi+j
1 ≤ j ≤ α− 1 (3d)

aα,α = − aα−1,α−1

ξi+p+1 − ξi+α
(3e)

The recursive relation (1) is useful because it provides fast evaluation
of spline functions at given points. This approach is far more efficient than
complete symbolic derivation of exact expressions. The B-spline formula is
recursive, but can be implemented with elementary dynamic programming
techniques, and the original exponential running time will drop down to
polynomial running time. This acceleration of the computational speed is
stable [18]. It has been proven that Cox-de Boor recursion is preserved for
some translation invariant operators, and that will speed up the transform of
B-splines. A full characterization of such operators is found in [83].
The B-splines have many important properties:

1. Uniqueness: The B-spline Ni,p depends only on the knots {ξj}i+p+1
j=i .

2. Local support: supp(Ni,p) = (ξi, ξi+p+1).

3. Positivity: ξ ∈ (ξi, ξi+p+1) =⇒ Ni,p > 0.

4. Continuity: B-splines are smooth polynomials of degree p between
the knots. On a knot with multiplicity m, the continuity is Cp−m.

5. Stability: The B-spline basis is stable and linearly independent.

6. Partition of unity:
∑n

i=1Ni,p(ξ) = 1.
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P0
i−p P0

i−p+1 P0
i−p+2 P0

i−p+3 P0
i

P1
i−p+1 P1

i−p+2 P1
i−p+3 P1

i

P2
i−p+2 P2

i−p+3 P2
i

Pp−1
i−1 Pp−1

i

Pp
i

Figure 4. Visualization of the Cox-de Boor algorithm for B-spline evaluation.

Figure 5. B-splines on {0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5}.
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(a) Linear, quadratic and cubic B-splines with full continuity.

(b) First-order derivatives of the previous B-splines.

Figure 6. B-splines with full continuity and their corresponding derivatives.
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2 Isogeometric Analysis

In higher dimensions, we need the extra knot vectors H and Z . This
allows us to define the bivariate and trivariate tensor splines as

s2(ξ, η) =

n1∑
i=1

n2∑
j=1

cijNi,p(ξ)Mj,q(η)

s3(ξ, η, ζ) =

n1∑
i=1

n2∑
j=1

n3∑
l=1

cijlNi,p(ξ)Mj,q(η)Ll,r(ζ)

B-splines have equal polynomial degree p over the whole knot span, but it is
possible to make a generalization with multi-degree splines (MD-splines).
They have sections of different polynomial degree. Most of the standard
B-spline theory can be directly extended for these new splines [14, 110].

Spaces of B-splines

The multivariate B-spline spaces in Rd are based on the idea that we partition
the interval [aj , bj ] uniformly as follows, for all 1 ≤ j ≤ d:

Δxj = {x(j)i }Nj

i=0 , aj = x
(j)
0 < x

(j)
1 < · · · < x

(j)
Nj−1 < x

(j)
Nj

= bj

In 2D and 3D, the domains can be split into disjoint subdomains:

Ω =

Nx⋃
i=1

Ny⋃
j=1

Iij , Iij = [xi−1, xi]⊗ [yj−1, yj ]

Ω =

Nx⋃
i=1

Ny⋃
j=1

Nz⋃
l=1

Iijl , Iijl = [xi−1, xi]⊗ [yj−1, yj ]⊗ [zl−1, zl]

If Id =
⊗d

i=1[ai, bi] is a hypercube in Rd, and p and k are the polynomial
degree and continuity, respectively, then we have

Sp1,...,pdk1,...,kd
(Δx1 , . . . ,Δxd

) =
{
sd : {ci1,...,id}

n1,...,nd
i1=1,...,id=1 ∈ Rd

}
(5a)

sd(ξ1, . . . , ξd) =

n1∑
i1=1

· · ·
nd∑

id=1

⎡⎣ci1,...,id d∏
j=1

N
(j)
ij ,pj

(ξj)

⎤⎦ (5b)

on the domain Id. The dimension of the univariate B-spline space [103] is

dim
(
Spk(Δ)

)
= n(p− k) + p+ 1 (6)

The following multiplicative relation with respect to continuity holds:

f1 ∈ Sp1k1(Δ), f2 ∈ Sp2k2(Δ) =⇒ f1f2 ∈ Sp1+p2
min(k1,k2)

(Δ) (7)
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(a) Basis function N2,2,3 (b) Basis function N2,5,3

(c) Basis function N3,6,3 (d) Basis function N4,4,3

(e) Basis function N6,2,3 (f) Basis function N6,6,3

Figure 7. Bivariate B-splines on Ξ,H = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}.
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Multivariate B-splines satisfy some general decomposition relations:

Pp1,...,pd(Rd) =
d⊗

i=1

Ppi(R) (8a)

Sp1,...,pdk1,...,kd
(Δx1 , . . . ,Δxd

) =
d⊗

i=1

Spiki(Δxi) (8b)

Ck1,...,kd

(
d⊗

i=1

[ai, bi]

)
=

d⊗
i=1

Cki([ai, bi]) (8c)

dim
(
Sp1,...,pdk1,...,kd

(Δ1, . . . ,Δd)
)
=

d∏
i=1

dim
(
Spiki(Δi)

)
(8d)

Curves, surfaces and volumes

We can construct curves, surfaces and volumes from tensor B-splines by
replacing the scalar weights with control points. This provides easier shape
manipulation and more flexibility [84]. The tensor product formula is

n1∑
i1=1

· · ·
nd∑

id=1

⎡⎣ d∏
j=1

N
(j)
ij ,pj

(ξj)

⎤⎦Pi1,...,id (9)

where {N (j)
ij ,pj

}nj

ij=1 is the set of B-spline basis functions in the ξj-direction
defined by the knot vector Ξj , where 1 ≤ j ≤ d. The set of control points
{Pi1,...,id} form a control polygon (control net in 2D, control lattice in 3D):

CP =

n1⊕
i1=1

· · ·
nd⊕

id=1

Pi1,...,id (10)

Knot insertion

Knot insertion [91] is a common spline operation. It is directly related to h-
refinement. We add the knot ξ̂ ∈ [ts, ts+1) to a knot vector Ξ = {ξi}n+p+1

i=1 ,
obtain a new knot vector Ξ̂ = {ξ1, . . . , ξs, ξ̂, ξs+1, . . . , ξn+p+1}, and

C(ξ) =

n∑
i=1

Ni,pPi =

n+1∑
i=1

N̂i,pP̂i

This provides better shape control of the curve. The geometrical shape is
preserved although the control polygon changes, as depicted in Figure 8.
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(a) Original curve. (b) After inserting two knots.

Figure 8. Control polygon comparison for B-spline knot insertion.

According to Böhm’s theorem, the new control points are defined as follows:

P̂i =

⎧⎪⎨⎪⎩
Pi, 1 ≤ i ≤ s− p

αiPi + (1− αi)Pi−1, s− p+ 1 ≤ i ≤ s

Pi−1, s+ 1 ≤ i ≤ n+ 1

(11)

αi =
ξ̂ − ξi

ξi+p − ξi
(12)

The Oslo algorithm is a generalized version of this process, and it allows
insertion of multiple knots simultaneously.

Degree elevation

Degree elevation [91] is another spline operation. It involves increasing
polynomial order and is directly related to p-refinement. The degree can
also be reduced in some cases. Let Ξ be an open knot vector on [a, b] such
that we have a = x0 < x1 < · · · < xs < xs+1 = b, and {mk}sk=1 are the
internal knot multiplicities:

Ξ = {a, . . . , a︸ ︷︷ ︸
p+1

, x1, . . . , x1︸ ︷︷ ︸
m1

, x2, . . . , x2︸ ︷︷ ︸
m2

, . . . , xs, . . . , xs︸ ︷︷ ︸
ms

, b, . . . , b︸ ︷︷ ︸
p+1

}

If we elevate or decrease the order, i.e. p → p+ 1 or p → p− 1, then

Ξ̂ = {a, . . . , a︸ ︷︷ ︸
p+2

, x1, . . . , x1︸ ︷︷ ︸
m1+1

, x2, . . . , x2︸ ︷︷ ︸
m2+1

, . . . , xs, . . . , xs︸ ︷︷ ︸
ms+1

, b, . . . , b︸ ︷︷ ︸
p+2

}

Ξ̃ = {a, . . . , a︸ ︷︷ ︸
p

, x1, . . . , x1︸ ︷︷ ︸
m1−1

, x2, . . . , x2︸ ︷︷ ︸
m2−1

, . . . , xs, . . . , xs︸ ︷︷ ︸
ms−1

, b, . . . , b︸ ︷︷ ︸
p

}
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(a) Cubic B-splines on {0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6}.

(b)Quartic B-splines on {0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6}.

(c) Quadratic B-splines on {0, 0, 0, 2, 3, 3, 4, 5, 5, 6, 6, 6}.

Figure 9. Degree elevation and reduction of cubic B-spline basis functions.

If we elevate a B-spline curve’s degree, we get a new curve with the exactly
same parametrization and geometry representation, but the control points
change. The process of calculating them is based on the principle that since
the two curves are identical, their derivatives of any order are equal despite
different control points. This derivative argument acquires an open knot
vector where the number of unique knots is S + 1. We denote {mi}S−1

i=1 as
the multiplicities of the interior knots and define the auxiliary scalars

βi =

i∑
j=1

mj , 1 ≤ i ≤ S − 1

The control points of the curve’s j-th derivative are defined recursively by

Pj
i =

{
p+1−j

ξi+p+1−ξi+j
(Pj−1

i+1 −Pj−1
i ) , ξi+p+1 > ξi+j

0 , else
(13)

The new curve has degree p+r, and the knot vector changes from {ξi}n+p+1
i=1

to {ξ′i}
n′+p+r+1
i=1 , where n′ = n + Sr. The set of control points defined

through backwards recursion:

Qj−1
i+1 = Qj−1

i +
ξ′i+1+p+r − ξ′i+j

p+ r + 1− j
Qj

i (14)
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Algorithm 2.1 B-spline curve degree elevation

1: procedure DEGREE_ELEVATION({Pi},p,r,{ξi},{ξ′i},S,{mi},{βi})
2: for 1 ≤ i ≤ n do

3: P0
i = Pi

4: for 1 ≤ j ≤ p do

5: Calculate Pj
1 from (13)

6: for 1 ≤ i ≤ S − 1 do

7: for p+ 1− zi ≤ j ≤ p do

8: Calculate Pj
βi+1 from (13)

9: for 0 ≤ j ≤ p do

10: Qj
1 = Pj

1

11: for 1 ≤ i ≤ S − 1 do

12: for p+ 1− zi ≤ j ≤ p do

13: Qj
βi+1+ir = Pj

βi+1

14: for 1 ≤ i ≤ S − 1 do

15: for 1 ≤ k ≤ r do

16: Qj
βi+1+ir+k = Qj

βi+1+ir

17: for j = {p, . . . , 1} do

18: for 1 ≤ i ≤ n′ − 1 do

19: Calculate Qj−1
i+1 from (14)

20: return {Q0
i }

(a) Original cubic curve. (b) Elevation into a quartic curve.

Figure 10. Control polygon comparison for B-spline degree elevation.

A complete description of this algorithm and its underlying mathematical
structure can be found in [61].
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2.2 Introduction to NURBS

The basics of NURBS

Non-Uniform Rational B-Splines (NURBS) can represent conic sections
exactly and enables high-accuracy meshing of curved domains. The generic
expression for this spline type is

R(ξ) =

n∑
i=1

Ri,p(ξ)Pi (15)

Exact representation is a central characteristic feature of IGA because an
accurate mesh reduces the numerical approximation error quite much. This
is suitable for defining curves, surfaces and volumes in the same way as
tensor B-splines. The general representation becomes∑n1

i1=1 · · ·
∑nd

id=1wi1,...,id

[∏d
j=1N

(j)
ij ,pj

(ξj)
]
Pi1,...,id∑n1

i1=1 · · ·
∑nd

id=1wi1,...,id

[∏d
j=1N

(j)
ij ,pj

(ξj)
] (16)

where w are the weights, and the denominator is the weighting function. A
NURBS curve in Rd is the projection of a (d + 1)-dimensional B-spline
curve [40]. The evaluation requires a projection Π : Rd �−→ PRd on the
control points, for all i ∈ [1, n]:

Pi = (xi, yi, zi) �−→ Qi = (wixi, wiyi, wizi, wi) (17)

The new B-spline curve expressed by the original knot vector Ξ and the
projected points {Qi}ni=1 can be evaluated directly with the help of Cox-de
Boor recursion. Thus, the inverse projection Π−1 : RPd �−→ Rd required
for the final evaluation becomes, for all i ∈ [1, n]:

Qi
e = (x̃i, ỹi, z̃i, w̃i) �−→ Pi

e =
1

w̃i
(x̃i, ỹi, z̃i) (18)

The real projective space, RPd, is a d-dimensional manifold with quotient
topology, consisting of every x ∈ Rd+1 such that x and αx define the same
point when α �= 0. It is also used for describing the properties of NURBS
[40, 79]. The derivative of NURBS basis functions is given by

R′
i,p(ξ) =

N ′
i,p(ξ)W (ξ)−Ni,p(ξ)W

′(ξ)

(W (ξ))2
(19)

The process of evaluating and differentiating NURBS can be generalized
to higher dimensions with matrix tensor products, and all the characteristic
properties still hold. For further details, we refer to [91].
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Figure 11. Two curves generated by NURBS.

Figure 12. Two surfaces generated by NURBS.

Like B-splines, NURBS have many special properties [91]:

1. Uniqueness: A NURBS Ri,p depends only on the knots {ξj}i+p+1
j=i .

2. Local support: supp(Ri,p) = (ξi, ξi+p+1).

3. Positivity: ξ ∈ (ξi, ξi+p+1) =⇒ Ri,p > 0.

4. Continuity: NURBS are smooth rational polynomials between the
knots. On a knot with multiplicity m, the continuity is Cp−m.

5. Unique maximum: If p > 0, then Ri,p has one unique maximum.

6. Stability: The NURBS basis is stable and linearly independent.

7. Partition of unity:
∑n

i=1Ri,p(ξ) = 1.

8. Nonsingularity: All derivatives of Ri,p exist in the knot span interior.

9. Invariance: NURBS are always invariant of scaling, rotation, shear,
translation and projection.
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(a) Original curve. (b) After inserting three knots.

Figure 13. Control polygon comparison for NURBS knot insertion.

(a) Original cubic curve. (b) New quartic curve.

Figure 14. Control polygon comparison for NURBS degree elevation.

Projection of geometric algorithms

Knot insertion and degree elevation can also be applied to NURBS in the
same way as B-spline curves. The only difference is that we must invoke
the projection Π : Rd �−→ PRd described earlier for evaluating NURBS
curves and surfaces. After doing so, we carry out the desired geometric
algorithm to the projected vector function and obtain new projected control
points. The real physical control points are then found straightforwardly by
the inverse projection Π−1 : RPd �−→ Rd.
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2.3 Introduction to LR B-splines

Types of meshes

A box-mesh (T-mesh) is a mesh where the domain is split into smaller
rectangles (2D) or boxes (3D). A box in Rd is defined as β =×d

i=1 Ji,
where Ji = [ai, bi]. This can also be written as β = [a,b]. We call Ji trivial
if ai = bi. The dimension of β is the number of nontrivial intervals, i.e.
dimβ = #{ai < bi}, and we have the following rules:

1. If dimβ = l, then β is called an (l, d)-box.

2. If dimβ = d, then β is called an element.

3. If dimβ = d− 1, then β is called a k-mesh rectangle, where k is the
index of the trivial interval Jk.

The boxes has some important properties:

1. A d-box contains 2d−1
(
d
l

)
l-boxes, where 0 ≤ l ≤ d.

2. A mesh-rectangle λ = [c, e] is the face of a d-box [a,b] if

(a) ck = ak < bk = ek (nontrivial)

(b) ck = ek = ak or ck = ek = bk (trivial)

3. The boundary of a d-box β is the union of its faces. The interior is β0.

The last property can be compactly stated as follows:

∂β =
⋃

1≤i≤d
ai<bi

J1 × Ĵi × Jd , Ĵi = {ai, bi}

If Ω is a d-box in Rd, and E is a box partition, then

1. For every β1, β2 ∈ E , we have β0
1 ∩ β0

2 = ∅.

2. β0 = β\∂β, and
⋃

β∈E = Ω.

The intersection of boxes in E containing q ∈ Rd is denoted as

βq(E) =
⋂

β∈E,q∈β
β

It is also common to use the auxiliary set Ω+, defined as

Ω+ =

{
d×

i=1

Ji : Jk ∈ {[ak − 1, bk], [ak, bk], [ak, bk + 1]} , ∀k
}
\Ω
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Then E ∩ Ω+ is a box partition of×d
i=1[ai − 1, bi + 1]. We have four sets:

F(E) =
⋃
q∈Ω

{
βq(E ∩ Ω+)

}
F0(E) =

⋃
q∈Ω0

{βq(E)}

Fl(E) = {β ∈ F(E) : dimβ = l}
F0
l (E) =

{
β ∈ F0(E) : dimβ = l

}
For k ∈ [1, d], Fd−1,k(E) is a set of k-mesh-rectangles in Fd−1(E). A
box mesh on [a,b], M = Fd−1(E), is a minimal collection of (d − 1)-
boxes. A μ-extended box mesh (M, μ) has an associated integer μ(λ) for
all λ ∈ M, where μ : M �−→ N. Tensor meshes have no T-joints, so
horizontal and vertical lines span the entire length in each direction. If
ak,1 < ak,2 < · · · < ak,nk

, the tensor-mesh is given by

E =

{
d×

i=1

[ak,ik , ak,ik+1] : 1 ≤ ik ≤ nk − 1, 1 ≤ k ≤ d

}

A μ-extended tensor-mesh is a μ-extended box-mesh (M, μ) where M is a
box-mesh, and μ(γ) = μ(γ′) if γ and γ′ are in the same hyperplane. The
tensor-mesh expansion MT of M is the smallest tensor-mesh containing
M, and the map μT : MT �−→ Z+ is an extension of μ such that

μT (β) =

{
μ(γ), β ⊆ γ ∈ M
0, β � γ, ∀γ ∈ M

We call (MT , μT ) the μ-extended tensor-mesh expansion of (M, μ).
Define a mesh-rectangle γ and a d-box β in Rd. If β\γ is not connected,

then γ splits β. The split is minimal if γ ⊆ β. β\γ has two connected
components β1 and β2, and Xβ,γ = {β2, β2} is the closure. Assume that E
is a box partition on a d-box Ω, and γ is a mesh-rectangle, both of them in
Rd. We say that γ splits E if it is a finite union of mesh-rectangles, where γi
is either a split of a box in E or a mesh-rectangle in M(E). If E1 is the set
of all boxes in E split by γ, E2 = E\E1, and M = Fd−1(E), then

E + γ = E2 ∪

⎛⎝⋃
β∈E

Xβ,γ

⎞⎠ (21a)

M+ γ = Fd−1(E + γ) (21b)
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Thus, we can express the μ-extension of β ∈ M+ γ as

μT (β) =

⎧⎪⎨⎪⎩
1, β � β′

μ(β′) + 1, β ⊆ β′ ⊆ γ

μ(β′), β ⊆ β′ � γ

for all β′ ∈ M. We call γ a constant split of (M, μ) with multiplicity μ(γ)
if μ(γ) = μγ(β) for all β ∈ M+ γ satisfying β ⊆ γ.

A μ-extended LR-mesh is a μ-extended box-mesh (M, μ) where either
one of the following criterions are satisfied:

1. (M, μ) is a μ-extended tensor-mesh.

2. (M, μ) = (M̃+γ, μ̃γ), where (M̃, μ̃) is a μ-extended LR-mesh and
γ is a constant split of it.

If {εi}ni=1 is a collection of line insertions such that Mi+1 = Mi ∩ εi, then
the LR-meshes generate the sequence M0 ⊂ · · · ⊂ Mn. A meshline ε
traverses the support of B : R2 �−→ R if one of the properties below hold:

1. If ξ∗0 ≤ ξ0, ξp1+1 ≤ ξ∗1 and η0 ≤ η∗ ≤ ηp2+1, then ε = [ξ∗0 , ξ
∗
1 ]× η∗.

2. If ξ0 ≤ ξ∗ ≤ ξp1+1, η∗0 ≤ η0 and ηp2+1 ≤ η∗1 , then ε = ξ∗ × [η∗0, η
∗
1].

LR B-spline

If (M, μ) is a μ-extended box-mesh, q ∈ Rd, X ⊂ Rd, and 1 ≤ k ≤ d,
then we have the following rules:

μk(q) = max ({0} ∪ {μ(γ) : q ∈ γ ∈ Fd−1,k(M)})
ν(X) = inf {μk({q}) : q ∈ X}

A tensor B-spline B has support on (M, μ) if

mBk(t) ≤ ν (supp(B) ∩ φk,t) ∀t ∈ supp(Bk)

where mBk(t) is the knot multiplicity of B, and φk,t = Rk−1 × {t}Rd−k. If
this holds with equality for t ∈ supp(Bk)

0, we have minimal support.
Let (M, μ) be a μ-extended LR-mesh. B : Rd �−→ R is an LR B-spline

if B is a tensor B-spline with minimal support on (M, μ). For further details
on this topic, we refer to [35, 19, 69].
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Figure 15. Two examples of LR-meshes in two dimensions.

(a) Meshlines traversing the support
of a tensor B-spline

(b) Meshlines not traversing the sup-
port of a tensor B-spline

Figure 16. Illustration of meshlines on the support of a tensor B-spline.

Figure 17. Construction of an LR-mesh in three dimensions.
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(a) LR B-spline B[1-2-3-4;1-2-3-4].

(b) LR B-spline B[1-1-2-3;1-1-2-3].

(c) LR B-spline B[4-5-6-7;3-4-5-6].

(d) LR B-spline B[5-6-7-7;3-4-5-6].
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(e) LR B-spline B[6-7-7-7;3-4-5-6].

(f) LR B-spline B[4.5-5-6-7;3-4-5-6].

(g) LR B-spline B[4-4.5-5-6;3-4-5-6].

(h) LR B-spline B[3.5-4-4.5-5;3-4-5-6].

Figure 19. Support, top view and perspective view of some selected LR B-spline
basis functions in the spline space S21(M). The sizes of the ellipses centred at the
Greville points correspond to the size of the chosen basis functions’ support.
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(a) LR B-spline B[0-4-4-8;0-4-4-8].

(b) LR B-spline B[0-0-4-4;4-4-8-8].

(c) LR B-spline B[0-4-4-6;4-4-8-8].

(d) LR B-spline B[0-0-0-4;4-4-8-8].
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(e) LR B-spline B[0-0-4-4;0-0-4-4].

(f) LR B-spline B[0-0-2-2;0-2-2-4].

(g) LR B-spline B[0-0-2-2;0-0-2-2].

(h) LR B-spline B[0-0-1-1;0-0-1-1].

Figure 21. Support, top view and perspective view of some selected LR B-spline
basis functions in the spline space S20(M). The sizes of the ellipses centred at the
Greville points correspond to the size of the chosen basis functions’ support.
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2.4 Topological and geometrical aspects

In a general setting, we assume that a spline is defined on an d-dimensional
simplicial or polyhedral subdivision Δ ⊆ Rd. The dimension of Spk(Δ)
depends not solely on the continuity k and polynomial degree p, but also
on geometrical, combinatorial and topological properties of Δ. This is a
very complicated problem. In many cases, we can only make estimating
bounds on the dimension formula of spline spaces, which requires advanced
techniques from homological algebra, commutative algebra, and algebraic
geometry [1, 81, 87]. Recently, several articles have confirmed how to apply
the theory of spline modules and homologies to IGA [33, 34, 98, 99]. The
celebrated index theorem from algebraic topology has also been related to
splines [26, 93].
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3 Finite Element Modelling

3 Finite Element Modelling

This section is emphasizing the main differences between classical finite
element modelling and the new methods used in the isogeometric frame-
work for doing the same tasks in the discretization process. Most of the
implementation methodology is similar for both approaches, but IGA has
some important and quite advantageous distinctions.

3.1 General theory of Ritz-Galerkin discretization

Assume that L is a linear partial differential operator of order s1, f is an
inhomogeneous term, B is a boundary condition operator of order s2 ∈
[0, s1 − 1] (s2 is the highest-order derivative in the boundary conditions),
and g is a piecewise function for each boundary segment. Then the boundary
value problem can be expressed as

L(u) = f x ∈ Ω (23a)

B(u) = g x ∈ ∂Ω (23b)

When the PDE above is equipped with a well-posed BVP/IVP, we have the
strong formulation. It has a strong solution satisfying u ∈ Cs1(Ω)∪Cs2(Ω).
In any FEM-approach, we apply Galerkin projection where equation (23) is
multiplied with a sufficiently smooth test function v, and then we integrate.
This yields the weak formulation, which is solving an integral equation
where the highest order derivative is reduced by a half:

ˆ
Ω
L(u)v dΩ =

ˆ
Ω
fv dΩ (24)

The exact solution u belongs to a trial space V , and the numerical
solution uh belongs to the finite-dimensional space Vh. If Vh ⊂ V , our
method is conforming. In the Ritz-Galerkin discretization, we express uh as
a linear combination of shape functions that are constructed from a linearly
independent basis P:

uh(x) =
∑
m∈P

umψm(x) = ΨTu (25)

In this setting, v belongs to a test space W . The choice of the shape functions
distinguishes the different FEM-approaches from each other. When V ≡ W ,
we have the standard Bubnov-Galerkin method, which works for most PDEs.
This formulation is optimal if the operator L is self-adjoint.
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If the PDE is advection-dominated, the Petrov-Galerkin method is better
because it can stabilize boundary layers and preclude spurious oscillation.
This is common for PDEs with odd-order derivatives. We usually add a
perturbation function to the test function v such that W is decomposed in
two parts. In general, the procedure of determining the perturbation depends
on the PDE itself [29].

Bubnov-Galerkin:
ˆ
Ω
L(u)v dΩ = F (v) (26a)

Petrov-Galerkin:
ˆ
Ω
L(u) (v + ṽ) dΩ = F (v + ṽ) (26b)

Usually, the perturbation ṽ is the derivative of v multiplied with a special
tuning parameter, depending on our stabilization approach. This parameter
is adjusted such that artificial diffusion is added in a controlled way.

3.2 Boundary value problems

Boundary conditions for second order PDEs

Most PDEs are subject to boundary conditions. For second order PDEs,
there are three standard types of boundary conditions:

Dirichlet (essential): u = gD x ∈ ∂ΩD

Neumann (natural):
∂u

∂n
= gN x ∈ ∂ΩN

Robin (mixed): α
∂u

∂n
+ βu = gR x ∈ ∂ΩR

We assume that ∂Ω = ∂ΩD∪∂ΩN ∪∂ΩR, and all these boundary segments
are mutually disjoint. For higher order PDEs, there is a numerous amount of
different BVP types, but they will not be considered here.

Dirichlet conditions describe displacement and are directly enforced
in the solution, making them essential. Let us assume that the discretized
equation system is Au = f . We remove rows and columns corresponding to
∂Ω, solve the modified system, and then we insert the boundary conditions
into the solution vector at the entries representing ∂Ω.

Neumann conditions describe flux and are automatically included in the
weak formulation, making them natural. We loop over the element edges
belonging to ∂Ω, add their contributions into an extra vector h, and define
the right-hand side of the equation system as f+h. We do not need to modify
the matrix and vectors after solving the extended system Au = f + h.
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Robin conditions describe radiation on the boundary. They represent
a combination of Dirichlet and Neumann conditions, hence mixed. In this
case, the matrix A is modified by adding another matrix H which is zero
everywhere except at those entries corresponding to ∂Ω. Like the Neumann
conditions, we are done after solving the system (A+H)u = f + h.

Trace lifting

After applying Galerkin projection on (23), which has order 2, the weak
solution belongs to H1(Ω). For homogenous Dirichlet problems (gD = 0),
we simply choose u ∈ H1

0 (Ω) ⊂ H1(Ω). For inhomogeneous conditions
(gD �= 0), the resulting space is not a closed subset of H1(Ω), so we need
a trace lifting w̃ ∈ H1(Ω) that equals gD = 0 on ∂Ω. This lifting is not
unique in general, but it can be expressed in terms of a trace operator,
which is a continuous linear mapping γ0 : H1(Ω) �−→ H1/2(∂Ω) that
satisfies γ0u = gD [104]. We obtain the decomposition u = u0 + w where
u0 ∈ H1

0 (Ω), and the modified equation system becomes Au0 = f −Aw.
The right-hand side must be calculated first before we remove the rows and
columns corresponding to ∂Ω.

If the boundary conditions are both mixed and inhomogeneous, then
the weak formulation gets a new extended form:ˆ

Ω
L(u0)v dΩ =

ˆ
Ω
fv dΩ−

ˆ
∂ΩN

gNγ0v ds−
ˆ
Ω
L(w)v dΩ (27)

The second integral on the right-hand side must always define a linear and
continuous functional, so the set of admissible Neumann data gN is the dual
of the set of traces γ0v. Thus, the range of γ0 on ∂ΩN is H1/2

00 (ΩN), a linear
closed subspace of H1/2(ΩN), and the admissible Neumann data belongs to
the dual space (H1/2(ΩN))

′ [104].

u = gD

∂u
∂n = gN α ∂u

∂n + βu = gR

Figure 22. Illustration of different boundary conditions.
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3.3 Assembly process

In the finite element assembly, we loop over every element and store the
locally computed integrals into the matrices and vectors. This will require
an efficient enumeration of the elements and an appropriate mapping which
ensures correct insertion. Using the same notation as Hughes [65], we can
express the assembly process as

M =

ne

A
e=1

(Me) , f =

ne

A
e=1

(fe) (28)

In classical FEM, we have isoparametric mapping on the individual elements,
but in IGA, the mapping works on entire patches of the global domain. This
is very time-saving because we do not need many different mappings, and it
simplifies the implementation. We distinguish between three spaces:

Physical space: Ωe (x, y, z)

Parameter space: Ω̂e (ξ, η, ζ)

Parent element: Ω̃e (ξ̃, η̃, ζ̃)

(a) Isoparametric mapping using classical FEM

(b) Isoparametric mapping using IGA

Figure 23. Comparison of isoparametric mappings in the finite element methods.
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We have already assumed that uh = ΨTu, where Ψ is the vector of
all the shape functions. In IGA, we also need numerical quadrature in the
assembly process for evaluating matrices and vectors in the discrete system.
Exact analytical integration is too complicated and inefficient. We must
also map the integrand on the local physical domain Ωe bijectively to the
parent element Ω̃e. By using the chain rule, we can describe the coordinate
transform of the mapping g : Ωe �−→ Ω̃e as⎡⎢⎢⎢⎣

∂ψi

∂ξ̃

∂ψi

∂η̃

∂ψi

∂ζ̃

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∂x

∂ξ̃

∂y

∂ξ̃

∂z

∂ξ̃

∂x
∂η̃

∂y
∂η̃

∂z
∂η̃

∂x

∂ζ̃

∂y

∂ζ̃

∂z

∂ζ̃

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

∂ψi

∂x

∂ψi

∂y

∂ψi

∂z

⎤⎥⎥⎦ = J∇ψi (29)

Here, J is the Jacobian. We use the chain rule again:

J =

⎡⎢⎢⎢⎣
∂ξ

∂ξ̃
0 0

0 ∂η
∂η̃ 0

0 0 ∂ζ

∂ζ̃

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ

⎤⎥⎥⎥⎦ = AB (30)

By using the compact notations {ξ, η, ζ} and xj = {x, y, z}, we can express
all the entries of the matrix B as follows:

Bij =
∂xj
∂ξi

=

N∑
k=1

∂ψk

∂ξi
x
(k)
j (31)

We express the determinant of J as

det(J) = det(A) det(B)

=
∂ξ

∂ξ̃
× ∂η

∂η̃
× ∂ζ

∂ζ̃
× det(B)

The transformed integrand evaluated by Gaussian quadrature is defined as

Ae =

ˆ
Ω
G(x, y, z) dΩ

=

ˆ 1

−1

ˆ 1

−1

ˆ 1

−1
G(ξ̃, η̃, ζ̃)| det(J)| dξ̃ dη̃ dζ̃

≈
mx∑
i=1

my∑
j=1

mz∑
k=1

wiwjwkG(ξ̃i, η̃j , ζ̃k)| det(J)|
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x

y

Ωe

ξ̂

η̂

Ω̂e

Ω̃e

-1 1
-1

1

ξ̃

η̃

Figure 24. Mapping between different spaces in the quadrature process.

Splines form a smooth subspace of C0, so Gaussian quadrature will
work as long as we have enough quadrature points. But this scheme ignores
high continuity between the elements, so it integrates more than necessary,
and the computational increases a lot. A possible solution is using optimal
quadrature algorithms which calculate nodes and weights for individual knot
vectors. This approach, combined with homotopy continuation for ensuring
that nothing fails, makes the running time of the assembly drop down from
O(Nd) to O((N/2)d). It works for tensor-splines [67]. The present point
of view is that the quadrature should be based on the type of splines in
the isogeometric discretization. Several articles have been discussing this
relevant topic [57, 94, 113].

3.4 Comparison of FEM and IGA

In classical FEM, we have only a single mesh on the domain, but in IGA,
there are two distinctive meshes because we are using splines [29]. The
geometry of the domain is decomposed into local patches with their own
individual knot spans to make the discretization flexible, and this is referred
to as the physical mesh. The splines’ control points are used for proper
adjustment of the geometry, and they constitute the control mesh. These
control nets and control lattices can be viewed respectively as quadrilaterals
and hexahedrons combined.

36



3 Finite Element Modelling

Physical mesh

Control mesh Control point

Figure 25. Illustration of physical mesh and control mesh.

As we see in Figure 25, we have a physical mesh and control mesh in
IGA. The power of IGA is exact meshing. In classical FEM, we find basis
functions for interpolating the numerical solution first, and then we use them
to create a mesh, which is not exact in general. This is reversed in IGA, which
provides a geometry-independent framework. We pick appropriate functions
to represent the domain exactly, and then we apply them to approximate the
unknown solution. Creating curved edges is not possible in FEM, for the
elements are straight-edged, as shown in Figure 26. The exact mesh reduces
the numerical error.

Isoparametric elements are of high importance because it is required
that we use the same shape functions for modelling the solution and meshing
the domain. In IGA, splines are isoparametric for any continuity, unlike
FEM. The spline parameter space is local to a patch on the domain, not a
single individual element. Since the total number of maps depends just on
the patches, it simplifies the whole implementation and saves much time.
The geometry-to-mesh mappings are also more efficient compared to FEM.

Figure 26. Comparison of meshing in IGA and FEM. Although the number of
degrees of freedom increases, the two first meshes (FEM) cannot represent the
circular plate exactly. Only the third mesh (IGA) with NURBS can do it.
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(a) Linear, quadratic and cubic Lagrange basis functions.

(b) Linear, quadratic and cubic B-spline basis functions.

Figure 27. Comparison of first-, second- and third-degree Lagrange and B-spline
basis functions on the interval [0, 4], split into four elements of the same size. Only
the B-splines have a uniform continuity pattern without jumps.

High continuity of IGA provides great accuracy because the solution’s
increased smoothness reduces the global error. As we see from Figure
27, the Lagrange interpolants have C0-continuity at {1, 2, 3}, which is
invariant of increasing the polynomial degree p. This might generate high
error oscillations and spurious error propagation. But the B-splines can be
adjusted to have continuity between 0 and p−1, and global Cp−1-continuity
is optimal. We achieve greater accuracy per degree of freedom, and the
high continuity creates more overlapping between the elements. Thus, the
discretization matrices are not so large and have lower spectral radius, which
increases the speed of iterative algorithms.

Splines provide computational stability because they are nonnegative
and form a partition of unity. Since they also have the variation diminishing
approximation property, IGA can also tackle discontinuous data better than
the previous finite element approaches. This new enhancement yields better
opportunities to reduce error oscillation and smooth out discontinuities. The
effect is maximal for full continuity. Other basis functions from older finite
element techniques do not share this advantageous property of splines.
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FEM discretization FEM refinement

IGA discretization

Redesign based on analysis

Rendered
model

Final
product

CAD
model

Analysis
suitable
model

Analysis

Figure 28. Comparison of FEM and IGA framework: IGA avoids the step in
FEM that requires an analysis suitable model by using the discretization from CAD
directly.

As we see from Figure 28, IGA enables us to create an exact CAD
model of the domain, and then we can solve a PDE on it. This is possible
because we use the same spline basis for the geometry and the unknown
solution field, and the splines are isoparametric for any continuity, unlike
FEM. It is unecessary to translate the CAD framework to an analysis suitable
model before solving the PDE, as required in the old FEM paradigm.

According to Hughes [29], the CAD-translation from FEM is far from
trivial in complex engineering designs and takes 80 % of the analysis time.
As described earlier, FEM does not provide accurate geometry and mesh
adaptivity when the continuity increases. This makes high convergence and
precision cumbersome to obtain. But the choice of splines as basis functions
creates direct and efficient interoperability between CAD and FEA, and
we can jump directly to the analysis stage without translating the CAD
model. This is one of the most important reasons why IGA could be more
appropriate for future industrial applications.
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Table 1. The most important differences between FEM and IGA.

Finite Element Method Isogeometric Analysis

The domain’s geometry is simply
approximated

The domain’s geometry is exactly
represented

Single physical mesh Physical mesh and control mesh
Nodal points on the mesh Control points on the control mesh
Mesh consists of elements Mesh consists of knot spans
Isoparametric mapping on single
elements

Isoparametric mapping on entire
patches

Basis functions interpolate the
nodal points and variables

Basis functions do not interpolate
the control points and variables

Basis functions can take any value Basis functions are nonnegative
Degrees of freedom at the nodes Degrees of freedom at the control

points
Continuity between elements is C0 Continuity between elements can

be adjusted from C0 to Cp−1

h- and p-refinement available h-, p- and k-refinement available
Discontinuous data causes spurious
oscillation

Discontinuous data is smoothed
out due to variation diminishing
property

Discretized system takes long time
to solve iteratively

Discretized system takes shorter
time to solve iteratively

The solution is defined by nodal
variables

The solution is defined by control
variables

Basis support is over a patch where
elements share a common node

Basis support is over a rectangular
array of knot spans whose sizes are
depending on the basis continuity
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4 Mesh generation

Constructing a suitable mesh on the physical domain is an important and
challenging task in every finite element approach. A well-constructed mesh
will accelerate the convergence of numerical accuracy. There is not a single
universal algorithm for creating a suitable mesh because the procedure is
always situation dependent. But there are many helpful criterions that we
should try to satisfy as best as possible to create a mesh that does indeed
work for the chosen PDE.

Since the meshes used in the simulations are implemented from scratch,
we find it convenient to present the main ideas of the meshing. The technique
is a flexible combination of other methods that work well for our problem,
and they are applied in such a way that they can mesh different parts of the
global domain based on the local geometric shape and subdivisions.

4.1 Multiple patching on a conformal mesh

Our first approach is utilizing multiple patches [29, 45]. A patch is a
subdomain where we can define the mesh freely as we want. If Ω is the global
domain, then {Ωi}Pi=1 is a collection of mutually disjoint and quadrangular
patches such that their disjoint union equals the whole domain Ω:

Ω =

P⋃
i=1

Ωi , i �= j =⇒ Ωi ∩ Ωj = ∅ (32)

The major advantage with multiple patching is the opportunity to create
the mesh on each patch in such a way that it becomes consistent with the
local geometric shape. Every patch has their own individual mesh. But
the individual meshing on every patch Ωi must always be done in such a
way that the whole global mesh on the domain Ω becomes conformal. This
means that the vertices of each element never touch the edges of the adjacent
elements. Every element must coincide with each other just at the vertices
to make the mesh regular.

Another advantage of multiple patching is avoiding singularities on the
global mesh. In a singularity, the gradient of the numerical solution tends to
infinity, and this generates high error in the finite element approximation.
A good strategy to avoid this defect is analysing the entire domain first,
localizing the singularities on forehand, and then use multiple patching to
eliminate them. This makes the global mesh sufficiently regular, and we
prevent the numerical accuracy from being deteriorated.
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(a) Single patch with singularity (b) Multiple patch without singularity.

Figure 29. A circle with two different types of mesh.

We illustrate an introductory example of multiple patching by creating
meshes on the unit disc in two different ways. The first mesh is commonly
used in the Finite Difference Method, the Finite Element Method’s ancestor.
For some PDEs, this mesh works fine for finite differences, but not with
finite elements. This is because of the singularity at the origin. With the help
of multiple patching, we can put a square at the middle, rotate it 45◦, and
divide the resting area in four equal parts. Then we can refine all the five
patches and obtain a conformal mesh without any singularity. This improves
the finite element approach.

If we are going to perform adaptive refinement on a complex domain
which must to be partitioned into several patches, it is best to let the initial
mesh be conformal and very coarse. Then, we can carry out the refinement
such that the continuity along the common facets shared by the patches is
preserved. Thus, we maintain the same degree of continuity and improve
the global approximation.

4.2 The importance of geometric continuity in IGA

In multiple patching, geometric continuity is a central concept. It provides a
formal definition of isogeometric elements and is used to match geometric
invariants. Following the approach as in [54], we start by introducing jets.
Given m, d, k ∈ N and s ∈ Rm, we define the set of pairs

Fs,d = {(f,N ) : N is an open neighbourhood of s, f ∈ Ck(N )} (33)
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Let Dα be the partial differential operator of multi-index α = (α1, . . . , αm),
and define the equivalence relation ∼k

s on Fs,d by

(f1,N1) ∼k
s (f2,N2) , if Dαf1(s) = Dαf2(s) , |α| ≤ k (34)

The equivalence class jksf of f under ∼k
s is a k-jet of f at s. For i = {1, 2},

we define �i ⊂ Rd as a d-dimensional polytope, and Ei is an (d − 1)-
dimensional facet of �i. Let Ni ⊂ Rd be an open set such that Ni ⊂ int(Ei),
and define a Ck-diffeomorphism ρ : N1 �→ N2 by

ρ(int(E1)) = int(E2) (35a)

ρ(N1 ∪ int(�1)) = N2\�1 (35b)

ρ(N1 ∪�1) = N2\int(�1) (35c)

Lastly, we let x1 : �i �→ Rd be Ck-maps such that

x2(ρ(s)) = x1(s) , ∀s ∈ int(E1) (36)

We say that x1 joins x2 with continuity Gk and reparametrization ρ along
the common interface E = x1(E1) = x2(E2) if

jksx1 = jks(x2 ◦ ρ) , ∀s ∈ int(E1) (37)

Let {G(i) : [0, 1]3 �→ R3, 1 ≤ i ≤ P} be a finite set of bijective
regular geometry mappings defined by (ξ(i), η(i), ζ(i)) �→ (G

(i)
1 , G

(i)
2 , G

(i)
3 ).

Thus, we can rewrite equation (32) as follows:

Ω =
P⋃
i=1

G(i)([0, 1]d) (38)

In the isoparametric approach, we construct a local function u(i) : Ωi �→ Rd

such that u(i) ◦(G(i))−1 solves the PDE on Ωi. When the scalar components
of u(i) and xi are from the same function space, then u(i) ◦ (G(i))−1 is an
isogeometric element [72]. Furthermore, when every patch of the domain
are matched together with such Gk-mappings, the isogeometric elements
will be Ck. For a more detailed description, we start by defining the space

V (k) = {u ∈ Ck(Ω) : u
∣∣
Ωi

∈ S ◦ (G(i))−1 , 1 ≤ i ≤ P}

where S is the parametric spline space S ◦ (G(i))−1 is the corresponding
physical space on patch Ωi. Thus, the solution u of a PDE on Ω satisfies

u
∣∣
Ωi
(x) = u(i)(x) = (U (i) ◦ (G(i))−1)(x) , x ∈ Ω(i)
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Here, U (i) ∈ S is a parametric spline. Then, for any disjoint patches Ω1 and

[0, 1]2

[0, 1]2

e(12)

e(21)

Ω(1)

Ω(2)

e(12)

G(1)

G(2)

Figure 30. A Gk-mapping joining patches in R2 into one domain.

Ω2 sharing a common edge e(12), we require that

D(α)u(1)(x) = D(α)u(2)(x) , x ∈ e(12) , |α| ≤ k (39)

We denote the sets of vertices and edges respectively as N and E . The mesh
M is a topological surface if we have

• A collection {Ki} of polygons (elements) that are pairwise disjoint.

• A collection {φij} of homeomorphisms between disjoint polygons
K1 and K2 sharing a common face.

If φij and its inverse φji are C1-diffeomorphisms, then they are transition
maps. Together with the common shared face between the elements, they
constitute a gluing structure. The relationship between isogeometric domain
decomposition and commutative algebra has been studied extensively by
Blidia et al. in [15]. It has also been shown that the space V (k) can be
decomposed in a special way with respect to vertices and edges [72].
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4.3 Solid Modelling representation

The multiple patching technique can be directly transferred from 2D to 3D.
In addition, we will use solid modelling representation [10] to represent the
domain Ω efficiently. The first method, constructive solid geometry (CSG),
is constructing Ω block by block from physical primitives. Typical blocks
for our purposes are boxes, both with straight and curvilinear faces.

Boxes with one skew face follows another procedure named boundary
representation (BRep). We define the top and bottom as parallel rectangles
at different heights, and then we fill the gap between them by a regularized
union. This means that lower-dimensional features of the solid are discarded,
and we restrict the volume by constraining the rectangles. For boxes with
circular top and bottom, we must first parametrize the two curvilinear areas
before lofting the volume between them to obtain a solid 3D-block.

In any case, surfaces and volumes are defined explicitly. We also apply
spatial subdivision. The complex domain is split in several nonoverlapping
and disjoint parts on forehand. These minor parts are redefined in terms of
straight or curvilinear solids. Then, we combine them together and refine
their individual meshes, which yields a regular and conformal mesh.

The figures below are examples on how to utilize the BRep-technique
for lofting the volume between two surfaces and then generate a solid.
The strength of this approach is that the top and bottom do not have to be
congruent geometric objects, only similar in the shape.

Figure 31. Box with uniform mesh
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(a) Top and bottom of box (b) Box with a skew edge

Figure 32. Creating a box with skew edges by lofting between the top and bottom

(a) Top and bottom (b) Box with circular form

Figure 33. Creating a box with circular top and bottom by lofting between them
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5 Summary of papers

Report: Error Estimation in Isogeometric Analysis

Author: Abdullah Abdulhaque

This paper is a summary of the self-study course Error Estimation and
Adaptive Finite Element Methods, which I took during the autumn of 2016
under the guidance of professor Trond Kvamsdal. The main textbooks of
this course were the monographs A Posteriori Error Estimation in Finite
Element Analysis by M. Ainsworth and J. T. Oden, and A Posteriori Error
Estimation Techniques for Finite Element Methods by Rüdiger Verfürth.

After reading these books and related material, the main task was
showing how to adapt as many as possible of the classical error estimation
techniques to IGA. There are also some small numerical simulations for
verifying the quality and reliability of the a posteriori error estimators.

Article 1: A Posteriori Error Estimates for Isogeometric
Analysis of the Stokes Equation

Authors: Abdullah Abdulhaque, Trond Kvamsdal, Kjetil André Johannessen,
Mukesh Kumar, Arne Morten Kvarving

In this paper, we solve the Stokes equation with adaptive isogeometric
refinement, using residual and recovery estimators. Both are derived from
scratch and analysed thoroughly. In this process, we demonstrate how these
a posteriori estimators, originally developed in the context of classical FEM,
are fully compatible with IGA and can be adapted for higher continuity than
C0. They remain the same for Taylor-Hood, Sub-Grid Taylor-Hood and
Raviart-Thomas elements.

We perform numerical simulations at the end to examine how well the
estimators work. In these experiments, we test some benchmark problems
with analytical solutions, making it possible to compare the exact numerical
error with the estimated error. The estimated errors’ behaviour is then used
to determine the residual and recovery estimators’ quality. All the three
proposed discretization elements are tested for each estimator.

47



Introduction

Article 2: A Posteriori Error Estimation for Isogeometric
Analysis of the Navier-Stokes equation

Authors: Abdullah Abdulhaque, Trond Kvamsdal, Mukesh Kumar, Arne
Morten Kvarving

This paper is a direct continuation of the previous one. We examine how to
solve the incompressible Navier-Stokes equation with adaptive isogeometric
refinement. The focus is illustrating how to extend the same methodology
of the first paper to handle the nonlinearity occurring in the new equation.
Hence, the new residual estimator is just a slight extension of its linear
counterpart, but the recovery estimator is totally unchanged.

At the end, we examine some benchmark problems with analytical
solutions to determine which estimator is the best. The new simulations will
take some longer time because of the Newton-iteration required for solving
the discrete equation systems, but the post-processing remains the same. We
will test Taylor-Hood, Sub-Grid Taylor-Hood and Raviart-Thomas elements
like we did previously for the Stokes equation.

Article 3: Error Estimation for Isogeometric Analysis of
the Advection-Diffusion-Reaction equation

Authors: Abdullah Abdulhaque, Trond Kvamsdal, Mukesh Kumar, Arne
Morten Kvarving

The third paper concerns how to solve the Advection-Diffusion-Reaction
equation with adaptive isogeometric refinement. This time, the solution
process is more straightforward compared to the previous articles because
we have a single linear PDE, not a system. The derivation and analysis of
the residual and recovery estimators for this PDE are not so cumbersome
either. We will only use splines with full continuity since they provide the
best approximation.

In the numerical simulations, we examine smooth benchmark problems
with boundary and interior layers. We vary a couple of parameters and
illustrate how singular perturbation affects the behaviour of the estimators,
and then we demonstrate how SUPG-discretization combined with IGA
works for these problems.
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Article 4: Adaptive Isogeometric Analysis of the
Boussinesq Equations for Buoyancy-Driven Flow

Authors: Abdullah Abdulhaque, Trond Kvamsdal, Mukesh Kumar, Arne
Morten Kvarving

This paper covers the main topic of the thesis. We combine the previous
strategies for solving the Navier-Stokes and Advection-Diffusion equations
together to solve the stationary incompressible Boussinesq equation for
buoyancy-driven flow. Although this is a large PDE system with several
couplings between the subequations, it is possible to estimate the errors of
each individual equation and then add them together. There is no need for
proving robustness since we are combining estimators that have been proven
to be robust, which simplifies the methodology.

For the numerical simulations, we will test two problems with analytical
solutions. Lastly, we examine a special benchmark problem without that
feature. The numerical results will be compared with other articles instead,
and much of the post-processing is implemented entirely from scratch.
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6 Software development

Various programming languages, software and computers have been used
for the numerical simulations and software development in this thesis. We
present them briefly and explain how the simulations work.

6.1 Computer facilities

Programming languages

• Python: Used for creating convergence plots, figures in the thesis,
tailored post-processing algorithms for each PDE, and for writing
g2-files in the mesh generation (secondary IFEM-input).

• MATLAB: Used for plotting the graph of LR B-splines basis functions.

• XML: Used for writing xinp-files for defining BVPs, solution methods
and post-processing in the simulations (primary IFEM-input).

• Shellscript: Used to write bash-files for running multiple simulations
and post-processing tasks simultaneously. Runs on UNIX systems.

Software

• IFEM: Open-source software developed by SINTEF for solving a
variety of PDEs with IGA, written in C++ and FORTRAN.
https://github.com/OPM/IFEM

• SpliPy: Open-source software library created by SINTEF for defining
spline-based meshes on physical domains, written in Python.
https://github.com/sintefmath/Splipy

• lrbsplines: Open-source software library created by SINTEF similar
to SpliPy, using LR B-splines to permit local refinement.
https://github.com/TheBB/lrsplines-python/blob/master/lrsplines.pyx

• HDFView: Open-source software from The HDF Group, used to
analyse hdf-files visually.

• GLview Inova: Proprietary software from Ceetron ASA for visualizing
the numerical solution of PDEs, written in OpenGL.
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Hardware

• Personal computer - All the simulation and visualization codes are
written, tested and updated on this machine before being transferred
to larger computers for simulation. It has 2 cores (Intel Core i7).

• Markov - Mainframe at Department of Mathematical Sciences, NTNU,
used for simulations. It has one unit with 28 cores (Intel(R) Xeon(R)
CPU E5-2690 v4).

• Syvert - Mainframe at Department of Mathematical Sciences, NTNU,
used for simulations. It has three units:

– Syvert 0 - 24 cores (Intel(R) Xeon(R) CPU X7542).

– Syvert 1 - 8 cores (Intel(R) Xeon(R) CPU E5-2637 v3).

– Syvert 2 - 32 cores (Intel(R) Xeon(R) CPU E5-4650 0).

• Afem - Workstation at Department of Applied Mathematics and Cyber-
netics, SINTEF, used for building and updating simulation software.
It has 4 cores (Intel(R) Xeon(R) CPU X5450).

• Flop - Mainframe at Department of Applied Mathematics and Cyber-
netics, SINTEF, used for simulations. It has three units:

– Flop 1 - 32 cores (Intel(R) Xeon(R) CPU E5-2650 0).

– Flop 2 - 32 cores (Intel(R) Xeon(R) CPU E5-2650 0).

– Flop 3 - 48 cores (Intel(R) Xeon(R) CPU E5-2670 v3).

6.2 Simulation facilities

The IFEM-software is non-graphical and is run in a computer terminal,
preferably UNIX (Linux) terminals which always have Shellscript as a built-
in language for communicating directly with the computer. This allows us to
run many simulations at once and automatize much of the post-processing.
Although IFEM is run in the terminal and has no GUI, the output can be
interpreted by graphical software displaying extensively how the numerical
results behave.
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xinp-files g2-files

IFEM

log-file hdf5-file vtf-file eps-files

Figure 34. Schematic representation of the input/output-processing in IFEM.

There are six types of files used in the simulations:

• xinp-files: The primary IFEM input. This XML-file contains all
information about the PDE, boundary conditions, discretization type,
solution method and post-processing. Multiple files can also be passed
if necessary.

• g2-files: The secondary IFEM input. This file is created from Python-
scripts using SpliPy and lrsplines. It contains all necessary information
about the physical domain that is required for a suitable discretization.

• log-file: This file contains all information about the numerical solution,
like description of the discretized system, values of the PDE-specific
norms, and discretization errors.

• hdf5-file: This file contains the numerical solution data and is accessed
through Python in order to perform customary post-processing.

• vtf-file: This is the input file of GLview. It displays the behaviour of
the numerical solution, its derivatives, and the different norms.

• eps-files: These files describe how the mesh evolves.
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Abstract

This paper is a detailed summary of the most common techniques used
for local refinement and error estimation in the Finite Element Method.
We will study whether it is possible to adapt these classical techniques
to Isogeometric Analysis and examine their qualitative properties to
determine which error estimator is best for adaptive refinement. There
is also some discussion on the new methods only available when using
B-splines for approximating the unknown solution.

N
N

1 Adaptive finite element modelling

1.1 Importance of local refinement

Local refinement is an important topic in the Finite Element Method (FEM).
In some cases, the numerical approximation of a partial differential equation
(PDE) is deteriorated by local singularities or very sharp gradients. They can
be generated by several factors like shock fronts, interior layers, boundary
layers, rarefaction waves, discontinuity propagation and re-entrant corners
on the domain. In all the corresponding regions where these deteriorating
factors are located, the solution of the PDE is lacking sufficient regularity.
Therefore, it can be convenient to refine the elements of these regions locally
to increase the accuracy faster.

The main advantage of local refinement is that we only refine those
elements where the estimated error of the solution exceeds a predefined
tolerance. By doing so, the discrete system of equations will not grow too
large, and the computational effort required for solving it is limited. This
is more effective than standard tensor-refinement, where all the adjacent
elements must also be refined to ensure that the mesh is uniform. After
refining the solution a few times and reducing the approximation error, the
final mesh resembles the physical structure of the unknown solution. This is
where the term "adaptive refinement" occurs, and we denote our numerical
approach as Adaptive Finite Element Method (AFEM).
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1.2 Historical background

In finite element modelling, a differential equation is transformed into an
integral equation. Since the integrand is measurable, we can split the integral
into a sum of integrals over disjoint subdomains whose union constitutes the
original domain. Thus, we can analyse the problem globally and locally. In
any field of computational mechanics, this characteristic construction allows
us to discretize arbitrary geometries by using unstructured meshes.

In the process of solving a differential equation, we must transform the
continuum model of a physical problem into a suitable discrete model which
can be handled properly by a computer. Because of the discretization in
space and time, parts of the original model’s information are lost, so there
will always be some error in the approximation. The new quest becomes
how to measure, control, and minimize the error as best as possible. If we
succeed, then the quality of the numerical solution is optimized.

A priori error estimates have been known for a long time, and they work
well for most differential equations. The method of a posteriori estimation,
anyway, is relatively new in a historical perspective and became popular
thanks to the rapid emerge of powerful computers allowing better analysis
and quality control of the numerical results. Babuška and Rheinboldt were
among the first ones to study both a posteriori estimation and adaptive finite
element modelling in the late 1970s [9, 12, 11, 10, 8]. The research resulted
in several different error estimators. Their pioneering work gave an impetus
to intensive research on these topics.

Many important facilities have been developed in connection with the
theory a posteriori error estimation. Ladevèze and Leguillon [68] discovered
the equilibrated boundary data concept, where some small complementary
problems are solved elementwise and then combined together. Demkowicz
and his collaborators [43, 42, 44] introduced the element residual method,
where we use the residual error of the approximation as an error indicator,
mostly applied in connection with p- and hp-FEM. Both Ainsworth and
Oden have shown that this method works well for saddle-point problems,
variational inequalities and elliptic BVPs [3, 73].

Despite these various efforts, most research work in the 1980s was ad
hoc and designed for specific individual PDEs. The complete theoretical
framework for a posteriori error estimation reached sufficient maturity in the
1990s. At that time, the focus was changed on how to create universal error
estimators for large general classes of PDEs (elliptic, parabolic, hyperbolic),
and this new point of view accelerated the research further.

The superconvergent patch recovery, invented by Zienkiewicz and Zhu
[93, 94], is one of the greatest achievements in the context of a posteriori
error estimation. We smooth the gradient in a certain region of the domain
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and compare it with other gradients of the original solution. According to
Babuška et al. [14, 21, 13], this estimator is straightforward to implement,
and it is most effective and robust for smooth problems approximated by
linear and quadratic shape functions.

In 2005, Hughes and his collaborators introduced Isogeometric Analysis
(IGA), a new finite element technique [62]. It has superior approximation
properties when compared with classical FEM and provides very accurate
solutions with minimal computational effort. This is because we use splines
(B-splines, NURBS, etc.) as basis functions, and that creates enhanced inter-
operability between Finite Element Analysis (FEA) and Computer Assisted
Design (CAD) [28, 37, 86, 85].

Today, it seems like the long-standing quest for creating shape functions
with optimal approximation properties has been fulfilled. Since B-splines
and NURBS just allow tensor-refinement, the next goal was incorporating
local refinement from classical AFEM with IGA. This would lead to the
development of new basis functions like locally refined (LR) B-splines [45,
63] and analysis suitable (AS) T-splines [81, 69]. Despite several efforts, the
complete theory of adaptive IGA is still relatively new. A natural question
arising is whether the classical theory of a posteriori error estimation is
compatible with the isogeometric framework, where splines provide high
continuity, lower degrees of freedom, and curved boundaries for the essential
reduction of global approximation error. Recently, various articles about
adaptive isogeometric refinement have been published, with particular focus
on the chosen basis functions [41, 52, 54, 55, 60, 64, 79, 91].

1.3 Aim and outline of the paper

We start with a formal description of technical concepts related to finite
element analysis and regular mesh generation. Much of the theory here will
be applied in the later sections where error estimators are derived. Some
special properties of reference elements and subdivision of meshes will also
be introduced.

Then, we move on to the general theory of a priori estimates. This part is
relevant because it forms some of the basis for the underlying theory behind a
posteriori estimators. We start with some elementary estimates in one spatial
dimension and prove convergence results for classical interpolants. After
that, we will show how these convergence properties can be adapted to spline
functions. The derivation of similar estimates in several dimensions will be
as general as possible, assuming that the domain has a curved boundary, and
the continuity is variable.
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After that, we will give a brief introduction of the theory for a posteriori
estimates. This includes the recent optimal control interpretation of adaptive
refinement, and how to reduce pollution error in critical parts of the solution’s
domain, which has high importance.

The next step is deriving a posteriori estimators and determining which
of them can be adapted to IGA. We will both derive and prove the robustness
of explicit residual estimators and recovery estimators. A comprehensive
discussion on the concepts like gradient recovery, superconvergence and
computation of residuals will be given. The main goal here is to demonstrate
that IGA is fully compatible with the old adaptive refinement framework.

Uniform refinement is a relevant topic to be discussed because IGA
offers new ways of refining elements, and there is an elegant mathematical
theory behind the comparison between these techniques. The Serendipity
pairing between spaces that are obtained from k-refinement will also be
presented, for this does not exist in classical finite element modelling.

Lastly, we will discuss the universal axioms behind adaptive mesh
refinement and present different strategies for subdividing elements. This is
the main part where we use the error estimators presented earlier.
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2 Finite element nomenclature

This section considers the general theory of finite elements, conformal
meshes, shape regularity, and mapping between the reference and physical
domains. We will also derive some important inequalities related to the
geometry mappings.

2.1 Properties of finite elements and partitions

We start first with the formal definition of finite elements and the partitions
they generate on the domain of a differential equation.

Definition 1 (Finite element [39]). We call the triple (Ω,P,N ) a finite
element if it satisfies the following criterions:

1. The element domain Ω ⊆ Rd is a compact set with nonempty interior,
and the boundary ∂Ω is piecewise smooth.

2. The space of shape functions on Ω, P , has finite dimension.

3. The set of degrees of freedom, N = {Ni}mi=1, is a basis for P ′.

It should be noted that the dimension of P , and hence P ′, is usually referred
to as the number of degrees of freedom. Since we have a finite-dimensional
space, it is complete with respect to the norm [65]. For classical Lagrangian
finite elements with the basis {ψi}mi=1 for P , we have ψi(Nj) = δij , which
is called a nodal basis. However, this basis is not a requirement for being a
proper finite element. The important factor is that the degrees of freedom
determines the chosen basis [36], i.e. it is a proper space for the dual space
P ′. In IGA, we do not have a nodal basis. The degrees of freedom are the
control point values, and it is possible to show that these values determine
the spline function space.

If the PDE depends on one variable, the creation of a finite element
partition M on an arbitrary open interval I = (a, b) is straightforward. We
just need to ensure that the partition is regular and includes the endpoints:

M : a = x0 < x1 < x2 < · · · < xN−1 < xN = b (1)

a b

Figure 1. A simple one-dimensional and non-uniform finite element partition.
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The boundary conditions are just specified at the endpoints x = {a, b}.
Generally, we do not need a uniform partition on the interval, and the mesh
size hK can vary. In such situations, it is appropriate to use the maximal
width h in the process of deriving error estimates in one spatial dimension.
The size of the N elements can be chosen freely, so we introduce

hi = xi − xi−1 , h = max
1≤i≤N

hi (2)

In two or three spatial dimensions, the new requirements for a proper
finite element partition become more complicated because several conditions
must be satisfied. The following criterions are found in [39]:

Definition 2 (Finite element partition). Let Ω be a closed domain with
Lipschitz boundary ∂Ω. A proper finite element partition M on Ω satisfies

1. Nonemptiness: Every element K ∈ M is nonempty, and K is closed.

2. Closure: The finite element partition M ensures that Ω =
⋃

K∈MK.

3. Admissibility: If K1,K2 ∈ M, then either K1 ∩K2 = ∅, or ∂K1 ∩
∂K2 is a complete lower-dimensional face.

4. Continuous boundary: For all K ∈ M, ∂K is Lipschitz continuous.

5. Shape regularity: If K ∈ M, then its shape ratio κK is bounded
away from zero and independent of K.

6. Affine equivalence: M will consist of triangles or tetrahedrons, or
convex parallelograms or parallelepipeds in 2D and 3D, respectively.

We denote N and E , as the sets of vertices and edges, respectively. Further-
more, we define some special sets [88]:

ωK =
⋃

EK∩EK∗ �=∅
K∗ ω̃K =

⋃
NK∩NK∗ �=∅

K∗ (3)

ωγ =
⋃

γ∈EK∗

K∗ ω̃γ =
⋃

Nγ∩NK∗ �=∅
K∗

ωz =
⋃

z∈NK∗

K∗ σz =
⋃

z∈Nγ

γ

Σ =
⋃

K∈M
EK

All these special sets above are visualized in Figure 3 and 4.

72



2 Finite element nomenclature

Figure 2. Illustration of a face of an element in two and three dimensions.

K

(a) ωK

K

(b) ω̃K (c) ωγ

(d) ω̃γ (e) ωz (f) σz

Figure 3. Illustration of the sets ωK , ω̃K , ωγ , ω̃γ , ωz and σz for quadrilaterals.

(a) ωK (b) ω̃K (c) ωγ

(d) ω̃γ (e) ωz (f) σz

Figure 4. Illustration of the sets ωK , ω̃K , ωγ , ω̃γ , ωz and σz for boxes.
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Definition 3 (Domain [48]). In several dimensions (d ≥ 2), a domain Ω
is an open, bounded and connected subset of Rd. The boundary ∂Ω has
some special properties. If α, β > 0 are constants, {xr = (xr∗, xrd) ∈
(Rd−1,R) : 1 ≤ r ≤ R} is a finite set of local coordinate systems, and
{φr}Rr=1 is a set of local maps which are Lipschitz continuous on their
domain {xr∗ ∈ Rd−1 : |xr∗| < α}, then

∂Ω =
R⋃

r=1

{(xr∗, xrd) : φr(xr∗), |xr∗| < α}

{(xr∗, xrd) : φr(xr∗) < xrd < φr(xr∗) + β, |xr∗| < α} ⊂ Ω

{(xr∗, xrd) : φr(xr∗)− β < xrd < φr(xr∗), |xr∗| < α} ⊂ Rd\Ω

where |xr∗| ≤ α is a shorthand notation for {|xr∗i | ≤ α : 1 ≤ i ≤ d− 1}.
If all the local maps belong to Cm, then Ω is said to be of class Cm.

In the assembly and post-processing, we need efficient computation
of the local contributions for each element on the global mesh. Thus, we
define the reference element as the standard triple (Ω̂, P̂, N̂ ) and construct
a geometric transformation F : Ω̂ �−→ Ω. Since F is a C1-diffeomorphism,
the physical nodes’ numbering should be compatible with the numbering of
the reference nodes. When splines are used as basis functions, it is sufficient
with only one single reference mapping on each patch of the whole domain,
not one for every individual element as in classical finite element analysis.

Definition 4 (Geometrically conformal mesh [48]). Define the domain Ω ⊂
Rd, and M is a mesh on Ω. We call M geometrically conformal if it satisfies
a special matching condition: If Km,Kn ∈ M satisfies Km ∩ Kn = F ,
where F is a non-empty (d−1)-dimensional face, then there is a face F̂ ∈ K̂
and a renumbering of the geometric nodes corresponding to Km and Kn

such that the following identities hold:

F = Fm(F̂ ) = Fn(F̂ )

F
m|F̂ = F

n|F̂

Most splines provide a tensor mesh on the domain. This is an elementary
example of a geometrically conformal mesh, as seen in Figure 7. Further-
more, this mesh can be smoothly transformed into a new mesh with curved
boundaries, making it possible to depict the domain exactly. This motivates
the necessity of measuring the regularity of the elements on the mesh.
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Definition 5 (Shape regularity). If hK is the diameter of a triangle (the
diameter of the smallest circle containing it), and ρK is the diameter of the
largest inscribed circle inside it, we define the triangle’s shape regularity
κK as the finite ratio

κK =
hK

ρK

(6)

For quadrilaterals, let {al}4l=1 be the vertices enumerated anti-clockwise, and
Tl is a triangle with vertices {al, al+1, al+2} (indexes are counted modulo
4) [2]. Then, we introduce the new diameters

hK = max
l

hTl
, ρK = min

l
ρl (7)

Thus, for a convex quadrilateral, hK is equal to the longest edge. In any
case, we call the finite element partition M regular if there is a κ such that

κK ≤ κ , K ∈ M (8)

For any finite element partition M, we can define its shape parameter CM
as the maximal shape ratio of all elements K ∈ M:

CM = max
K∈M

hK

ρK

(9)

hK

ρK

Figure 5. To the left, the circumscribed circle (radius hK) and the inscribed circle
(radius ρK) are shown for the triangle K. To the right, the four inscribed circles for
a convex quadrilateral are displayed.
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2.2 Properties of the reference element

We denote the reference element for convex quadrilaterals and boxes as

K̂ = {x̂ ∈ Rd : x̂i ∈ [0, 1] , 1 ≤ i ≤ d} (10)

Each element K is the image of K̂ under FK : K̂ �−→ K, which is a
surjective and orientation-preserving diffeomorphism. In general, FK might
not be affine, especially for quadrilateral elements. This is more obvious
in IGA, where the edges can be curved. The function AK associated with
FK is therefore a vector function of the coordinates, so it must satisfy the
following conditions [2]:

‖JAK‖L∞( ̂K) ≤ ChK (11a)

‖JA−1
K ‖L∞( ̂K) ≤ C

κK

ρK

(11b)

Cρ2K ≤ ‖det(JAK)‖L∞( ̂K) ≤ Ch2K (11c)

where JAK is the Jacobian matrix of AK . From [88], the reference element
K̂ allows us to define a reference cube. If α = (α1, . . . , αd) is a multi-index
such that |α| = α1 + · · ·+ αd, and xα = xα1

1 · · · · · xαd
d , then the cube is

Rp(K̂d) = span{xα : |α|∞ ≤ p} (12a)

Rp(K) = {ψ ◦ F−1
K : ψ ∈ Rp(K̂d)} (12b)

where p is the polynomial degree. If k is the continuity, we define the spaces

Sp,−1(M) = {ψ : Ω �−→ R , ψ|K ∈ Rp(K) , ∀K ∈ M} (13a)

Sp,k(M) = Sp,−1(M) ∩ Ck(Ω) (13b)

Sp,k
D (M) = Sp,k(M) ∩H1

D(Ω) (13c)

Sp,k
0 (M) = Sp,k(M) ∩H1

0 (Ω) (13d)

We denote K̃ as the subdomain consisting of K and the other elements
sharing at least one common vertex with K [2]:

K̃ = int
{⋃

K∗ : K∗ ∈ M,K
∗ ∩K �= ∅

}
(14)

This special patch will be used extensively in the derivation of central a
priori and a posteriori estimates. For this patch, we denote the diameters as

h
˜K = max

K∗⊆K̃
hK∗ , ρ

˜K = min
K∗⊆K̃

ρK∗ (15)
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Isoparametric

Figure 6. Visualization of different mappings from the reference quadrilateral
element.

As we see from Figure 6, the standard affine mapping in classical FEM
belongs to the category of sub-parametric mappings. This means that the
interpolation order of the x-coordinates is lower than that for the shape
function. The isoparametric mapping will enable us to make the edges of
the quadrilateral element curved, and this works well for NURBS. Adjusting
the control points is relatively easy. In the case of affine mappings, the
Jacobian of the transform is diagonal because a square is transformed to a
parallelogram (the rectangle is actually a parallelogram where all the angles
are 90◦). In the general sub-parametric case, it is an invertible and constant
matrix. The isoparametric map describes the coordinates as functions of the
other ones, and this enables us to generate curved edges on the quadrilaterals
in a simpler way when compared with the classical finite element framework.

Definition 6 (Quasi-uniform mesh [2]). If the mesh generated by the finite
element partition M is quasi-uniform, then there is a constant C such that

h
˜K ≤ ChK∗

κ
˜K ≤ CκK∗

}
∀K∗ ⊂ K̃ (16)
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(a) Uniform tensor mesh (b) Quasi-uniform mesh

Figure 7. Uniform and quasi-uniform meshes in two dimensions.

This definition is essential because it provides much simplification of several
assumptions in the derivation of theorems about approximation, convergence
and boundedness. Now, we will prove and generalize a proposition from
[48]. First, we need some notational facilities.

For the reference element, denoted as (K̂, P̂, N̂ ), we define {σ̂i}mi=1

and {ψ̂i}mi=1 respectively as the local sets for degrees of freedom and shape
functions, and V (K̂) is the closed domain of the finite element projection
Π

̂K : V (K̂) �−→ P̂ associated with K̂, which is given by

Π
̂K : v̂ �−→

m∑
i=1

σ̂i(v̂)ψ̂i

For all K ∈ M, we denote V (K) as a Banach space of Rd-valued functions,
and there exists a linear bijective map given by

φK : V (K) �−→ V (K̂)

We assume that φK is defined for a whole patch as in IGA, not for a single
element as in classic FEM. Thus, we can establish the following result:
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Proposition 1 (Commutativity of the projection operator). An arbitrary
element K ∈ M, denoted as the triple (K,PK ,NK), satisfies

K = FK(K̂)

PK =
{
φ−1

K (p̂), p̂ ∈ P̂
}

NK = {{σK,i}mi=1 : σK,i = σ̂i(φK(p)), ∀p ∈ PK}

The local shape functions and projection operator ΠK : V (K) �−→ P are

ψK,i = φ−1
K (ψ̂i)

ΠK : v �−→
m∑
i=1

σK,i(v)ψK,i

Then the following diagram below commutes:

V (K)
φK−−−−→ V (K̂)

ΠK

⏐⏐1 ⏐⏐1Π
̂K

PK

φK−−−−→ P̂

(19)

Proof. The geometry transform FK is continuous, so the image of a compact
set under FK is also compact, and K will have the same set properties like
K̂ [65]. Since φK is bijective, the reference basis P̂ (inverse image of P)
will also serve as a basis for K̂. The same holds for the degrees of freedom,
so K is a proper finite element. The commutative diagram (19) is valid
because φK is linear:

Π
̂K(φK(v)) =

m∑
i=1

σ̂i(φK(v))ψ̂i =

m∑
i=1

σK,i(v)φK(ψK,i) = φK(ΠK(v))

Hence, the commutativity of the projection operator is established.

Before starting the theoretical analysis, we will prove some propositions
related to the reference element K̂. They will be crucial for deriving a
priori estimates. In section 3.4 in [78], these propositions were proved by
assuming that FK is affine, i.e. on the form AKx̂ + bK . From a technical
point of view, we see that the matrix AK corresponds to the Jacobian matrix
of FK . We will generalize the procedure such that the propositions hold
for a diffeomorphic vector function AK , and its Jacobian is nonsingular on
K. Furthermore, it should be noted that in IGA, the mapping FK is local
to a whole patch instead of a single element as in classical FEM, but these
propositions will still be true. So if a set of elements belong to the same
patch, then FK for each element K will actually be the same map.
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Proposition 2. Let M be a finite element partition on a domain, K ∈ M is
an arbitrary element, and K̂ is the reference element. For each element, we
have a diffeomorphic mapping FK = AK(x̂) for all x̂ ∈ K̂. If v ∈ W k,p(K)
for k ∈ Z+ and v̂ = v ◦ FK , then v̂ ∈ W k,p(K̂), and

|v̂|Wk,p( ̂K) ≤ C1‖JAK‖k‖ det(JAK)‖−1/p
L∞(K)|v|Wk,p(K) (20a)

|v̂|Wk,∞( ̂K) ≤ C2‖JAK‖k|v|Wk,∞(K) (20b)

|v|Wk,p(K) ≤ C3‖JA−1
K ‖k‖ det(JAK)‖1/pL∞(K)|v̂|Wk,p( ̂K) (20c)

|v|Wk,∞(K) ≤ C4‖JA−1
K ‖k|v̂|Wk,∞( ̂K) (20d)

where we have used the natural matrix norm ‖A‖ = max|w|=1 |Aw|, and
the arbitrary real constants {Ci}4i=1 depend on the Jacobian.

Proof. We consider first the case where p ∈ [1,∞). By using the chain
rule, the definition of the W k,p-seminorm, the standard change-of-variable
formula for multidimensional integrals, and Hölder’s Lp-inequality, we get

|v̂|p
Wk,p( ̂K)

=
∑
|α|=k

ˆ
̂K

|Dαv̂|p dΩ̂

=
∑
|α|=k

ˆ
̂K

|Dα(v ◦ FK)|p dΩ̂

=
∑
|α|=k

ˆ
̂K

|(Dαv) ◦ FK |p|DαFK |p dΩ̂

≤
∑
|α|=k

ˆ
̂K

(
C1‖JAK‖k

)p
|(Dαv) ◦ FK)|p dΩ̂

=
(
C1‖JAK‖k

)p ∑
|α|=k

ˆ
K

|Dαv|p| det(JA−1
K )| dΩ

≤
(
C1‖JAK‖k

)p ∑
|α|=k

‖ det(JAK)‖−1
L∞(K)‖(Dαv)p‖L1(K)

=
(
C1‖JAK‖k

)p
‖ det(JAK)‖−1

L∞(K)

∑
|α|=k

‖Dαv‖pLp(K)

=
(
C1‖JAK‖k

)p
‖ det(JAK)‖−1

L∞(K)|v|
p
Wk,p(K)
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Taking p-root of both sides yields (20a). If p = ∞, the seminorm does not
contain any integral, so changing variables is inapplicable. The domain and
the solution are bounded, so we assume that |(Dαv) ◦ FK | ≤ c2|(Dαv)|.
This yields the following derivation:

|v̂|Wk,∞( ̂K) = max
|α|=k

‖Dαv̂‖L∞( ̂K)

= max
|α|=k

‖Dα(v ◦ FK)‖L∞( ̂K)

= max
|α|=k

(
sup
x∈Ω

|(Dαv) ◦ FK | · |DαFK |
)

≤ c1‖JAK‖k
(
max
|α|=k

sup
x∈Ω

|(Dαv) ◦ FK |
)

≤ c1c2‖JAK‖k
(
max
|α|=k

sup
x∈Ω

|(Dαv)|
)

= C2‖JAK‖k|v|Wk,∞(K)

where C2 = c1c2, and estimate (20b) is proved. The two last estimates are
derived in a similar way as the two first ones. Hence, we have also shown
that the following limits below are true:

lim
p→∞

‖ det(JAK)‖−1/p
L∞(K) = 1 , lim

p→∞
‖ det(JAK)‖1/pL∞(K) = 1

Proposition 3. Using the same assumptions as in the previous proposition,
we have the following estimates:

‖JAK‖ ≤ hK

ρ̂
, ‖JA−1

K ‖ ≤ ĥ

ρK

(21)

Proof. We redefine the natural matrix norm as follows:

‖B‖ = max
|w|=1

|Bw| = 1

ρ̂
sup{|Bξ| : |ξ| = ρ̂}

If x̂, ŷ ∈ K̂, we can introduce ξ = x̂− ŷ, and ‖ξ‖ ≤ hK . Hence, we obtain

‖JAK(ξ)‖ ≤ ‖JAK‖ · ‖ξ‖ ≤ hK

ρ̂

A similar procedure holds for the second estimate too.
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3 A priori error estimation

In this section, we review some of the most relevant theory related to a priori
estimation. There is a concise of B-spline approximation, interpolation, and
quasi-interpolation, including the most important estimates related to these
topics.

3.1 Main characteristics

In numerical computations, the chosen method satisfies two criterions:

• Reliability: Computational error is controlled within a tolerance level.

• Efficiency: Computational effort required to find a solution is minimal.

This is also important in finite element error estimation because the error
can be generated from many different sources, and the discrete system of
equations to be solved is often quite large, so we need an appropriate way for
ensuring that nothing goes out of control. We do not consider the modelling
error herein. The common sources of error in finite element modelling are

• Spatial discretization error from discrete Galerkin projection.

• Temporal discretization error from the chosen time-integrator.

• Quadrature error from the assembly and the post-processing.

• Iterative method error applied to the discrete system of equations.

A priori error estimation works well for problems with sufficient regularity.
This method involves a thorough analysis of the PDE’s weak formulation
such that we can derive a suitable inequality describing the solution’s global
asymptotic behaviour. It works in many cases, but not for local refinement.
This is because a priori estimation requires the following criterions [47]:

• Accuracy: Regarding the quantity of interest.

• Stability: Global measure of the discretization error’s degree of inter-
action and accumulation in the total error.

• Regularity: The exact solution must possess certain differentiability.

We formulate general paradigm for a priori error estimation as follows:

Small discretization error+Stability of discrete problem =⇒ Small error
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3 A priori error estimation

A priori analysis provides some insight of what can be classified as an
optimal convergence rate, and the underlying prerequisites to be satisfied.
The solution’s regularity is not so restricting because we can overcome it
by applying adaptive refinement. A priori analysis enables us to compare
different methods and decide the kind of problems they are best suited for.
Many standard a priori estimates can be used for analysing the quality of a
posteriori estimators.

3.2 Underlying assumptions

Standard weak formulation of the BVP

In a priori error estimation, we assume first that L is a linear, second-order
and uniformly elliptic partial differential operator, such that u is a unique
solution of the strong problem Lu = f , where f is the continuous and
inhomogeneous source term. Furthermore, we define V as a function space
where u belongs to.

To be as general as possible, we assume that the BVP for our linear
PDE is defined as follows:

Lu = f , x ∈ Ω (22a)

u = 0 , x ∈ ∂ΩD (22b)

nTA∇u = gN , x ∈ ∂ΩN (22c)

where Ω ⊂ Rd an open domain in d dimensions, and the segments ∂ΩD and
∂ΩN denote respectively the Dirichlet and Neumann boundaries such that
we have ∂Ω = ∂ΩD ∪ ∂ΩN . The general expression for L is given by

Lu = −∇TA∇u+ (b · ∇)u+ cu (23)

where A ∈ W 1,∞(Ω)d×d, b ∈ L∞(Ω)d and c ∈ L∞(Ω). We assume that
A is positive definite, i.e. the eigenvalues are positive for any x ∈ Rd, and
n is the normal unit vector on the boundary ∂Ω.

For inhomogeneous Dirichlet conditions, we decompose u as u + ũ,
where u solves the homogeneous problem, and ũ is an explicit prolongation
which equals the inhomogeneous Dirichlet conditions at ∂ΩD. Otherwise, it
may be chosen freely as long as it is smooth enough to belong to V [22]. This
procedure yields an extra source term, so we assume hereafter homogeneous
Dirichlet conditions for simplicity. After using Galerkin projection, the weak
formulation becomes

u ∈ V : a(u, v) = l(v) ∀v ∈ V (24)
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where a(·, ·) : V × V → R and l(·) : V → R are respectively the bilinear
and linear forms. After integration by parts, they are given by

a(u, v) =

ˆ
Ω
∇uTA∇v + (b · ∇u)v + cuv dΩ (25a)

l(v) =

ˆ
Ω
fv dΩ+

ˆ
∂ΩN

gNv ds (25b)

Galerkin orthogonality and its consequences

Many of the a priori estimates relies on the fact that a(·, ·) is coercive:

∃ α > 0 : a(u, u) ≥ α‖u‖2
H1 (26)

This is possible to achieve if there are no first-order derivatives in (23), for
the operator L will be self-adjoint. If L is not self-adjoint, a(·, ·) might
not be coercive. Therefore, we can apply Gårding’s inequality [36], which
states that it is always possible to construct a real positive constant K for
our problem such that

a(u, u) +K‖u‖2
L2 ≥ α

2
‖u‖2

H1 (27)

In any case, a(·, ·) induces the specific energy norm of equation (23):

|‖u|‖ = sup
v∈V \{0}

|a(u, v)|
‖v‖ =

√
a(u, u) (28)

This is an important norm used in the derivation and analysis of estimators.
A main property provided by the energy norm is Galerkin orthogonality [23].
It states the following relation between the exact and numerical solutions:

a(u− uh, vh) = 0 vh ∈ V (29)

Theorem 1. Let u be the exact solution of (23), and u
V (n) is a solution of

(24), where V (n) is a discrete subspace of the trial space V . Then

|‖e
V (n) |‖ = min

χ∈V (n)
|‖u− χ|‖ =

√
|‖u|‖2 − |‖u

V (n) |‖2 (30)

Proof. We decompose u− χ to obtain the expansion below:

|‖u− χ|‖2 = |‖(u− u
V (n)) + (u

V (n) − χ)|‖2

= |‖e
V (n) + v

V (n) |‖2

= |‖e
V (n) |‖2 + |‖v

V (n) |‖2 + 2a(e
V (n) , vV (n))

= |‖e
V (n) |‖2 + |‖v

V (n) |‖2
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The third term 2a(e
V (n) , vV (n)) vanishes because of Galerkin orthogonality.

Let Bu ∈ V (n) be the best finite element approximation of u in the energy
norm |‖ · |‖ over V (n). Using the previous derivation, we get

|‖u− Bu|‖2 = min
χ∈V (n)

|‖u− χ|‖2

= |‖e
V (n) |‖2 + min

χ∈V (n)
|‖v

V (n) |‖2

= |‖e
V (n) |‖2

The final identity (30) becomes true due to the following implication:

χ ≡ 0 =⇒ |‖u|‖2 = |‖e
V (n) |‖2 + |‖v

V (n) |‖2

Theorem 2. Let J : V �−→ R be a functional given by

J (v) =
1

2
a(v, v)− f(v) , v ∈ V

If V (n) ⊂ V is a discrete subspace, then the following identity holds:

J (u
V (n)) = min

v∈V (n)
J (v) = −1

2
|‖u

V (n) |‖2 (31)

Proof. If χ ∈ V (n), then we can state that

J (u
V (n) + χ) =

1

2
a(u

V (n) + χ, u
V (n) + χ)− f(u

V (n) + χ)

=
1

2
[a(u

V (n) , uV (n)) + 2a(u
V (n) , χ) + a(χ, χ)]

− f(u
V (n))− f(χ)

=
1

2
|‖u

V (n) |‖2 − f(u
V (n))︸ ︷︷ ︸

J (u
V (n) )

+
1

2
|‖χ|‖2 + a(u

V (n) , χ)− f(χ)︸ ︷︷ ︸
0

The term u
V (n) minimizes J over V (n) because

J (u
V (n)) ≤ J (u

V (n) + χ)

The final result follows directly as shown below:

J (u
V (n)) =

1

2
|‖u

V (n) |‖2 − f(u
V (n))

=
1

2
|‖u

V (n) |‖2 − |‖u
V (n) |‖2

= −1

2
|‖u

V (n) |‖2
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Corollary 1. Let {V (i)}ni=1 be a sequence of finite-dimensional spaces, and

V (n) ⊂ V (n−1) ⊂ · · · ⊂ V (2) ⊂ V (1) ⊆ V

If {u
V (i)}ni=1 is the corresponding Galerkin approximation sequence, then

|‖u
V (n) |‖ ≤ · · · ≤ |‖u

V (1) |‖ (32)

Proof. First, we utilize an important implication:

V (2) ⊆ V (1) =⇒ min
v∈V (2)

J (v) ≤ min
v∈V (1)

J (v)

By invoking identity (31), we obtain

− 1

2
|‖v

V (2) |‖2 = min
v∈V (2)

J (v) ≤ min
v∈V (1)

J (v) = −1

2
|‖v

V (1) |‖2

|‖v
V (1) |‖2 ≤ |‖v

V (2) |‖2

Thus, we get a new inequality:

|‖e
V (2) |‖2 = |‖u|‖2 − |‖u

V (2) |‖2 ≤ |‖u|‖2 − |‖u
V (1) |‖2 = |‖e

V (1) |‖2

This telescoping property of {V (i)}ni=1 means that (32) holds.

uh

u

u− uh

Figure 8. Geometric representation of Galerkin orthogonality
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Equivalent adjoint formulation

In the development of new error estimators, it can be actual to utilize the
adjoint formulation of the weak formulation, which simplifies the derivation
and might yield interesting results. First, we need some general formality. If
X and Y are Banach spaces, then L(X,Y ) is the space of continuous linear
mappings L : X �−→ Y with the finite norm

‖L‖L(X,Y ) = sup
ϕ∈X\{0}

‖Lϕ‖Y

‖ϕ‖X

Thus, the dual space of Y , Y ∗ = L(Y,R), consists of continuous linear
functionals on Y . The dual mapping L∗ : Y ∗ �−→ X∗ satisfies

〈L∗y, x〉 = 〈y, Lx〉
‖L∗‖L(Y ∗,X∗) = ‖L‖L(X,Y )

We denote L2(X,Y,R) as the space of bilinear mappings a : X × Y �−→ R
with the finite norm given by

‖a‖L2(X,Y,R) = sup
ϕ∈X\{0}

sup
ψ∈Y \{0}

|a(ϕ, ψ)|
‖ϕ‖X‖ψ‖Y

As a consequence of Riesz’s representation theorem, we can express our
bilinear form uniquely by the inner product with a canonical isometry [88]:

a(ϕ, ψ) = 〈Aϕ,ψ〉 (34)

We assume that the standard formulation (24) is known. Since a(·, ·) is
on the form V × V �−→ R, it implies that A : V �−→ V ∗ is a linear and
bounded elliptic operator.
Canonical isomorphisms can only be achieved for Hilbert spaces, for in this
case, the transpose of any operator is adjoint, and we define it as

LT : Y �−→ X (LT y, x)X = (y, Lx)Y

If Λ : X �−→ Y is an isomorphism and X ⊆ Y , it is canonical, and

ΛXL
T = L∗ΛY

Y
LT

−−−−→ X

ΛY

⏐⏐1 ⏐⏐1ΛX

Y ∗ −−−−→
L∗ X∗

(35)
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3.3 Some classical lemmas

Lemma 1 (Generalized Céa’s lemma). If a(·, ·) is continuous, the numerical
solution of the variational problem (24) satisfies a special estimate:

‖u− uh‖H1 ≤ 2K

α
‖u− uh‖H1 +

2M

α
inf

vh∈Vh

‖u− vh‖H1 (36)

Proof. Assume that a(·, ·) is not coercive. We combine Gårding’s inequality
with the Galerkin orthogonality and continuity of a(·, ·) to obtain:

α

2
‖u− uh‖2H1 ≤ K‖u− uh‖2L2 + a(u− uh, u− uh)

≤ K‖u− uh‖2H1 + a(u− uh, u− vh)

≤ K‖u− uh‖2H1 +M‖u− uh‖H1‖u− vh‖H1

We divide everything with (α/2)‖u− uh‖H1 and take infimum with respect
to vh on both sides. This yields the final result.

It should be noted that in the case where a(·, ·) is coercive, the first term on
the right-hand side of (36) vanishes, and 2M/α becomes just M/α.

Lemma 2 (Deny-Lions lemma). The seminorm of W k+1,p is equivalent to
the quotient norm of W k+1,p\Pk, i.e. there is a constant C > 0 such that

∀v ∈ W k+1,p(Ω) , inf
p̂∈Pk(Ω)

‖v + p̂‖Wk+1,p(Ω) ≤ C|v|Wk+1,p(Ω) (37)

where Pp(Ω) is the space of polynomials of degree at most p in each variable.
A general proof of this lemma can be found in [39], which is based on the
Hahn-Banach extension theorem and Sobolev’s embedding theorem.

Lemma 3 (Bramble-Hilbert lemma). Let Ω ⊂ Rd be an open domain with
a connected Lipschitz boundary, and p and q are conjugate exponents. Let g
be a continuous and linear functional on W k+1,p(Ω) with the property

g(p) = 0 , ∀p ∈ Pk(Ω)

Then there is a constant C such that

|g(v)| ≤ C‖g‖Wk+1,q(Ω)|v|Wk+1,p(Ω) (38)
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Proof. The properties of g imply that we have:

|g(v)| = |g(v + p)| ≤ ‖g‖Wk+1,q(Ω)‖v + p‖Wk+1,p(Ω)

=⇒ |g(v)| ≤ ‖g‖Wk+1,q(Ω) inf
p∈Pk(Ω)

‖v + p‖Wk+1,p(Ω)

The conclusion follows directly from the Deny-Lions lemma (37).

Lemma 4 (Aubin-Nitsche lemma). Let H be a Hilbert space with V = H
and V ↪→ H , such that V is a subspace of H equipped with a continuous
injection l : V �−→ H . Define the dual variational problem as

φf ∈ V : a(v, φf ) = (v, f) , ∀v ∈ V

where f ∈ H and v ∈ V . Then the following estimate holds:

|u− uh| ≤ M‖u− uh‖
(

sup
f∈H\{0}

{
1

|f | inf
φh∈Vh

‖φf − φh‖
})

(39)

Proof. From the Galerkin orthogonality, a(u− uh, φh) = 0, so we get

a(u− uh, φf ) = a(u− uh, φf − φh)

= (f, u− uh)

Since a(·, ·) is continuous, we obtain

|(f, u− uh)| ≤ M‖u− uh‖ inf
φh∈Vh

‖φf − φh‖

By the definition of norms, we know that

|u− uh| = sup
f∈H\{0}

|(f, u− uh)|
|f |

Hence, the final conclusion holds.

All these classical lemmas play a vital role in FEA because they can be used
for proving that error estimators are robust. It should also be noted that they
are independent of the choice of basis functions. Therefore, they can be
applied directly to IGA.
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3.4 Polynomial interpolation theory

Classical interpolation estimates in 1D

First, we prove a priori estimates in one spatial dimension, and then adapt
them to several dimensions. They are used for analysing the approximation
properties of splines. We start with a classical interpolation result:

Theorem 3 (General interpolation estimate). Assume that f ∈ Cn+1([a, b])
with |f (n+1)(x)| ≤ M , and Π ∈ P([a, b]) interpolates f at n + 1 equally
spaced and distinct nodes {xi}ni=0 (including endpoints) on [a, b]. Then

|f(x)−Π(x)| ≤ M

4(n+ 1)
hn+1 , h =

b− a

n
(40)

Proof. The proof consists of two stages. In the first stage, we define

P (x) =

n∏
i=0

(x− xi) (Global node polynomial)

c(t) =
f(t)−Π(t)

P (t)
(Constant expression)

d(x) = f(x)−Π(x)− c(t)P (x) (Auxiliary function)

From Hôpital’s rule, d(xi) = 0. Elsewhere, the function is continuous.
From Rolle’s theorem, we know that between any two zeros xi and xi+1 of
d, d′ has a root, so d′ has at least n+ 1 nodes in total. Repeating the same
argument n more times, d(n+1) has at least one root ζ, so

f (n+1)(ζ)−Π(n+1)(ζ)− c(t)P (n+1)(ζ) = 0

We have the following implications:

Π ∈ P([a, b]) =⇒ Π(n+1)(x) ≡ 0

deg(P ) = n+ 1=⇒ Pn+1(x) ≡ (n+ 1)!

Using the definition of c and rearranging the terms, we get

f(x)−Π(x) =
f (n+1)(t)

(n+ 1)!

n∏
i=0

(x− xi) (42)

For each x ∈ [a, b], there is a t ∈ (a, b) such that the equality above
holds. The next stage is finding an upper estimate for P . Assume that
xj ≤ x ≤ xj+1 for some j ∈ [0, n − 1]. If g(x) = (x − xj)(x − xj+1),
then g′(x) = 2x− xj − xj+1, and x̂ = (xj + xj+1)/2 is the coordinate of
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the extremal value −h2/4. We know that h = xj+1 − xj for any j since we
have a uniform partition on [a, b].

Now, we can find a maximal upper bound for the absolute value of the
global node polynomial P . The main idea of this estimate is splitting the
big product in three parts and finding upper bounds for each of them, which
are later combined into a final upper bound. We split as follows:

n∏
i=0

|x− xi| =
j−1∏
i=0

(x− xi)|x− xj ||x− xj+1|
n∏

i=j+2

(xi − x)

≤ h2

4

j−1∏
i=0

(x− xi)
n∏

i=j+2

(xi − x)

≤ h2

4

j−1∏
i=0

(xj+1 − xi)

n∏
i=j+2

(xi − xj)

=
h2

4
hjhn−j−1

j−1∏
i=0

(j − i+ 1)

n∏
i=j+2

(i− j)

≤ hn+1

4
(j + 1)!(n− j)!

≤ hn+1

4
n!

It can be shown by induction that (j+1)!(n−j)! ≤ n! holds for j ∈ [0, n−1].
By taking absolute value of (42) and using the result above, we obtain

|f(x)−Π(x)| ≤ M

4(n+ 1)
hn+1

Hence, the desired conclusion has been proved.

This general interpolation estimate is still valid although the partition on
[a, b] is non-uniform. The only adjustment required is denoting h as the
maximal mesh size of the partition. Then the inequality holds, and the error
is automatically bounded.

In general approximation theory, it is well-known that equidistant nodes
on the domain might cause unexpected trouble like wild oscillations. This
behaviour depends often on the function itself, but we know that adding
more interpolation nodes increases the interpolation polynomial’s degree
quite much. Thus, it is convenient to use non-equidistant nodes to minimize
the upper bound of the global node polynomial. A celebrated interpolation
technique used for smoothing out wild oscillations is using the zeros of
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Chebyshev polynomials. We refer to [53, 82] for a thorough description of
their main properties. The most interesting feature is orthogonality with
respect to the Chebyshev measure (1− x2)−1/2 dx, which implies that we
have an analytical formula for the zeros:

xj = cos

(
2j + 1

2n+ 2
π

)
, 0 ≤ j ≤ n (43)

By using these nodes, we can establish an important approximation estimate:

Theorem 4 (Chebyshev interpolation estimate). Define f ∈ Cn+1([a, b])
with |f (n+1)(x)| ≤ M , and Π ∈ Pn([a, b]) is interpolating f at the shifted
zeros of the Chebyshev polynomial Tn+1. Then we have the bound

|f(x)−Π(x)| ≤ (b− a)n+1

22n+1(n+ 1)!
M (44)

Proof. If {ti}ni=0 is the set of zeros of Tn+1, we can utilize the identity

n∏
i=0

(t− ti) = 2−nTn+1(t)

We define the linear transformation T : [−1, 1] �−→ [a, b] as

x =
b− a

2
t+

b+ a

2

Thus, we get the following equality:

n∏
i=0

|t− ti| =
(
b− a

2

)n+1 n∏
i=0

|x− T (ti)| =
(
b− a

2

)n+1

2−n|Tn+1(x)|

Since |Tn+1(x)| ≤ 1, the final estimate follows directly.

Now, we use the interpolation inequality (42) to establish a classical result
which holds for Lagrange interpolants from classical FEM.

Theorem 5 (A priori interpolation estimate in Hr-seminorm). Let u ∈
Hr+1(I), Πr ∈ Pr ∩C0 is the classical FEM-interpolant, and I = (a, b) is
an open interval with regular partition. Then we have the a priori estimate

|u−Πru|Hk(I) ≤ Chr+1−k|u|Hr+1(I) , 0 ≤ k ≤ r + 1 (45)
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Proof. We start with the initial case k = 0, where H0 ≡ L2 by definition.
The interval is split up in n elements. We define Ij = [xj − xj−1] as the
j-th subinterval of I with the local mesh width hj = xj − xj−1. By using
inequality (40) and denoting the local generic constant as Cj , we get

‖u−Πru‖2
L2(I)

=
n∑

j=1

‖u−Πru‖2
L2(Ij)

≤
n∑

j=1

(
Cjh

r+1
j

)2
|u|2

Hr+1(Ij)

≤
(

max
1≤j≤n

Cj

)2 (
max
1≤j≤n

hr+1
j

)2 n∑
j=1

|u|2
Hr+1(Ij)

=
(
Chr+1

)2 |u|2
Hr+1(I)

Taking the square root of the inequality yields the desired result. If k = 1,
then the exponent of h drops from r + 1 to r. This is because u was
interpolated by a polynomial of degree r, and we had r + 1 degrees of
freedom. But the derivative is interpolated by another polynomial of degree
r − 1, so we lose one degree of freedom, and this makes the exponent drop
down to r. Repeating the same argument k times, where 0 ≤ k ≤ r+ 1, the
final result is established.

x

y

u

uh

Figure 9. Linear piecewise interpolation of a continuous function.
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(a) The original function (b) Lagrange interpolation

(c) Chebyshev interpolation (d) L2-fitting with B-splines

Figure 10. The Runge phenomenon handled in three different ways.

As an illustration of the theory above, we look at a famous interpolation
result known as Runge’s phenomenon. The function under consideration is

f(x) =
1

x2 + 1

In the first interpolation with nine equidistant nodes, the global Lagrange
polynomial oscillates wildly and deteriorates the approximation quality.
But if we use nine Chebyshev nodes instead, the oscillation is significantly
reduced. Lastly, the oscillation is smoothed out by using 8th degree B-splines
on 20 subintervals on the domain. Thus, we see that the last approach yields
an approximation that almost coincides with the original function.
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3 A priori error estimation

B-spline estimates in 1D

We turn our attention to the estimates where a function is approximated by
B-splines instead of Lagrange interpolants. The new procedure is almost the
same as before. First, we need some new notation. According to [77], we
can write a single B-spline basis function on the following form:

Ni(x) =

i+p+1∑
j=i

i+p+1∏
k=i
k �=j

1

ξK − ξj
(x− ξj)

p
+ (46)

(x− ξj)+ = max{0, x− ξj}

We recognize Ξ = {ξi}n+p+1
i=1 as the standard knot vector on [a, b], which

generates the familiar partition M, given by

a = ξ1 = · · · = ξp+1︸ ︷︷ ︸
End knots

< ξp+2 < · · · < ξN︸ ︷︷ ︸
Interior knots

< ξn+1 = · · · = ξn+p+1 = b︸ ︷︷ ︸
End knots

It is important to recall that n is the total number of B-spline basis functions,
while N = n − p is the number of subintervals on [a, b], assuming full
continuity and no repeated interior knots for the sake of simplicity.

Theorem 6 (A priori B-spline estimate in Hr-seminorm). Let u ∈ Hr+1(I),
Πr

Ku ∈ Pr(Ω) ∩ Ck(Ω) is the B-spline approximation, and the domain
I = (a, b) has a regular partition. Then we have the a priori estimate

|u−Πru|Hk(I) ≤ Chr+1−k|u|Hr+1(I) , 0 ≤ k ≤ r + 1 (47)

Proof. The proof follows the same argument as the end of the proof for
Theorem 5. The difference is that splines are used for the approximation.

Multidimensional estimates

We express the numerical solution by the finite element operator Πp
K , such

that uh = Πp
Ku. This operator belongs to Vh, a finite-dimensional subspace

of V , and approximates u in Pp(Ω) ∩ Ck(Ω). Since the shape functions are
splines, the continuity restriction is 0 ≤ k ≤ p− 1.

Theorem 7 (Multidimensional a priori estimate in Hm-seminorm). Let
u ∈ Ck(Ω), and denote uh = Πp+1

m u as a finite element approximation of
u. If 0 ≤ m < k, then the general elliptic estimate in Hm(Ω) is

|u− uh|Hm(Ω) ≤ Chp+1−m|u|Hm(Ω) (48)
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Proof. From equation (20c) and (21), we can deduce:

|u− uh|Hm(K) ≤ C‖JA−1
K ‖m‖ det(JAK)‖1/2L∞(K)|û− ûh|Hm( ̂K)

≤ C

(
ĥ

ρK

)m

‖ det(JAK)‖1/2L∞(K)|(I −Πp+1
m )û|Hm( ̂K)

We know that (I −Πp+1
m )(q) = 0 because q is invariant on Pp(Ω), so if we

use the Deny-Lions lemma (37), we obtain:

|u− uh|Hm(K) ≤ C

(
ĥ

ρK

)m

‖ det(JAK)‖1/2L∞(K) inf
q̂∈Pp

‖û+ q̂‖Hp+1( ̂K)

≤ C

(
ĥ

ρK

)m

‖ det(JAK)‖1/2L∞(K)|û|Hp+1( ̂K)

Applying equation (20a) and the Bramble-Hilbert lemma (38), we get:

|u− uh|Hm(K) ≤ C ′
(

ĥ

ρK

)m (
hK

ρ̂

)p+1

|u|Hp+1(K)

≤ C ′D(ĥκK)
m(ρ̂)−p−1hp+1−m

K |u|Hm(K)

We know that ĥ and ρ̂ are constant on the reference element, and the maximal
value of κK is the shape parameter CM. Summing over all the elements and
combining everything into a generic constant C yields inequality (48).

It should be noted that the approximation error drops down to machine
precision immediately if m ≥ k, for it is possible to represent any function
of finite continuity exactly as a finite linear combination of (piecewise)
polynomials of sufficiently high degree. If the function is non-polynomial,
this drop does not occur. The error decreases when the polynomial degree
increases, which holds for any smooth function.

Furthermore, we remark that the FEM-approximation estimate holds for
IGA too although splines are non-interpolatory in general. The difference
is that the splines have much higher continuity, which in turn makes the
generic constant C in the inequality significantly lower, a crucial ingredient
for optimal reduction of global approximation error [28, 86, 85, 49].

Now, we establish another useful estimate in the energy norm [63]:
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Theorem 8 (General a priori estimate in energy norm). Given a function u
solving equation (22), let p be the polynomial degree of the finite element
approximation, and the parameter λ ∈ R characterizes the strength of the
solution’s singularities. Thus, we define β = min{p, λ}. The following
estimates hold in the energy norm induced by the bilinear form a(·, ·):

Smooth: |‖u− uh|‖ ≤ Chp‖u‖Hp+1 (49a)

Non-smooth: |‖u− uh|‖ ≤ Chβ‖u‖Hβ+1 (49b)

Proof. Since a(·, ·) is continuous, there is a real constant M > 0 such that

|a(u− uh, u− vh)| ≤ M‖u− uh‖V ‖u− vh‖V

To be as general as possible, we assume that a(·, ·) is not coercive and invoke
Gårding’s inequality (3.3). Combining this with the continuity, we obtain

‖u− uh‖V ≤ 2(K +M)

α
‖u− vh‖V

Next, we assume that there is a constant D such that ‖u‖V ≤ D|u|Hp+1 . By
invoking the previous approximation result and applying the universal fact
that |u|Hp+1 ≤ ‖u‖Hp+1 for any u, we obtain the smooth estimate (49a). A
similar procedure would hold for the other.

This theorem is very useful for insufficiently smooth functions. If there are
no singularities, then β = p, whereas for the case β < p the convergence is
governed by the unknown solution’s regularity, not the polynomial order of
the shape functions [83]. However, proper adaptive mesh refinement may
circumvent this loss of convergence rate. The global asymptotic convergence
rate of the error in the Hk-norm is given by

O
(
N

− p+1−k

2d−1

dof

)
(50)

If the PDE is time-dependent, then the two sources of inaccuracy are
spatial and temporal error. Hence, the general a priori estimate becomes

|‖u−Πhu|‖ ≤ {C1h
p + C2(Δt)s} ‖u‖Hβ+1 (51)

We denote s as the order of the chosen time-integrator, and Δt is the uniform
time step on [0, T ]. Although we have assumed that L is a second-order
operator, the same estimates hold for higher order elliptic operators too.
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Comparison with NURBS

The presented estimates for B-splines are the same for NURBS, but the
proofs for these estimates are complicated. This is because we are using
rational B-splines, and the mapping F : Ω̂ → Ω might not be regular among
mesh lines. Even if the scalar function f belongs to Hk(Ω), it does not
guarantee that f̂ = f ◦ F is in Hk(Ω̂) too. These complexities related to
NURBS implies that the proofs of their approximation properties require
more technical facilities. Some of them include bent Sobolev spaces and
special projection operators, whose properties have been studied extensively
and verified in [28, 84, 85].

3.5 Least-squares approximation

A common procedure for discrete and continuous curve fitting is least-
squares approximation, which minimizes the error in the L2-norm [35]. The
same procedure can be adapted to B-splines, which is more optimal because
the shape functions are piecewise instead of global. This yields higher local
control of the approximated curve, and the linear system of equations to
solve is not so ill-conditioned, even if we increase the polynomial degree to
a high level. We derive the minimization problem as follows:

min
u∈RN

ˆ
I

∣∣∣∣∣f(x)−
N∑
i=1

ciψi(x)

∣∣∣∣∣
2

dx = min
u∈RN

‖f(x)−Ψ(x)T c‖2
L2

Here, c is the coefficient vector, and Ψ is the vector with shape functions on
the partition of the interval I . Taking the gradient with respect to c yields
ˆ
I
2Ψ(x)Ψ(x)T c− 2Ψ(x)f(x) dx = 0

ˆ
I
ψi(x)ψj(x)cj dx =

ˆ
I
f(x)ψi(x) dx , 1 ≤ i, j ≤ n

Mc = f

where M and f are the mass matrix and load vector, respectively. If f is
an r-degree polynomial, and the B-splines have degree p ≥ r, then the
least-squares fitting yields an exact representation without any error. Since
we use piecewise polynomials instead of a single polynomial for the entire
approximation, the global error becomes minimized.
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3.6 Quasi-interpolation

General construction

Another common approximation method is quasi-interpolation [85]. Splines
are not interpolatory in general, so we define a projection in form of a dual
basis and dual functionals. This yields a spline-preserving quasi-interpolant.

Definition 7. Let Ξ be an open knot vector of degree p. Then we can define
a spline quasi-interpolation operator Πp,Ξ : C∞([0, 1]) → Sp(Ξ) as

Πp,Ξ(f) =

n∑
j=1

λj,p(f)Nj,p (52a)

λj,p(Nk,p) = δjk (52b)

where we have used the following formulas:

λj,p(f) =

ˆ ξj+p+1

ξj

f(s)
dp+1

dsp+1
φj(s) ds (53a)

φ(ξ) =

⎡⎣ 1

p!

p∏
j=1

(ξ − ξj+i)

⎤⎦ g

(
2ξ − ξj − ξj+p+1

ξj+p+1 − ξj

)
(53b)

Here, g is a transition function expressed in terms of perfect splines [33, 70].
If the polynomial degree is p, the knots are {ξ}mi=1, and we choose some
real constants γ and {α}pi=1, then the perfect spline is given by

P (t) =

p∑
i=1

αit
i−1 + γ

(
tp + 2

m∑
k=1

(−1)k(t− ξK)
p
+

)
. (54)

The procedure of constructing perfect splines originates from Favard’s
interpolation problem, an extremal problem in W p,∞([−1, 1]). We create a
function f in this space satisfying the following interpolation conditions:

f(−1) = 0 , f(1) = 1

f (j)(−1) = f (j)(1) = 0 , 1 ≤ j ≤ p− 1

It can be shown that the only function minimizing ‖f (p)‖∞ optimally is

ψ(x) =
(−1)p−1

2

ˆ 1

−1
(x− t)p−1

+ sgn

[
Up(t)√
1− t2

]
dt
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where Up(x) = sin(p cos−1(x)) is the second kind Chebyshev polynomial.
We can prove from this construction that the knots {ξ}mi=1 become extremal
points of Tp(x) = cos(p cos−1(x)), the first kind Chebyshev polynomial:

ξi = cos

[(
m− i

m

)
π

]
, 0 ≤ i ≤ p

As an example, the first and second order perfect B-splines are

B∗
1(x) = (x+ 1)χ[−1,0] + (1− x)χ[0,1]

B∗
2(x) = 2(x+ 1)2χ[−1,−1/2] + (1− 2x2)χ[−1/2,1/2] + 2(1− x)2χ[1/2,1]

Finally, the transition function g becomes [80]

g(x) =

⎧⎪⎨⎪⎩
0, x < −1´ x
−1B

∗
m(t) dt, −1 ≤ x < 1

1, x ≥ 1

.

To create commuting projectors, we define a new spline preserving
quasi-interpolant on Ξ′ = {ξ2, . . . , ξn+p} such that

Πc
p−1,Ξ′g =

d

dξ
Πp,Ξ

ˆ ξ

0
g(s) ds =

n−1∑
j=1

λc
j,p−1(g)N̂j,p−1

λc
j,p−1(g) = λj+1,p

(ˆ ξ

ξj

g(s) ds

)
− λj,p

(ˆ ξ

ξj

g(s) ds

)

Πc
p−1,Ξ′

df

dξ
=

d

dξ
Πp,Ξf

The new projector generates a commutative diagram [85]:

R −−−−→ H1(0, 1)
d
dξ−−−−→ L2(0, 1) −−−−→ 0

Πp,Ξ

⏐⏐1 Πc
p−1,Ξ′

⏐⏐1
R −−−−→ Sp(Ξ)

d
dξ−−−−→ Sp(Ξ′) −−−−→ 0

(55)
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Special estimates

Now, we will prove some special multi-dimensional inequalities for spline
quasi-interpolation. These inequalities were presented in [88] using weighted
averages and interpolation at the nodes. They can be transferred to IGA, but
the procedure for proving these results under the new framework becomes
slightly different.

Theorem 9. Let K ∈ M be an arbitrary element, γ ∈ EK is an arbitrary
face, and Π is a spline quasi-interpolation operator of degree r on the
corresponding local tensor mesh. Then, for all Lebesgue exponents p and
functions u ∈ W 1,p, we have the following local Lp-estimates:

‖u−Πu‖Lp(K) ≤ C1‖v‖Lp(ω̃K) (56a)

‖u−Πu‖Lp(K) ≤ C2hK‖∇v‖Lp(ω̃K) (56b)

‖∇(u−Πu)‖Lp(K) ≤ C3‖∇v‖Lp(ω̃K) (56c)

‖u−Πu‖Lp(γ) ≤ C4h
1−1/p
γ ‖∇v‖Lp(ω̃γ) (56d)

Proof. The proof has four stages:

Stage 1+2. Let v ∈ Lq(K)\{0}, where q is the conjugate exponent of
p. Since B-splines form a partition of unity, we get

ˆ
K
(u−Πu)v dΩ =

ˆ
K

⎡⎣⎛⎝ ∑
j∈NK

Nj,r

⎞⎠u−
∑
j∈NK

λj,rNj,r

⎤⎦ v dΩ

=
∑
j∈NK

ˆ
K
Nj,r(u− λj,r)v dΩ

where λj,r is the coefficient expressed in Definition 7. By combining
Hölder’s inequalities for integrals and sums simultaneously, we get∑

j∈NK

ˆ
K
Nj,r(u− λj,r)v dΩ

=
∑
j∈NK

ˆ
K
N

1/p
j,r (u− λj,r)N

1/q
j,r v dΩ

≤
∑
j∈NK

‖N1/p
j,r (u− λj,r)‖Lp(K)‖N1/q

j,r v‖Lq(K)

≤

⎡⎣ ∑
j∈NK

‖N1/p
j,r (u− λj,r)‖pLp(K)

⎤⎦ 1
p
⎡⎣ ∑
j∈NK

‖N1/q
j,r v‖q

Lq(K)

⎤⎦ 1
q
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Applying positivity and partition of unity for B-splines, we get

∑
j∈NK

‖N1/q
j,r v‖q

Lq(K)
=

ˆ
K

⎡⎣ ∑
j∈NK

Nj,r

⎤⎦
︸ ︷︷ ︸

≤1

|v|q dΩ ≤ ‖v‖q
Lq(K)

Since v ∈ Lq(K)\{0} is arbitrary, we can use the general norm definition:

‖u−Πu‖Lp(K) = sup
v

´
K(u−Πu)v dΩ

‖v‖Lq(K)

≤

⎡⎣ ∑
j∈NK

‖N1/p
j,r (u− λj,r)‖pLp(K)

⎤⎦ 1
p

By the help of best polynomial approximation in the Lp-norm, we can denote
the coefficient λj,r as the best spline quasi-interpolation of u by constants.
Since ωj has greater measure that K, as shown in Figure 3 and 4, we get

‖N1/p
j,r (u− λj,r)‖Lp(K) = inf

c∈R
‖N1/p

j,r (u− c)‖Lp(K)

≤ CK inf
c∈R

‖N1/p
j,r (u− c)‖Lp(ωj)

≤ CK‖N1/p
j,r u‖Lp(ωj)

where CK > 0 is depending on K. The generalized version of Poincaré’s
inequality in Lp [50] implies that

‖N1/p
j,r u‖Lp(ωj)

≤ CP (ωj)hj‖N1/p
j,r ∇u‖Lp(ωj)

=

(
CP (ωj)

hj
hK

)
hK‖N1/p

j,r ∇u‖Lp(ωj)

The partition of unity implies that

⎡⎣ ∑
j∈NK

‖N1/p
j,r u‖p

Lp(ωj)

⎤⎦ 1
p

≤ ‖u‖Lp(ω̃j)
,

⎡⎣ ∑
j∈NK

‖N1/p
j,r ∇u‖p

Lp(ωj)

⎤⎦ 1
p

≤ ‖∇u‖Lp(ω̃j)

Thus, we have proven inequality (18a) and (18b). It should be noted that

C2 = C1 max
j∈NK

CP (ωj)
hj
hK
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Stage 3. Let v ∈ Lq(K)\{0}d be a vector field. The product rule yields
ˆ
K
∇(u−Πu) · v dΩ =

∑
j∈NK

ˆ
K
[∇Nj,r(u− λj,r)] · v dΩ

=
∑
j∈NK

[ˆ
K
Nj,r∇u · v dΩ+

ˆ
K
(u− λj,r)∇Nj,r · v dΩ

]

By combining Hölder’s inequalities for integrals and sums with the partition
of unity for B-splines, we get an inequality for the first sum:

∑
j∈NK

ˆ
K
Nj,r∇u · v ≤

⎡⎣ ∑
j∈NK

‖N1/p
j,r ∇u‖p

Lp(K)

⎤⎦ 1
p
⎡⎣ ∑
j∈NK

‖N1/q
j,r v‖q

Lq(K)

⎤⎦ 1
q

≤ ‖∇u‖Lp(K)‖v‖Lq(K)

Similarly, the other sum satisfies∑
j∈NK

ˆ
K
(u−λj,r)∇Nj,r·v ≤

∑
j∈NK

‖u−λj,r‖Lp(K)‖∇Nj,r‖L∞(K)‖v‖Lq(K)

Since v is arbitrary, the general definition of norms implies that

‖∇(u−Πu)‖Lp(K) ≤ ‖∇u‖Lp(K) +
∑
j∈NK

‖u− λj,r‖Lp(K)‖∇Nj,r‖L∞(K)

Poincaré’s inequality yields ‖u − λj,r‖Lp(K) ≤ CP (ωj)‖∇u‖Lp(ω̃j)
, and

since the term ‖∇Nj,r‖L∞(K) depends just on K, we obtain (18c) with

C3 = 1 +
∑
j∈NK

‖∇Nj,r‖L∞(K)

Stage 4. In the same way as before, we have the inequality

‖u−Πu‖Lp(γ) ≤

⎡⎣ ∑
j∈Nγ

‖N1/p
j,r (u− λj,r)‖pLp(γ)

⎤⎦ 1
p

The difference is that we changed the domain from an arbitrary element K
to one of its corresponding edges γ.
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From [88], there is a trace inequality in the Lp which states that

‖N
1
p

j,r(u− λj,r)‖pLp(γ)
≤ c1‖N

1
p

j,r(u− λj,r)‖pLp(ωγ )

+ c2‖N
1
p

j,r(u− λj,r)‖p−1
Lp(ωγ )

‖N
1
p

j,ru‖Lp(ωγ )

The final approach is just applying the other estimates we derived previously
in Stage 1 and 2. On the two terms, we get

‖N
1
p

j,r(u− λj,r)‖pLp(ωγ )
≤

(
Cp

γh
p
z

hp−1
γ

)
hp−1

γ ‖∇u‖p
Lp(ω̃γ )

‖N
1
p

j,r(u− λj,r)‖p−1
Lp(ωγ )

‖N
1
p

j,ru‖Lp(ωγ ) ≤
(
Cγhz
hγ

)p−1

hp−1
γ ‖∇u‖p

Lp(ω̃γ )

We can finally define the generic constant C4 as

C4 = max

{
c1

(
Cp

γh
p
z

hp−1
γ

)
, c2

(
Cγhz
hγ

)p−1
} 1

p

Thus, we have proved inequality (18d).

104



4 A posteriori error estimation

4 A posteriori error estimation

In this section, we present the main theory of a posteriori estimation, which
is relevant for the derivation of our error estimators discussed later. This
includes the formal properties of estimators, optimal control interpretation
of adaptive refinement, and the important concept of pollution error.

4.1 Main characteristics

The common drawbacks of a priori estimation demonstrate that a posteriori
error estimation can be more advantageous. This approach requires solving
the PDE on a coarse mesh and refine the elements where the estimated error
is too high, and we repeat the process until the global estimated error is
low enough. Local refinement is easy because we post-process the final
computed solution instead of assuming its properties on forehand. There
are many different a posteriori estimators available, and they share some
common properties [88]. First, the computation of the local error should be
done as fast as possible. Second, we require two bounds:

1. Upper bound constraining the global error within a given tolerance.

2. Lower bound ensuring that all local parts of the domain are refined
correctly.

This time, stability is measured in terms of multiplicative factors whose size
reflects the computational effort. Small size means less sensitivity to local
perturbations, and we call the stability strong because the norm involves
derivatives. Thus, we can formulate the general paradigm for a posteriori
error estimation as follows:

Small residual + Stability of continuous problem =⇒ Small error

In classical FEM, we can construct a conformal mesh on an arbitrary
domain by subdividing it into triangles or quadrilaterals. Sometimes, we can
create hybrid meshes consisting of both types. When we refine the elements,
it is common to subdivide it into four smaller elements. In this way, the
new refined elements will almost resemble the original element with respect
to the shape, as shown in Figure 11. Triangulation for any continuity is
not fully available in IGA because the spline triangles are not compatible
enough with the discretization process. It is possible to discretize a PDE
with isogeometric C0-triangles, but this is not of significant interest, for
the numerical results become almost similar to those ones obtained with
classical FEM. Therefore, we will always restrict ourselves to non-hybrid
meshes with convex quadrilaterals.
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Figure 11. Refinement of a triangle and a quadrilateral.

The global norm error does not provide useful bounds for the errors in
the target quantities of the real physical interest, and their sensitivity to local
error sources cannot be represented appropriately enough by global stability
constants. In a priori error estimation, it is possible to overcome such typical
deficiencies by employing several duality techniques. We replace global
stability constants by computationally obtained local sensitivity factors, and
then we combine them with Galerkin orthogonality to derive appropriate
a posteriori error estimators. In a posteriori estimates, local residuals of
the computed solution are multiplied with certain weights measuring their
error dependence, which can be controlled by local adaptive coarsening
and refining. These weights are obtained as the approximate solution of an
adjoint linear problem related to the original physical model. The resulting
adaptive meshes are economic with respect to computational effort.

The approximation quality depends on the mesh and characteristic
properties of the shape functions used for discretization. Controlling error
requires correct determination of existing influence factors affecting the local
error indicator on the target quantity we want to model properly. This type
of sensitivity analysis of local perturbations in the error motivates the usage
of adjoint operators. For any a posterior estimator, we must detect interplay
of many effects caused by error propagation to achieve suitable error control
and solution-adapted meshing. The use of duality arguments and adjoint
operators in the derivation of a posteriori estimators was originally proposed
by Babuška and Miller [5, 6, 7]. This has been studied for more general
situations by Eriksson et al. [47], and by Giles and Süli [56]. We start with
the formal definitions of efficiency, reliability, and asymptotic exactness of
error estimators, which will be used throughout this paper.
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4 A posteriori error estimation

Definition 8 (Efficiency of error estimator [2]). If M is a finite element
partition on a domain Ω, then the global error estimator η is the l2-norm of
the local errors ηK on each individual element K:

η =

√ ∑
K∈M

η2K (57)

From this definition, we define the local and global effectivity indices as

θK =
ηK

|‖e|‖(K)

, θ =
η

|‖e|‖ (58)

We call the error estimator asymptotically exact if the following limit holds:

lim
h→0

θ = 1 (59)

If the error estimator is robust, then there are constants C and D such that

Cη ≤ |‖e|‖ ≤ Dη (60)

The lower bound provides the efficiency, and the upper bound ensures that
the estimator is reliable and indicates the elements to be refined correctly.

4.2 Optimal control interpretation

Most a posteriori estimates are on the standard form

|‖u− uh|‖ ≤ C|‖ρ(uh)|‖∗ (61)

where ρ(uh) = f − Auh is a computable residual, and E∗ is the energy
space’s dual. Although the energy norm is generic and applicable for any
PDE, it does not always provide useful bounds on the target quantities’
errors. To be more versatile, we can analyse the error measures by duality
principles. Let u be the PDE’s solution, and J(u) is a physical quantity
derived from it. We want to control the functional error J(u) − J(uh) in
terms of local computable residuals ρK(uh) on each element K. Assuming
that the PDE is linear, the error equation becomes A(u− uh) = ρ(uh). The
effect of the cell residual ρK on the error eK′ of another cell K ′, a complex
interaction, cannot be determined analytically in general, only detected by
computation. This gives a "weighted" a posteriori estimate:

|J(u)− J(uh)| ≈ 〈ρ(uh), ωh(z)〉 (62)
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The sensitivity factor ωh describes the effect of local variations in ρ(uh). It
is governed by solving the adjoint problem A∗z = j approximately, where j
is a density function associated with J . This approach is known as the dual-
weighted residual method (DWR). The goal is to minimize J(u)− J(uh),
and this is indeed a constrained optimization problem:

min
u∈V

J(u) , subject to

{
A(u, ϕ) = F (ϕ) ϕ ∈ V

A(ϕ, z) = J(ϕ) z ∈ V
(63)

where z is an adjoint variable. The corresponding Lagrangian is

L(u, z) = J(u) + F (z)−A(u, z)

The identity J(u) = F (z) = A(u, z) makes u and z mutually disjoint
and dual. We define the error and its dual respectively as e = x− xh and
e∗ = z − zh. Then

J(e) = A(e, z) = A(e, e∗) = A(u, e∗) = F (e∗)

The corresponding residuals are given by

ρ(uh, ·) = F (·)−A(uh, ·)
ρ∗(zh, ·) = J(·)−A(·, zh)

From Galerkin orthogonality, we see that

ρ(uh, z − ϕh) = A(e, e∗) = ρ∗(zh, u− ϕh)

Thus, we obtain the final identity

J(e) = min
ϕh∈Vh

ρ(uh, z − ϕh)

= min
ϕh∈Vh

ρ∗(zh, u− ϕh)

= F (e∗)

This connection between a posteriori error estimation and optimal
control was demonstrated by Becker and Rannacher [29], and it provides
many general results which can be adapted to many PDEs. Furthermore, the
approach holds both for Bubnov-Galerkin and Petrov-Galerkin formulations,
even if the PDE is semilinear.
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4.3 The effect of pollution error

The a priori estimates discussed until now require the unknown solution to
be sufficiently smooth, e.g. it belongs to Hm(Ω). Sometimes, the solution
of a PDE has a very sharp gradient in certain regions of the domain Ω, but
the solution itself is sufficiently smooth and does not contain discontinuities.
When we solve this PDE with adaptive FEM, the mesh is coarse at the
beginning, but in the regions with sharp gradient, the error here will not be
so influent on the rest of the solution. After some refinements, the global
error is low enough.

In many practical situations, the solution is not smooth enough, and
there are even situations where the error can have a very deteriorating effect.
There exist certain cases where the gradient of the solution is singular, like
domains with re-entrant corners or jump discontinuities in the boundary
conditions. The approximation error here is classified as pollution error
because it affects the rest of the whole global solution very much when it is
too high, and the results become quite poor. Simplification of the physical
model’s data is a common reason for this defect, for we do not know on
forehand how the real solution will behave. Thus, the asymptotic behaviour
of the solution must be described in terms of intensity factors describing
the strength of the singularities. We use also a local averaging scheme for
extracting a post-processed gradient value, which is more accurate than the
raw-gradient originating from the finite element solution [20].

(a) A circle with re-entrant corner

x

y

(b) Discontinuous jumps in the solution

Figure 12. Examples on sources causing pollution error.
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According to Babuška [13], pollution error is characterized as follows:

• The error eK of an element K can be split up in two parts: local error
(caused in element K and the neighbouring elements, i.e. the patch
ω̃K) and pollution error (originating in the rest of the global mesh,
especially in neighbourhoods of singularities).

• Error indicators based only on local computation neglect pollution
error.

• The pollution error is the most influent factor on the global error and
can only be controlled properly by global adaptive refinement.

• We can the estimate pollution error in small patches with a global
extraction consisting of two parts: the finite element approximation
of an auxiliary function constructed appropriately, and the standard
error indicators. To make the process effective, we use a direct solver
with resolution capability on the linear equation system arising from
the discretization.

• On a uniform mesh, the global energy norm equals the energy norm
over the patches of elements with vertices at the singularity, so the
global effectivity index reflects just the accuracy at these elements.
The pollution error here is negligible because the error indicators
almost equal the exact error’s norm.

• Pollution error can be significant almost everywhere.

These characteristics demonstrate that if we want optimal error reduction
on elements, the error estimator must be composed of distinct components
estimating the local error and pollution error separately from each other.
Babuška has also proved in [14] that when we suppress the pollution error
correctly, then the element effectivity indexes depend on the local (p+ 1)-
Taylor expansion of the exact solution. A good choice is analysing element
error indicators through the value of effectivity indexes corresponding to
worst Taylor expansions. From [14, 21, 18], the following conclusions hold:

1. Since the error of element patches has a local and global component,
and local estimators neglect the global part, we cannot describe the
effectivity index on an element without verifying that the pollution
error is very small compared with the local error here.

2. Local error coincides with the error of finite element approximation
of a local (p+ 1)-Taylor expansion of the exact solution.

3. Local geometry of the mesh determines effectivity indices of elements.
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x

y

ep

el

ep : Pollution error
el : Local error

Figure 13. Decomposing the total approximation error in two parts.

With the same notation from [57], we define the local and pollution error as

eh = (u−Πhu)︸ ︷︷ ︸
eH, loc

Locally produced
truncation error

+ (Πhu− uh)︸ ︷︷ ︸
eH, glob

Globally transported
pollution error

(64)

where Πh is the operator for the finite element projection. If there are no
sources of pollution error at all, then the last term is negligible. According
to Oden [74], we can assume that the subdomain Ω0 has a singularity. The
local error will depend on the local properties of Πh and the regularity of
the exact solution near Ω0, while the pollution error is determined by the
solution’s regularity outside Ω0, the boundary operator, and the boundary’s
regularity. It is also more flexible to analyse the pollution error on each
individual element.

Furthermore, if we denote the original local error estimator as ηhK , we
can extend it with the estimator ηh,polK for the pollution error. To make this
new extended estimator work properly, we need a bound on the form

C|‖ηhK |‖2ΩK , ext ≤ |‖uh − uH |‖2ΩK
≤ D|‖ηhK |‖2ΩK , ext (65)

|‖ηhK |‖2ΩK , ext = |‖ηhK |‖2ΩK
+ |‖ηh, pol

K |‖2ΩK

where uh and uH represents the finite element approximation on a fine and a
coarse mesh, respectively. The Element Residual Method (ERM), described
by Oden et al. in [72], is a common a posteriori error estimator. It has been
shown in [74] that this method can be extended to the Equivalent Pollution
Residual Method, enabling us to estimate the pollution error in each element.
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According to Babuška [16], there are two types of pollution error. The
first one is A-pollution (Approximation pollution) and is usually caused by
non-smoothness of input data, like the load function or initial conditions. In
this case, the non-smoothness of the solution in one specific area affects the
accuracy in another different area. The second type is B-pollution (Boundary
pollution) and is common in several dimensions. It occurs if the domain or
its boundary is not smooth, or if the boundary conditions change in a sudden
non-smooth way.

Until now, we have assumed that our approach is conforming, which
means that Vh ⊂ V . A problem with numerical integration is conformity
violation triggered by the lack of enough quadrature points in the assembly
process. This is a common variational crime and main source of both A-
and B-pollution. In regions where the solution lacks smoothness, the effect
of pollution becomes stronger when the quadrature scheme is not precise
enough. This has been verified with the Bramble-Hilbert lemma [90].

4.4 Methodology for comparing quality

Although local estimators work better than a priori estimators, they cannot
take pollution error into account, which is most significant in most of the
elements. In small patches, we can estimate the pollution error by global
extraction, which is using a finite element approximation of an appropriately
constructed function and a standard element indicator. If a direct solver with
resolution capability is employed, the running time is bounded. We can also
create separate estimates for each error component. It is meaningless to
report effectivity without confirming that pollution is negligible, as Babuška
et al. mentioned in [13].

Let S(x,H) be a subdomain of size H centred at x. We can impose
some criterions on the analytical solution and the computational mesh:

• Locally uniform mesh for analysis, C1h
γ ≤ H ≤ C2h

γ , γ ∈ (0, 1).

• Convergence in L2, ‖eh‖L2(S(x,H)) ≤ Chp+1−εH

• Sufficient smoothness of the exact solution u

max
0≤i,j≤p+2
i+j=p+2

∥∥∥∥∥ ∂p+2u

∂xi1∂x
j
2

∥∥∥∥∥
L∞(S(x,H))

≤ K < ∞

∑
0≤i,j≤p+2
i+j=p+2

∣∣∣∣∣ ∂p+2u

∂xi1∂x
j
2

∣∣∣∣∣ (x) ≥ C0 > 0
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5 Residual-based estimators

Before we derive some of the common residual-based estimators used in
adaptive refinement, which rely on complementary variational methods, we
will first give a concise overview on the relevant theory of this topic. Much
of this theory was originally developed in the context of classical finite
element modelling, but it will also work for splines since they are piecewise
polynomials with high continuity.

5.1 Preliminaries

To derive the explicit a posteriori estimators, we need an important theorem:

Theorem 10 (Bernardi and Girault [30]). Let p ∈ [1,∞), k ∈ Z+, s ∈ [0, 1],
and t ∈ [s, k]. Let Ω be a polygon domain with a regular finite element
partition M (triangles or quadrilaterals) such that Vh is a finite element
subspace. Then there exists a bounded linear operator Πh : W t,p �−→ Vh

and constants C1 and C2 such that for all u ∈ W t,p and K ∈ M, we have

|(I −Πh)u|Ws,p(K) ≤ C1h
t−s
K |u|Wt,p( ˜K) (67)

|(I −Πh)u|Ws,p(γ) ≤ C2h
t−s−1/p
γ ‖u‖Wt,p( ˜K) (68)

where K is an arbitrary element and γ is any edge of it. The constants C1

and C2 depend on the regularity constant κ, not the element diameter hK .

We also need an inequality based on the general Hölder inequality for sums:

Lemma 5. Let {ai}∞i=1, {bi}∞i=1, {cj}∞j=1 and {dj}∞j=1 are l1-summable
sequences, and p and q are conjugate exponents. Then we have

m∑
i=1

aibi +

n∑
j=1

cjdj ≤ 2

⎡⎣ m∑
i=1

api +

n∑
j=1

cpj

⎤⎦ 1
p
⎡⎣ m∑

i=1

bqi +

n∑
j=1

dqj

⎤⎦ 1
q

(69)

We introduce cut-off functions [58], which play a vital role in the proofs for
efficiency. In general, a cut-off function ψ ∈ C∞

0 on an open set A satisfies

ψ(x) =

⎧⎪⎨⎪⎩
1 , x ∈ A′

∈ [0, 1] , x ∈ A\A′

0 , x ∈ Rn\A
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where A′ � A is nonempty. Then, we use an important proposition from
[88], which generalizes corresponding lemmas and theorems from [2]:

Proposition 4. For all elements K and their faces γ, we have the following
bounds for any v ∈ Rs(K) and w ∈ Rs(γ):

‖v‖Lp(K) ≤ C1‖ψ1/p
K v‖Lp(K) (70a)

‖∇(ψKv)‖Lp(K) ≤ C2h
−1
K ‖v‖Lp(K) (70b)

‖w‖Lp(γ) ≤ C3‖ψ1/p
γ w‖Lp(γ) (70c)

‖∇(ψγw)‖Lp(ωγ ) ≤ C4h
1/p−1
γ ‖w‖Lp(γ) (70d)

‖ψγw‖Lp(ωγ ) ≤ C5h
1/p
γ ‖w‖Lp(γ) (70e)

Proof. These estimates are derived quite similarly. First, we transform K
and γ respectively to K̂ and γ̂ by using F : Ω �−→ Ω̂. Next, we use the
general theorem stating that all norms are equivalent on a finite-dimensional
Banach space [65]. This is valid because the numerical solution is a finite
linear combination of splines. Since ψ̂ > 0 on int(K̂), we can introduce
two complete norms:

v̂ �−→ ‖ψ̂1/pv̂‖Lp( ̂K) , v̂ �−→ ‖ψ̂v̂‖W1,p( ̂K)

We transform K̂ and γ̂ respectively to K and γ by F−1 : Ω̂ �−→ Ω.

We notice that Rs is the reference square (12), and we have two cut-off
functions ψK and ψγ respectively on the element interior and element edge.
The optimal constants {Ci}5i=1 depend only on s, p, hK and ψ. This means
in practice that the estimates are determined by the discretization, not the
model problem. A detailed proof for the optimal constants is described in
[88]. In our case, we expect that they will be small because we are using
splines with high continuity.

The later efficiency proofs require another technical facility. Verfürth
[87, 88] has constructed five bubble functions (cut-off functions) on the
reference quadrilateral K̂ = [−1, 1]2 for localizing the residual. We will
generalize this approach by focusing on the reference elements [0, 1]2 and
[0, 1]3, since splines are used for discretization. On [0, 1]2, we get

ψ̂γ,1 = 4x(1− x)(1− y) ψ̂γ,2 = 4x(1− x)y

ψ̂γ,3 = 4(1− x)y(1− y) ψ̂γ,4 = 4xy(1− y)

ψ̂K = 16x(1− x)y(1− y)
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(a) ̂ψK (b) ̂ψγ,1 (c) ̂ψγ,2

(d) ̂ψγ,3 (e) ̂ψγ,4

Figure 14. The cut-off functions ψ̂K , ψ̂γ,1, ψ̂γ,2, ψ̂γ,3 and ψ̂γ,4 on K̂ = [0, 1]2.

On [0, 1]3, we get the similar analogous functions

ψ̂γ,1 = 16x(1− x)(1− y)z(1− z) ψ̂γ,2 = 16x(1− x)yz(1− z)

ψ̂γ,3 = 16(1− x)y(1− y)z(1− z) ψ̂γ,4 = 16xy(1− y)z(1− z)

ψ̂γ,5 = 16x(1− x)y(1− y)(1− z) ψ̂γ,6 = 16x(1− x)y(1− y)z

ψ̂K = 64x(1− x)y(1− y)z(1− z)

The cut-off function ψK can be expressed in terms of tensor B-splines
and belong to W 1,∞(K). To make them even more smooth, we define
ψK,m = (ψK)

m+1, which belongs to Cm(K) and hence Wm+1,∞(K).

Now, we will finally present an important auxiliary lemma used later:

Lemma 6. If {xi}mi=1 are strictly positive real numbers, and p ≥ 1, then(
m∑
i=1

xi

)p

≤ 2p−1

(
m∑
i=1

xpi

)
(73)
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5.2 Standard explicit estimator

We start with the standard explicit residual estimator for Poisson’s equation,
and generalize the procedures described in [2, 88].

Derivation of the estimator

We consider the BVP from (22), restrict ourselves to the Poisson problem,
and define M as the partition on Ω. Since the error e = u − uh satisfies
Galerkin orthogonality (29), integration by parts allows us to express the
sum of integrals as follows:

a(e, v) = a(u, v)− a(uh, v)

=
∑
K∈M

(aK(u, v)− aK(uh, v))

=
∑
K∈M

{ˆ
K
fv dΩ+

ˆ
∂KN

gNv ds−
ˆ
K
∇uh · ∇v dΩ

}
=

∑
K∈M

{ˆ
K
fv dΩ+

ˆ
∂KN

gNv ds+

ˆ
K
v∇2uh dΩ−

ˆ
∂K

∂uh
∂nK

v ds

}
=

∑
K∈M

ˆ
K
rv dΩ+

∑
γ∈Σ

ˆ
γ
jv ds

=
∑
K∈M

ˆ
K
r(v − vh) dΩ+

∑
γ∈Σ

ˆ
γ
j(v − vh) ds

where ∂KN = ∂K ∩ ∂ΩN . This result holds because a(e, vh) = 0. In
this setting, we denote the interior and boundary residuals respectively as
r : Ω �−→ R and j : Σ �−→ R [88]. The last term refers to the whole
skeleton Σ of M, and is not restricted just to the boundary ∂Ω. If K ∈ M,
these two residuals are given by

r|K = f +∇2uh x ∈ int(K) (74a)

j|K =

⎧⎪⎨⎪⎩
−Jγ(nγ · ∇uh), x ∈ E0
gN − nγ · ∇uh, x ∈ EN

0, x ∈ ED

(74b)

The set of all edges on M is partitioned as E = E0 ∪ ED ∪ EN , such that E0,
ED and EN represent the interior edges, Dirichlet edges and Neumann edges.
The jump of u in the direction of nγ measures the boundary discontinuity
between K and another adjacent element K∗. It is given by

Jγ(nγ · ∇uh) = lim
t→0+

{u(x− tnγ)− u(x+ tnγ)} (75)
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By using inequality (67) and (68), we choose t = 1, s = 0 and p = 2. Then,
we apply inequality (69) with p = q = 2 and continue the derivation:

a(e, v) ≤
∑
K∈M

‖r‖L2(K)‖(I −Πh)v‖L2(K) +
∑
γ∈Σ

‖j‖L2(γ)‖(I −Πh)v‖L2(γ)

≤
∑
K∈M

C1hK‖v‖H1(K)‖r‖L2(K) +
∑
γ∈Σ

C2h
1/2
γ ‖v‖H1(γ)‖j‖L2(γ)

≤ C1

[ ∑
K∈M

‖v‖2
H1(K)

]1/2 [ ∑
K∈M

h2K‖r‖2L2(K)

]1/2

+ C2

⎡⎣∑
γ∈Σ

‖v‖2
H1(γ)

⎤⎦1/2 ⎡⎣∑
γ∈Σ

hγ‖j‖2L2(γ)

⎤⎦1/2

≤ 2C3‖v‖H1(Ω)

⎧⎨⎩ ∑
K∈M

h2K‖r‖2L2(K)
+

∑
γ∈Σ

hγ‖j‖2L2(γ)

⎫⎬⎭
1/2

︸ ︷︷ ︸
W

where C3 = max{C1, C2}. From Poincaré’s inequality, we see that

‖e‖2
H1 = ‖e‖2

L2 + |e|2
H1

≤ C2
4 |e|2H1 + |e|2

H1

= (C2
4 + 1)|‖e|‖2

Since a(·, ·) is coercive, we can replace v by e and obtain

α|‖e|‖2 ≤ a(e, e)

≤ 2C3‖e‖H1(Ω)W

≤ 2C3(C
2
4 + 1)1/2|‖e|‖W

|‖e|‖ ≤
(
2C3

α
(C2

4 + 1)1/2
)
W

|‖e|‖2 ≤ C2
RES

∑
K∈M

{
h2K‖r‖2L2(K)

+ hγ‖j‖2L2(∂K)

}
where C2

RES = (C2
4 + 1)(2C3/α)

2. Hence, the local estimator becomes

η2RES,K = h2K‖r‖2L2(K)
+ hγ‖j‖2L2(∂K)

(76)
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Robustness of the estimator

If we sum the error in the energy norm over every element on the domain,
we get an inequality on the following form:

|‖e|‖2 =
∑
K∈M

|‖e|‖2K

≤
∑
K∈M

C2
RES,Kη2RES,K

≤
(
max
K∈M

C2
RES,K

)
η2RES

This bound shows that reliability is satisfied. If ψK is the cut-off function on
K, let wK = (fK +∇2uh)ψK . Our first derivation is combining inequality
(70a) and (70b) with the L2-representation (74a), Hölder’s Lp-inequality
and ψK ∈ [0, 1]. This yields

C−2
1 ‖fK +∇2uh‖2L2(K)

≤
ˆ
K
(fK +∇2uh)

2ψK dΩ

=

ˆ
K
(f +∇2uh)wK dΩ

=

ˆ
K
∇(u− uh) · ∇wK dΩ

≤ ‖∇(u− uh)‖L2(K)‖∇wK‖L2(K)

≤ ‖∇(u− uh)‖L2(K) · C2h
−1
K ‖fK +∇2uh‖L2(K)

Then, we divide all terms by ‖fK +∇2uh‖L2(K) and multiply with C2
1hK :

hK‖fK +∇2uh‖L2(K) ≤ C2
1C2‖∇(u− uh)‖L2(K) (77)

This estimate holds for the interior of K, and we will use a similar procedure
for E0 and EN . First, we consider E0 and define wγ = −Jγ(nγ · ∇uh)ψγ .
This time, we use inequality (70c):

C−2
3 ‖Jγ(nγ · ∇uh)‖2L2(γ)

≤
ˆ
ωγ

Jγ(nγ · ∇uh)
2ψγ ds

=

ˆ
ωγ

∇(u− uh) · ∇wγ ds−
ˆ
ωγ

rwγ ds

=

ˆ
ωγ

∇(u− uh) · ∇wγ ds−
∑

K⊂ωγ

ˆ
K
(fK +∇2uh)wγ dΩ
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Then, we combine (70d) and (70e) with Hölder’s Lp-inequality:
ˆ
ωγ

∇(u− uh) · ∇wγ dΩ ≤ ‖∇(u− uh)‖L2(ωγ ) · C4h
−1/2
γ ‖Jγ(nγ · ∇uh)‖L2(γ)∑

K⊂ωγ

ˆ
K
(fK +∇2uh)wγ dΩ ≤

∑
K⊂ωγ

‖fK +∇2uh‖L2(K) · C5h
1/2
γ ‖Jγ(nγ · ∇uh)‖L2(γ)

Collecting everything, dividing by the common factor ‖Jγ(nγ · ∇uh)‖L2(γ)

and then multiplying all terms by C2
3h

1/2
γ yields

h1/2γ ‖Jγ(nγ · ∇uh)‖L2(γ)

≤ C2
3C4‖∇(u− uh)‖L2(ωγ ) + C2

3C5

∑
K⊂ωγ

hγ‖fK +∇2uh‖L2(K) (78)

Lastly, we define wγ = (gN − nγ · ∇uh)ψγ on EN and use the procedure:

C−2
3 ‖gN − nγ · ∇uh‖2L2(γ)

≤
ˆ
γ
(gN − nγ · ∇uh)

2ψγ ds

=

ˆ
K
∇(u− uh) · ∇wγ dΩ−

ˆ
K
(fK +∇2uh)wγ dΩ

By combining (70d) and (70e) with Hölder’s Lp-inequality, we obtain
ˆ
ωγ

∇(u− uh) · ∇wγ dΩ ≤ ‖∇(u− uh)‖L2(ωγ ) · C4h
−1/2
γ ‖gN − nγ · ∇uh‖L2(γ)

ˆ
K
(fK +∇2uh)wγ dΩ ≤ ‖fK +∇2uh‖L2(K) · C5h

1/2
γ ‖gN − nγ · ∇uh‖L2(γ)

Collecting everything, dividing by the common factor ‖gN −nγ · ∇uh‖L2(γ)

and then multiplying all terms by C2
3h

1/2
γ again yields

h1/2γ ‖gN − nγ · ∇uh‖L2(γ)

≤ C2
3C4‖∇(u− uh)‖L2(ωγ ) + C2

3C5hγ‖fK +∇2uh‖L2(K) (79)

The final step is applying Lemma 6 with p = 2 on inequality (77), (78) and
(79), summing the new bounds and then taking maximum over every generic
constant. In this way, we can summarize the derivations in this subsection:

Theorem 11. The explicit residual estimator (13a) is reliable and efficient.
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5.3 General explicit Lp-estimator

This residual estimator is a generalization of the previous one, and differs
mostly in its derivation. But its underlying structure is quite similar.

Derivation of the estimator

The explicit Lp-estimator is applicable when p ∈ (1,∞) and the domain Ω
is convex. To derive it, we apply the Aubin-Nitsche method [4] where we
consider the dual (adjoint) version of the original weak formulation (22).

ΦF ∈ V : a(v,ΦF ) = (v, F ) ∀v ∈ V (80)

where ‖ΦF‖W2,q ≤ CF‖F‖Lq due to convexity. By using inequalities (67)
and (68), we let t = 2, s = 0, and replace p by q. The conjugate identity,
1
p + 1

q = 1, is applied from now on. We use the adjoint formulation:

(e, F ) = a(e,ΦF )

=
∑
K∈M

ˆ
K
r[(I −Πh)ΦF ] dΩ+

∑
γ∈Σ

ˆ
γ
j[(I −Πh)ΦF ] ds

≤
∑
K∈M

‖r‖Lp(K)‖(I −Πh)ΦF‖Lq(K) +
∑
γ∈Σ

‖j‖Lp(γ)‖(I −Πh)ΦF‖Lq(γ)

≤
∑
K∈M

C1h
2
K‖ΦF‖W2,q( ˜K)‖r‖Lp(K) +

∑
γ∈Σ

C2h
1+1/p
γ ‖ΦF‖W2,q( ˜K)‖j‖Lp(γ)

≤ C1

[ ∑
K∈M

‖ΦF‖qW2,q( ˜K)

]1/q [ ∑
K∈M

h2pK ‖r‖p
Lp(K)

]1/p

+ C2

⎡⎣∑
γ∈Σ

‖ΦF‖qW2,q( ˜K)

⎤⎦1/q ⎡⎣∑
γ∈Σ

hp+1
γ ‖j‖p

Lp(γ)

⎤⎦1/p

≤ 2C3CF‖F‖Lq(Ω)

⎧⎨⎩ ∑
K∈M

h2pK ‖r‖p
Lp(K)

+
∑
γ∈Σ

hp+1
γ ‖j‖p

Lp(γ)

⎫⎬⎭
1/p

where C3 = max{C1, C2}. Here, we have used inequality (69) in a general
way with conjugate exponents. The Lp-norm in this case will be

‖e‖Lp(Ω) = sup
F∈Lq(Ω)

(e, F )

‖F‖Lq(Ω)

By setting CLp = 2C3CF in addition, we obtain the final inequality:

‖e‖p
Lp(Ω)

Cp
Lp

⎡⎣ ∑
K∈M

h2pK ‖r‖p
Lp(K)

+
∑
γ∈Σ

hp+1
γ ‖j‖p

Lp(γ)

⎤⎦
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The error estimator is defined as

ηp
Lp(K)

= h2pK ‖r‖p
Lp(K)

+ hp+1
γ ‖j‖p

Lp(∂K)
(81)

N
Robustness of the estimator

In the same way as the explicit estimator for the energy norm (13a), we just
sum the error in the Lp-norm over every element on the domain. This yields
a lower bound ensuring that the estimator is reliable:

‖e‖p
Lp =

∑
K∈M

‖e‖p
Lp(K)

≤
∑
K∈M

Cp
Lp(K)

ηp
Lp(K)

≤
(
max
K∈M

Cp
Lp(K)

)
ηp
Lp

Since Ω has finite measure, we can invoke the Lp-embedding [31]

1 ≤ p1 < p2 ≤ ∞ =⇒ Lp2 ↪→ Lp1

In addition, the approximated solution is constructed from a finite-dimensional
subspace in Lp(Ω), so we can apply norm equivalence to state that

Cp2,p1‖u‖Lp2 (Ω) ≤ ‖u‖Lp1 (Ω) ≤ Cp1,p2‖u‖Lp2 (Ω) (82)

The right-hand side holds when Ω has finite measure, and the left-hand side is
a consequence of norm equivalence for finite-dimensional spaces. To prove
the Lp-estimator’s efficiency, we adapt much of the proof in Subsection 5.2
and generalize it by invoking inequality (82).

Our first step is defining wK = (fK +∇2uh)ψK , applying inequality
(82) from Lq to L2, and then invoking Hölder’s inequality such that

‖fK +∇2uh‖2Lq(K) ≤ C2
q,2‖fK +∇2uh‖2L2(K)

≤ C2
q,2C

2
1

ˆ
K
(fK +∇2uh)

2ψK dΩ

= C2
q,2C

2
1

ˆ
K
∇(u− uh) · ∇wK

≤ C2
q,2C

2
1‖∇(u− uh)‖Lp(K) · C2h

−1
K ‖fK +∇2uh‖Lq(K)
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We divide both sides with h−1
K ‖fK + ∇2uh‖Lq(K), apply inequality (82)

from Lp to Lq, and set C̃1 = (Cq,2C1)
2/Cp,q to obtain the first bound:

hK‖fK +∇2uh‖Lp(K) ≤ C2C̃1‖∇(u− uh)‖Lp(K) (83)

The next step is setting wγ = −Jγ(nγ · ∇uh)ψγ . As we did above, we get

‖Jγ(nγ · ∇uh)‖2Lq(γ)

≤ C2
q,2‖Jγ(nγ · ∇uh)‖2L2(γ)

≤ C2
q,2C

2
3

ˆ
γ
(Jγ(nγ · ∇uh))

2ψK ds

= C2
q,2C

2
3

[ ∑
K⊂ωγ

ˆ
K
−(fK +∇2uh)wγ dΩ+

ˆ
ωγ

∇(u− uh) · ∇wγ ds

]

≤ C2
q,2C

2
3

[
C4h

1/p−1
γ ‖∇(u− uh)‖Lp(ωγ )‖Jγ(nγ · ∇uh)‖Lq(γ)

+
∑

K⊂ωγ

C5h
1/p
γ ‖fK +∇2uh‖Lp(K)‖Jγ(nγ · ∇uh)‖Lq(γ)

]

We divide both sides with h
−1/q
K ‖Jγ(nγ · ∇uh)‖Lq(γ), apply inequality (82)

from Lp to Lq, and set C̃3 = (Cq,2C3)
2/Cp,q to obtain the next bound:

h1/qγ ‖Jγ(nγ · ∇uh)‖Lp(γ)

≤ C̃3

[
C4‖∇(u− uh)‖Lp(ωγ ) +

∑
K⊂ωγ

C5hγ‖fK +∇2uh‖Lp(K)

]
(84)

Lastly, we define wγ = (gN − nγ · ∇uh)ψγ and derive as follows:

‖gN − nγ · ∇uh‖2Lq(γ)

≤ Cq,2‖gN − nγ · ∇uh‖2L2(γ)

≤ C2
q,2C

2
3

ˆ
γ
(gN − nγ · ∇uh)

2ψγ ds

= C2
q,2C

2
3

[ ˆ
K
∇(u− uh) · ∇wγ dΩ−

ˆ
K
(fK +∇2uh)wγ dΩ

]

≤ C2
q,2C

2
3

[
C4h

1/p−1
γ ‖∇(u− uh)‖Lp(K) + C5h

1/p
γ ‖fK +∇2uh‖Lp(K)

]
× ‖gN − nγ · ∇uh‖Lq(γ)
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We divide both sides with h
−1/q
K ‖gN − nγ · ∇uh‖Lq(γ), invoke inequality

(82) from Lp and Lq, and insert (83) such that we obtain the final bound

h1/qγ ‖gN − nγ · ∇uh‖Lp(γ)

≤ C̃3

[
C4‖∇(u− uh)‖Lp(ωγ ) +

∑
K⊂ωγ

C5hγ‖fK +∇2uh‖Lp(K)

]
(85)

Using the same argumentation as the previous estimator, we can summarize
everything as follows:

Theorem 12. The general explicit Lp-estimator (81) is reliable and efficient.

N
N

5.4 Adaptation to IGA

All the error estimators presented in this chapter can be applied directly in
adaptive finite element modelling using B-splines to discretize the problem.
Doing so has some useful advantages which are not available in the previous
approaches. The B-splines have higher continuity than the classical FEM
interpolants, so computation of the error estimator goes significantly faster,
in addition to lack of jumps caused by discontinuities in the derivative of the
shape functions. If we increase the continuity in addition to the polynomial
degree, which is straightforward and requires less computational effort than
classical FEM, then the global approximation error is also reduced, and the
refinement speeds up.

However, there are some cases where introducing C0-lines on the mesh
is inevitable. This can be caused by the domain’s structure, like the need for
multiple patches or some special handling of discontinuities in the analytical
solution. Another reason might be variable material parameters occurring
in the PDE itself, which changes abruptly on different parts of the domain.
In such cases, it is best to construct the mesh such that it has full continuity
everywhere except on the C0-lines. The jump −Jγ(nγ · ∇uh) occurring in
(74b) can be restricted just to the C0-lines such that the computation of the
error estimator still goes fast.
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6 Enhancement-based estimators

This section focuses on error estimators used in connection with h-, p-
and k-refinement in IGA. The two first ones were originally developed in
the context of classical FEM. It has been demonstrated that they are fully
compatible with IGA. The last one, a kind of hybridization, does not exist in
classical FEM.

Consider the original model problem (22) such that the linear operator
L is self-adjoint, and Vh ⊂ V has finite dimension such that u ∈ V and
uh ∈ Vh. We define a new subspace V ∗

h ⊂ V obtained from global h-, p-
and k-refinement. If u∗h ∈ V ∗

h is another FE-approximation of (22), we can
derive the following inequality:

|‖e|‖ = |‖u− uh|‖
= |‖u− u∗h + u∗h − uh|‖
≤ |‖u− u∗h|‖︸ ︷︷ ︸

Non-Computable

+ |‖u∗h − uh|‖︸ ︷︷ ︸
Computable

This splitting is useful in the derivation of error estimators and analysis of
their properties, which has been investigated in [2, 24, 25, 51]. If u∗h is a
sufficiently accurate approximation of u, we may approximate the error by
the computable part of the inequality above, which reduces to

|‖e|‖ ≈ |‖u∗h − uh|‖ = η∗h

The error estimator above is clearly computable because it is independent
of u. By the statement "if u∗h is sufficiently accurate", we mean that there
exists a constant Cθ ∈ [0, 1) satisfying Cθ = O(h) such that

|‖u− u∗h|‖ ≤ Cθ|‖u− uh|‖ (86)

This is called the saturation assumption [88]. For the model problem, we
know from the previous sections that the error in the energy norm is

|‖e|‖ = a(u− uh, u− uh)

6.1 h-refinement

In h-refinement, we keep the polynomial degree p of the shape functions
constant, and the mesh size h is reduced by refining the elements. It is
common to measure the convergence with respect to number of degrees of
freedom (total number of unknown variables in the discrete equation system)
because the elements can be locally refined, and the mesh size is variable.
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There are three general ways of performing h-refinement [92]:

1. Uniform Mesh Refinement (UMR): All elements are divided into
smaller elements repeatedly, and the global mesh is preserved [51].

2. Element Subdivision: We just select some individual elements and
refine them locally. The conformal mesh can be preserved by proper
handling of so-called "hanging nodes" [24].

3. Remeshing: The initial global mesh is completely discarded and
replaced by a better new mesh [25].

In the context of IGA, h-refinement corresponds to knot insertion [85, 75].
We add an extra knot ξ̂ to a knot vector Ξ. This yields more basis functions
and better shape control of the spline. It does not require subdivision of
spline or changing geometric shape. The method relies on Böhm’s theorem.

Theorem 13 (Böhm’s theorem [34]). If ξ̂ ∈ [ξs, ξs+1), the knot insertion
process can be described as follows:

n∑
i=0

Ni,pPi �−→
n∑

i=0

N̂i,pP̂i (87a)

Ξ = {ξ0, . . . , ξm} �−→ Ξ̂ = {ξ0, . . . , ξs, ξ̂, ξs+1, . . . , ξm} (87b)

P̂i =

⎧⎪⎨⎪⎩
Pi, 0 ≤ i ≤ s− p

(1− αi)Pi−1 + αiPi, s− p+ 1 ≤ i ≤ s

Pi−1, s+ 1 ≤ i ≤ n+ 1

(87c)

αi =
ξ̂ − ξi

ξi+p − ξi
=

ξ̂ − ξ̂i

ξ̂i+p+1 − ξ̂i
(87d)

This process can be generalized by direct simultaneous insertion of multiple
knots, and the Oslo algorithm [27, 59] is well-suited for this application. The
algorithm is also compatible with NURBS, with some additional features.

As shown in Figures 15 and 16, the initial knot vectors in both directions
are Ξ,H = {0, 0, 0, 1, 1, 1}. After inserting the knots 1/4, 1/2 and 3/4,
they just become the new vectors Ξ̂, Ĥ = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}.
Since we have only one single element to begin with, the control points and
Greville points will coincide, but not after the addition of more knots.
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Figure 15. h-refinement: Original and refined basis functions

Figure 16. h-refinement: Physical mesh, control points (•) and Greville points (•).

6.2 p-refinement

In p-refinement, the global mesh remains completely unchanged while we
increase the polynomial degree p. This can be done uniformly such that the
degrees of all the shape functions increases, or locally by elevating some
selected elements. The convergence is therefore naturally measured in the
polynomial degree, and not the number of degrees of freedom.

In the context of IGA, p-refinement corresponds to degree elevation [85,
75]. This is very useful for splines because the continuity can be increased,
and compatibility with the geometric shape becomes better.
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6 Enhancement-based estimators

If the original knot vector is Ξ, we can increase or reduce the order just
by adding (Ξ̂) or removing (Ξ̃) the end knots:

Ξ = {ξ0, . . . , ξ0︸ ︷︷ ︸
p+1

, ξ1, ξ2, . . . , ξs−1, ξs, . . . , ξs︸ ︷︷ ︸
p+1

}

Ξ̂ = {ξ0, . . . , ξ0︸ ︷︷ ︸
p+2

, ξ1, ξ2, . . . , ξs−1, ξs, . . . , ξs︸ ︷︷ ︸
p+2

}

Ξ̃ = {ξ0, . . . , ξ0︸ ︷︷ ︸
p

, ξ1, ξ2, . . . , ξs−1, ξs, . . . , ξs︸ ︷︷ ︸
p

}

As we see from Figures 17 and 18, the original knot vectors in both directions
are Ξ,H = {0, 0, 0, 1, 1, 1}. We increase the multiplicity of every knot, and
the new vectors are Ξ̂, Ĥ = {0, 0, 0, 0, 1, 1, 1, 1}.

Figure 17. p-refinement: Original and refined basis functions

Figure 18. p-refinement: Physical mesh, control points (•) and Greville points (•).
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(a) Initial mesh

(b) h-refinement −→ p-refinement

(c) p-refinement −→ h-refinement

Figure 19. Combining h- and p-refinement: Original and refined basis functions.
The operations knot insertion and degree elevation are non-commutative.
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6 Enhancement-based estimators

(a) Initial mesh

(b) h-refinement −→ p-refinement (c) p-refinement −→ h-refinement

Figure 20. Combination of h- and p-refinement: Physical mesh, control points (•)
and Greville points (•).

Figures 19 and 20 demonstrate that degree elevation and knot insertion do not
commute. In the first approach, knot insertion on Ξ,H = {0, 0, 0, 1, 1, 1}
yields Ξ̃′, H̃′ = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1}. Degree elevation results in
Ξ̃, H̃ = {0, 0, 0, 0, 1/4, 1/4, 1/2, 1/2, 3/4, 3/4, 1, 1, 1, 1}. The new basis
functions are only C1-continuous on the knots although they are cubic. In the
next approach, degree elevation yields Ξ̂′, Ĥ′ = {0, 0, 0, 0, 1, 1, 1, 1} first,
and knot insertion results in Ξ̂, Ĥ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1}.
This time, the number of basis functions is smaller, and the continuity is
C2. We see clearly from this illustration that the second approach yields the
best approximation due to higher continuity, and the number of degrees of
freedom is reduced.
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6.3 k-refinement

k-refinement is a brand-new method which is only available in IGA. It allows
us to control the continuity and growth of control variables. We can apply it
because the patches on the domain have a homogeneous structure. If we want
to increase the polynomial degree from p to p+1, we increase the continuity
similarly from q to q + 1. To do so, we just increase the multiplicity of the
end knots, not the interior knots in addition as in p-refinement. In this way,
the dimension and number of degrees of freedom for the new spline space
will not grow too large. Thus, we have elevated the degree and continuity
simultaneously, which is not possible in classical FEM. The mesh is still
the same, but higher continuity yields better approximation since the error
decreases more [85, 40].

Figure 21. k-refinement: Original and refined basis functions

Figure 22. k-refinement: Physical mesh, control points (•) and Greville points (•).
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(a) Ξ = {0, 0, 1
3
, 2
3
, 1, 1}, p = 1 (b) Ξ = {0, 0, 1

6
, 1
3
, 1
2
, 2
3
, 5
6
, 1, 1}, p = 1

(c) Ξ = {0, 0, 0, 1
3
, 1
3
, 2
3
, 2
3
, 1, 1, 1}, p = 2 (d) Ξ = {0, 0, 0, 1

3
, 2
3
, 1, 1, 1}, p = 2

Figure 23. Collective comparison of h-, p- and k-refinement.

As we see from Figure 23, we start with Ξ = {0, 0, 1/3, 2/3, 1, 1} and
refine it in three ways using the methods described above. The dimension
of the spline space Sp+1,k+1

h (M) obtained by k-refinement is just one unit
more than Sp,kh (M), the original one. This is because we only increased
the multiplicity of the end knots. But for the spline spaces Sp,kh/2(M) and

Sp+1,k
h (M), obtained respectively from h- and p-refinement, the dimensions

are significantly larger than for the k-refinement due to addition of more
knots. Furthermore, we observe that p-refinement does not yield enough
differentiable splines since it ignored the continuity at each knot.
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6.4 Analysis and quality comparison of the refinements

Comparison of dimension, embedding and asymptotics

Let M be the original tensor-mesh, and M is the new mesh obtained by
halving every element of M in each direction, such that Sp,kh (M) is an
isogeometric finite element space. Then, we have the following mappings
which are induced by the refinements discussed previously:

Sp,kh (M)
h-refinement−−−−−−−→ Sp,kh/2(M) (88a)

Sp,kh (M)
p-refinement−−−−−−−→ Sp+1,k

h (M) (88b)

Sp,kh (M)
k-refinement−−−−−−−→ Sp+1,k+1

h (M) (88c)

According to [66], it can be shown that all of these subspaces above satisfy
some very important inclusions:

Sp,kh (M) ⊆ Sp,kh/2(M) Sp,kh (M) � Sp+1,k+1
h (M) (89a)

Sp,kh (M) ⊆ Sp+1,k
h (M) Sp,kh (M) � Sp+1,k+1

h (M) (89b)

Let the parametric domain be Ω̂ = [0, 1]d such that dim Sp,kh (M) = Nd

and M is a uniform tensor mesh with mesh size h. Then the spaces obtained
from uniform refinement have the following dimensions:

dim Sp,kh/2(M) = (2N − k − 1)d (90a)

dim Sp+1,k
h (M) =

(
N +

1

h

)d

(90b)

dim Sp+1,k+1
h (M) = (N + 1)d (90c)

When the linear system of equations grows large, it can be shown that

dim Sp,kh/2(M)

dim Sp,kh (M)
,
dim Sp+1,k

h (M)

dim Sp,kh (M)
−→ 2d

dim Sp+1,k+1
h (M)

dim Sp,kh (M)
−→ 1

These limits demonstrate that k-refinement provides the lowest number of
degrees of freedom, implying minimal computational cost for assembling
and solving the equation system arising from the isogeometric discretization.
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Comparison by Kolmogorov n-widths

The advantages of k-refinement over h- and p-refinement can be explored
further through an established approximation estimate [28]. First, we denote
Ω̂ and Ω as the parametric and physical domains, respectively. If F : Ω̂ → Ω,
u : Ω → Rd, u ∈ H l and 0 ≤ k ≤ l ≤ p+ 1, then

N∑
e=1

|u−Πku|2Hk(Ωe) ≤ C

N∑
e=1

l∑
i=0

h2(l−k)
e ‖∇F‖L∞(F−1(Ωe))|u|

2
Hi(Ωe)

(92)

where Ωe is an arbitrary physical element and N is the total number of
elements. The order of convergence in the refinement process depends just
on the polynomial degree p, and IGA with p-th order NURBS yields the
same convergence rate as FEM with p-th order interpolants. But the size
of the constant C decreases when the continuity increases, which is not
explicitly given in (92). The reason for this improved efficiency can be
explained by Kolmogorov n-widths [76].

Let X be a Sobolev space such that A,Xn ⊂ X and dimXn = n.
We approximate and arbitrary element x ∈ A in terms of another element
xn ∈ Xn. The distance between the point x and the space Xn is given by

E(x,Xn;X) = inf
xn∈Xn

‖x− xn‖X (93)

We call x∗n the best approximation of x when ‖x− x∗n‖X = E(x,Xn;X).
If we want to approximate all elements x ∈ A, we need a deviation given by

E(A,Xn;X) = sup
x∈A

inf
xn∈Xn

‖x− xn‖X (94)

The best n-dimensional subspace for approximating the subset A is given
by the Kolmogorov n-width, which is expressed as

dn(A,X) = inf
Xn⊂Xn

dimXn=n

sup
x∈A

inf
xn∈Xn

‖x− xn‖X (95)

Let us assume that there are several n-dimensional subspaces that can be
used for approximating the subset A, for example Yn. In this case, we have
to introduce a comparison ratio which is given by

κ(A,Xn, Yn;X) =
E(A,Xn;X)

E(A, Yn;X)
(96)
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x
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Figure 24. Distance between the subspaces A and Xn, measured in the worst
scenario when the deviation is too high.

The value of κ reveals which space is appropriate for the approximation:

κ ≈ 1 Both spaces work

κ � 1 Choose Xn

κ � 1 Choose Yn

If E(A, X̃n;X) = dn(A,X), we call X̃n an optimal n-dimensional sub-
space. In this case, we can define the optimality ratio is

Λ(A, X̃n;X) =
E(A, X̃n;X)

dn(A,X)
(97)

We consider the parametric domain (0, 1), and X = Bm(0, 1) is the unit
ball on Hm(0, 1):

Bm(0, 1) = {x ∈ Hm(0, 1) : ‖x‖Hm(0,1) ≤ 1} (98)

Lastly, we assume that p and k are fixed, such that k ∈ [0, p − 1]. If the
number of degrees of freedom increases, then Λ converges to a unique
limit L ≥ 1. By increasing k gradually, this limit L will be smaller, and if
k = p− 1, which is the optimal continuity, then L = 1. Furthermore, there
is no other value of k than p− 1 which makes the limit equal 1.

k = p− 1 =⇒ inf
0≤k≤p−1

lim
Ndof→∞

Λ = 1
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This convergence has been verified numerically in [49]. Using Kolmogorov
n-widths for Sobolev spaces demonstrates that the k-refinement works best,
since we can control and preserve the continuity.

6.5 Serendipity pairing of Sp,k
h (M)− Sp+1,k+1

h (M)

We will now discuss how to create a Serendipity pairing between Sp,kh (M)

and Sp+1,k+1
h (M), a useful technique in adaptive IGA which uses the local

refinement methodology as developed in [63, 66]. Let M0 be the initial
tensor mesh on the domain Ω. As mentioned earlier, the error in the energy
norm can be expressed as

|‖e|‖ ≤ |‖u− u∗h|‖︸ ︷︷ ︸
Non-Computable

+ |‖u∗h − uh|‖︸ ︷︷ ︸
Computable

(99)

We use LR B-splines to construct a discrete pair of k-refined approximation
spaces Sp,kh (M) and Sp+1,k+1

h (M). For adaptive LR-meshes, the k-refined
space’s dimension almost equals the dimension of the original one, and it
will not grow too large. At each adaptive refinement level, the integration
LR-meshes are the same for both spaces. We obtain two error estimators
η∗h and ηRES

h , which correspond respectively to the computable and non-
computable parts of (99).

Since k-refinement does not share the same embedding property as h-
and p-refinement as shown in (89), using it in adaptive refinement is easier,
for there is no "embedding property to fulfil" here according to Kumar et al.
[66]. Although k-refinement speeds up the whole process because of better
approximation and computational efficiency, a little problem is remaining.
The spaces Sp,kh (M) and Sp+1,k+1

h (M) have some common elements, but
they are not subspaces of each other. The natural question becomes how
we should choose the elements to be refined correctly. Since Sp+1,k+1

h (M)

provides better approximation than Sp,kh (M), an appropriate solution for this
problem is using their set difference Sp+1,k+1

h (M)\Sp,kh (M) to construct a
new mesh Ml+1 which is indeed a proper subspace of Ml. Furthermore,
the integration LR-mesh at each refinement level is be same for both the
spaces. At each refinement level, we have the following inclusions:

Sp,kh (Ml) ⊂ Sp,kh (Ml+1) , Sp+1,k+1
h (Ml) ⊂ Sp+1,k+1

h (Ml+1)

Another problem arising in the Serendipity pairing is the choice of the
estimators η∗h and ηRES

h . A natural choice is the standard explicit residual
estimator (13a) for the non-computable part.
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In some cases, the explicit residual estimator might be very conservative,
causing too many elements to be refined due to over-estimation. Since the
convergence in the computable quantity |‖u− u∗h|‖ increases by one degree
per refinement step, it might reduce the conservative effect a bit.

For smooth problems with quasi-uniform grids and even distribution
of error, the k-refinement and Serendipity pairing work well. If the initial
spline space is Sp,kh , it is possible to create a coarser space Sp,kmh of a factor m
to reduce the global error quickly. But this does not work for problems with
pollution error and layers on the boundary or interior of the computational
domain. In such cases, we must increase the grid in the critical regions first
to restrain the deteriorating effect on the approximation quality.

Serendipity pairing

1: procedure SERENDIPITY_PAIRING(M0, Sp,kh (M0), S
p+1,k+1
h (M0))

2: for each refinement level l do

3: Use an error estimator to choose ε % of Bi ∈ Sp+1,k+1
h (Ml).

4: Refine the chosen B-spline functions to obtain Sp+1,k+1
h (Ml+1).

5: Store information about the mesh-line of length p+ 2 in El.
6: Refine Bi ∈ Sp,kh (Ml) with mesh-line El to obtain Sp,kh (Ml+1).
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7 Recovery-based estimation

7 Recovery-based estimation

In cases where the exact solution is smooth or the pollution error is controlled
by adaptive refinement, it can be shown that measuring the error in the energy
norm is suitable for determining which elements should be refined. The
natural approach will therefore be to calculate the difference between the
direct and post-processed gradients, and then use it as an error indicator for
the refinement. If we have a smooth error distribution for the discretization,
this error indicator may be both reliable and efficient [13, 67].
The key ingredient in this new approach is the recovery operator Gh. It
computes ∇u∗h in equation (86) by using the gradient of the computed
FE-solution. The superconvergent recovery estimator reads:

η2SPR =

ˆ
Ω
|Gh[uh]−∇uh|2 dx (100)

7.1 Characteristic properties

Following Ainsworth and Craig [1], we present some important conditions
which are required to make recovery operators work properly:

1. Consistency, correct reproduction of the true gradient:

u ∈ Pp+1(K̃) =⇒ Gh[Πpu] ≡ Πp(∇u) (R1)

2. Localization, minimal computation of Gh:

x0 ∈ K =⇒ ∇u-values sampled on K̃ define Gh[u](x0) (R2)

3. Boundedness and linearity, reliable recovery of uh:

|Gh[v]|L∞(K) ≤ D|v|W1,∞( ˜K) , K ∈ M, v ∈ Vh (R3)

(R1) does not determine Gh uniquely but is together with (R3) sufficient
to make the error estimator asymptotically exact. (R3) ensures that the
recovered gradient belongs to the proper space for the problem at hand. (R2)
is of practical nature because it constrains the computational effort involved
in the recovery step. We recall that K̃ is a patch containing an element K,
and its size can vary.
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Theorem 14 (Robustness of recovery estimators). Recovery operators that
satisfy conditions (R1)-(R3) are reliable and efficient, and thus robust.

Proof. We assume that Vh, V
∗
h ⊂ H1 such that u ∈ H1, ∇uh ∈ Vh and

Gh[uh] ∈ V ∗
h . We derive an upper bound for the reliability by combining

the saturation assumption (86) with Minkowski’s Lp-inequality:

‖Gh[uh]−∇uh‖L2(Ω)

= ‖Gh[uh]−∇u+∇u−∇uh‖L2(Ω)

≤ ‖Gh[uh]−∇u‖L2(Ω) + ‖∇u−∇uh‖L2(Ω)

≤ Cθ‖∇(u− uh)‖L2(Ω) + ‖∇(u− uh)‖L2(Ω)

Similarly, we derive a lower bound for the efficiency:

‖∇(u− uh)‖L2(Ω)

= ‖∇u−Gh[uh] +Gh[uh]−∇uh‖L2(Ω)

≤ ‖∇u−Gh[uh]‖L2(Ω) + ‖Gh[uh]−∇uh‖L2(Ω)

≤ Cθ‖∇(u− uh)‖L2(Ω) + ‖Gh[uh]−∇uh‖L2(Ω)

We define the constants C± = (1± Cθ)
−1 and combine everything together

to obtain a two-sided bound:

C+‖Gh[uh]−∇uh‖L2(Ω) ≤ ‖∇(u− uh)‖L2(Ω) ≤ C−‖Gh[uh]−∇uh‖L2(Ω)

(101)

Hence, the recovery estimator is robust.

Theorem 15 (Convergence of the recovery operator). If Gh is a recovery
operator that satisfies the required criterions, and u ∈ Hr+2(Ω), then

‖∇u−Gh(Πhu)‖L2(Ω) ≤ CSPRh
r+1|u|Hr+2(Ω) (102)

Proof. We start locally by assuming that u ∈ Hr+2(K̃) and w ∈ Pr+1(K̃).
The error of the recovered gradient is decomposed as follows:

E[u] = ∇u−Gh(Πhu)

= ∇(u− w) + (∇w −Πh∇w) + (Πh∇w −Gh(Πhu))

= ∇(u− w) +∇(w −Πhw) +Gh(Πh(w − u))
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From Minkowski’s inequality, we obtain

‖E[u]‖L2 ≤ ‖∇(u− w)‖L2 + ‖∇(w −Πhw)‖L2 + ‖Gh(Πh(u− w))‖L2

Now, we can analyse the three terms individually. By using the general
a priori estimate in the Hk-norm (48), we get

‖∇(u− w)‖L2(K) = |u− w|H1(K)

≤ |u− w|H1( ˜K)

≤ C1h
r+1
K |u|Hr+2( ˜K)

Minkowski’s inequality and the general approximation property of Πh yield

‖∇(w −Πhw)‖L2(K) ≤ C2h
r+1
K |∇w|Hr+1(K)

= C2h
r+1
K |w|Hr+2(K)

≤ C2h
r+1
K |u− (u− w)|Hr+2( ˜K)

≤ C2h
r+1
K

[
|u|Hr+2( ˜K) + |u− w|Hr+2( ˜K)

]
From the Lp-inclusion for domains of finite measure, the equivalence of
Lp-norms, Hölder and Minkowski’s inequalities, and the boundedness of
Πh, we obtain the following derivation

‖Gh(Πh(w − u))‖L2(K)

≤ D1‖Gh(Πh(w − u))‖L1(K)

≤ D1‖1‖L1(K)‖Gh(Πh(w − u))‖L∞(K)

= D1hK‖Gh(Πh(w − u))‖L∞(K)

≤ D1D2hK‖Πh(w − u)‖W1,∞( ˜K)

≤ D1D2hKD3h
−1
K ‖Πh(w − u)‖L∞( ˜K)

≤ D1D2D3D4h
−1
K ‖Πh(w − u)‖L2( ˜K)

= D5h
−1
K ‖(w − u) + Πh(w − u)− (w − u)‖L2( ˜K)

≤ D5h
−1
K

[
‖w − u‖L2( ˜K) + ‖(1−Πh)(w − u)‖L2( ˜K)

]
≤ D5h

−1
K

[
D6h

r+2
K |w − u|Hr+2( ˜K) +D7h

r+2
K |w − u|Hr+2( ˜K)

]
= C3h

r+1
K |w − u|Hr+2( ˜K)

where D5 = D1D2D3D4 and C3 = D5(D6 +D7) are generic constants.
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Since w is a polynomial approximation of u, we can take the infimum
over all polynomials to exclude w from every inequality:

‖E[u]‖L2(K) ≤ inf
w∈Pr+1

‖E[u]‖L2

= hr+1
K (C1 + 2C2 + C3)|u|Hr+2(K)

By L2-summation over the elements and invoking h = maxhK , we obtain

‖E[u]‖L2(Ω) = hr+1CSPR|u|Hr+2(Ω)

Thus, the global estimate for recovery operators has been established.

In general, if C is a constant depending on u, τ ∈ (0, 1], and u is sufficiently
regular, then superconvergence is obtained if the following estimate is valid:

‖uh −Πhu‖H1(Ω) ≤ Chp+τ (103)

Corollary 2. Suppose that (102) holds. Then we have the inequality

‖∇u−Gh(uh)‖L2(Ω) ≤ Chp+τ (104)

Proof. Minkowski’s inequality and the superconvergence criterion (103)
yield the following derivation:

‖∇u−Gh(uh)‖L2(K)

= ‖∇u−Gh(Πhu) +Gh(Πhu)−Gh(uh)‖L2(K)

≤ ‖∇u−Gh(Πhu)‖L2(K) + ‖Gh(Πhu)−Gh(uh)‖L2(K)

≤ C1h
p+1
K |u|Hp+2( ˜K) + C2‖uh −Πhu‖H1( ˜K)

≤ C1h
p+1
K |u|Hp+2( ˜K) + C2C3(u)h

p+τ
K

Summing over all the elements in the L2-norm yields the desired estimate.
The constant C is depending on u, but not on h.

Definition 9 (Superconvergent points [89]). Let I be a partition of the
domain with maximal mesh width h, and ξ = ξ(h) is a family of points. We
call them superconvergent for function values of order σ > 0 if

|e(ξ)| ≤ Chr+σ (105a)∣∣∣∣ dkdxk
e(ξ)

∣∣∣∣ ≤ Chr+σ−k (105b)
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If the FE-solution uh of a PDE is a (piecewise) polynomial of degree r + 1,
and the exact solution u is in W r+2,k, then the error e = u− uh satisfies

‖e‖Lp(I) + h‖e‖W1,p(I) ≤ Chr+2‖u‖Wr+2,p(I) (106a)

‖e‖W−s,∞(I) ≤ Chr+2+s‖u‖Wr+2,∞(I) (106b)

where p ∈ [1,∞] and s ≤ r − 1. If there are no mesh restrictions, we have

|e(xi)| ≤ Ch2r‖u‖Hr+2(I) (107)

Theorem 16 (Shifted Legendre points [89]). If the mesh is continuous with
Ii = (xi, xi+1), we can translate the zeros of the k-th order Legendre
polynomial Pk(x) to Ik by the standard linear mapping

ξi(x) =
2x− (xi + xi+1)

xi+1 − xi

This yields the superconvergent estimate

|e′(ηi)| ≤ Chr
(
‖u‖Wr,∞(I) + ‖u‖Wr+1,∞(Ii)

)
(108)

where ηi is a zero of Pk(x), the Gauss-Legendre (GL) points, mapped to Ii.
If r ≥ 3, then hr changes to hr+1.

Theorem 17 (Shifted Lobatto points [89]). If r is even, k = 1, and the
nodal errors |e′(xi)|, |e′(xi+1/2)| and |e′(xi+1)| are of order O(hr) on Ii,
then the error satisfies the order estimate

|e(ξ)| = O(hr+1)

where ξ is any of the r − 2 roots of Q in Ii, a polynomial given by

Q(x) = C
dr−2

dxr−2

[
(x2 − 1)r−2

(
x2 − r + 2

r − 2

)]

These new points are the zeros of (x2 − 1)P ′
k−1(x), the Gauss-Legendre-

Lobatto (GLL) points. Both the GL- and GLL-points can be evaluated
efficiently for any order by Newton iteration, which is most accurate [82].
A comprehensive table over superconvergence results depending on the
polynomial degree and continuity is provided by Wahlbin in [89].
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Definition 10 (Distance between sets). Assume that some well-defined sets
satisfy Ω0 ⊆ Ω1 ⊆ Dh. Then we define the distance between them as

∂<(Ω0,Ω1) = dist(∂Ω0\∂Dh, ∂Ω1\∂Dh)

From this, we introduce the following sets following sets:

C∞
< (Ω) = {v ∈ C∞(Ω) : ∂<(supp(v),Ω) > 0}

Sh
<(Ω) = {v ∈ Sh(Ω) : ∂<(supp(v),Ω) > 0}

Theorem 18 (Superapproximation [89]). We have two constants c and C,
and a number L. Let Ω0 ⊆ Ω1 ⊆ Dh and ω ∈ C∞

< (Ω) such that

d = ∂<(Ω0,Ω1) > ch

‖ω‖Wl,∞(Ω0) ≤ Λd−l , 0 ≤ l ≤ L

Then, for all χ ∈ Sh, there is a ψ ∈ Sh
<(Ω1) such that

‖ωχ− ψ‖L2(Ω1)
≤ CΛ

(
h

d

)
‖χ‖L2(Ω1)

(109)

For any 1 ≤ p, q ≤ ∞ and element Ki, we have

‖χ‖Lp(Ki)
≤ Ch

−n
(

1
q
− 1

p

)
‖χ‖Lq(Ki)

, χ ∈ Sh (110)

Corollary 3. Let the superapproximation property (110) hold with constants
c0 and C, and assume that the following orthogonality relation is true:

(vh, χ) = 0 , ∀χ ∈ Sh<(Ω1)

Then there is a constant c1 such that the following estimate holds:

‖vh‖L2(Ω0)
≤ Cec1d/h‖vh‖L2(Ω1)

(111)

Superconvergence can be obtained in many different ways. In most cases,
we examine convergence of derivatives computed from the approximate
solution at special mesh points. These are the superconvergence points, and
the corresponding values are superconvergent, as we have seen now. In
general, there are two types of superconvergence used for error estimation:

• Direct superconvergence: We obtain the superconvergent values from
direct evaluation of the approximate solution at all the chosen super-
convergent points.

• Superconvergence via averaging: We obtain superconvergent values
by local averaging the approximate solution.
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7 Recovery-based estimation

Because we need an exact conformal mesh on an arbitrary domain with
potential complex geometry, it affects the location of superconvergent points
strongly. They are very sensitive to the mesh geometry.

Definition 11 (η%-superconvergence [19, 15]). Let u be the exact solution,
and {uh} is a sequence of FEM-solutions computed on M = {Mh}. For
the linear functional F (u) and each K ∈ Mh, a geometry dependent point
x is given. Define the function

ΨK(u− uh) = max
x∈K

|F (u− uh)(x)| (112)

We define the relative error in F (u) at a chosen mesh point x as

Θ(x;F ;u, uh;h,K) =

{ |F (u−uh)(x)|
ΨK(u−uh)

, if ΨK(u− uh) �= 0

0 , if ΨK(u− uh) = 0
(113)

We call x a u-η%-superconvergence point relative to u and M if

lim
h→0

Θ(x;F ;u, uh;h,K) ≤ 0.01η (114)

Let U be a class of exact solutions. The definition above allows us to
introduce several other quantities of interest:

η%-contour of F (u) in K ∈ K for u:

C η%
F (u)(u;K,Mh) = {x ∈ K : Θ(x;F ;u, uh;h,K) = 0.01η}

η%-band of F (u) in K ∈ K for u:

Bη%
F (u)(u;K,Mh) = {x ∈ K : Θ(x;F ;u, uh;h,K) < 0.01η}

Superconvergence points of F (u) in K ∈ K for U :

X sup
F (u)(U ;K,Mh) =

⋂
u∈U

C η%
F (u)(u;K,Mh)

η%-superconvergence regions of F (u) in K ∈ K for U :

Rη%
F (u)(U ;K,Mh) =

⋂
u∈U

Bη%
F (u)(u;K,Mh)

Common η%-regions of F (u) in K ∈ K for U :

R
η%
F (u)(U ,M ;K,Mh) =

⋂
Mh∈M

⋂
K∈M

Rη%
F (u)(U ;K,Mh)
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7.2 Global recovery estimators

We present two global recovery estimators based on least-squares fitting, the
so-called projection and variational recovery operators, originally proposed
in [71] and [61]. From now on, we will denote the errors as

e = u− uh , eσ = ∇(u− uh)

We define σ∗ = Rĉσ, where R is a matrix that corresponds to the functions
representing the displacement field, and ĉσ is the unknown global vector
field of required new control variables.

Continuous L2-projection (CL2P)

In this approach, we minimize a functional JL2 with respect to ĉσ, where

JL2(ĉσ) =

ˆ
Ω
(σ∗ − σh)

T (σ∗ − σh) dΩ (115)

Taking the gradient with respect to ĉσ yields a linear system:[ˆ
Ω
RTR dΩ

]
ĉσ =

ˆ
Ω
RTσh dΩ

Aĉσ = bσ

This is global because the field σ∗ is obtained by projecting the computed
gradient components σh onto the same function space as uh.

Discrete least-squares fitting (DLSF)

We choose a set of optimal sampling points on each patch, {xk}Nsamp
i=1 , such

that the functional to be minimized becomes

HL2(ĉσ) =

Nsamp∑
i=1

(σ∗(xk)− σh(xk))
2 (116)

Since σ∗ = Rĉσ, we take the gradient of HL2 with respect to ĉσ and get⎡⎣Nsamp∑
i=1

R(xk)
TR(xk)

⎤⎦ ĉσ =

Nsamp∑
i=1

R(xk)
Tσh(xk)

Aĉσ = bσ
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7 Recovery-based estimation

7.3 The Zienkiewicz-Zhu estimator

A famous recovery method applied in a posteriori error estimation is the
Zienkiewicz-Zhu Superconvergent Patch Recovery (ZZ-SPR) scheme [95].
For every element K ∈ M, we construct a recovered gradient σZZ

K by
following a two-step procedure [20]:

1. Use least-squares fitting on the gradient for vertex-patches of elements
The set ω̃K from (3) is a patch of vertices. For each patch, recover an
averaged gradient σ∗

N by solving a constrained minimization problem:

Compute σ∗
N ∈ P2(ω̃K) =

⎧⎨⎩P : P (x, y) =

2∑
i,j=0

aijx
iyj

⎫⎬⎭ (117a)

Subject to
s∑

L=1

|σ∗
N −∇uh|2(xl) = min

σ∈Pp(ω̃K)

s∑
L=1

|σ −∇uh|2(xl)

(117b)

where {xl}sL=1 is the set of sampling-points, usually the mapped GL-points
in the elements belonging to ω̃K . For rectangular meshes, these sampling-
points become the gradient’s superconvergence points.

2. Construct the recovered gradient over the element K
On the interior element K, let {NK

i }4i=1 be the set of its vertices, {ω̃NK
i
}4i=1

is the set of element patches connected to the vertices, and {ω∗
NK

i
}4i=1 are the

averaged gradients obtained from the previous stage. We define a recovered
C0-gradient over the entire mesh as the linear finite sum

σZZ
K =

N∑
i

αK
i ϕK

i (118)

where ϕK
i are the shape functions on K, and the coefficients αK

i are degrees
of freedom for the recovered gradient.

According to Babuška et al. [20], there are three types of degrees of freedom
for the recovered gradient. We generalize these definitions to any polynomial
degree p ≥ 2 such that we can adapt them to IGA. To do so, we partition
the set of indices for the nodes, I, into three mutually disjoint sets:

I1 = {Nodes at the element vertices.}
I2 = {Nodes on the element boundary, excluding the vertices.}
I3 = {Nodes on the element’s interior part.}
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(a) Polynomial degree 2. (b) Polynomial degree 3. (c) Polynomial degree 4.

Figure 25. The recovered gradient’s degrees of freedom in 2D: Vertex degree of
freedom (•), edge degree of freedom (•), and internal degree of freedom (•).

Now, we can classify the degrees of freedom on the recovered gradient:

a) Vertex degree of freedom. These coefficients are found directly from

αK
i = σ∗

NK
i
(NK

i ) , i ∈ I1 (119)

b) Edge degree of freedom. These coefficients are found by solving

∂Ii
∂α

(αK
i ) = 0 , i ∈ I2 (120a)

Ii(α) =

∥∥∥∥∥∥∥αϕK
i +

∑
j∈I(i)

2

(
αK
j ϕK

j − 1

2
σ∗
XK

j

)∥∥∥∥∥∥∥
L2(Vi)

(120b)

c) Internal degree of freedom. These last quantities are determined from

∂Ii
∂α

(αK
i ) = 0 , i ∈ I3 (121a)

Ii(α) =

∥∥∥∥∥∥∥αϕK
i +

∑
j∈I(i)

3

(
αK
j ϕK

j − 1

4
σ∗
XK

j

)∥∥∥∥∥∥∥
L2(Wi)

(121b)

In this setting, Vi and Wi are patches enclosed by the adjacent nodes of node
i, and Vi consists of boundary nodes. We have used two other auxiliary sets:

I(i)
2 = {Nodes on the element boundary adjacent to node i.}

I(i)
3 = {Nodes diagonally adjacent to node i.}
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7 Recovery-based estimation

(a) Polynomial degree 2. (b) Polynomial degree 3. (c) Polynomial degree 4.

Figure 26. The recovered gradient’s degrees of freedom in 3D: Vertex degree of
freedom (•), face degree of freedom (•), and internal degree of freedom (•).

The procedure of calculating the Zienkiewicz-Zhu estimator (118) by
the three-stage algorithm described above can be extended from two to three
dimensions. A slight difference in this case is that the sets I2 and I(i)

2 are
defined for nodes on a face, not just an edge. Furthermore, the functional Ii
must also be modified because we are taking more nodes into account. For
the face and internal degrees of freedom, we get the following formulas:

Ii(α) =

∥∥∥∥∥∥∥αϕK
i +

∑
j∈I(i)

2

(
αK
j ϕK

j − 1

δ
σ∗
XK

j

)∥∥∥∥∥∥∥
L2(Vi)

i ∈ I2 (122a)

δ =

{
5 if i is on the edge of a face
8 if i is not on the edge of a face

Ii(α) =

∥∥∥∥∥∥∥αϕK
i +

∑
j∈I(i)

3

(
αK
j ϕK

j − 1

8
σ∗
XK

j

)∥∥∥∥∥∥∥
L2(Wi)

i ∈ I3 (122b)

7.4 General SPR procedure

As we have seen until now, the original idea behind SPR is improving the
gradient of the FE-solution at nodal points, so we must define an element
patch consisting of all the elements connected to a given node. This can
be done separately for each gradient component. We construct a global
polynomial from the basis function’s monomials, and then calculate its
coefficients in such a way that it will match the gradient component optimally
at the patch’s reduced integration points. The improved gradient follows by
direct evaluation of this new polynomial.
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In [67], Kumar et al. provide a computer-based proof for the existence of
superconvergent points in context of IGA, and a three-step SPR-procedure:

1) Patch recovery. Let σ∗
d = P(x)ad, such that d ∈ {x, y, z}, P is a

matrix of monomials, and ad is found from least-squares fitting of σ∗
d

to the values of σh
d at the sampling points {xi}. Thus, we minimize

F(ad) =

nel
sp∑

i=1

(σ∗
d,i − σh

d,i)
T (σ∗

d,i − σh
d,i)

By invoking the stationary criterion, we must solve Dad = G, where

D =

nel
sp∑

i=1

Pi(xi)
TPi(xi) , G =

nel
sp∑

i=1

Pi(xi)
Tσh

d,i

2) Patch configuration. The interior patch consists of all elements that
belong to the given basis function’s support. For the boundary patch,
lacking enough elements for the discrete least-squares fit, there are
two alternatives:

(a) Extending the domain of element patches.

(b) Using recovery on the regular patch for that basis function.

3) Global recovery. We conjoin the polynomial expansions σ∗ = Pa for
every patch containing the actual element using the basis as weighting
function. If RA is the solution’s basis function and σ∗

A is the local
recovered gradient, we can apply partition of unity to obtain

σ∗(x) =
∑
∀A

σ∗
ARA(x)

This SPR-approach for IGA is a generalization of the methodology described
in [32, 93]. It has been verified numerically that IGA-SPR works for linear
problems and yields excellent results, i.e. good effectivity indices [67]. The
sampling points {xi} must satisfy the consistency condition (R1), so the
natural choice is Barlow points [26]. According to Zienkiewicz and Zhu
[95], the algorithm above is easy to implement, but we should take some
things into account to make it work properly:

i) The linear equation system Dad = G is solved component-wise.

ii) Local normalized coordinates ensure that D becomes well-conditioned.

iii) If p ≥ 2, the internal nodes should be chosen as the average of other
internal nodes from several patches.
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7 Recovery-based estimation

(a) Parametric domain. (b) Physical domain.

(c) Parametric domain. (d) Physical domain.

Figure 27. Regular element patch configuration: In the first row, we have element
patches for the support of quadratic B-splines and NURBS, which have tensor
product structure. In the second row, we have a general LR mesh with support of
quadratic LR B-splines.
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(a) Parametric domain. (b) Physical domain.

(c) Parametric domain. (d) Physical domain.

Figure 28. Boundary element patch configuration: The first row represents element
patches for the support of quadratic B-splines and NURBS at the boundary. In the
second row, we have a general LR mesh with support of quadratic LR B-splines,
and the boundary patch is extended.
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8 General theory of adaptive refinement

8 General theory of adaptive refinement

In this final section, we present the adaptive refinement theory in a more
abstract way and present a general subdivision procedure.

8.1 Theoretical background

As before, we assume that the trial and test spaces coincide as V (Bubnov-
Galerkin discretization), M is a shape-regular mesh on the domain Ω, and
V (M) is the discrete finite-dimensional space on M. The space V ∪V (M)
has a quasi-metric d satisfying three properties, for any element u, v and w:

Non-negativity : d[M̂;u, v] ≥ 0

Quasi-symmetry : d[M̂;u, v] ≥ CΔd[M̂; v, u]

Quasi triangle inequality : C−1
Δ d[M̂;u, v] ≤ d[M̂;u,w] + d[M̂;w, v]

If V is a Banach space, then d is reduced to a regular norm. The local error
contributions can be characterized as follows:

ηK(M; ·) : V (M) �−→ R+ K ∈ M
η(M;uh)

2 =
∑
K∈M

ηK(M;uh)
2 uh ∈ V (M)

(a) The unrefined mesh M (b) The refined mesh ̂M

(c) The set M\̂M (d) The set ̂M\M

Figure 29. Visualization of the sets M\M̂ (—) and M̂\M (—).
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To ensure proper adaptive refinement, it is necessary to invoke a special
compatibility condition [38], which holds in many applications.

Definition 12 (Adaptive refinement compatibility). For any refinement M̂
of M, we assume that d[M̂; ·, ·] is well-defined on V ∪ V (M) ∪ V (M̂)

with d[M̂;u, uh] = d[M;u, uh]. Then, we have

d[M̂;u, uh] ≤ ε , ∀ε > 0

We denote the set of admissible meshes, and its subset with at most N
elements more than the initial mesh, as

M = {M : M is an admissible refinement of M0} (123a)

M(N) = {M ∈ M : |M| − |M0| ≤ N} (123b)

The adaptive mesh-refinement works if we satisfy the estimates below:

|M̂\M| ≤ |M̂| − |M| (124a)

|Ml+1| ≤ Cs|Ml| (124b)

|Ml| − |M0| ≤ Cm

l−1∑
k=0

|Mk| (124c)

|M⊕M′| ≤ |M|+ |M′| − |M0| (124d)

Here, | · | is a counting-measure for the mesh cardinality (number of mesh
elements). The two first estimates follow from splitting each element into
Cs elements (Cs ≥ 2). The third estimate represents closure and holds for
Cm > 0, depending on M. Lastly, for any two meshes M,M′ ∈ M, there
is a common coarsest mesh M⊕M′ ∈ M satisfying (124d).

The adaptivity axioms [38] provide an abstract framework independent
of the specific PDE to be solved and the chosen type of basis functions used
for the approximation. If they are satisfied, then the general algorithm for
adaptive mesh-refinement will converge quasi-optimally. For these axioms,
we assume that Cstab, Cred, Cosc, Cdrel, Cref, Cqo(εstab) ≥ 1 and ρred ∈ (0, 1)
are auxiliary constants just depending on the set M.

1. Stability on non-refined elements. If M is the initial mesh, M̂ is a
refined mesh, u ∈ V (M) and ûh ∈ V (M̂) are discrete solutions, and
S ⊆ M∩ M̂ consists of unrefined elements, we have the bound∣∣∣∣∣∣

√∑
K∈S

ηK(M̂; ûh)2 −
√∑

K∈S
ηK(M;uh)2

∣∣∣∣∣∣
≤ Cstabd[M̂; ûh, uh] (A1)
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8 General theory of adaptive refinement

2. Reduction property on refined elements. For the parameter ρred ∈
(0, 1) and the set W = M̂\M, we have the bound∑

K∈W
ηK(M̂; ûh)

2

≤
∑
K∈W

ρredηK(M;uh)
2 + Credd[M̂; ûh, uh]

2 (A2)

3. General quasi-orthogonality. If εqo ∈ [0, ε∗qo) and N ≥ l, we can
generalize Pythagoras’s theorem as follows:

N∑
k=l

(d[Mk+1;u
(k+1)
h , u

(k)
h ]2 − εqod[Mk;u, u

(k)
h ]2)

≤ Cqo(εqo)η(Ml;uh(Ml))
2 (A3)

4. Discrete reliability. Let R be a set containing up to a multiplicative
constant the same number of elements as M\M̂, e.g. R contains
M\M̂ and an additional element layer. The quasi-metric satisfies

d[M̂; ûh, uh]
2 ≤ Cdrel

⎛⎝ ∑
K∈R(M,M̂)

ηK(M;uh)
2

⎞⎠ (A4)

The first axiom (A1), providing algorithm convergence, can be verified with
the triangle inequality and inverse estimates. The second (A2) originates
from observations that the error estimators’ contributions are weighted by
local mesh-size and decrease uniformly on refined elements.

If V is a Hilbert space, then (A3) reduces to standard orthogonality
because d becomes a normal metric. Using quasi-orthogonality might be
beneficial for nonsymmetric operators, nonconforming discretization, or
mixed problems. It can be shown that discrete reliability (A4) implies
continuous reliability. This is a very important property of error estimators:

d[M;u, uh] ≤ Crelη(M;uh) (125)

If θ < (1 + C2
stabC

2
rel)

−1, then the optimal value of ε∗qo satisfies

ε∗qo ≥ θ2(1− ρred)
2C2

stab

2C2
rel(Cred + C2

stab)
2

(126)
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Theorem 19 (Adaptive refinement convergence [38]). Axioms (A1)-(A4)
imply linear convergence of adaptive refinement. If Cconv > 0 and ρconv ∈
(0, 1), then the following inequality holds:

η(Mk+l;u
(k+l)
h )2 ≤ Cconvρ

k
convη(Ml;u

(l)
h )2 , ∀k, l ∈ Z+ (127)

We also have a best possible algebraic convergence order for s > 0:

‖(η(·), uh(·))‖Bs = sup
N∈Z+

inf
|M|−|M0|≤N

η(M;uh)(N + 1)s

� sup
l∈Z+

η(Ml;u
(l)
h )(|Ml| − |M0|+ 1)s (128)

Reliability means that the true error approaches zero when the computable
error, estimated by residuals, also approaches zero by adaptive refinement.
This is crucial for sufficient convergence rate. Efficiency of the estimator
prevents overestimation of error up to some oscillation. We have

d[M;u, uh] ≤ Crelη(M, uh) (129a)

C−1
eff η(M, uh) ≤ d[M;u, uh] + osc(M;uh) (129b)

This expression relates quasi-optimal estimator convergence with the true
error’s convergence rate, and it includes oscillation. When the estimator is
both reliable and efficient, then the estimated error decays asymptotically in
the same way as the true error. It has been demonstrated that for conforming
discretizations, the approximation sequence will always converge [17].

Theorem 20 (Quasi-monotonicity [38]). Axioms (A1), (A2) and (A4) imply
that the error estimator η is quasi-monotone, i.e. there is a Cmon such that

η(M̂;U(M̂) ≤ Cmonη(M;U(M) (130)

Theorem 21 (Convergence of error estimator [38]). Assume that the four
axioms (A1)-(A4) are satisfied. If the error is quasi-monotone, and

‖ osc ( ·)‖Os
= sup

N∈N
inf

|M|−|M0|≤N
osc(M;uh)(N + 1)s < ∞

then the approximation ability ‖ · ‖Bs can be characterized by

‖(u, uh(·))‖As = sup
N∈N

inf
|M|−|M0|≤N

d[M;u, uh](N + 1)s (131a)

‖(u, uh(·))‖As � sup
l∈Z+

d[Ml;u, u
l
h]

(|Ml| − |M0|+ 1)−s
(131b)
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8.2 Marking techniques

Any type of adaptive refinement requires some essential features:

1. A suitable discretization method.

2. Efficient solver for the discrete problems.

3. An appropriate a posteriori error estimator.

4. An effective refinement strategy for detecting elements.

Maximum and equilibration strategies

A central part of the refinement routine is determining elements to be refined.
For each step k, we take a partition Mk of the domain Ω containing the
current elements used for approximating the unknown solution. Then we
determine a subset M̃k ⊆ Mk with those elements to be refined. This yields
a new partition Mk+1 which can be refined again if necessary. Originally
developed for classical FEM, this procedure is also applicable for IGA. In
our case, it is appropriate to split the basis functions instead of the elements
to improve the refinement.

First, we will focus on two well-known procedures: the Maximum
strategy and the Equilibration strategy (Dörfler) [46, 88]. Both of them
require the same input: a partition Mk, a set of error indicators {ηK}K∈Mk

,
and a bulk parameter β ∈ (0, 1). The Maximum strategy is cheaper than the
equilibration strategy. If β is high, few elements are marked, and if β is low,
many elements are marked. This effect is reversed when using equilibration.
To obtain a certain equilibrium, we can choose β ≈ 0.5 such that the number
of marked elements becomes balanced.

Algorithm 8.1 Equilibration Strategy (β-EQU)

1: procedure EQUILIBRATION_STRATEGY(Mk, {ηK}K∈Mk
, β)

2: Set M̃k = ∅ and ΣMk
= 0

3: Compute ΘMk
=

∑
K∈Mk

η2K

4: while ΣMk
< βΘMk

do

5: Compute η̃max = max{ηK : K ∈ Mk\M̃k}
6: for K ∈ Mk\M̃k do

7: if ηK = η̃max then

8: Store K in M̃k

9: Add η2K to ΣMk

10: return M̃k
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Algorithm 8.2 Maximum Strategy (β-MAX)

1: procedure MAXIMUM_STRATEGY(Mk, {ηK}K∈Mk
, β)

2: Set M̃k = ∅
3: Compute ηmax = max{ηK : K ∈ Mk}
4: for ηK ∈ Mk do

5: if ηK ≥ βηmax then

6: Mark K for refinement and store it in M̃k

7: return M̃k

Both the maximum and equilibration strategies minimize the cardinality of
M̃k, but for the equilibration strategy, we also have the estimate∑

K∈M̃k

η2K ≥ β
∑

K∈Mk

η2K (132)

Maximal error method

The Maximal error method, developed for classical FEM, is looping over
every element, computing their individual error estimates, sorting them, and
then choose β% of those elements which possess the highest estimated error.
To adapt this method to IGA, it is preferable to split basis functions, not
elements. Thus, we define supp(Ni) = M(Ni), where Ni is a B-spline,
and ‖e‖E(K) is energy error on K. The B-spline error [63] is

‖e‖2M(Ni)
=

∑
K∈Mk(Ni)

‖e‖2E(K) (133)

Algorithm 8.3 Maximal Error Method (β-Ndof)
1: procedure MAXIMAL_ERROR_METHOD(Mk, β)
2: Set M̃k = ∅
3: Create an array T of size 2×Ndof
4: for Ni ∈ Ndof do

5: Compute ‖e‖Mk(Ni)

6: Store ‖e‖Mk(Ni)
and Ni in T

7: Sort the errors in decreasing order, with their corresponding B-
splines

8: Refine β% of the first B-splines in T
9: Update Ndof and M̃k

10: return M̃k
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Algorithm 8.4 Symmetric Maximal Error Method (adjusted β-Ndof)

1: procedure SYMMETRIC_MAXIMAL_ERROR_METHOD(Mk, β)
2: Set M̃k = ∅
3: Create an array T of size 2×Ndof
4: for Ni ∈ Ndof do

5: Compute ‖e‖Mk(Ni)
=

√ ∑
K∈Mk(Ni)

‖e‖2E(K)

6: Store ‖e‖Mk(Ni)
and Ni in T

7: Sort the errors in decreasing order, with their corresponding B-
splines

8: Choose β% of the first B-splines in T .
9: Define ηcrit as the error of the last element to be refined

10: Refine every element whose error is less than or equal to ηcrit
11: Update Ndof and M̃k

12: return M̃k

Preservation of symmetry

If a PDE is expressed by a symmetric differential operator, it might happen
that solving it numerically with adaptive refinement will produce a non-
symmetric mesh. To illustrate this, we focus on the β-Ndof method. There
is an improved version of this technique called the adjusted β-Ndof method,
which ensures that every refined mesh remains symmetric. In this way, it
preserves the underlying property of the differential operator.

Although we have marked the elements correctly by the β-Ndof method,
there might be a certain risk that the mesh contains some elements with the
same error as the last element to be refined. When these elements are not
refined, the new mesh loses its symmetry although the underlying differential
operator is symmetric. But if these elements are refined in addition to the
original ones that we subdivided previously, the symmetry of the mesh is
preserved for every new refinement.

To illustrate the advantages of the adjusted β-Ndof method, we consider
a well-known BVP for Poisson’s equation called the L-shape problem. The
domain is defined as Ω = (−1, 1)2\(0, 1)× (−1, 0), and the BVP is

−∇2u = f, u ∈ Ω

u = u|∂Ω, u ∈ ∂Ω

(134a)

(134b)

In this setting, there is no source (f = 0), and the analytical solution is

u(r, θ) = r2/3 sin

(
2θ

3

)
(135)
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u|ΓD
= 0

u|ΓD
= 0

(a) L-shaped problem description. (b) Exact solution u.

Figure 30. Illustration of the L-shape problem for Poisson’s equation (134).

Now, we perform two simulations, both with and without symmetrization.
We use the recovery estimator and choose β = 10%. There are three
stopping criterions:

• The simulation stops if the estimated error is below 10−8.

• The number of degrees of freedom is not more than 10000.

• The number of refinements do not exceed 30.

In this simulation with polynomial degree 2, we see that the meshes obtained
after 5 steps with and without symmetrization are not the same. This is
demonstrating that the adjusted β-Ndof method preserves the symmetry of
the differential operator in Poisson’s equation (134).

(a) Unsymmetric mesh. (b) Symmetric mesh.

Figure 31. Different meshes for the L-shape problem.
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8 General theory of adaptive refinement

Algorithm 8.5 Averaging Strategy (β-AVG)

1: procedure AVERAGING_STRATEGY(M, η, β, kmax)
2: Initialize a tensor-mesh M, and let k = 0
3: while k ≤ kmax do

4: Compute ‖e‖M
5: for K ∈ M do

6: if ‖e‖E(K) > β‖e‖M then

7: Refine K

8: Update Ndof and M
9: k = k + 1

10: return M

Averaging strategy

The Averaging strategy is a suitable method for PDEs where the symmetry
might influence the outcome of the adaptive refinement. After solving the
PDE on a given mesh, we compute the estimated average error. Then we
loop over the mesh again and refine all the elements whose estimated error
exceeds β % of this estimated average error. This will continue within a
predefined number of iteration steps.

Special strategies

If a PDE is convection-dominated, then Algorithms 8.1 and 8.2 may not
work properly. In this case, the elements on M are categorized as follows:

- Very few elements with extremely large estimated error.

- A big majority with extremely small estimated error.

- A medium group with reasonably estimated error.

Only the elements belonging to the first very small group will be refined, and
the adaptive refinement deteriorates. We can overcome this defect by doing
a small modification that works for both marking strategies. In addition to
the threshold θ, we define a very small percentage β (≤ 10), mark the first
β% elements with largest estimated error, and then apply Algorithm 8.1 and
8.2. For unsteady PDEs, where the solution changes over time, we require
some additional features:

1. Adaptive mesh refinement at every time-step.

2. Coupling of time-step control and spatial refinement.

3. Partial coarsening if necessary.

4. Re-meshing if necessary.
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START

Define the PDE, the domain
Ω, the error estimator, and

the constants τ , km and nm

Construct an initial coarse
mesh T0 representing

the exact geometry of Ω

Set k = 0 and εG = Inf

Define the stopping criterion as
S = (εG ≤ τ) ∨ (k > km)

∨(n > nm)

S ≡ 1 ?YES

NO

Solve the PDE on T0

Set εG = 0

Define Nk as the set of all
elements on Tk

Are all
elements

examined?

YES

NO

Compute a posteriori error
εK on element K ∈ T0

Detect and mark the elements
where the error is too high

Increment εG with εK

S ≡ 1 ?YES

NO

Refine all the elements where
the estimated error is too high

Construct a new LR-mesh Tk

Increment k by 1

END

Figure 32. A rough flowchart for adaptive finite element refinement.
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9 Conclusion

9 Conclusion

We have seen that the established theory of adaptive refinement in classical
finite element modelling can be transferred directly to isogeometric analysis,
equipped with some extra advantages that were not available in the previous
paradigm, like high continuity, exact meshing on the domain, and reduced
computational effort. Such benefits improve the refinement and makes the
numerical solution converge faster to the analytical solution compared with
the old finite element method.

The residual estimator works better for isogeometric discretization
because there are no jumps in the gradient of the numerical solution when
the continuity is at least C1. This advantage speeds up the computation of
the estimator on each element. The combination of tensor B-splines with
hierarchical refinement (structured mesh refinement) and LR B-splines gives
good recovery estimators.

Most of the error estimators still satisfy the same inequality bounds
as before, but the main difference is that the generic constants occurring
in these inequalities are significantly lower compared with classical finite
element modelling. This new observation indicates that we do not need
to refine so many elements before the estimated global error reaches the
desired tolerance.

Lastly, we see that IGA offers more refinement techniques that were not
available in the past, like Serendipity pairing and hierarchical refinement. We
can therefore conclude that IGA has a good potential for adaptive refinement
in modern finite element technology.
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CHAPTER A

Multivariate Calculus

Definition 1. Let f : R3 → R, f : R3 → R3 and F : R3 → R3×3 be
respectively a scalar field, a vector field and a tensor field. If î, ĵ and k̂ are
the respective unit vectors in the x-, y- and z-directions, then the differential
vector operators in Cartesian coordinates are defined as follows:
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∂z

⎤⎥⎦
∇× f =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

g1 g2 g3

∣∣∣∣∣∣
∇2f =

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2
∇2f =

⎡⎢⎢⎣
∂2g1

∂x2 + ∂2g1

∂y2
+ ∂2g1

∂z2

∂2g2

∂x2 + ∂2g2

∂y2
+ ∂2g2

∂z2

∂2g3

∂x2 + ∂2g3

∂y2
+ ∂2g3

∂z2

⎤⎥⎥⎦
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Theorem 1 (The theorems of Green, Stokes and Gauss [8]). Let A be a
closed area with the piecewise smooth boundary C, and V is a closed
volume with the piecewise smooth surface S. Let n be the unit normal
vector on the surface. Then we have the following integral theorems:

Green’s theorem 1:
˛
C
F · dr =

¨
R
(∇× F) · k̂ dA (A.1a)

Green’s theorem 2:
˛
C
F · n ds =

¨
R
∇ · F dA (A.1b)

Stokes’ theorem:
˛
C
F · dr =

¨
S
(∇× F) · n dS (A.1c)

Gauss’ theorem:
‹

S
F · n dS =

˚
V
∇ · F dV (A.1d)

Corollary 1 (Green’s identities [8]). From Gauss’ theorem, we have Green’s
identities:

˚
V
g∇2f dV =

‹
S
g
∂f

∂n
dS −

˚
V
∇f · ∇g dV (A.2a)

˚
V
g∇2f − f∇2g dV =

‹
S
g
∂f

∂n
− f

∂g

∂n
dS (A.2b)

Corollary 2 (Special integral identities). From Stokes’ and Gauss’ theorems,
we have the following integral identities:
˚

V
∇f dV =

‹
S
fn dS (A.3a)

˚
V
∇2f dV =

‹
S

∂f

∂n
dS (A.3b)

˚
V
f(∇ · F) dV =

‹
S
f(F · n) dS −

˚
V
∇f · F dV (A.3c)

˚
V
∇× F dV = −

‹
S
F× n dS (A.3d)

˚
V
F · (∇×G) dV =

˚
V
G · (∇× F) dV −

‹
S
(F×G) · n dS

(A.3e)
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CHAPTER B

Function Space Theory

1 The space of differentiable functions

Definition 2. The support of a function f is given by

supp(u) = {x ∈ Ω : u(x) �= 0} (B.1)

Definition 3. Define u : Rd → R as function of d variables. Then the
multi-index derivative of order α is denoted as

∂αu =
∂|α|f

∂xα1
1 ∂xα2

2 . . . ∂xαd
d

|α| =
d∑

i=1

αi (B.2)

Definition 4. Let f be a function on I = [a, b]. It is absolutely continuous if

f(x) = f(a) +

ˆ x

a
f ′(t) dt (B.3)

If f is Lipschitz continuous, then there is an M > 0 such that

|f(x)− f(y)| ≤ M |x− y| , ∀x, y ∈ [a, b] (B.4)

If f is continuously differentiable, then f ′ is continuous.
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Definition 5. [2, 7] Let Ω ⊂ Rd be an open set. If k ∈ Z+ and α ∈ Rd, we
define the spaces of continuous and differentiable functions as

C(Ω) = {u : u is continuous on Ω} (B.5a)

Cc(Ω) = {u : u ∈ C(Ω), supp ⊂⊂ Ω} (B.5b)

C0(Ω) = {u : u ∈ C(Ω), u(∂Ω) = 0} (B.5c)

Ck(Ω) = {u : ∂|α|u ∈ C(Ω), ∀|α| ≤ k} (B.5d)

Ck
c (Ω) = Ck(Ω) ∩ Cc(Ω) (B.5e)

Ck
0 (Ω) = Ck(Ω) ∩ C0(Ω) (B.5f)

C∞(Ω) = E(Ω) =
∞⋂
k=0

Ck(Ω) (B.5g)

C∞
c (Ω) = D(Ω) = C∞(Ω) ∩ Cc(Ω) (B.5h)

If p ∈ [1,∞), these spaces can be equipped with the norms

‖u‖Ck(Ω),p =

⎡⎣ k∑
|α|=0

(
sup
x∈Ω

|∂αu|
)p

⎤⎦ 1
p

=

[
k∑

i=0

|u|p
Ci(Ω),p

] 1
p

(B.6a)

‖u‖Ck(Ω),∞ = max
0≤|α|≤k

sup
x∈Ω

|∂αu| = max
0≤i≤k

|u|Ci(Ω),∞ (B.6b)

They induce the similar seminorms

|u|Ck(Ω),p =

⎡⎣ ∑
|α|=k

(
sup
x∈Ω

|∂αu|
)p

⎤⎦ 1
p

(B.7a)

|u|Ck(Ω),∞ = max
|α|=k

sup
x∈Ω

|∂αu| (B.7b)

Definition 6. [2] The space of distributions is D′(Rd), while E ′(Rd) consists
of distributions with compact support. They satisfy the following inclusions:

D(Rd) ⊂ E(Rd) (B.8a)

E ′(Rd) ⊂ D′(Rd) (B.8b)

Definition 7. The α-th weak partial derivative w of an arbitrary function u
on a domain Ω ⊂ Rd is defined as

ˆ
Ω
u∂αϕdΩ = (−1)α

ˆ
Ω
wϕdΩ ∀ϕ ∈ C∞

0 (B.9)
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1 The space of differentiable functions

Theorem 2 (Convergence in D(Ω) [2]). If {φn}∞n=1 is a function sequence
converging in D(Ω), then

∃K ⊂⊂ Ω : supp(φn − φ) ⊂ K, ∀n ∈ N

lim
n→∞

∂αφn → ∂αφ uniformly, ∀α : |α| ∈ Z+

Theorem 3 (Strong and weak derivative coincidence [2]). If f is absolutely
continuous, then the strong and weak derivatives coincide.

Theorem 4 (Completeness and inclusion of Ck(Ω)). Ck(Ω) is a Banach
space with respect to the supremum norm, but not the integration norm. The
inclusion of differentiable functions is given by the following lattice:

C∞(Ω) ⊂ · · · ⊂ C2(Ω) ⊂ C1(Ω) ⊂ C0(Ω)

∪ ∪ ∪ ∪
C∞
c (Ω) ⊂ · · · ⊂ C2

c (Ω) ⊂ C1
c (Ω) ⊂ C0

c (Ω)

If k1, k2 ∈ Z+ are finite, and k1 < k2 then we have a continuous embedding:

Ck2(Ω) ↪→ Ck1(Ω) (B.11)

Definition 8 (Ck boundary [10]). Let Ω ⊂ Rd be an open domain. The
boundary ∂Ω is Ck if there is a constant r > 0, a function g : Rd−1 �−→ R
in Ck, and a coordinate system (e1, . . . , ed) such that

Ω ∩B(x0, r) = {x ∈ B(x0, r) : xd > g(x̃)}

The same holds for Ck,α with α ∈ (0, 1]. A C1 boundary is Lipschitz, but
not in the opposite direction.
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2 The Lebesgue space

Definition 9. [1] Let Ω ⊂ Rd be a domain of nonzero measure, where
p ∈ [1,∞) is the Lebesgue index. The Lebesgue space Lp(Ω) consists of
Lebesgue measurable functions on Ω with norms given by

‖u‖Lp(Ω) =

[ˆ
Ω
|u(x)|p dx

] 1
p

p ∈ [1,∞) (B.12a)

‖u‖L∞(Ω) = sup
x∈Ω

|u(x)| p = ∞ (B.12b)

If p = 2, we have a Hilbert space L2(Ω), and the inner product is

〈u, v〉L2(Ω) =

ˆ
Ω
u(x)v(x) dx (B.13)

Definition 10 (Local integrability). The space of locally integrable functions
on a domain Ω is defined as follows:

Lp
loc(Ω) = {f ∈ Lp(K) : K ⊂⊂ int(Ω)} (B.14)

Definition 11 (Quotient Lebesgue space). The quotient Lebesgue space is a
Banach space where the elements have zero mean average:

Lp
0(Ω) =

{
f ∈ Lp(Ω) :

ˆ
Ω
f dx = 0

}
(B.15)

‖u‖Lp
0
= inf

α∈R
‖u+ α‖Lp (B.16)

Theorem 5 (Completeness of Lp(Ω) [1]). Lp(Ω) is a Banach space with
respect to the integration norm and the completion of C0(Ω):

Lp ≡ C0
‖·‖Lp

Theorem 6 (Reflexivity and separability of Lp(Ω) [1, 2]). Let p, q ∈ (1,∞)
be conjugate exponents such that p−1 + q−1 = 0. Then the following holds:

1. p ∈ (1,∞) : Lp is uniformly convex and reflexive.

2. p ∈ [1,∞) : Lp is separable.

3. (Lp)∗ = Lq.
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Theorem 7 (Interpolation in Lp-spaces [1]). Let f ∈ Lp(Ω) ∩ Lq(Ω) such
that 1 ≤ p < q ≤ ∞, α ∈ [0, 1], r ∈ (p, q) and 1

r = α
p + 1−α

q . Then
f ∈ Lr(Ω), and the following inequality holds:

‖f‖Lr(Ω) ≤ ‖f‖αLp(Ω)‖f‖1−α
Lq(Ω) (B.17)

Theorem 8 (General Lp-embeddings [1, 2]). Let Ω ⊂ Rd be open and
bounded. If the Lebesque indices p1 and p2 satisfy p1, p2 ≥ 1 and p1 < p2,
we have a continuous chain of embeddings:

L∞(Ω) ↪→ Lp2(Ω) ↪→ Lp1(Ω) ↪→ L1(Ω) (B.18)

Theorem 9 (Lp-inequalities [1]). Define {pi}ri=1 as a set of conjugate
exponents, such that

∑r
i=1

1
pi

= 1 for all pi ∈ [1,∞), and let {fi}ri=1 be a
set of functions. Then, Hölder’s integral inequality is defined as∥∥∥∥∥

r∏
i=1

fi

∥∥∥∥∥
L1(Ω)

≤
r∏

i=1

‖fi‖Lpi (Ω) (B.19)

Minkowski’s integral inequality is defined as∥∥∥∥∥
r∑

i=1

fi

∥∥∥∥∥
Lp(Ω)

≤
r∑

i=1

‖fi‖Lp(Ω) (B.20)

If p and q be conjugate exponents, and we have the numbers a, b, ε > 0,
then Young’s inequalities are given by:

Young’s inequality 1: ab ≤ ap

p
+

bq

q
(B.21a)

Young’s inequality 2: ab ≤ εa2 +
b2

4ε
(B.21b)

For any a, b ∈ R, the arithmetic-geometric mean inequality is defined as

ab ≤ 1

2
(a2 + b2) (B.22)
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3 The Hölder space

Definition 12. [2] Let Ω ⊂ Rd and λ ∈ (0, 1). We call the function f
Hölder continuous of order λ if there is an M > 0 such that

|f(x)− f(y)| ≤ M‖x− y‖λ , ∀x,y ∈ Ω (B.23)

The space C0,λ(Ω) consists of functions that are Hölder continuous of order
λ. It has a norm and semi-norm:

‖f‖C0,λ(Ω) = ‖f‖C0(Ω) + |f |C0,λ(Ω) (B.24a)

|f |C0,λ(Ω) = sup
x,y∈Ω
x�=y

|f(x)− f(y)|
‖x− y‖λ (B.24b)

Definition 13. [2] Let Ω ⊂ Rd, λ ∈ (0, 1] and k ∈ N. The space Ck,λ(Ω)
consists of functions f ∈ Ck(Ω) such that ∂αf ∈ C0,λ(Ω) for |α| ≤ k. The
norm and semi-norm are defined as follows:

‖f‖Ck,λ(Ω) =
∑
|α|≤k

‖∂αf‖C0,λ(Ω) (B.25a)

|f |Ck,λ(Ω) =
∑
|α|=k

sup
x,y∈Ω
x�=y

|∂α[f(x)− f(y)]|
‖x− y‖λ (B.25b)

If f is Lipschitz continuous, it is Hölder continuous of order 1. Any Hölder
continuous function is uniformly continuous, and hence continuous.

Theorem 10 (Ck,λ-embeddings [2]). If k ∈ Z+ and 0 < μ < λ ≤ 0, then
the following embeddings er continuous for any domain Ω ⊂ Rd:

Ck,λ(Ω) ↪→ Ck(Ω) (B.26a)

Ck,λ(Ω) ↪→ Ck,μ(Ω) (B.26b)

If Ω is bounded, then the same embeddings are compact.
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3 The Hölder space

Definition 14 (Lipschitz boundary [10]). Let Ω ⊂ Rd be an open and
connected domain. For d ≤ 2, we call ∂Ω a Lipschitz boundary if there is
a finite open cover {U i}mi=1 of ∂Ω such that for 1 ≤ j ≤ m, the following
criterions hold:

1. ∂Ω ∩ U j is the graph of a Lipschitz function gj .

2. Ω ∩ U j is on one side of this graph.

For 1 ≤ j ≤ m there is an Euclidean coordinate system {eji}di=1, real
numbers rj , hj > 0, and a Lipschitz function gj : Rd−1 �−→ R, such that

x =

d∑
i=1

xjie
j
i ∈ U j , x = (x̃j , xjn), |x̃j | < rj (B.27)

These coordinates satisfy some special rules:

xjd = gj(x̃j) =⇒ x ∈ ∂Ω (B.28a)

0 < xjd − gj(x̃j) < hj =⇒ x ∈ Ω (B.28b)

0 > xjd − gj(x̃j) > −hj =⇒ x /∈ Ω (B.28c)

Thus, the open covers can be defined as follows:

U j = {x ∈ Rd : |x̃j | < rj , |xjd − gj(x̃j)| < hj} (B.29)
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4 The Sobolev space

Definition 15. [1] Let Ω ⊂ Rd be a domain of nonzero measure, where
k ∈ Z+ is the derivative order and p ∈ [1,∞) is the Lebesgue index.
The Sobolev space W k,p(Ω) consists of all functions whose weak partial
derivatives up to order k belong to Lp

loc(Ω). It is equipped with the norms

‖u‖Wk,p(Ω) =

⎡⎣ ∑
|α|≤k

‖∂αu‖pLp(Ω)

⎤⎦ 1
p

=

[
k∑

i=0

|u|p
W i,p(Ω)

] 1
p

p ∈ [1,∞)

(B.30a)

‖u‖Wk,∞(Ω) = max
|α|≤k

‖∂αu‖L∞(Ω) = max
0≤i≤k

|u|W i,∞(Ω) p = ∞

(B.30b)

They induce the similar seminorms

|u|Wk,p(Ω) =

⎡⎣ ∑
|α|=k

‖∂αu‖pLp(Ω)

⎤⎦ 1
p

(B.31a)

|u|Wk,∞(Ω) = max
|α|=k

‖∂αu‖L∞(Ω) (B.31b)

If p = 2, we have a Hilbert space Hk(Ω) ≡ W k,2(Ω) with the inner product

〈u, v〉Hk(Ω) =
∑
|α|≤k

〈∂αu, ∂αv〉L2(Ω) (B.32)

Definition 16. [1, 2] The space W k,p
0 (Ω) consists of functions u ∈ W k,p(Ω)

such that the weak partial derivatives up to order k vanish on ∂Ω:

W k,p
0 (Ω) =

{
u ∈ W k,p(Ω) : ∂αu

∣∣
∂Ω

= 0, |α| ≤ k
}

(B.33)

If u is an arbitrary function, its null extension is

ũ =

{
u x ∈ Ω

0 x ∈ Rd\Ω

The Sobolev space W k,p
00 (Ω) is, for p ∈ (1,∞), defined as

W k,p
00 (Ω) = {u ∈ W k,p(Ω) : ũ ∈ W k,p(Rd)} (B.34)

If k ∈ N, then W k,p
0 (Ω) and W k,p

00 (Ω) are equipped with the standard W k,p-
norm. Furthermore, W k,p

00 (Ω) = W k,p
0 (Ω) when k ∈ N and p ∈ (1,∞).
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Definition 17. [2] Let p ∈ [1,∞) and s = k + σ such that l ∈ Z+ and
σ ∈ (0, 1). Then W s,p(Ω) ⊂ W k,p(Ω), equipped with the Slobodetskii
norm and seminorm:

‖u‖W s,p(Ω) =

⎡⎣‖u‖pW s,p(Ω) +
∑

|α|=m

¨
Ω×Ω
x�=y

|∂α[u(x)− u(y)]|p
‖x− y‖d+σp

dx dy

⎤⎦ 1
p

=
[
‖u‖pW s,p(Ω) + |u|pW s,p(Ω)

] 1
p (B.35a)

|u|W s,p(Ω) =

⎡⎣ ∑
|α|=m

¨
Ω×Ω
x�=y

|∂α[u(x)− u(y)]|p
‖x− y‖d+σp

dx dy

⎤⎦ 1
p

(B.35b)

Theorem 11 (Completeness of W k,p [1]). W k,p is a Banach space with
respect to the integration norm and the completion of Ck. The same holds
for W k,p

0 and D in this norm. If s = k+ σ, W s,p is the completion of Cs,p:

W k,p ≡ Ck
‖·‖

Wk,p (B.36a)

W k,p
0 ≡ D‖·‖

Wk,p (B.36b)

W s,p ≡ Cs,p‖·‖Ws,p
(B.36c)

Theorem 12 (Duality of W k,p [1, 2]). If p, q ∈ [1,∞) are two conjugate
exponents, then the dual space of W k,p

0 (Ω) is W−k,q(Ω). The norm is

‖L‖W−k,q(Ω) = sup
u∈W k,p(Ω)\{0}

|L(u)|
‖u‖Wk,p(Ω)

(B.37)

Riesz’ representation theorem implies the existence of a unique function set
{vα}|α|≤k ∈ Lq(Ω) such that L can be expressed as

L(u) =
∑
|α|≤k

〈∂αu, vα〉 (B.38)

This representation is unique for p ∈ (1,∞). We have also a special rule:

Ω �= Rd =⇒ W k,q
0 (Ω) = W k,p

Ω = Rd =⇒ W k,q
0 (Ω) �= W k,p

Thus, (W k,p
0 (Ω))′ = W−k,q(Ω) when Ω = Rd.
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Theorem 13 (Reflexivity and separability of W k,p [1, 2]). Let p and q be
conjugate exponents, and k ∈ N is arbitrary. Then the following holds:

1. p ∈ (1,∞) : W k,p is uniformly convex and reflexive.

2. p ∈ [1,∞) : W k,p is separable.

The same rules hold for W k,p
0 , W k,p

00 and W s,p (s > 0).

Theorem 14 (Density of W k,p [2]). For W k,p
0 , We have some density rules:

1. W k2,p
0 is dense in W k1,p

0 for k1 < k2 and fixed p ≥ 1.

2. D(Rd) is dense in W k,p
0 (Rd) for p ∈ [1,∞) and k ∈ Z+.

3. D(Ω) is dense in W k,p
00 (Ω) if p ∈ (1,∞) and ∂Ω is continuous.

For s > 0, p ∈ (1,∞) and Ω ⊂ Rd, we have similar density rules for W s,p:

1. D(Ω) is dense in W s,p
0 (Ω).

2. D(Rd) is dense in W k,p
0 (Rd) and W k,p

0 (Rd) ≡ W k,p(Rd).

3. D(Ω) is dense in W s,p
0 (Ω) and W k,p

0 (Ω) ≡ W k,p(Ω) if s ∈ (0, 1/p]
and ∂Ω is Lipschitz continuous.

Theorem 15 (Compactness of W s,p [2]). Let Ω ⊂ Rd such that ∂Ω is
Lipschitz continuous and p ∈ (0,∞). Let s1, s2 ∈ R+ and m1,m2 ∈ Z+

such that s1 < s2 and k1 < k2. If s1 < k2 +
1
p and s2 > k1 +

1
p , then

W s2,p(Ω) ↪→↪→ W s1,p(Ω) (B.39a)

W s2,p
0 (Ω) ↪→↪→ W s1,p

0 (Ω) (B.39b)

W
k2+

1
p
,p

00 (Ω) ↪→↪→ W
k1+

1
p
,p

00 (Ω) (B.39c)

W
k2+

1
p
,p

00 (Ω) ↪→↪→ W s1,p
0 (Ω) (B.39d)

W s2,p
0 (Ω) ↪→↪→ W

k1+
1
p
,p

00 (Ω) (B.39e)

Theorem 16 (Sobolev’s embedding theorem [2]). Define the constants
r ∈ [0, s], m ∈ N, σ ∈ (0, 1) and 1 < p ≤ q < ∞. Let Ω ⊂ Rd be an
open and bounded domain with Lipschitz continuous boundary ∂Ω and the
s-extension property, i.e. there is a continuous and linear extension operator
Ps : W s,p(Ω) �−→ W s,p(Rd) defined by (Psu) ↓Ω= u that satisfies

‖Psu‖W s,p(Rd) ≤ C‖u‖W s,p(Ω)
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Then we have the following continuous embeddings in W k,p(Ω):

r − d

q
≤ s− d

p
=⇒ W s,p(Ω) ↪→ W r,q(Ω) (B.40a)

m+ σ ≤ s− d

p
=⇒ W s,p(Ω) ↪→ Cm,σ(Ω) (B.40b)

p = 1, q = ∞, r ≤ s− d =⇒ W s,1(Ω) ↪→ Cr,∞(Ω) (B.40c)

If 1 ≤ p ≤ q ≤ ∞, we have the following compact embeddings in W k,p(Ω):

r − d

q
< s− d

p
=⇒ W s,p(Ω) ↪→↪→ W r,q(Ω) (B.41a)

m+ σ < s− d

p
=⇒ W s,p(Ω) ↪→↪→ Cm,σ(Ω) (B.41b)

Theorem 17 (Special W k,p-embeddings [1, 2]). Let Ω ⊆ Rd be a domain.
If p ≥ 1 and k ∈ Z+ are fixed, then

D(Ω) ↪→ W k,p
0 (Ω) ↪→ W−k,p(Ω) ↪→ D′(Ω) (B.42)

For the space W k,p
00 (Ω) with p ∈ (1,∞), we have

W k,p
00 (Ω) ↪→ W k,p(Ω) ↪→ W k,p(Ω) (B.43)

Theorem 18 (Poincaré’s inequality [1, 6]). If Ω ⊂ Rd is a domain with
finite measure, and u ∈ W 1,p

0 (Ω), then Poincaré’s inequality is defined as

‖u‖Lp(Ω) ≤ CΩ|u|W 1,p(Ω) (B.44)

Theorem 19 (Gagliardo-Nirenberg-Sobolev inequality [6]). If p ∈ [1, d),
q = np/(n − p), u ∈ C1

c (R
d) and supp(u) ⊂⊂ Ω, then the Gagliardo-

Nirenberg-Sobolev inequality is defined as

‖u‖Lq(Rd) ≤ C‖∇u‖Lp(Rd) (B.45)

If u ∈ W 1,p(Ω), and Ω ⊂ Rd is bounded and open with Lipschitz boundary,
then the following inequality holds:

‖u‖Lq(Ω) ≤ C‖∇u‖W 1,p(Ω) (B.46)
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CHAPTER C

Finite Element Analysis

1 Differential operator theory

Definition 18 (Linear partial differential operators [3]). Let L be a linear
partial differential operator of order 2m. Then the strong form of L and its
equivalent divergence form are defined as follows:

SL(u) =
∑

|η|≤2m

aη∂
ηu =

∑
|α|,|β|≤m

(−1)|β|∂β(aα,β∂
αu) (C.1)

where aη = (−1)maη,β , α+ β = η, |α| = |β| = m and aη,β ∈ C∞(Ω).

Definition 19 (Uniform ellipticity [6]). Let {aij}d,di=1,j=1 ∈ L∞ such that
they satisfy aij = aji. Define a linear partial differential operator as

Lu = −
d∑

i=1

d∑
j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
We call L uniformly elliptic if there is a constant α > 0 such that

d∑
i=1

d∑
j=1

aij(x)
∂u

∂xi

∂u

∂xj
≥ α|u|2H1 (C.2)

Every elliptic operator has even order.
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1 Differential operator theory

Definition 20 (Strong ellipticity [5]). Assume that a second-order linear
partial differential operator of is defined as

Lu = −
d∑

i=1

d∑
j=1

∂

∂xj

(
aij(x)

∂u

∂xi

)
+

d∑
i=1

bi(x)
∂u

∂xi
+ b0(x)u (C.3)

such that A = {aij}d,di=1,j=1. If Re(A) and Im(A) commute, and the eigen-
values of A are positive and have the same argument, L is strongly elliptic.

Definition 21 (Hypo-ellipticity [5]). The characteristic polynomial of a
second-order linear partial differential operator L is given by:

p(x) = xTAx

Let A be a constant matrix, and C : Rd �−→ R satisfies C(x) → 0 when
|x| → ∞ such that

|∂α(x)| ≤ C(x)|p(x)| , ∀x ∈ Rd , ∀α ∈ Nd

We call L hypo-elliptic if it satisfies the listed criterions.

Definition 22 (Semi-ellipticity [5]). Let L =
∑

aαD
α be a constant linear

partial differential operator, and {mi}di=1 are partial orders with respect
to {∂/∂xi}di=1. Denote |α : m| as α1/m1 + · · · + αd/md. We call L
semi-elliptic if it satisfies

aα = 0 ∀α ∈ Nd , |α : m| > 1

p(x) �= 0 ∀x ∈ Rd\{0}

Any semi-elliptic operator is hypo-elliptic, but not conversely.

Proposition 1. [5] Let L be a constant linear partial differential operator,
and Lp is the corresponding principal part (highest-order derivatives). Then
L is elliptic iff it is hypo-elliptic and satisfies

d∑
i=1

∣∣∣∣∂Lp

∂xi
(x)

∣∣∣∣ �= 0 , ∀x ∈ Rd\{0}

where x = (x1, . . . , xd) are the standard coordinates in Rd.
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Theorem 20 (Gårding’s inequality [4]). Assume that L as a non-symmetric
linear partial differential operator of second order, as described by (C.3).
If {aij}d,di=1,j=1, {bi}di=0 ∈ L∞ and (C.2) holds, there is a finite positive
constant K such that

a(u, u) +K‖u‖2L2 ≥ α

2
‖u‖2H1 (C.4)

Definition 23 (Boundary operators [3]). If a PDE has order 2m, then the
Dirichlet, Neumann and General operators are defined as

BDu =
∂iu

∂xi
0 ≤ i ≤ m− 1 (C.5)

BNu =
∂iu

∂xi
m ≤ i ≤ 2m− 1 (C.6)

Bju =
∑

|α|≤mj

bj,α∂
αu mj < 2m, 1 ≤ j ≤ m (C.7)
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2 Weak formulation of PDEs

2 Weak formulation of PDEs

Definition 24. [9] Let V be a function space, and F : V �−→ R is a
functional associating a real number to each element in V . For all u, v ∈ V
and a, b ∈ R, let C > 0 be an arbitrary constant. We call F

Linear: F (au+ bv) = aF (u) + bF (v)

Bounded: |F (u)| ≤ C‖u‖V

Let A : V × V �−→ R be a form on V . For all u, v, w ∈ V and a, b ∈ R, let
M > 0 and α > 0 be arbitrary constants. We call A

Bilinear: A(au+ bv, w) = aA(u,w) + bA(v, w)

A(u, av + bw) = aA(u, v) + bA(u,w)

Symmetric: A(u, v) = A(v, u)

Continuous: |A(u, v)| ≤ M‖u‖V ‖v‖V
Positive: A(u, u) > 0

Coercive: A(u, u) > α‖u‖2V

The operator norms of A and F are defined as

‖F‖ = sup
u∈V \{0}

‖F (u)‖
‖u‖

‖A‖ = sup
u∈V \{0}

sup
v∈V \{0}

‖A(u, v)‖
‖u‖‖v‖

Theorem 21 (Lax-Milgram theorem [4]). Let V be a Hilbert space, such
that a ∈ L(V × V,R), f ∈ V ∗, and a(·, ·) is coercive. The variational
problem is defined as

u ∈ V : a(u, v) = f(v), ∀v ∈ V

This problem is well-posed, and the solution satisfies the a priori estimate

‖u‖V =
1

α
‖f‖V ∗ , ∀f ∈ V ∗
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Theorem 22 (Banach-Nečas-Babuška theorem [10]). Let V and W be
Banach spaces, such that a ∈ L(W × V,R), f ∈ V ∗, and V ∗∗ = V .
Assume that the variational problem is defined as

u ∈ W : a(u, v) = f(v), ∀v ∈ V

This problem is well-posed if and only if

∃α > 0, inf
w∈W

sup
v∈V

a(w, v)

‖w‖W ‖v‖V
≥ α

∀v ∈ V,w ∈ W, a(w, v) = 0 =⇒ v = 0

The solution satisfies the a priori estimate

‖u‖V =
1

α
‖f‖V ∗ , ∀f ∈ V ∗

Theorem 23. [3] Let Ω ⊂ Rd be open and bounded with Lipschitz boundary
∂Ω such that d ≥ 2 and p ∈ [1,∞). Define γ0 : C∞

0 �−→ Cr(∂Ω) as a
restriction to ∂Ω such that γ0u = u

∣∣
∂γ

. The extension γ of γ0 has the
property γp = γ ∈ L(W s,p(Ω),W t,p(∂Ω)) for certain s and t. Then

1. γp : W 1,p(Ω) �−→ W 1−1/p,p(∂Ω) is linear, surjective, continuous,
and it satisfies the bound

‖γpu‖W 1−1/p,p(∂Ω) ≤ C‖u‖W 1,p(Ω)

2. u ∈ W 1,p
0 (Ω) is equivalent to u ∈ W 1,p(Ω) with γu = 0 on ∂Ω).

3. If Ω ∈ Cm−1,1, then u ∈ Wm,p
0 (Ω) is equivalent to u ∈ Wm,p(Ω)

and ∂αu ∈ W 1,p
0 (Ω), i.e. γ∂αu = 0 for |α| ≤ m− 1.

4. The extension operator Ep : W 1−1/p,p(∂Ω) �−→ W 1,p(Ω) is linear,
continuous, and corresponds to the inverse of γ0.

Theorem 24 (Trace theorem [3]). Let Ω ⊂ Rd have a Lipschitz boundary,
k ∈ Z+ and p ∈ [1,∞]. Then there is a positive constant C such that

‖u‖Wk,p(∂Ω) ≤ C‖u‖1−1/p

Wk,p(Ω)
‖u‖1/p

Wk+1,p(Ω)
, ∀u ∈ W k+1,p(Ω) (C.8)
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