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Preface

This project rapport finalizes a Bachelor’s degree in Electrical Engineering, specializing in Au-

tomation and robotics at the Department of ICT and Natural Sciences at the Norwegian Univer-

sity of Science and Technology in Ålesund, Norway. As students over the past three years, we

have been lucky to be exposed to a wide range of intriguing and complex subjects. Working on

this project was a considerable challenge, resulting in a better grasp of modelling, simulation,

robotics, systems control, and machine vision. Furthermore, it has been fascinating to see how

the aforementioned components can be combined to make a functional application.

What intrigued us with this project was the chance that it may be of actual use in solving a real-

world problem. We wanted to work with and learn more about modelling, robotics, control

theory, and machine vision, and this project provided us with the opportunity to do so.

To fully understand the content in this Rapport, we recommend that the reader have a basic

understanding of engineering, mathematics, software, robotics, and automation, as well as an

interest in these fields.
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Summary

This report concerns the development of a prototype, with the purpose of investigating com-

pensation of payload sway on a maritime crane. The report describes how several components

are implemented to produce the prototype for this bachelor’s thesis.

A 6-joint robotic arm is used as a prototype for a physical crane. The payload of the prototype

is known. The payload’s motion and dynamics are modelled using lagrangian mechanics. Kine-

matic equations defining the robot’s motions are obtained analytically. Machine vision is used

to detect the payload position. Several detection algorithms are explored, where color detection

is employed in the prototype’s final version. The mounting position of a camera is investigated.

First on the floor, then on the prototype’s end effector. Several control loops are simulated based

on the payloads dynamical model. In addition, several controls are implemented on the proto-

type to compensate for the swaying of the payload.

In an ideal environment, the machine vision is adequate to detect the payload. The finalized

prototype is capable of compensating for the payload swaying motion. However, more research

and development is needed in order to reflect more realistic scenarios for a maritime crane.
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Chapter 1

Introduction

1.1 Background and Motivation

Maritime crane operation is a rigorous task requiring the crane operator’s undivided attention.

The operator must correct for load sway and identify the distance to the loading deck or the

vessel deck during a typical crane operation. The operator is simultaneously putting the crane

in the appropriate location throughout the process. The risk of damaging goods and people can

be reduced by installing an anti-sway or anti-pendulum device.

Payload sway compensation for a marine crane is a field with limited research and resources.

Because it is complex to simulate and emulate the maritime crane’s environment and dynamics,

among other factors. Additionally, undertaking research on an actual marine crane is expensive.

Consequently, the purpose of this project is to create a prototype to test the effectiveness of var-

ious controllers in reducing payload sway. The prototype can provide valuable insight into how

effective and practical implementing anti-sway to an actual crane is. Furthermore, contributing

to development and research into future maritime crane technology.

9
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1.2 Problem Formulation

The fundamental problem is anti-sway stabilization in a crane with a known payload. The goal

is to create a prototype that replicates crane behaviour to test different controllers.

Problems to be addressed

• Derive a mathematical model of a pendulum system.

• Implementing a 6DOF robotic arm as a 3DOF knuckle boom crane emulator

• Using forward and inverse kinematics to define the robotic arm’s movements.

• Implement a method to detect and recognize known payloads.

• Estimate known payloads position.

• Create a controller that compensates for oscillations while achieving the target position.

• Present, simulate and discuss results using Simulink/Matlab, Webots and Python

• Present future potentials for the controller and the system overall.

Inital concept of the prototype

Figure 1.1 depicts the initial prototype concept provided in the preliminary report. During the

drafting of the preliminary report, a drawing of the prototype was made.

Figure 1.1: Preliminary sketch of the prototype
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1.3 Limitations

• The prototype built for this project does not account for wave motions.

• The anti sway compensation only handles payload compensation in the XY-plane. It is

assumed, that’s cranes already has heave compensation.

• The payload detection is done within an ideal environment where the payloads appear-

ance is known.
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1.4 Structure of the Report

The report is structured as follows.

Chapter 1 - Introductions: Presents the background and objectives for this project.

Chapter 2 - Theoretical basis: Gives an introduction to the theoretical background of meth-

ods employed in the project.

Chapter 3 - Method: Contains a description of the methodology and materials that were con-

sidered throughout the project.

Chapter 4 - Result: Contains a description of the results.

Chapter 5 - Discussion: A summary and discussion of the results and findings in the project.

Chapter 6 - Conclusions: Present an overall conclusion to the project along with suggestions

for further work.



Chapter 2

Theoretical basis

This chapter describes the theoretical foundation and context for supporting the further execu-

tion and content of the report. The chapter describes Lagrangian mechanics, which is utilized

to create the system’s model. The analytical form of kinematics is used to describe the Carte-

sian location of the end effector with specified joint angles, and vice versa. Theory describing

trajectory planning for smooth movement of the end effector. Additionally, change of basis is

mentioned, which contains extrinsic and intrinsic matrices for machine vision implementa-

tions. Furthermore, control theory used in the project is described such as, PID and LQR.

2.1 Previous Work

The authors of the paper Modeling, Simulation and Control for Marine Crane Operations [23].

Constructs two crane models, one in Simulink and the other in Simscape, both based on crane

dynamics. To regulate the end-effector position in the horizontal direction, many control sys-

tems are developed. End-effectors are controlled in the desired direction using PID, PI, and

PD controllers. The results were disappointing because the difference between the desired and

measured end effector positions was too significant[23].

The thesis Crane Payload Stabilization using Lagrangian Kinematics and Euler Angles [27]. Ex-

amines a controller’s ability to keep a payload stable while travelling along a predetermined

path. It describes the motion of a spherical pendulum with a moving attachment point using

Eulerangles and Lagrangian kinematics. The pendulum payload is dampened through feed-

back control. To ensure pendulum stability and attachment point movement, the damping is

extended into a position loop and a velocity loop. Monitoring attachment point acceleration is

avoided by using a second velocity loop. A 3 DOF knuckle boom crane end-effector serves as

the attachment point. Crane kinematics are defined using rotation and transformation matri-

13
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ces, the Denavit-Hartenberg convention, and the Jacobian. For many instances, the controller’s

results are strong, providing a good foundation for practical implementation [27].

The design of a three-degrees-of-freedom robotic arm is the subject of Paper Design of a Three

Degrees of Freedom Robotic Arm [28]. The authors includes equations that explain kinematic

motions and the workspace of a robot.

The paper Small-scale Robot Arm Design with Pick and Place Mission Based on Inverse Kinemat-

ics [18], is about the design of a robotic arm with three degrees of freedom. The author employs

geometry-based alternative kinematic equations.

2.2 Lagrangian Mechanics

Lagrangian mechanics is a formulation of classical mechanics that is based on the principle of

stationary action and in which energies are used to describe motion[38].

It is an alternative to Newton’s second law for describing dynamics[38]. The Lagrangian equa-

tion 2.1 can be thought of in a way as follows: "kinetic and potential energy of an object is all you

need to know to fully predict where it will move next" [33]. The Lagrangian can be thought of as

a state of motion, at any particular point in time. The Lagrangian is described by the kinetic and

potential energies [33]. The Lagrangian is defined as the difference between kinetic energy [T]

and potential energy [U] [38], and shown in equation 2.1.

L = T −U (2.1)

The Euler-Lagrange equation 2.2, which is the condition for the action to be stationary, is used

to solve the equations of motion[38] for describing the dynamics.

d

d t

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 (2.2)
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2.3 Kinematics

Kinematics describe the motion and relation of points and bodies. Kinematic equations are uti-

lized to define the relationship between the various joints of a robot manipulator and the tool’s

or end-effector’s orientation. The primary goal of kinematics is to describe the motion of the

robot manipulator without taking torque and forces into account. The challenge of determin-

ing kinematics may be separated into two parts: forward and inverse kinematics[44]. Figure 2.1

illustrates the two parts.

Figure 2.1: Illustration of forward and inverse kinematics[23]

Forward Kinematics is a means to determine the movement and motion of an end-effector from

given positions and angles of the robot. Meaning from any given joint angle it is possible to cal-

culate the resulting position of the end-effector[23].

Inverse Kinematics is the opposite of forward kinematics. It uses kinematic equations to calcu-

late and describe the movement and motion of the joints to the end-effector. Using the position

of the end-effector it is possible to calculate all the required joint angles[23].
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2.4 Denavit Hartenberg Convention

Standard D-H Convention

The Denavit-Hartenberg, or D-H, convention is a widely used standard for choosing frames of

reference in robotic applications[26]. This approach greatly simplifies the analysis and offers

a systematic process for developing robotic manipulator kinematics[44]. The D-H convention

describes Each homogeneous transformation Ai and represents them as a product of four fun-

damental transformations[26]:

Ai = Rz ,θi ·Tr ansz ,d i ·Tr ansx ,a i ·Rx ,αi (2.3)

=


cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1




1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 cαi −sαi 0

0 sαi cαi 0

0 0 0 1



=


cθi −sθi cαi sθi sαi ai cθi

sθi cθi cαi −cθi sαi ai sθi

0 sαi cαi di

0 0 0 1


θi , αi ,di and ai are correspondent with link i and joint i [26]. The symbols s and c are short for

si ne and cosi ne respectively.
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Modified DH parameters

Another method of developing robotic manipulator kinematics is using modified D-H parame-

ters. The difference is that the positions of the coordinates system connection to the links and

the sequence of the executed transformations change between the traditional D-H parameters

and the modified D-H parameters[13]. The D-H convention then describes each homogeneous

transformation T i−1
i and represents them as a product of four fundamental transformations[13]:

T i−1
i = Rx i−1 (αi−1) ·Tr ansx i−1 (ai−1) ·Rz i (θi ) ·Tr ansz i (di ) (2.4)

=


1 0 0 0

0 cαi−1 −sαi−1 0

0 sαi−1 cαi−1 0

0 0 0 1




1 0 0 ai−1

0 1 0 0

0 0 1 0

0 0 0 1




cθi −sθi 0 0

sθi cθi 0 0

0 0 1 0

0 0 0 1




1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1



=


cθi −sθi 0 ai−1

sθi cαi −1 cθi cαi −1 −sαi −sαi −1 di

sθi sαi −1 cθi sαi −1 cαi −1 cαi −1 di

0 0 0 1

 (2.5)

2.5 Open Platform Communications

Open Platform Communications (OPC) is an interoperability standard for transferring data se-

curely and reliably[16]. The OPC Classic requirements are based on Microsoft Windows technol-

ogy, and data is exchanged between software components utilizing the Distributed Component

Object Model (COM/DCOM) [2].

OPC Unified Architecture (UA) has the same capabilities of the OPC Classic specifications, but

with more capability. OPC UA is platform independent and hierarchically represents data. When

values change based on a client’s criteria, data/information is monitored and reported via ex-

ceptions [3].
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2.6 Trajectory planning

The main goal of a trajectory planning is to find relationship between two element that belong

to different domains, time and space. A trajectory is often defined as a parametric function of

time that provides the desired position at each instant. Obviously, after defining a function,

various features of its implementation, such as time discretization and load vibrations, must be

considered [22].

Trajectory with asymmetric constant acceleration

The Trajectory with constant asymmetric acceleration consists of the two polynomials depicted

in Figure 2.2 from [22]. This trajectory is characterized by two segments, constant acceleration

and deacceleration. The flex point between the start and end time determines the duration of

acceleration and deacceleration for the trajectory [22].

Figure 2.2: Trajectory with asymmetric constant acceleration polynomials obtained from [22]

2.7 Scaling Function

A scaling function scales input to output for a desired boundary. The function uses minimal

and maximum input and output weight. Equation 2.6 shows the mathematical formulation for

a scaling function.

Out put = (Input − i nmi n) · (outmax −outmi n)

i nmax − i nmi n
+outmi n (2.6)

2.8 Change of basis in machine vision

Controlling the position and orientation of various components in a system is critical in robotics.

Each component has its own coordinate system in Euclidean space, represented in cartesian

form along with its orientation. The transformation between such coordinates involves rigid

body motion [45].
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2.8.1 Extrinsic

In machine vision rigid body motion is commonly referred to as the extrinsic matrix. The ex-

trinsic matrix describes the camera’s orientation and translation from global coordinates [45],

illustrated in figure 2.3.

Figure 2.3: Illustration usage of extrinsic matrix

The rigid body motion provided by the extrinsic matrix belongs to the special euclidean SE(3)

[45]. The SE(3) group is both an special orthognal group SO(3) rotation matrix and a translation

vector. Equation 2.7 and 2.8 shows the mathematical properties of SO(3) and group SE(3)[45].

SO(3)
.= {

R ∈R3×3 | RT R = I , det(R) =+1
}

(2.7)

SE(3)
.= {

g = (R,T ) | R ∈ SO(3), T ∈R3} (2.8)

To obtain the rigid body transformation g = (R,T ) in matrix representation for SE(3) homoge-

nous coordinates needs to be implemented [45]. This implies the extrinsic matrix are in ho-

mogenous form.

2.8.2 Intrinsic

The intrinsic matrix in machine vision is a transformation matrix that converts points from the

camera coordinate system to the pixel coordinate system [20]. Figure 2.4 shows illustration of

usage of intrinsic matrix. The intrinsic matrix includes internal camera parameters. The most

common are focal length, skew factor, offset from camera center and aspect ratio [45].

Figure 2.4: Illustration of extrinsic and Intrinsic matrix
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2.9 PID-controller

The purpose of a controller is to control the behavior of dynamical systems. The PID controller

is one of the most common types of feedback controllers, because of its simplicity and effective-

ness. PID stands for Proportional, Integral, and Derivative, and refers to the three terms that op-

erate on the error signal to generate a control signal [31]. The general form for a PID-controller

is shown in equation 2.9 [31].

u(t ) = Kp ·e(t )+Ki

∫
e(t )d t +Kd · d

d t
·e(t ) (2.9)

Adjusting the three parameters Kp , Ki , and Kd impacts the behavior of a closed loop system. Pa-

rameters can be tune to change the systems behaviour. In the controller, the proportional term

is multiplied with the error term. The Proportional term is frequently enough to assure stability.

The integral component is is added over time with the error. As a result, even little errors cause

the integral component to slowly rise. Unless the error is 0, the integral response will rise over

time, causing the Steady-State error to be zero [4]. The derivative response is proportional to the

rate of change of the process variable [4].

2.10 Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) is a method for optimizing the feedback gains for a closed-

loop systems based on the Q and R weighting [19][31]. The linear quadratic cost function in

equation 2.10 [36] needs to be optimized. where both Q and R are positive defined [19]. x are

the states and u are the inputs in state space form. The penalties for deviations of the state vari-

ables x and u are controlled by the weighting matrices Q and R [36]. The LQR generates a static

feedback gain[19].

mi n J (t ) = 1

2

∫ t f

0
xT (t )Qx(t )+uT (t )Ru(t )d t (2.10)



Chapter 3

Materials and methods

This chapter presents the project organization, materials, hardware and software used in the

project. Furthermore, describing the implementations of components, simulations and tech-

niques developed during the project.

3.1 Project Organisation

The project group consists of three students. Mateusz Jedynak, Viktor Karl Gravdal and Trygg

Meyer Johannessen. The Steering group consits of supervisors Ottar L. Osen, Aleksander L.

Skrede and Agus Hasan.

Seaonics AS serves as the client with Arne Johan Trandal, Erik Espenakk, Arve Gudmundset and

Stig Espeseth. Progressmeetings are held Biweekly with attending supervisors and clients.

21
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3.2 Materials

3.2.1 UR10 Robot

A robotic arm with 6 degrees of freedom is used for the prototype. More specifically a UR

Robotics model UR10, shown in image 3.1. The robot has 6 axes, payload handling up to 10kg

and a reach of 1300mm, with a repeatability of 0.1mm[40].

Figure 3.1: UR10 Robotic arm[40].

3.2.2 Camera Hardware

USB500W02 fish eye camera

At the initial development of machine vision a USB500W02 camera with a fish eye lens was used,

shown in figure 3.2. The camera was only utilized briefly at the start of the project. Additionally,

it was difficult to find decent camera documentation. After a few tests, it was discovered that the

camera could not identify moving objects due to the slow transmission speed. Also, the camera

resulted in noise and lack of precision due to the distortion from the fish eye lens.

Figure 3.2: USB Camera[11].
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Intel RealSense Camera

To detect the payload an Intel RealSense d455 camera is used. The Intel RealSense camera has

several detection capabilities. The Camera contains 3 different cameras. One RedGreenBlue

(RGB) camera and a stereo-camera for depth measurement. The Intel RealSense camera is ex-

cellent for machine vision applications and 3d reconstruction. The camera supports a large

amount of program libraries, allowing easier use of the cameras full functionality [6].

Figure 3.3: Intel realsense camera d455 [10].

The RGB camera has a resolution up to 1280x800, 60 Frames per second (fps) and 1 Mega Pixel

(MP) sensor resolution [6]. The depth camera uses stereoscopic technology, or two cameras to

achieve detection of the object in 3D. The depth camera has a frame resolution up to 1280x700.

The depth cameras frame rate is 90 fps, which is 3 times faster than the RGB camera. The depth

camera has a minimum working range from 52 cm and an accuracy of ±2% after 4 meters dis-

tance.

Frame rate, frame resolution, as well as sensor resolution are important factors which determine

the accuracy of the object detection. For this project, involving object detection in real time,

frame rate is essential for optimal results.
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3.2.3 3D-designs

The figures below shows several 3D designs developed during the project. Figure 3.4 and 3.5

shows two designed end effectors which were mounted on the robot arm. A hole is made in the

center of the end effector, to allow a wire or rope to connect to the payload. Figure 3.6 and 3.7

shows two designed payloads. All CAD designs were made in Fusion 360 and printed with 0.4

mm nozzle from a Prusa 3D-printer.

Figure 3.4: First designed end effector. Figure 3.5: Final design end effector with
camera mounting.

Figure 3.6: Alternative cylinder payload de-
sign.

Figure 3.7: Main payload design.
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3.2.4 Miscellaneous

• PC/laptop

• 2mm Rope.

• 2mm Steel wire.

• 40x40 Aluminium profiles

• Brackets

• Screws

• Port switch

• Ethernet cables

• Fasteners

3.3 Software

This section shows various software and libraries that were utilized in this project.

Figure 3.8: Sotware arcitecture for the bachelor project



CHAPTER 3. METHOD 26

3.3.1 GitHub Repository

It is important that everyone in a multi-member project has access to the source code. Another

important factor is that work from one member does not negatively impact the output of others

in the code. Therefore a GitHub repository was made. One of the group members has control

over the main code and other members can download or make new branches. A link to the

GitHub repository is presented below:

https://github.com/MateuszJed/Bachelor.git.

3.3.2 Programming languages

• Python

• Matlab / Simulink

3.3.3 Software

• Fusion 360 is a CAD/CAM/CAE tool for product design and development[9].

• RoboDK is an industrial robot simulator and robot programming environment[39].

• PolyScope is a graphical user interface and software made by UR robotics. PolyScope

controls the robot arm, as well as executing and writing robot programs [5].

• Unity is a cross-platform for game development, simulations and mobile games[42].The

Unity engine can be used to make 3D and 2D interactive simulations.

• Webots is a multi-platform, open-source desktop application designed to simulate robots.

It provides a complete development environment for simulating, programming, and mod-

eling robots [25].

https://github.com/MateuszJed/Bachelor.git
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3.3.4 Libraries

Below is a list of libraries that was used during the project in Python and Matlab.

Python: Matlab:
asyncio Control system toolbox
cv2 Industrial communication tool
pyrealsense2 Simulink
glob Symbolic Math toolbox
keyboard
math/cmath
matplotlib
numpy
os
pandas
rtde
time
scipy
statistics

Table 3.1: Libraries used in the project
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3.4 Modeling of dynamical system

In this section, a mathematical model for a pendulum system is derived.

3.4.1 Pendulum dynamics

To describe the crane’s payload dynamics, a simple pendulum model with a moving attachment

point based on [27] was utilized. Additionally, other publications were reviewed for comparison

and insight such as [30] and [38]. Even though the system is three-dimensional, it has been

decomposed into XZ and YZ planes. This decomposition simplified the modeling and allowed

simulation and testing in a single plane. In the model, the attachment point is the crane’s end

effector, and it can move in parallel to the XY plane. The notation for the pendulum model is

described in figure 3.9 and table 3.2.

xz-plane: yz-plane:

Figure 3.9: Simple pendulum in xz and yz plane with moving attachment point

Notation
Definition Symbol

Payload x-coordinate x
Payload y-coordinate y
Payload z-coordinate z

Attachment point x-coordinate xa

Attachment point y-coordinate ya

Attachment point z-coordinate za

Length L
Payload weight m

Angle x-direction θ

Angle y-direction φ

Table 3.2: Notation for simple pendulum model

Holonomic constraints:
x = xa +Lsi n(θ)
y = ya +Lsi n(φ)
z = Lcos(θ) (xz-plane)

Velocity-dependent constraints:

ẋ = ẋa + θ̇Lcos(θ)
ẏ = ẏa + φ̇Lcos(φ)
ż =−θ̇Lsi n(θ) (xz-plane)
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3.4.2 Modeling in xz-plane

The Lagrangian method was used to derive the equations of motions. Lagrangian Mechanics is

described in theoretical section 2.2. The attachment point can only move in the x-direction, and

is defined as (xa ,0,0).

First derive the Lagrangian by utilizing the kinetic (T) and potential (U) energy.

T = 1

2
m(ẋ2 + ż2)

= 1

2
m

(
(ẋa + θ̇Lcosθ)2 + (−θ̇Lsi nθ)2)

= 1

2
mẋa

2 +mẋa θ̇Lcosθ+ 1

2
mθ̇2L2 (3.1)

U = mg L(1− cosθ) (3.2)

The Lagrangian for this system can be derived from equation 3.1 and 3.2:

L = 1

2
mθ̇2L2 +mẋa θ̇Lcosθ+ 1

2
mẋa

2 +mg L(cosθ−1) (3.3)

Solve the Euler-Lagrange formula shown in equation 2.2 to derive the motions of equations:

∂L

∂θ̇
= mL2θ̇+mẋaLcosθ (3.4)

d

d t

(
∂L

∂θ̇

)
= mLθ̈+mLẍacosθ−mLθẋa si nθ (3.5)

∂L

∂θ
=−mẋa θ̇Lsi nθ−mg Lsi nθ (3.6)

d

d t

(
∂L

∂θ̇

)
− ∂L

∂θ
= mL2θ̈+mLẍacosθ−mLθ̇ẋa si nθ+mLθ̇ẋa si nθ+mg Lsi nθ = 0

= mL2θ̈+mLẍacosθ+mg Lsi nθ = 0 (3.7)

The model deviates with the sign for mLẍacosθ compared to [27]. However, it is only necessary

to change the attachment point/end effector’s sign in the control loop if needed. Equation 3.7

are the nonlinear undamped second order equation for the pendulum systems. For further de-

velopment, the model needs to be linearized. The lineraization will be around small angles of

"θ".
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The undamped linearized model are shown in equation 3.8.

mL2θ̈+mLẋa +mg Lθ = 0

θ̈+ g

L
θ+ 1

L
ẍa = 0 (3.8)

Undamped statespace representation:

First all the state and input variables are defined for the undamped system .

State variables: Second-order ODE to First-order:

x1 = θ ẋ1 = x2

x2 = θ̇ ẋ2 =−g

L
x1 − 1

L
u

u = ẍa

The undamped state space representation:

[
ẋ1

ẋ2

]
=

 0 1
−g

L
0

[
x1

x2

]
+

 0

−1

L

u (3.9)

[
y1

y2

]
=

[
1 0

0 1

][
x1

x2

]
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Parameter "L" estimation

The simple pendulum model’s length "L" is not only the wire or rope’s length but rather the

distance between the attachment point and the payload’s center of mass. The mass centroid of

the payload must be estimated in order to determine the distance "L". By using the Fusion360’s

built-in centroid calculation. The distance between the payload’s mass centroid and the top

surface is 0.069m shown in the figure: 3.10.

Figure 3.10: Distance between the mass centroid of the payload and the top surface

Further for an accurate length "L" estimation. The distance between the top surface of the pay-

load and the attachment point must be measured. This is accomplished by taking measure-

ments from the payload surface to the attachment point. The length "L" is calculated by adding

the distances from the centroid to the payloads top surface and from the payload top surface to

end effector. The parameter "L" is estimated to length 1.268m.
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3.4.3 Damped statespace representation:

To obtain a more accurate model of the real system the model must be damped.

Damping-ratio estimation

The model obtained by the Lagrangian method is undamped. In order to derive the damped

model, the damping ratio must be estimated. By measuring the behavior of the real system

and analysing it trough an algorithm to estimate the damping ratio. The algorithm utilizes log-

arithmic decrement repetitive over the measured data. A numerical approach of logarithmic

decrement ensures noise robustness. For each peak the algorithm calculates using 10 succeed-

ing peaks. Iterating the same process for each peak. This is illustrated in figure 3.11. Further, the

mean value of all the peak calculations is used to estimate the damping ratio.

Figure 3.11: Illustration of multiple reruns of logarithmic decrement.

The damping ratio was estimated using two real-world data sets measured from the prototype.

First measurement was 68 seconds long, whereas the second was 176 seconds long. The mea-

surements taken with the prototype are sampled with 60H z and had the camera mounted on

the robots end effector. With the arm statically positioned. With L = 1.268m and starting angle

θ ≈ 23°. The two measurements are shown in figure 3.12a and 3.12b

(a) First measurement (b) Second measurement

Figure 3.12: Two datasets used for estimating the damping ratio

Results of the estimated damping ratio "ζ",are presented in section 4.1.1.
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Implementation of damping ratio

The damping ratio is implemented using an ordinary damped harmonic oscillator, differential

equation 3.10, which includes the natural frequency and the damping ratio.

θ̈+2ζω0θ̇+ω2
0θ = 0 (3.10)

The damping ratio "ζ" is estimated in the algorithm described in section 3.4.3. When comparing

the damped harmonic oscillator equation 3.10 to the undamped dynamics in equation 3.8, the

natural frequency "ω0" equals

√
g

L
.

The dynamics of the damped pendulum system with moving attachment point in X direction is

as follows:

θ̈+ζ
√

g

L
θ̇+ g

L
θ+ 1

L
ẍa = 0 (3.11)

Damped statespace representation:

First all the state and input variables are defined for the damped system .

State variables: Second-order ODE to First-order:

x1 = θ ẋ1 = x2

x2 = θ̇ ẋ2 =−g

L
x1 −ζ

√
g

L
x2 − 1

L
u

u = ẍa

The linear damped state space representation in xz-plane:

[
ẋ1

ẋ2

]
=

 0 1
−g

L
−ζ

√
g

L

[
x1

x2

]
+

 0

−1

L

u (3.12)

[
y1

y2

]
=

[
1 0

0 1

][
x1

x2

]
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3.4.4 Modeling in yz-plane:

The procedure used for deriving the model in xz-plane is the same for yz-plane. Therefore, sub-

stituting attachment point xa with ya and angle θ withφ in equation 3.11 results in the model in

yz-plane shown in state space form in equation 3.13, where the states x1 =φ, x2 = φ̇ and u = ÿa .

State variables: Second-order ODE to First-order:

x3 =φ ẋ3 = x4

x4 = φ̇ ẋ4 =−g

L
x3 −ζ

√
g

L
x4 − 1

L
u

u = ÿa

The linear damped state space representation in yz-plane:

[
ẋ3

ẋ4

]
=

 0 1
−g

L
−ζ

√
g

L

[
x3

x4

]
+

 0

−1

L

u (3.13)

[
y3

y4

]
=

[
1 0

0 1

][
x3

x4

]
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3.5 Robot prototype

Working and testing on a real physical crane is unfeasible. Therefore, a smaller prototype placed

in an ideal environment is used to emulate a crane with payload. At the outset of the project, the

group conducted research on various suitable robotic arms. The group had access to a variety

of robots, including an Omron Adept Viper 850, a Sawyer robot, and a UR10. Shown in figure

3.13

(a) Viper adept 850[12]
(b) Sawyer[17].

(c) UR10[40]

Figure 3.13: Robot arms researched in the project.

The Viper was physically placed on a moving assembly line and had a small working area. There

were also other ongoing projects aiming to utilize the viper robot. Controlling the Viper is de-

pendent on Omrons integrated software and solutions. Without experience with said software,

we believed it could be more complicated because we lacked knowledge of its limitations.

The Sawyer robot is mounted on a mobile tray. However, there was little documentation and

examples of the robot compared to the UR10, which is advantageous when lacking experience

working with robots.

The UR10 was the most accessible of the robots. It is put on a mobile table, so it is not con-

fined to a specific spot. In addition, there were several examples and documentation accessible.

The UR10’s reach is 1300mm, which is greater than those of its competitors. Ultimately, it was

decided to use a UR10.
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3.6 Open platform communications

The server was used to communicate between Matlab and Webots when performing simulation.

An OPC server was created using the library opcua-asyncio to implement both an asynchronous

OPC UA client and server in Python. The asynchronous server does not start a new process or

thread for each request, allowing threads to run in parallel. In other words, if the server receives

several requests from different clients simultaneously, all values will be updated on the server.

3.6.1 Server

A server was made by refactoring and modifying an author example code[7]. Functions Server()

creates an asynchronous server with default values and set endpoint() set the IP address of the

server. Furthermore, nodes and variables are established.

3.6.2 Client

For the project, two clients were created. One in Matlab and one in Webots.

The Matlab client is made utilizing Matlabs Industrial Communications Toolbox. The Function

Connect(), including the server IP connects to the the server. The Functions readValue() and

WriteValue() are used to transmit nodes to and from the server.

The Webots Client runs on Python. Using function Client along with the server IP to establish a

connection. Functions read_value() and Write_value() are used to transmit nodes to and from

the server.
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3.7 Simulation

Simulating the operation of a real-world process is necessary to test solutions, troubleshooting

and verifying result. For this project, three simulation platforms were explored including Unity,

Webots and Matlab/Simulink.

3.7.1 Selection of simulation environment

Unity provides a better graphical engine than Webots, which is not crucial for the project. We-

bots however, includes API support for C, C++, Python, Java and Matlab. Whereas Unity requires

programming in C# language. Unity would requires more experience to develop a suitable sim-

ulator.

Early in the project Unity was used for simulation. However, after a few meetings with Seaonics

AS, which recommended Webots. The group adopted to use Webots. Later on, Seaonics also

distributed a finished Knuckle boom crane model in Webots. After becoming familiar with We-

bots and having received a working crane model, the group decided to use Webots as the main

simulation application for the project.

3.7.2 Webots simulator

To begin using Webots, a simple prototype of the UR10 robotic arm was created at the outset of

the project. Figure 3.14 shows the first model.

Figure 3.14: First model of UR10 in Webots

After some research, a working 3D-model of a UR10 was employed from a author on Github[35].

The model is based on a real model of the UR10, but the start angles or starting configuration for

each joint were different than the real word robotic arm. Two UR10 robots are shown in figure

3.15. On the left is the original from the author from Github. On the right is after all joints have

been adjusted to reflect the real world robotic arm.
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Figure 3.15: UR10 3D-models in webots. Original on the left. Adjusted start configuration on
the right.

The Knuckle boom crane model provided by Seaonics was also explored and tested. The func-

tion robot.getDevice() is used to control a specific joint of either the crane or UR10 model. The

OPC server and client mentioned in section 3.6 are used to send information to and from the

simulation. The server contains one node with three variables. angle position 1, 2, 3. An OPC

client in Webots continuously reads all angles from the server. The variables angle position 1, 2,

3 corresponds to the actuation of joints Base, shoulder, Elbow, respectively.

The link below presents a simulation of the Knuckle boom crane model in Webots.

https://youtu.be/Cw0_8ZL_C_g

Figure 3.16 shows a finished simulation environment, including the UR10 prototype and a Knuckle

boom crane. The right side of figure 3.16 is zoomed in to illustrate the size difference between

the two models. Both models include real-size representation.

Figure 3.16: Simulation environment of Knuckle boom crane on the left and UR10 robot arm on
the right.

https://youtu.be/Cw0_8ZL_C_g
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3.8 Kinematics

Kinematic equations are needed in order to manipulate the end effector of the robotic arm.

Kinematics are used to describe the position of the robot in Cartesian space using the angular

position of joints and vice versa. The UR10 provides 6 axis of motion. However, only 3 are need

to simulate crane motion. Therefore, the original 6DOF kinematic problem can be reduced to

a 3DOF kinematic problem. The 3 remaining axis of the robot arm are set to a fixed position.

Since the problem can be reduced to a less complex 3DOF problem, an analytic approach was

chosen, rather than a numerical approach. An analytic approach is more precise and requires

less computational cost. Illustration 3.17 shows a simplified 2D kinematic diagram of the now

reduced 3DOF robotic arm. Table 3.3 shows notation of figure 3.17.

Figure 3.17: 2D Kinematic diagram.

Notation
Definition Symbol

Joint 1 angle, base θ1

Joint 2 angle, shoulder θ2

Joint 3 angle, elbow θ3

Length of first link L1

Length of second link L2

Length of third link L3

End effector e

Table 3.3: Notation for 2D kinematic diagram
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Deriving the kinematics for the 3DOF robotic arm proved difficult. Due to a lack of experience

with kinematics and robotics in general. Throughout the project, the group derived two separate

kinematic models. The first model proved inaccurate in some scenarios while the second model

proved accurate in all scenarios. Both models are described in the sections below. The results

for each model is presented in section 4.3.

3.8.1 First kinematic model

Forward Kinematics

To describe the forward kinematics five frames were assigned to the robotic arm following the

modified D-H Convention described in section 2.4. Illustration 3.18 shows the assigned frames

in a kinematic diagram.

The authors of paper[28] present a way of determining the kinematic equations for a general 3

DOF robotic arm. The paper was used deliberately when deriving the kinematics for the UR10.

The assignment of frames are summarized in three steps[24]:

• Zi axis is assigned pointing along the i-th joint axis.

• Xi axis is assigned pointing perpendicular from Zi to Zi+1

• yi axis is assigned following the right hand rule.

Figure 3.18: 3D Kinematic diagram of Frames 4 to 0.
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Frame 1, which corresponded to Link (1), was connected at its top end. Because Z0 and Z1 are

parallel, the origin of this frame may have been assigned to any place along Link (1). Frame 2

rotates with Link (2) and is placed at the junction of Links (1) and (2), with X2 running along

the shared perpendicular extending from Z2 to Z3. Frame 3 revolves with Link (3) and is joined

at its contact with Link (2). Lastly, Frame 4 relates to the end-effector and is placed at its end

point[28]. Based on these defined frames, Modified Danavit-Hartenberg (D-H) parameters [13]

were determined as shown in table 3.4.

Modified D-H Parameters
i αi−1 ai−1 di θi

1 0° 0 L1 θ1

2 90° 0 0 θ2

3 0° L2 0 θ3

4 0° L3 0 0°

Table 3.4: Modified D-H Parameters

Definition of D-H parameters[28]:
αi : Link twist or anlge about the Xi between (Zi ,Zi+1)
ai : Link length or distance along Xi between (Zi ,Zi+1)
di : Link offset or distance along Zi between (Xi−1, Xi )
θi : Joint angle or the angle about Zi between (Xi−1, Xi )

The modified D-H parameters are used to compute a total homogeneous transformation ma-

trix which describes the kinematic relation from the end effector to all joints corresponding with

every frame. To compute the transformation for every coordinate frame. ( T 0
1 ,T 1

2 ,T 2
3 ,T 3

4 ,) sub-

stitute the modified D-H parameters for the general formula for T i−1
i [28]:

T i−1
i =


cθi −sθi 0 ai−1

sθi cαi −1 cθi cαi −1 −sαi −sαi −1 di

sθi sαi −1 cθi sαi −1 cαi −1 cαi −1 di

0 0 0 1

 (3.14)

T 0
1 =


c1 −s1 0 0

s1 c1 0 0

0 0 1 L1

0 0 0 1

 T 1
2 =


c2 −s2 0 0

0 0 −1 0

s2 c2 0 0

0 0 0 1

 (3.15)
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T 2
3 =


c3 −s3 0 L2

s3 c3 0 0

0 0 1 0

0 0 0 1

 T 3
4 =


1 0 0 L3

0 1 0 0

0 0 1 0

0 0 0 1

 (3.16)

ci is the cosine of the angle θi and si is the sine of the angle θi .

T 0
4 describing the end-effector frame with the reference/base frame may be derived by multi-

plying the homogeneous transformation matrices in the correct sequence[28]:

T 0
4 = T 0

1 T 1
2 T 2

1 T 3
4 (3.17)

T 0
4 =


c1c23 −c1s23 s1 c1c23L3 + c1c2L2

s1c23 −s1s23 −c1 s1c23L3 + s1c2L2

s23 c23 0 s23L3 + s2L2 +L1

0 0 0 1

 (3.18)

The first three elements in the final column of T 0
4 are the Cartesian coordinates of the origin of

the end effector (frame 4) with respect to the reference/base (frame 0).

x = c1c23L3 + c1c2L2 (3.19)

y = s1c23L3 + s1c2L2 (3.20)

z = s23L3 + s2L2 +L1 (3.21)

It is worth noting that c23 is the same as cos(θ2 +θ3), and s23 is si n(θ2 +θ3). Eqs. 3.19 to 3.21,

calculate the location of the end effector as a function of the joint angles θ1, θ2, and θ3.
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Inverse Kinematics

The position coordinates equations, Eqs. 3.19 to 3.21, were utilized in inverse kinematics to de-

rive the analytical expressions of the rotational angles (i.e. θ1, θ2, and θ3) for the base, shoulder,

and elbow joints as a function of the required x, y, and z coordinates. The following is a summary

of the inverse kinematic equations’ derivation based on[28]:

To begin, dividing Eq. 3.20 by Eq. 3.19 yields:

y

x
= s1c23L3 + s1c2L2

c1c23L3 + c1c2L2
= s1(c23L3 + c2L2)

c1(c23L3 + c2L2)
= s1

c1
= t anθ1 (3.22)

As a result, θ1 is represented directly as

θ1 = at an2
( y

x

)
(3.23)

Based on the signs of both the denominator and the numerator, the (atan2) function calculates

the arctangent of the argument and the correct quadrant. Secondly, an explicit equation for the

cosine of θ3 as a result of the robotic arm configuration and the coordinates of the target point,

may be obtained by adding the squares of Eqs. 3.19 to 3.21 and rearranging them.

c3 =
x2 + y2 + z2 − (L2

1 +L2
2L2

3)−2L1(z −L1)

2L2L3
(3.24)

Using the Pythagorean trigonometric identity

s3 =±
√

1− c3 (3.25)

The ambiguity in the algebraic sign in the previous equation, Eq. 3.25, shows that there are sev-

eral solutions. The two options relate to the two distinct configurations that are available. The

arm may take two different angles to go to the same place (i.e. elbow up and elbow down)[28].

Figure 4.1 shows a simulation of two different solutions for the same coordinates in RoboDK.

Notice that 3.19a is unfeasible to reflect a crane. However, 3.19b is. Another thing to note is that

the two angles q2 and q3 can be defined within a specific range. When compared to the angles

of the unfeasible solution, angle q2 is always larger in the desired solution, than the unfeasible

solution. q3, will for all desired solutions be larger than 0. Continuing, similar to the previous

eq. 3.23:

θ3 = at an2

(
s3

c3

)
(3.26)
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(a) Undesirable solution. (b) Desired solution.

Figure 3.19: Two possible solutions, for the same position simulated in RoboDK.

Finally, The second angle can be described as[28]:

θ2 = at an2

(
(z −L1)(c1 − s1)

(x − y)

)
−at an2

(
s3L3

(c3L3 +L2)

)
(3.27)
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3.8.2 Second kinematic Model

Since the original kinematic model was incorrect, a second model was made.

Forward

The forward kinematics are defined similarly to the previous influenced by [28]. This time how-

ever, using the standard D-H convention described in section 2.4. Five frames are assigned.

Additionally the world coordinates are set to match the actual base coordinates defined by the

robotic arm. The assigned frames are illustrated in a kinematic diagram 3.20.

Figure 3.20: 3D Kinematic diagram of Frames 4 to 0.

The assignment of frames are again summarized in three steps[24]:

• Zi axis is assigned pointing along the i-th joint axis.

• Xi axis is assigned perpendicular from Zi to Zi+1 pointing along the robots predefined

X-axis

• yi axis is assigned following the right hand rule.
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Frame 0, serving as the world coordinates is placed at the base of the arm. Frame 1 is connected

at the top end of frame 0, creating link(1). Frame 2 rotates with Link (2) and is placed perpendic-

ular to X1 connecting link(1) and link(2). Lastly, Frame 3 rotates with link(3) and is connected

with link(2). Frame 4 relates to the end-effector and is placed at the end of link 3 perpendicular

to X3[28]. Based on these defined frames, standard Danavit-Hartenberg (D-H) parameters [13]

were determined as shown in table 3.5.

Standard D-H Parameters
i αi−1 ai−1 di θi

1 0° 0 L1 θ1

2 90° 0 0 θ2

3 0° −L2 0 θ3

4 0° −L3 0 0°

Table 3.5: Standard D-H Parameters

Definition of D-H parameters[28]:
αi : Link twist or anlge about the Xi between (Zi ,Zi+1)
ai : Link length or distance along Xi between (Zi ,Zi+1)
di : Link offset or distance along Zi between (Xi−1, Xi )
θi : Joint angle or the angle about Zi between (Xi−1, Xi )

The standard D-H parameters are used to compute a total homogeneous transformation matrix

which describes the kinematic relation from the end effector to all joints corresponding with

every frame. To compute the transformation for every coordinate frame as described in chapter

2.4.( A0
1, A1

2, A2
3, A3

4,) substitute the standard D-H parameters for the general formula for Ai−1
i [44]:

Ai−1
i =


cθi −sθi cαi sθi sαi ai cθi

sθi cθi cαi −cθi sαi ai sθi

0 sαi cαi di

0 0 0 1

 (3.28)

Multiplying the homogeneous transformation matrices in the correct sequence describes the

end-effector frame with the reference/base frame[28]:

A0
4 = A0

1 A1
2 A2

1 A3
4 (3.29)
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The actual calculations for the forward kinematics is implemented as a function in Python. Fig-

ure 3.21 illustrates how the forward kinematics are calculated in Python. The first three elements

in the final column of A0
4 are the Cartesian coordinates of the origin of the end effector (frame 4)

with respect to the reference/base (frame 0).

Figure 3.21: Forward Kinematics function, homogeneous transformations in python
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Inverse Kinematics

As a function of the desired x, y, and z coordinates, inverse kinematics derives the analyti-

cal expressions of the rotational angles (i.e. θ1, θ2, and θ3) for the base, shoulder, and elbow

joints. Pythagoras’ law and trigonometric principles can be used to solve the inverse kinemat-

ics. Inverse kinematics may be addressed by looking at the top and side views of the robot,

respectively[18].

(a) Top view of robot
(b) Side view of robot.

Figure 3.22: Two different views of the robot.

The following summary of inverse kinematic equations are based on[18]:

From figure 3.22a equation 3.30 can be used to estimate the degree of the axis of the joint base

θ1 = at an2

(
Y

X

)
(3.30)

where X and Y are the X-axis and Y-axis positions of the end-effector coordinates, and θ1 is the

degree of the joint base’s angle[18].

A triangle guideline that depicts the lengths r1,r2, and r3 as illustrated on the dotted green line

in Fig. 3.22b is required to determine the degree of angle θ2. The following equations are used

to compute r1,r2, and r3[18]:

r1 =
√

X 2 +Y 2 (3.31)

r2 = Z −L1 (3.32)

r1 =
√

r 2
1 + r 2

2 (3.33)
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Where Z is the Z- axis position of the end-effector coordinates and L1 is the distance between

the base and shoulder joint[18].

Furthermore, the angle degrees θ2 and θ3 may be derived from a side view of the 3-DOF robot

arm. Several variables can be specified from the side, including L1,L2,L3, Z ,θ2, and θ3. Where

L2 is the length of the connection between the shoulder and the elbow. L3 is the length of the

connection between the elbow and the end-effector. The horizontal line axis of the shoulder

joint and the connection between the shoulder and elbow combine to produce θ2. The horizon-

tal line axis of the shoulder joint and elbow forms θ3[18].

Looking at Fig 3.22b θ2 can be calculated using the following equaiton[18]:

θ2 =φ1 +φ2 (3.34)

Where

φ1 = at an2

(
r2

r1

)
(3.35)

φ2 = arccos

(
L2

2 + r 2
3 −L2

3

2L2L3

)
(3.36)

Additionally, the following equation can be used to calculate θ3:

θ3 = 180°−φ3 (3.37)

Where

φ3 = arccos

(
L2

2 +L2
3 − r 2

3

2L2L3

)
(3.38)

The inverse kinematics are implemented as a function in Python.

3.8.3 Workspace

The workspace of the robot describes the various possible placements of the robot’s end-effector

in 3D space. The workspace is calculated analytically, based on the paper[28]. Using equation

3.24 from section 3.8.1, knowing cosine of the angles ranges between -1 and 1. The mathemati-

cal inequality shown below holds true [28].

−2L2L3 ≤ x2 + y2 + z2 −2L1z +2L2
1 − (L2

1 +L2
2 +L2

3) ≤ 2L2L3 (3.39)
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Simplification of equation 3.39 gives:

(L2 −L3)2 ≤ x2 + y2 + (z −L1)2 ≤ (L2 +L3)2 (3.40)

Equation 3.40 presents a sphere with centre (0,0,L1) with inner radius (L2−L3) and outer radius

(L2 +L3)[28].

The robot arm is placed on a table. The working space must extend beyond the table’s edge to

accommodate the payload, as well as have restrictions to prevent the end effector from collid-

ing with the ground below. As a result, the workspace is designated as a quarter sphere where

z ≥ L1 and y ≤ (L2−L3). To ensure the robot doesn’t move outside the workspace, the solution

for the base joint in equation 3.30 is constrained for results outside of range (0 - 180)°. Since the

tan function is defined periodically with π, subtracting or adding π until the allowed solution is

reached, constrains the base.

A 3D plot that portrays the arm’s workspace was constructed in Matlab based on the accurate

arm’s link lengths and joint angle limitations, as shown in figure 3.23. In this plot, the workspace

is defined by the green and red highlighted boundaries

Figure 3.23: 3D plot of robot arm workspace with boundaries highlighted in red and green.
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3.8.4 Verification through simulation

The mathematical models for both the inverse and forward kinematics are difficult to verify

without a graphical simulation. The simulator in webots from section 3.7.2 is used to verify the

models. The OPC UA server and clients mentioned in section 3.6 are used to transfer data from

Matlab to Webots.

Matlab is used to script the kinematic models provided in sections 3.8.1 and 3.8.2. The cal-

culated joint angles are then communicated to the simulator through the OPC server. A loop

iterates the model’s location from X: 0m, Y: -1.1184m, and Z: 0.0128m. The location is incre-

mented until it reaches a goal of X: 1.184m, Y: 0.01m, and Z: 0.0128m. Figure 3.24 shows the

Webots simulator, Matlab script and OPC Server combined to verify the solution.

Figure 3.24: Illustration of inverse kinematic testing

A video showing how the aforementioned verification was carried out for the second kinematic

model from section 3.8.2 is linked below.

https://youtu.be/bwDENS7TTP8

https://youtu.be/bwDENS7TTP8
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3.9 Controlling the robot

Several steps are needed in order to move and control the physical robotic arm. This section

describes the methods used and developed to control and communicate with the robotic arm.

3.9.1 Safety

Working around a robotic arm can be dangerous, Especially when developing functionalities,

and bypassing the robot controllers inbuilt functions. Therefore, when operating the robot, the

emergency stop mounted on the robots control panel is at the ready. A detailed risk assessment

is provided in appendix A.9.

3.9.2 Communication

The Real-Time Data Exchange (RTDE) interface enables synchronization between a client and

the UR controller through a standard TCP/IP connection, without compromising the UR con-

troller’s real-time capabilities [43]. This functionality is critical for the project since it enables

Fieldbus drivers to manipulate robot I/O and real-time operation for control and visualization

of robot status [43].

The transmission frequency used in transmission was set to 60 Hz corresponding to the camera

FPS. As a result, the control loop is capable of rapidly measuring and controlling the robot’s

end effector in real time. The registers for synchronization of variables on the client interface

are defined in an xml-file. Certain variable names are predefined by universal robots. The rtde

documentation offers information on the variable names that are predefined. Figure 3.25 shows

the pre-configured variables that were primarily used in the project, which were obtained from

the RTDE UR data-sheet.

Figure 3.25: Predefined variables from Ur-controller output [43].

The variables actual_TCP_pose and actual_TCP_speed are used for receiving the robot-arms end

effector position and speed in 6 DOF. The variables are given as 6D vectors, where each ele-
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ment is of datatype double (IEEE 754 floating point, 64bit) [43]. Furthermore, seven variables of

datatype double send information to the robot controller. Six of those transmit the angle values

for each joint. The final variable determines the state of the robot controller.

3.9.3 Actuation of joints

Figure 3.26: Different actuation com-
mands [21].

The robot controller supports different actuation-

commands for actuating the UR10 joints. Figure 3.26

shows the data-sheet of the most common commands.

The command movej() moves the robot linearly in joint

space. This command has built in trajectory planning.

The drawback is that the UR must finish the path be-

fore executing a new command. Figure 3.27 on the left

side illustrates this problem. The movel() command has

the same problem as movej, the difference being mov-

ing linearly in Cartesian space. Both commands utilizes

the controllers built in kinematic calculations for all 6

joints. This limits the ability to emulate crane move-

ments. To circumvent this issue, Real-time control of

each individual joint is needed. This is done using the

servoj() command. The advantage of servoj() is that it

supports real-time applications and can permanently

alter the final destination during a path, as illustrated

in figure 3.26 on the right side. There is no built-in tra-

jectory planning in the servoj() command. Therefore,

a trajectory needs to be implemented in order to move

the end effector smoothly.

Figure 3.27: Illustration of command movej() (left), servoj() (right) with new endpoint during a
path
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3.9.4 Program structure of UR10-controller

The UR10 robot controller works as a server. The controller reads data from the client, exe-

cuting command on the robotic arm, and updates the registers. The Ur10 robot controller is

programmed in UR’s software Polyscope. Figure 3.28 shows the program structure of the robot

controller in flowchart form. First stages are a start up sequence before the program loops con-

tinuously until either connection is lost or emergency stop is detected. The final version of UR10

source code is provided in appendix A.2.

Figure 3.28: UR10 controller program structure in flowchart
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3.9.5 Movement of end effector

With individual joint control allowed by the servoj command, a trajectory needs to be imple-

mented to move the end effector more smoothly. The next position should be near the previous

one, roughly along a continuous path to achieve a smooth transition.

In order to generate a trajectory, the path needs to be described using the control systems out-

put. The original model described in section 3.4.3 yields the acceleration as the output param-

eter for the regulator. Analyzing the end effector’s acceleration to a particular time proved to be

more difficult than anticipated. We attempted two different approaches described below.

Trajectory with asymmetric constant acceleration

A first approach was implementing trajectory with asymmetric constant acceleration. The im-

plementation in python was obtained from the textbook Trajectory planning for automatic ma-

chines and robots [22]. The advantage of using trajectory with asymmetric constant acceleration

is that the flex point doesn’t necessarily need to be at t f = (t1 + t0)/2 [22].

The trajectory planning with asymmetric constant acceleration was used in several control loops.

In some cases, trajectory planning was employed in conjunction with PID to achieve the desired

location more smoothly, but frequently get updated to a new final destination.

Additionally, it was utilized to slowly move the end effector from point A to point B without

swinging the payload.

Integrating acceleration

A second approach was to numerically integrate the acceleration twice to approximate the end

effectors cartesian position. The numerical integration method uses the trapezoidal rule.
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3.10 Detection of payload

To compensate for the payload’s pendulum motion, some form of object detection is needed.

During the project, the group reviewed several possibilities for object detection. Initially, an

IMU sensor was viewed as a method of estimating position. Due to the fact that the IMU read-

ings could be affected by waves if the crane is placed on a ship. Based on the group’s existing

experience with machine vision, the group elected to focus on machine vision as the primary

application. Further in this section, several machine vision implementations are described.

3.10.1 Machine vision algorithms

All parts of the object detection is implemented using Python. Python isn’t the fastest program-

ming language. Even so, it is robust and supports many libraries and features for machine vi-

sion. Some of these include color detection, ArUco marker detection and machine learning

algorithms.

3.10.2 ArUco marker

One method for object detection is using an ArUco marker. ArUco uses Fiducial markers to

detect the an object in a camera frame. ArUco is an open source library for python for detec-

tion of square markers. ArUco designates every fiducial marker with a unique ID. The markers

were generated using the website: https://chev.me/arucogen/. Figure 3.29 illustrates an example

ArUco marker with ID 5 and dictionary class 6x6. ArUco provides options over what resolution

Figure 3.29: Illustration of ArUco marker [1].

the markers inhabit. This is done by specifying the dictionary for a marker. Lower dictionary

sizes and larger marker sizes, in general, increase detection distance from camera to the marker,

and vice versa. The detection of larger markers, on the other hand, is more difficult due to the in-
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creased number of bits that must be retrieved from the image [29]. For this project a 100x100mm

size marker with dictionary DICT_6X6_100 is used.

Additionally, ArUco has the possibility to detect the orientation of every marker. Figure 3.30

shows an example of detection of frame Axes to marker with use of Intel Realsense camera.

Figure 3.30: Example of use of ArUco marker algorithm

To incorporate an ArUco marker, the markers are placed on each side of the payload. Figure 3.31

show concepts where markers are placed on the payload prototype.

Figure 3.31: 3D-Model of payload prototype with ArUco Markers
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To register the ArUco marker nothing can stay in front of the marker. Figure 3.32 show two ArUco

markers. One on top of the payload and another on the left side of the payload.

Figure 3.32: Detection of ArUco marker on the top of the payload and next to the payload
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3.10.3 Color detection

Another method for object detection is color detection. Color detection uses Hue, Saturation

and Brightness Value (HSV) to identify pixels in a image. In order to detect the correct colored

object, color calibration is needed.

To preform color calibration, the OpenCV library in python is utilized. The first step is to read

the camera frame and convert RGB/BGR picture to a HVS image. Secondly a track bar, to set

lower and upper boundary to hue, saturation and value is made. The trackbar is made with a

simple function cv2.getTrackbarPos() . All values are then saved as a two array list, one for lower

boundary and second for upper boundary HSV parameters.

The Last step is creating a new frame mask. This mask checks for array elements between the

camera picture frame array, and boundary HSV levels desired. Afterwards the result of the pic-

ture frame and HSV mask compared are displayed. Figure 3.33 shows an example of color cali-

bration for a yellow payload.

Figure 3.33: Color calibration example

The boundary values are then saved as a csv file for convenience. The csv file can later be im-

ported and used to detect a colored object in a camera frame.

After acquiring the HSV parameters from calibration the next step is the actual detection. The

raw camera input is transformed to a HSV image. Next, an integrated function from the OpenCV

library cv2.inRange() is used. This function is used to "detect an object based on the range of

pixel values in the HSV colorspace" [8]. The desired object parameters from the calibration are

compared against the camera HSV image. The function cv2.dilation() is used to increase detec-

tion area. This also helps reducing noise from the image. The result is a detected object in the

image frame.

Further, contours of the object are found using a OpenCV function cv2.findContours() [41].

Which retrieves contours from the binary image. This algorithm give out two variables, Con-

tours and Hierarchy. Contours contains a list of every detected object with parameters such as
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size and position in pixel coordinates. Hierarchy include hierarchy of objects. In this case only

one object is detected. Therefore hierarchy variables are never used.

The finished detection algorithm searches for the largest item. However, if the camera detects no

item in the image frame, background noise from a little object with the same HVS scale could be

problematic. Therefore, the program looks for objects with dimensions above 1500 pixels. This

approach gives reduced measurement noise.

3.10.4 Machine Learning

Machine learning is another method of object detection. Various machine learning methods

were considered during the project. The most promising was the YOLOv5 framework.

YOLOv5 is an object identification algorithm that uses a grid approach to partition photos. Each

grid cell is in charge of detecting items inside itself [14]. YOLOv5 has extensive documentation

on training, testing, and deployment on Github [15]. The group tested the completed database

for object detection. However, employing the framework for the project would require creating

a new data set. Not desiring to deviate from the project’s objective and already possessing suffi-

cient object detection methods. The team decided against pursuing machine learning further.
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3.11 Camera Mounting and change of basis

For detecting the payload, two different camera mountings were considered. Firstly the camera

was floor mounted with cameraview normal to the base zx-plane. Secondly the camera was

mounted on the top of the robots end-effector with a veiw of the base xy-plane.

3.11.1 Camera coordinates

The camera coordinates are in the center of the Intel RealSense D455. The Z-axis of the camera

is pointing straight outward. When staring straight at the camera, the Y-axis is pointing down-

wards and the X-axis is pointing left. Figure 3.34 shows the camera’s coordinate system.

Figure 3.34: Camera coordinate frame [10]

3.11.2 Floor mounted camera

Mounting the camera stationary in front might not be practical for crane applications. In many

cases, putting a camera in front of a crane will be difficult. However, because the camera is

stationary towards the robot, this approach may be more intuitive to implement and was worth

exploring. Figure 3.35 illustrates the camera’s position on the floor as well as the view from the

camera.

(a) Position of camera in bird’s perspec-
tive. (b) Direct vision from camera.

Figure 3.35: Position of camera and view from bird’s perspective.
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To detect the payload, Color detection algorithm described in section 3.10.3 was used. The po-

sition of x,y coordinates in pixel values are used to calculate the distance from the camera to the

object. This is done by incorporating the stereo depth camera in the intel realsense. The pyre-

alsense2 library in python, includes functions to detect distance in meters for a specific pixel in

the camera frame. In some scenarios however, a particular pixel will return a value 0 because

the camera cannot estimate the distance to the specific pixel.

Figure 3.36 illustrates the scenario where the camera cannot see a certain segment of the pay-

load. The segment with missing pixels are marked with a blue circle.

Figure 3.36: Example of missing segment from depth camera measurement

To circumvent this issue, five pixels around center were measured. The pixels with values of 0

are filtered out. After the filtering, the mean value of the remaining measurements were calcu-

lated in order to provide a accurate estimate of distance. Figure 3.37 shows an illustration of five

points around the center of payload.

Figure 3.37: Example of five points used to estimate payload position.
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Temporary detection

Following the detection of the payload, a temporary solution was required to determine the dis-

tance between the robot and the payload (i.e Y-global coordinate). This was accomplished by

subtracting the distance between the camera and the payload from the distance between the

camera and the robot. In the temporary solution pixels were utilized to detect the position in

the X-direction. Whereas a meter unit was used to measure the depth to payload in y direction.

After implementing the temporary solution, a more permanent robust solution was needed.

The goal then became to transform the floor mounted cameras coordinates to global coordi-

nates.

Pixel to meter conversion

The conversion from pixel to meter unit is required to eliminate scaling factors and for trans-

forming to global coordinates. The intrinsic matrix described in section 2.8.2 is used to derive

the correlation between 3D and 2D coordinates. The Realsense2 library includes a function that

returns the intrinsic matrix. The intrinsic matrix contains the internal parameters specific to the

Intel Realsense camera. The function rs2_deproject_pixel_to_point() from the Realsense2 library

was used to calculate from 2d to 3d for the camera. The required inputs to the function are the

intrinsic matrix, a pixel coordinate and the distance. These parameters allow the function to

return the X,Y,Z camera coordinates of the given pixel in meters.

Floor mounted camera coordinates to global coordinates

The extrinsic matrix remains constant since the camera is fixed. The extrinsic matrix described

in section 2.8.1 is used transform the camera coordinates to global coordinates. The transforma-

tion consists of a translation and a rotation. The translation from base/global center to camera

were measured and give: x = 0m, y =−2.184m and z =−0.662m. This is shown in figure 3.35a.

The camera to global coordinates are aligned with a rotation matrix around the x-axis. The ro-

tation is fixed as a -90°rotation. The transformation is summerized in equation 3.41 and 3.42.

The resulting global coordinates X,Y,Z are marked in red, whilst the camera coordinates X,Y,Z

are marked in blue. 
X

Y

Z

=


1 0 0

0 cos(−90°) −sin(−90°)

0 sin(−90°) cos(−90°)




X

Y

Z

+T (3.41)
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X

Y

Z

=


1 0 0

0 0 1

0 −1 0




X

Y

Z

+


0

−2.184

−0.662

 (3.42)

3.11.3 Top mounted camera

Mounting the camera on the end effector could be beneficial and useful. Because the rope on

the robot is fixed and can be measured, the camera doesn’t require stereo vision for distance

measurement. Before mounting the camera on the end effector, a variety of techniques need

addressing and implementation.

Sixth joint rotation compensation

The camera must be horizontal to always keep the payload in the camera’s scope (i.e normal to

the xy plane). A knuckle boom crane is a 3-DOF system. To handle the cameras planer orienta-

tion, an extra degree of freedom is required. The camera is kept horizontally steady by using the

UR10’s 3.2.1 sixth joint (θ6) to correct for the tilt caused by joints θ2 and θ3 Figure 3.38 illustrates

the compensation for the cameras planer orientation.

Figure 3.38: Rotation compensation

θ6’s normal angle to the plane is found by adding θ2 and θ3. Additionally, adding 90°includes

the final joints static offset from the initial configuration. Equation 3.43 yields:

θ6 = θ2 +θ3 +90° (3.43)
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Transforming camera coordinates to base/global coordinates

To transform the camera coordinates to base coordinates the cameras extrinsic matrix needed

to be derived. Since the camera doesn’t have a stationary position about the arms base this

proved more challenging than for the previous side mounted camera.

The extrinsic matrix, described in chapter 2.8.1 consists of a rotation and translation. The trans-

lation is described by the cameras translation relative to the base. Since the camera is mounted

on top of the robot, the robots known end-effector position is used as translation. The transla-

tion is the same as the position described by the forward kinematics from chapter 3.8.2, includ-

ing a slight offset.

The camera’s rotation in relation to the base was difficult at first, but with a different approach,

it became much easier. Initially, through rotation matrices, an attempt to derive the orientation

transformations was made. Different rotation matrices around the Z and Y axes were multiplied.

The transformation obtained some correct values in some positions, but not in others.

The second method involved fitting the coordinate system to a few known rotations of the base

and then finding a general solution for all rotations. Figure 3.39 illustrates the base and cameras

coordinate-system, with the base joint of the robot arm in 0°and 90°.

Figure 3.39: Camera and base coordinates system top view

Figure 3.39 shows a misalignment in camera and base coordinate orientation. With 0°at the

base joint, the cameras X and Y axis should be switched, and the z axis should be flipped in the

opposite direction, to align with the base coordinates. The transformation to base coordinates
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are shown in equation 3.44. For the equations X,Y,Z in blue are camera coordinates and X,Y,Z in

red are base coordinates. T notes the translation vector.


X

Y

Z

=


0 1 0

1 0 0

0 0 −1




X

Y

Z

+T (3.44)

With the base joint at 90°the cameras Y axis is a match and the Z and X axes should point in

opposite direction, to align with the base coordinates. The transformation to base coordinates

is shown in equation 3.45. 
X

Y

Z

=


−1 0 0

0 1 0

0 0 −1




X

Y

Z

+T (3.45)

To make a general solution for all base joint angles. The trigonometrical functions cos(q1) and

sin(q1) are used to fit for both equation 3.44 and 3.45 into a general solution. The general solu-

tion is shown in equation 3.46.
X

Y

Z

=


−sin(q1) cos(q1) 0

cos(q1) sin(q1) 0

0 0 −1




X

Y

Z

+T (3.46)



CHAPTER 3. METHOD 67

3.12 Control loop Simulation

Control-loop simulations of the model described in section 3.4.3 were carried out using various

control-loop designs. Because the dynamics in the xz and yz planes are the same, the model is

only simulated in the xz plane. In a Matlab/Simulink environment, the simulation will simulate

the robot arm’s end effector and the payloads motion.

3.12.1 Modular PID controller

The first implementation of simulation of the pendulum system was two feedback loops com-

bined into a single system input, in form of acceleration of the end effector. One PID com-

pensates for the payloads angular velocity, while the other controls the end effector’s position.

Figure 3.40 shows the control loop implemented in Simulink with use of the damped statespace

pendulum system in xz plane with full order state.

Figure 3.40: Diagram over modular PID control in Simulink.

The purpose of controlling the position of the end effector is to prevent it from drifting away.

The physical arm reach is limited and may risk colliding with obstacles if the end-effector can

drift freely.

The outputs of both PID controllers were practically polar opposites. As a result, optimising the

relationship between each PID was just as crucial as tuning the parameters separately in order

to successfully manage the angular velocity of the payload and the position of the end effector.

Both controllers were fine-tuned by trial and error. This simulation’s results are shown in section

4.2.1.



CHAPTER 3. METHOD 68

3.12.2 Modular PID controller with squared error

In most cases, the end effector should be able to control the payload more freely when the end

effector is close to it’s reference location. This can be done by squaring the error of the end effec-

tor’s position while maintaining the sign. This technique provides a much lower input value to

the PID when the error is minor and a significantly higher value when the error is larger because

of the squaring. Figure 3.41 shown an implementation of squared position error in Simulink.

This allows the angular velocity controller to be more dominant when the end effector is close

to its reference.

Figure 3.41: Diagram over modular PID control with squared error in Simulink.

The PID controllers were tuned by trail and error. The results of this simulation is shown in

results section 4.2.2.
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3.12.3 Modular LQR and PID

An LQR controller for angle and angular velocity control was implemented in Simulink for a

full order feedback pendulum system. The feedback gain is calculated through the built-in lqr-

function in Matlab. A PID controller controls the end effector’s position.

With experience from the previous simulations, the angular controller performs significantly

slower when combined with a position controller. Therefore, when designing the LQR, the Q

and R are weighted to provide a fast system. The weights are shown in equation 3.47.

Q =
[

1 0

0 1

]
R = 0.5

(3.47)

The feedback gain calculated by the LQR are shown in equation 3.48.

K1 = 2344 K2 = 3567

(3.48)

Figure 3.42 illustrats the LQR feedback gain and PID position controller in Simulink.

Figure 3.42: Diagram LQR and PID control-system simulation in simulink.
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3.13 Control System Implementation

After combining object detection, robot control and communication into a functioning system,

we began implementing regulators on the prototype.

To compensate for the payload’s swaying motion, we examined several control loops. The team

has worked with and implemented PID controllers in the past. In addition, literature dealing

with comparable systems has shown that a PID controller may produce good results [44]. There-

fore, a PID controller was implemented on the prototype. The controllers mentioned below, are

all implemented in Python. The PID output is the required position of the robot’s end effector.

The payload is detected using color detection.

3.13.1 PID Controller with position input

First implementation of PID-controller

The PID controller was implemented to control end effector of UR10 to regulate payload to the

reference point. The controller compensates for the payload cartesian position in the XY plane.

Therefore, The PID controller consists of two separate control loops. One for the X-direction,

the other for the Y-direction.

During the initial stage, the camera was placed on the floor and the depth camera was utilized to

determine the distance between the camera and the payload. This controller was created prior

to transforming camera coordinates to global coordinates, mentioned in section 3.11.2. Conse-

quently, the x-direction controller utilizes pixel units from the camera, whereas the y-direction

controller employs meter units from the depth camera.

Both controllers were adjusted to accommodate the control loop. For the measurements in the

X-direction, The camera measures values between -640 and 640 pixels. Therefore, the camera

coordinates are scaled to fit between -0.8 and 0.8 meters using the scaling function described in

section 2.7.

For the measurements in the Y-direction, the depth camera measures distances between 0.5

and 1.5 meters. Hence, the measurements were scaled between -0.3 and -1.4 to approximate

the global coordinate system.

The parameters for both PID controllers were determined by trial and error.
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PID-controller with floor mounted camera

Subsequently, the transformation of camera coordinates to global coordinates, as mentioned in

section 3.11.2, makes measurement scaling unnecessary. Hence, the PID controllers were tuned

to accommodate global coordinates from the floor-mounted camera. All PID parameters were

determined using trial and error.

PID-controller with top mounted camera

After successfully mounting the camera on the robot’s end effector and transforming the camera

coordinates to global coordinates, the control-loop described previously in section was re-used.

All PID parameters were modified using trial and error.

3.13.2 PID Controller with angle input

PID with restricted end effector movement

The preceding controllers use the payload location as an input to account for pendulum mo-

tion. An alternative option is to compensate for the angle between the end effector and the

payload. In order to observe the difference between the two methods, a new PID controller was

implemented. This time, the angle will serve as the input. The controller controls the angle of

the payload in the ZX and ZY planes. Two parallel control loops provide output locations for the

robot’s end effector.

Equation 3.49 and 3.50 provide the angle between the robot’s end effector and the payload for

both x and y-direction.

θ = arcsin
(payloadx −endeffectorx

wirelenght

)
(3.49)

φ= arcsin
(payloady −endeffectory

wirelenght

)
(3.50)

In order to observe the difference between the two methods, a new PID controller was imple-

mented. This time, the angle will serve as the input. The controller regulates the angle of the

payload in the ZX and ZY planes. Two parallel control loops provide output for the system. The

controller’s error is calculated by subtracting the measured angle from the reference angle. The

reference angle is 0, where the payload is stationary. The robot’s reference location is added to

the PID’s output. This allows the robot to compensate for the sway around a given reference

location.
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PID with unrestricted end effector movement

After observing the performance of the previous controller, it is evident that restricting the

end effectors’ movement made the system slower. Therefore, the control loop structure was

changed. Instead of adding the PIDs output to a reference location, the output is instead con-

verted to end effector positions by rearranging equations 3.49 and 3.50.

end effectorx = payloadx −
(
wirelenght · sinθ

)
(3.51)

end effectory = payloady −
(
wirelenght · sinθ

)
(3.52)

Equations 3.51 and 3.52 yields a cartesian position for the robot arm. This permits the system to

evaluate the angle of the payload without regard to the position of the end effector.

When the angle is below a threshold of ± 0.04 radians (2.29 degrees), And after a slight time

delay. The arms end effector moves towards a reference position, using trajectory planning. The

time and speed of the arms motion are dependent on the euclidean distance between the end

effectors current position and its reference point. To calculate the trajectory’s travel time, the

euclidean distance is multiplied by an arbitrary scaling factor. Further, making the trajectory

sufficiently smooth to prevent oscillations along its journey.
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3.14 System architecture

The general structure of the system architecture is represented in 3.43.

Figure 3.43: System Architecture

The prototype’s finalized version is comprised of aspects and components created throughout

the duration of the project. Figure 3.44 shows the finalized prototype. As previously explained

in section 3.11.3, the camera is mounted to the end effector. The payload is detected using color

detection as described in section 3.10.3. The kinematics derived in section 3.8.2 are used to com-

pute the desired joint angles. The controllers mentioned in section 3.13 are used to regulate the

pendulum motion. All of the aforementioned components are implemented in a local Python

script. The desired joint angles are transmitted to the controller of the UR10 robot, which then

executes the motion.

(a)
(b)

Figure 3.44: Finished prototype.
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3.15 Testing setup

In order to test and document the performance of different control loops on our prototype and

provide reliable results over several iterations, a testing rig/setup was made. The rig consists of

40x40 aluminium profiles, brackets and screws.

The rig is portable, allowing us to document the performance from the different control loops in

the X and Y direction separately and X and Y combined. Image 3.45 shows the rig, while images

3.46, 3.47 and 3.48 show the rig in different testing scenarios.

Figure 3.45: Testing rig Figure 3.46: Testing in X - direction

Figure 3.47: Testing in Y - direction Figure 3.48: Testingin XY directions

A separate script was created for each controller in order to log data. The logging and regulation

starts once the payload crosses the X-axis. After a specified time, the logging stops and the

results are saved as a csv file.



Chapter 4

Result

The following chapter contain the results of the project’s different components and implemen-

tations. The chapter’s content include an estimation of the model’s damping ratio. The model

compared to the real system. In addition, simulation of the modelled system using a modular

PID controller that yields a 12-second settling time. Including, simulation of Modular PID con-

troller with squared error, with an improved settling time of about 8 seconds. Also, simulation

of modular LQR and PID with an approximate settling time of 10 seconds. Furthermore, the

outcomes for the first and second kinematics models, with the second model giving the correct

solutions. additionally, a plot of trajectory planning is simulated with accurate results.

The results of mounting the camera on the floor and the end effector following, the machine

vision application. The maximum inaccuracy on the floor is 34mm, while the maximum error

on the top is -13mm. The highest inaccuracy for the camera mounted on top was 18.6mm when

the payload was stationary and the camera was moved to various locations to estimate the pay-

load’s position.

Lastly, the results for the controllers implemented on the prototype, are presented.
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4.1 Modeling

Below shows the result for the system model and parameter estimation.

4.1.1 Parameter estimation

Damping ratio

The damping ratio were determined by evaluating the measurements described in Section 3.4.3.

Figures 4.1a and 4.1b shows the normal distribution of the estimated damping ratio for the first

and second measurements, respectively.

(a) First measurement. (b) Second measurement.

Figure 4.1: Normal distribution of damping ratio "ζ" for both measurements.

4.1.2 Undamped model

Figure 4.2 shows the undamped model derived in section 3.4.2 compared to measurements from

the real system. The initial angle for both is ≈ 0.4 rad or 23°.

Figure 4.2: Undamped model compared to measurement from the real system.
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4.1.3 Damped model

Figure 4.3 shows the damped model derived in section 3.4.3 compared to measurements from

the real system. The damping ratio ζ in the damped model is 0.00728. The initial angle for the

model and the real system is ≈ 0.4 rad or 23°.

Figure 4.3: Damped model compared to measurement from the real system.

Figure 4.4 shows the damped model derived in section 3.4.3 compared to a second measure-

ment from the real system. The damping ratio ζ in the damped model is 0.00444. The initial

angle for the model and the real system is ≈ 0.43 rad or 24°.

Figure 4.4: Damped model compared to a second measurement from the real system.
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4.2 Control loop simulation

4.2.1 Modular PID controller

Figure 4.5 and 4.6 shows results for a Simulink simulation of the modular PID controller, de-

scribed in section 3.12.1. Figure 4.5a shows a plot of the payload angle for the closed loop sim-

ulation. Figure 4.5b shows a plot of the payload angle for the open loop simulation. Figure 4.6a

shows a plot of the end effector’s position during the closed loop simulation. Figure 4.6b shows

a plot with output from the angular velocity-PID, the position-PID and their combined output.

Table 4.1 shows the PID parameters used in the simulation.

PID parameter
PID controller: Kp , Ki , Kd

Angle velocity PID 1.8, 0.001, 0.005
End-effector position PID 1.4, 0, 2

Table 4.1: PID parameters in modular PID controller

(a) Closed loop (b) Open loop

Figure 4.5: Plot of payload angle for closed and open loop modular PID controller simulation.

(a) End effector position.
(b) Outputs of angular velocity-PID, position-PID and combined.

Figure 4.6: Plot of end effector position and PID outputs from the modular PID controller simu-
lation.
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4.2.2 Modular PID controller with squared error

Figure 4.7 and 4.8 shows results for a closed loop Simulink simulation of the modular PID con-

troller with squared error, described in section 3.12.2. Figure 4.7a shows a plot of the payload

angle for the simulation. Figure 4.7b shows a plot of the payload angular velocity for the simula-

tion. Figure 4.8a shows a plot of the end effector’s position for the simulation. Figure 4.8b shows

a plot with output from the angle velocity-PID, the position-PID and their combined output.

Table 4.2 shows the PID parameters used in the simulation.

PID parameters
PID controller: Kp , Ki , Kd

Angle velocity PID 1.8, 0.001, 0.005
End effector position PID 1.4, 0, 2

Table 4.2: PID parameters in modular PID controller with squared error

(a) Payload angle
(b) Payload angular velocity

Figure 4.7: Plot of payload’s angle and angular velocity for modular PID controller with squared
error in a closed loop simulation.

(a) End effector position. (b) Outputs of angular velocity-PID, position-PID and combined.

Figure 4.8: Plot of end effector position and PID outputs from the modular PID controller with
squared error simulation.
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4.2.3 Modular LQR and PID

Figure 4.9 and 4.10 shows results for a closed loop Simulink simulation of the modular LQR and

PID controller, described in section 3.12.3.

Figure 4.9a shows a plot of the payload angle for the simulation. Figure 4.9b shows a plot of

the payload angular velocity for the simulation. Figure 4.10a shows a plot of the end effector’s

position for the simulation. Figure 4.10b shows a plot with output from the full order state feed-

back, the position-PID and their combined output. Table 4.3 shows the PID and feedback gain

parameters used in the simulation.

Controllers parameters
PID controller: Kp , Ki , Kd

End effector position PID 1.4, 0, 2
Feedback gain: Kangle, Kangular velocity

gain from LQR 0.05508, 3.3857

Table 4.3: PID parameters and feedback gain in modular LQR and PID

(a) angle
(b) angle velocity

Figure 4.9: Plot of payloads angle and angular velocity for modular LQR and PID simulation.

(a) Position of end effector (b) Output from Position-PID, full order state feedback and com-
bined.

Figure 4.10: Plot of end effector position along with position-PID output and full order state
feedback output from the modular LQR and PID simulation.
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4.3 Kinematics

The Kinematic solutions for both models described in sections 3.8.1 and 3.8.2 are validated in

Matlab/Simulink. The results show a simulation where distinct Cartesian coordinates are con-

verted via inverse kinematics, which are then passed to forward kinematics for comparison.

A video showing the results of both kinematics models, simulated in Webots is linked below. In

the video the first model is on the left and the second is on the right

https://youtu.be/cx6vYecd0sM.

Another video showing testing of the kinematics on the real system is shown in the link below.

https://youtu.be/du6FzrQY2eo

In the video the prototype is made to trace a spiral sphere.

4.3.1 First Model

Figure 4.11 shows kinematic solutions for distinct configurations. The link lengths for the model

are set to L1 = 0m,L2 = 1m,L3 = 1m.

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Figure 4.11: First model Kinematic solutions from forward and inverse in Simulink/Matlab.

https://youtu.be/cx6vYecd0sM
https://youtu.be/du6FzrQY2eo
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4.3.2 Second Model

Figure 4.12 shows kinematic solutions for distinct configurations. The link lengths for the model

are set to L1 = 0.128m,L2 = 0.612m,L3 = 0.688m.

(a) Test 1
(b) Test 2

(c) Test 3 (d) Test 4

Figure 4.12: Kinematic solutions from forward and inverse in Simulink/Matlab.
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In figure 4.13 a sine wave with amplitude 100mm is used as input to verify the inverse and for-

ward kinematics.

Figure 4.13: Inverse and Forward verification with Sine wave input.

Figure 4.14 shows the simulation results. The sine wave input to the inverse kinematic, along

with the calculated cartesian positions from the forward kinematics.

(a) Kinematic solution with sine wave input (b) zoomed in

Figure 4.14: Plot of inverse and forward kinematics output, from Simulink simulation.
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4.4 Trajectory planning

Initial conditions for this trajectory is: start position: q0 = 0, end position: q1 = 10, start velocity:

v0 = 1, end velocity: v1 = 0, start time: t0 = 0, end time: t1 = 4, flex point: t f = 1.

Figure 4.15 shows a trajectory implemented in python environment.

Figure 4.15: Trajectory with asymmetric constant acceleration

4.5 Machine vision and change of basis

The results from machine vision and transformed camera coordinates are shown below. The

payload is detected using color detection described in section 3.10.3.

4.5.1 Floor mounted camera

Table 4.4 shows results with the floor mounted camera from section 3.11.2. The table shows the

test of estimate the global coordinates from five fixed payload positions, with corresponding er-

ror. The cameras resolution is set to 1280x720.

Estimated global coordinates from floor mounted camera
Payload coordinates (X,Y,Z)
[mm]

Estimated coordinates (X,Y,Z)
[mm]

Error from payload coordi-
nates (X,Y,Z)[mm]

(−320,−768,−755) (−354,−744,−755) (34,−24,0)
(−320,−1318,−755) (−349,−1289,−755) (29,−29,0)
(0,−1004,−755) (6,−977,−755) (−6,−27,0)
(320,−768,−755) (323,−738,−755) (−3,−30,0)
(320,−1318,−755) (323,−1284,−755) (−3,−34,0)

Table 4.4: Estimated global coordinates from five fixed payload positions with corresponding
error.
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4.5.2 Top Mounted Camera

Cameras resolution at 1280x720

Table 4.5 shows results with the top mounted camera from section 3.11.3. The table shows the

test of estimate the global coordinates from five fixed payload positions, with corresponding er-

ror.

Estimated global coordinates from top mounted camera
Payload coordinates
(X,Y,Z) [mm]

Estimated coordinates:
(X,Y,Z) [mm]

Error from pay-
load coordinates
(X,Y,Z):[mm]

(−320,−768,−755) (−316,−755,−755) (−4,−13,0)
(−320,−1318,−755) (−324,−1307,−755) (4,−11,0)
(0,−1004,−755) (1,−1008,−755) (−1,4,0)
(320,−768,−755) (323,−772,−755) (−3,4,0)
(320,−1318,−755) (318,−1314,−755) (2,−4,0)

Table 4.5: Estimated global coordinates from five fixed payload positions with corresponding
error. The camera resolution is 1280x720.

Cameras resolution at 848x480

Table 4.6 shows results with the top Mounted camera from section 3.11.3. The table shows the

test of estimate the global coordinates from five fixed payload positions, with corresponding

error.

Estimated global coordinates from top mounted camera
Payload coordinates
(X,Y,Z) [mm]

Estimated coordinates:
(X,Y,Z) [mm]

Error from pay-
load coordinates
(X,Y,Z):[mm]

(−320,−768,−755) (−320,−754,−755) (0,−14,0)
(−320,−1318,−755) (−327,−1310,−755) (7,−8,0)
(0,−1004,−755) (0,−1007,−755) (0,3,0)
(320,−768,−755) (320,−772,−755) (0,4,0)
(320,−1318,−755) (320,−1316,−755) (0,−2,0)

Table 4.6: Estimated global coordinates from five fixed payload positions with corresponding
error. The camera resolution is 848x480.
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Estimated global coordinates at various locations within the camera view

Table 4.7 shows results from the cameras estimated global coordinates for a stationary posi-

tioned payload at various locations within the camera view. The payload is under the top mounted

camera while the base-joint and the camera frame rotates. The cameras resolution is set to

1280x720. Figures 4.16a - 4.16g displays the camera view for the different base joint configura-

tions.

Estimated global coordinates from various camera views.
joint-base
angle:

Estimated coordinates:
(X,Y,Z) [mm]

Error from reference
(X,Y,Z):[mm]

figure:

90°(ref) (−14.88,−985.99,−677.68) (0, 0, 0) 4.16a
60° (−22.07,−986.98,−677.68) (7.19, 0.99, 0) 4.16b
45° (−25.89,−986.30,−677.68) (11.01, 0.31, 0) 4.16c
30° (−33.48,−984.05,−677.68) (18.6, −1.94, 0) 4.16d
120° (−15.72,−978.80,−677.68) (0.84, −7.19, 0) 4.16e
135° (−18.22,−978.33,−677.68) (3.34, −7.66, 0) 4.16f
150° (−21.96,−975.88,−677.68) (7.08, −10.11, 0) 4.16g

Table 4.7: Table over estimated global coordinates with different base-angles with correspond-
ing error.
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(a) 90° (b) 60°

(c) 45° (d) 30°

(e) 120° (f) 135°

(g) 150°

Figure 4.16: Cameraview over stationary payload with different basejoint angles
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4.6 Open loop system response

Figure 4.17 shows the systems response without compensation.

The X-direction had an initial angle of approximately 60°. The unregulated system settles be-

tween ±5° after 70 seconds.

Figure 4.17: System response without compensation in x-direction

4.7 PID-Controller with position input.

This section presents results for the implemented PID Controllers with position input, as de-

scribed in section 3.13.1.

4.7.1 First implementation of PID-controller

The result of the first implemented PID controller from section 3.13.1 is displayed in figure 4.18

and 4.19. Table 4.8 shows the PID’s Parameters. The performance is measured through 11 trials.

For all measurements the payload is launched from an angle of approximately −62.5° in both di-

rections. The control loop starts when the payload crosses the x-axis. The controllers reference

is -50 pixel in X-direction and -0.19m in Y-direction.
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PID parameters
PID controller: Kp , Ki , Kd

X-direction PID 0.5, 0, 0.1
Y-direction PID 0.5, 0, 0.1

Table 4.8: PID parameters for x- and y-direction controllers

Figure 4.18: Plot of payload pixel coordinate in X-direction

Figure 4.19: Plot of payload position from camera.
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4.7.2 PID-controller with floor mounted camera

The results of the PID-controller with floor mounted camera from section 3.13.1 is displayed

in figure 4.20 and 4.21. Table 4.9 shows the PID’s Parameters. The performance is measured

through 10 trials. For all measurements the payload is launched from an angle of approxi-

mately -68°in both directions. The control loop starts when the payload crosses 0.15m in the

x-direction. The controllers reference is 0m in X-direction and -0.95m in Y-direction.

PID parameters
PID controller: Kp , Ki , Kd

X-direction PID 0.5, 0, 0.1
Y-direction PID 0.5, 0, 0.1

Table 4.9: PID parameters for x- and y-direction controllers

Figure 4.20: Plot of payload’s global position in X-direction

Figure 4.21: Plot of payload’s global position in Y-direction
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4.7.3 PID-controller with top mounted camera

The results of the PID-controller with top mounted camera from section 3.11.3 is displayed in

figure 4.22 and 4.23. Table 4.10 shows the PID’s Parameters. The performance is measured

through 8 trials. For all measurements the payload is launched from an angle of approximately -

64°in both directions. The control loop starts when the payload crosses 0.15m in the x-direction.

The controllers reference is 0.2m in X-direction and -0.79m in Y-direction.

PID parameters
PID controller: Kp , Ki , Kd

X-direction PID 0.5, 0.006, 0.006
Y-direction PID 0.5, 0.006, 0.006

Table 4.10: PID parameters for x- and y-direction controllers

Figure 4.22: Plot of payload’s global position in X-direction

Figure 4.23: Plot of payload’s global position in Y-direction
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Figure 4.24 and 4.25 shows end effector and payload position in X and Y direction for one trail.

Figure 4.24: Payload and end effector position in x-direction

Figure 4.25: Payload and end effector position in y-direction

The video below demonstrates the entire system with a PID controller with position input and

top mounted camera.

https://youtu.be/_qr3bth8z2k

https://youtu.be/_qr3bth8z2k
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Different PID-parameters

Figure 4.26 and 4.27 shows the systems response with different PID parameters. On the right

corner of graphs are description over Kp , Ki and Kd values for each graph.The controllers refer-

ence is 0m in X-direction and -0.9m in Y-direction

Figure 4.26: Plot of system response with different PID values in x-direction

Figure 4.27: Plot of system response with different PID values in y-direction
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4.8 PID-Controller with angle input

This section presents results for the implemented PID Controllers with angular input, as de-

scribed in section 3.13.2. With the camera mounted on the end effector.

4.8.1 PID with restricted end effector movement

The result of the PID controller with restricted end effector movement from section 3.13.2 is

displayed in figure 4.28 and 4.29. Table 4.11 shows the PID’s Parameters. The performance is

measured through 10 trials. For all measurements the payload is launched from an angle of ap-

proximately -68°in both directions. The control loop starts when the payload crosses the x-axis.

The controllers reference is 0m in X-direction and -0.9m in Y-direction.

PID parameters
PID controller: Kp , Ki , Kd

X-angle PID 0.5, 0.006, 0.005
Y-angle PID 0.5, 0.006, 0.005

Table 4.11: PID parameters for x- and y-angle controllers

Figure 4.28: Plot of payload’s position in X-direction
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Figure 4.29: Plot of payload’s position in Y-direction

Figure 4.30 and 4.31 shows end effector and payload position, along with the wire angle in X-

and Y-direction for one trial.

Figure 4.30: Plot of payload position, angle of wire and end effector position in x-direction.
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Figure 4.31: Plot of payload position, angle of wire and end effector position in y-direction.

The video below demonstrates the entire system with a PID controller with restricted end effec-

tor movement.

https://youtu.be/9GgXt6Ay2mw

https://youtu.be/9GgXt6Ay2mw
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4.8.2 PID with unrestricted end effector movement

The results of the PID-controller with unrestricted end effector movement and trajectory to ref-

erence position from section 3.13.2 is displayed in figure 4.32, 4.33 4.34 and 4.35. Table 4.12

shows the PID’s Parameters. The performance is measured through 10 trials. For all measure-

ments the payload is launched from an angle of approximately -70°in both directions. The con-

trol loop starts when the payload crosses 0 in the x-direction. The trajectory end position q1 is

0m in X-direction and -0.85m in Y-direction. The scaling factor for the trajectory’s travel time is

20.

PID parameters
PID controller: Kp , Ki , Kd

X-angle PID 0.5, 0.006, 0.005
Y-angle PID 0.5, 0.006, 0.005

Table 4.12: PID parameters for x- and y-angle controllers

Figure 4.32: Plot of payloads angle in X-direction.
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Figure 4.33: Plot of payloads angle in Y-direction.

Figure 4.34: Plot of payloads position in X-direction.
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Figure 4.35: Plot of payloads position in Y-direction.

Figure 4.36 and 4.37 shows end effector and payload position, along with the wire angle in X-

and Y-direction for one trial.

Figure 4.36: Plot of payload position, angle of wire and end effector position in x-direction.
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Figure 4.37: Plot of payload position, angle of wire and end effector position in y-direction.

The video below demonstrates the entire system with a PID controller with unrestricted end

effector movement.

https://youtu.be/zYnpuX7JBEA

https://youtu.be/zYnpuX7JBEA


Chapter 5

Discussion

This chapter discuss the reasoning behind the obtained results and how we have experienced

the project’s execution.

5.1 Model

Simple pendulum

The simple pendulum model has it’s limitations. The payload’s centroid is aligned with the rope.

Consequently, any rotation of the payload will not affect the pendulum dynamics. In the major-

ity of instances, the actual payload of a crane will deviate from the model. The simple pendulum

model doesn’t account for the ropes mass, wind , friction and other disturbances. Therefore, the

model has inaccuracies which don’t reflect a real crane or our prototype.

The simple pendulum model is nonlinear. The disadvantage of linearization is that the model’s

accuracy is limited to small angles. However, for actual crane operations, the angle of the pay-

load is generally low.

The simple pendulum model are only in a single plane, but the actual system exists in three-

dimensional space. The method of decomposing the system into XZ and YZ plane proved effec-

tive for the simulation. Nevertheless, a spherical pendulum model would most likely be a better

option [30].

101
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Undamped model

Figure 4.2 shows the results of the undamped model. The outcome shows that the model de-

viates from the actual system. However, the frequency of the pendulum’s swings show a close

match to the real system. This suggests that the length of the rope is accurately estimated.

Damped model

Since the system is non-linearly there is not one unique solution for the damping ratio. The

damping impact gradually decreases when the payload angle decreases. The result of the first

and second system measurements in figure 4.3 and 4.4, indicate that a shorter data set yields

a more precise damping ratio for that time interval. The damping ratio utilized for the project

was derived from the first measurements, as they are more accurate for the angle range where

compensation is most crucial. However, for a more accurate model, the damping ratio should

be updated during the loop.

5.2 Kinematics

First Model

For certain solutions, the findings of the initial kinematic model revealed that the model was

erroneous.

Figure 4.12a depicts a robot setup with all joint angles set to 0°. The end effector is described

as lying straight and pointing 2 units along the x axis as a result of the forward kinematics. This

exact solution is proven valid using inverse kinematics and the accompanying input from the

forward kinematics.

Figure 4.12b, on the other hand, makes an intriguing point. The inverse kinematics output does

not correspond to the forward kinematics input. Despite this, upon analysing the actual po-

sition of the end effector, the solution is correct, although unsuitable. The potential of many

solutions is challenging when formulating inverse kinematics for multiple DOF.

In addition, figure 4.14b shows an inaccuracy. The inverse kinematics with the accompanying

forward input does not yield a genuine accurate solution. This kinematic model was derived

from the one given in paper [28]. However, we did not achieve the same outcomes. One cause

for this may be that our model is incorrectly implemented. Perhaps due to the group’s lack of

robotics knowledge in general.
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Another factor that might have a detrimental influence on the outcomes is the robot’s actual

setup. The basis coordinate system of the UR10 robot is different. In comparison to other robots.

Figure 5.1: Viper s850 and UR10 with different base coordinate systems in RoboDK

The differing base coordinate systems for two robots, the Viper s850 and the UR10, are illus-

trated in figure 5.1. In zero configuration, the UR10 is pointed away from the positive x-axis.

This is, however, a matter of convention. The model was based on literature with a different con-

vention than our system. This is most likely why the model does not represent the real robotic

arm accurately.

Second Model

In contrast to the previous model, the findings of the second kinematic model showed that the

model was correct in all configurations.

This model was similar to the first, except it took into consideration the UR10’s unique base

coordinate system. The model produced results that were comparable to the literature [18], of

which the inverse kinematics were based on. The simulated kinematic model gives correct so-

lutions, as seen in figure 4.12. The correctness of the analytical computations for both forward

and inverse kinematics is shown in figure 4.14.

The video in section 4.3 demonstrates that the simulated model delivers sufficient solutions in

the arms workspace.
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5.3 Choice of robot arm

For the prototype of the project, a UR10 was used. After completing the project, both its benefits

and drawbacks have become evident.

The communication with the UR10 was straightforward to implement and delivered a swift and

reliable transfer. The robot controller’s PolyScope programming interface was simple to use and

operate. There are numerous resources and materials available from UR robotics and those

who have already worked with the robot. This was quite helpful when learning how to utilize

the robot.

The UR10 is a 6DOF robot arm. Nevertheless, our system is 3DOF. Limiting the UR10 to only

3DOF movement proved challenging. This diminished the functionality of using the robot con-

troller’s built-in functionalities. To actuate and control the robot for our intended purpose, we

were required to build separate functionalities.

The robot was mounted on a mobile table. The advantages of this is not being limited to one

location when developing the prototype. However, not being permanently mounted also caused

slight jerks in the tables position when actuating the robot. This is a source of uncertainty in the

results for the floor mounted camera in section 4.7.2, since the camera doesn’t move along with

the table. When documenting results, we were careful to move the table to its original position

between each trial. A solution to this issue would be to mount the robot on a permanent surface.

5.4 Graphical simulation

Webots was used to create the graphical simulator. During development, the simulation proved

really useful. The simulations were quite accurate and closely mirrored the robot’s motions. One

drawback of the simulator was the lack of a good mechanism to limit the torque of individual

actuators. As a result, no trajectory planning was used in the graphical simulator to depict the

robot’s motions. This eliminated the prospect of us simulating our designed trajectory planner.

5.5 Control loop simulation

The control simulations indicate that the controllers could function on the prototype. The sim-

ulations were slower than anticipated. Probably, because of the restricted working area. The

end-effector position PID, negatively affects the performance from the Angle velocity PID con-
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troller, when they are combined. This is because, both the angle velocity PID and the end ef-

fector position PIDs outputs were nearly the opposite of each other. Figure 4.6b illustrated this.

To effectively control the angular velocity of the payload and the location of the end effector. It

was essential to optimize the relationship between each PID, as well as modify their parameters

separately.

However, on a physical crane system, an fast controller isn’t necessarily required. Because a real

cranes performance is more limited by the speed of the actuators.

The results of the Modular PID control simulations in section 4.2.1, show a substantial improve-

ment in anti-sway compensation. The payload is stationary after approximately 12 second. To

enable the end effector to move more freely and compensate more effectively close to the refer-

ence, squaring the error was incorporated. By squaring the error, the controller weights higher

gains significantly more than smaller gains. This effectively constrained the controllers impact

on the end effector, reducing the allowed working area. With the squared error the end effector

PID, the settling time improved to 8 seconds. In other words, improving the settling time with 4

seconds.

The LQR and PID modular controller was simulated and showed a settling time of 10 seconds.

Even so, if the end effectors position, could be incorporated in the state space model. A weighted

state of the end effectors position could probably provide a better results. This is also advanta-

geous since it allows one to weight the end effector’s effort relative to the actual system.

5.6 Controlling the end effector

Originally the simulated controllers were planned to be implemented on the prototype. How-

ever, controlling the robot with respect to acceleration, proved to challenging. The system is

controlled by moving the position of the end effector. In order to move the end effector the

robot arm needs a specific position in either joint angles or cartesian coordinates. Our model

and simulations yields acceleration as the parameter to regulate the system. Therefore, there

exits a need to express the models acceleration into a explicit position for the end effector. This

problem is illustrated in figure 5.2.

Unfortunately, we were unable to accomplish this task. In retrospect a solution to this problem

might be found by investigating the Jacobian to describe the relationship between cartesian

velocities and the joint velocities[37]. There are probably several solutions to this problem, but
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Figure 5.2: Illustration of the problem with using acceleration as input.

they would require more research and experience.

Trajectory with asymmetric constant acceleration

The controller gives a new output for each iterations. The controller cannot pause for trajec-

tory planner’s objective. Therefore, a trajectory planner is not an optimal for our control loop.

We unsuccessfully attempted to derive the acceleration of the end effector for each iteration. In

addition, calculating the problem numerically is computationally expensive. This would most

likely significantly reduce the system’s cycle time.

The results from section 4.4 show a implemented trajectory with asymmetric constant acceler-

ation. The same technique was used in the PID with unrestricted end effector movement. The

trajectory worked adequate for its intended use of simply moving the end effector towards the

reference point. Although, the results show some jerk during the trajectory. A reason for this is

because the trajectory planning is calculated for the X- and Y- direction independently.

Integrating acceleration

Integrating the acceleration was used in an attempt to move the end effector. However, The in-

tegration process moved the end effector discontinuous manner and had a tendency to drift the

end effector. We suppose this is because some information is lost during numerical integration

and the error is continually double integrated.

5.7 Machine vision

5.7.1 Camera

For the project, we attempted to employ two different cameras. The Intel RealSense d455 cam-

era was used for the finalized version and the majority of the project’s duration. The resolution

and frame rate of the Intel camera proved adequate for detecting the payload. The Intel camera’s

documentation, examples, and capabilities expedited the project’s machine vision implemen-

tation.
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5.7.2 Machine vision algorithms

Color detection, ArUco marker and machine learning algorithms can all be used to detect the

payload position.

• The ArUco algorithm had high precision, but the implementation was difficult when han-

dling scaling, image distortion and rotation of the markers when estimate the payload

position. For instance, if the payload rotates and the camera simultaneously detects two

markers, it is difficult to determine the payload’s center. Another disadvantage occurs

when the camera is attached to the end effector. As illustrated in Figure 3.32, in this in-

stance the payload’s wire covers the marker, rendering the identification impossible. Us-

ing a greater number of tiny markers could be a potential solution to this issue.

• The Machine learning algorithm Yolov5, would require creating a large data set for train-

ing a model. It is computationally expensive and wasn’t pursued further. However, for

implementing on a real crane system, it can be practical.

• The color detection algorithm was straight forward to implement and provided accurate

detection of the payload. Additionally, the algorithm has a low computational cost, al-

lowing for fast cycle time and minimising the cameras bottleneck factor on the system.

Therefore, the primary algorithm used with the prototype was the color detecting algo-

rithm. A drawback with color detection is that the algorithm’s performance is dependent

on the surrounding environments lighting conditions. In our case, when developing the

prototype , these can be modified, but not on a real crane. Therefore, it is mainly a stable

prototype solution.

5.7.3 Floor mounted camera

Mounting the camera on the floor was easy to implement in the start of the project. Even so,

utilizing the 3D reconstruction from the stereo/depth camera on the Intel RealSense introduces

disturbance to the depth measurement. This is evident from figure 3.36. We circumvented this

by incorporating a filter. Although, it is difficult to estimate how accurate the measurements will

be for a more up scaled system, with different surroundings and lighting conditions.

The depth camera is only capable of measuring the distance to a payload’s surface, but not it’s

center. Therefore, to estimate the payloads position in the camera frame, the payloads dimen-

sions must be known, further incorporating a offset to the depth measurement.
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The stationary camera view is also a limiting factor for the systems working area. Moving the

payload outside of the camera’s field of view is problematic. Additionally, the system is halted

when individuals or objects pass in front of the camera. A solution to this is to incorporate more

cameras to guarantee constant view of the payload.

The results in section 4.5.1, showing the accuracy of estimating global coordinates are depen-

dent on several factors. The detection itself can also be a source of uncertainty. On a millimeter

scale, object detection precision is difficult to assess. How we placed the payload in five different

location can also impact the results. Again, it was difficult to achieve millimeter precision.

The transformation of global coordinates depends on the description of the camera’s precise

translation and rotation to its global position. In our case, it was difficult to determine the mea-

sured translation in millimeters. Additionally, for the camera mounted on the floor. When the

robot actuates, the table it is installed on moves. This results in a tiny shift in the actual transla-

tion and rotation that we were unable to account for.

Table 4.4, shows the precision on the finalized payload coordinate estimation, for the prototype

with the floor mounted camera. The highest error is 34 millimeters, whereas the majority of

measurements have similar errors. Regardless, these results are till accurate enough for our

system intended use.

5.7.4 Top Mounted camera

Mounting the camera on the end effector was challenging to implement on the prototype. In

literature from similar systems and projects we saw no attempts to mount a camera on the end

effector to detect the payload. Therefore, it was especially rewarding to explore and a achieve

such a feat.

The top mounted camera requires no depth camera, because the distance to the payload is

known from the wire length. It also enables a full working area for the system because, no ob-

stacle can compromise the cameras field of view.

In addition, if this technique is used to a real crane, the camera will provide the operator with an

excellent overview of the payload. The camera orientation compensation described in section

3.11.3 necessitated an additional DOF on the prototype. On a physical crane, orientation com-

pensation would require a different solution.
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With the camera mounted on the prototypes end effector, the lighting conditions for payload

detection were more stable. A downside with this technique, is induced disturbances from the

robots actuation. When the robot actuates and the cameras orientation is compensated, slight

vibrations occur. These vibrations induce noise on the the cameras measurement. For instance,

figure 4.24 shows a plot of a system response for X-direction where the camera is mounted on

the end effector. The plot illustrates slight disturbances thought to be induced by vibrations

from the end effectors movement.

The results in section 4.5.2, showing the accuracy of estimating global coordinates with the top

mounted camera, are dependent on several factors.

Similarly, as with the floor mounted camera, the detection itself is a source of uncertainty.

The transformation of global coordinates depends on the description of the camera’s precise

translation and rotation to its global position. This was easier with the top mounted camera,

because we could retrieve updated translation and rotation from the robot controller.

Furthermore, for the camera mounted on the end effector. The camera moves with the robot,

casing no shift in the actual translation and rotation of the camera. However, due to the orienta-

tion compensation for the camera, as above mentioned in section 5.7.4. We did observe a slight

impact on the cameras measurements.

How we precisely we placed the payload in different places also impact the results. Again, it was

difficult to achieve millimeter precision.

Table 4.5 and 4.6, shows the accuracy of the finalized payload detection on the prototype with

the top mounted camera. The largest error is 14 mm, with 848x480 resolution. Interestingly,

changing the resolution provided no drastic improvement in the estimated coordinates. With

both resolutions providing similar errors.

Table 4.7 shows additional results where the robots base rotates, when the payload is stationary

positioned. In these results the largest error is 18.6 millimeters. This implies that there is some

error associated with rotating the camera frame. However, these errors can result from the na-

ture and distortion in the cameras lens. Because the error increases when measuring further

away from the cameras center.
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5.8 Control System

On our system, several PID controllers were implemented and tested. Originally the goal was

to implement a model based controller. This proved challenging because the model generates

gain through acceleration. We adopted a different strategy because we were unable to precisely

move the robot end effector based on acceleration. We implemented PID controllers in order

to utilize actual system measurements. The output of the PID was cartesian coordinates for the

robot’s end effector.

The PID’s inability to handle constraints is a drawback. This enables the regulator to calculate

large gains that can negatively impact the system’s constraints. When the gain is outside of the

robot’s workspace, the system pauses momentarily. Nevertheless, if the gain results in a sudden

shift for the robot arm, the arm’s speed and safety constraints terminate the system.

Several trials for each controller were executed to document the results. The results demon-

strate the persistence of the controller. Consequently, our controller and system are reliable.

Increasing the credibility of our results further.

5.8.1 PID Controller with position input

The results in section 4.7.2 and 4.7.3 shows that the PID controller with position input, achieved

a settling time around 6 seconds. The results are approximately identical with both top and floor

mounted camera. Although, the results in figure 4.21 has more noise due to the cameras mea-

surements. The controller compensate for the sway, whilst also achieving the payloads target

reference position. This is possible because the prototype is fast enough to match the payloads

moving pace. In practice, regulating with such high angle and speed, is unrealistic for a real

crane.

5.8.2 PID Controller with angle input

The results in section 4.7.2 and 4.7.3 shows that the PID controller with angle input, achieved

a settling time over 10 seconds. The controller is slow compared to the position PID, but even-

tually achieves the payloads target reference position. The controller was slower compared to

others, because the controller only moves the arms end effector in a restricted area. The con-

troller is suitable in situations where the working space is limited and the systems settling time

isn’t crucial. For real crane systems this might be more feasible.
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In section 3.13.2 it is mentioned how the PIDs output is added to the end effector’s position.

Restricting the end effector’s working area. Although this might not be an ideal implementation,

it provides adequate results.

5.8.3 PID with unrestricted end effector movement

The PID with unrestricted end effector movement resulted in a settling time of around 3 seconds

for the payloads sway. However, the payload’s reference Cartesian position was achieved after

a substantial delay, around 17.5 seconds. The payload’s settling time is illustrated in figure 4.32

and 4.33, while the payload’s reference position is illustrated in figure 4.36 and 4.37. If a physical

crane has a limited working area, allowing the end effector to move freely may not be practical.

Another thing to note, is that the target position is traced with a planned trajectory. This moves

the end effector smoothly towards the reference position regardless of the angle of the payload.

This can induce small oscillation to the payload. This is illustrated in figure 4.32 and 4.36. The

plot of end effector position in figure 4.36 reveals that when the trajectory planner starts, the

robot makes a small jerk at the start and halfway along the path. Figure 4.36 and 4.37 indicates

that the jerk is higher in the x-direction than the y-direction.

The PID with unrestricted end effector movement and trajectory to the reference position is the

fastest method to regulate the system with respect to the payloads angle. However, for higher

payload angles, the end effector could move further away from the reference position. The ad-

vantages of this controller is depended on a cranes actuation speed and it having a large working

area.

5.8.4 Tuning of PID parameters

Each PID controller utilized in the project is tuned through trial and error. Initially, we intended

to utilize Ziegler and Nichols closed loop method to find optimal parameters [46]. However,

this proved difficult to execute on the prototype. Ziegler and Nichols method requires the pro-

portional gain set to make the system critically stable [32]. For our prototype which is a stable

system by nature this was hard to induce. Even so, we attempted to make the system critically

stable. But, increasing the gain eventually made the arm move so abruptly that the inbuilt safety

and speed limitations interrupts the system.
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Conclusions and further work

The primary purpose of this project was to develop a prototype to compensate pendulum mo-

tion of payload on a maritime crane. A mathematical model of the swaying motion was made,

using a simple pendulum model. With a purpose of providing insight in order to simulate and

control the payloads oscillations. A robot arm was utilized to emulate actual crane motion, and

to make a prototype to implement anti sway regulation. Machine vision is used to detect the

payload. A graphical simulation environment is used for verification and development during

the project.

In certain intervals, the mathematical model provides a near approximation of the real system.

The model is employed when simulating control loops. However, the prototype’s implemented

controllers are not based on the simulations. As input, the model and simulations utilize accel-

eration. Unfortunately we were unable to use acceleration to control the prototype. The 3DOF

kinematic model and corresponding equations were adequate for actuating the prototype and

simulating crane motion. The machine vision yields adequate and consistent results. In the fi-

nalized prototype, the known payload is detected via color detection. Mounting the camera on

the end effector proved suitable for its intended use. The project’s graphical simulation environ-

ment is solely used to simulate the motion of the prototype, not the motion of a real system or

pendulum motion. The prototype contains three distinct PID control loops. One with input for

position, another with input for angle, and a third with unlimited end effector movement and

trajectory to the ultimate reference. With position input, the system is both quick and precise.

With angle input, the system becomes more constrained and hence oscillates more. The con-

trol loop with unrestricted end effect movement and trajectory to reference, is the quickest at

reducing swaying motion. It requires the largest operating area and the most time to reach the

desired position of the payload.

112
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Considering the project requirements outlined in the preliminary report, along with the prob-

lem formulation in section 1.2. It is evident that the thesis addresses the projects main focus

areas. Initially, it was intended to employ a digital triplet consisting of a simulated prototype,

a virtual crane, and a physical prototype. Due to underestimated development time, we aban-

doned the digital triplet. Instead, focusing on developing the prototype. We hoped to do consid-

erably more with this project than we managed. However, all things considered we are greatly

satisfied with the implemented components, the working prototype and the learning outcomes

we achieved. Having developed our own prototype and endeavored to contribute to the aca-

demic community, we see the value of reusing and further developing the work of others.

6.1 Further work

Below are suggestions to further works and improvements for the project.

• Manage to control the robots end effector with respect to acceleration from the model.

• The prototype can be placed on a 3DOF or Stewart platform to see how the prototype

handles payload compensation when accounting sea waves.

• The system should be subjected to disturbances in order to further valuate the response.

For example, impacting the payload with wind, to see how the system performs.

• Other controllers such as LQR and Model Predictive Control, should be implemented to

compare different controllers system response and handle constraints on the system.

• Constrained velocity and acceleration control should be implemented in order for the

prototype to better compare to a real crane.

• The graphical simulator should be improved and implemented as a digital twin. This al-

lows users to better simulate solutions without the need of the physical prototype.

• The prototype color detection is limited to ideal environments with manageable lighting

conditions. Further research into the performance during realistic conditions could be

beneficial.

• Machine learning can be pursued further as a means for object detection. Incorporating

a hybrid system combining two or more detection algorithms could be useful.

• The trajectory planner should be improved to reduce the occasional jerking from the robots

motion. A multi dimensional trajectory should be explored.
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Appendix A

Appendices

A.1 Gantt diagram
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A.2 Source code

Uploaded as zip file on Inspera. Source code contains:

• Scripts for the implemented PID controllers

• Scripts to log result for each controller

• Polyscope UR10 script

• Data base of measurements

• Script to plot results

• Matlab simulation for kinematics

• Script to estimate damping ratio

• Webots simulator
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A.3 Progress report

Fremdriftrapport 
Prosjekt: kompansering av pendelbevegelse på maratim kran  

Periode: uke 2-5 

Oppdragsgiver: Seaonics AS 

Dato: 02.02.2022 

 
Main goal/purpose for this periods work 

- Etablere en enkel systemmodell for pendel bevegelse 

- Grunnlag for maskinsyn (velge metode og teste kort) 

- Utforske robotarm for prototype og ta avgjørelse for valg av arm 

- Utforske kinematikk for robotarm 

- Testing av simulator metoder og testing av kommunikasjon til og fra simulator 

- Utforske Kran simulator fra oppdragsgiver (digital tvilling) 
Planned activities this period 

- Utforske pendel fysikk 

- Utforske kamera og maskinsyn metoder 

- Se på tilgjengelige robotarmer (UR10, Viper, Sawyer) 

- Studere Kinematikk for robotstyring med 3DOF 

- Teste simulator i Unity 

- Studere kransimulator fra oppdragsgiver (digital tvilling) 
Actually conducted activities this period 

- Modellerte en modell av enkel penudulum bevegelse i en retning ved hjelp av lagrangian 

metode. Modellen er bestemt å være en dekomponering i x og y retning.  

- Lagde en algoritme I python for å finne dempningsfaktoren til det udempede modellen. 

Ved bruk av logaritmisk dekrement. Den er ikke brukt for å finne dempningsfaktor av det 

fysiske systemet enda siden gruppen ikke har fått god måledata fra pendel systemet enda.  

- Laget simulering i matlab/simulink av modelene.   

- Forsøkt å bruke April tag og AcUro tag som maskin syn. April tag var vanskelig å starte 

implementering, gikk over til AcUro. AcUro er mer åpent og bruker OpenCV. Har laget 

python script som klarer å lese posisjon og finne vinkel mellom to ulike tags.  

- Utforsket robotarmer. Var på kort kurs med Omron for Viperrobot. Så på UR10 og 

forsøkte å sende og motta informasjon. Laget enkelt TCP script i python og programmert 

robot for å bevege seg med angitt vinkler. Fungerer bra men, programvaren på 

robotkontrolleren må oppdateres. Vi har bestemt oss for å bruke UR10 videre i prosjektet. 

- Utledet kinematikk for robotarm med 3 frihetsgrader. Møte med veileder (Aleksander) for 

bistand. Testet fremover og inverskinematikk i simulink. Noen fungerer men noen 

løsninger er ikke optimal for å gjenspeile en kranbevegelse. Må forsøke å begrense gyldige 

løsninger. 

- Laget enkel simulator i Unity for å teste kommunikasjon til matlab. Klarer å sende og 

motta informasjon via et enkelt UDP script i matlab. Utforsket Simulator i Webots. Webots 

har bedre håndtering av fysikk og letter å implementere simulering og kommunikasjon med 

andre script.  

- Testet digital tvilling for kran i Webots. Den er satt opp med OPC server og har testet enkel 

manuell kontrol av kranen. Har estimert posisjon av krantuppen og lasten som vi sender til 

OPC server for videre kommunikasjon. 
Description of/ justification for potential deviation between planned and real activities  
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- En algoritme for å finne dempningsfaktoren var ikke planlagt, men noe gruppen så som 

nødvendig for å få en mer persis model.  

- Laget prototype av last til robotarmen.  

- Fokuserer på similator i Webots. Ettersom den fungerer bedre til vårt formål en Unity 

- Enkelte ting har gått raskere en forventet, vi har vært litt dårlig på å oppdatere planen 

deretter. 

 

 

 
Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report  

- Inverskinematikken må vi utforske og teste mer etter hvert som vi får opp en fysisk 

prototype.  

-  

 
Main experience from this period  

- Modellering med lagrange metode. 

- Forståelse for invers og forward kinematikk 

- Implementering av ArCuro Tag 

- OPC server og Webots 

- UR10 styring og programmering 

 
Main purpose/focus next period  

- Optimalisering av maskinsyn og evaluering 
- Oppdatering UR10, bedre styring med threads for effektiv kommunikasjon 

- Bedre på det organitatoriske. 

Planned activities next period  

- Optimalisere koden for objektgjennkjenning.  

- Oppdatere firmware til UR10, planene er å kunne programere eksternt med RobotDK for 

lettere testing. 

- Få bedre struktur og bruke threads for kommunikasjon med robotarm. Den må være hurtig 

for å kunne bevege seg raskt nokk og oppdatere verdier. 

- Tilpasse inverskinematikk for robotarm og teste 

- Finne parameter for modellen ( Vekt, center of mass, dempningsfaktor, lengde på tråd) 

- Lage teststasjon for maskinsyn 

 
Other 
Wish/need for counceling  

- Samtale med Aleksander angående kinematikk og optimalisering av løsninger 

 
Approval/signature group leader 

 

 

Signature other group participants  
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Fremdriftrapport 
Prosjekt: Kompensering av pendelbevegelse på maritim kran  

Periode: Uke 5-9 

Oppdragsgiver: Seaonics AS 

Dato: 04.03.2022 

 
Main goal/purpose for this periods work 

- Optimalisering av maskinsyn og evaluering 
- Oppdatering UR10, bedre styring med tråder for effektiv kommunikasjon 

- Bedre på det organisatoriske. 
Planned activities this period 

- Invers Kinematikk 

- Tilpasse inverskinematikk for robotarm og teste 

- Finne parameter for modellen (Vekt, center massen, dempingsfaktor, lengde på tråd) 

- Lage teststasjon for maskinsyn 

 
Actually conducted activities this period 

- Testing av Inverskinematikk og løsninger, Løsninger er begrenset til bedre intervall. 

Likevel er det feil og må oppklares. 

- Teststasjon for maskinsyn er ferdig. 

- Webots – laget 2 prototype av UR10 for å teste ulike løsninger fra kinematikk matrisen 

- Matlab visualisering for DH parameters (Kinematikk) 

- Styring av robotarm med tråder og sending mottak via OPC. Fungerer greit og klarer å 

sende og motta vinkler og ønskelig informasjon. Videre må det undersøkes spesifikke 

styringskommandoer for robotarmen. 
Description of/ justification for potential deviation between planned and real activities  

- Grunnet annet emne som kjøres parallelt og intensivt har tidsforbruk for prosjektet blitt 

redusert betydelig. 

- Original Kinematikk fungerte ikke som tiltenkt. Feil utgangspunkt i koordinatreferanse gir 

feil løsning og må undersøkes. 

- Utfordrende å styre robotarm og kommunisere samtidig. Enkel kommando for styring av 

robotvinkler kan ikke kjøres parallelt ettersom roboten må fullføre en kommando før den 

gjennomfører neste. Videre skal vi undersøke inkrementerende kommando for å styre hver 

servo i robotarmen individuelt. 

 

 

 
Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report  

-  

Main experience from this period  

- Hvordan robotarmer planlegger en path. Bruk av jacobian. 

- Bedrekjennskap til UR10 software og aktuelle pythonscript 

- Kjennskap til OPC og Weebots. 

- Bedre forståelse over koordinatsystem til vårt system. 
Main purpose/focus next period  
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- Ferdigstille kinematikken og få full kontroll over robotarm. Både i simulator og fysisk. 

- Sammenslåing av robotstyring og objekt gjenkjenning. 

Planned activities next period  

- Begrense antall løsninger fra kinematikken 

- Kommunikasjon mellom Matlab og fysisk robot arm/prototype for å teste resultat fra 

kinematikken må ferdigstilles. 

- Akselerasjon av endeffector 

- 
Starte å implementere pid regulator for x-retning

 
 Other 
Wish/need for counceling  

- Samtale med Aleksander og Agus angående kinematikk. 

 
Approval/signature group leader 

 

 

Signature other group participants  
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Fremdriftrapport 
Prosjekt: kompansering av pendelbevegelse på maratim kran  

Periode: uke 13-16 

Oppdragsgiver: Seaonics AS 

Dato: 22.04.2022 

 
Main goal/purpose for this periods work 

- Regulering i X(pixel) og Y(meter) retning 

- Estimere tilstandsverdier vinkel, vinkelhastighet 

- Optimalisering av løsning 

- Utforske andre reguleringsmetoder 
Planned activities this period 

- Transformasjon av kamera koordinater til globale. 

- Implementering av kamera på top.  

- Kompansering av kameraorienting på top. 

- Plots av regulering. 

- Skriving av rapport. 
Actually conducted activities this period 

- Utledet og implementert transformasjon av kamerakoordinater til globale koordinater fra 

både kamera motert på tcp og på gulvet.  

- Designet og konstruert kamerafeste på tcp.  

- Utledet og implementert orienterings kompansering ved bruk av ledd 6.  

- Logget og plottet grafer. 

- Dokumenter en del implementeringer I metode delen på rapporten.  
Description of/ justification for potential deviation between planned and real activities  

- Kamera på toppen var ikke planlagt, men etter anbefalering av veileder og oppdagsgiver 

ble det igangsatt.  

- Det ble utforsket en del LQR, men ikke implementert enda.  

 
Description of/ justification for changes that is desired in the projects content or in the further plan of action – or progress report  

-  

 
Main experience from this period  

- Bytting av koordinatsystem 

- Intrinsic og extrinsic matrise (pixel til meter) 

- LQR 
Main purpose/focus next period  

- Prioritering liste  

- 1. Nøyaktighet i målinger (kamera på golve, kamera på toppen) 

- 2. Rapport 

- 3. Optimalisering/Endring av PID i vinkel retning 

- 3. Linear–quadratic regulator (LQR) 

- 4. Testing av Knuckle boom crane og UR10 i webots 
- 5. Eventuelt Nonlinear model predictive controllers (NMPC) 

Planned activities next period  
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Other 
Wish/need for counceling  

- Ottar modul-regulering  

 
Approval/signature group leader 

 

 

Signature other group participants  
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A.4 Meeting summary

Møtereferat 21.01.2022 
 

 

Sted: Digitalt på teams 

Tid: 12.00-12:45 Dato: 21.01.22 

Til stede:  Trygg Johannessen, Viktor Gravdal, Mateusz Jedynak, Ottar Osen, Arne 

Trandal, Erik Espenakk.  

 

1. Oppstart og introduksjon av prosjektstyringsgruppen 

2. Gjennomgang av prosjekt plan og stegvist gjøremål 

3. Fremvisning av hva vi har gjort hittil (Modellering, kinematikk, robotarm, maskinsyn og 

simulator) 

4. Avklaring av kontaktperson med Seaonics. Erik Espenakk er primær kontaktperson for 

dagligdags, Stig og Arne er sekunder kontakter. 

5. Diskusjon av simulator, Weebots anbefales fra Seaonics. 

6. Kamera for lån fra Seaonics. Det ble nevnte 3 typer de har tilgjengelig for lån. 

7. Dokumentasjon over kran skal sendes det de har tilgjengelig. 

• Størrelse på kranen 

• Begrensninger (Vinkelutslag, hastighet, aktuator, vekt) 

8. Møte fremover arangeres fredag klokken 12.00 hver andre uke. Neste møte settes til 4. 

Februar. 

9. NDA skal signeres, bruker ntnu mal. 
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Møtereferat 04.02.2022 
 

 

Sted: Digitalt på teams 

Tid: 12.00-12:45 Dato: 04.02.22 

Til stede:  Trygg Johannessen, Viktor Gravdal, Mateusz Jedynak, Ottar Osen,  Aleksander 

l. Skrede, Arne Trandal, Erik Espenakk.  

 

1. Gjennomgang av fremdrift og hva gruppen har oppnådd så langt 

 Bra fremgang  

 Ligger godt ant i forhold til planen 

 

2. Diskusjon rundt implementering av maskinsyn 

 Se nærmere på lettere metoder for å finne vinkel og kunne se bort ifra posisjonen til 

objektet. 

 

3. Anslår mindre tid til prosjektet i noen uker fremover pga annet emne. 
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Møtereferat 18.02.2022 
 

 

Sted: Digitalt på teams 

Tid: 12.00-13:00 Dato: 18.02.22 

Til stede:  Trygg Johannessen, Viktor Gravdal, Mateusz Jedynak, Ottar Osen, Arne Trandal, 

Stig Espeseth, Aleksander l. Skrede . 

 

• Presenterte hvor langt vi er kommet i fasene I prosjektet. 

• Presenterte forksjellige metoder for bruk av maskinsyn. 

o Acuro 

o Yolov5 

o Fargedeteksjon 

o Konkluderte med at alle er nyttig for rapporten, men holder oss til farge deteksjon enn 

så lenge. 

• Muligheter å feste lasten I taket for å se på lavere svingningsfrekvenser.  

• Teste ut kinematikk I robotDK 

• Diskusjoner angående pådraget (robotarm) 

o Optimalisering invers kinematikken 

o Gyldige løsninger for kranbevegelse og behandling av ikke gyldige løsninger 

o Begrense ledd, men la resterende ledd gi pådrag.  

o Jacobi matrise for å gi estimering av accerelation pådrag.  

• Diskuterte muligheter for å være på seaonics sine lokaler. 

Bra oppmøte og fint engasjement.  
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Møtereferat 01.04.2022 
 

 

Sted: Digitalt på teams 

Tid: 12.00-12:45 Dato: 01.04.22 

Til stede:  Trygg Johannessen, Viktor Gravdal, Mateusz Jedynak, Ottar Osen, Arne 
Trandal, Erik Espenakk. Arve Gudmundset 

 

1. gjennomgang av hva som er gjort siden sist. Snakket om avstandsmåling, feil av forrige 
koordinatsystem. Fremvist video av hvordan det er nå. 

2. Diskuterer nøyaktighet til avstandsmåling for y retning. 
3. diskusjon av alternative regulatorer Ottar nevner LQR som kan være en god ide å se på 
4. Vi må se nærmere på hastighetsbegrensning og metning av pådragsorganer. 
5. inntresant å teste kamera i realistiske forhold, for eksempel ute og over lengere avstander 

(5-30 m) og med forskjellig støy/lys 
6. Plassering av kamera i toppen, kanskje nert tuppen av bommen. 
7. modal regulering, et for Set punkt (posisjon, integrere seg mot posisjon du ønsker), en for 

hastighet. 
8. hvordan regulere innenfor et begrenset område 
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Møtereferat 22.04.2022 
 

 

Sted: Seaonics AS 

Tid: 12.00-12:45 Dato: 22.04.22 

Til stede:  Trygg Johannessen, Viktor Gravdal, Mateusz Jedynak, Ottar Osen,  Aleksander 

L. Skrede, Arne Trandal, Erik Espenakk. Arve Gudmundset 

 

1. Gjennomgang av utvikling frem til nå. Vist frem foreløpig resultat fra kamera på siden og 

kamera på top. 

 

 

2. Prioritering av rapport og resultat sankning fremover. 

3.  
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A.5 Meeting presentations

Uploaded as zip file on Inspera.
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A.6 Proposed bachelor thesis

Forslag til bachelor oppgave

Viktor Karl Gravdal, Mateusz Jedynak, Trygg Meyer Johannessen.

January 14, 2022

Introduksjon

Dokumentet presenterer forslag for bachelor oppgave v̊aren 2022. Forslaget st̊ar
som et førsteutkast, endringer kan forekomme.

Beskrivelse

Under proskjekt skal vi utforske stabilisering av last p̊a en kran. Flytting av
last medfører pendling og oscillering avhengig av bevegelse. Oppgaven baserer
seg p̊a å minimere uønsket bevegelse p̊a lasten. Vi skal utforske anvendelse
av maskinsyn og diverse sensorer. Videre, ser vi p̊a muligheten for å regulere
pendelbevegelse. Ideen er å bruke en robotarm med redusert frihetsgrader som
prototype for å simulere kranbevegelse. Eventuelt bruke en gantryplatform. Se
figur 1 for illustrasjon

Figure 1: Illustrasjon av konsept

1
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Mål:

Objekt-detektering av løftehodet

For å identifisere løftehodet/̊aket undersøker vi anvendelse av stereo kamera.
Målet er å detektere og hente ut objektets koordinater x-, y- ,z- retning i sanntid.

Identifisering av pendelbevegelse

Målet er å konkret forutse retningsvektoren for pendel-bevegelsen

Kompensering for pendelbevegelse

Målet er å minimere pendelbevegelsen ved hjelp av moderne reguleringsmetoder.

Eventuelt

Videre tenker vi å utvide modellen slik at den kan ta høyde for bølgebevegelser,
ved å bruke en 3D platform for å simulere bølger.

2
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A.7 Pre-project - report

FORPROSJEKT - RAPPORT 
FOR BACHELOROPPGAVE 
 

 

 

 
Postadresse Besøksadresse Telefon Telefax Bankkonto 
Høgskolen i Ålesund Larsgårdsvegen 2 70 16 12 00 70 16 13 00 7694 05 00636 
N-6025 Ålesund Internett Epostadresse  Foretaksregisteret 
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Oppgaven består av regulering av pendelbevegelse i en kran. Målet er å utvikle en 
simulator som gjenspeiler dynamikken for en fysisk kran. Videre mål er å finne en 
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regulering i vår simulator og prototype gjenspeiler virkeligheten. 
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1 INNLEDNING 

Havet dekker om lag 70% av planetens overflate. Maritim sektor og industri er i aktiv vekst. Innenfor 
maritime kranhåndertingsopperasjoner er det en anerkjent utfordring med stabilisering av last bevegelse. 
Under kranopperasjoner oppstår det pendel bevegelser som gjør at lasten svinger seg frem og tilbake. Dette 
medfører vanskeligheter for trygg og presis håndtering av last.  Dermed er det interessant å undersøke 
hvorvidt det er mulig å stabilisere pendelbevegelse for en maritim kran.  
 
Seaonics AS er en aktør som arbeider flittig med blant annet maritime kraner. De har kunnskap og erfaring 
med regulering og styring av kraner. Seaonics AS står som oppdragsgiver for vårt prosjekt. 
 
Den grunnleggende problemstillingen er: Stabilisering av pendelbevegelse i kran med kjent last. Formålet 
er å utvikle en prototype som gjenspeiler en krans oppførsel i den virkelige verden.   

2 PROSJEKTORGANISASJON 

 Prosjektgruppe 

 
Studentnummer(e)  
Mateusz Szymon Jedynak - 516669 
Viktor Karl Gravdal - 522469 
Trygg Meyer Johannessen – 517309 ansatnr 190994 
 
 
 
Tabell: Studentnummer(e) for alle i gruppen som leverer oppgaven for bedømmelse i faget ID IELEA2920 
Oppgaver for prosjektgruppen – organisering 

 Bidrar til felles trivsel. 
 Sørger for arbeid blir utført på profesjonell metode. 

2.1.1 Oppgaver for prosjektleder (Trygg) 
 Kalle inn til møter. 

 Ansvarlig for konflikthåndtering. 

 Planoppfølging. 

 Kvalitetskontroll. 

2.1.2 Oppgaver for sekretær (Viktor) 
 Ordstyring av møter. 
 Møtereferat. 
 Kommunikasjon med ytre aktører. 

 Kalle inn til møter. 

2.1.3 Oppgaver for øvrige medlem (Mateusz) 
 Bistå prosjektleder og sekretær. 
 Krisehåndtering. 
 Utførelse av arbeid i henhold til plan. 
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 Styringsgruppe (veileder og kontaktperson oppdragsgiver) 
 Veiledere  

o Ottar Osen, Dosent, automatiseringsteknikk: ottar.osen@ntnu.no 

o Agus Hasan, Professor: agus.hasan@ntnu.no 

 Oppdragsgiver 

o Underprosess 

3 AVTALER 

 Avtale med oppdragsgiver 

 Arbeidssted og ressurser 
På grunn av koronasituasjon og restriksjoner til oppmøte på offentlig plasser, har 
gruppen ingen bestemt fast arbeidsplass. Avhengig av smittesituasjonen avtaler gruppen 
oppmøte sted i forveien. Vanlig arbeidsplass til gruppen er: Campus Ålesund og digitalt 
oppmøte via hjemmekontor.  

 

Under er liste over ressurser som gruppen ønsker å benytte gjennom prosjektet.  

For å utvikle en prototype behøver vi en robotarm for å simulere en fysisk kran.  

 Vipper Omron/adapt industrial robot 

 UR 10e collaborative robot 

 Sawyer collaborative robot 

 

Blant de tre robotarmene er det ennå ikke bestemt hvilken som er best til vårt formål. 
Dermed må vi vurdere alle før vi tar en avgjørelse. 

 Gruppenormer – samarbeidsregler – holdninger 
Leveranse  

 Alle deltagere har et felles ansvar for at rapport og oppgavebesvarelsen er av slik kvalitet at det 
tilfredsstiller kravene satt av gruppen.   
 Alle møter til avtalt tid. Er du forsinket gir du beskjed på forhånd. 
 Arbeidsmengde skal fordeles likt, alle har et ansvar for å bidra like mye, tilsvarende 20 
studiepoeng forventet arbeidsmengde. 
 Hvis en / noen av partene trekker seg fra samarbeidsavtalen, står de andre partene fritt til å 
ekskludere partene fra prosjektet.  
 Parter som trekker seg har ikke rettigheter ovenfor prosjektet, hverken bestemmelser eller 
arbeid utført. 

  
  
Trivsel  

 Vi holder hverandre ansvarlig for å holde fokus og opprettholde produktivitet under prosjektet. 
 Vi gjennomfører fremgangsmøter minst hver andre uke. 
 Hver deltaker i prosjektet har et ansvar for å opprettholde trivsel bland alle i gruppen. 
 Gruppemedlemmene skal hjelpe og støtte hverandre, og bidra til felles motivasjon. 
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4 PROSJEKTBESKRIVELSE 

 Problemstilling - målsetting - hensikt 
Grunnleggende problemstilling er regulering av pendelbevegelse for kjent last på en kran. For å utføre 
dette skal vi produsere en simulator. Med simulatoren skal vi teste ulike reguleringsmetoder e.g. PID, 
MPC. Videre skal vi benytte en fysisk robotarm, med redusert frihetsgrad for å etterligne kranbevegelse 
til en fysisk kran. Dette danner en prototype. For å regulere prototypen må vi detektere lasten som en 
form for posisjon estimering. Posisjonsestimeringen utføres enten med bruk av sensorer eller kamera 
(Maskinsyn). Hensikten er å bruke kunnskapen fra prototypen for å vurdere hvordan det gjenspeiler seg 
i en fysisk kran. Dette gjør vi ved å bruke en digital tvilling til en fysisk kran. Slik kan vi drøfte kontroll 
systemets frekvensrespons til en fysisk kran og for vår prototype, for å kunne konkludere hvordan en 
praktisk løsning kan implementeres på et virkelig system. Figur 1 viser en illustrasjon av prototypen 
 

 Krav til løsning eller prosjektresultat – spesifikasjon 
 Stabilisering av posisjon til last som er i bevegelse. 

 Simulator som tilnærmer seg virkeligheten. 

 Utforskning innom ulike regulerings metoder og drøfte resultater. 

 Detektering av last ved bruk av ulike sensorer. 

 Drøfte problemstillinger og begrensninger til kran i forhold til prototype. 

 Drøfting av systemdynamikk til prototypen (Robot arm) i forhold til en kran.  

 

 

 

 

Figur 1 Illustrasjon av prototype 
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 Planlagt framgangsmåte(r) for utviklingsarbeidet – metode(r) 
 

Punkter nederst står i kronologisk rekkefølge. 

 Prosjektering/Planlegning  
 Modellering av systemdynamikk 
 Simulator av systemet 
 Utvikling av prototype 
 Gjenkjenning av last 
 Regulering av systemet 
 Drøfting av resultat påført virkelig system 
 Videre utvikling 
 Rapport 

 Informasjonsinnsamling – utført og planlagt 
Generell informasjon innsamling av lignende prosjekter: 

 Modeling, Simulation and Control for Marine Crane Operations (Ilja Boginskis and Hmdoun 
Abker Ibrahim Hmdoun 2020). 

 Real-Time Motion Compensation in Ship-to-Ship Load Handling (Sondre Sanden Tørdal 2019). 

 Modelling, Simulation and Control of offshore crane (Lisa Ann Williams 2018). 

Planlagt informasjonsinnsamling: 

 System dynamikk. 

o Dynamikk til en kran. 

o Dynamikk til en robot arm. 

o Kinematikk.  

o Fysikken i pendelbevegelse. 

 Simulator 

o Visualisering og integrert miljø 

o Tidligere simulator fra oppdragsgiver  

 Implementerings metode til reguleringsteknikk. 

o Type regulator. 

o Verktøy for implementering av koden. 

o Tilstandsestimering.  

o Ulinearitet i systemet. 

 Objekt gjenkjenning 

o Hvilket måle instrument skal brukes. 

o Verktøy for implementering av koden.  

 Kommunikasjon mellom led (prototype – simulator) 

o Hastighet til kommunikasjon 

o Kommunikasjons protokoller 
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 Vurdering – analyse av risiko 
Risiko vurdering ligger i vedlegg nr: (1), (2), (3). 

 Hovedaktiviteter i videre arbeid 
Hovedaktiviteter er laget i et gantt diagram. Gantt diagram ligger i vedlegg: (4). 

 Framdriftsplan – styring av prosjektet 

4.7.1 Hovedplan 
Hovedaktiviteter er laget i et gantt diagram. Gantt diagram ligger i vedlegg: (4). 

 

4.7.2 Styringshjelpemidler 
Under ligger liste over verktøy som gruppen har brukt som stryringshjelpemidler 

 ClickUp! 

Et prosjektplanleggingsverktøy som lar oss planlegge oppgaver og timeplan for prosjekt styring.  

o Prosjektplan 

o Timeliste 

o Oppgavefordeling 

o Gantt diagram 

 Microsoft office 360 

o Teams – deling av filer og kommunikasjon 

 

4.7.3 Utviklingshjelpemidler 
 Matlab 

 Overleaf 

 Unity 

 Webots (open source robot simulator) 

 

4.7.4 Intern kontroll – evaluering 
Minimum en gang i uken skal gruppen gjennomføre dialogsmøte. 

Punkter som skal gås igjennom er som følger: 

 Vurdering og oppdatering av prosjektplan 

 Vurdering og oppdatering av framdriftsplan 

 Vurdering av arbeidstid og timeskriving 

 Vurdering av trivsel og gruppedynamikk 
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 Beslutninger – beslutningsprosess 
For vår oppgave begrenser vi oss til å lage en prototype som fungerer under ideelle 
forhold. I første omgang tar vi ikke høyde for kranens oppførsel under bølgebevegelser. 
Vår løsning og prototype skal ikke løse alle utfordringer for praktisk gjennomførelse for et 
virkelig system. For eksempel, praktisk kamera eller sensor plassering. Om vi får 
tilstrekkelig tid, skal gruppen se nærmere på detaljene rundt praktisk gjennomføring på 
et virkelig system. 

Videre beslutninger drøftes i plenum i gruppen. Ved uenighet holdes det avstemning.  

5. DOKUMENTASJON 

 Rapporter og tekniske dokumenter 
 Prosjekt rapport 

o Beskrivelse over hoved oppgave, teoretisk grunnlag for prosjektet, 
metode, resultater og drøfting.  

 Elskjema 

o Ved kobling av elektriske kretser eller komponenter skal nødvendig 
dokumentasjon som styre og hovedstrøms skjema leveres. 

 Prosess/flytskjema 

 Adresseliste, I/O - liste 

 Samarbeidsavtale 

 Framdriftsplan  

 Timeliste 

 Møtereferat 

5 PLANLAGTE MØTER OG RAPPORTER 

Møter med styringsgruppen 

Framdriftsmøte minimum hver 14 dag. Første møte settes til 24.januar. 
Veileder og eksterne kontakt personer møter opp på framdriftsmøter.  
I forkant av framdriftsmøte skal det utledes en framdrifts rapport minimum 24 timer før møte. 

 

6 PLANLAGT AVVIKSBEHANDLING 

 Om vi ikke får digital tvilling til fysisk kran eller den ikke funker, da prøver vi å lage vår egen enkle 
simulering og konklusjoner ut ifra en fysisk kran 

 Om vi ikke klarer å detektere posisjonen til lasten. Går vi bort fra prototype og bruker simulator i større 
grad 

 Om vi ikke klarer å låse joints i en robotarm for å simulere kran, går vi over til en gantry prototype. 
 Om vi ikke klarer å regulere dynamikken i X og Y retning. Tar vi kun for oss en retning og 

sammenligner senere. 
 Om vi mister tilgang til fysisk arbeidsplass. Gjør vi vårt beste til å produsere alt hjemmefra.  
 Om vi ikke får til regulering bruker vi simulator eller vi bruker matlab som konsept. 
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7 UTSTYRSBEHOV/FORUTSETNINGER FOR 
GJENNOMFØRING 

 En forutsetning for utførelse er tilgang på fungerende robotarm for å utvikle en prototype. 
 En annen forutsetning er tilgang på nødvendig sensor / kamera for å detektere lasten som skal reguleres. 

 
 

8 REFERANSER 

Ilja Boginskis and Hmdoun Abker Ibrahim Hmdoun. 2020. Modeling, Simulation and 
Control for Marine. Agder: University of Agder. 

Lisa Ann Williams. 2018. Modelling, Simulation and Control of offshore crane. Agder: 
University of Agder. 

Sondre Sanden Tørdal. 2019. Real-Time Motion Compensation in Ship-to-Ship. Agder: 
University of Agder. 

 
 

VEDLEGG 

Vedlegg 1    Kartlegging og risikovurdering 

Vedlegg 2    Risikodiagram 

Vedlegg 3 Handlingsplan 

Vedlegg 4 Gantt diagram / Prosjekt plan 
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A.8 First draft of gantt diagram

Oversikt over gantt diagram

   Side 1 for Planlegging    
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Oversikt over faser

Planlegning fase1. Modellering og dynamikk 2.

   Side 2 for Planlegging    
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Objekt gjenkjenning 3. Robot arm4.

Regulering5. Sammenligning, 6.
Utviklingsfase
Rapport 

   Side 3 for Planlegging    
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Malen er utarbeidet av Arbeidstilsynet – september 2017. Side 1 av 1 
 

KARTLEGGING OG RISIKOVURDERING  
 
Virksomhet/avdeling e.l.: 
Bachelor prosjekt 

Ansvarlig leder: 
Trygg Meyer Johannessen 

Skjema 1 av 3. 
1: Kartlegging og risikovurdering 
2: Risikodiagram 
3: Handlingsplan 

 
Bruk dette skjemaet til å dokumentere farer og problemer som er kartlagt. Vurder hvor ofte farene eller problemene inntreffer og konsekvens dersom det skjer. Sett 
også opp hvem som er ansvarlig for vurderingen og dato for når den ble gjort. 

Nr. Hva kan gå galt? Beskriv konsekvensen hvis det skjer Hvor ofte skjer det Konsekvens Kommentar Vurdert av/dato 

1 Redusert arbeidsareal som følge 
av restriksjoner 

Redusert tilgang på lab og felles arealer. 
Redusert tilgang til fysisk prototype. 

Sjelden Mindre alvorlig       Trygg 12.01.2022 

2 Ulykke med robotarm Klem eller slag skade Svært sjelden Svært alvorlig       Trygg 12.01.2022 

3 Frafall av ressurs personer Mangel på veiledning og oppfølging.  Svært sjelden Alvorlig       Trygg 12.01.2022 

4 Sykdom/smitte hos 
gruppemedlem 

Isolering, hjemmekontror. Ingen tilgang til 
prototype på en stund. 

Sjelden Mindre alvorlig       Trygg 12.01.2022 

5 Defekt / ødelagt utstyr Mangel på utstyr og forsinkelser i 
prosjektet 

Sjelden Mindre alvorlig       Trygg 12.01.2022 

6 Konflikt i prosjektgruppen Splittelser, redusert arbeidsmoral og 
dynamikk. Tregere fremgang 

Svært sjelden Alvorlig       Trygg 12.01.2022 

   
   

            Klikk for å velge Klikk for å velge             

   
   

            Klikk for å velge Klikk for å velge             
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Malen er utarbeidet av Arbeidstilsynet – september 2017. 

RISIKODIAGRAM 
 
Virksomhet/avdeling e.l.: 
Bachelor Prosjekt 

Ansvarlig leder: 
Trygg Meyer Johannessen 

Skjema 2 av 3. 
1: Kartlegging og risikovurdering 
2: Risikodiagram 
3: Handlingsplan 

 
Plasser farer og problemer i skjemaet basert på vurderingen av hvor ofte de inntreffer og hvor alvorlige de er. Bruk samme nummerering som i 
skjema for kartlegging og risikovurdering. 

 

 RISIKODIAGRAM 

Sa
n

n
sy

n
lig

h
e

t 

Svært ofte                          

Ofte                         

Sjelden       1,4,5             

Svært sjelden             3,6 2 

 

 Ubetydelig Mindre alvorlig Alvorlig Svært alvorlig 

 
 Konsekvens 
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Malen er utarbeidet av Arbeidstilsynet – september 2017. Side 1 av 2 
 

HANDLINGSPLAN 
 
Virksomhet/avdeling e.l.: 
Bachelor prosjekt 

Ansvarlig leder: 
Trygg 

x|Skjema 3 av 3. 
1: Kartlegging og risikovurdering 
2: Risikodiagram 
3: Handlingsplan 

 
Dokumenter tiltak for å redusere risikoen. Bruk samme nummerering som i skjema for kartlegging og risikovurdering og risikodiagrammet. Farer eller problemer som 
inntreffer ofte/svært ofte med en alvorlig/svært alvolig konsekvens må prioriteres først. 

Nr. Kort beskrivelse av faren/problemet Prioritering Tiltak for å redusere risikoen Ansvarlig(e) Tidsfrist 

1 Redusert arbeidsareal som følge av restriksjone 2 Bruke gode verktøy for digitalt samarbeid. Benytte utstyr 
slik at vi minimerer behoved for tilgang til fysisk arealer 

Trygg       

2 Ulykke med robotarm 1 Kun en person i nærheten av robot når den er i bruk. 
Benytte forhåndsdefinerte sikkerhetsprosedyrer. Bli 
bekjent med plassering av nødstop. 

Trygg       

3 Frafall av ressurs personer 3 God og tydelig kommunikasjon mellom ressurspersoner 
gjennom prosjektarbeidet. 

Trygg       

4 Sykdom/smitte hos gruppemedlem 1 Holde avstand. Når noen føler seg syk holder de seg 
hjemme og bruker verktøy for digitalt samarbeid. Ved 
mistanke koronasmitte avlegges det hurtigtest for alle 
gruppemedlmmer.  

Trygg       

5 Defekt / ødelagt utstyr 2 Testing av utstyr tidlig for å avdekke feil. Være forsiktig og 
bevist ved håndtering av sårbart utstyr. Følge 
produsentens datablad og instruksjoner. 

Trygg       

6 Konflikt i prosjektgruppen 3 Sosial aktiviteter for å fremme trivsel. Åpen og tydelig 
dialog under prosjektet. Jevnlige pauser under arbeidet. 
Om noen merker dårlig trivsel, oppretter vi et konfliktmøte 
.  

Trygg       
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