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Abstract  

This paper examines the development of the risk determinants for smaller portfolios that 

consists of 1 to 30 stocks and their risk performance. When we analyze the performance of 

simulated portfolios throughout the last 4 decades, we find that the diversification gains from 

adding stocks to a small portfolio have been stable throughout our sample. While 8-10 stocks 

suffice to remove most of the portfolios’ idiosyncratic risk component, smaller portfolios 

typically have poor returns. We also use a disaggregated approach and parametric models to 

study the idiosyncratic volatility and co-movement between the returns of common stocks 

listed from 1980 to 2021 on the NYSE. We identify a regime shift where the average 

idiosyncratic volatility of common stocks has entered a lower volatility state from the late 

1990s. In contrast, the co-movement between stock returns shifted to a higher correlation state 

from the early 2000s. The net effect of the regime shifts thus cancel each other out, causing 

the stable diversification gains.   

Oppsummering  

I denne avhandlingen undersøker vi utviklingen til risikokomponentene til mindre porteføljer 

bestående av 1 til 30 aksjer og deres risikonivå. Når vi analyserer simulerte porteføljer de siste 

fire tiårene finner vi at diversifiseringsgevinsten av å legge til aksjer i mindre porteføljer har 

vært stabil. Til tross for at 8 til 10 aksjer holder for å fjerne mesteparten av det idiosynkratiske 

risikoen i porteføljer, har mindre porteføljer generelt lav avkastning. Vi bruker også en dis-

aggregert modell og parametriske modeller for å studere den idiosynkratiske volatiliteten og 

sambevegelsen til avkastningen til aksjene listet på NYSE fra 1980 til 2021. Vi identifiserer et 

regime bytte hvor den gjennomsnittlige idiosynkratiske volatiliteten til aksjer har skiftet til et 

lav-volatilitets regime fra slutten av 90-tallet. I kontrast skiftet sambevegelsen til aksjene til et 

høy-korrelasjonsregime fra 2000 tallet. Netto effekten av regimeendringene utligninger 

hverandre og forårsaker den stabile diversifiseringgevinsten.      
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1.0 Introduction    
In this paper, we analyze how smaller portfolios consisting of 1 to 30 stocks have performed 

in different decades. We also explore how the underlying risk determinants of a portfolio; the 

co-movement of stock returns, and common stocks’ idiosyncratic risk levels, have developed 

over time. We conduct our analysis and find that the diversification benefit for smaller 

portfolios has not changed through our sample from 1980 to 2021.  

The results from our simulations of randomly selected portfolios consisting of 1 to 30 stocks 

every decade from 1980 to 2020, further indicate that 8-10 stocks eliminate most of a 

portfolio’s idiosyncratic risk. In general, the simulated portfolios estimate total risk levels to 

have peaked in the 1980s and the 2000s. While the risk of our portfolios mostly flattens after 

adding 10 stocks to the portfolio, performing t-tests on the change in mean volatilities shows 

that there is still a 90% statistically significant change in volatility when adding the 30th stock. 

This is true for all decades in our sample. The reduction in the portfolio risk gained by an 

additional stock in your portfolio is equal at the start and the end of our sample.   

We also find that industry emplacement restrictions on the randomly drawn portfolios does 

not improve their risk performance. Finally, we calculate the reward to volatility ratio of each 

batch of simulated portfolios. When we study the Sharpe ratios  it is evident that smaller 

portfolios are largely inefficient compared to an index benchmark. This corresponds with 

Bessembinder (2018) finding positive skewness in the return distribution of the stocks listed 

on the NYSE.   

To explore the development in the risk determinants of smaller portfolios; the stock return co-

movement and the idiosyncratic risk we create several time series for the two determinants. 

We analyze the series to see whether their development were consistent with stable 

diversification benefits.    

We estimate two idiosyncratic risk series, one with a disaggregated model where we treat the 

volatility as observable, and one with a Fama- French (1993) regression model. We then use 

Markov-switching models to obtain our next empirical results. The models reveal that the 

firm-specific risk component of common stock returns has entered a regime with lower mean 

values from the turn of the century. The switching models estimate that a low idiosyncratic 

risk state with mean variance values of 0.002 and 0.004 has persisted with 99% probability for 
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most of the sample past 2002.1 The latter presents a significant shift from a high idiosyncratic 

risk regime with mean variance values of 0.009 and 0.011 that persisted with 99% probability 

for most of the sample from 1980 to 1992.  

We also employ a Markov-switching model on a time series of the average realized pairwise 

return correlation of the stocks listed on the NYSE. From this, we find that the co-movement 

between individual stock returns reached a higher mean state from the early 2000s to the late 

2010s. The Markov model identifies that a low co-movement state with mean values of 0.105 

persisted with 98% probability for most of the sample from 1980-2004. For the sample past 

2004 the Markov model estimates several switches to a high co-movement state with a mean 

of 0.279 that was estimated to persist with 94% probability.           

Our VAR model finds that the level of industry specific volatility now influences the level of 

market volatility in a Granger causality analysis of our disagreed volatility series. This 

represents a change from previous studies where the level of industry specific volatility does 

not influence the level of market volatility in the short term.  

The transition to a low-level idiosyncratic risk regime and higher return co-movement regime 

represents a break from Campbell, Lettau, Malkiel, and Xu (2001) research that identified the 

opposite tendencies prior to the turn of the century. However, our identified return correlation 

trends are consistent with what Sullivan and Xiong (2012) and LaCasce, Lillethun, Rynning-

Tønnesen and Gaivoronski (2019) find in previous studies of stock co-movement. We also 

find a decrease in the firm-specific risk component in common stock is consistent with 

Brandt, Brav and Kumar (2010) findings. The transformation to high return correlation and 

low idiosyncratic risk regimes within similar time frames does explain our main finding of 

stable diversification gains from adding stocks to a portfolio in our samples.         

One implication of our analysis is that investors with limited diversified portfolios can expect 

to remove most idiosyncratic risk from their portfolio with 8-10 stocks. This has been the case 

for the simulated portfolios in all our samples. This is consistent with Evans and Archer 

(1968) finding that 8-10 stocks alone will diversify away most of a stock portfolio's 

idiosyncratic risk, commonly mentioned in several finance textbooks (Bodie, Kane & Marcus, 

2018). In terms of returns, a naively diversified portfolio of up to 30 stocks shouldn’t be 

expected to be competitive with an index. 

 
1 The estimated 99 % probability for the low variance states was briefly abrupted during the recessions of 2008 
and 2019. Despite the latter, the 99% probability of the low mean state holds for 96% of the sample past 2002.   
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Most of our simulations indicate that the smaller portfolios are vastly outperformed by index 

benchmarks when returns are accounted for relative to risk. Considerable time variation in the 

total risk level of our simulated portfolios also represent a divergence from Tang’s (2004) 

findings.  

This thesis first review previous research on the average stock volatility and co-movement 

between stock returns in the U.S. markets. After that, we review the results of simulation 

studies on the risk efficiency of smaller portfolios. The next section of the paper is a 

methodical guide to the various numerical methods we use in our analysis. After that, we also 

devote a brief section to describe the data we employ in our analysis.     

The results section contains the risk performance of simulated portfolios, a discussion of the 

results from our study on stock volatility, co-movement development, and finally, a look at 

the risk performance of our simulations relative to returns. Our thesis culminates in a review 

of our main findings and tips for future research.     
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2.0 Literature Review  

2.1 Small Portfolio’s Risk Determinants  

Diversification is the practice of spreading your investment capital across different assets to 

reduce overall risk exposure. Studies of the diversification efficiency of smaller portfolios are 

categorically separated into two types of studies. The first type of study analyzes 

diversification efficiency through simulations of randomly selected portfolios. The other type 

of study typically employs more technical models to analyze the development of a stock’s 

firm-specific risk component and the co-movement of stock returns. 

While the non-simulation studies do not directly analyze diversification performance, such 

analyzes of a portfolio’s risk determinants will implicitly suggest how diversification benefits 

have varied over time. The latter is demonstrated here for a 2-stock portfolio: 

𝑉𝑎𝑟𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 = 𝑊1
2𝜎𝑥

2 + 𝑊2
2𝜎𝑦

2 + 2𝑊1𝑊2𝜌𝜎𝑥𝜎𝑦  (𝑥, 𝑦). (1)  

Where the covariance is equal to: 

 𝐶𝑜𝑉𝑎𝑟(𝑥, 𝑦) =
∑(𝑥−𝑥)∗∑((𝑦−𝑦))

𝑛
(2) 

and will reflect the linear dependence between two stocks. Moreover, it can be reformulated 

as 

𝐶𝑜𝑉𝑎𝑟(𝑥, 𝑦) = 𝜌𝜎𝑥𝜎𝑦 , (3) 

where 𝜌 is the correlation coefficient between the return of the two stocks. For a larger 

portfolio, the risk level will converge towards the average covariance between the stocks in 

the portfolio. The average covariance is a function of the average pairwise correlation 

coefficients and the average standard deviation of each stock's return.  

A higher average pairwise return correlation thus leads to higher co-movement in the returns 

between underlying assets in a portfolio and a weaker diversification gains. The reason for the 

latter is that less of a volatility increase in one stock is canceled out by weaker or negative 

volatility development in the other portfolio constitutes. Similarly, a higher idiosyncratic risk 

level as a proportion of a stock's total volatility, increases the number of stocks required to 

attain an efficient portfolio.  A single stock’s return volatility or standard deviation can be 

composed into a systematic and firm-specific component . The firm-specific risk component: 

the idiosyncratic risk, steadily decline when we add less than perfectly correlated stocks to a 
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portfolio. A higher initial idiosyncratic risk level implies that we need more stocks in our 

portfolios to remove the idiosyncratic risk (Copeland, Weston & Shastri, 2013). 

2.2 The Development of a Typical Stock’s Firm-Specific Volatility Component   

Studies of a "typical stock’s" idiosyncratic risk level in the U.S. markets have yielded varying 

results. Campbell, Lettau, Malkiel, and Xu (2001), henceforth referred to as CLMX, found 

that the idiosyncratic risk level in individual stocks listed on the NYSE, AMEX and 

NASDAQ, had a significant upward drifting deterministic trend from 1962 to 1997. Deviating 

from previous studies' use of factor models and parametric models, they treated firm volatility 

series as observable. They estimate an idiosyncratic risk series with a uniquely specified 

model and use daily stock return data from the Center for Research of Security Prices’ 

(CRSP) database.   

Interestingly, research based on more recent data discredits the possibility of an upward trend 

in idiosyncratic volatility in individual stocks. Brandt, Brav and Kumar (2010) replicate the 

CLMX study and identify the 1987 market crash and the build-up to the 2001 dot-com 

recession as the keys to finding any deterministic trend.  

Bekaert, Hodrick, and Zhang's (2012) analysis of the idiosyncratic risk in individual stocks 

also identifies a clear break from the trend CLMX found, with newer data. By estimating an 

idiosyncratic volatility series with an alternative Fama-French (1993) model, Bekaert et al., 

(2012) dismiss the possibility of a deterministic trend in their series. Instead, they find 

idiosyncratic volatility in individual stocks best described as a stationary autoregressive 

process. A process that sporadically switches to higher variance regimes for short periods 

during recessions. Bekaert, Hodrick, and Zhang (2009) also criticize the CLMX practice for 

limiting the variability in their volatility series. However, their alternative estimation method 

differs little from the CLMX method in terms of results. 

Lebedinsky and Wilmes (2017) replicate the CLMX study with newer data and further 

identify the level of idiosyncratic risk to have several spikes in the early 21st century due to 

the dot-com bubble and the 2008 financial crisis. However, they find that the level of risk is 

mean reverting throughout their sample from 1962 to 2014. Interestingly, their volatility 

series for idiosyncratic risk showcase slightly lower mean levels in the 21st century compared 

to the last two decades of the 20th century.     



6 
 

2.3 The Development of the Average Pairwise Correlation of Stock Returns    

Although the CLMX study finds a rising level of idiosyncratic risk, the researchers also find 

that the average pairwise correlation of stock returns decreased from 1962 to 1997. As with 

the volatility series, they employ realized return and a non-parametric model to estimate the 

correlation coefficients. Their study further concludes that the volatility effects are stronger 

than the correlation effect, leading to less diversification efficiency in smaller portfolios.  

More recent research on average pairwise stock return correlations differs from the work of 

CLMX. Both LaCasce, Lillethun, Rynning-Tønnesen, and Gaivoronski (2019) and Sullivan 

and Xiong (2012) identify the increasing popularity of mutual funds and exchange-traded 

funds (ETFs) as having a positive effect on the pairwise average return correlations. They 

cited how institutional investor's more extensive stock market ownership might lead to more 

trading and return commonality due to more trades being "automated" based on fundamentals 

and volume. Sullivan and Xiong (2012) graphed the average pairwise correlation of several 

stock indices from 1997 to 2012 using realized data. They find a clear upward correlation 

trend from the end of the CLMX sample period, and a possible regime shift to a higher mean 

state. A possible shift that corresponded with a 3-fold increase in the market share of 

institutional investors. 

Sullivan and Xiong (2012) also employ regression models. An independent variable for the 

percentage of passive assets had a positive and 5% statistically significant effect on both 

dispersion in volume changes and the pairwise correlation of price changes. LaCasce et al., 

(2019) built on Sullivan and Xiong's work by employing a Markov switching model, which 

identified a bear market regime that positively affected stock return correlations. Benhmad 

(2013) also has similar findings with slightly different model specifications. LaCasce et al., 

(2019) also find that the number of ETFs has significant explanatory power for the average 

pairwise return correlations in larger indices. Kearney and Poti (2008) have in contrast 

attributed the increased worldwide stock return co-movement to stronger economic 

integration. Lebedinsky and Wilmes (2017) also find the stock return co-movement to 

increase from 2001 to 2017. However, they did not check for the possibility of different 

regimes in the data generation process.     

In summary, newer research identifies an apparent change in how the idiosyncratic risk and 

pairwise average stock correlations have developed over the last 20 years. The trends that 

Campbell et al., (2001) identified with decreasing pairwise correlations and increasing 
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idiosyncratic risk likely have reversed in the past 20 years. This is also consistent with our 

own findings in this paper.   

2.4 Previous Findings in Simulation Studies     

Like risk determinates studies, studies that have employed simulations to access the 

performance of smaller portfolios that consists of 1 to 30 stocks have produced varying 

results. As mentioned earlier in the paper, the notion that ten or fewer stocks is enough to 

diversify away idiosyncratic risk, dates from research conducted in the 60s. Evans and Archer 

(1968) simulate the risk performance of several portfolios that consists of 10 randomly 

selected stocks through time. They find equivalent risk levels in their randomly simulated 

portfolios and several market indices (Evans & Archer,1968). 

Bernstein (2000) and Tang's (2004) simulations yield that 8 to 15 stocks is sufficient to obtain 

an efficient risk level. Interestingly, Tang's (2004) estimates imply that the number of stocks 

needed to attain a low-risk level was independent of which subsamples he employed in his 

time series analysis from 1962 to 2000. Tang (2004) also find that a less naïve diversification 

strategy, with enforced restrictions on which sector each stock is picked from, does not 

improve diversification.      

Bernstein (2000) also find that the average pairwise stock correlation decreased from the 70s 

to the late 90s, which he attributed to the low number of stocks needed to achieve desired 

diversification effects. Bernstein do, however, find a substantial problem with the mentioned 

portfolios, that the Sharpe ratio of the created portfolios is significantly lower than that of a 

well-diversified portfolio. Several recent studies, such as Domain, Louton, and Racine (2007) 

and Bessembinder (2018), have cited positive skewness in the return distribution for 

individual stocks as the main reason why smaller portfolios have poor Sharpe ratios. They 

attribute the excellent performance of indices such as the S&P 500 to the top 4 percentile of 

stocks in the index with abnormal returns. Domain et al., (2007) simulations show that you 

need more than 100 stocks to acquire a Sharpe ratio comparable to their benchmark index.  

The low percentage chance of picking a stock with strong returns in smaller portfolios, where 

most stocks rarely outperform even the 1- or 3-month T-bill returns, thus implies that we do 

not expect a good Sharpe ratio for smaller portfolios. 

In summary, the results of the number of stocks needed to remove the level of idiosyncratic 

risk in a portfolio have remained rather stable through time, while accounting for returns 



8 
 

raises the number of stocks needed for an efficient portfolio. Our own results largely 

correspond with the results from previous studies.  
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3.0 Methodology 

3.1 Methodology for Idiosyncratic Volatility   

In our analysis of whether the firm-specific volatility component of the volatility of stocks has 

risen, we first use the methodology employed by CLMX.  

As CLMX, we estimate unconditional estimates of variances based on sums and averages of 

return and cross products. The CLMX approach assumes that the variance of the method is 

observable. According to Merton (1980), such variance estimates yield high accuracy and are 

robust provided that the squared deviations from the process realization are at a high 

frequency.  

The CLMX approach separates the return of a "typical" stock into three different components: 

the market-wide return, the industry-specific residual, and the firm-specific residual. 

We decompose the weighted average return volatilities in the following way:  

∑ 𝑤𝑖𝑡

𝑖

∑ 𝑤𝑗𝑖𝑡

𝑗∈𝑖

𝑉𝑎𝑟(𝑅𝑖𝑗𝑡) = ∑ 𝑤𝑖𝑡

𝑖

𝑉𝑎𝑟(𝑅𝑖𝑡) + ∑ 𝑤𝑖𝑡 ∑ 𝑤𝑗𝑖𝑡

𝑗∈𝑖𝑖

𝑉𝑎𝑟(𝜂𝑖𝑡)

= 𝑉𝑎𝑟(𝑅𝑚𝑡) + ∑ 𝑤𝑖𝑡 𝑉𝑎𝑟(𝜖𝑖𝑡) + ∑ 𝑤𝑖𝑡𝜎𝜂𝑖𝑡
2 =

𝑖𝑖

𝜎𝜂𝑖𝑡 
2 + 𝜎𝜖𝑡

2 + 𝜎𝜂𝑡
2 .       (4) 

As in the CLMX methodology,  𝑅𝑗𝑖𝑡 denotes the period t return of firm j in industry 𝑖, 𝑅𝑖𝑡 

denotes the weighted average return of industry 𝑖, and finally, 𝑅𝑚𝑡 is the average weighted 

market return. 𝑤𝑖𝑡 is the weight of industry 𝑖 in the whole market and we derive it by 

employing its market capitalization at time 𝑡. Similarly, 𝑤𝑗𝑖𝑡 is the weight of firm j in the 

industry 𝑖 also at time 𝑡.  𝜖𝑖𝑡  and 𝜂𝑖𝑡  are specified as 𝑅𝑖𝑡 = 𝑅𝑚𝑡 + 𝜖𝑖𝑡   and    𝑅𝑗𝑖𝑡 = 𝑅𝑖𝑡 +

𝜂𝑗𝑖𝑡.  

Per the CLMX methodology, we obtain the firm's weight by dividing its market capitalization 

by the sum of the market capitalization for all firms each month in the sample. Firms are re-

weighted each month based on market capitalization, to gain the market-weighted return for 

each firm. Later the monthly weights are obtained with daily return data; then we calculate the 

market-weighted average return for each day in the sample. We calculate the daily excess 

return by subtracting the daily return from holding 3-month T-bill from the firm return series.  
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We use daily average excess returns to calculate the mean excess return of the market over the 

entire sample period and use it to estimate the market variance as:  

𝑀𝑎𝑟𝑘𝑒𝑡𝑡 = 𝜎𝑚𝑡 ̂  2 = ∑(𝑅𝑚𝑠 − 𝜇𝑚)2.

𝑠∈𝑡

          (5) 

The weight of each firm within its respective industry is the firm's market capitalization 

divided by the total industry market cap. The weight of firm j in industry 𝑖 is equal to firm j's 

weight within the market divided by the sum of the weights of all firms within industry 𝑖. We 

use the industry weights and returns obtained from each firm in each industry, and we obtain 

the average returns for each industry. We employ 12 industry classifications defined by Fama 

and French (1993) and sort companies in their respective industries by their Standard 

Industrial Codes (SIC) in the CRSP database.   

The volatility from each industry is obtained by subtracting excess market returns from the 

excess industry returns 𝑅𝑖𝑡 = 𝑅𝑚 + 𝜖𝑖𝑡 and squaring the differences 𝜎̂𝑒𝑖𝑡

2 = ∑ 𝜖𝑖𝑠
2

𝑠∈𝑡   

We calculate the average industry volatility with individual industry volatilities and the 

weights of the industries in the overall market 𝑤𝑖𝑡  

∑ 𝑤𝑖𝑡𝜎̂𝑒𝑖𝑡.

𝑖

(6) 

 

Lastly, to obtain a measure of the idiosyncratic firm volatility, we subtract the average 

industry return from each firm's excess returns, 𝑅𝑗𝑖𝑡 = 𝑅𝑖𝑡 + 𝜂𝑗𝑖𝑡  and  square the differences 

to estimate 𝜎̂𝜂𝑗𝑖𝑡

2
  

𝜎̂𝜂𝑗𝑖𝑡

2 = ∑ 𝜂𝑗𝑖𝑠.
2

𝑗∈𝑡

(7) 

 

Then we sum the squared differences for each firm by month and multiply each firm’s total 

squared differences by the firm’s weight within its industry 𝑤𝑗𝑖𝑡   

𝜎̂𝜂𝑗𝑖𝑡

2 = ∑ 𝑤𝑗𝑖𝑡𝜎𝜂𝑗𝑖𝑡
̂ 2.

𝑗∈𝑖

(8) 
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Finally, we calculate the average idiosyncratic volatility for all stocks as a weighted average 

of  𝜎̂𝜂𝑖𝑡

2
.  

When CLMX estimate the return volatility components of a typical firm, their methodology 

has the significant benefit of mitigating problems related to estimating individual betas and 

tracking covariances for individual firms and industries. Using realized returns in volatility 

estimates with the CLMX methodology, produce more robust results than what would be 

achieved with a parametric model (Schwert, 1989). We assume, as CLMX, that industry 

returns have unit betas relative to the market portfolio. An issue with the CLMX methodology 

described by Bekaert et al., (2009) is that the unit beta restriction potentially limits their 

models' ability to emulate stock’s return variability. While Brandt et al., (2010) has criticized 

trend tests based on the estimation method for being sensitive to the choice of time sample.   

To get an alternative measure of the trend in idiosyncratic risk and compensate for the 

aforementioned critique, we employ the Fama-French (1993) three-factor model and the 

methodology employed by Fu (2009). We use the regression: 

𝑅𝑗,𝑡 = 𝛼0𝑗,𝑚 + 𝛽1,𝑗,𝑚𝑀𝐾𝑇𝑡 + 𝛽2,𝑗,𝑚𝑆𝑀𝐵𝑡 + 𝛽3,𝑗,𝑚𝐻𝑀𝐿𝑡 + 𝑢𝑗,𝑡
𝐹𝐹 .          (9) 

Of the Fama-French (1993) factors, MKT represents the excess return on the market portfolio, 

SMB is the small size factor, and HML represents the value factor. To estimate idiosyncratic 

risk, we first estimate the Fama-French (1993) regression for each stock with daily data with a 

rolling window of 42 trading days.4 Mor details behind the 3-factor model can be found in 

Appendix 9. 

We calculate the daily regression residuals for each stock. Then we obtain the average 

monthly standard deviations of the residuals for the stocks as a measure of the average 

monthly idiosyncratic risk level. We also enforce the restriction that all the stocks in each 

regression window have at least 15 observations, to mitigate issues with missing data.   

We believe the described models suits the purpose of estimating the idiosyncratic risk and 

total risk level of the common stocks better than a parametric model such as the GARCH 

model or its derivatives. While GARCH models would have provided the possibility to 

forecast risk developments, our analysis is concerned with the historical development of the 

idiosyncratic risk in common stocks. Furthermore, the choice of the optimal parametric model 

 
4 We use the window of 42 days as a proxy for a two-month window, when the average and median number of 
trading days each month in our sample was 21 
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has significant implications for forecasts quality but also to lesser extent on how realized risk 

patterns are described according to Nelson (1992). Fitting the best parametric model for the 

underlying stock on the NYSE would be complicated. Schwert (1989) has also argued that 

using realized data in similar manner to the CLMX methodology yields more robust results. 

We also counter the main criticism of the CLMX methodology in that its underlying 

assumptions possibility restrict stock return variability with our alternative estimation method 

for the idiosyncratic risk series.      

3.2 Method for Co-Movement Estimation 

To document the development of co-movement in the return of individual stocks, we estimate 

the pairwise return correlation among stocks listed on the NYSE. We use a similar method as 

CLMX to estimate the average pairwise return correlations using daily and monthly data. We 

calculate the monthly pairwise correlations using the previous 12 months of daily data. We 

then estimate an equally weighted average of the correlation estimates. We obtain annual 

correlations estimates based on monthly data for the last 60 months of observations. 

We also estimate a proxy for the correlation coefficients with an alternative methodology 

employed by CLMX. We obtain the average monthly 𝑅2 from a 60-month rolling CAPM 

regression based on each stock, each month, with the following equation: 

𝑅𝑗,𝑡 = 𝛼0𝑗,𝑚 + 𝛽1,𝑗,𝑚𝑀𝐾𝑇𝑡 + 𝑢𝑗,𝑡
𝐶𝐴𝑃𝑀. (10) 

The reason why the average  𝑅2 of the capital asset pricing model (CAPM) regression serves 

as a proxy for the development of the pairwise co-movement in stock returns are twofold. 

Firstly, an increased 𝑅2 implies that more of a stock’s return can be attributed to systematic 

market risk. Thus, a higher 𝑅2 implicitly leads to higher stock return co-movement when a 

higher proportion of a typical stock’s return is influenced by a common factor. More 

theoretically, if all stocks shared the same characteristics and are equally correlated in returns, 

the variance of the market portfolio would be 𝜌 times the variance of any individual stock. 

The latter scenario thus implies that the average 𝑅2 of the market model would be 𝜌 or the 

average pairwise correlation coefficient between the stocks (Campbell et al.,2001). While 

different stocks clearly will have unidentical characteristics, both the CLMX and Lebedinsky 

and Wilmes (2017) study have proven that the average  𝑅2 of the market model serves as a 

good proxy for co-movement in stock returns.  
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3.3 Method for Simulations  

To analyze how the diversification effect has varied across our different risk and correlation 

regimes, we employ simulations like those in Evans and Archer (1968). We create 10,000 

portfolios that consists of 1 to 30 randomly selected stocks and compare their average 

variance to selected indices using historical return data. In total, we create 300,000 randomly 

selected portfolios in each of our main samples. We diversify the portfolios naively, with 

equal weights in each stock.    

To test for significant change in the risk levels by adding an additional stock to our portfolio, 

we use the t-test on our t-values, given by: 

𝑡 =
𝜇2 − 𝜇1

𝜎𝑑𝑖𝑓𝑓

√𝑁 − 1

. (11)
 

 

We chose the S&P 500 as one of our benchmarks since the index functions as an easily 

obtainable way for smaller investors to acquire a well-diversified portfolio. This does not 

imply that we see the index as a market portfolio proxy or want to benchmark against an 

actual market portfolio. We also benchmark against an equally weighted NYSE index so we 

consistently could compare our findings with the results obtained from previous studies that 

used the benchmark.      

To analyze whether the different variance and correlations regimes affect the portfolio’s risk 

level, we conduct our simulations in four different subsamples. We conduct our simulations 

with monthly return data through holding periods from 1980 to 1999, 1990 to 1999, 2000 to 

2009, and finally from 2010 to 2019.  The different sample periods allow us to see if the 

change to a lower idiosyncratic risk regime, but higher return co-movement regime has 

impacted the efficiency of smaller portfolios.       

We restrict the firms used in our simulations to be firms that existed both at the start and end 

of each sample period. Since absent observations or including the stock prices as zero will 

lead to downward biased or incomplete variance estimates. While positive survivorship bias is 

not an ideal property either, we believe that our limited sample periods mitigate some of the 

issues related to this bias.     
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We also estimate the average Sharpe ratio for each batch of randomly selected portfolios by 

calculating the excess return of each portfolio and dividing it by its estimated standard 

deviation  

𝑆ℎ𝑎𝑟𝑝𝑒 = (𝑅𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 − 𝑅𝑓𝑇𝑏𝑖𝑙𝑙 )/𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜.    (12) 

We derive the excess return by subtracting the individual stocks’ return from the monthly 

return from holding the 3-month T-bill. We estimate each stock return with the simple holding 

period return formula: 

𝐻𝑃𝑅 =
𝑝𝑡+1 − 𝑝𝑡

𝑝𝑡
− 1. (13) 

      

We account for the Sharpe ratio to check if Bessembinder’s (2018) findings still hold with 

newer data in different subsamples with direct simulation studies.  

To obtain the average variance and return of our randomly selected portfolios, we use matrix 

calculation in the programming language Python. Employing the power of programming 

further allows to conduct simulations at higher frequency than in previous research. Our 

method should yield a lower standard error in the simulations and more robust results.    

We calculate the return of each portfolio as the equally weighted average return from the 

underlying stocks in the portfolio. We calculate the variance of the portfolios as the equally 

weighted sum of variances, and covariances of the stock’s constituents in the portfolio 

𝜎𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜
2 = ∑ ∑ 𝑤𝑖

𝑛

𝑗=1

𝑛

𝑖=1 

𝑤𝑗𝜎𝑖𝑗 (14)  

where 𝑖, 𝑗 = 1,2, , , , 𝑛. 

We derive the covariance between the portfolio constituents using a correlation matrix and a 

vector with the product of the individual stock's investment weight and return variance  

                                                       𝜎2 = 𝑊 ∗ ∑∗ 𝑊𝑡 ,                                                                                (15) 

where W = (𝑤1𝜎1 𝑤2𝜎2 . . 𝑤𝑛𝜎_𝑛), ∑ = [

1 𝜌12 ⋯ 𝜌1𝑛

𝜌21 1 ⋯ 𝜌2𝑛

⋮ ⋮ ⋱ ⋮
𝜌𝑛1 𝜌𝑛2 ⋯ 1

]  and 𝑊𝑡 = |

𝑤1𝜎1

𝑤2𝜎2

⋮
𝑤𝑛𝜎𝑛

| 
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𝑤𝑛 denotes the investment weight in each individual stock which is equal to 
1

𝑛
 where n is the 

number of stocks in the portfolio. 𝜎𝑖𝑗 denotes the covariance between pair of stocks in the 

portfolio. Where 𝑤𝑛 =
1

𝑛
. Our matrix and vectors are stepwise expanded according to number 

of stocks each portfolio had to contain.  

Finally, we also test Tang's (2004) finding that a less naïve diversification strategy where the 

stocks are spread across different sectors does not improve the risk performance of smaller 

portfolios. We test Tang's (2004) finding by employing a restriction on the simulations where 

the portfolios must contain stocks spread across the Fama- French’s (F.F) 12 identified 

industry classes. For the first simulations of portfolios that consists of 1-12 stocks, we 

employed the restriction where a maximum of only one stock can be in the portfolio per 

industry. For the portfolios that consists of 13-26 stocks, we employ the restriction of a 

maximum of two stocks from each industry. The final portfolios of 26-30 stocks have a 

restriction of 3 stocks maximum in each industry. 
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4.0 Data  

We collect stock returns, shares outstanding and prices for firms listed on the New York 

Stock Exchange, from the CRSP database. We chose the time frame for our analysis to check 

if the last half of the CLMX sample led to biased results and whenever their identified trend in 

stock volatility had continued. The CRSP return data is adjusted for dividend payouts as well 

as stock-splits.   

We also employ the F.F industry classification of 12 industries and sort the individual firms 

into the industries according to their SIC codes. We multiply shares outstanding with price to 

obtain total market cap and market cap per industry. We calculate the excess return for each 

stock by subtracting the 3-month T-bill rate from the individual stock return. We download 

the 3-month T-bill rate from the FRED Economic Database. We gathered the daily and 

monthly return associated with different factor loadings for the Fama-French (1993) model 

and the CAPM from Kenneth French’s own website.    

4.1 About the Data 

Daily returns data from the NYSE between 1980-2021 gives us 23,939,904 observations in 

our main dataset. Throughout our dataset, there are 8,208 different firms. The total number of 

firms at any given time between 1980-2021 varies greatly throughout. The year with the most 

firms listed on the exchange was 1998, when 3,121 different firms are listed, and the fewest 

number of firms was in 1984, when 1,580 firms are listed. Throughout our series, there are 

somewhere between 4,868,760 and 1,274,410 unique pairs of stocks, which is relevant for our 

correlation analysis. We see rapid growth in firms from the late 80s until the dot-com bubble 

at the change of the century. After that, the number of firms remain stable. There are enough 

firms in our dataset to do valid empirical work at all points in our sample.  

 

Figure 1. The number of firms listed on the NYSE stock exchange by year. 
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The 12 industries we break the data into are: durable goods, nondurable goods, 

manufacturing, energy, chemicals, business equipment, telecom, utilities, shops, healthcare, 

finance, and others. You can find a detailed description of our industry separation scheme in 

Table A.1 in Appendix 1.    

4.2 Data Statistics 

The average daily return in our series is 0.006%, and the standard deviation of returns is 

2.851%, the highest observed return is 300% and lowest is -96.3%.5 

 

Figure 1. Total market capitalization of the NYSE, by year. 

We also note that the market capitalization of the NYSE has steadily increased over the 

sample, and that the last 2 years have seen exceptional growth.  

 
5 We purged the dataset of any observations with returns over 300% or with zero returns for more than 6 
months in a row, to remove bias from missing data or highly illiquid stocks with abnormal returns.  
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5.0 Results  

5.1 Results of the Portfolio Simulations 

The results from our simulations of the risk of portfolios tells us that the marginal risk 

reduction from adding additional stocks to smaller portfolios have been consistent through the 

last four decades. Our analysis does not contain any findings that suggest that the 

diversification efficiency in smaller portfolios today has improved or declined significantly. 

This is despite that the markets and investing landscape obviously having changed since the 

1980s. The flow of information and the ability to place trades have increased rapidly, and 

international markets have gotten more integrated. Despite this, Figure 3 shows us that the 

effect of additional stocks on your portfolio has had the same effect on volatility for each 

decade.  

 

Figure 3. Throughout different decades, the average annual standard deviation of random portfolios consisting of 1-30 
stocks. 

Figure 3 contains the average annualized standard deviation of 10,000 simulated portfolios 

consisting of 1 to 30 stocks. We calculate the standard deviation with monthly return data. 

There is a clear tendency where the marginal reduction in the portfolio standard deviation 

largely decays after 8-10 stocks are included in the portfolio. The latter is consistent with 

Bernstein (2000) and Tang's (2004) findings where they found that 8-15 stocks would remove 

most of the portfolios idiosyncratic risk.    
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Figure 4. Standard deviation of risk in our simulated portfolios for each decade. 

To analyze whether there is a reason to add more stocks than the 8-10 to the portfolio in terms 

of risk efficiency, we graphed the standard deviation of the 10,000 simulations for each 

portfolio by decade. The results can be seen in Figure 4. Although the decline in the expected 

risk of the portfolios is higher for the first ten portfolios, we expect that the smaller risk 

reductions from adding ten or more stocks should be more certain. The standard deviations 

showed the same trend as the risk, with an effect that decays rapidly after adding the first few 

stocks. However, there is still a steady decrease in the standard deviation of the simulations 

when adding the 30th stock, as opposed to in our risk result from Figure 3. The lower risk 

reductions of adding more than 10 stocks are thus partly compensated for with more certain 

risk reductions.  Thus, it is hard to argue that there is no effect from adding up to 30 stocks 

and more when you reduce the uncertainty of your risk. Both the simulated risks and the 

standard deviation of these simulations can be found in Table A.4 and A.5 in Appendix 4.  

 

Table 1: T-values for change in risk levels. 
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We perform t-tests on our volatility series from Table A.3 in Appendix 4. The results are 

reported in Table 1. We see that for all decades, adding up to 20 stocks to your portfolio 

produces a significant change, at the 95% confidence level, in your risk levels. After adding 

the 20th stock to our portfolio, we see that for certain portfolios the change in risk becomes 

insignificant. However, for three of the four decades, adding a 30th stock proves to be 

significant, and in the 1990s it is barely not significant at a 95% confidence level. Our critical 

t-value is 1.96.  

The significant risk reductions beyond when the 8th stock is added to the portfolio aren’t 

consistent with Evans and Archer (1968) finding that adding the 9th stock in a portfolio 

doesn’t yield reductions in the portfolio risk level at a reasonable level of statistical 

significance. It would still be faulty to conclude that the diversification effect has improved 

since the 60s. The 𝑇 statistic is relatively sensitive to the frequency of our simulations, and 

Evans and Archer (1968) employed 60 simulations per portfolio consisting of 1 to 40 stocks. 

When we turn down the simulation frequency from 10,000 portfolios to 1,000 portfolios the 

marginal reductions in the portfolio risk from adding the 12th stock are insignificant at the 5% 

level of statistical significance. See Table A.7 in Appendix 7.    

According to our tests, it’s evident that it’s still possible to obtain marginal risk reductions 

from expanding the portfolio stepwise with more than 8-10 stocks.  Similar risk reduction and 

t-test statistic patterns in the samples imply that there has been limited variation in the 

diversification gains in smaller portfolios in the last four decades.  We can see that for every 

decade, the same pattern appears, where we get high t-values when adding up to 12 stocks 

before the t-values settle around a value of 2-3 in most of the remaining observations. From a 

pure risk perspective, we still find that Evans and Archer’s (1968) main finding still holds. In 

practice, the marginal reduction in the portfolio risk abruptly declines after the 8-10th stock is 

added to a portfolio in all our samples, implying that 8-10 stocks are sufficient to reduce most 

of portfolios idiosyncratic risk component.  

Although the marginal percentage reduction in the portfolio volatility for adding stock in each 

portfolio is even for all decades, our simulated portfolios have varying risk levels each 

decade. The fact that the risk performance of the portfolios varies across the different decades 

is in contrast with Tang's (2004) claim that the risk performance of smaller portfolios was 

invariant in different periods.  The risk level of naïve portfolios generally has a higher risk 
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level in the 1980s and 2000s than in the 1990s and 2010s. A possible explanation for the latter 

is that the magnitude of the market crash of 1987, 2001, and 2008 lead to a higher level of 

systematic risk. We find that the last 10 years have seen the improved performance of smaller 

portfolios in total risk level. In terms of diversification efficiency, the marginal gains from 

adding stocks to the portfolio are close to identical in all our samples.   

We also estimate the yearly excess standard deviation for simulated portfolios consisting of 2, 

5, 20 and 50 stocks, relative to the standard deviation of a NYSE equally weighted index. To 

quantify the diversification benefits relative to a market benchmark on a yearly basis.    

 

Figure 5. The yearly excess standard deviation of simulated portfolios consisting of 2, 5, 20 and 50 stocks. 

Figure 5 shows a slightly lower average excess standard deviations the last decade compared 

to in the 2000s, despite the fact the pandemic likely led to an increase in excess standard 

deviation in the end of the sample. We note that the divergence in relative excess standard 

deviations across the decades seems to be lower than the divergence in risk alone. The excess 

standard deviation varies considerably throughout our sample. We still believe the series does 

not contain any trend which would suggest that diversification efficiency has improved or 

worsened considerably over our sample. While the excess standard deviation has improved 

slightly the last 10 years, the excess risk levels are similar at the start and the end of the 

sample. The relative performance of the differently seized portfolios also remains nearly 

identical at each end of the sample. We also note that recessions generally lead to lower 

diversification gains, which is consistent with the cyclical patterns found in stock return co-

movement and firm specific risk volatility identified by Benhmad (2013) and Lebedinsky and 
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Wilmes (2017). An implication of this is that recessions could raise the number of stocks 

needed to achieve a better risk performance in smaller portfolios for short durations. 

 

Figure 6. The average annual standard deviation of industry diversified portfolios consisting of 1-30 stocks, throughout 
different decades. 

Figure 6 illustrates that enforcing industry allocation restrictions has little impact on the risk 

level of randomly drawn portfolios, which is consistent with Tang’s (2004) work. The effect 

of adding a stock in each portfolio is somewhat more volatile with the industry restrictions in 

our simulations. For instance, the 2000s and 2010s restriction-based series contain sporadic 

increases in the simulated portfolios volatility when the portfolio expands with additional 

stocks. The latter could be due to the standard error of the simulations, or that restrictions 

make it more likely to pick stocks in a more volatile sector. The total risk of the portfolios 

also illustrates that smaller portfolio risk has fallen over the last decade. At the same time, the 

relative order of the volatility series arranged after its standard deviation has remained 

unaltered indicating little variation in the diversification effect. 

The latter results are  surprising when studies of the co-movement and idiosyncratic volatility 

of stock return have identified changes in the risk determinant structure originally described in 

the CLMX study. For instance, LaCasce et al., (2019) and Sullivan and Xiong (2012) found 

that the co-movement in stock return had increased significantly since the turn of the century. 

A change that should have yielded worse diversification benefits. Bekaert, Hodrick, and 

Zhang's (2012) and Brandt, Brav, and Kumar (2010) did however dismiss the positive trend in 
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the idiosyncratic volatility CLMX categorized in the late 90s. The only possible explanation 

for why the marginal gains from adding stocks to a small portfolio have been consistent is that 

both trends in idiosyncratic risk and stock co-movement have changed since the CLMX study. 

Where a considerable decline in the firm-specific volatility component of stocks must have 

cancelled out the effect of increased stock return co-movement. This is exactly what we have 

found, and we will first summarize our analysis of the idiosyncratic volatility part. 

5.2 Volatility Measures Graphical Analysis  

 

Figure 7. The monthly market volatility based on Equation (5) as a part of our three-component volatility 
decomposition in Equation (4). The figure contains the time series for the variance within each month of daily 
market returns. Bear-market periods are marked in grey to illustrate cyclical spikes in the series. 

 

Figure 8. The MA (12) of the monthly market volatility based on Equation (5). The figure contains the backward-
smoothed moving average (12) of the market volatility series. 

Figure 7 shows the volatility of the value-weighted NYSE composite index from 1980 to 

2021. Using daily data to obtain monthly estimates of the variance of the aggregated market. 
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We will now comment on the three individual volatility series based on the CLMX 

decomposition in Equation (4), to check whether the risk trends categorized in previous 

studies have persisted. We analyze whether a changed risk structure produced an outcome that 

would be consistent with the little variation in diversification benefits across our simulation 

samples. While the market has been described as volatile in the last 15 years with two major 

recessions, Figure 7 shows a clear tendency for mean reversals after the recessions for 

aggregated market volatility. Like countless previous studies, our graph for the estimated 

volatility of the American stock market identifies a tendency where recessions coincide with 

significant spikes in volatility. The volatility spikes are related to the market crash of 1987, 

the dot-com bubble, the 2008 financial crisis, and the recent pandemic. The graph does little 

to suggest any positive or negative linear trend in the market volatility. 

Interestingly in comparison to previous studies, our graph also reveals the considerable impact 

of the pandemic recession. The mean of the volatility series from 1980- 2000 and 2000-2020 

is 0.001 and 0.0013. A casual comparison of the original volatility series and its smoothed 

MA (12) alternative indicates that market volatility has a slower moving movement 

dimension and some noise related to the high frequency of the original estimate. The fact that 

aggregated risk in the market means reverting is consistent with limited time variation in the 

diversification efficiency of smaller portfolios.     

 

Figure 9. The monthly industry level volatility based on Equation (6) as part of our three component volatility 
decomposition in Equation (4). The figure summarizes the time series for variance within each month of daily 
industry returns relative to the market. We have marked bear-markets in grey. 
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Figure 10. The MA(12) of the monthly industry volatility based on Equation (6). The figure is the backward 12-
month moving average equivalent for the industry volatility series. 

The volatility graph for the aggregated industries reveals a similar trend to that of the market 

graph, where spikes in volatility occur during recessions. When we compare volatility spikes 

of the industries' returns to the market return volatility spikes, it is evident that the dot-com 

bubble has a more significant relative impact on the industry series. In contrast, the 87-market 

crash has a less relative impact on the volatility of the industry returns. The industry returns 

volatility series does not suggest any trend. Its smoothed MA (12) equivalent reveals a 

slower-moving movement dimension, albeit to a lesser extent than for the market series.   

 

 

 

 

 

 

 

 

 

Figure 11. The monthly firm level volatility based on Equation (7) as a part of our three component volatility 
decomposition in Equation (4). The graph summarizes the time series for variance within each month of daily 
firm returns to the firm's industry. We have marked bear-markets in grey. 
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Figure 12. The monthly firm level volatility derived from Equation (9) a Fama French (1993) regression. 

Figure 12 summarizes the average monthly standard deviations of the residuals obtained from 

the regression in Equation (9)  for each stock in the sample with a 42-day window.   

 

Figure 13. The MA (12) of the monthly firm volatility based on Equation (7). The figure contains the backward 
smoothed moving average (12) of the CLMX firm volatility series. 

The CLMX volatility series for the firm-specific return volatility component has similar 

tendencies to the previous volatility graphs and one clear contrast. While there is a tendency 

for mean reversions after recessions, the dot-com bubble and the pandemic recession had a 

relatively limited impact on the firm volatility series compared to the other disaggregated 

volatility series. Furthermore, the positive trend CLMX categorized in idiosyncratic risk from 

1962 to 1996 seems to revert from the middle of our sample. The latter is independent of how 

the risk series was estimated. A comparison of the Fama-French (1993) and CLMX volatility 
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series seems to validate Bekaert et al., (2009) critique of the CLMX estimation method for 

limiting stock return variability. We find the F.F. series to be slightly more variable than the 

CLMX series, as confirmed when we compare the standard deviation of the two series. The 

divergence between the series is limited, on average the CLMX series predicts 22% lower 

idiosyncratic variance than the F.F series.   

The typical idiosyncratic stock volatility has steadily declined over the last 20 years compared 

to the 20 years prior, except for short periods with volatility spikes related to the recessions of 

2008 and 2020.  

While several papers offer possible explanations for the rise in idiosyncratic risk in US 

markets from the 80s to the late 90s, there is limited research on what might have caused the 

recent decline in idiosyncratic risk levels. Brown and Kapadia (2007) and Fama and French 

(1993) attributed that firms listed in the 80s and 90s came from risker sectors to the rise in 

idiosyncratic risk. Thus, the purge of several risky tech companies during dot-com bubble 

graphed Figure 1, and the Dodd-Frank reforms after the 2008 financial crisis might have 

decreased the share of firms with high idiosyncratic risk levels. In terms of fundamentals, 

quantitative easing and a low-interest rate environment post-2008 have lowered firms’ cost of 

debt and kept their discount rates to a low and stable level. The latter could have led to less 

firm exposure to idiosyncratic factors. We see the relative impacts of each volatility 

component in Figure 14. 

 

Figure 2. Relative impacts of firm, industry and market volatility. 

We have now seen that one of the two factors that affect diversification gains, the 

idiosyncratic risk, indeed appears to have decreased since the CLMX study. We will later 

employ Markov-switching models to counter the possibility of the large recessionary spikes in 
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the first part of the sample causing the trend. The models will allow us to identify possible 

different states of the data generating process behind the volatility series. Our models can thus 

identify whenever the recessions cause high variance states or whenever we genuinely see a 

different data generating process for the variance series after the end of the CLMX sample.   

5.3 Test of the Volatility Series  

We now analyze the autocorrelation structure of our 4-volatility series, to check for serial 

correlation and stochastic trends.  

 

Table 2. The autocorrelation structure of the volatility series. 

 

Table 2 contains the estimated coefficients from the regression 

𝑉𝑜𝑙 = 𝛼1 + 𝜙1𝑣𝑜𝑙𝑡−1 + 𝜙2𝑣𝑜𝑙𝑡−2 + 𝜙3𝑣𝑜𝑙𝑡−3 + 𝜙4𝑣𝑜𝑙𝑡−4 + 𝜙5𝑣𝑜𝑙𝑡−6 + 𝜙6𝑣𝑜𝑙𝑡−12 + 𝑢 (16) 

for each volatility series.  

All four series have significant autocorrelation structures; the series reveal considerable serial 

correlation. The latter is consistent with the somewhat enduring fluctuations in the volatility 

series. Due to the possible stochastic trend in either series, we employ a stochastic trend test 

for each series. 

To test for the possibility of unit roots, we employ variants of the augmented Dickey-Fuller 

test. We run a regression with the first difference of the volatility series as the dependent 

variable, and a lagged version of the series and its lagged differences as explanatory variables, 

to test if the series contains unit rots. When we include the lagged first differences for either 

volatility series, we mitigate the issues related to the serial correlation in each series (Brooks, 

2014). 
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We conduct several tests to determine the best fit for lag structure in the ADF-test. We 

eliminate the least statistically significant lag from each regression until all lags were 

statistically significant at the 5% level.     

 

Table 3. Results from the augmented Dickey-Fuller tests. 

Table 2 contains the estimated 𝜓1 coefficient and its p-value from the regression 

∆𝑣𝑜𝑙𝑡 = 𝜙0 +  𝜓1𝑣𝑜𝑙𝑡−1 + 𝜙1∆𝑣𝑜𝑙𝑡−1+, , , 𝜙𝑛∆𝑣𝑜𝑙𝑡−𝑛 + 𝑢𝑡 . (17) 

. 

Where ∆𝑣𝑜𝑙𝑡 = 𝑣𝑜𝑙𝑡 − 𝑣𝑜𝑙𝑡−1 is the first difference of vol and 𝜓1 = 𝜙1 − 1. Table 3 also 

contains the results of an equivalent model with a trend term and adjusted lag length.  

We reject the zero hypothesis of a unit root for all the four series, independent of the inclusion 

of a trend term. Interestingly, of ADF tests, only the firm volatility series has a trend term at 

the 5% level of statistical significance. The trend coefficients of -0.00005 and -0.00006 for the 

CLMX and Fama- French (1993) series are negative but low in magnitude. 

Since the series are stationary, we conduct further analyzes of the series in levels and not first 

differences. Since Figures 11 and 12 still indicate a negative trend in the idiosyncratic 

volatility series, we test for the alternative hypothesis of deterministic trends in the firm 

volatility series.  



30 
 

 

Table 4. Descriptive statistics for the volatility series. The table contains the mean, standard deviation, maximum and 
minimum values for each volatility series. 

The standard deviation of the volatility series further reveals that both the firm and market 

volatility series have similar variability. This result is consistent with the findings from the 

CLMX study.       

We employ Vogelsang’s (1998) test procedure to test if there is a deterministic linearity in 

either variance series. We select this test procedure due to the moderate persistence of the 

volatility series since the tests are resilient to different forms of serial correlation.   

The test procedure is built on the following equations  

𝑣𝑡 = 𝜇 + 𝛼0𝑡 + 𝜌𝑣𝑡−1 + 𝑢𝑡 (18) 

𝑢𝑡 = 𝛼1𝑢𝑡−1 + 𝑑(𝐿)𝑒𝑡, (19) 

 

where 𝑣 ∈ (𝑀𝑎𝑟𝑘𝑒𝑡 𝑣𝑜𝑙, 𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦 𝑣𝑜𝑙 , 𝐹𝑖𝑟𝑚 𝑣𝑜𝑙𝐶𝐿𝑀𝑋 𝑎𝑛𝑑 𝐹𝑖𝑟𝑚 𝑣𝑜𝑙𝐹𝐹), 𝜇 is an intercept, 

𝛼0 is the trend coefficient finally 𝜌 quantifies the series dependence of its own lag. The 

models error term is modelled as function of its own lag with the 𝛼1 coefficient and have a 

term that contains the MA (∞) process of the white noise in the series. The Vogelsang test 

check whenever the parameter 𝛼1 = 0 , to test for any time linearity.  The test mitigates issues 

related to serial correlation since the conditions on the error terms which the T-distribution is 

derived from are weak and adjust to most covariance stationary process and I (1) processes 

(Vogelsang, 1998). The reported coefficients and their significance level are reported next.   

 

Table 5. Tests results from the Vogelsang test. 



31 
 

Table 5 contains the estimated coefficients for the trend term from each Vogelsang test, the p-

value for each trend-coefficient and the 95% confidence interval for each trend coefficient.     

Interestingly, we reject the zero hypotheses of no time linearity in the idiosyncratic risk series, 

while we fail to reject the zero hypotheses for the other series. The latter is a clear break from 

the CLMX study findings. The average return volatility of the stocks listed on the NYSE has a 

decreasing linear trend throughout our sample.   

While a negative low magnitude trend coefficient is consistent with Figures 7 and 9, we want 

to check whether the trend is related to a regime change or varying data generating processes.   

We have chosen to employ a Markov switching model to control for the possibility of 

different regimes for idiosyncratic variance. Based on Hamilton and Susmel’s (1994) work, 

our model for the idiosyncratic variance follows an AR (1) model where all the estimated 

parameters can take one or two values dependent on the realization of a discrete regime 

variable. The model's primary attribute is its ability to identify when the time series switch 

from one regime to another when it is unclear when structural breaks occur, as is the case for 

our variance series (Hamilton & Susmel,1994).    

Our Markov switching model has following transition probability matrix 

𝜓 = (
𝑝11 1 − 𝑝11

1 − 𝑝21 𝑝21
) . (20) 

Where 𝑝11 denotes the probability of variance series staying in first identified regime at 𝑡+1 

and 1 − 𝜌22 denotes the equivalent probability staying in second identified regime at 𝑡+1. 

 

Table 6. The Dynamic Markov Switching model for the idiosyncratic volatility series. 

Table 6 summarizes the estimated mean and its p-value for the two identified states, as well as 

the implied transition probabilities.   
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Our Markov model identifies two variance states for the CLMX idiosyncratic volatility series. 

For the CLMX based series the identified low variance state has a mean-variance of 0.0021 

compared to the mean of 0.00921 of the high variance states. The implied transition 

probability from state 1 to 2 of 0.005 and state 2 to 1 of 0.002 also reflects persistent states. 

Graphing the transition probability for the first state indicates a clear shift from the higher 

variance state to the lower variance state from the mid-90s.     

 

Figure 15. The time series of the estimated transition probabilities for the CLMX time series. The graph identifies the 
transition probability to the first identified variance regime over time for the CLMX volatility series. Recessions are marked in 
grey 

 

Figure 16. The time series for the transition probabilities from the Markov Switching model for the CLMX firm volatility 
series. The graph identifies the transition probability to the first identified variance regime over time for the F.F. volatility. 
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The results we obtain from the Markov model for the F.F idiosyncratic risk series are also 

relatively consistent with results from the previous Markov model in terms of transition 

probabilities. Both estimated states are highly persistent as in the previous model, and both 

models estimate a clear regime shift in the late 90s. The F.F based model also accounts for the 

dot-com bubble causing a temporary switch to a high variance state. The mean of the low 

variance state of 0.044 is twice as high as for the CLMX series, while the high variance state 

has a 22% higher estimated variance. Yet we still clearly identify a regime switch in both 

models.  

The identification of two different variance regimes has several implications. Firstly, it 

represents a clear break from CLMX's main finding in a positive deterministic trend for the 

idiosyncratic volatility, with a highly persistent low variance state starting at the end of their 

sample. We also note that the 2008 recession implied a shift back to a high variance regime 

but that the series otherwise stayed in the low variance state. Secondly the transformation the 

low mean idiosyncratic variance regime supports our explanation to why our simulated 

portfolios produced stable diversification benefits across the samples. We will now see that 

the co-movement in stock returns have had a converse regime shift. With a stable 

diversification benefit, it is likely that the co-movement and firm specific risk effects have 

canceled each other out across the sample. 

5.4 Analysis of the Development of the Pairwise Correlation Coefficients   

 

Figure 17. The average monthly pairwise correlation coefficient for stocks listed on the NYSE. 
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Figure 17 graphically summaries the average monthly pairwise correlation coefficient for the 

return of NYSE listed stocks. We obtain the monthly estimates using daily return data from 

1980 to 2020. 

 

Figure 18. The average yearly pairwise correlation coefficient for stocks listed on the NYSE. 

Figure 18 graphically summaries the average annual pairwise correlation coefficient for the 

return of NYSE listed stocks. We obtain the monthly estimates using monthly return data 

from 1980 to 2020.          

We calculate an equally weighted average pairwise correlation coefficient for each month and 

year. The correlations estimates based on the daily data are lower than the monthly 

alternative. The likely reason for the latter is that daily stock returns typically contain 

negatively autocorrelated idiosyncratic components (Campbell et al., 2001).  

Figure 17 and 18 is evidence that the average pairwise correlations increase significantly 

during recession or bear markets. Incidents such as the crash of 1987, the dot-com bubble, and 

the 2008 financial crisis leads to the average pairwise correlations coefficient more than 

doubling for short durations. Although the stocks tend to revert to lower average pairwise 

correlations after recessions, the tendency described by CLMX, where the average 

correlations decline as time progress, does not fit the data. As pointed out by previous 

research, the CLMX sample period ending right before the beginning of the dot-com bubble 

can lead to misleading results. The average pairwise correlation coefficient of 0.2 at the end of 
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the monthly series created with daily data is four times higher than in 1997 . The last 20 years 

have generally involved higher correlation levels than in the other sample split for both series. 

  

Figure 19. The average monthly R^2 from the CAPM regression on each stock. 

Figure 19 contains the average monthly 𝑅2 from the CAPM regression, based on Equation 

(10), on each stock using monthly return data and a 60-month rolling window. 

The tendencies in our time series graphed in Figure 19 also largely corresponds with the 

results from our other co-movement model. We find that 𝑅2 of the CAPM model still serves 

as a good proxy for the co-movement of stocks returns although to a lesser extent than in the 

CLMX sample.7  A possible explanation for the divergence in the second half of the sample is 

Sullivan and Xiong (2012) claim that increased institutional trading or other factors has 

increased the baseline level of co-movement in stock returns. Yet our model still finds 

increased co-movement from 2005 to 2015 consistent with our previous findings, while the 

falling co-movement from 1990 to 1995 are consistent with CLMX findings which lead to 

their conclusion of declining stock return co-movement.   

Possible explanations for the increased return co-movement vary from more economic 

integration, changed underlying fundamentals or the rising market share of institutional 

investors. The increase in the pairwise correlations post 2000 corresponds with the increasing 

 
7 The CLMX study found that their monthly 𝑅2 series were close to identical to their pairwise correlation 
coefficient series based on daily data. The second split of our 𝑅2 series significantly underpredicts the co-
movement relative to in our co-movement series created with daily data.   
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popularity of ETFs and increasing markets shares of institutional ownership as described by 

Sullivan and Xiong (2012). However, we note that both the series show a tendency of falling 

pairwise correlations between 2014 to 2018 before the start of the pandemic recession. 

We conduct our future tests with the monthly series due to the low frequency of the yearly 

series. A simple interpretation of Figure 17 also identifies a clear break in the data generating 

process from the middle of the sample. Thus, we once again employ the augmented Dickey 

Fuller test to test the possibility of a stochastic trend. Interestingly, while the data is stationary 

with a correctly specified lag structure, our Vogelsang trend test identifies a positive trend in 

the return co-movement. However, we believe the latter is due to different correlation regimes 

rather than a stochastic trend for the pairwise correlation coefficients. We observe a clear 

graphical break in the middle of the monthly co-movement series. We find it unlikely that the 

pairwise return correlation should converge towards its limit. The test results can be found in 

Appendix 6. 

Employing a dynamic Markov switching model also confirms our suspicions. The model 

identifies two sets of states. 

 

Table 7. The Dynamic Markov Switching model for the pairwise correlation coefficient series. 

Table 7 summarize the estimated mean and its p-value for the two identified states, as well as 

transition probabilities. 

We identify a high and a low state regime for the correlation series like in our previous 

Markov estimations. Both states are also highly persistent, with implied transition 

probabilities of only 2% and 6% for the low and high mean state regimes. Transformations to 

the high correlation state primarily occur during recessions, while a high correlation state has 

lasted for most of the sample past 2005. The implied state 1 transition probability series also 

illustrate temporal shifts back to the low correlation state between 2015-2018 before the 

pandemic.   
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Figure 20. The time series of the estimated transition probabilities for the correlation series for the Dynamic Markov 
switching model. 

Figure 20 identifies the transition probability to the first identified co-movement regime over 

time. 

In summary, our analysis of the pairwise correlations in stock returns finds increased co-

movement in stock returns the last 20 years with the turn to a higher mean regime in the early 

2000s. The fact that the idiosyncratic volatility component of a typical stock in contrast has 

entered a lower mean regime during the last 20 years thus offer an explanation to the stable 

diversification benefits. Although the 80 and 90s where categorized by high levels of 

idiosyncratic risk and low co-movement the change to regimes with the opposite tendencies 

within similar time frames has produced stable diversification benefits.    

The little time variation in diversification gains and equalizing regime shift effects can be due 

to the fact that idiosyncratic risk component in common stocks and their return co-movement 

could be viewed as two sides of the same coin. If a larger portion of different stocks volatility 

origins from idiosyncratic factors and less from systematic factors, their return will be less 

correlated due to less systematic influence. Conversely, a higher idiosyncratic risk level and 

less influence of systematic factors should produce the opposite outcome. The latter is 

consistent with the CAPM model in Figure 19 where a faltering 𝑅2 corresponds with lower 

realized pairwise correlation coefficients. Thus, a scenario where both the co-movement and 

idiosyncratic risk rise could be viewed as unlikely. Recessions do nevertheless represent an 

exception to the canceling out argument. Recessions typically leads to high magnitude 
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increases in both systematic and idiosyncratic risk as well as increased return co-movement as 

described by Benhmad (2013). 

5.5 Short Term Volatility Dynamics   

We also chose to analyze whether short term relationships between the volatility series have 

changed, due to the significant differences between the volatility and correlation estimates in 

our sample and the sample employed by CLMX.  

We estimate a vector autoregressive model (VAR) to run Granger tests and a correlation 

matrix to see whether the short-term dynamics for the three levels of volatility has been 

altered.  

 

Table 8. The correlation matrix for the 3 CLMX series. 

From Table 8, we see a structure where the market series is more correlated with the industry 

than the firm series. The correlation between the industry and firm series is relatively low.  

 

Table 9. The results from a Granger causality test with a bivariate VAR model. 
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Table 9 contains the p-value from an F-test where we test whether the lags from the different 

volatility series cause each other in the VAR system specified below for each pair volatility 

series. The optimal lag lengths are in parentheses.  

𝑉𝑜𝑙1 = 𝛼1 + 𝜙11𝑣𝑜𝑙𝑡−1
1 … + 𝜙1𝑛𝑣𝑜𝑙𝑡−𝑛

1 + 𝜙21 𝑣𝑜𝑙𝑡−1
2  … + 𝜙2𝑛𝑣𝑜𝑙𝑡−𝑛

2 + 𝑢𝑡 (21) 

𝑉𝑜𝑙2 = 𝛼2 + 𝜙21 𝑣𝑜𝑙𝑡−1
2  … + 𝜙2𝑛𝑣𝑜𝑙𝑡−𝑛

2 + 𝜙11𝑣𝑜𝑙𝑡−1
1 … + 𝜙1𝑛𝑣𝑜𝑙𝑡−𝑛

1 + 𝑢𝑡 . (22) 

 

Table 10. The results from a Granger causality test with a tri-variate VAR model. 

Table 10 contains the Granger causality tests results from a tri-variate VAR model, a model 

which expands on the model in Table 9 with all three-volatility series.    

To specify the correct lag structure for our specification VAR models, we use the Akaike and 

Schwarz Bayesian information criteria to obtain the best fitted lags structure for each series. 

The results from our Granger causality tests reveal a slight divergence from the CLMX 

results. The firm series no longer Granger causes the market series in neither VAR model. 

The industry series now Granger cause the market and firm series in the bivariate model. In 

the tri-variate model the industry volatility only Granger causes the market series. The market 

series still leads to other volatility series. The fact that the industry series now affects the 

market series represents a new dynamic in the disaggregate volatility decomposition. Where 

industries rather than firm volatility now has a short-term effect on the volatility of the 

market. The enhanced short-term influence of the industries, and the declining influence of 

the firm specific risk component in our disaggregated model has coincided with a lower mean 

level of idiosyncratic.       

In summary, our analysis of the average return volatility and co-movement in stocks listed on 

the NYSE has found increased co-movement and less idiosyncratic risk in stock returns over 

the last 20 years. In terms of short-term dynamics, we also find that the industry level 

volatility now has a short-term effect on the market series, representing a significant change in 

the volatility structure for a common stock. While the short-term influence of the firm specific 
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volatility series on the other market series has become insignificant at the 95% level of 

statistical significance. The changes in the volatility and return co-movement structure thus 

offer an explanation to why the marginal gains from adding stock to small portfolios has 

remained largely time invariant. When the high level of idiosyncratic risk in stock returns 

during the 80s and early 90s eventually turned to lower mean state, the transformation was 

counterbalanced by the turn to a higher return co-movement regime within a similar time 

frame.    

As a final robustness analysis, we also investigate our simulated portfolios reward to volatility 

ratio to test Bessembinder’s (2018) finding that smaller portfolios are inefficient when returns 

are accounted for. We do this, as investors are not only interested in reducing risk, but the 

performance of their portfolios relative to risk. 

5.6 Results of the Portfolio Simulation on Reward to Volatility Performance  

To benchmark the performance of our simulated portfolios we summarize the average annual 

Sharpe ratios of the S&P 500 of the past four decades in Table 11. We also calculated the 

relative deviation between the Sharpe ratio of the S&P 500 and of our selected portfolios.   

 

Table 11. The average annual Sharpe ratio of the S&P 500 in selected decades, and the relative deviation of the Sharpe 
ratios between the index and our selected portfolios. 

   

We note that Domain et al., (2007) and Bessembinder (2018) claim smaller portfolios rarely 

outperform an index seems to hold in most of our samples where the S&P 500 significantly 

outperform most of the simulated portfolios. The 2000s does however represent a clear 

deviation from their findings. We thus turn individual commentary of each sample.  
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Figure 21. The average annual Sharpe ratio of randomly selected portfolios consisting of 1-30 stocks for our sample from 
1980-1989. 

For the 80s sample the graphed Sharpe ratios of portfolios consisting of 1 to 30 stocks reveals 

that the average simulated Sharpe ratio typically increases for each stock added to the 

portfolio. The efficiency gains for adding additional stock are however somewhat uneven but 

we believe the latter is due to the random nature of our simulations and its standard error and 

not any systematic deficiency in the diversification effect. The Sharpe ratio increases 23 out 

of 30 times when the portfolio expands with additional stocks. The Sharpe ratio's marginal 

increase is a decaying function of the stocks added to the portfolio.  

In contrast to when we only focus the portfolio's risk, we observe a clear tendency that 

portfolios consisting of more than 8-10 stocks experience a significant improvement of the 

Sharpe ratio. We also note that the annualized Sharpe ratio of our randomly selected 

portfolios is poor when benchmarked against the Sharpe ratio of the S&P 500. The S&P 500 

had a Sharpe ratio three times higher than the portfolios with 30 stocks and four times higher 

than the 2 stock portfolios.  

The latter is consistent with previous work and implies that the number of stocks needed to 

obtain an efficient portfolio in terms of reward to volatility is far higher, than the number of 

stocks needed to achieve a low risk level.       
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Figure 22. The average annual Sharpe ratio of randomly selected portfolios of 1-30 stocks for our sample from 1990-1999. 

The results of Sharpe ratio analysis for the 90s correspond to the findings from the analysis 

for the previous sample. The Sharpe ratio improves relatively consistently when more stocks 

are added to the portfolio, although the effect still is somewhat unstable. While marginal 

Sharpe ratio gains are decaying as more stocks are added to the portfolio. The Sharpe ratio of 

the portfolios in the 90s sample were particularly poor. Few stocks likely generated returns 

higher than at the risk-free rate, even when the risk levels in the decade were lower than in the 

80s. The S&P 500 outperform the 30 stocks portfolio by more than a factor of 10. 

 

Figure 23. The average annual Sharpe ratio of randomly selected portfolios consisting of 1-30 stocks for our sample from 
2000-2009. 
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Our simulation for the 2000s produce better Sharpe ratios than in the two previous decades.  

Despite having the highest risk level of any of our samples, it performed better in terms of 

reward to volatility than in any other sample. Surprisingly, we note that our simulated 

portfolios outperform the S&P 500. The 2000s has been described as a “lost decade” where 

the S&P 500 had poor annualized returns between 2000 and 2009. A possible explanation for 

the outperformance is that the smaller cap stocks not listed on the S&P 500 significantly 

outperformed the index that decade (Mahn, 2010). The survivorship bias in our sample is also 

a possible explanation for the outperformance. We chose to regard the results of the 2000s 

sample as an anomaly, as the other samples shows a clear tendency for poor return 

performance in the simulated portfolios. The maximum Sharpe ratio of 0.26 isn’t particularly 

high either and the decade likely saw few stocks generating much excess return.  We also note 

that adding stocks to the portfolio seems to yield more consistent benefits than in the previous 

samples.   

 

Figure 24. The average annual Sharpe ratio of randomly selected portfolios of 1-30 stocks for our sample from 2010-2019. 

Finally, the 2010s produced the best Sharpe ratios yet, but not at the level of the S&P 500 

index. The significantly better performance of the randomly portfolio relative to our 

benchmark is still significant. The marginal effect of increased stocks is the smoothest yet. 

Our analysis of the simulated portfolios thus primarily illustrate that smaller portfolios are 

largely inefficient when returns are accounted for. A Sharpe ratio below unity for any of our 

simulated portfolios implies that neither portfolio is efficient, when the standard deviation of 

each portfolio is higher than its excess return measured in percentages.   
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6.0 Conclusion 

The answer to our original research question is that the diversification effect of adding stocks 

to smaller portfolios has not changed significantly. The additional benefit of adding stocks in 

smaller portfolios is at the same level today as has been over the past four decades. The 

overall risk level of portfolios consisting of 1 to 30 stocks has fallen over the last decade. 

While the risk level has fallen in absolute terms, the relative performance of smaller portfolios 

to the NYSE equally weighted index has remained relatively stable. The idiosyncratic 

component risk in common stocks has entered a lower mean state since the turn of the 

century. The co-movement in NYSE listed stocks returns has, in contrast, reached a higher 

mean state since the mid-2000s canceling out the effect of lower idiosyncratic volatility. The 

risk determinant regime shifts within a similar time frame serve as an explanation for why 

smaller portfolios have the same level of risk efficiency today as they had in the 80s. 

According to our simulations, we first validate the common notion that 8 to 10 stocks suffice 

to remove most of the portfolio’s exposure to firm-specific risk in our thesis. However, our 

simulation studies do find that such a portfolio is mainly inefficient in terms of returns. We 

note that the portfolio Sharpe ratio typically increases beyond when more than 8-10 stocks are 

added to the portfolio, yet 30 stocks are insufficient for a good Sharpe ratio. The implications 

of our findings are thus in line with the generally accepted notion that investors are better off 

holding passive index funds rather than creating smaller stock portfolios themselves.               

Secondly, we find that recessions lead to increased stock return co-movement as well as 

higher levels of both systematic and idiosyncratic risk which will weaken the risk 

performance of the smaller portfolios. The latter could have a particularly adverse impact on 

leveraged traders, where the risk of their smaller portfolios increases at the same time as 

margin calls might increase due to falling returns.  

Thirdly, the increased level of return co-movement and lower level of idiosyncratic risk could 

imply that small but less naively constructed portfolios where an investor pools together less 

correlated stocks have lower risk levels. However, our industry restrictions simulations do 

however somewhat contradict the efficiency of a variant of the described strategy. Although 

choosing stocks from different sectors will yield a lower average return correlation, industry 

diversification does not improve risk performance in our samples.  
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If Sullivan and Xiong (2012) findings hold, the larger market share holdings of financial 

institutions have increased the baseline level of stock return co-movement. The lower 

influence of systematic risk factors and higher levels of idiosyncratic risk might yield less risk 

efficiency in small portfolios in the future. It remains to be seen whether the trends in stock 

return co-movement and idiosyncratic risk develop so the diversification gains in smaller 

portfolios continue to be stable.   

We have identified a trend and regime change from the CLMX study, but we could in the 

future see a return to the state identified by CLMX. When the increase in systematic risk 

following the recent pandemic and current inflation pressure eventually offsets, future 

research could identify whether the high level of stock return co-movement persists. A falling 

level of systematic risk and less government intervention in the financial markets could 

produce an outcome where more of the return of a stock is influenced by idiosyncratic factors 

and there is less co-movement in stock returns. The disruption of supply chains due to the 

pandemic and more focus on protectionism could further limit economic integration in the 

future, which could lower the co-movement of stock returns. The mentioned scenario could 

thus lead to a shift back to the risk determinant regimes originally described in the CLMX 

study.  

It would also be interesting to see how the risk components have developed in different types 

of stocks in future research. It would, for instance, be interesting to see if recently listed 

stocks or stocks with specific market capitalization characteristics have a lower idiosyncratic 

risk component. The past two decades have seen tendencies where the top 4 percentile of 

firms have accrued a larger share of the total market capitalization than before. While the 

characteristics of newly listed companies were attributed to an increase in idiosyncratic risk in 

the 80s and 90s, more recently listed companies might have different characteristics. Other 

ways to explore the decline in idiosyncratic risk could be to focus on how improvements in 

information technology and more “efficient markets” could affect the firm-specific risk 

component.   

Further research on the influence of ETFs and institutional ownership’s influence on the 

pairwise return coefficients could also focus on whether the mentioned factors have increased 

the baseline return co-movement or whether systematic risk factors mainly cause shifts.    
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Expanding our analysis to include other stock markets would also make it possible to analyze 

how US market volatility and return development affect other markets. One could also find 

whether increased globalization has led to increased co-movement in international markets.            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



47 
 

Reference list  

Bernstein, W. (2000). "The 15 stock diversification myth"  [Blogpost]. Retrieved from:  

http://www.efficientfrontier.com/ef/900/15st.htmhtml 

 

Bekaert, G., Hodrick, R., & Zhang, X. (2009). International Stock Return Comovements. The 

Journal of Finance (New York), 64(6), 2591-2626. 

 

Bekaert, G., Hodrick, R., & Zhang, X. (2012). Aggregate Idiosyncratic Volatility. Journal of 

Financial and Quantitative Analysis, 47(6), 1155-1185.  Ff estimering 

 

Benhmad, F. (2013). Bull or bear markets: A wavelet dynamic correlation 

perspective. Economic Modelling, 32(1), 576-591. 

 

Bessembinder, H. (2018). Do stocks outperform Treasury bills? Journal of Financial 

Economics, 129(3), 440-457. 

 

Bodie, Z., Kane, A., & Marcus, A. (2018). Investments (Eleventh ed., The McGraw-Hill 

education series in finance, insurance, and real estate). New York: McGraw-Hill. 

 

Brandt, M. W.; A. Brav; J. Graham; and A. Kumar (2010). The Idiosyncratic Volatility 

Puzzle: Time Trend or Speculative Episodes? Review of Financial Studies, 23 (2010), 863–

899 aviser clmx trenden  

 

Brooks, C. (2014). Introductory econometrics for finance (3rd ed.). Cambridge: Cambridge 

University Press. 

 

Brown, G., & Kapadia, N. (2007). Firm-specific risk and equity market development. Journal of 

Financial Economics, 84(2), 358-388. 

 

http://www.efficientfrontier.com/ef/900/15st.htmhtml


48 
 

Campbell, J., Lettau, M., Malkiel, B., & Xu, Y. (2001). Have Individual Stocks Become More 

Volatile? An Empirical Exploration of Idiosyncratic Risk. The Journal of Finance (New 

York), 56(1), 1-43. 

 

Cochrane, J. (2005). Asset pricing (Rev. ed.). Princeton, N.J: Princeton University Press. 

 

Copeland, T., Weston, J., & Shastri, K. (2013). Financial theory and corporate policy (4th 

rev. ed.). Boston, Mass: Pearson Addison-Wesley. 

 

Domain, D., Louton, D., & Racine, M. (2007). Diversification in Portfolios of Individual 

Stocks: 100 Stocks Are Not Enough. The Financial Review (Buffalo, N.Y.), 42(4), 557-570. 

 

Enders, W. (2015). Applied econometric time series (4th ed.). Hoboken, N.J: Wiley. 

 

Evans, J., & Archer, S. (1968). DIVERSIFICATION AND THE REDUCTION OF 

DISPERSION: AN EMPIRICAL ANALYSIS. The Journal of Finance (New York), 23(5), 

761-767. 

 

Fama, E, & French, K (1993), Common risk factors in the returns on stocks and bonds, 

Journal of Financial Economics 33, 3–56.  

Fama, E., & French, K. (2004). New lists: Fundamentals and survival rates. Journal of Financial 

Economics, 73(2), 229-269. 

 

Fu, F. (2009). Idiosyncratic risk and the cross-section of expected stock returns. Journal of 

Financial Economics, 91(1), 24-37. 

 

Hamilton, J., & Susmel, R. (1994). Autoregressive conditional heteroskedasticity and changes 

in regime. Journal of Econometrics, 64(1), 307-333. 

 

Kearney, C., & Potì, V. (2008). Have European Stocks become More Volatile? An Empirical 

Investigation of Idiosyncratic and Market Risk in the Euro Area. European Financial 



49 
 

Management : The Journal of the European Financial Management Association, 14(3), 419-

444. 

 

LaCasce, Lillethun, Rynning-Tønnesen, & Gaivoronski, Alexei A. (2019). Passive 

Indeksfonds Effekt På Aksjekorrelasjoner. 

 

Lebedinsky, A., & Wilmes, N. (2017). A re-examination of firm, industry and market 

volatilities. The Quarterly Review of Economics and Finance, 67, 113-120.  

 

Mahn, K. (2010, September 13). Its Not Really A Lost Decade. Forbes. Retrieved from 

https://www.forbes.com/sites/advisor/2010/09/13/its-not-really-a-lost-

decade/?fbclid=IwAR2OdYDyRpl12BFRFbsK-NkV0TZkeb0POgANCyCFVt_uDbh2Pq-

nZqSutlU  

 

Merton, R. (1980). On estimating the expected return on the market. Journal of Financial 

Economics, 8(4), 323-361. 

 

Nelson, D. (1992). Filtering and forecasting with misspecified ARCH models I: Getting the 

right variance with the wrong model. Journal of Econometrics, 52(1), 61-90. 

 

Schwert, G. (1989). Why Does Stock Market Volatility Change Over Time? The Journal of 

Finance (New York), 44(5), 1115-1153. 

 

Sullivan, R., & Xiong, J. (2012). How Index Trading Increases Market 

Vulnerability. Financial Analysts Journal, 68(2), 70-84. 

 

Tang, G. (2004). How efficient is naive portfolio diversification? an educational note. Omega 

(Oxford), 32(2), 155-160. 

 

Vogelsang, T. J. “Trend Function Hypothesis Testing in the Presence of Serial Correlation.” 

(1998) Econometrica, 66 (1998), 123–148. 

https://www.forbes.com/sites/advisor/2010/09/13/its-not-really-a-lost-decade/?fbclid=IwAR31m3vrOpEFT2PNUDh8twswZ9aXISA63vmVrkPSLSFMkWosLRn5S8JQ_hM
https://www.forbes.com/sites/advisor/2010/09/13/its-not-really-a-lost-decade/?fbclid=IwAR31m3vrOpEFT2PNUDh8twswZ9aXISA63vmVrkPSLSFMkWosLRn5S8JQ_hM
https://www.forbes.com/sites/advisor/2010/09/13/its-not-really-a-lost-decade/?fbclid=IwAR31m3vrOpEFT2PNUDh8twswZ9aXISA63vmVrkPSLSFMkWosLRn5S8JQ_hM


50 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



A 
 

 

Appendix 

1: Industry Data 

 

Table A.1: Industry statistics  

2: SIC Codes for Industries in CRSP 

 

Table A.2: SIC Codes for each industry  

3: The Assumptions of the CLMX Methodology   

Complete decomposition of the assumptions we used in our disaggregated model is provided 

here.  
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Denoted by 𝑅𝑗𝑖𝑡 is the return on asset  𝑗 in industry 𝑖 included in portfolio 𝑝. The assets return 

can be separated into three components the risk-free rate, 𝑅𝑓𝑡, a portfolio linked component 

and an asset-specific component  

𝑅𝑗𝑖𝑡 = 𝑅𝑓𝑡 + 𝛽1(𝑅𝑝𝑡 − 𝑅𝑓𝑡 ) + 𝑢𝑡, (23)  

𝑅𝑝𝑡 denotes the return of portfolio 𝑝, 𝛽1 is a regression coefficient and 𝑢𝑡 is the firm specific 

risk regression residual. The idiosyncratic residuals are assumed to be uncorrelated across all 

pair of firms and industries, with CAPM as the reference model. The residuals are however 

orthogonal on average. When the residuals origin from models that include the same set of 

regressors, their average correlation is zero.  

We note that the unconditional variance of the asset 𝑖 can also be decomposed into a 

systematic and idiosyncratic component  

𝑉𝑎𝑟 (𝑅𝑗𝑖𝑡) = (1 − 𝛽1)2𝑉𝑎𝑟(𝑅𝑓,𝑡 ) + 𝛽1
2 + 𝑣𝑎𝑟(𝑢𝑡). (24) 

By averaging across the assets, the variance of the typical asset can be approximately divided 

into a systematic and an idiosyncratic part.  

𝑀𝑒𝑎𝑛(𝑣𝑎𝑟(𝑅𝑗𝑖𝑡) = 𝑀𝑒𝑎𝑛(1 − 𝛽1)2𝑉𝑎𝑟(𝑅𝑓𝑡) + 𝑀𝑒𝑎𝑛((𝛽1
2𝑉𝑎𝑟(𝑅𝑝𝑡)) + 𝑀𝑒𝑎𝑛(𝑉𝑎𝑟(𝑢𝑡)  

→ 

𝑀𝑒𝑎𝑛(1 − 𝛽1)2𝑉𝑎𝑟(𝑅𝑓𝑡) + 𝑀𝑒𝑎𝑛(𝛽1
2)𝑉𝑎𝑟(𝑅𝑝𝑡) + 𝑀𝑒𝑎𝑛(𝑉𝑎𝑟(𝑢𝑡)). (25) 

  

In Equation (25)-(28) the operator 𝑀𝑒𝑎𝑛(∙) indicates a weighted mean across all assets 

included in the portfolio. Presuming that the cross-sectional variation of the 𝛽 coefficients, 

CSV (𝛽𝑖,𝑝
2 ) is limited, 𝑀𝑒𝑎𝑛(𝛽1

2)and 𝑀𝑒𝑎𝑛((1 − 𝛽1, 𝑝)2) can helpfully be approximated as 

follows:  

𝑀𝑒𝑎𝑛(𝛽1
2) = 𝑀𝑒𝑎𝑛(𝛽1)𝐴𝑣𝑔(𝛽𝑖,𝑝) + 𝐶𝑆𝑉(𝛽1) = 1 + 𝐶𝑆𝑉(𝛽𝑖,𝑝) ≅ 1 (26) 

                   𝑀𝑒𝑎𝑛((1 − 𝛽1)2 = (𝑀𝑒𝑎𝑛(1 − 𝛽1))
2

+ 𝐶𝑆𝑉(1 − 𝛽1) = 𝐶𝑆𝑉(1 − 𝛽1) ≅ 0. (27) 

 

Using Equation (26)-(27), the variance of average asset 𝑖𝑛 converges towards the sum of the 

portfolio variance and of the average idiosyncratic variance:  
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                                     𝑀𝑒𝑎𝑛(𝑉𝑎𝑟(𝑅𝑖,𝑡 ) ≅ 𝑀𝑒𝑎𝑛(𝑅𝑝𝑡) + 𝑀𝑒𝑎𝑛(𝑉𝑎𝑟(𝑢𝑡).                           (28) 

With a higher scale of analysis, the returns on the industry indices and on the individual 

stocks in the market portfolio can be described with the following equations 

𝑅𝑖𝑡 = 𝑅𝑓𝑡 + 𝛽1𝑖(𝑅𝑚𝑡 − 𝑅𝑓𝑡) + 𝜖𝑗𝑡  (29) 

 

𝑅𝑖𝑗𝑡 = 𝑅𝑓,𝑡 + 𝛽1(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡) + 𝛽𝑖𝑗,𝑗𝜖𝑗,𝑡 + 𝜖𝑖𝑗,𝑡 . (30)  

𝑅𝑖𝑡 denotes the industry i return, while 𝑅𝑖𝑗𝑡is the return on the firm 𝑗 in industry 𝑖, 𝑅𝑚𝑡 is the 

return on the market portfolio, 𝛽1𝑚 , 𝛽1𝑖 and  𝛽1 are regressions coefficients and 𝜖𝑗𝑡 ad  𝜖𝑖𝑗𝑡 

are the industry and firm-level idiosyncratic regression residuals. By allowing 

𝑢𝑖𝑗,𝑡 = 𝛽𝑖𝑗, 𝑗 𝜖𝑗,𝑡 + 𝑒𝑖𝑗,𝑡 (31) 

  

𝑅𝑗,𝑡 = 𝑅𝑓,𝑡 + 𝛽1(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡) + 𝛽𝑖𝑗,𝑗𝜖𝑗,𝑡 + 𝜖𝑖𝑗,𝑡 (32) 

 

can be rewritten as follows:  

𝑅𝑖𝑗1𝑡 = 𝑅𝑓,𝑡 + 𝛽1(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡) + 𝛽𝑖𝑗,𝑗𝜖𝑗,𝑡 + 𝑢𝑖𝑗𝑡. (33) 

As constructed 𝑅𝑚,𝑡,𝑒𝑖𝑗,𝑡and 𝜖𝑗,𝑡 are orthogonal, yielding a 𝑢𝑖𝑗𝑡that is orthogonal with respects 

to 𝑅𝑚,𝑡 and idiosyncratic regression residual. Equation (33) decomposes return into pure 

market and idiosyncratic components. While the equation       

  

𝑅𝑗,𝑡 = 𝑅𝑓,𝑡 + 𝛽𝑗,𝑚(𝑅𝑚,𝑡 − 𝑅𝑓,𝑡) + 𝛽𝑖𝑗,𝑗𝜖𝑗,𝑡 + 𝜖𝑖𝑗,𝑡 (34) 

decomposes the idiosyncratic components into pure industry and firm level components.  

Building on the decomposition of the variance of an asset as the sum of the portfolio variance 

and of the average idiosyncratic variance, we further separate the total stock variance into a 

systematic and idiosyncratic component 𝑉𝑎𝑟𝑡 = 𝑀𝐾𝑇𝑡 + 𝐼𝐷𝐼𝑂𝑡. 

𝑉𝐴𝑅𝑡 = ∑ 𝑤𝑖,𝑡 ∑ 𝑤𝑖𝑗,𝑡 𝑉𝑎𝑟(𝑅𝑖𝑗,𝑡)

𝑘

𝑖=1

𝑛

𝑗=1

 (35) 
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𝑀𝐾𝑇𝑡 = 𝑉𝑎𝑟(𝑅𝑚,𝑡) (36) 

𝐼𝐷𝐼𝑂𝑡 = ∑ 𝑤𝑖,𝑡 ∑ 𝑤𝑖𝑗,𝑡 𝑉𝑎𝑟(𝑢𝑖𝑗𝑡).

𝑘

𝑖=1

𝑛

𝑗=1

 (37) 

For Equations (36)-(38) k indicates the maximum number of stocks in each of the n 

industries, 𝑤𝑖,𝑡 the weight of industry i in portfolio m n and 𝑤𝑖𝑗,𝑡 the weight of stock j in 

industry k, 𝑉𝑎𝑟𝑡, is the weighted average total stock variance. 𝑀𝐾𝑇𝑡is the variance of the 

market portfolio, and 𝐼𝐷𝐼𝑂𝑡 is the average idiosyncratic variance. 𝑉𝐴𝑅𝑡 can be characterized 

as the variance of the typical stock, and 𝐼𝐷𝐼𝑂𝑡 as the idiosyncratic variance.  

Our methodology can be applied to any stock portfolio, an allows us to decompose the 

variance of typical industry and into a market and idiosyncratic component.  

𝑉𝑎𝑟𝑡
𝑖𝑛𝑑 = 𝑀𝐾𝑇𝑡 + 𝐼𝑁𝐷𝑡  (38)  

Where 

𝑉𝑎𝑟𝑡
𝑖𝑛𝑑 = 𝑤𝑗,𝑡𝑉𝑎𝑟(𝑅𝑗,𝑡), (39)  

𝐼𝑁𝐷𝑡 = 𝐼𝑁𝐷𝑡 + 𝐹𝐼𝑅𝑀𝑡. (40)  

Here, 𝑉𝐴𝑅𝑡
𝑖𝑛𝑑 is average total industry variance and 𝐼𝑁𝐷𝑡is the industry level average 

idiosyncratic variance.  The idiosyncratic portion of average total variance can then be further 

decomposed into industry and firm level components  

𝐼𝐷𝐼𝑂𝑡 = 𝐼𝑁𝐷𝑡 + 𝐹𝑖𝑟𝑚𝑡 (41) 

𝐹𝑖𝑟𝑚 = 𝐼𝐷𝐼𝑂𝑡. (42) 

Our method chapter contains how we calculated the disagreed variance series, note that we 

have slightly changed some of CLMX original notation and expressions to make our method 

section more concise.   
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4: Simulation Data 

 

 

Table A.3: Risk simulations  
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Table A.4: Standard deviation of risks  

5: Correlation Tests 

 

 Table A.5: Dickey Fuller test Table A.6: Vogelsang tests 
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6: Change in Volatility from Additional Stock 

 

Table A.6: Change in volatility from adding one stock in portfolio, for each decade. 
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7: T-values for 1,000 Simulations 

 

Table A.7: T-values on change in risk levels, but with only 1,000 simulations ran. 

 

8: Markov Model  

For our Markov switching model, the number of possible occurrences is split into 2 states for 

the volatility and co-movement series.  

It is assumed that the volatility or co-movement series switches regime according the 

unobserved variable 𝑠𝑡 that takes integer values. 𝑠𝑡 takes the value of one if the data 

generating process is in regime 1 at time t, if 𝑠𝑡 = 2 the process is in regime 2 at time t.  

Changes in the state variable 𝑠𝑡that causes regime changes are administered by a Markov 

process.  

The Markov property is described with the equation:  

𝑃[𝑎 < 𝑦𝑡 ≤ 𝑏 |𝑦1, 𝑦2, … . 𝑦𝑡−1] = 𝑃[𝑎 < 𝑦𝑡 ≤ 𝑏|𝑦𝑡−1], (43)  

where 𝑦𝑡is the variable suspect to switches between different mean states.   

The Markov property implies that the probability distribution of the state at any time depends 

only on the state the previous period 𝑡 − 1 and not on the state the preceding periods. A 

Markov process is thus not path dependent.  

The model is highly flexible, being capable of both capturing both changes in the variance 

and mean between state processes.  
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The Markov models compromises the unobserved state variable 𝑧𝑡, that is postulated to 

evaluate according to a first order Markov process  

𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑍𝑡 − 1 = 1] = 𝑝11 (44) 

𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑍𝑡 − 1 = 1] = 1 − 𝑝11 (45) 

𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑍𝑡 = 2] = 𝑝22 (46) 

𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑍𝑡 = 2] = 1 − 𝑝22 (47) 

 

Where 𝑝11 denote the probability of being in regime 1, given that the process was in regime 

during the previous period. Conversely 𝑝22 denote the probability of being in regime 2 given 

that the process was in regime 2 to begin with.  𝑝11 − 1 and 1 − 𝑝22are thus the implied 

probabilities.8 Under the first order Markov process 𝑍𝑡 evolves as an autoregressive AR(1) 

process 𝑧𝑡 = (1 − 𝑝11) + 𝜌𝑧𝑡−1 + 𝜂𝑡, where 𝜌 = 𝑝11 + 𝑝22 − 1. 𝑧𝑡 is the generalization of 

the dummy variables for the one time shifts in the previously described series. The model 

allows for several shifts from one mean state to the other.  

According to our framework the realized risk series evolves according to the following 

equation: 

𝑉𝑜𝑙𝑡 = 𝜇1 + 𝜇2𝑧𝑡 + (𝜎1
2 + 𝜙𝑧𝑡)0,5𝑢𝑡. (48) 

Where 𝑢𝑡~𝑁(0,1). The expected values and variances of the series are 𝜇1and 𝜎1
2 in state 1, 

and (𝜇1 + 𝜇2) and 𝜎1
2 + 𝜙. The unknown parameters (𝜇1, 𝜇2, 𝜎1

2, 𝜙, 𝑝11, 𝑝22) are estimated 

with the maximum likelihood estimation procedure, where parameters are chosen as the ones 

who was most likely to produce the data (Enders, 2015). 

9: Fama- French 3-Factor Model 

The Fama- French 3-factor model is an extension of the classic CAPM model. The model is 

as follows: 

𝑅𝑖𝑡 − 𝑅𝑟𝑡 = 𝛼𝑖𝑡 +  𝛽1(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝛽2𝑆𝑀𝐵𝑡 + 𝛽3𝐻𝑀𝐿𝑡 + 𝜖𝑖𝑡. (49) 

 
8 Note that transition matrix referred to in text use a slightly altered notation to describe the transition 
probabilities, to make the results consistent with our estimated transition matrix output.   
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The left side of Equation (49) is the excess return for an asset. 𝛽1 is the market premium 

coefficient, 𝛽2 is the size premium coefficient, and 𝛽3is the value premium coefficient.  

The classical CAPM model only includes the market premium to estimate systematic risk, but 

the Fama- French 3-factor model includes SMB and HML to control for the fact that 

historically, firms with smaller market cap outperform bigger ones, and firms with higher 

book-to-market value typically outperform firms with lower book-to-market.  

The data for 𝑅𝑀𝑡 − 𝑅𝑓𝑡, 𝑆𝑀𝐵𝑡 and 𝐻𝑀𝐿𝑡 can be obtained from Kenneth French’s website. 

Since the factors are representing the systematic risk of an asset, if we run a regression with 

these as the dependent variable, and the excess return of a security as the independent 

variable, 𝜖𝑖𝑡 is then the idiosyncratic of our asset (Fama & French, 1993).   

 

 

 

  

 



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

co
no

m
ic

s 
an

d 
M

an
ag

em
en

t 
D

ep
ar

tm
en

t o
f E

co
no

m
ic

s

Tim Himle Levinh og Thomas Fredrik
Ombudstvedt

Has the Diversification Effect of Small
Stock Portfolios Changed?

An Empirical Analysis of the US Stock Market.

Master’s thesis in Financial Economics
Supervisor: Joakim Kvamvold
May 2022

M
as

te
r’s

 th
es

is


