
ISBN 978-82-326-5180-1 (printed ver.)
ISBN 978-82-326-6420-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:241

Mayank Raikwar

Cryptography for Innovative
Blockchain Services

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2022:241
M

ayank Raikw
ar

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

Thesis for the Degree of Philosophiae Doctor

Trondheim, August 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Mayank Raikwar

Cryptography for Innovative
Blockchain Services

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Mayank Raikwar

ISBN 978-82-326-5180-1 (printed ver.)
ISBN 978-82-326-6420-7 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:241

Printed by NTNU Grafisk senter

Abstract
Since the advent of Bitcoin, scientific interest in its underlying core technology
Blockchain has been thriving. Much work has been carried out for blockchain
use cases in different industrial areas such as healthcare, Internet of Things
(IoT), supply chain, and decentralized finances, to name a few. The research
addressed some generic and well-defined topics adapted as challenges for the
blockchain, such as its security, privacy, scalability, and fairness. To solve these
challenges, a plethora of research employed cryptography as its founding basis.

The thesis aims to address the challenges mentioned above. The starting
point of the thesis is to investigate and scrutinize cryptographic primitives,
schemes, and protocols that are or can be used to solve some of the issues
identified in blockchain and improve the current state-of-the-art designs. The
thesis consists of four main topics. The first topic addresses how to construct
an energy-efficient, fair consensus mechanism. For that, two novel consensus
mechanisms are presented in the thesis. The second topic covers the use of
client puzzles for Denial of Service (DoS) attack mitigation. The thesis includes
two works about DoS attacks; the first work presents a new construction of a
client puzzle scheme; the second work studies the DoS attack in the blockchain
ecosystem and proposes a few mitigation techniques, including a client puzzle
scheme. The third topic in the thesis assesses the privacy of cryptocurrency
systems. Two papers contribute to this topic: the first paper offers a novel
construction of a privacy-preserving cryptocurrency system and models the
system’s security; the second paper employs the work developed in the first
paper to construct a general security model for the existing privacy-preserving
cryptocurrency systems. The fourth topic is about decentralized randomness
beacon protocols. These protocols are essential to generate publicly verifiable,
trusted randomness used in consensus mechanisms and smart contracts. Two
papers contribute to this topic: the first paper presents a systematization of
knowledge of existing decentralized randomness beacon protocols; the second
paper proposes a new protocol for randomness generation using blockchain as
a bulletin board.

i

Preface
This dissertation is submitted in partial fulfillment of the requirements for the
degree Philosophiae Doctor (PhD) at NTNU, Norwegian University of Science
and Technology. The presented work was carried out at the Department of
Information Security and Communication Technology (IIK), Trondheim, in the
period from February 2019 - May 2022, under the supervision of Professor Danilo
Gligoroski and the co-supervision of Professor Kristian Gjøsteen, Professor
Colin Boyd and Associate Professor Katina Kralevska.

iii

Acknowledgements
First, I must thank my supervisor Danilo Gligoroski for his guidance and
encouragement throughout my PhD and for giving me enough freedom to
explore my research direction. I would like to thank Kristian Gjøsteen for his
guidance, insightful feedback, and fruitful discussions. I would next like to
thank Colin Boyd for being a constant source of encouragement, especially
during the dark days of the pandemic. Many thanks to Katina Kralevska for
her useful advice and help during the initial days of PhD study.

I am fortunate to have constant support from Sushmita Ruj, who introduced
me to the research world, both on a work and personal level. I am incredibly
grateful to her for helping me climb the ladder of academia.

I would like to thank my co-authors Kristian Gjøsteen and Shuang Wu for
the collaboration. The collaboration made me gain an improved understanding
of some fundamentals of cryptography. I would also acknowledge all the NaCl
group members for making the research environment enjoyable and delicious
with weekly cakes. I also appreciate the effort and support from the members
of the DT-Blockchain project.

Many thanks to Mona Nordune, Pål Sæther, Poul Heegaard, and Maria
Sofie for making the department very welcoming, lively, and energetic. Mona
deserves special credit for being an incredibly helpful and supportive person
throughout my PhD stint.

I would like to acknowledge my office mates, Befe and Ali, with whom I
spent the majority of my PhD life. From being office mates to flatmates, we
became great friends in determination.

My list of friends to thank is long, so please bear with me. I would start by
thanking my dearest friends in Trondheim, with whom I shared many laughs
while enjoying a delicious homemade meal: Shuang, Faiga, Mattia, Sonu, Jabir
Ali, George. These people made my PhD life much easier by showing their
constant care and support.

In the department, I have been lucky to have made many friends with whom
many enjoyable hours have been spent procrastinating by the coffee machine:
Murad, Lise, Stas, Jonathan, Bor, Julie, Sruti, Sahana, Lea.

I would like to thank my Norwegian friends outside the department. Thanks
to Hans Olav and Dag for being very welcoming when I arrived in Norway.
They have always been a great company to be with. Many thanks to Tjerand
for being a great friend and a fast-running buddy. Special thanks to Tom
and Mr. Roland for always being present for me and being a great source of
inspiration and encouragement.

I would like to thank my friends back in India: Kamlesh, Deep, Ashutosh,
Gaurav, Diwakar, Amitesh. I also thank my friends back in Singapore: Nishant,
Bali, Suman, Gaurav, and Arko. Even though being geographically distant,

v

Acknowledgements

these friends have always been cheering me up and made my PhD journey
exhilarating.

My final thanks are reserved for my family: my parents, my sisters Chitra,
Akanksha, and my little cutie pie Mini. Their unconditional love, support, and
faith have shaped me into the person I am today.

Finally, over the last 2 odd years, the world has been ravaged by COVID-19.
I consider myself incredibly privileged to be around a great group of friends,
colleagues, and family. I would like to thank all of them, and I apologize if I
have missed anybody.

vi

Contents

Abstract i

Preface iii

Acknowledgements v

Contents vii

List of Figures ix

List of Tables xi

List of Acronyms xiii

I Summary 1

1 Introduction 3
1.1 Motivation . 4
1.2 Research Questions . 5
1.3 Thesis Structure . 6

2 Background and Related Works 7
2.1 Blockchain . 7
2.2 Consensus Mechanism . 11
2.3 Security . 16
2.4 Privacy . 19
2.5 Scalability . 21
2.6 Cryptographic Primitives Used in the Thesis 22

3 Contributions 27
3.1 Research Contributions . 27
3.2 Summary of Results Contributing to the Thesis 28
3.3 Contributions toward Research Questions 34

4 Conclusion 37
4.1 Concluding Remarks . 37
4.2 Future Research Directions 38

References 39

II Included Papers 49

vii

Contents

Paper A: SoK of Used Cryptography in Blockchain 51

Paper B: Meshwork Ledger, its Consensus and Reward
Mechanisms 79

Paper C: R3V: Robust Round Robin VDF-based Consensus 91

Paper D: Non-Interactive VDF Client Puzzle for DoS Mitigation 101

Paper E: DoS Attacks on Blockchain Ecosystem 111

Paper F: PriBank: Confidential Blockchain Scaling Using Short
Commit-and-Proof NIZK Argument 125

Paper G: Security Model for Privacy-preserving Blockchain-
based Cryptocurrency Systems 159

Paper H: SoK: Decentralized Randomness Beacon Protocols 185

Paper I: Competitive Decentralized Randomness Beacon
Protocols 211

III Secondary Papers 225

Paper J: Trends in Development of Databases and Blockchain 227

Paper K: Aggregation in Blockchain Ecosystem 229

Paper L: Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand 231

Paper M: Databases fit for blockchain technology: A complete
overview 233

Paper N: Cryptographic Primitives in Blockchain 235

viii

List of Figures
2.1 Blockchain data structure [39]. 8
2.2 Merkle tree of transactions. 10

3.1 Overview of the papers included in the thesis. 35

ix

List of Tables
3.1 List of publications included in the thesis. 27
3.2 List of publications not included in the thesis. 28

xi

List of Acronyms

ASIC Application-Specific Integrated Circuit.

aSVC Aggregatable Subvector Commitment.

BFT Byzantine Fault Tolerant.

CRS Common Reference String.

DDoS Distributed Denial of Service.

DoS Denial of Service.

DRB Decentralized Randomness Beacon.

ECDSA Elliptic Curve Digital Signature Algorithm.

EdDSA Edwards-curve Digital Signature Algorithm.

EUF-CMA Existential Unforgeability under Adaptive Chosen Message Attack.

FBA Federated Byzantine Agreement.

GPU Graphic Processing Unit.

IoT Internet of Things.

MAC Message Authentication Code.

NIZK Non-Interactive Zero-Knowledge.

PIR Private Information Retrieval.

PoA Proof of Authority.

PoS Proof of Stake.

PoW Proof of Work.

PPoS Private Proof of Stake.

PPT Probabilistic Polynomial-Time.

xiii

List of Tables

ProgPoW Programmatic Proof-of-Work.

SoK Systematization of Knowledge.

UC Universal Composition.

UTXO Unspent Transaction Output.

VDF Verifiable Delay Function.

VRF Verifiable Random Function.

zk-SNARK Zero-Knowledge Succinct Non-Interactive Argument of Knowledge.

xiv

Part I

Summary

Chapter 1

Introduction
More than a decade ago, academia and industry witnessed the birth of
new disruptive technology: Blockchain. Blockchain, in simple words, is a
distributed ledger managed by a peer-to-peer network collectively adhering
to some consensus protocol. Bitcoin [1] was the first application that
introduced blockchain technology by creating a decentralized environment
for a cryptocurrency, where the participants can buy or exchange goods with
digital money. Since the advent of Bitcoin, there has been an avalanche of
cryptocurrencies that all together built a financial market worth around $1.4
Trillion (as of 13 May 2022) [2].

Analyzing the underlying fundaments of blockchain leads to cryptography
that makes the blockchain reliable and immutable. The origin of the idea of
using cryptography for secure transactions traces back to the 1990s with David
Chaum’s eCash system [3]. The eCash system was used for payments regarding
internet shopping, online money transfers, and access to online services. The
negative aspect of eCash was that it was operated and controlled by a trusted
third party that hurdled the broader acceptance of the eCash system.

The development of several cryptographic ideas related to financial
transactions also started after 1990. Dwork and Naor proposed the use of
computation-expensive functions to combat junk emails in 1992 [4]. Later,
other proposals using computation-expensive function were proposed [5, 6]. A
cryptography practitioner and an implementor known under the pseudonym
“Satoshi Nakamoto” also embraced the idea of employing a computation-
expensive function and presented the first Bitcoin blockchain [1].

Besides computation-expensive cryptographic function, blockchain utilizes
additional cryptographic concepts such as public-key cryptography (digital
signatures) and public key management. The core segment of blockchain is
its consensus mechanism, and for Bitcoin, it is known as Proof of Work. In
practice, it was proven that it could be implemented successfully [7], having
as evidence the monumental success and the rise of Bitcoin as a dominant
cryptocurrency. Nonetheless, many other cryptographic primitives have been
proposed and applied to design consensus mechanisms to improve blockchain
efficiency, security, and reliability. Blockchain research has gained pace in recent
years since the evolution of cryptographic primitives such as Zero-knowledge
Proofs [8, 9, 10] and Verifiable Delay Function (VDF) [11, 12, 13], improving
efficiency, throughput, and security.

The main principle under which the source code of Bitcoin was published
was Open Source. Consequently, it provoked thousands of programmers and
cryptography practitioners to launch alternative cryptocurrencies, each of them
claiming some potential improvements. But the disruption continued further,
and blockchain technology was heralded both by academia and industry as a

3

1. Introduction

game-changer in the financial sector due to the evolution of cryptocurrencies
to a broad range of applications, including the Internet of Things (IoT) [14],
supply-chain [15], insurance industries [16] and healthcare [17].

From a development feedback loop perspective, we can now see that
blockchain technology has stimulated considerable research in constructing new
distributed consensus mechanisms for privacy-preserving cryptocurrencies [18,
19, 20]. More concretely, recent research trends put more emphasis on the
privacy aspects of modern cryptocurrencies. Alternatively, there has been an
immense amount of work toward improving the scalability of the blockchain.
We can say that nowadays, there is a growing need for having an ideal balance
between privacy and scalability in the blockchain.

Although blockchain is envisioned as a promising and powerful technology,
it still encounters many research challenges apart from privacy and scalability.
We can name a few: permanent improvement of the blockchain security,
key management, analysis of new attacks of the blockchain components and
attacks on the whole blockchain ecosystems, smart contracts management,
and incremental introduction of new cryptographic features in the existing
blockchains. These challenges arise due to the underlying network structure,
consensus mechanisms, and the cryptographic schemes used within the
blockchains. Many cryptographic concepts such as signature schemes, zero-
knowledge proofs, and commitment protocols are scrutinized and applied to
overcome the existing challenges in blockchain and find enhanced solutions.
As the field of cryptography is vast, it opens many directions to explore and
discover its applicability to construct new solutions or improve the existing
solutions in the blockchain domain.

1.1 Motivation

The concept of decentralization with blockchain technology brings an incredible
number of research questions and various practical applications. For example,
besides the traditional questions of security and privacy, the concept of
decentralization brought another challenge. Namely, as the decentralization
removes the trusted authorities and is an alternative way for monetary
transactions, the growth of the blockchain platforms faced the following problem:
the need to process an immense number of transactions on these platforms.
Thus, a new research challenge appeared: blockchain scalability.

The research community continuously contributes to solving the challenges
connected with the blockchain’s security, privacy, and scalability. These
challenges persist both for cryptocurrencies and the blockchain protocols for
transactions of assets. However, apart from these challenges, we observed that
the fairness in blockchain protocols was somewhat disregarded [21]. Fairness in
blockchain protocols typically refers to the fair contribution of each participant.
Fair contribution refers to that the participants will get a fair chance to
participate and produce new blocks in blockchain irrespective of their available
resources (e.g., computational power, stake). Otherwise, a participant with
more resources will have an advantage in producing new blocks and subsequently

4

Research Questions

earning the block incentive. This scenario will bring the blockchain system
towards centralization as participants with more resources will be controlling
the system by adding new blocks in the blockchain.

The motivation for the research conducted and presented in this thesis
comes from the aforementioned challenges. To address them, the thesis first
aims to scrutinize the cryptographic primitives that have been employed or
have the potential to be utilized in the blockchain. Then, the thesis seeks to
comprehend the definition of fairness in Proof of Stake (PoS) consensus [22]
context and to construct new consensus mechanisms to provide better fairness.

The second motivation comes from the increasing intensity and frequency of
Denial of Service (DoS) attacks not only on the blockchain ecosystems but also
on the internet industries. Due to the enormous potential of the cryptocurrency
market, the severity of the DoS attacks poses a great concern. Therefore, the
thesis presents an investigation of the DoS attacks on the blockchain ecosystems
and constructs a general puzzle scheme for DoS mitigation.

The third motivation for the thesis focuses on the privacy and scalability of
cryptocurrency systems. Since the introduction of Layer-2 protocols [23], there
has been a tremendous amount of work to solve the scalability of the blockchain.
Layer-2 protocols, in simple words, provide a way to move a vast amount of
transactions off-chain and put a succinct, verifiable update on-chain about
these transactions. In this way, the blockchain processes more transactions
and achieves scalability. Even though there are many Layer-2 protocols, e.g.,
payment channel networks [24], sidechains [25], and commit-chain [26], the
privacy of off-chain transactions and the users’ privacy have not been addressed.
The thesis presents a construction that achieves privacy on top of a scalable
solution. The construction is further used to create a general framework to
assess the security of existing privacy-preserving cryptocurrency systems.

Most of the constructions e.g., fair PoS consensus mechanism, and puzzle
scheme for DoS mitigation presented in the thesis require secure and verifiable
randomness. Randomness is a crucial element needed in many applications such
as secure parameter generations in cryptographic protocols [27], byzantine fault-
tolerant protocols [28], E-voting [29], privacy-preserving messaging services [30],
online gaming [31], blockchain, and smart contracts [32]. Decentralized
Randomness Beacon (DRB) protocols model public, distributed, reliable,
trusted, and verifiable randomness generation. In recent years, there have
been numerous constructions of DRB protocols using different cryptographic
primitives [28, 33, 34, 35, 36, 37, 38]. Nevertheless, there is no systematization of
these DRB protocols, which motivates the thesis to present a Systematization
of Knowledge (SoK) of existing DRB protocols. Further, the thesis also
describes a new class of DRB protocol called competitive DRB and offers a
novel construction of DRB protocol under the new class.

1.2 Research Questions

The objective of the thesis is to study state-of-the-art cryptography in the
blockchain. That means identifying existing research problems in the blockchain

5

1. Introduction

domain and investigating novel solutions to the research problems. The following
research questions have been identified and accounted for in this thesis:

• RQ1 How can we provide fairness to the participants in the blockchain
ecosystem, particularly with a proposal of a novel consensus mechanism?

• RQ2 How can we improve the security in the blockchain ecosystem
concerning resistance to DoS attack?

• RQ3 How can we achieve and assess privacy in cryptocurrency systems?

• RQ4 How can we provide or improve scalability in the blockchain
protocols?

1.3 Thesis Structure

The thesis is a collection of papers. This thesis is composed of mainly two parts.
Part I presents a comprehensive summary of the thesis and provides the overall
motivation, objective, and main results from the thesis work. It comprises four
chapters. Chapter 2 presents the necessary background knowledge required
for the thesis and the related works. Chapter 3 provides a brief overview of
the research contributions of the thesis and also answers the research question
defined in Section 1.2. Finally, Chapter 4 presents the concluding remarks and
future research directions.

Part II includes 9 contributing papers where 7 are published, 1 is accepted
(to be presented), and 1 is submitted for a peer-reviewed publication. In
addition to the main two parts, Part III presents the abstracts of the 5 related
secondary papers that are not included in the thesis. The secondary papers do
not directly answer the research questions but emphasize more the topics such
as cryptographic primitives in blockchain, the relation between databases and
blockchain, and aggregation in the blockchain ecosystem.

6

Chapter 2

Background and Related Works
This chapter aims to present the underlying background knowledge and most
important related works relevant to the thesis. Thus, this chapter explains
blockchain technology and the significant challenges faced by the technology.
First, we describe what blockchain is and what are its components. One of the
core parts of blockchain is its consensus mechanism. Henceforth, further, we
discuss consensus mechanisms in detail. Additionally, we present the major
issues in the blockchain, which are security, privacy, scalability, and fairness.
The works included in the thesis employ a few cryptographic primitives to
address some of the significant issues in the blockchain. We describe these
cryptographic primitives in the last part of the chapter.

2.1 Blockchain

Blockchain was first described in a 2008 white paper entitled “Bitcoin: A Peer-
to-Peer Electronic Cash System” as the underlying core technology. Blockchain
is a distributed ledger that maintains a continuously growing list of records
confirmed by the participating nodes operating over a Peer-to-Peer network. A
record refers to a block of valid transactions kept in the public ledger and shared
among participating nodes. Hence, the nodes participating in the blockchain
have a local copy of the ledger.

Blockchain technology is arguably considered a disruptive technology, and
it has evolved rapidly in the past decade. The success of blockchain is traced
back to the financial success of the Bitcoin cryptocurrency, which subsequently
provoked the appearance of thousands of alternative cryptocurrencies. The
rationale for the success of blockchain is its set of unique features such as
immutability, transparency, distributed and trusted ledger without any central
party, and secure smart contracts.

Figure 2.1 (Fig. 2 in [39]) depicts the structure of a blockchain together with
the block format. There are mainly two fundamental cryptographic building
blocks in the blockchain: 1) Hash Function and 2) Digital Signature. Blockchain
relies on these building blocks for its security. In the following subsections,
first, we illustrate these two main constituents in detail. Further, we present a
brief overview of Merkle tree, ledger, and blockchain types.

2.1.1 Hash Function

Hash functions are split into two classes: keyed hash function and un-keyed hash
function [40]. Keyed hash functions are primarily used to construct Message
Authentication Code (MAC) and due to their limited use in blockchain, keyed

7

2. Background and Related Works

Block	n	 Block	n+1	 Block	n+2	

H	12	 H	34	

Tx	1	 Tx	2	 Tx	3	 Tx	4	

Block	n+2	Transactions	

Hashn+1	

Target	difficulty	

Merkle	Root	Hash	

Version	

Timestamp	

Block	Header	

Nonce	

Merkle	Root	Hash	

Hashn+2	=		
Hash(Block	Header)	

List	of		
Transactions	

Hashn+1	

diff	

Merkle	Root	Hash	

V	

T	

N	

Hashn+2	

List	of		
Transactions	

List	of		
Transactions	

Hashn	

diff	

Merkle	Root	Hash	

V	

T	

N	

Hashn+1	

Hashn-1	

diff	

Merkle	Root	Hash	

V	

T	

N	

Hashn	

Figure 2.1: Blockchain data structure [39].

hash functions are not explored in this thesis. Following, we treat a hash
function as an un-keyed hash function used in blockchain.

Hash function in the blockchain is used for various purposes, including
address generation, solving a cryptographic puzzle (e.g., in Bitcoin), and
shortening the public addresses. A hash function H : {0, 1}∗ → {0, 1}n is an
algorithm that maps an arbitrary finite size input to a fixed size output. A
cryptographic hash function should have the following security properties:

1. Preimage Resistance implies that hash function is not invertible, means
given an output y it is hard to find an input x such that H(x) = y.

2. Second Preimage Resistance infers that given an input x, it is hard to
find x′ where x ̸= x′, such that H(x) = H(x′).

3. Collision Resistance implies that it is hard to find a pair of input x, x′

mapping to the same hash value, which means H(x) = H(x′).

A hash function having properties 1 and 2 is called a one-way hash function,
whereas a hash function having both properties 2 and 3 is called a collision-
resistant hash function [40]. The most popular cryptographic hash function
used in blockchains is SHA-2 [41] (especially the variant SHA256 - a variant
that produces outputs of 256 bits) which is so far collision-resistant.

In the blockchain, the most common way to use hash functions is in the
form of a mode of operation which includes several invocations of the same
or different hash functions. For example, in Proof of Work (PoW) of Bitcoin,
SHA256 is used twice, and that construction is called SHA256d, i.e.,

SHA256d(message) = SHA256(SHA256(message)). (2.1)

8

Blockchain

2.1.2 Digital Signature
A digital signature is based on public-key cryptography to produce shortcodes
called a signature using the private key of a user, and the verification of the
signature is done using the public key of the user.

Digital signatures are primarily used to verify the authenticity of blockchain
transactions. By providing a signature over a transaction, a user proves that he
is authorized to spend the fund of the transaction while preventing other users
from spending those funds. Hence, a signature provides source authentication,
transaction integrity, and non-repudiation of the sender. A signature scheme
consists of the following Probabilistic Polynomial-Time (PPT) algorithms:

• KeyGen(1λ): A key generation algorithm takes the security parameter λ
and generates a private key and corresponding public key pair (pk, sk).

• Sign(m, sk): A signing algorithm takes a message m, the secret key sk
and produces a signature σ as output.

• Verify(m, σ, pk): Given a message m, signature σ and a public key pk, a
verification algorithm outputs true or false.

For every (pk, sk) pair generated by KeyGen(1λ), for all m ∈ {0, 1}∗, and
for some negligible function negl, following holds:

Pr[Verify(m, Sign(m, sk), pk) = true] = 1− negl(λ)

The security of a digital signature is given as Existential Unforgeability
under Adaptive Chosen Message Attack (EUF-CMA), which states that an
adversary having access to a signing oracle cannot forge a valid signature on a
new message of his choice.

Signature schemes have gained a lot of attention due to the rapid
development of blockchain technology. The most common signature schemes
in blockchain are Elliptic Curve Digital Signature Algorithm (ECDSA) [42]
and Edwards-curve Digital Signature Algorithm (EdDSA) [43]. The security
of both signatures lies under the hardness assumption of the elliptic curve
version of the discrete logarithm problem. ECDSA is built on general elliptic
curve cryptography and is used in many blockchains, including Bitcoin and
Ethereum [44]. However, EdDSA works on a variant of Schnorr signature [45]
based on twisted Edwards curves and used in blockchains such as Monero [46].

2.1.3 Merkle Tree
Merkle tree is used as an accumulator in the blockchain. An accumulator
commits to a collection of values as a succinct digest. Merkle tree commits to
a set of transactions within a block and results in a single element that can be
used to prove the membership of transactions within the block. Merkle tree
uses constant storage in a block of the blockchain. Merkle tree is the most
commonly used accumulator in cryptocurrencies (e.g., Bitcoin) due to its space
and time-efficient data structure for set membership.

9

2. Background and Related Works

Merkle root = H(E∥F)

E = H(A∥B)

A = H(ta)

ta

B = H(tb)

tb

F = H(C∥D)

C = H(tc)

tc

D = H(td)

td

Figure 2.2: Merkle tree of transactions.

Merkle trees are also known as Binary hash trees, in which each leaf node
is labeled with the cryptographic hash of a data block (e.g., transaction), and
each non-leaf node is labeled with the cryptographic hash of its child nodes’
labels as depicted in Figure 2.2. Bitcoin and Ethereum both use this technique
(although in different forms of implementation of Merkle trees) so that the
blocks only contain the Merkle tree root of the transactions/states.

2.1.4 Ledger
The ledger is a common term used when referring to a blockchain. In general,
ledgers are used in accounting, where ledgers record all the incoming and
outgoing transactions, and once added, these transactions can not be removed.
In a similar way, as blockchain is a read and append-only data store, it is not
possible to remove an entry from it under the security assumption. There are
two main ledger models for the blockchains.

1. UTXO Model In an Unspent Transaction Output (UTXO) model,
transactions are transfers of value from the previous transaction outputs
to new unspent outputs inductively (e.g., in Bitcoin). New unspent
transaction outputs are called UTXO, which are used as inputs to new
transactions spending them.

2. Account-based Model In an account-based model, each public address is
considered an account (e.g., in Ethereum). Each account has a balance
associated with it. A transaction in an account-based model transfers
value from one account to another.

2.1.5 Blockchain Type
Blockchains can be classified depending on the implementation design,
administration rules, data availability, and access privileges. The type differs
based on the academic and administrative points of view. From an academic

10

Consensus Mechanism

view, blockchains have been classified as “public” and “private”. However, in an
administrative view, blockchains are called “permissioned” and “permissionless”.
Nevertheless, these terms are used interchangeably in most blockchain studies
and applications. Even though the classification of blockchains is not very
distinctly specified in the literature, we can still categorize blockchains by
coupling public, private, permissioned, and permissionless.

1. Permissionless Public: In a permissionless public blockchain, anyone can
join/leave the blockchain network and can participate in consensus at any
time. Everyone has read and write access to the blockchain. Consequently,
it equips minimum trust among the participants, but it still accomplishes
maximum transparency. Most of the cryptocurrencies and blockchain
platforms are permissionless public, e.g., Bitcoin [1], Zerocash [47], and
Monero [46].

2. Permissioned Public: In a permissioned public blockchain, everyone can
read the blockchain state at any time, but to participate in consensus and
to write the data in the blockchain, there are certain permissions/privileges
associated with the participants provided by the network administrator.
Having permissions makes the system not entirely decentralized in a
particular perspective. In this type of blockchain, once a participant
has some privileges, based on that, it can become a validator as well.
Examples of permissioned public blockchains are Ripple [48] and EOS [49].

3. Permissionless Private: These types of blockchains allow different
organizations to collaborate without sharing their information publicly.
Due to the permissionless property, anyone can join or leave the blockchain
network at any time, which other nodes acknowledge. In a smart contract-
based permissionless private blockchain, the read and write permissions
for smart contract data can also be defined in the smart contract. Some
permissionless private blockchains use the Federated Byzantine Agreement
(FBA) as a consensus protocol. LTO [50] is an example of a permissionless
private blockchain that creates a “live contract” on the network.

4. Permissioned Private: These blockchains are predominantly used in
organizations where data/information is stored in the blockchain with
permissioned access control by members of the organization. The network
administrator or some membership authority provides the membership
in the network. The network administrator also provides read and write
access to the data. Hyperledger fabric [51], Multichain [52] are examples
of permissioned private blockchains.

2.2 Consensus Mechanism

The area of classical consensus is well-established and spans decades [53,
54]. The distributed system community has extensively studied and explored
consensus, but the field is revitalized due to being a core part of the blockchain.

11

2. Background and Related Works

In the blockchain, participating nodes collectively adhere to a predetermined
set of rules to reach an agreement to ensure the distributed ledger’s consistency.
This set of rules is determined by a mechanism called consensus. It is the
critical component of the blockchain. The first consensus mechanism used in
the blockchain is PoW, implicitly given in Bitcoin. As consensus is a core
component of blockchain, it is a high-volume, high-churn area of research. Since
the introduction of PoW (from Bitcoin), a surfeit of consensus mechanisms has
been constructed [55].

Depending upon the network architecture and the type of blockchain, a set
of participants, participate in the consensus protocol. The consensus protocol
determines this set; it can be a set of all the participants or a set of selected
participants through some selection criteria. As a result of the consensus, a
leader is elected from the set of participants responsible for creating the new
block and adding it to the ledger in a particular execution of the consensus
protocol. The leader is elected based on a leader election mechanism, such as
using a PoW puzzle competition or executing a Verifiable Random Function
(VRF) [28]. The agreement on the new block created by the leader is reached
through a voting process. This process can be explicit (by multiple voting
rounds) or implicit (by checking the correctness of the leader election process).

2.2.1 Consensus Properties

• Safety This property ensures that once an honest participant accepts a
new block in its blockchain, the probability of the block being reverted
becomes negligible as the chain continues to grow.

• Liveness It ensures that the blockchain will continue to progress with the
addition of new blocks by honest participants.

• Fairness It ensures that each participant gets a fair and equal chance to
keep the system alive by contributing towards appending new blocks and
obtaining rewards for it.

Safety and Liveness are the two main properties of a consensus protocol.
Fairness is not usually justified in most consensus protocols; however, recent
works emphasize the fairness of their consensus protocol [21, 56].

On the other hand, fairness is a crucial property needed in consensus. By
the fairness property, every participant should have an equal chance of being
selected as a leader of the consensus irrespective of available resources or stake
to the participant. The reward mechanism of a consensus should also be fair
to the participant, which means the effort made by the participants in the
consensus should not go to waste. The effort should be rewarded to enforce
the participants’ positive behavior and make the system work.

Apart from consensus, fairness is a vital property in the blockchain ecosystem.
It should also be assessed on the users with differing computational resources
in a blockchain protocol. The randomness generation in the blockchain, e.g.,
randomness for leader election in consensus, should also be a fair process.

12

Consensus Mechanism

2.2.2 Proof of Work
Bitcoin employs Proof of Work (PoW) as its consensus mechanism. The idea
behind PoW came from Hashcash Protocol [6]. Hashcash proposes a spam-
prevention mechanism for public databases. In the continuation, Dwork and
Noar [57] first presented an academic treatment of PoW. The main idea of PoW
is that someone can verify that a third party has spent computational effort
to solve a hash-based computation-intensive puzzle. After the introduction of
PoW, the concept was later adapted for securing digital money through the
idea of a “reusable proof of work” using the SHA-256 hashing algorithm.

The Hashcash Protocol presents the general idea of PoW; therefore, we
represent the Hashcash Protocol as follows. Suppose an email client wants to
send an email to an email server. In the beginning, the client and the server
both agree on a cryptographic hash function H , which maps an input string to
an n-bit output string. Then, the email server sends a challenge string c to
the client. Now the client has to find a string x such that H (c||x) starts with
k zeros. Since H has pseudorandom outputs, the probability of success in a
single trial is

2n−k

2n = 1
2k

Here x corresponding to c is considered as PoW, and the process of finding
the solution x is difficult. Thus, PoW is difficult to generate but easy to verify.

The process of creating a new block of transactions through solving the PoW
puzzle is called mining. The participant who solves the puzzle first is called a
miner. The mining process involves collecting all the necessary information
needed for the PoW puzzle, such as a set of valid transactions, Merkle root
of the set, current difficulty, version number (V er), and previous block hash
(HashPrevBlock).

If we look at the Bitcoin PoW puzzle, we can see that a miner has to find
a Nonce (similar to the Hashcash protocol) to create the next block in the
blockchain. The puzzle is as follows:

SHA256d(V er||HashPrevBlock|| . . . ||Nonce) ≤ T (2.2)

where T is the 256-bit target value.
In a decentralized system with several participants, each participant puts

their computational effort into solving the PoW puzzle. Although a single
participant is selected as a leader who solves the puzzle first, gets rewarded,
and extends the blockchain, as a sum, a substantial computational effort is
wasted for each block addition through the effort made by all the participants.
Computational PoW efforts by the participants in the blockchain resulted in
trivial and massive parallelization approaches, first using Graphic Processing
Units (GPUs) and later Application-Specific Integrated Circuit (ASIC) devices,
bringing, as a consequence, a huge waste of energy and computational power.

13

2. Background and Related Works

2.2.3 Energy Consumption

PoW is an integral driving mechanism for many modern cryptocurrencies and
blockchains, including major blockchains like Bitcoin and Ethereum. Despite
their success in the financial market, their substantial energy consumption
raises many questions about their use. The issue of enormous energy waste
poses a significant hurdle for the adoption of public blockchain use cases.

The energy debate has been going on since Bitcoin came into the limelight,
and following Bitcoin, the cryptocurrency market started growing with many
modern cryptocurrencies. In 2014, O’Dwyer and Malone conducted a study
about the energy consumption of Bitcoin. The conclusion of the study was
that “the energy used by Bitcoin mining is comparable to Irish national
energy consumption” [58]. Since then, many studies have been conducted,
and many research articles have been published about the energy consumption
of cryptocurrency mining [59, 60, 61].

The energy debate about PoW-based blockchains again became mainstream
in 2021 when China cracked down on almost the majority of cryptocurrency
mining within a short amount of time. Consequently, Tesla publicly reversed its
decision about accepting Bitcoin as a payment. According to The Cambridge
Bitcoin Electricity Consumption Index (CBECI), Bitcoin energy consumption
is estimated at 150 terawatt-hours of electricity per year 1. Additionally, miners
in public blockchain networks also frequently upgrade their mining chips to stay
economically competitive, which results in a significant amount of electronic
waste.

On the other hand, the supportive community of cryptocurrencies, includ-
ing Bitcoin developers, claims that energy waste is analogous to the energy
expenditure of financial institutions such as banks. The Bitcoin developers
argue that energy consumption is hard to calculate for financial systems such as
banks, and it is arguably much more complex and inefficient than PoW-based
cryptocurrencies. Moreover, critics also raise a question about the negative
impact of blockchain on climate change due to colossal energy waste. On
the contrary, the Data-driven EnviroLab (DDL) and Open Earth Foundation
(OEF) claim that blockchain has the potential to improve climate action
accounting [62].

Potential Solutions There are a few solutions to the energy challenges of
cryptocurrencies:

• Shifting towards renewable electricity sources can be beneficial not only for
PoW-based cryptocurrency mining but can also push the sector towards
more sustainable energy sources.

• Using more energy-efficient consensus mechanisms such as Proof of Stake
can significantly reduce the energy consumption of public blockchains.

1https://ccaf.io/cbeci/index

14

https://ccaf.io/cbeci/index

Consensus Mechanism

2.2.4 ASIC Resistance

ASICs are specialized hardware devices designed to serve a specific use case,
such as performing a specific computing task fast and efficiently. In the case
of Bitcoin mining, ASIC implementation mines the blocks several orders of
magnitude faster than ordinary CPUs and GPUs by efficiently running SHA-
256. Since mining involves multiple attempts to solve a complex cryptographic
puzzle, an ASIC device to speed up the mining performs as many attempts
as possible (i.e., as many hashing functions per second). Companies such as
Bitmain (bitmain.com) sell these ASIC devices ranging from a few hundred
dollars to over a thousand.

An ASIC-resistant cryptocurrency configures its mining algorithm so
that the use of ASIC devices for mining cannot bring any significant
advantage compared to traditional GPU mining. After an increasing trend of
designing ASIC devices for SHA256d implementation (especially for Bitcoin
mining), starting from 2011, there were few initiatives to design PoW-based
cryptocurrencies that include ASIC-resistant hash functions. In this direction
of work, first, Litecoin [63] (a fork of Bitcoin) makes use of Scrypt [64] - a
memory-intensive compilation of use of the HMAC [65]. The idea was that
Scrypt would be impractical to implement in ASIC, but later ASIC devices
for Litecoin mining were offered by Bitmain company. Later, with the idea of
ASIC-resistant PoW-based cryptocurrency, QuarkCoin [66] and Darkcoin [67]
were also introduced. These cryptocurrencies employ a chain of different hash
functions (hashing algorithms) where each hash is calculated and then submitted
to the next algorithm in the chain. However, commercial ASIC devices came
into the market after a while.

Nevertheless, continuous development is required to make a cryptocurrency
ASIC-resistant. It is due to the fact that ASIC manufacturers are constantly
producing new ASIC devices that bypass the ASIC resistance of specific
cryptocurrencies. The growing production of ASIC devices creates friction
between ASIC miners and the cryptocurrency community, which inspires the
creation of novel proposals in blockchain consensus. Moreover, blockchain
protocols employing other methods of consensus, such as Proof of Stake
(PoS) [68], Proof of Authority (PoA) [69], and Programmatic Proof-of-Work
(ProgPoW) [70], are ASIC-resistant by design.

2.2.5 Proof of Stake

Proof of Stake (PoS) consensus mechanism was introduced to overcome the
problems of PoW. Compared to PoW-based blockchains, where any participant
can be a miner who can try to solve a cryptographic puzzle, in PoS-based
blockchains, participants have to lock some initial stake in order to participate
in consensus. These participants are called validators. The blockchain keeps
track of validators who have put aside some stake. The idea behind PoS is to
randomly select a validator as a block proposer based on the stake available
to the validators. Thus, the probability of being selected as a block proposer

15

2. Background and Related Works

depends on the number of stakes available to the participant. PoS is based on
the assumption that honest participants own the majority of the stake.

These PoS protocols can be categorized into Chain-based and Byzantine
Fault Tolerant (BFT)-based. Chain-based follows the longest chain rule of
PoW protocol for the selection of the right chain. BFT-based protocols require
voting from the participants and assume that 2/3 of the stakes are held by
honest participants. Chain-based PoS protocols simulate the PoW leader
election. There are only a few implementations of chain-based PoS protocols
which includes Ouroboros [71] and its descendants [72, 73]. Nevertheless,
BFT-based protocols have proven mathematical properties. Therefore, there
have been many constructions of BFT-based protocols such as Algorand [28],
Tendermint [74], and Casper [75].

Another categorization of PoS protocol can be: a) slot-based and b)
committee-based. In a slot-based mechanism (e.g., Ouroboros Praos), winning
the lottery means being able to create a new block for a slot (consensus round).
However, in contrast, winning the lottery in a committee-based mechanism
(e.g., Algorand) can encompass different roles, e.g., proposing a new block or
voting on a proposed block.

PoS emerged to tackle the energy waste problem of PoW, but it suffers from
inherent privacy issues. In PoS, the identity of the selected validator is disclosed
in order to verify the proof of selection, and the stake of this validator can
be deducted by frequency analysis. Thus, the privacy of validators’ identities
and their associated stake is essential. Henceforth, to impose privacy in PoS
consensus, Private Proof of Stake (PPoS) mechanisms [18, 19] are constructed.

Although the aforementioned PoS protocols solve the huge energy waste
problem of PoW, the problem in current PoS protocols is fairness to the
participants. A validator with more stakes in the system always has the
probability of being richer by being selected as the block proposer and earning
the reward. On the contrary, a validator with significantly less stake might
not get even a single chance of being selected as a block proposer. Moreover,
BFT-based PoS schemes incur high communication costs to reach an agreement.
Therefore, one of the fundamental goals of the research presented in the thesis
is to design new consensus mechanisms with the following properties:

– Better fairness to the validators;

– Less communication complexity.

2.3 Security

The basic security of blockchain stems from the underlying cryptography
and its implementation. Blockchain is constructed with the aim to achieve
several inherent security attributes, such as tamper-resistant, consistency, and
resistance to attacks, e.g., double-spending attacks. In the case of digital cash,
starting from Bitcoin, there were mainly three security guarantees: a) one
cannot trivially mint the cash; b) one cannot forge a valid payment; c) one
cannot spend the same cash more than once.

16

Security

Security of blockchain is a broad research area. Much research has been
conducted to study the security properties of blockchain [76, 77]. So far, the
research studies on the security of blockchain stress on mainly two things: 1)
exploring different attack vectors on the blockchain systems; 2) proposing new
methods to countermeasure the subsets of attacks. In this section, we first
explain the following security attributes (components in general), and further,
we briefly discuss the security properties in the blockchain.

1. Confidentiality It is a set of rules that limits access to information.

2. Integrity It is the assurance that the information is trustworthy and
accurate.

3. Availability It is a guarantee of reliable access to information by authorized
people.

In the blockchain context, the term information used in the above context
has multiple meanings; it can be a transaction, a block, smart contract data,
or other valuable data. Following, we broadly organize the main security
properties of the blockchain.

• Consistency In the blockchain context, consistency refers to the property
that all the nodes in the system should have the same ledger at the same
time. Consistency is a somewhat controversial topic. As many states that
blockchain systems such as Bitcoin only have eventual consistency, which
is a weak consistency. Eventual consistency means that each node in the
blockchain system gets consistent eventually.

• Tamper-resistance Tamper-resistance in the blockchain refers to the
property that the transaction information stored in a block cannot be
tampered with during and after block generation. There are two main
ways to tamper with the transactions: 1) The block proposer (e.g., a
miner in Bitcoin) can attempt to tamper with the transaction information;
2) An adversary can attempt to tamper with the transaction information
in the blockchain. Nevertheless, the employed digital signature on each
transaction and the use of the hash function to connect the blocks make
it impossible to tamper with the transaction data without the network
knowing about it; hence, the above attempts are elegantly prevented.

• Resistance to double-spending attack Double-spending attack is specific to
blockchain-based cryptocurrency systems. The attack is to spend a coin
more than once in simple terms. The double-spending attack is a general
security concern in digital payment systems because digital information
can be reproduced easily. In cryptocurrency systems, signing transactions
using a digital signature and public verification of transactions with a
majority consensus can prevent double-spending attacks.

Given the generic security requirements, the following apply to the
blockchain:

17

2. Background and Related Works

1. Confidentiality of transaction data In the majority of financial institutes,
users wish to have minimal disclosure of their transaction details.

2. Integrity of transactions The transaction details must be trustworthy and
should not be tampered with.

3. Availability of system and data The users in the blockchain network
should be able to access the blockchain information, i.e., transaction data,
at any time.

Apart from the above security requirement and properties, there are many
real attacks on blockchain systems. The most common attacks are selfish
mining, eclipse, Denial of Service (DoS), and Sybil attacks [76]. DoS attack
is one of the most severe attacks in blockchain, especially in cryptocurrency
markets. Therefore, following, we present a brief overview of the DoS attack.

2.3.1 Denial of Service Attack
A Denial of Service (DoS) attack targets to disrupt the availability of the
network, application, or server and thwarts legitimate requests from taking
place. For a DoS attack to follow, the attacker has to send more requests than
the victim server can handle. These requests can be legitimate or bogus. The
DoS attack exhausts the server’s resources, such as CPU, memory, or network.
Due to blockchain’s various configurations and decentralized features, many
attacks are preventable. Regardless, DoS attacks, especially its distributed
variant Distributed Denial of Service (DDoS), are still prominent attacks on
cryptocurrencies and blockchain-based applications.

Due to the increasing intensity and frequency of DoS attacks, it is pondered
as one of the biggest and most severe threats to the Internet industry. One of
the strong DoS attacks was mounted on a DNS server in October 2016, which
manifested in a cut of access to major websites, including PayPal, Netflix, and
Twitter, for several hours [78]. The spectrum of DoS attacks can vary from DNS
services, cloud providers, and IoT devices to the cryptocurrency and blockchain
markets. Nowadays, the cryptocurrency market is a popular target of DoS
attacks, with the motivation of ransom, stealing funds, or business competition.
In the past, many works [79, 80, 81] regarding the detection and prevention of
DoS attacks have been carried out. Moreover, DoS/DDoS solutions based on
blockchain are an emerging area of research.

Definition 2.3.1. (DoS): Let a server S be given, with the available resources
R1, R2, . . . , Rn (Ri can be bandwidth, memory, CPU etc.). Let A or a set of
{Aj} are an attacker or a set of attackers, and let the set {Uk} represents the
legitimate users. A DoS attack on server S is expressed by a set of probabilities
for successful resource-depletion {PR1 , PR2 , . . . , PRn

}. The total probability for
a success of a DoS attack is then a probability the server S to refuse legitimate
transactions from a user u, where u ∈ {Uk} and is modeled as the probability
of blocking the legitimate traffic in at least one of the resources:

PDoS = 1− (1− PR1)(1− PR2).(1− PRn) (2.3)

18

Privacy

Note that the situation when attacker(s) exhausts at least one resource Ri

implies the attack probability is PRi = 1, which from equation (2.3) further
leads to PDoS = 1.

DoS attacks can be categorized based on network and application layers or
volume and protocol attacks. Network-level DoS attacks aim to overload the
server’s bandwidth or cause CPU usage issues. However, application-level DoS
attacks concentrate on applications, websites, or online services.

The most notable mitigation schemes for DoS are client puzzles. In a client
puzzle scheme, a client has to prove legitimate intentions to the server by solving
a puzzle. In the majority of the client puzzle schemes, the puzzle is provided
by the server, which makes the scheme interactive in nature. A client puzzle
scheme can be CPU-bound (such as in Hashcash Protocol), memory-bound, or
network-bound. There are many constructions of client puzzle schemes, but
most of the existing schemes do not offer asymptotically efficient verification
and public verifiability of the puzzle solution.

The research presented in the thesis focuses on the following subjects with
respect to DoS mitigation:

– Construction of a non-interactive client puzzle scheme with desirable
properties, such as asymptotically efficient verification and public
verifiability;

– Investigation of the DoS attack and its mitigation approaches in the
entities of the blockchain ecosystem.

2.4 Privacy

Privacy is a huge concern in blockchain systems. Popular systems like Bitcoin
and Ethereum do not have privacy out of the box. All the transaction data
is recorded in the clear on the blockchain, allowing anyone to infer the detail
of the transactions. Although these systems do not reveal real identities, the
random addresses can be easily linked to their real owner [82]. This raises an
issue about disclosing sensitive data in the transactions, such as health data.
Therefore, privacy issues should be addressed in the blockchain.

Lack of privacy also affects fairness as users in blockchain become susceptible
to front-running attacks [83]. That means, having all the transaction details
public, an adversarial user races to have his transaction confirmed first.

Privacy, in general, can be categorized as privacy of data or privacy of users
(anonymity). Data privacy in blockchain refers to the confidentiality of all the
data or sensitive data stored in the blocks. Anonymity refers to the privacy
of a user’s identity. Usually, pseudonymity is employed in cryptocurrencies,
where pseudonymity refers to the state of disguised identity.

Data privacy research has been proliferating over the past decade. Several
academic and industrial initiatives have been brought in recent years. So far,
research shows the risk of privacy leakage due to inference attacks through
which sensitive transaction data can be obtained, and the true identity of the

19

2. Background and Related Works

users can be inferred from the pseudonym. Hence, privacy is a significant
challenge to be addressed in blockchain and blockchain-based applications
involving sensitive information. Following, we describe how privacy is/has been
achieved in the blockchain.

In the blockchain context, the notion of privacy varies from the privacy of
transaction amounts [47, 32, 20] and transacting parties [84, 85] to the privacy
of embedded functional calls in a smart contract [86]. Different solutions have
been proposed to achieve meaningful privacy notions in the blockchain. Several
of these solutions employ privacy-oriented cryptographic techniques such as
zero-knowledge proofs [47], ring signature [46], homomorphic encryption [87],
and mixing techniques [88, 89] to achieve different forms of privacy. Financial
systems zkLedger [90], Solidus [91], and RSCoin [92] also achieve privacy in
their transactions, but banks regulate the supply of funds, and a blockchain is
used to make transactions. A detailed overview of these systems can be found
in the work of Almashaqbeh and Solomon [93].

The introduction of Zcash [47] and Monero [46] intrigued the crypto
community to design other privacy-focused cryptocurrency systems. Zcash and
Monero are Bitcoin-like blockchains. Both rely on recording every transaction
in the history to perform further transactions following the UTXO model.
Systems like Hawk [32] and Zexe [86] use a zk-SNARK proof system to generate
privacy-preserving transactions.

Most of the new designs of privacy-preserving systems are built on the top
of the smart contract. The idea is to build private smart contracts that allow
for arbitrary computations on the blockchain while keeping the inputs and
outputs secret. Zether [20], zKay [94] and Kachina [95] are such systems built
on Ethereum. These systems establish privacy-preserving smart contracts on
Ethereum to provide confidential payment or confidential data. zKay [94] defines
its privacy model by defining a language zKay for writing smart contracts with
private data. Moreover, Kachina [95] provides a unified security model based
on the Universal Composition (UC) model for deploying privacy-preserving
and general-purpose smart contracts. The interest in building private smart
contracts is further extended to support function privacy, which means even
the computation itself is hidden.

The majority of privacy-preserving systems offer some meaningful privacy.
Still, many of these systems, such as Hawk [32] and Monero [46], do not have
a security model to assess the security properties and privacy of the systems.
A few of these systems, such as Zcash [47] and Zether [20], do have their
security model, but their model cannot be utilized to check the security of
other privacy-preserving systems. Therefore, in order to assess the security of
most of the privacy-preserving systems, the present thesis provides:

– A general security framework to assess the privacy of existing privacy-
preserving systems;

– Security definitions for privacy-preserving systems.

20

Scalability

2.5 Scalability

Due to the continuously growing size of the blockchain, scalability is becoming a
challenging issue. The scalability of a blockchain depends on many factors, such
as the underlying consensus mechanism and network structure. Scalability is
one of the critical issues for the widespread adoption of blockchain technology for
different use cases. Moreover, improving the scalability (transaction throughput)
of a blockchain can also improve the energy efficiency per transaction. Current
blockchains, including Bitcoin and Ethereum, are not suitable for daily financial
transactions due to the limited throughput.

The main challenge when trying to improve the scalability of a blockchain
is simultaneously preserving the other properties of the blockchain, especially
security and decentralization. Many potential solutions have been proposed to
improve the scalability of public blockchains pertaining to high decentralization
and security. These solutions include Layer-2 solutions [23], sharding
mechanism [96], and advanced Layer-1 solutions.

Layer-2 solutions move the large amount of data and computation off-chain
and record a summary of the transactions on-chain. Constructions such as
Plasma [97], NOCUST [98], and ZK-Rollup [99] follow a similar model, and an
off-chain untrusted operator puts an abbreviated update for the transactions
on-chain. Plasma/NOCUST claim to decrease the transaction cost nearly to
zero. However, these systems send fewer data to the blockchain, but they suffer
from the problem of mass exit and long waiting time in case of withdraw.

Sharding, in general, splits a big data set into multiple small data sets.
To improve the scalability of blockchain by sharding, instead of having a
large monolithic blockchain, the blockchain network can have multiple small
interconnected blockchains. The hypothesis of sharding in the blockchain
is to split the processing of transactions among the smaller group of nodes
called shards. These shards work in parallel and improve the throughput and
performance while incurring less computation, communication, and storage
cost. The main feature of sharding is scaling the blockchain without making an
individual blockchain significantly larger. The sharding approach also functions
with Layer-2 solutions to achieve even greater scalability. Some examples of
blockchains utilizing the sharding approach for scalability are OmniLedger [100],
Chainspace [101], and RapidChain [102].

A few Layer-1 blockchains with smart contract functionality scale their
transaction throughput by employing Proof of stake and a mix of other
techniques. Blockchains such as Algorand [28], Solana [103], and Tezos [104]
fall under this category. For instance, Solana applies Proof of history with
parallelization to scale the throughput. In contrast, these approaches may
bring the risk of less decentralization.

Layer-2 solutions are the most popular scalable solutions at present.
However, these scalable solutions do not provide privacy of the off-chain data,
which is crucial concerning the privacy of the user’s balance and transaction
amount. Therefore, there is a need for a scalable solution with the privacy of
off-chain data, which is addressed in the present thesis.

21

2. Background and Related Works

2.6 Cryptographic Primitives Used in the Thesis

This section demonstrates a few important cryptographic concepts used in the
thesis. The section covers only those cryptographic primitives which have been
used in novel constructions presented in the contributed works in the thesis.
Following, we present a brief overview of these primitives; however, detailed
information about these primitives can be found in the papers attached to the
thesis.

2.6.1 Multi-Signature
A multi-signature scheme allows a group of n signers to jointly produce a single
short signature σ on a message m. This short signature σ convinces a verifier
that all n signers signed the message m. Given the message m and the set of
public keys of all the n signers, the verification of σ can be publicly performed.
For practical purposes, the size of the produced signature in a multi-signature
scheme should be close to the regular signature size and independent of the
number of signers in the scheme. While dealing with multi-signature, the rogue-
key attack must be taken into account. In a rogue-key attack, an adversary
first crafts public keys correlated with the public keys of honest signing parties.
Using these crafted public keys, the adversary forges a multi-signature on
a message of his choice. Security against a rogue-key attack is achieved by
requiring proof of possession (knowledge) of the corresponding secret key from
each signer of the scheme.

Multi-signatures are helpful in reducing the size of the blockchain. Maxwell
et al. constructed a Schnorr-based multi-signature scheme [105] called MuSig,
which was built on the work of Bellare and Neven [106], and provably secure in
the plain public-key model (where users do not need to prove the knowledge of
their secret key). Boneh et al. constructed a new multi-signature scheme [107]
which is useful not only for reducing Bitcoin blockchain size but also for use
in other settings where multi-signatures are needed. Their scheme is pairing-
based and derived from BLS signature scheme [108]. It supports public key
aggregation and security in a plain public-key model. BLS multi-signature
scheme requires bilinear map e : G1 ×G2 → Gt along with a full-domain hash
function for signing process H : {0, 1}∗ → G1. BLS multi-signature scheme
works as follows:

• KeyGen(1λ): For a user, given a security parameter λ, choose random
sk

$←− Zq, compute pk ← gsk
2 ∈ G2, the user’s keypair is (pk, sk).

• Sign(sk, M): For a user, given the secret key sk and a message M ∈
{0, 1}∗, signature on M is σ ← H(M)sk ∈ G1.

• Verify(pk, M, σ): Given a user’s public key pk, a message M , accept the
signature σ, if e(σ, g2) = e(H(M), pk).

22

Cryptographic Primitives Used in the Thesis

• SigAgg(σ1, σ1, . . . , σn, M): Given n signatures σ1, σ1, . . . , σn on message
M by n users, the procedure for signature aggregation of n signatures
works as: σagg ←

∏n
i=1 σi. The aggregate signature is σagg ∈ G1.

• AggVerify(σagg, M, (pk1, pk2, . . . , pkn)): To verify the aggregate signature
σagg, given the original message M and the n public keys pk1, pk2, . . . , pkn

for all n users, the verifier checks if:

e(σagg, g2) ?= e(H(M), pk1)e(H(M), pk2) . . . e(H(M), pkn)

?= e(H(M),
n∏

i=1
pki)

?= e(H(M), apk)

If the equation holds, the verifier “Accept” the signature, else “Reject”.
In the above equation, apk ∈ G2 and stands for aggregate public key.

2.6.2 Zero-Knowledge Proofs
Zero-knowledge proofs are a growing research area in cryptography. The
use of zero-knowledge proof has been found in many areas of cryptography,
including blockchain. In zero-knowledge proofs [109], two parties, a prover and
a verifier, participate. First, the prover asserts some statement and proves its
validity to the verifier without revealing any other (secret/witness) information
except the statement. Thus, a zero-knowledge proof proves the statement
as ‘transfer of an asset is valid’ without revealing anything about the asset.
Zero-knowledge protocols (protocols employing zero-knowledge proofs) are
valuable cryptographic protocols for achieving secrecy in applications. Many
variants of zero-knowledge proofs have been introduced with differences in
interactive, non-interactive proofs, size of the proof, transparent and trusted
setup, Common Reference String (CRS) model, etc.

A Non-Interactive Zero-Knowledge (NIZK) argument for a NP relation
R includes three polynomial time algorithms (Setup, Prove, Verify) defined as
follows:

• Setup(1λ): takes as input the security parameter λ, outputs the the
common reference σ.

• Prove(σ, x, w): takes as input the common reference σ, a statement x, a
witness w for the statement, and outputs an argument π.

• Verify(σ, π, x): takes as input the common reference σ, a statement x
and an argument π for the statement, outputs 1 if verifier accepts the
argument, otherwise outputs 0 rejecting the argument.

One of the variants, Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge (zk-SNARK), reduces the complexity and the proof size, which is
an intriguing topic to explore. Many blockchains, including Zerocash [47] and
Quorum [110], apply the zk-SNARK concept for transaction privacy, anonymity,
and unlinkability. Adequate theoretical background on zk-SNARK is presented
in [8, 9], and a practical point of view is explored here [111].

23

2. Background and Related Works

2.6.3 Verifiable Random Function
A Verifiable Random Function (VRF) is a pseudorandom function that produces
output along with proof of correctness of the output. The output of VRF
cannot be generated by two different inputs that ensure the collision resistance
property of VRF. A VRF has three algorithms as follows:

• KeyGen(r): On input value r, the key generation algorithm generates a
secret key sk and a verification key vk.

• Eval(sk, M): The evaluation algorithm produces pseudorandom output
O and the corresponding proof π on input sk and a message M .

• Verify(vk, M, O, π): The verification algorithm outputs 1 if and only if
the output produced by the evaluation algorithm is O and it is verified
by the proof π given the verification key vk and the message M .

VRFs became quite popular due to their properties (Uniqueness, Collision
resistance, Pseudorandomness, and Unpredictability) and their usefulness in
blockchains. VRF has many use cases, e.g., blind auctions, DNS denial of
existence, and cryptographic sortition [68]. Many blockchain platforms, such
as Algorand [68], Ouroboros [112], and Coda [113], started using cryptographic
sortition in their consensus mechanism, which brought VRF to the limelight.
VRF has also been written in Solidity to be used in the Ethereum blockchain.
VRF is used in leader election and consensus algorithms of the blockchain.

2.6.4 Verifiable Delay Function
A Verifiable Delay Function (VDF) is a recent cryptographic primitive, and the
research on this particular topic is getting intense interest from academia and
industry. Many collaborative efforts have been made to design and implement
production-grade VDFs in software and hardware. A VDF is a paramount tool
to add a delay in decentralized applications. It is a function f : X → Y defined
formally by Boneh et al. [11] that takes a prescribed minimum number of steps
to compute and is exponentially easy to verify. That means the VDF function
can not be parallelized. The output of the VDF function is unique and sound;
hence an adversary has a negligible chance of randomly guessing the correct
output. A VDF is defined as a tuple of the following algorithms:

• Setup(1λ, T): It is a randomized algorithm that takes security parameter
λ, time parameter T and outputs public parameter pp.

• Eval(pp, x, T): The evaluation algorithm takes public parameter pp, input
value x ∈ X and time parameter T , returns an output value y ∈ Y
together with a proof π. The algorithm may use random coins to generate
the proof π but not for the computation of output y.

• Verify(pp, x, y, π, T): The verification algorithm outputs a bit ∈ {0, 1},
given the input as public parameter pp, input value x, output value y,
proof π, and time parameter T .

24

Cryptographic Primitives Used in the Thesis

After the introduction of VDF by Boneh et al., two efficient constructions
were presented; Wesolowski [13] and Pietrzak [12] schemes that use a group
of unknown order to construct their VDF. Both schemes differ in verification
time and proof size. Henceforth, based on the desired property, these VDF
schemes can be applied in promising applications such as random beacon, proof
of replication, resource-efficient blockchains, and computational time-stamping
in proof of stake consensus systems. A client puzzle scheme can also utilize
VDF to mitigate the Denial of Service attacks.

2.6.5 Commitment Scheme
A commitment scheme provides an excellent way to hide a value while
maintaining its proof of commitment. It can be defined as a digital analog of
a sealed envelope. The commitment scheme was introduced in 1988 by Gilles
Brassard, David Chaum, and Claude Crepeau [114]. A commitment scheme is
a two-phase process between two parties, sender S and receiver R. The two
phases are called Commit and Reveal.

• Commit: In the commit phase, the sender S commits to a value x by
creating a commitment Com(x, r) for a uniformly random value r, and
sends it to the receiver R.

• Reveal: In the reveal phase, the sender S opens the committed value
Com(x, r) by sharing r and x with the receiver R, who checks that the
sender did not cheat.

A commitment scheme is an important building block for other cryptographic
primitives such as zero-knowledge proofs and verifiable secret sharing. It is also
used as a building block in different blockchain applications. The commonly
used commitment scheme in the blockchain is Pedersen commitment [115].
Pedersen commitment provides computational binding and unconditional hiding
properties based on the discrete logarithm problem. Pedersen commitment
is used in different contexts of blockchains, e.g., Zerocoin [116] to bind a
serial number s to a Zerocoin z and to construct RingCT 2.0 [117]. Recent
findings depict an enormous interest in the field of another kind of commitment
scheme, which is subvector commitments. Moreover, Aggregatable Subvector
Commitment (aSVC) are gaining much attention for more exploration, especially
in blockchain use cases [118, 119].

25

Chapter 3

Contributions

3.1 Research Contributions

Paper Title. Author List. Conference/Journal

A
SoK of Used Cryptography in Blockchain [39]
M. Raikwar, D. Gligoroski, and K. Kralevska
IEEE Access, vol. 7, pp. 148550-148575, 2019

B

Meshwork Ledger, its Consensus and Reward Mechanisms [120]
M. Raikwar, D. Gligoroski
13th International Conference on COMmunication Systems and
NETworkS (COMSNETS), IEEE, 2021, pp. 290-298

C

R3V: Robust Round Robin VDF-based Consensus [121]
M. Raikwar, D. Gligoroski
3rd Conference on Blockchain Research & Applications for Innovative
Networks and Services (BRAINS), IEEE, 2021, pp. 81-88

D

Non-Interactive VDF Client Puzzle for DoS Mitigation [122]
M. Raikwar, D. Gligoroski
European Interdisciplinary Cybersecurity Conference (EICC),
ACM, 2021, pp. 32-38

E

DoS Attacks on Blockchain Ecosystem [123]
M. Raikwar, D. Gligoroski
FPDAPP@Euro-Par, 4th International Workshop on Future Perspective
of Decentralized Applications, LNCS, 2021

F

PriBank: Confidential Blockchain Scaling Using Short
Commit-and-Proof NIZK Argument [124]
K. Gjøsteen, M. Raikwar, S. Wu
In Cryptographers’ Track at the RSA Conference (CT-RSA),
Springer, Cham, 2022, pp. 589-619

G

Security Model for Privacy-preserving Blockchain-based
Cryptocurrency Systems [125]
K. Gjøsteen, M. Raikwar, S. Wu
Submitted to 13th Conference on Security and Cryptography
for Networks (SCN), 2022

H

SoK: Decentralized Randomness Beacon Protocols [126]
M. Raikwar, D. Gligoroski
Accepted in 27th Australasian Conference on Information
Security and Privacy (ACISP), LNCS, 2022

I

Competitive Decentralized Randomness Beacon Protocols [127]
M. Raikwar
BSCI@ASIACCS, 4th ACM International Symposium on
Blockchain and Secure Critical Infrastructure, ACM, 2022, pp. 83-94

Table 3.1: List of publications included in the thesis.

27

3. Contributions

The author of the presented thesis contributed to 14 scientific publications.
Table 3.1 outlines the list of 9 publications (Papers A-I) as the primary
contributions to the thesis. Table 3.2 presents a list of 5 publications (Papers
J-M) as secondary contributions which are not included in the thesis. The order
in which the publications appear in the Table 3.1 is not necessarily chronological
but rather in relation to the research questions described in Section 1.2. The
presented order provides a natural flow in the exposition of the thesis.

Note: Paper F and G follow the cryptography convention of authors’
ordering, where the authors’ names appear in alphabetical order of their last
name. Besides, Paper I receives the Best Student Paper Award (Runner-up).

Paper Title. Author List. Conference/Journal

J

Trends in Development of Databases and Blockchain [128]
M. Raikwar, D. Gligoroski, and G. Velinov
Seventh International Conference on Software
Defined Systems (SDS), IEEE, 2020, pp. 177-182

K

Aggregation in Blockchain Ecosystem [129]
M. Raikwar, D. Gligoroski
Eighth International Conference on Software
Defined Systems (SDS), IEEE, 2021, pp. 1-6

L

Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand [130]
K. Stevenson, O. Skoglund, M. Raikwar, and D. Gligoroski
3rd Blockchain and Internet of Things Conference
(BIOTC 2021), ACM, 2021, pp. 44-52

M

Databases fit for blockchain technology: A complete overview
J. Kalajdjieski, M. Raikwar, N. Arsov, G. Velinov, D. Gligoroski
Submitted to Elsevier Journal on Blockchain:
Research and Applications, 2022 (in Journal Revision)

N

Cryptographic Primitives in Blockchain
M. Raikwar, S. Wu
Book chapter In : S. Kanhere, M. Conti, and S. Ruj, (eds)
“Blockchains - A Handbook on Fundamentals, Platforms, and
Applications”, Springer, 2022 (to appear)

Table 3.2: List of publications not included in the thesis.

3.2 Summary of Results Contributing to the Thesis

This section presents a summary of the papers included in the thesis. Contri-
butions of each paper are discussed with respective state-of-the-art results and
presented in accordance to the research questions.

Paper A: SoK of Used Cryptography in Blockchain
M. Raikwar, D. Gligoroski, and K. Kralevska
IEEE Access, vol. 7, pp. 148550-148575, 2019

28

Summary of Results Contributing to the Thesis

This paper is the first step for Systematization of Knowledge (SoK) that
gives a complete picture of the existing cryptographic concepts that have been
deployed or have the potential to be deployed in the blockchain. In this paper,
we thoroughly review and systematize all the cryptographic concepts used in
blockchain. As the underlying fundaments of blockchain are cryptographic
concepts, it opens a broad spectrum to explore their applicability in the
blockchain. To strategically review and investigate the cryptographic concepts,
we designed inclusion and exclusion criteria. Keeping that in mind, we reviewed
more than 25 cryptographic concepts, some of these concepts have already
been used in blockchain, and some of these can be employed in blockchain to
provide reliable and secure decentralized solutions. We also include possible
instantiations of these cryptographic concepts in the blockchain domain. Last
but not least, we explicitly postulate 21 challenging research problems that
cryptographers interested in blockchain can work on.

The research problems proposed in the paper got attention from the
cryptographers and some of the research problems have been taken into account
and further being solved. An example of such an incident is related to the
research problem about Private Information Retrieval (PIR) of transaction
information without revealing the transaction itself which is proposed in our SoK
paper. The research problem have been approached and solved by Sasidharan
and Viterbo [131] by employing coded sharding with Reed-Solomon codes [132].

This SoK paper also discusses the main challenges in the blockchain. From
these challenges, we chose a few main challenges such as security, privacy,
and scalability to work on. Apart from the challenges, we also selected and
studied a few cryptographic primitives such as Verifiable Delay Function (VDF),
Zero-knowledge Proof, and Aggregate Signature. These primitives are further
employed to address some of the challenges in blockchain and presented results
are published and included in the thesis.

Paper B: Meshwork Ledger, its Consensus and Reward Mecha-
nisms
M. Raikwar, D. Gligoroski
13th International Conference on COMmunication Systems and NETworkS
(COMSNETS), IEEE, 2021, pp. 290-298

This paper proposes a new permissioned public blockchain ledger concept called
“Meshwork Ledger” with its consensus and reward mechanisms. Meshwork has
two primary entities validator and client nodes. Validator nodes are the major
players for reaching the consensus in the ledger. Meshwork is a network of
coequal client nodes that contribute to the endorsement of the transactions
by providing digital signatures to a validator node that collects them in an
aggregate signature scheme. Therefore, the main component of the consensus
algorithm is an aggregate multi-signature scheme.

The core idea of the consensus is to race for the maximum number of
signatures (approvals) on a block from the mesh clients, in order to append the
block to the blockchain. The essential sustainability component of the ledger

29

3. Contributions

is the reward mechanism for the Meshwork client nodes. The prime design
objective is the coequality of all client nodes, meaning there is no advantage
for getting rewards if the client is an early adopter, if the client has collected a
significant stake of rewards or if the client just joined the Meshwork. We adapt
the commit-chain [26] as a suitable off-chain payment solution for rewarding
the Meshwork client nodes in a cost-efficient manner.

We provide the security analysis of the Meshwork ledger and also present
the feasibility of the signature scheme by implementing it. We also discuss
the consensus properties of the Meshwork ledger which are essential parts
of consensus to be explored and analyzed. Compared with other blockchain
consensus algorithms, the Meshwork consensus algorithm is faster, significantly
more energy-efficient and scalable. The scalability is achieved with the off-chain
reward mechanism and the grouping of client nodes with the validator nodes.
Nevertheless, a detailed analysis is needed for the scalability. In conclusion,
Meshwork ledger presents a simple and scalable approach to achieve faster
agreement while providing fairness to the participating nodes.

Paper C: R3V: Robust Round Robin VDF-based Consensus
M. Raikwar, D. Gligoroski
3rd Conference on Blockchain Research & Applications for Innovative Networks
and Services (BRAINS), IEEE, 2021, pp. 81-88

This paper proposes a novel consensus protocol “R3V”. The proposed consensus
also focuses on fairness, similar to Paper B. However, the idea of the protocol
is quite different but relatively simple. Each round of consensus consists of two
steps: In the first step, a set of eligible candidates are chosen based on a robust
round-robin method according to their age; in the second step, these eligible
candidates compete with each other by solving a VDF-based puzzle. The one
who solves the puzzle first becomes the leader and proposes a new block. We
offer different methods to generate verifiable identities for the stakeholders.
The identities are enrolled in the blockchain, which provides the age norm
needed for the consensus. Compared with the other PoS protocols, our protocol
shows better resilience against the most common attacks on PoS protocols.

Although Proof of Stake (PoS)-based consensus provides a better mechanism
than Proof of Work (PoW) consensus for extending the blockchain without
significant energy waste, most PoS protocols do not offer better fairness for the
stakeholders participating in the consensus. Due to the use of randomness to
elect a leader candidate in PoS consensus, the consensus becomes weaker and
suffers from attacks, e.g., long-range attacks and block withholding attacks.
Moreover, these protocols suffer from high communication complexity for
selecting a leader candidate in each consensus round. Our R3V consensus
solves all these mentioned problems in PoS consensus to some extent and
provides low energy consumption, less communication complexity, and better
fairness. Nevertheless, due to the round-robin selection of candidates, the
consensus lacks adequate resistance against DoS attack.

30

Summary of Results Contributing to the Thesis

Paper D: Non-Interactive VDF Client Puzzle for DoS Mitigation
M. Raikwar, D. Gligoroski
European Interdisciplinary Cybersecurity Conference (EICC), ACM, 2021, pp.
32-38

The motivation for this paper originates from Paper B and C. Although
Paper B and C propose efficient and fair consensus mechanisms, the concern
of the DoS attack on the participating nodes still hinders the availability
and efficiency of the consensus. Such instances are the DoS attack on the
Meshwork validator node of the Meshwork consensus or the DoS attack on
eligible candidates in the R3V consensus. Henceforward, to solve the issue
of DoS attack in a general context, we explore DoS mitigation methods and
propose a novel approach for it in Paper D.

This paper proposes a non-interactive VDF client puzzle scheme. Client
puzzles [4] are proposed to mitigate DoS attacks by requiring clients to
prove legitimate intentions. Since its introduction, there have been several
constructions of client puzzles. Nevertheless, most of the existing client puzzles
are interactive, where a server constructs a puzzle for a client request and asks
the client to solve it before giving access to a resource.

Additionally, most existing client puzzles do not provide desirable properties
such as fairness, non-parallelizability, or non-interactivity. In this work, our
proposed non-interactive client puzzle achieves all these desired properties
through VDF. In a non-interactive puzzle, the client generates a puzzle and
sends its solution along with the puzzle to access a server resource. We
present different methods to generate verifiable client puzzles to prevent puzzle
forgery and attacks from the client-side. Further, we exhibit a transformation
of the client puzzle into a DoS-resistant protocol. We also demonstrate the
applicability of the DoS-resistant protocol in different contexts of the blockchain
ecosystem.

Paper E: DoS Attacks on Blockchain Ecosystem
M. Raikwar, D. Gligoroski
FPDAPP@Euro-Par, 4th International Workshop on Future Perspective of
Decentralized Applications, LNCS, 2021

DoS attack is not only a severe concern in participating nodes in consen-
sus, such as in Paper B and C, but it can also be mounted in other entities
in the blockchain ecosystem. The financial potential of the cryptocurrency
market attracts more adversarial issues and makes itself a prevalent target of
DoS attack. Due to the immense growth of the cryptocurrency market, the
frequency and intensity of DoS attacks have been rapidly increasing. Therefore,
this paper offers the first thorough systematic investigation of DoS attacks in
the blockchain ecosystem.

This paper identifies ten entities in the blockchain ecosystem where DoS
attack happens or can happen. We present DoS mitigation approaches where
some of the approaches have already been employed. We also devise a new

31

3. Contributions

DoS mitigation scheme based on VDF, which we call a VDF client puzzle. The
presented VDF client puzzle scheme is interactive and feasible to be applied
for DoS mitigation based on the experimental results. Additionally, we suggest
the appropriate DoS mitigate scheme for each of the ten identified entities. In
addition to the interactive scheme, the paper mentions the client puzzle scheme
constructed in Paper D for the DoS mitigation in the blockchain ecosystem.

Paper F: PriBank: Confidential Blockchain Scaling Using Short
Commit-and-Proof NIZK Argument
K. Gjøsteen, M. Raikwar, S. Wu
In Cryptographers’ Track at the RSA Conference (CT-RSA), Springer, Cham,
2022, pp. 589-619

This paper offers PriBank, a novel construction of a privacy-preserving
cryptocurrency system that implements privacy on top of Layer-2 scaling solu-
tions. A privacy-preserving cryptocurrency system facilitates privacy for the
users of the system, which involves the privacy of user balances and transaction
values. Layer-2 scaling solutions provide scalability to cryptocurrency systems.
These Layer-2 solutions move the expensive computations off-chain and later
commit the abbreviated transaction data on-chain. However, these scalable
solutions do not have the privacy of the off-chain data, which involves users’
balances and transaction data. Our PriBank achieves privacy of the off-chain
data on top of scaling solutions. To construct PriBank, we propose an efficient
Commit-and-Prove short NIZK argument for quadratic arithmetic programs.

The Commit-and-Prove short NIZK argument is built on top of the existing
zero-knowledge proof scheme: Bulletproofs [133]. It allows a prover to commit
to an arbitrary set of witnesses by Pedersen commitments [115] before proving,
which may be of independent interest. We also compare PriBank with the exist-
ing privacy and scalability solutions. We define transaction indistinguishability
and overdraft-safety properties to assess the security of the PriBank. Further,
we present a detailed security analysis for PriBank preserving these prop-
erties. We also conducted experiments to check the performance of the PriBank.

Paper G: Security Model for Privacy-preserving Blockchain-based
Cryptocurrency Systems
K. Gjøsteen, M. Raikwar, S. Wu
Submitted to 13th Conference on Security and Cryptography for Networks
(SCN 2022)

This paper employs the PriBank model of Paper F to construct a gen-
eral model for assessing the security of privacy-preserving cryptocurrency
systems. Privacy-preserving blockchain-based cryptocurrency systems such
as Zcash [47] and Monero [46] have become quite popular for confidential
payments. The confidential payment differs in providing confidentiality to
users, transactions, or both. These payment systems also differ in their designs
and constituent cryptography. Since the introduction of the most notable

32

Summary of Results Contributing to the Thesis

privacy-preserving cryptocurrencies, Zcash and Monero, there has been a
thriving interest in constructing different privacy-preserving cryptocurrency
systems with improved security and additional features. Although there are
many new constructions of these systems, many of these systems lack their
security models, which makes it hard to prove the security properties of these
systems.

In this paper, we present a general model to assess the security of privacy-
preserving cryptocurrency systems. We propose a framework for a privacy-
preserving blockchain-based bank PBB. We illustrate the security properties of
the framework and present the security experiments for each of the properties.
Further, using the security properties of the PBB framework, we analyse the
security of Zcash and Monero. Our analysis confirms that the PBB framework
can be employed to formalize the security of other privacy-preserving cryp-
tocurrency systems.

Paper H: SoK: Decentralized Randomness Beacon Protocols
M. Raikwar, D. Gligoroski
27th Australasian Conference on Information Security and Privacy (ACISP),
2022

The motivation for this paper originates from all the papers described above, as
verifiable randomness is needed in most of the cryptographic protocols defined
in the above papers. For instance, verifiable trusted randomness is an essential
element in client puzzle construction in Paper D and E; it is also needed in
the construction of the Commit-and-Prove short NIZK argument in PriBank
in Paper F. Therefore, this paper presents a Systematization of Knowledge
(SoK) of Decentralized Randomness Beacon (DRB) protocols that intend to
structure the multi-faced body of research on DRB protocols. DRB protocols
provide a continuous and reliable source of randomness. Due to its need in
modern cryptography, such as blockchain and cryptocurrency, there has been a
thriving interest in constructing DRB protocols. DRB protocols have many
applications, including byzantine fault-tolerant (BFT) protocols, anonymous
messaging services, blockchain, and smart contracts. Although there have been
several constructions of DRB protocols, there is no systematization of these
protocols. Therefore, in this paper, we systematize and scrutinize the existing
DRB protocols.

In this SoK, we give a standard definition and requirements for DRB
protocols such as Unpredictability, Bias-resistance, Availability (or Liveness),
and Public Verifiability. We categorize the DRB protocols into interactive and
non-interactive DRB protocols according to the nature of interactivity among
DRB participants. In this paper, we examine the current challenges of DRB
protocols, including complexity, scalability, and performance. We highlight
these challenges and provide a few possible solutions along with intriguing
research problems. These research problems can be taken into account and
can push the cryptographers to unravel them and enrich the domain of DRB
protocols.

33

3. Contributions

Paper I: Competitive Decentralized Randomness Beacon Proto-
cols
M. Raikwar
BSCI@ASIACCS, The Fourth ACM International Symposium on Blockchain
and Secure Critical Infrastructure, ACM, 2022

This paper offers the general construction of competitive DRB protocols.
Pertaining the knowledge from paper H, this paper highlights a new classifica-
tion of DRB protocols as collaborative and competitive. This classification was
first introduced in RANDCHAIN [38]; however, to the best of our knowledge,
there is no other existing work that constructs competitive DRB except RAND-
CHAIN. In a collaborative DRB protocol, participants of the DRB collaborate
on their local entropy to compute global randomness (beacon output). On the
contrary, in a competitive DRB protocol, participants compete to generate
global randomness. The global randomness is posted on a blockchain in
a competitive DRB (e.g., RANDCHAIN). The idea behind constructing a
competitive DRB protocol follows from the R3V consensus in Paper C.

Although RANDCHAIN is the first competitive DRB, a few challenges still
exist related to fairness and blockchain-oriented attacks. We propose a general
construction of competitive DRB protocols to overcome these problems. The
basic idea of our competitive DRB protocol is a committee selection strategy
followed by a puzzle-based competition among committee members. We define
a few committee selection strategies, and each strategy provides a different
level of fairness to the DRB participants. As a result, our competitive DRB
protocol has linear communication complexity, improved fairness, and better
scalability compared to state-of-the-art DRB protocols.

This paper receives the Best Student Paper Award (Runner-up) at the
Fourth ACM International Symposium on Blockchain and Secure Critical
Infrastructure, as part of ACM AsiaCCS 2022.

3.3 Contributions toward Research Questions

Following, we present the contributions toward the research questions RQ
defined in Section 1.2. We represent a contribution as an answer ANS to a
research question RQ.

• ANS1 Paper B, Paper C, and Paper I answer RQ1.
Paper B and Paper C construct new consensus protocols involving a
fair selection of consensus participants in each consensus round. Paper I
presents novel competitive decentralized randomness beacon protocols
involving a fair committee selection mechanism for the randomness
generation process.

34

Contributions toward Research Questions

Privacy

Scalability

Fairness

Security A

B

C

E

D

FG

H
I

RQ1

RQ2

RQ3

RQ4

Figure 3.1: Overview of the papers included in the thesis.

• ANS2 Paper D and Paper E answer RQ2.
Paper D designs a DoS-resistant protocol and showcases its applicability
in different contexts. Paper E presents a few techniques to mitigate DoS
attacks in possible avenues of the blockchain ecosystem.

• ANS3 Paper F and Paper G answer RQ3.
Paper F proposes a privacy-preserving cryptocurrency system on top
of scalable solutions. Moreover, Paper F also constructs a security
model for the system and analyzes the security of the system. Paper G
presents a general framework to assess the security of privacy-preserving
cryptocurrencies.

• ANS4 Paper F, Paper H, and Paper I address RQ4.
Paper F considers an underlying scalable method to build a private
bank on top of it. Paper H briefly introduces the solutions to improve
scalability in randomness beacon protocols. Paper I defines a puzzle-
based competition among participants without any setup assumption to
generate randomness, and that makes the protocol scalable.

In addition, Paper A gives a brief overview of underlying cryptographic
primitives in the blockchain. Paper A also addresses some research questions,
especially RQ2, RQ3, and RQ4. Although Paper A does not provide direct
answers to the questions, it provides a brief description of security, privacy, and
scalability in the blockchain. Furthermore, Paper A presents several interesting

35

3. Contributions

research problems, and some of these research problems have been taken into
consideration and solved by researchers and practitioners. Figure 3.1 depicts
an overview of the papers included in the thesis. The papers are presented in
yellow boxes, and the research questions are represented in green boxes.

The figure presents the relation between the papers and also shows which
papers address which research question. Furthermore, it also illustrates which
topic each paper covers, along with answering the research question. For
instance, Paper F answers research question RQ3, but it also emphasizes
scalability property in the blockchain. Another instance is Paper I, which
answers RQ3 but it also provides scalability in terms of the number of
participants in a DRB protocol.

36

Chapter 4

Conclusion
This chapter presents a perspective of the research contributions of the thesis.
The chapter explains the findings of the research during the PhD and further
examines the limitations and possibilities for future research.

4.1 Concluding Remarks

The thesis has presented a viewpoint on the challenges and development of the
blockchain ecosystem. Blockchain research has been relatively advanced due
to the effort put in by researchers in academia or industry. Advancements in
blockchain research have been carried out in different communities, such as
networking, cryptography, and business. The thesis has sought to present novel
constructions from cryptography to solve existing challenges or improve upon
existing schemes.

The thesis also furnishes several research problems presented in the two
SoK papers and other auxiliary papers. These research problems can be of
independent interest. Additionally, researchers have evaluated and solved some
of these research problems, e.g., [131].

Altogether, the thesis does not only solve some of the existing problems in
the blockchain ecosystem but also delivers several exciting research problems
to investigate further and solve.

The thesis as a whole shows the following key findings KF in cryptography
and blockchain research presented in the contributed papers.

• KF1 Fairness has different meanings in blockchain protocols and can be
instantiated differently.

• KF2 Denial of Service attack is a serious concern on the internet, including
in the blockchain ecosystem, and can be mitigated using client puzzles.

• KF3 It is possible to achieve privacy together with scalability in
cryptocurrency systems. Additionally, a general model can be constructed
to assess the security of privacy-preserving cryptocurrency systems.

• KF4 Randomness can be generated using different cryptographic
primitives among a collaborative set of participants. Consequently, it can
also be constructed by a competitive set of participants.

37

4. Conclusion

4.2 Future Research Directions

The thesis has contributed to solving some of the existing challenges in the
blockchain. The works presented in the thesis suggest various research directions.
Some of the vital research proposals can be described as follows:

• The consensus protocols presented in Paper B and C are well-suited for
permissioned public blockchains. However, for a permissionless public
blockchain, further research is required in order to maintain similar
efficiency with better scalability. Although Paper B and C present a
security analysis of the consensus, it would be interesting to perform a
formal verification to check the correctness of the protocols.

• The client puzzle scheme designed in Paper D exhibits better properties
compared to state-of-the-art client puzzle schemes except for costly
verification time. An effort can be made to improve the verification
complexity of the client puzzle. Another compelling area can be
implementing the designed client puzzle in one of the possible avenues of
DoS attack in the blockchain ecosystem.

• Paper F implements privacy on the top of a scalable cryptocurrency
system. Regardless, each update from off-chain to on-chain incurs a high
cost and a high on-chain verification cost. Therefore, a future research
focus can be to reduce these associated costs and improve the overall
performance of the system.

• Paper H systematizes the knowledge of decentralized randomness beacon
protocols. It also lists a few interesting research problems. These research
problems can be intriguing to look into and construct efficient solutions.
Paper I presents a theoretical layout of constructing competitive DRB
protocols. Implementing a competitive DRB protocol and conducting
thorough experimentation to check the protocol’s robustness would be
fulfilling.

38

References
[1] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system,”

http://bitcoin.org/bitcoin.pdf. 2009.
[2] CoinMarketCap. Total Market Capitalization. https://coinmarketcap.

com. [Online; accessed 13-May-2022].
[3] Chaum, D. “Blind Signatures for Untraceable Payments”. In: Advances

in Cryptology. Ed. by Chaum, D., Rivest, R. L., and Sherman, A. T.
Boston, MA, 1983, pp. 199–203.

[4] Dwork, C. and Naor, M. “Pricing via processing or combatting junk
mail”. In: CRYPTO 92, Annual International Cryptology Conference.
Springer. 1992, pp. 139–147.

[5] Rivest, R. L., Shamir, A., and Wagner, D. A. Time-lock Puzzles and
Timed-release Crypto. Tech. rep. Cambridge, MA, USA, 1996.

[6] Back, A. “The Hashcash Proof-of-Work Function”. In: Draft-Hashcash-
back-00, Internet-Draft Created,(Jun. 2003) (2003).

[7] Bitcoin. Bitcoin Core integration/staging tree. https://github.com/bitcoin/
bitcoin.

[8] Groth, J. “Short non-interactive zero-knowledge proofs”. In: Interna-
tional Conference on the Theory and Application of Cryptology and
Information Security. Springer. 2010, pp. 341–358.

[9] Groth, J. “On the size of pairing-based non-interactive arguments”.
In: Annual international conference on the theory and applications of
cryptographic techniques. Springer. 2016, pp. 305–326.

[10] Bootle, J., Cerulli, A., Chaidos, P., and Groth, J. “Efficient zero-
knowledge proof systems”. In: Foundations of security analysis and
design VIII. 2016, pp. 1–31.

[11] Boneh, D., Bonneau, J., Bünz, B., and Fisch, B. “Verifiable Delay
Functions”. In: Advances in Cryptology – CRYPTO 2018. Ed. by
Shacham, H. and Boldyreva, A. Cham, 2018, pp. 757–788.

[12] Pietrzak, K. “Simple Verifiable Delay Functions”. In: 10th Innovations
in Theoretical Computer Science Conference (ITCS 2019). Ed. by Blum,
A. Vol. 124. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany, 2018, 60:1–60:15.

[13] Wesolowski, B. “Efficient Verifiable Delay Functions”. In: Advances in
Cryptology – EUROCRYPT 2019. Ed. by Ishai, Y. and Rijmen, V. Cham,
2019, pp. 379–407.

39

https://coinmarketcap.com
https://coinmarketcap.com
https://github.com/bitcoin/bitcoin
https://github.com/bitcoin/bitcoin

References

[14] Novo, O. “Blockchain meets IoT: An architecture for scalable access
management in IoT”. In: IEEE internet of things journal vol. 5, no. 2
(2018), pp. 1184–1195.

[15] Azzi, R., Chamoun, R. K., and Sokhn, M. “The power of a blockchain-
based supply chain”. In: Computers & industrial engineering vol. 135
(2019), pp. 582–592.

[16] Raikwar, M., Mazumdar, S., Ruj, S., Gupta, S. S., Chattopadhyay, A.,
and Lam, K.-Y. “A blockchain framework for insurance processes”. In:
2018 9th IFIP International Conference on New Technologies, Mobility
and Security (NTMS). IEEE. 2018, pp. 1–4.

[17] Hasselgren, A., Kralevska, K., Gligoroski, D., Pedersen, S. A., and
Faxvaag, A. “Blockchain in healthcare and health sciences—A scoping
review”. In: International Journal of Medical Informatics vol. 134 (2020),
p. 104040.

[18] Ganesh, C., Orlandi, C., and Tschudi, D. “Proof-of-stake protocols for
privacy-aware blockchains”. In: Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer. 2019,
pp. 690–719.

[19] Kerber, T., Kiayias, A., Kohlweiss, M., and Zikas, V. “Ouroboros crypsi-
nous: Privacy-preserving proof-of-stake”. In: 2019 IEEE Symposium on
Security and Privacy (SP). IEEE. 2019, pp. 157–174.

[20] Bünz, B., Agrawal, S., Zamani, M., and Boneh, D. “Zether: Towards
privacy in a smart contract world”. In: International Conference on
Financial Cryptography and Data Security. Springer. 2020, pp. 423–443.

[21] Huang, Y., Tang, J., Cong, Q., Lim, A., and Xu, J. “Do the rich get
richer? Fairness analysis for blockchain incentives”. In: Proceedings of the
2021 International Conference on Management of Data. 2021, pp. 790–
803.

[22] King, S. and Nadal, S. “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake”. In: self-published paper, August vol. 19, no. 1 (2012).

[23] Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., and Gervais, A.
“Sok: Layer-two blockchain protocols”. In: International Conference on
Financial Cryptography and Data Security. Springer. 2020, pp. 201–226.

[24] Poon, J. and Dryja, T. The bitcoin lightning network: Scalable off-chain
instant payments. 2016.

[25] Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller,
A., Poelstra, A., Timón, J., and Wuille, P. “Enabling blockchain innova-
tions with pegged sidechains”. In: URL: http://www. opensciencereview.
com/papers/123/enablingblockchain-innovations-with-pegged-sidechains
vol. 72 (2014).

[26] Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., and Gervais, A.
“Commit-chains: Secure, scalable off-chain payments”. In: Cryptology
ePrint Archive (2018).

40

References

[27] Lenstra, A. K. and Wesolowski, B. “A random zoo: sloth, unicorn, and
trx.” In: IACR Cryptol. ePrint Arch. vol. 2015 (2015), p. 366.

[28] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. “Algorand:
Scaling byzantine agreements for cryptocurrencies”. In: Proceedings of
the 26th Symposium on Operating Systems Principles. 2017, pp. 51–68.

[29] Adida, B. “Helios: Web-based Open-Audit Voting.” In: USENIX security
symposium. Vol. 17. 2008, pp. 335–348.

[30] Goel, S., Robson, M., Polte, M., and Sirer, E. Herbivore: A scalable
and efficient protocol for anonymous communication. Tech. rep. Cornell
University, 2003.

[31] Bonneau, J., Clark, J., and Goldfeder, S. “On Bitcoin as a public
randomness source.” In: IACR Cryptol. ePrint Arch. vol. 2015 (2015),
p. 1015.

[32] Kosba, A., Miller, A., Shi, E., Wen, Z., and Papamanthou, C. “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts”. In: 2016 IEEE symposium on security and privacy (SP).
IEEE. 2016, pp. 839–858.

[33] Cascudo, I. and David, B. “Albatross: publicly attestable batched
randomness based on secret sharing”. In: International Conference on
the Theory and Application of Cryptology and Information Security.
Springer. 2020, pp. 311–341.

[34] Bhat, A., Shrestha, N., Kate, A., and Nayak, K. “RandPiper-
Reconfiguration-Friendly Random Beacons with Quadratic Commu-
nication.” In: IACR Cryptol. ePrint Arch. vol. 2020 (2020), p. 1590.

[35] Das, S., Krishnan, V., Isaac, I. M., and Ren, L. “SPURT: Scalable
Distributed Randomness Beacon with Transparent Setup.” In: IACR
Cryptol. ePrint Arch. vol. 2021 (2021), p. 100.

[36] Hanke, T., Movahedi, M., and Williams, D. “Dfinity technology overview
series, consensus system”. In: arXiv preprint arXiv:1805.04548 (2018).

[37] Schindler, P., Judmayer, A., Hittmeir, M., Stifter, N., and Weippl, E.
“Randrunner: Distributed randomness from trapdoor vdfs with strong
uniqueness”. In: IACR Cryptol. ePrint Arch. vol. 2020 (2020), p. 942.

[38] Han, R., Lin, H., and Yu, J. “RandChain: A Scalable and Fair
Decentralised Randomness Beacon”. In: Cryptology ePrint Archive
(2020).

[39] Raikwar, M., Gligoroski, D., and Kralevska, K. “SoK of used cryp-
tography in blockchain”. In: IEEE Access vol. 7 (2019), pp. 148550–
148575.

[40] Menezes, A. J., Van Oorschot, P. C., and Vanstone, S. A. Handbook of
applied cryptography. 2018.

[41] Gallagher, P. and Director, A. “Secure hash standard (SHS)”. In: FIPS
PUB vol. 180 (1995), p. 183.

41

References

[42] Johnson, D., Menezes, A., and Vanstone, S. “The Elliptic Curve
Digital Signature Algorithm (ECDSA)”. In: International Journal of
Information Security vol. 1, no. 1 (2001), pp. 36–63.

[43] Josefsson, S. and Liusvaara, I. “Edwards-curve digital signature
algorithm (EdDSA)”. In: Internet Research Task Force, Crypto Forum
Research Group, RFC. Vol. 8032. 2017.

[44] Wood, G. Ethereum: A Secure Decentralised Generalised Transaction
Ledger. Yellow Paper. 2014.

[45] Schnorr, C. P. “Efficient Identification and Signatures for Smart Cards”.
In: Advances in Cryptology — CRYPTO’ 89 Proceedings. Ed. by
Brassard, G. New York, NY, 1990, pp. 239–252.

[46] The Monero Project. Monero. 2014.
[47] Sasson, E. B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,

E., and Virza, M. “Zerocash: Decentralized anonymous payments from
bitcoin”. In: 2014 IEEE Symposium on Security and Privacy. IEEE.
2014, pp. 459–474.

[48] Arthur Britto David Schwartz, R. F. Ripple. 2012.
[49] IO, E. “EOS. IO technical white paper”. In: EOS. IO (accessed 18

December 2017) https://github.com/EOSIO/Documentation (2017).
[50] LTO Network. Blockchain for Decentralized Workflows. 2014.
[51] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K.,

De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y.,
Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith,
K., Sorniotti, A., Stathakopoulou, C., Vukolić, M., Cocco, S. W., and
Yellick, J. “Hyperledger Fabric: A Distributed Operating System for
Permissioned Blockchains”. In: Proceedings of the Thirteenth EuroSys
Conference. EuroSys ’18. New York, NY, USA, 2018, 30:1–30:15.

[52] Greenspan, G. MultiChain Private Blockchain. https://www.multichain.
com/download/MultiChain-White-Paper.pdf. 2015.

[53] Lamport, L. “The part-time parliament”. In: Concurrency: the Works
of Leslie Lamport. 2019, pp. 277–317.

[54] Garay, J. and Kiayias, A. “Sok: A consensus taxonomy in the blockchain
era”. In: Cryptographers’ track at the RSA conference. Springer. 2020,
pp. 284–318.

[55] Wang, W., Hoang, D. T., Hu, P., Xiong, Z., Niyato, D., Wang, P., Wen,
Y., and Kim, D. I. “A survey on consensus mechanisms and mining
strategy management in blockchain networks”. In: Ieee Access vol. 7
(2019), pp. 22328–22370.

[56] Liu, J., Li, W., Karame, G. O., and Asokan, N. “Toward fairness of
cryptocurrency payments”. In: IEEE Security & Privacy vol. 16, no. 3
(2018), pp. 81–89.

42

https://www.multichain.com/download/MultiChain-White-Paper.pdf
https://www.multichain.com/download/MultiChain-White-Paper.pdf

References

[57] Dwork, C. and Naor, M. “Pricing via processing or combatting junk
mail”. In: CRYPTO 92, Annual International Cryptology Conference.
Springer. 1992, pp. 139–147.

[58] O’Dwyer, K. J. and Malone, D. “Bitcoin mining and its energy footprint”.
In: (2014).

[59] Li, J., Li, N., Peng, J., Cui, H., and Wu, Z. “Energy consumption of
cryptocurrency mining: A study of electricity consumption in mining
cryptocurrencies”. In: Energy vol. 168 (2019), pp. 160–168.

[60] Gallersdörfer, U., Klaaßen, L., and Stoll, C. “Energy consumption of
cryptocurrencies beyond bitcoin”. In: Joule vol. 4, no. 9 (2020), pp. 1843–
1846.

[61] Huynh, A. N. Q., Duong, D., Burggraf, T., Luong, H. T. T., and
Bui, N. H. “Energy consumption and Bitcoin market”. In: Asia-Pacific
Financial Markets vol. 29, no. 1 (2022), pp. 79–93.

[62] Schletz, M. Blockchain energy consumption: Debunking the mispercep-
tions of Bitcoin’s and blockchain’s climate impact. https://datadrivenlab.
org. 2021.

[63] Lee, C. Litecoin. 2011.
[64] Percival, C. Stronger key derivation via sequential memory-hard

functions. 2009.
[65] Krawczyk, H., Bellare, M., and Canetti, R. HMAC: Keyed-hashing for

message authentication. Tech. rep. 1997.
[66] Buterin, V. “QuarkCoin: Noble Intentions, Wrong Approach”. In: Bitcoin

Magazine (Dec. 2013).
[67] Duffield, E. and Diaz, D. Dash: A payments-focused cryptocurrency.

Whitepaper, https://github.com/dashpay/dash/wiki/Whitepaper. 2018.
[68] Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. “Algorand:

Scaling Byzantine Agreements for Cryptocurrencies”. In: Proceedings
of the 26th Symposium on Operating Systems Principles. SOSP ’17.
Shanghai, China, 2017, pp. 51–68.

[69] AplaProject. Proof of Authority (POA). 2018.
[70] Colvin, G., Lanfranchi, A., Carter, M., and IfDefElse. ProgPoW, a

Programmatic Proof-of-Work. 2018.
[71] Kiayias, A., Russell, A., David, B., and Oliynykov, R. “Ouroboros:

A provably secure proof-of-stake blockchain protocol”. In: Annual
International Cryptology Conference. Springer. 2017, pp. 357–388.

[72] David, B., Gaži, P., Kiayias, A., and Russell, A. “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain”. In:
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer. 2018, pp. 66–98.

43

https://datadrivenlab.org
https://datadrivenlab.org
https://github.com/dashpay/dash/wiki/Whitepaper

References

[73] Badertscher, C., Gaži, P., Kiayias, A., Russell, A., and Zikas, V.
“Ouroboros genesis: Composable proof-of-stake blockchains with dynamic
availability”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2018, pp. 913–930.

[74] Buchman, E. Tendermint: Byzantine fault tolerance in the age of
blockchains. 2016.

[75] Buterin, V. and Griffith, V. “Casper the friendly finality gadget”. In:
arXiv preprint arXiv:1710.09437 (2017).

[76] Conti, M., Kumar, E. S., Lal, C., and Ruj, S. “A survey on security
and privacy issues of bitcoin”. In: IEEE Communications Surveys &
Tutorials vol. 20, no. 4 (2018), pp. 3416–3452.

[77] Zhang, R., Xue, R., and Liu, L. “Security and privacy on blockchain”.
In: ACM Computing Surveys (CSUR) vol. 52, no. 3 (2019), pp. 1–34.

[78] Woolf, N. “DDoS attack that disrupted internet was largest of its kind
in history, experts say”. In: The Guardian vol. 26 (2016).

[79] Gupta, B. and Badve, O. P. “Taxonomy of DoS and DDoS attacks and
desirable defense mechanism in a cloud computing environment”. In:
Neural Computing and Applications vol. 28, no. 12 (2017), pp. 3655–
3682.

[80] Gasti, P., Tsudik, G., Uzun, E., and Zhang, L. “DoS and DDoS in
Named Data Networking”. In: 2013 22nd International Conference on
Computer Communication and Networks (ICCCN). 2013, pp. 1–7.

[81] Douligeris, C. and Mitrokotsa, A. “DDoS attacks and defense mecha-
nisms: classification and state-of-the-art”. In: Computer Networks vol. 44,
no. 5 (2004), pp. 643–666.

[82] Ron, D. and Shamir, A. “Quantitative analysis of the full bitcoin trans-
action graph”. In: International Conference on Financial Cryptography
and Data Security. Springer. 2013, pp. 6–24.

[83] Eskandari, S., Moosavi, S., and Clark, J. “Sok: Transparent dishonesty:
front-running attacks on blockchain”. In: International Conference on
Financial Cryptography and Data Security. Springer. 2019, pp. 170–189.

[84] Diamond, B. E. “Many-out-of-Many Proofs and Applications to
Anonymous Zether”. In: 2021 2021 IEEE Symposium on Security and
Privacy (SP). Los Alamitos, CA, USA, 2021.

[85] Fauzi, P., Meiklejohn, S., Mercer, R., and Orlandi, C. “Quisquis: A new
design for anonymous cryptocurrencies”. In: International Conference
on the Theory and Application of Cryptology and Information Security.
Springer. 2019, pp. 649–678.

[86] Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., and Wu, H.
“ZEXE: Enabling Decentralized Private Computation”. In: 2020 IEEE
Symposium on Security and Privacy (SP). 2020, pp. 947–964.

44

References

[87] Zyskind, G., Nathan, O., et al. “Decentralizing privacy: Using blockchain
to protect personal data”. In: 2015 IEEE Security and Privacy
Workshops. IEEE. 2015, pp. 180–184.

[88] Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J. A., and Felten,
E. W. “Mixcoin: Anonymity for bitcoin with accountable mixes”. In:
International Conference on Financial Cryptography and Data Security.
Springer. 2014, pp. 486–504.

[89] Maxwell, G. “CoinJoin: Bitcoin privacy for the real world”. In: Post on
Bitcoin forum.

[90] Narula, N., Vasquez, W., and Virza, M. “zkledger: Privacy-preserving
auditing for distributed ledgers”. In: 15th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 18). 2018,
pp. 65–80.

[91] Cecchetti, E., Zhang, F., Ji, Y., Kosba, A., Juels, A., and Shi, E.
“Solidus: Confidential distributed ledger transactions via PVORM”.
In: Proceedings of 2017 ACM SIGSAC Conference on Computer and
Communications Security. 2017, pp. 701–717.

[92] Danezis, G. and Meiklejohn, S. “Centrally banked cryptocurrencies”. In:
arXiv preprint arXiv:1505.06895 (2015).

[93] Almashaqbeh, G. and Solomon, R. SoK: Privacy-Preserving Computing
in the Blockchain Era. Cryptology ePrint Archive, Report 2021/727.
https://ia.cr/2021/727. 2021.

[94] Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., and
Vechev, M. “zkay: Specifying and enforcing data privacy in smart
contracts”. In: Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. 2019, pp. 1759–1776.

[95] Kerber, T., Kiayias, A., and Kohlweiss, M. “KACHINA–Foundations
of Private Smart Contracts”. In: 2021 IEEE 34th Computer Security
Foundations Symposium (CSF). IEEE. 2021, pp. 1–16.

[96] Wang, G., Shi, Z. J., Nixon, M., and Han, S. “Sok: Sharding on
blockchain”. In: Proceedings of the 1st ACM Conference on Advances in
Financial Technologies. 2019, pp. 41–61.

[97] Poon, J. and Buterin, V. “Plasma: Scalable autonomous smart contracts”.
In: White paper (2017).

[98] Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., and Gervais, A.
“Commit-chains: Secure, scalable off-chain payments”. In: Cryptology
ePrint Archive, Report 2018/642 (2018).

[99] Gluchowski, A. Zk rollup: scaling with zero-knowledge proofs. Matter
Labs. 2019.

45

https://ia.cr/2021/727
https: //pandax-statics.oss-cn-shenzhen.aliyuncs.com/statics/1221233526992813.pdf

References

[100] Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., and
Ford, B. “Omniledger: A secure, scale-out, decentralized ledger via
sharding”. In: 2018 IEEE Symposium on Security and Privacy (SP).
IEEE. 2018, pp. 583–598.

[101] Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., and Danezis, G.
“Chainspace: A sharded smart contracts platform”. In: arXiv preprint
arXiv:1708.03778 (2017).

[102] Zamani, M., Movahedi, M., and Raykova, M. “Rapidchain: Scaling
blockchain via full sharding”. In: Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 2018, pp. 931–
948.

[103] Yakovenko, A. “Solana: A new architecture for a high performance
blockchain v0. 8.13”. In: Whitepaper (2018).

[104] Goodman, L. “Tezos—a self-amending crypto-ledger White paper”. In:
URL: https://www. tezos. com/static/papers/white paper. pdf (2014).

[105] Maxwell, G., Poelstra, A., Seurin, Y., and Wuille, P. “Simple schnorr
multi-signatures with applications to bitcoin”. In: Designs, Codes and
Cryptography vol. 87, no. 9 (2019), pp. 2139–2164.

[106] Bellare, M. and Neven, G. “Multi-Signatures in the Plain Public-Key
Model and a General Forking Lemma”. In: Proceedings of the 13th
ACM Conference on Computer and Communications Security. CCS ’06.
Alexandria, Virginia, USA, 2006, pp. 390–399.

[107] Boneh, D., Drijvers, M., and Neven, G. “Compact Multi-signatures for
Smaller Blockchains”. In: Advances in Cryptology – ASIACRYPT 2018.
Ed. by Peyrin, T. and Galbraith, S. Cham, 2018, pp. 435–464.

[108] Boneh, D., Lynn, B., and Shacham, H. “Short Signatures from the Weil
Pairing”. In: Advances in Cryptology — ASIACRYPT 2001. Ed. by
Boyd, C. Berlin, Heidelberg, 2001, pp. 514–532.

[109] Goldreich, O. and Oren, Y. “Definitions and properties of zero-knowledge
proof systems”. In: Journal of Cryptology vol. 7, no. 1 (1994), pp. 1–32.

[110] Morgan, J. P. Quorum. 2016.
[111] Eberhardt, J. and Tai, S. “Zokrates-scalable privacy-preserving off-chain

computations”. In: 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData). IEEE. 2018, pp. 1084–1091.

[112] Kiayias, A., Russell, A., David, B., and Oliynykov, R. “Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol”. In: Advances in
Cryptology – CRYPTO 2017. Ed. by Katz, J. and Shacham, H. Cham,
2017, pp. 357–388.

[113] Meckler, I. and Shapiro, E. “Coda: Decentralized cryptocurrency at
scale”. In: O (1) Labs whitepaper. May vol. 10 (2018), p. 4.

46

References

[114] Brassard, G., Chaum, D., and Crépeau, C. “Minimum disclosure proofs
of knowledge”. In: Journal of Computer and System Sciences vol. 37,
no. 2 (1988), pp. 156–189.

[115] Pedersen, T. P. “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing”. In: Advances in Cryptology — CRYPTO ’91.
Ed. by Feigenbaum, J. Berlin, Heidelberg, 1992, pp. 129–140.

[116] Miers, I., Garman, C., Green, M., and Rubin, A. D. “Zerocoin: Anony-
mous Distributed E-Cash from Bitcoin”. In: 2013 IEEE Symposium on
Security and Privacy. 2013, pp. 397–411.

[117] Sun, S.-F., Au, M. H., Liu, J. K., and Yuen, T. H. “RingCT 2.0: A
Compact Accumulator-Based (Linkable Ring Signature) Protocol for
Blockchain Cryptocurrency Monero”. In: Computer Security – ESORICS
2017. Ed. by Foley, S. N., Gollmann, D., and Snekkenes, E. Cham, 2017,
pp. 456–474.

[118] Tomescu, A., Abraham, I., Buterin, V., Drake, J., Feist, D., and Khovra-
tovich, D. “Aggregatable subvector commitments for stateless cryptocur-
rencies”. In: International Conference on Security and Cryptography for
Networks. Springer. 2020, pp. 45–64.

[119] Campanelli, M., Fiore, D., Greco, N., Kolonelos, D., and Nizzardo, L.
“Incrementally aggregatable vector commitments and applications to
verifiable decentralized storage”. In: International Conference on the
Theory and Application of Cryptology and Information Security. Springer.
2020, pp. 3–35.

[120] Raikwar, M. and Gligoroski, D. “The Meshwork Ledger, its Consensus
and Reward Mechanisms”. In: 2021 International Conference on
COMmunication Systems & NETworkS (COMSNETS). IEEE. 2021,
pp. 290–298.

[121] Raikwar, M. and Gligoroski, D. “R3V: Robust Round Robin VDF-
based Consensus”. In: 2021 3rd Conference on Blockchain Research &
Applications for Innovative Networks and Services (BRAINS). IEEE.
2021, pp. 81–88.

[122] Raikwar, M. and Gligoroski, D. “Non-Interactive VDF Client Puzzle
for DoS Mitigation”. In: European Interdisciplinary Cybersecurity
Conference. 2021, pp. 32–38.

[123] Raikwar, M. and Gligoroski, D. DoS Attacks on Blockchain Ecosystem.
2022. arXiv: 2205.13322 [cs.CR].

[124] Gjøsteen, K., Raikwar, M., and Wu, S. “PriBank: Confidential
Blockchain Scaling Using Short Commit-and-Proof NIZK Argument”. In:
Cryptographers’ Track at the RSA Conference. Springer. 2022, pp. 589–
619.

[125] Gjøsteen, K., Raikwar, M., and Wu, S. “Security Model for Privacy-
preserving Blockchain-based Cryptocurrency Systems”. In: Submission.
2022.

47

https://arxiv.org/abs/2205.13322

[126] Raikwar, M. and Gligoroski, D. SoK: Decentralized Randomness Beacon
Protocols. 2022. arXiv: 2205.13333 [cs.CR].

[127] Raikwar, M. “Competitive Decentralized Randomness Beacon Protocols”.
In: Proceedings of the Fourth ACM International Symposium on
Blockchain and Secure Critical Infrastructure. BSCI ’22. Nagasaki, Japan,
2022, pp. 83–94.

[128] Raikwar, M., Gligoroski, D., and Velinov, G. “Trends in development of
databases and blockchain”. In: 2020 Seventh International Conference
on Software Defined Systems (SDS). IEEE. 2020, pp. 177–182.

[129] Raikwar, M. and Gligoroski, D. “Aggregation in Blockchain Ecosystem”.
In: 2021 Eighth International Conference on Software Defined Systems
(SDS). IEEE. 2021, pp. 1–6.

[130] Stevenson, K., Skoglund, O., Raikwar, M., and Gligoroski, D. “Efficient
Novel Privacy Preserving PoS Protocol Proof-of-concept with Algorand”.
In: 2021 3rd Blockchain and Internet of Things Conference. 2021, pp. 44–
52.

[131] Sasidharan, B. and Viterbo, E. “Private Data Access in Blockchain
Systems Employing Coded Sharding”. In: 2021 IEEE International
Symposium on Information Theory (ISIT). IEEE. 2021, pp. 2684–2689.

[132] Wicker, S. B. and Bhargava, V. K. Reed-Solomon codes and their
applications. 1999.

[133] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., and Maxwell,
G. “Bulletproofs: Short proofs for confidential transactions and more”.
In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE. 2018,
pp. 315–334.

https://arxiv.org/abs/2205.13333

Part II

Included Papers

Paper A

SoK of Used Cryptography in Blockchain

M. Raikwar, D. Gligoroski, and K. Kralevska

Published in IEEE Access Vol. 7, 2019

Received August 29, 2019, accepted October 3, 2019, date of publication October 11, 2019, date of current version October 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946983

SoK of Used Cryptography in Blockchain
MAYANK RAIKWAR , DANILO GLIGOROSKI , AND KATINA KRALEVSKA
Department of Information Security and Communication Technologies, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway

Corresponding author: Mayank Raikwar (mayank.raikwar@ntnu.no)

This work was supported by the NTNU Research Project under Grant 81771158.

ABSTRACT The underlying fundaments of blockchain are cryptography and cryptographic concepts that
provide reliable and secure decentralized solutions. Although many recent papers study the use-cases
of blockchain in different industrial areas, such as finance, health care, legal relations, IoT, information
security, and consensus building systems, only few studies scrutinize the cryptographic concepts used in
blockchain. To the best of our knowledge, there is no Systematization of Knowledge (SoK) that gives a
complete picture of the existing cryptographic concepts which have been deployed or have the potential
to be deployed in blockchain. In this paper, we thoroughly review and systematize all cryptographic
concepts which are already used in blockchain. Additionally, we give a list of cryptographic concepts which
have not yet been applied but have big potentials to improve the current blockchain solutions. We also
include possible instantiations of these cryptographic concepts in the blockchain domain. Last but not
least, we explicitly postulate 21 challenging problems that cryptographers interested in blockchain can
work on.

INDEX TERMS Blockchain, cryptography, hash function, proof-of-work, consensus, signature, encryption,
zero-knowledge proofs, access control, accumulator.

I. INTRODUCTION
Blockchain, a distributed ledger managed by a peer-to-peer
network collectively adhering to some consensus protocol,
is arguably considered as a new and disruptive technology.
Both academia and industry are profoundly affected by new
solutions to some old problems which are based on this
new technology. The success of the blockchain concept is
ultimately connected with the financial success of Bitcoin [1]
that was developed just one decade ago, and the subsequent
avalanche of more than 2140 other crypto-currencies that all
together built a financial market worth around $285 billion
(as of 16 June 2019) [2].
We can trace the origins of the ideas to use cryptography for

secure and private transactions for paying access to databases,
paying for services such as online games, transferring money
over the Internet, Internet shopping and other commercial
activities back in 1990’s with David Chaum’s eCash sys-
tem [3]. One of the negative aspects of eCash was that it
was a centralized system, controlled by a trusted third party.
Another hurdle for a broader acceptance of eCash was the
fact that it was covered by a long list of patented algorithms –
something that is considered as a big obstacle to acceptance
among the crypto community.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yunlong Cai .

In parallel, in 1990’s we saw the development of sev-
eral cryptographic ideas not directly connected but somehow
still related to the ideas of using cryptography in finan-
cial transactions. We mention some of them such as the
proposal on how to combat junk email [4] by Dwork and
Naor that was published in 1992, and which used compu-
tationally expensive functions. Then in 1996, there was a
proposal for time-lock cryptographic puzzles [5] by Rivest,
Shamir, and Wagner by using RSA based CPU expensive
computations. At the end of 90’s and early 2000’s several
patent free cryptographic concepts were proposed, imple-
mented and released as open source projects by an online
movement and a community of cryptographers and program-
mers known as ‘‘Cypherpunks’’ [6]. Those cryptographic
concepts and implementations include Adam Back’s ‘‘hash-
cash’’ proposal for a currency based on the hardness of
finding partial hash collisions [7], Wei Dai’s ‘‘b-money’’ [8]
and Nick Szabo’s1 ‘‘Bitgold’’ proposal [9]. These concepts
have been the basis of the Satoshi Nakamoto’s decentralized
cryptocurrency, nowadays known as Bitcoin [1], [10]. As a
recognition of their pioneering activities in the decentralized
cryptocurrencies, Ethereum [11] – the second most popular

1Nick Szabo was also part of the eCash development team in late 90’s.

148550 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

53

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

cryptocurrency – named the three of its denominations as
‘‘Wei’’, ‘‘Szabo’’ and ‘‘Finney’’ [12].2

The underlying core technology in Bitcoin is blockchain.
Blockchain is a distributed ledger maintaining a continuously
growing list of data records that are confirmed by all of the
participating nodes. The data is recorded in this public ledger
in a form of blocks of valid transactions, and this public ledger
is shared and available to all nodes.
Blockchain is envisioned as a promising and powerful

technology but it still encounters many research challenges.
Some of the main challenges are constant improvement
of its security and privacy, key management, scalability,
analysis of new attacks, smart contract management, and
incremental introduction of new cryptographic features in
existing blockchains. These challenges arise due to the net-
work structure and the underlying consensus mechanisms
and cryptographic schemes used within the blockchains.
To overcome these challenges and to find enhanced solu-
tions, many of the cryptographic concepts such as signature
schemes, zero-knowledge proofs, and commitment proto-
cols are scrutinized and applied. As cryptography is a vast
research field, there is always a scope to find new cryp-
tographic schemes in order to improve the solutions in
blockchain.
The majority of the ongoing research in Blockchain

focuses on finding and identifying improvements to the cur-
rent processes and routines, mostly in industries that rely
on intermediaries, including banking, finance, real estate,
insurance, legal system procedures, and healthcare. The study
on business innovation through blockchain [14] presents
some blockchain enabled business applications and their
instantiations. These blockchain enabled applications still
need a proper way for selecting the cryptographic technique
employed in their respective solution in order to meet the
business requirements. Not only these blockchain applica-
tions but also the research community will benefit from an
overview in a form of systematization of the current state
of knowledge of all available cryptographic concepts which
have been applied or can be applied in existing and future
blockchain solutions. To the best of our knowledge, this
is the first systematization of knowledge that gives a com-
plete picture of the existing cryptographic concepts related
to blockchain. We have tried to depict most of the crypto-
graphic concepts in the blockchain domain. Although there
are various works about specific cryptographic concepts used
in blockchain, there are only fewworks which merge all these
atomic works and present them in a single paper. Most of the
review and survey works such as [15], [16] discuss security,
privacy, consensus or other challenges in blockchain. A recent
work of Wang et al. [17] gives a comprehensive analysis
of cryptographic primitives in blockchain. Their analysis
presents the functionality and the usage of these primitives
in blockchain. However, the analysis is based only on exist-

2Hal Finney was a cypherpunk and the receiver of the first Bitcoin
transaction of 10 Bitcoins from the anonymous Satoshi Nakamoto [13].

ing cryptocurrencies and it lacks many of the cryptographic
protocols which are used in blockchain.

A. OUR CONTRIBUTION
In this study, we classify cryptographic concepts based on
their use in blockchain.3 We have divided them into two cat-
egories: 1. Concepts which are well used in blockchain, and
2. Concepts which are promising but not yet implemented in
blockchain. This categorization does not have a clear bound-
ary. We classify some cryptographic concepts as promising
ones, and that requires further research and scrutiny in order
to be deployed in blockchain. As a result, the following
points are the main contributions of our Systematization of
Knowledge (SoK) paper:

• We provide a description of cryptographic concepts
which have been applied in the blockchain field.We also
include instantiation of these concepts in blockchain.

• We provide a list of cryptographic concepts which are
rarely used or have not been used in blockchain but they
have the potential to be applied in this field. These con-
cepts open many possible research directions and they
can be examined in different blockchain applications.

• We identified 21 research challenges that we formu-
late as Research Problem. Some of them are rephrased
research challenges already published in the litera-
ture and some of them are newly formulated research
problems.

In this study, we do not claim that we have exhausted
all of the cryptographic concepts which are employed in
blockchain, but we have tried to cover the concepts which
we felt are propitious for the blockchain domain. We also
describe each cryptographic concept along with its associ-
ated properties and its instantiation in the blockchain field.
Additionally, in order to give one unified presentation about
blockchain, we give a brief explanation about:

• Enabling concepts of blockchain such as hash function,
consensus protocol, network architecture.

• Layered architecture of blockchain and emphasis
on some of the major challenges associated with
blockchain.

B. ORGANIZATION OF THE PAPER
The rest of the paper is organized as follows. Section II
presents the research methodology. Section III explains the
main pillars of blockchain such as hash functions, con-
sensus mechanisms, network infrastructure and types of
blockchain. Section IV gives an overview of some critical
challenges faced by existing blockchains. Section V reviews
already used cryptographic concepts in blockchain and
presents the basic idea of each cryptographic concept with
available instantiation in blockchain. Section VI presents
cryptographic concepts which have not been employed or
implemented in blockchain yet, but look very promising for

3A continuously updated version of cryptographic concepts is available
on this github repository http://bit.do/fchb5

VOLUME 7, 2019 148551

54

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

blockchain. Finally, Section VII concludes this SoK and gives
possible future work directions.

II. RESEARCH METHODOLOGY
To perform a systematization of knowledge of the existing
cryptographic concepts related to blockchain, we established
and followed a methodology that we explain in this Section.
Since the invention of Bitcoin, there has been a growing
interest in blockchain from both academia and industry. The
number of publications in the blockchain field has been
rapidly increasing in recent years. Not all of these publi-
cations are research works; some of these works discuss
different use-cases of blockchain. Therefore, to review these
many papers in the blockchain field, we pursued a research
methodology which defines the inclusion criteria, a search
strategy to search for respective publications and a data col-
lection mechanism to accumulate the relevant publications.
The collected data is later processed based on inclusion and
exclusion criteria. The publications which meet the inclusion
criteria go through one final step of quality assessment. Once
a publication passes the quality assessment, it is included in
our systematization.
We use keyword search to make the first selection of

potentially relevant scientific publications. For the keyword
search, we typed keywords such as <cryptographic concept
name><in blockchain> or<use of><cryptographic concept
name> <in blockchain>. We use Google Scholar as our
primary source to search for the relevant literature, but as
Google Scholar does not exhaust all of the available literature,
we also searched in databases such as: 1) IACR eprint archive,
2) IEEE Xplore, 3) ACM Digital Library, 4) ScienceDirect,
and 5) Springer Link.
The inclusion criteria for this study is based on the follow-

ing questions:
• Is the elaborated cryptographic concept useful in
blockchain? The usefulness of the cryptographic con-
cept is measured as whether we achieve some essential
properties in blockchain by using the concept or whether
the cryptographic concept can be beneficial for some
use-case compared to an already implemented concept.

• Which properties can be achieved by using the crypto-
graphic concept in blockchain?

• Is there any instantiation of the cryptographic concept
in a blockchain study or application? If not, is there any
potential?

The criteria for excluding a paper is:
• Informal literature discussing some cryptographic con-
cepts in blockchain.

• Literature which claims on using a cryptographic con-
cept but it does not give any guarantees about the feasi-
bility and prospects of a potential implementation.

The quality of the papers that meet the inclusion criteria
is assessed. For quality assessment, we apply the following
questions:

• Is the cryptographic concept implemented in blockchain?
If not, is it possible to implement it and will it be more
efficient than the existing solution?

• Is there any security analysis or does the implemented
concept rely on another underlying platform?

• Are the fundamental concept and its related properties
adequately described?

III. SUPPORTING AND ENABLING CONCEPTS OF
BLOCKCHAIN
As previously mentioned, blockchain is a way to encap-
sulate transactions in the form of blocks where blocks are
linked through the cryptographic hash, hence forming a chain
of blocks. Figure 1 shows the basic blockchain structure.
Each block in the blockchain contains a block header and a
representation of the transaction. For instance, in Figure 1,
each block consists of its hash, the hash of the previous
block, a timestamp and some other block fields (e.g., version,
nonce). This depends from the block design. Merkle root
hash represents the set of transactions in the Merkle tree,
and this representation of transactions varies according to the
design of the blockchain implementation. Figure 2 depicts the
Bitcoin blockchain data structure showing in details the block
format.

FIGURE 1. Basic blockchain structure.

Blockchain relies on different constituents which serve
different purposes. In this Section, we give an overview of
the main underlying concepts used to build a blockchain.
A detailed technical explanation of all these concepts is out
of the scope of this paper, but we have tried to cover the
essentials of their functionality.

A. CRYPTOGRAPHIC HASH FUNCTION
A hash function H is a function which takes an input of an
arbitrary size andmaps it to a fixed size output. Cryptographic
hash functions have some additional properties such as:
a) collision resistance - it is hard to find two inputs a and b
such that H (a) = H (b); b) preimage resistance - for a given
output y it is hard to find an input a such that H (a) = y;
and c) second preimage resistance - for a given input a and
output y = H (a) it is hard to find a second input b such that
H (b) = y. Readers interested in an extensive cover of the
field of cryptographic hash functions are referred to [18].
Cryptographic hash functions in blockchain are used for

various purposes such as:

148552 VOLUME 7, 2019

55

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

FIGURE 2. Blockchain data structure with block format.

1) solving cryptographic puzzles (the Proof of Work
(PoW) in Bitcoin [1]);

2) address generation (for public and private keys);
3) shortening the size of the public addresses;
4) message digests in signatures.
The most popular cryptographic hash functions used

in blockchains are SHA-2 [19] (especially the variant
SHA256 - a variant that produces outputs of 256 bits), and
some of the well analyzed hash functions from the NIST
SHA-3 competition and standardization that went to the later
stages of that process (final 5 proposals or some of the
14 proposals from the second phase [20]). Some of the exist-
ing blockchain designs such as IOTA constructed their own
‘‘homebrewed’’ cryptographic hash function called Curl-P,
that was received very critically and negatively by the crypto
community [21], [22].
A typical way how cryptographic hash functions are used

in blockchain designs is in a form of a mode of operation,
i.e., a combination of several invocations of a same or differ-
ent hash functions. For example, in Bitcoin [1], SHA256 is
used twice and that construction is called SHA256d, i.e.,

SHA256d(message) = SHA256(SHA256(message)). (1)

Mining is a process of creating a new block of transactions
through solving a cryptographic puzzle, and the participant
who solves the puzzle first is called a miner of the block . If
we look at the Bitcoin PoW puzzle, we can see that a miner
has to find a Nonce (similar to Hashcash protocol [7] that we
discuss in the next subsection) to create the next block in the

blockchain. The puzzle looks like this:
SHA256d(Ver||HashPrevBlock|| . . . ||Nonce) T (2)

where T is 256-bit target value.
Looking into the fraction of SHA256d outputs that are less

than the target value T for different values of T in Table 1
helps us to understand why mining is hard in PoW. Namely,
the probability of finding a nonce that will cause the whole
block to have a hash that is less than the target value is

Pr[SHA256d(Block) T] ⇡ T
2256

. (3)

TABLE 1. Fraction of SHA256d outputs with respective target value.

We next discuss the research and innovative activities in
the area of cryptographic hash functions that were either
remotely or directly connected and inspired by the trends in
blockchain.
Several years after the launch of the Bitcoin and its

source code being published as an open source on Github,
blockchain designers started to clone and fork its basic

VOLUME 7, 2019 148553

56

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

code, and started to introduce different variants and inno-
vations. One of the earliest forks from 2011 that is still
popular nowadays is Litecoin [23]. The basic idea by the
Litecoin design was to use a different hash function for
its proof of work puzzles. The motivation came from the
fact that even in 2011 there were trends to build special-
ized application-specific integrated circuit (ASIC) hardware
implementations of SHA256d that will mine the blocks sev-
eral orders of magnitude faster than ordinary CPUs and
GPUs. Instead of SHA256d, Litecoin uses Scrypt [24] - a
memory-intensive compilation of use of the HMAC [25]
construction instantiated with SHA256 and use of the stream
cipher Salsa20/8 [26]. The idea was that the use of Scrypt
will be impractical to implement it in ASIC, thus, giving
chances of individual owners of regular computers and GPUs
to become a significant mining community. While with no
doubts we can say that Litecoin is a very successful alterna-
tive cryptocurrency, we can for sure claim that its initial goal
to be ASIC resistant blockchain design was not successful.
Nowadays, you can find commercial products for Litecoin
hardware mining.4

Actually, we can say that the 10 years of history of
blockchain, in general, and cryptocurrencies, in particular,
is a history of failed attempts to construct a sustainable
blockchain that will prevent the appearance of profitable
ASIC miners that can mine the blocks with hash computing
rates that are several orders of magnitude higher than the
ordinary users of CPUs and GPUs. In that short history,
we can mention Ethash used in Ethereum [11] for which
there are now commercially available ASICminers by at least
two companies. In 2013, QuarkCoin [27] introduced the idea
of using a chain of six hash functions (five SHA-3 finalists
BLAKE, Grøstl, JH, Keccak and Skein [28]) and the second
round hash function Blue Midnight Wish [29]. One of the
motivations behind the QuarkCoin PoW function was to be
more ASIC resistant than SHA256d. The cascading idea of
QuarkCoin was later extended to a cascade of eleven hash
functions in Darkcoin (later renamed DASH [30]). Needless
to say, nowadays there are commercially available ASIC
miners for X11 as well.
The frictions between ASICminers and the cryptocurrency

community seem to remain to the present days, and are some-
what evolving and inspiring novel proposals in blockchain
protocols. The latest is the Programmatic Proof-of-Work
(ProgPoW) initiative for Ethereum blockchain ecosystem that
aims to make ASIC mining less efficient and to give some
advantages to graphics processing units (GPU) mining [31].

B. CONSENSUS MECHANISMS
Consensus is the key component of blockchain to synchronize
or update the ledger by reaching an agreement among the

4One such a product that can compute 580 billion Scrypt hashes per sec-
ond, is offered by the company Bitmain and is called ‘‘Antminer L3++’’.
As of the time of writing this article, this product was advertised at
https://shop.bitmain.com/ for a price of $213.00 and for a 10 days delivery
(2 June 2019).

participants. In order to maintain the ledger in a decentral-
ized way, many consensus mechanisms have been proposed.
The first introduction of the use of a consensus mechanism
in blockchain is implicitly given by Bitcoin. Bitcoin uses
Proof ofWork (PoW)mechanism as consensuswhere the idea
came from Hashcash Protocol [7]. The objective of Hash-
cash was to prevent spam in public databases. The Hashcash
Protocol is as follows. Suppose an email client wants to send
an email to an email server. In the beginning, the client and
the server both agree on a cryptographic hash function H
which maps an input string to an n length output string. Then,
the email server sends a challenge string c to the client. Now
the client has to find a string x such that H (c||x) starts with k
zeros. Since H has pseudorandom outputs, the probability of
success in a single trial is

2n�k

2n
= 1

2k
.

Here x corresponding to c is considered as PoW and the
process of finding that x is called mining. PoW is difficult to
generate but easy to verify.
Many literature studies on consensus mechanisms, for

instance, the survey by Wang et al. [16] and ‘‘SoK: Con-
sensus in the age of blockchains’’ [32], have been carried
out in the past few years. Since consensus mechanisms have
already been thoroughly studied in the literature, in this paper,
we present the basic idea about how consensus mechanisms
work and their classification.
In a consensus protocol, depending on the network archi-

tecture and blockchain type, some or all of the participants
take part and maintain the ledger by adding a block consisting
of transactions to their ledger. However, the creation of a new
block to be added to the ledger is performed by a partici-
pant who is known as a leader of the consensus protocol in
that particular execution. This leader is elected by different
mechanisms of leader election process, and some of these
mechanisms are given in Table 2.

TABLE 2. Leader election in consensus protocols.

After the leader is elected and the new block is created
in order to achieve consensus or agreement on this block,
two types of voting mechanisms are followed: explicit and
implicit. In explicit voting, multiple rounds of voting occur
and then based on the votes, consensus is reached. However,
in implicit voting, the new block created by the leader is
accepted by others who implicitly vote for the new block

148554 VOLUME 7, 2019

57

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

FIGURE 3. Blockchain consensus scenario.

and add it to their ledgers. A leader election through PoW
puzzle competition (e.g., PoW puzzle 2 in Bitcoin) followed
by an implicit voting to reach an agreement is also called
‘‘Nakamoto Consensus’’.
Consensus mechanisms also determine the performance

of the blockchain network in terms of consensus final-
ity, throughput, scalability, and robustness against various
attacks. In some manner, consensus orchestrates the state of
the programs executed in the blockchain network nodes by
providing a runtime environment to collectively verify the
same program and hence reach to a finality. There is no
exact classification of consensus mechanisms, but in general
they can be classified as consensus protocols with proof of
concept and consensus protocols with byzantine fault-tolerant
replication. These consensus protocols can be chosen based
on the blockchain network and type. Most of the proof
of concept consensus protocols are used in permissionless
blockchains. There are many proof of concept schemes which
have been proposed and implemented, e.g., Proof of Work
(PoW) [44], Proof of Stake (PoS) [45], Equihash [46], having
Masternodes in Dash [42], etc. As described in Section III-
A, in PoW puzzle based consensus protocols, miners try to
solve the cryptographic puzzle by mining and these miners
are also responsible for verification of the transactions, and
an incentive (reward) is given to the first miner who solves
the puzzle.
In case of a permissionless network, as there is no

authentication and no proper synchronization, the underlying
consensus algorithm should be able to handle the synchro-
nization problem, scale well and mitigate different attacks in
order to maintain canonical blockchain state in P2P network.
To solve this synchronization issue, most of the blockchains
use ‘‘Longest chain rule’’ to have a consistent canonical
state of blockchain in this P2P blockchain network. On the

contrary, in the permissioned blockchain, as there are restric-
tions and privileges associated with the peers, there is a strict
control on the synchronization among the peers. Byzantine
fault-tolerant protocols are usually adopted in permissioned
blockchains to provide consensus properties such as valid-
ity, agreement, and termination. Practical Byzantine Fault
Tolerant (PBFT) [47], Proof of Elapsed Time [40], Ripple
consensus [48] are some of the consensus protocols used in
permissioned blockchains. Recently, Facebook launched its
own global cryptocurrency Libra [43] which works as a per-
missioned blockchain and provides users to do transactions
with nearly zero fee. Libra blockchain comes with a new
programming language Move and a new consensus protocol
called LibraBFT.

1) MINING, POOL MINING AND INCENTIVE MECHANISMS
In Proof of Work based blockchains, the addition of new
transactions in the blockchain is performed by the mining
process. In the Bitcoin mining process, a puzzle is solved by
computing many hashes repeatedly (Equation 2) by putting
different values for the nonce to satisfy the condition. When
a miner successfully solves the puzzle first among all of the
miners, it gets a monetary incentive for solving the puzzle.
Because of this incentive process, all consensus nodes or
miners follow the rules of the blockchain state transition
during the puzzle competition. Mining is a resource-intensive
process where the main resources are computational power
and memory. Mining can be performed either by a solo miner
or by a group of miners, called a mining pool, who collec-
tively try to solve the puzzle. Mining pools may operate on
different mining techniques and incentivemechanisms. These
incentive mechanisms can vary based on the used mining
technique or the decision of the pool operator. Reference [16]
gives a brief idea about the mining strategy management
in blockchain networks, while reference [49] provides a
strategic study of mining through stochastic games. Different
incentivemechanisms are proposed and tested in blockchains.
Reference [50] analyzes Bitcoin pooled mining reward sys-
tems, and a reward system based on information propagation
in blockchain network is presented in [51].

C. NETWORK INFRASTRUCTURE
Blockchain is maintained by a peer-to-peer (P2P) network.
P2P network is an overlay network which is built on the top
of the Internet. This P2P blockchain network can be mod-
eled as structured, unstructured or hybrid based on several
parameters such as the consensus mechanism and the type of
blockchain. Regardless of the representation of the network,
a blockchain network should quickly disseminate the newly
generated block so that the global view of the blockchain
remains consistent. Consequently, a synchronization protocol
is needed, but a routing protocol might or might not be
needed. A traditional P2P network uses a routing protocol
to route the information through multihop; however, in many
blockchains (e.g., Bitcoin), routing is not required because

VOLUME 7, 2019 148555

58

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

a peer can get information through at most one hop, so no
routing table is maintained.
Almost all cryptocurrencies and blockchains such as Bit-

coin [1], Ethereum [11], Litecoin [23] use unstructured P2P
network where the idea is to have equal privileges for all of
the nodes and to create an egalitarian network. A P2P net-
work can follow flat or hierarchical organization for building
a random graph among the peers. This graph is not fully
connected, but in order to receive all of the communication
and to maintain the ledger, each peer maintains a list of peer
addresses. Thus, if any peer propagates a message in the
network, eventually all peers receive it through their avail-
able connections. In an unstructured network, techniques like
flooding and random walk are used to make new connections
with the peers. In the unstructured network, peers can leave
and join at any time. This can be exploited by an adversary
that can join and see the messages floating in the network
and can further do source spoofing, reordering or injecting of
messages.
Blockchain can also use structured P2P network where

nodes are organized in a specific topology and thus find-
ing any resource/information becomes easier. In this struc-
tured P2P network, an identifier is assigned to each node
to route the messages in a more accessible way. Each node
also maintains a routing table. A structured P2P network
maintains a distributed hash table (DHT) where (key, value)
pairs are stored corresponding to the peers which help in
the resource discovery. Ethereum has started the adoption
of structured P2P network by using Kademlia protocol [60].
However, most of the blockchain networks are unstructured,
and moreover, if the blockchain is public where no restriction
to join or leave the network is enforced, then many possible
attacks can happen. Thus, the security of blockchain depends
heavily on the network architecture. A propagation delay or
a synchronization problem in a P2P network can affect the
consensus protocol of blockchain, leading to a non-consistent
global view in blockchain. In addition to these problems,
an adversary can cause several attacks in a P2P network,
where few of the main attacks are as following:

• Netsplit (Eclipse) attack: An adversary monopolizes all
of the connections of a node and splits that node from the
entire network. Further, the node cannot participate in
consensus or validation protocol and this causes incon-
sistency in the network [61].

• Routing attack: A set of participants are isolated from
the blockchain network by the adversary and thus the
block propagation is delayed in the network [62].

• Distributed Denial-Of-Service (DDOS) attack: An
adversary exhausts the network resources and targets
honest nodes so that honest nodes do not get the
services or information which they are supposed to
receive [63], [64].

D. TYPES OF BLOCKCHAIN
Blockchains can be classified depending on the implementa-
tion design, administration rules, data availability, and access

privileges. From an academic point of view, they have been
classified as ‘‘public’’ and ‘‘private’’. While from the admin-
istrative point of view, they are described as ‘‘permissioned’’
and ‘‘permissionless’’. Nevertheless, these terms are used
interchangeably in most of the blockchain studies and appli-
cations in industries, which is not the correct way to use these
terms. Even though the classification of blockchains is not
very clearly specified in the literature, we can still classify
blockchains by coupling public, private, permissioned and
permissionless.
1) Permissionless Public: In this type of blockchain,

anyone can join or leave the network at any time
and participate in consensus as well to maintain the
ledger. Everyone also has read and write access to the
blockchain. Thus, it provides minimum trust among
the participants, but it still achieves maximum trans-
parency. Most of the cryptocurrencies and blockchain
platforms are permissionless public, e.g., Bitcoin [1],
Zerocash [52] and Monero [53].

2) Permissioned Public: This type of blockchain allows
everyone to read the blockchain state and data, but in
order to write the data and take part in consensus, there
are permissions/privileges associated with the partici-
pants provided by the network administrator which in
a certain way makes the system not fully decentralized.
In this type of blockchain once a participant has some
privileges, based on that it can become a validator as
well. Examples for permissioned public blockchain are
Ripple [54], EOS [55] and the newest Libra [43].

3) Permissionless Private: This type of a blockchain
allows organizations to collaborate without the need
of sharing information publicly. Being permissionless,
allows anyone to join or leave the blockchain at any
time, which is also acknowledged by other nodes as
well. The smart contracts on these networks also define
who is allowed to read the contract and the related
data, not only just who is allowed to perform the
actions. Some permissionless private blockchains use
Federated byzantine agreement as a consensus proto-
col. LTO [56] network is an example of a permission-
less private blockchain which creates ‘‘live contract’’
on the network.

4) Permissioned Private: These blockchains are mostly
used in organizations where data/information is stored
in the blockchain with permissioned access control by
members of the organization. The membership in the
network is provided by the network administrator or
some membership authority. Read and write access to
the data is also provided by the network administrator.
Hyperledger fabric [57], Monax [58], Multichain [59]
are examples of permissioned private blockchains.

Table 3 proffers a clear picture of the classification
of blockchains with associated advantages, challenges and
application domains. However, in general, permissionless
public blockchains are commonly referred to as pub-
lic blockchains and permissioned private blockchains are

148556 VOLUME 7, 2019

59

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

TABLE 3. Blockchain classification.

TABLE 4. Layered architecture of blockchain.

referred to as fully private blockchains. A combination of per-
missioned public and permissionless private makes ‘‘consor-
tium blockchain’’ which is also called a federated blockchain.
A consortium blockchain is neither completely public nor
completely private, and it makes blockchain as partially
decentralized. In consortium blockchain, the consensus is
reached by a selected group of participants. Nowadays most
of the organizations have embraced consortium blockchains
for their blockchain enabled solutions.

IV. CHALLENGES IN BLOCKCHAIN
Blockchain as an emerging technology comes with many
challenges. In order to solve these challenges, various solu-
tions have been proposed and implemented in the blockchain.
The proliferation of cryptocurrencies across multiple pay-
ment systems brings many risks in social, economic and
technical terms. Blockchain encounters many challenges due
to network architecture, underlying consensus protocol and
applied cryptographic primitives. Some of these major chal-
lenges are security and privacy associated with blockchain,
scalability of blockchain, and resource consumption (compu-
tational power, memory, network bandwidth). An insightful
analysis on the research perspectives and challenges for bit-
coin and other cryptocurrencies [65] has been presented in the
past and gives a nice overview of scalability, security, privacy
and consensus of cryptocurrencies.
We can summarize our discussion in Section III-B, in a

form of generic research problems and research challenges
in the area of blockchain consensus mechanisms as fol-
lows. Construct a new blockchain consensus mechanism
that is better than the existing ones from the following
perspectives:

1) Less energy consumption;
2) More efficient consensus achievements;
3) Better security than the existing consensus mecha-

nisms.
However, further in the paper when we identify a more

concrete and focused research challenge, we formulate it
in a form of a Research Problem. For example, from the
discussion given in the III-A we can formulate the following:
Research Problem 1: Construct sustainable blockchain sys-
tems that have one of the following properties:
1) They are provably resistant to give mining advantages

to ASIC miners as opposite to GPU and CPU miners;
2) They are provably resistant to give mining advantages

to ASIC and GPU miners as opposite to CPU miners.
If we observe the blockchain as a layered architecture,

we can identify the challenges that occur in each layer. Table 4
shows blockchain as a stack of five layers. These five layers
serve the following purposes:

• Smart contract layer processes contract data and send
the result data to the transaction layer.

• Transaction layer creates the transactions and sends
those to consensus layer.

• Consensus layer runs the consensus algorithm and adds
the transactions to the block.

• Network layer deals with all P2P communication
among blockchain nodes.

• Database layer stores the blockchain data in a respec-
tive database used by respective blockchain platform.

Table 4 gives a glimpse of blockchain layered architec-
ture and also mentions some of the cryptographic techniques
to achieve properties like security and privacy. In Table 4,
the first column defines the layers of blockchain, and the

VOLUME 7, 2019 148557

60

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

first row illustrates the properties which can be accom-
plished in the different layer using different cryptographic
techniques. Thus to understand, each cell corresponds to
the deployed cryptographic method to attain the property in
the corresponding column in the respective blockchain layer
(corresponding row). For example, encryption can be used
to achieve confidentiality in smart contract layer, Message
Authentication Code (MAC) can be used to achieve integrity
in the network layer of blockchain. Table 4 names few of
the techniques used in the blockchain but there are more
available cryptographic techniques which can be employed in
blockchain. ‘‘–’’ in Table 4 represents that the corresponding
property for the corresponding layer does not make much
sense. Some of the significant challenges of blockchain are
as follows.

A. SECURITY AND PRIVACY
For any blockchain, a key evaluation parameter is how well
the security and privacy conditions meet the requirement of
the blockchain. Analyzing the security and privacy issues
of blockchain is a broad research area, and some studies
have been conducted in this area. Here we do not cover
those details, instead we only define these terms. Security is
defined as three components: confidentiality, integrity, and
availability. In a generic context, (i) confidentiality is a set
of rules that limits access to information, (ii) integrity is
the assurance that the information is trustworthy and accu-
rate, and (iii) availability is a guarantee of reliable access to
the information by authorized people. However, in case of
blockchain, the term Information used in the above context
can have multiple meanings such as data in the database,
smart contract data or transactions. Privacy can be defined as
data privacy and user privacy (anonymity). Table 4 includes
some cryptographic mechanisms for achieving security and
privacy of information subjected to different blockchain lay-
ers.
In the light of recent increased number of incidents with

the security of the different layers of blockchain platforms
and the theft of millions of dollars worth cryptocurrencies,
we formulate the following research problem.
Research Problem 2: Construct a penetration testing tool
irrespective of the blockchain platform to test the security
and privacy requirements for each layer of any blockchain
platform.

B. SCALABILITY ISSUES
The size5 of blockchain is continuously growing, and scala-
bility is becoming a big problem in the blockchain domain.
Scalability depends on the underlying consensus, network
synchronization and architecture. To scale the blockchain,
the computational power and the bandwidth capabilities
should be high for each node in the blockchain, which is

5https://bitinfocharts.com gives most of the statistics (including size) of
popular cryptocurrencies.

practically infeasible. Most of the current blockchains grant
limited scalability.
One proposal how to address the scalability problems of

the blockchain ledger is so called: ‘‘SPV, Simplified Payment
Verification’’ [66]. It verifies if particular transactions are
valid but without downloading the entire ledger. This method
is used by some wallet and lightweight Bitcoin clients, and
its security was first analyzed in [67]. Another proposal to
achieve high scalability is to use erasure codes in blockchain
by encoding validated blocks into small number of coded
blocks. A recent work [68] proposes the use of fountain
codes (a class of erasure codes) to reduce the storage cost of
blockchain by the order of magnitude and hence achieving
high scalability. Applying other types of erasure codes for
distributed storage, such as regenerating codes [69], [70],
locally repairable codes [71], [72] or a combination of both
types of codes [73], [74], may reduce even further the storage
and communication costs.
Another issue in connection with the scalability is the issue

of the interoperability. Namely, it is a fact that the number
of different public ledgers is increasing rapidly. While some
sort of a rudimentary interoperability has been implemented
in cryptocurrencies exchange platforms [75], the risks and
insecurities with these platforms are vast and well docu-
mented [76].
Research Problem 3: Construct a new blockchain mecha-
nism that periodically prunes its distributed ledger (reduces
its size), producing a fresh but equivalent ledger, while prov-
ably keeping correct state of all assets that are subject of the
ledger transactions.
Research Problem 4: Construct secure protocols for
blockchain interoperability.
A recent reference [77] strongly supports our research

problem 3 since it admits that Ethereum blockchain is almost
full now and hence the scalability is a big bottleneck.

C. FORKING
A blockchain fork is essentially caused when two miners find
a block at almost the same time due to a software update or
versioning. In a blockchain network, each device or computer
is considered as ‘‘a full node’’ which runs software to keep
the blockchain secure by verifying the ledger. The software
is updated to adjust some parameters and to install new
features in the blockchain. This updated software may not
be compatible with the old software. Consequently, the old
nodes which have not updated their software and the new
nodes which have performed a software update can cause a
fork in the blockchain when they create new blocks. There
are two types of forks: one which is not compatible with
previous software version, called a hard fork, and another one
which is compatible with the previous version (backward-
compatible), called a soft fork. A hard fork happens when
there is a significant change in the software such as change of
block parameters or change of consensus mechanism. In the
case of Ethereum, a hard fork will occur when it will migrate
from Proof of Work to Proof of Stake. One example of a soft

148558 VOLUME 7, 2019

61

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

fork is SegregatedWitness (SegWit) which was implemented
in Bitcoin by changing the transaction format. Recently, pri-
vacy coin Beam [78] (an implementation of Mimblewimble
privacy protocol) conducted its first hard fork away from
ASICS. Figure 4 depicts a blockchain forking scenario where
the correct chain can be any of these two forked chains
depending on the case of the hard or soft fork.

FIGURE 4. Blockchain forking.

Research Problem 5: Construct Forking-free consensus
mechanism for permissionless public blockchain.

D. THROUGHPUT
It is a measure of the number of blocks appended in
blockchain per second which effectively means the num-
ber of transactions processed per second. Throughput
depends on many factors such as underlying consensus
algorithm, number of nodes participating in consensus, net-
work structure, node behavior, block parameters and the
complexity of the contract (in case of smart contract sup-
ported blockchains). The complexity of a smart contract
depends on whether the programming language of the
blockchain is turing-complete or not. However, regarding
turing-completeness of blockchains [79], there is always a
division between the blockchain community. Considering
these primary factors, attaining high throughput is a bit
hard in blockchain. However, for value-asset blockchains to
achieve high throughput, the size of the transaction can be
reduced by excluding some information from the transaction
and the throughput can be increased by increasing the block
size and the bandwidth of the network till a certain level.
The number of transactions per second was recognized

as a serious problem in Bitcoin network. While in the
peak holiday period Visa and MasterCard can handle up
to 50,000 transactions per second worldwide, the Bitcoin
network can handle just 7 transactions. One proposal how
to address this scalability issue is the ‘‘The Bitcoin Light-
ning Network’’ [80]. It is a network that handles instantly
the Bitcoin transactions off the main ledger. It establishes a
network of micropayment channels that addresses the mal-
leability by using Bitcoin multi-signatures 2-of-2. Special
nodes are needed for these micropayment networks and as
of June 2019, there were around 4,500 nodes. The first
financial transaction via the Lightning network was reported
in January 2018. Litecoin decided to follow the Bitcoin
Lightning network, and as of March 2019 there were more

than 1000 registered nodes that handle the micropayments
for that alternative cryptocurrency.Many other solutions were
proposed to solve the scalability issue, similar to the Light-
ning off-chain computation and off-chain state channels, such
as Sharding [81], Plasma [82], Liquid [83] and the recent
Channel Factories [84].
As the Lightning network has gained popularity, new

research challenges emerge as explained in [85], and here we
rephrase one of their research challenges.
Research Problem 6: [85]: Develop scalable protocols that
will perform multi-hop payment-channel and path-based
transactions with strong privacy guarantees even against an
adversary that has network-level control.
Addressing Problem 6, many works have been done in the

past but all those works are mostly compatible with Bitcoin or
Ethereum blockchain. Recent works [86], [87] on multi-hop
payment channel provide value privacy and security but only
for Bitcoin-compatible blockchains. Instead of supporting
only payments like Lightning network, there are off-chain
state channels, like Celer Network [88], which support gen-
eral state updates while providing significant improvement in
terms of cost and finality.
Research Problem 7: Develop fully functional state channel
with strong security and privacy guarantee.

E. ENERGY CONSUMPTION
The mining process of blockchain (e.g., bitcoin mining)
consumes a lot of energy. Most of the PoW puzzle based
consensus protocols waste a huge amount of energy.6

Many alternative consensus algorithms are introduced which
use less energy than Bitcoin’s PoW such as PoS [45],
Equihash [46], and PBFT [47]. Energy is also consumed
during communication over the network. Some cryptographic
mechanisms also consume high energy so the selection of a
proper cryptographic mechanism should be based not only on
the memory requirement and the computational load but also
on the amount of energy consumption. The use of blockchain
should be energy efficient and to fulfill that 1) PoS-like
consensus should be used and 2) proper energy management
techniques should be utilized, for example in the case of
Internet-of-Things (IoT).

F. INFRASTRUCTURE DEPENDENCIES
The blockchain infrastructure is built with several elements
of network protocols, cryptographic concepts, and mining
hardware. All these elements depend on each other in some
sense. If we look into the layered architecture of blockchain
in Table 4, each layer is dependent on its upper and lower lay-
ers for some input/output. Thus, there are many infrastructure
dependencies in blockchain. For instance, the data from the
smart contract layer is an input to the transaction layer that
outputs actual transactions; the data from the consensus layer

6https://digiconomist.net/bitcoin-energy-consumption depicts Bitcoin
energy consumption index charts in TWh per year. It also shows the energy
consumption per country.

VOLUME 7, 2019 148559

62

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

results in an input to the network layer through a communi-
cation protocol; and the data from the network layer data is
sent to the database through database storage management.
These dependencies must be taken into account while build-
ing a comprehensive blockchain framework for any use case;
otherwise, some of the blockchain functionalities will not be
fulfilled.
From the blockchain infrastructure perspective, we have

to mention here one evolving and enabling technology that
will be very important in the next decade: 5G. 5G will
connect hundreds of billions of IoT devices, but that vast
number of devices can be governed securely only by strong
decentralized mechanisms offered by the blockchain tech-
nologies [89], [90].We formulate this debate as the following.
Research Problem 8: Construct efficient, scalable, inexpen-
sive and sustainable blockchain systems capable to handle
and securely manage up to billions of IoT devices connected
via the 5G network infrastructure.

V. OVERVIEW OF USED CRYPTOGRAPHIC CONCEPTS
IN BLOCKCHAIN
From the cryptographic point of view, many of the crypto-
graphic techniques have already been exhibited and heavily
employed in various blockchain platforms and blockchain
use-cases [17]. As the spectrum of the cryptographic concepts
is vast, there is always a scope to dig out some of the existing
cryptographic schemes and use them in blockchain services.
In Table 5 we give a comprehensive summary of all cryp-

tographic concepts that we will cover in this and in the next
Section. It serves as a handy overview and quick reference
table for our systematization of the cryptographic knowledge
used in blockchain.
Following are some of the cryptographic concepts which

have already been well analyzed and implemented in
blockchain.

A. SIGNATURE SCHEME
A standard digital signature is a mathematical scheme based
on public-key cryptography that aims to produce short codes
called signatures of digital messages by the use of a private
key, andwhere those signatures are verifiable by the use of the
corresponding public key. In this context, digital signatures
guard against tampering and forgeries in digital messages.
A signature scheme is used in blockchain to sign the

transaction, hence, authenticating the intended sender and
providing transaction integrity as well as non-repudiation
of the sender. Many of the signature schemes are widely
accepted to employ integrity and anonymity in blockchain.
The digital signature is one of the most important cryp-
tographic primitives that makes blockchain to be publicly
verifiable and with achievable consensus. Signature schemes
are used in almost every blockchain. Figure 5 represents a
general example about how a blockchain user (signer) creates
a digitally signed transaction or block using his private key.
Moreover, figure 6 shows how other blockchain nodes (veri-
fier) verifywhether the signature on the transaction or block is

FIGURE 5. Signing process of blockchain transaction/block.

FIGURE 6. Verification of digitally signed transaction/block.

valid or not using the signer’s public key. Blockchain applies
different signature schemes to provide additional features
like privacy, anonymity, and unlinkability. Signature scheme
can also be applied to generate constant size signature using
signature aggregation. Schnorr Signatures are a form of sig-
nature aggregation and it has been used in Bitcoin instead
of P2SH [125] for scalability [126]. Some of the signature
schemes applied in blockchain are:
1) Multi-Signature: In a multi-signature scheme, a group

of users signs a single message. In a blockchain net-
work, when a transaction requires a signature from
a group of participants, it might be advantageous to
use a multi-signature scheme. Blockchain platforms
such as Openchain [127] and MultiChain [59] support
M�of�N multi-signature scheme which reduces the
risk of theft by tolerating compromise of up to M -1
cryptographic keys. Boneh et al. also designed compact
multi-signatures for smaller blockchains [128].

2) Blind Signature: In this scheme [129], signatures
are employed in privacy-related protocols where the
signer and the message authors (transaction in case
of blockchain) are different parties. Blind signatures
are used to provide unlinkability and anonymity of the
transaction. In a blockchain setup, a blind signature
might be helpful to provide anonymity and unlink-
ability where the transacting party and the signing
party are different. Blind signatures have been used in
BlindCoin [130] distributed mixing network to provide
the unlinkability of transactions. Blind signatures are

148560 VOLUME 7, 2019

63

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

TABLE 5. Summary of Cryptographic Concepts in Blockchain.

also tested in Bitcoin to provide the anonymity for the
Bitcoin on-chain and off-chain transactions [131].

3) Ring Signature: This scheme [132] uses a protocol
where a signature is created on a message by any
member of a group on behalf of the group while
preserving the identity of the individual signer of
the signature. Ring signatures are used to achieve
anonymity of the signing party in the blockchain net-
work. CryptoNote [119] technology uses a ring sig-
nature scheme to create untraceable payments in the
cryptocurrencies. A trustless tumbling platform [133]
also uses ring signature for anonymity.

4) Threshold Signature: This signature scheme is a (t, n)
threshold signature where n parties receive a share
of the secret key to create the signature and t out
of n parties create a signature over any message.
As the parties directly construct the signature from
the shares, the key is never revealed in the entire
scheme. Threshold signature can be helpful to pro-
vide anonymity in the blockchain network. Coin-
Party [134] uses a threshold signature scheme for
multi-party mixing of Bitcoins. A recent work about
coin mixer, ShareLock [135], uses threshold ECDSA
(Elliptic Curve Digital Signature Algorithm [136]) to
provide privacy-enhancing solution for cryptocurren-
cies. However threshold ECDSA signatures are com-
plex due to the intricacies of the signing algorithm.
Other signature schemes, such as EdDSA (Edwards-
curve Digital Signature Algorithm [137]) using the
Edwards25519 curve, are efficient threshold signa-
tures. Libra [43] blockchain applies this EdDSA during
new account address generation.

While digital signatures produced with the keys used in
Public Key Infrastructure (PKI) are well legally regulated and
can be used in different types of legal disputes, it is a big
challenge how to achieve similar regulations with all types of
digital signatures used in the existing blockchain solutions.
Additionally, in the physical world if an asset is stolen (for
example an expensive car, or an expensive watch), it can be
traced back to its legal owner.
Research Problem 9: Develop security protocols that merge
the existing standardized and legalized PKI systems with
some of the developed blockchain systems.
Research Problem 10: Design an anti-theft blockchain sys-
tem, i.e., a system that guarantees a return of stolen assets
back to their legitimate owners.
Regarding Research Problem 10, recently the Vault pro-

posal was re-launched. Its purpose is to shield the bitcoin
wallet from theft without the need for hard forking [138].
However, for other blockchain systems, no such proposal or
solution exists.

B. ZERO-KNOWLEDGE PROOFS
In Zero-knowledge proofs [139], two parties, a prover
and a verifier, participate. First, the prover asserts some
statement and proves its validity to the verifier without
revealing any other information except the statement. Thus,
a zero-knowledge proof proves the statement as ‘transfer
of an asset is valid’ without revealing anything about the
asset. Zero-knowledge protocols are extremely useful cryp-
tographic protocols for achieving secrecy in the applica-
tions. They can be used to provide the confidentiality of
an asset (transaction data) in the blockchain while keeping
the asset in the blockchain. Some of the public blockchains

VOLUME 7, 2019 148561

64

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

use zero-knowledge proofs such as Zerocoin [124] or
Zerocash [52] for untraceable and unlinkable transactions.
Zerocoin is a decentralized mix and extension to Bitcoin
for providing anonymity and unlinkability of transactions by
applying zero-knowledge proofs. In Zerocoin protocol, a user
who has Bitcoins can generate an equal value of Zerocoins
without the need of any third party mixing set. A user can
spend his/her Bitcoin by 1) producing a secure commit-
ment (i.e., Zerocoin), 2) recording it in the blockchain, and
3) broadcasting a transaction and a zero-knowledge proof
for the respective Zerocoin. Hence, other users can vali-
date the Zerocoin recorded in the blockchain and verify the
transaction along with the proof. Here zero-knowledge proof
protects the linking of Zerocoin to a user, yet Zerocoin is a
costly protocol due to its high complexity and large proof
size.
To reduce the complexity and the proof size, a variant of

zero-knowledge proof known as Zero-Knowledge Succinct
Non-Interactive Argument of Knowledge (zk-SNARK) [140]
is used by Zerocash protocol. zk-SNARK hides the infor-
mation about the amount and the receiver address in a
transaction. The main idea of zk-SNARK is any compu-
tational condition can be represented by an arithmetic cir-
cuit, which takes some data as input and gives true or
false in response. zk-SNARK reduces the proof size and the
computational effort compared to the basic zero-knowledge
proofs. An enterprise-focused version of Ethereum, Quorum
blockchain platform [141] also uses zk-SNARK for transac-
tion privacy and anonymity. Figure 7 illustrates an interactive
protocol of zero-knowledge where the prover has a statement,
and he/she wants to prove that the statement is correct without
revealing any information related to the statement. In the
interactive protocol, the verifier asks many questions related
to the statement and the prover answers these questions in
such a way where the prover proves the statement and does
not reveal any necessary information.

FIGURE 7. An interactive zero-knowledge protocol.

C. ACCESS CONTROL
It is a selective restriction on information or resource based
on some policy or criteria. These mechanisms [142] can be
enforced to put a restriction or access in the blockchain.

The access can be a read/write access or an access to
participate in a blockchain protocol. There are many differ-
ent access control mechanisms such as role-based, attribute-
based, organizational-based access control which can be used
in blockchain. Recent incidents show security breaches and
data theft from certain blockchain platforms, which can be
tackled and prevented by access control. The privacy of
data can be ensured in blockchains by using access con-
trol [91], [92]. Nowadays, access control techniques are pro-
foundly used in blockchain based medical applications [143]
or blockchains for the insurance industry where the data is
sensitive information that must be accessible to only trusted
and authorized parties. There are different types of access
control mechanisms which can be utilized in blockchain
applications.

1) Role-based Access Control (RBAC): RBAC is an
approach for restricting the system view to the users
of the system according to their roles in the sys-
tem. Thus, it can be applied in a blockchain frame-
work where access is provided according to the user
roles. RBAC is used in a blockchain based solution
for healthcare [144]. A simple example depicted in
Figure 8 describes the role-based access control in a
private healthcare blockchain. Based on the role, each
entity in the blockchain system has its own access
rights. A Patient can ask for his personal medical data,
however only the Doctor associated with the patient
can enter or modify the patient’s health record in the
blockchain. A Research Company on the other hand
can ask for patients’ data for any disease for research
purpose.

2) Attribute-based Access Control (ABAC): In ABAC,
the access control rules are based on the attribute
structure. These attributes can be user specific,
environment-specific or object specific. For exam-
ple, in a blockchain setup for the insurance industry,
’department’ could be an attribute through which the
access of the blockchain data is restricted, whichmeans
the claims handling department would have a different

FIGURE 8. Role-based access control in healthcare blockchain.

148562 VOLUME 7, 2019

65

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

view of the blockchain compared to the audit depart-
ment. ABAC can be used in a fair access blockchain
model [91] by keeping attributes in policy.

3) Organization-based Access Control (OrBAC): OrBAC
is one of the richest access control models. OrBAC
consists of three entities (subject, action, object) which
define that some subject has the permission to realize
some action on some object. OrBAC has already been
used in blockchain for IoT in a fair access blockchain
model [91] and in dynamic access control model on
blockchain [145].

Other access control mechanisms such as context-based
access control and capability-based access control (pro-
posed in blockchain solutions for autonomous vehicles, smart
cities, IoT [146]) can also be useful for different blockchain
solutions.

D. ENCRYPTION SCHEME
It is a process of encoding a piece of information by which
only authorized parties can access it. It can be used to achieve
confidentiality of blockchain data by encrypting it. There are
many encryption schemes which can be used in blockchain.
Symmetric-key Encryption is used in Hyperledger fabric for
confidentiality of smart contract [57] and Blockchain for
Smart Home [147]. Although searching and computation
over an encrypted data is a big challenge, there are many
existing techniques which can be used for that purpose.
Some of these techniques such as searchable encryption for
searching on encrypted data in the cloud is already used in
permissioned blockchain [148], and for computation over
encrypted data, fully homomorphic encryption and functional
encryption can also be utilized in blockchain. Monero cryp-
tocurrency [53] uses (half) additive homomorphic encryption
together with range proof techniques, yet supporting only
value transactions.
In order to assure simultaneously confidentiality and

authenticity of data, an authenticated encryption can be used
in blockchain. In authenticated encryption, two peers estab-
lish a connection, they both share their public keys and com-
pute the shared secret which is used as the symmetric key for
the authenticated encryption algorithm. The recently finished
cryptographic competition CAESAR [149] has identified a
portfolio of six ciphers for authenticated encryption. So far,
as of this writing (June 2019), none of those ciphers has been
deployed in some blockchain system.
Broadcast encryption can be used in blockchain to provide

the anonymity of blockchain receiver nodes. [150] gives a
proposal to use for Availability and Accountability for IoT
by blockchain. It has as every user in the group receives
the encrypted message, although only users with the correct
permission or key can decrypt it.

E. SECURE MULTI-PARTY COMPUTATION (SMPC)
Secure Multi-party Computation enables parties to act
together in a way that no single party has an access to all of
the data, and hence no one can leak any secret information.

The main idea of SMPC scheme is to jointly compute a
function by parties over their inputs without disclosing their
inputs. For example, a group of people can compute the
average salary of the group without disclosing their actual
individual salaries. The blockchain platform Enigma [117]
leverages the concept of SMPC to achieve strong privacy.
In Enigma platform, a blockchain network is combined with
SMPC network, where the blockchain network contains the
hashes and SMPC network contains the data corresponding
to those hashes which split is among different nodes. For
each node, the view over SMPC network differs as everyone
has a different piece of information. Specifically, each node
contains a random piece of data, and no single party ever has
access to the entire data.
A blockchain model Hawk [118] for privacy-preserving

smart contracts also specifies the use of SMPC to minimize
the trust in the generation of common reference string in
SNARKproof used in themodel. SMPC can also be exercised
for private data storage in a decentralized system, such as
Keep [151]. Keep provides a privacy-focused storage solution
for Ethereum. In this system, network nodes collaborate to
provide secure decentralized data containers, called keeps,
which can be accessed from smart contracts on Ethereum.
An application of SMPC can also be seen in the

Wanchain [116] Cross-Chain network. Figure 9 reflects the
SMPC idea in cross-chain transfer model. In Wanchain net-
work, if user A wants to send an asset (say ETH) from
one blockchain (say Ethereum blockchain) to user B on
Wanchain blockchain, then at first the asset value is locked
in an account on its original chain using smart contract. This
locked account holds control of the funds. The equivalent
token WETH is sent to another user B of the Wanchain
network. When user B wants to convert its WETH to ETH,
the locked amount is released from the locked account and
sent to user B, and the equivalent portion ofWETH is burned.
These locking and unlocking of asset value (ETH) happen
using SMPC. Wanchain has a concept of Storeman nodes

FIGURE 9. Cross-Chain transfer mechanism of blockchain using SMPC.

VOLUME 7, 2019 148563

66

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

which work together and perform locking and unlocking of
account. These Storeman nodes jointly work together to cre-
ate public and private key pair of the related locked account.
This shared account private key is scattered among the Store-
man nodes as pieces of the key. To unlock the account, M out
of N (M N) Storeman nodes contribute their shares of the
private key to generate the signature using MPC jointly.

F. SECRET SHARING
In this concept, a secret is divided into multiple parts among
the participants, and it is reconstructed by using a mini-
mum number of parts. These parts are called shares and
they are unique for each participant. Secret sharing is used
to secure sensitive information. Secret sharing scheme is
advantageous in SMPC for distributing the shares among
parties. Shamir’s secret sharing [152] is already being used to
distribute transaction data, without a significant loss in data
integrity in blockchain [153]. Decentralized Autonomous
Organizations (DAO) can take advantage of secret sharing
by distributing the shares of information among the system
nodes rather than storing full information in each node. Secret
sharing in DAO can be practiced in consensus where each
participating node stores a set of shares of the system state
rather than storing full system state. These shares are points
on polynomials which make up part of the state.
Secret sharing schemes are also used in different off-chain

and on-chain bitcoin wallets to safeguard the private keys
of the crypto holders. For example, suppose an organization
wants to store its bitcoin with a single master private key.
In that case, secret sharing scheme helps to store the same key
among multiple people. A simple example of this scenario
will be sharing a bitcoin wallet key among three people by
distributing the shares of the key. These individual shares do
not convey any information about the actual key. However,
any 2 of 3 people can reconstruct the key using their shares
as presented in Figure 10. Secret sharing schemes can also
benefit blockchain by storing secret information in a decen-
tralized way so that unauthorized parties cannot access it.
Secret sharing is used in blockchain for different purposes
such as secret share-based fair and secure voting protocol
(SHARVOT) [115] and new cryptocurrency based on mini
blockchain [154].

FIGURE 10. Secret-Sharing-Scheme 2-of-3 for a cryptocurrency wallet
private key.

G. COMMITMENT SCHEME
A commitment scheme is a digital analog of a sealed envelop.
It is a two-phase game between two parties where the phases
are commit and open. Commit phase involves hiding and
binding of a secret by the first party and send it to the second
party; while open is to prove that the first party did not cheat
the second party in the commit phase. Therefore, a commit-
ment scheme satisfies the aforementioned two security prop-
erties: hiding and binding. Hiding ensures that the receiver
cannot see the message before the open phase, while binding
ensures that the sender cannot change the message after
the commit phase. The following example shows a binding
commitment:
1) Pick a secret value s to commit from 0 to p � 1 where

p is a large prime number;
2) Calculate the value c = gs mod p;
3) Publish the value c as a commitment.

In the above example, the binding property follows as it is
infeasible for the sender to find any other value y which
gives the same c. Here finding the value s from known c, p
and g is a computationally hard problem of discrete loga-
rithm but any party can verify the commitment value c if
s is provided. There are many commitment schemes such
as Pedersen commitment [155] and elliptic curve Pedersen
commitment. Zerocoin [124] uses Pedersen commitment to
bind a serial number s to Zerocoin z. The commitment c is
given as follows:

c = gshz mod p.

Here g, h, and p are known to everyone, and the user chooses
s, z and computes and publishes the commitment c. These
s, z cannot be computed from c even if one is provided.
As a consequence, in Zerocoin when the serial number s
is published, the user can prove his/her ownership by pro-
viding z. Pedersen commitment has also been used to build
blockchain-oriented range proof system, Bulletproof [95] and
its elliptic curve version is also successfully implemented in
Monero [53], [96]. A switch commitment scheme is designed
for confidential transactions in blockchain [156].

H. ACCUMULATOR
An accumulator is a one-way function which gives a mem-
bership proof without revealing individual identity in the
underlying set. This can be used in blockchain to build other
cryptographic primitives such as commitment, ring signa-
tures, and zero-knowledge proofs. Merkle tree, used in many
cryptocurrencies, fits under a more comprehensive class of
cryptographic accumulators which is space and time efficient
data structure to test for set membership. Figure 11 shows
how blockchain transactions are represented in the Merkle
tree, and the Merkle root is stored in the block structure of the
blockchain. Non-Merkle accumulators are classified as RSA
accumulators and elliptic curve accumulators.
In Zerocoin [124], an accumulator A is computed by

the network overall coin commitments (c1, c2, . . . , cn) along

148564 VOLUME 7, 2019

67

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

FIGURE 11. Merkle tree of blockchain transactions.

with the appropriate membership witnesses for each item in
the set. The witness w is computed by the accumulation coins
with the exception of one. In this way, during Zerocoin spend
transaction, a user proves the knowledge of one coin by using
that witness. This witness w and accumulator A are publicly
verifiable without any trusted third party. Accumulator A in
Zerocoin is defined as:

A = uc1 c2 c3 ... c ... cn mod N ,

where the integers A, u and N are known to everyone. The
coin c is a Pedersen commitment of a coin serial number s
and the random number z. Zerocoin uses Random Number
Generator (RNG) to generate different s and z to find c using
Pedersen commitment until c is prime. The witness w of a
coin c is defined as the accumulation of all coins with the
exception of c:

w = uc1 c2 c3 ... cn mod N .

Accumulators can also be employed for range proofs in
blockchain. Accumulators are used in [93] to design a state-
less blockchain where in order to participate in consensus,
the node only needs a constant amount of storage.

I. OBLIVIOUS TRANSFER (OT)
Oblivious Transfer is a two-party protocol between a sender
S and a receiver R. The general type of oblivious transfer is
k-out-of-n oblivious transfer

�n
k

�
-OT , where k < n, in which

S holds nmessages and R retrieves simultaneously k of them
without letting S know about which k out of n messages R
received. Oblivious transfer is introduced by Rabin [157] in
which a sender sends a message to a receiver with probabil-
ity 1

2 . The protocol is called as
1
2 -OT , and it is as following:

1) Sender S chooses two large primes p, q and computes
N = pq and then the sender generates RSA public key
(e,N) such that e is relatively prime to (p� 1)(q� 1).

2) S computes cipher text c over message M as c =
E(e,N)(M) = Me mod N and sends e,N , c to
receiver R.

3) R chooses a random x 2 ZN⇤ and sends a = x2

mod N to S.

4) S computes four square roots of a mod N and chooses
one of the roots y at random and sends it to R.

5) R checks whether y2 ⌘ a mod N and if y 6⌘ ±x
mod N , then R will be able to factor N and, hence,
be able to decrypt c to recoverM .

1
2 -OT is complete for secure multi-party computation.

Oblivious transfer has been realized in secure multiparty
computation to create private and verifiable smart contracts
on blockchain [158]. Oblivious transfer can also be utilized
for exchange of secrets, private information retrieval, and
building protocols for signing contracts. There has been loads
of work done in oblivious transfer, and some of these works
have been applied in blockchains such as Searchain [107]
andAPDB [108] (for automated penalization of data breaches
using crypto-augmented smart contracts).

J. OBLIVIOUS RAM (ORAM)
Oblivious RAM is a cryptographic protocol through which a
client can safely store his/her data in an untrusted server. The
client performs read and write operations remotely. ORAM
hides the memory access pattern from the server as well
as from outside entities accessing to that part of the data.
Therefore, if a client performs two operations of equal
length, then the polynomial-bounded adversarial server can-
not distinguish between these operations. ORAM bestows
freshness, confidentiality of data and integrity so it can
be used in various blockchain use-cases and applications.
Solidus [105], a protocol for confidential transactions on
public blockchain, uses oblivious RAM. Solidus framework
operates on a modest number of banks where each bank
maintains a large number of user accounts. Solidus introduces
a new primitive called Publicly Verifiable Oblivious RAM
Machine (PVORM). Most of the previous usage of Oblivious
RAM is performed by a single client to outsource storage.
In Solidus, ORAM is used to store user account balances
and uses PVORM to verify the valid transaction set of a
bank. Oblivious RAM is also used in the client-server ORAM
protocol [106], Externally Verifiable Oblivious RAM, where
Ethereum’s automated crypto-currency contracts adjudicate
the disputes occurred due to the malicious server by penaliz-
ing the server.

K. PROOF OF RETRIEVABILITY (POR)
With the advent of cloud computing, a client might outsource
his/her data to the cloud, but still, the client needs a guar-
antee that the old data has not been modified or deleted.
This can be achieved by using proof of retrievability [159]
which is an interactive mechanism between a client (ver-
ifier) and a server (prover) where the server provides a
compact proof to the client that his/her data is intact and
he/she can recover the data at any point of time. In this
direction, to verify the proof, the client should be equipped
with devices having some computational power and network
access. This requirement hinders the large-scale adoption of
POR by cloud users. To solve this issue, outsource proof of

VOLUME 7, 2019 148565

68

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

retrievability (OPOR) [160] is introduced where external
auditors verify the POR with the cloud provider on behalf of
the clients. OPOR protocol specification uses Bitcoin func-
tionalities for the building blocks.
Permacoin [112] uses proof of retrievability. The primary

goal of Permacoin is the distributed storage of archival data.
As in Bitcoin’s mining mechanism, the client continuously
invests his/her computational power, and in addition to the
computational power, his/her storage is invested. As a conse-
quence, Permacoin requires storage overhead and high band-
width consumption. To solve these issues, Retricoin [113] is
proposed to repurpose the mining work in order to ensure the
retrievability of a large file at any point of time. Retricoin
also proposes a new algorithm for miners to mine collec-
tively. Storj [114] also uses POR to prove the existence of
a fresh copy of a shard on the storer side. As a result, POR
can be employed in many cryptocurrencies and blockchain
applications.

L. POST-QUANTUM CRYPTOGRAPHY
Recent advances in quantum computing pose a severe threat
to classical cryptography, as most of the widely used cryp-
tography is based on the hardness of some problem which
can be efficiently solved using quantum computers. Thus,
research in the Post-Quantum cryptography [161] has taken
a massive leap. The security impact of breaking public key
cryptography by quantum computers would be tremendous.
Elliptic curve cryptography (ECC), which is an approach to
public key cryptography, is mostly used in blockchain appli-
cations. Using a variant of Shor’s algorithm [162], a quantum
computer can easily forge an elliptic curve signature that
underpins the security of each transaction in blockchain and
so breaking of ECC will affect blockchain in terms of broken
keys, hence, digital signatures.
Research in this field is in the rise to create Post-Quantum

resistant digital signatures (BPQS) [163] which is a
hash-based signature and uses one-time signature (OTS)
schemes as a building block. OTS does not depend on
any number-theoretic hard problem, and it requires only a
secure cryptographic hash function, hence, it is not vul-
nerable to Shor’s algorithm. BPQS has advantages like
shorter signatures, faster key generations, and customiz-
able property. Post-Quantum cryptography is also used to
design Post-Quantum blockchain [109] using one-time sig-
nature chains or to create secure crypto-currency based on
Post-Quantum blockchain [110].
For the quantum proof solutions, research is now focused

on Lattice-based cryptography [164], multivariate cryptog-
raphy [165], hash-based cryptography [161], and code-based
cryptography [166]. Most of the developed primitives within
these areas offer either signatures or public keys that are
orders of magnitude bigger than the currently used ones, and
that is really a hard research challenge that we formulate as:
Research Problem 11: Construct a new blockchain mech-
anism that has comparably efficient public key addresses
and comparably small digital signatures as the currently

used ones, but that is based on Post-Quantum cryptographic
schemes.

M. LIGHTWEIGHT CRYPTOGRAPHY
Conventional cryptographic methods such as RSA and
SHA256, work well on systems having reasonable memory
and processing power, but these methods are not suitable
for devices constrained with memory, physical size, and bat-
tery. Conventional cryptographic methods are challenging to
implement in resource-constrained devices due to implemen-
tation size, large key size, throughput, speed, and energy
consumption. Nevertheless, to solve these issues, lightweight
cryptography has evolved. Lightweight cryptography targets
sensor networks, embedded systems and other variety of
resource-constrained devices such as IoT end nodes and
RFID tags. Lightweight cryptography is simpler and faster
than conventional cryptography but less secure (suffers from
many attacks). In IoT, embedded devices having sensors are
interconnected through a public or private network. As these
are resource-constrained devices, lightweight cryptography
solves the issues of communication, memory, and power
consumption, but still lacks security. To provide better secu-
rity, blockchain can be used in conjunction with the sensor
network.
Reference [167] reinforces our point to use lightweight

cryptography and blockchain for IoT devices to improve
security (confidentiality and integrity of IoT device data).
A lightweight scalable blockchain (LSB) [102] is also intro-
duced to improve IoT security and privacy. LSB uses a
lightweight hash function and lightweight consensus algo-
rithm in order to achieve scalability, security, and privacy.
Blockchain is also used to cater security in electric vehi-
cles, cloud and edge computing [103] which use lightweight
cryptographic primitives like lightweight symmetric key
encryption.

N. VERIFIABLE RANDOM FUNCTION (VRF)
This cryptographic primitive [168] is a pseudorandom func-
tion which gives a public verifiable proof of its output based
on public input and private key. In short, it maps inputs
to verifiable pseudorandom outputs. VRFs can be used to
provide deterministic precommitments which can be revealed
later using proofs. VRFs are resistant to pre-image attacks
unlike traditional digital signature. VRF is a triple of the
following algorithms:

• KeyGen(r)!(VK,SK). Key generation algorithm gener-
ates verification key VK and secret key SK on random
input r.

• Eval(SK,M)!(O,⇡). Evaluation algorithm takes secret
key SK and message M as input and produces pseudo-
random output string O and proof ⇡ .

• Verify(VK,M,O,⇡)!0/1. Verification algorithm takes
input as verification keyVK, messageM, output stringO,
and proof ⇡ . It outputs 1 if and only if it verifies thatO is

148566 VOLUME 7, 2019

69

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

the output produced by the evaluation algorithm on input
secret key SK and messageM, otherwise it outputs 0.

In context of blockchain, many Proof of Stake blockchains
use VRF to perform secret cryptographic sortition such
that electing leader and committee as part of underlying
consensus protocol. Proof of Stake blockchain protocols
given in [169] use VRF to elect block proposers and vot-
ing committee members. Algorand [37] and Witnet net-
work protocol [170] also employ VRF to conduct secret
cryptographic sortition. Ouroboros Praos [121] uses VRF on
current timestamp and nonce to determine whether a partic-
ipant is eligible to issue a block. Dfinity [122] network is
a decentralized cloud computing resource which uses VRF
to generate stream of outputs over time. Thus, the usage of
verifiable random function brings many advantages to be
exploited in blockchain and opportunities for more research.

O. OBFUSCATION
Obfuscation is a way of transforming a program P into a
‘‘Black-box’’ equivalent of the program Q = O(P) so that P
and Q give the same output when the given inputs are same.
It should be hard to find out the internal logic or structure
of the program once it is obfuscated. Obfuscation aims to
make reverse engineering difficult by making the program
unintelligible while preserving its functionality. Finding a
perfect black-box obfuscation is mathematically impossible.
Along these lines, a weaker solution is to find an ‘‘Indis-
tinguishability Obfuscation’’ so that one cannot determine
whether the generated output is from the original program
or the obfuscated program. A very simplified example for
understanding the Indistinguishability Obfuscation, is the fol-
lowing: There are two equivalent programs P = x ⇤ (y + z)
and P0 = x ⇤ y+ x ⇤ z. They are obfuscated such that we have
O(P) and O0(P0). We say that the obfuscated programs O and
O0 are indistinguishable if on a received output o one cannot
determine which of the programs O,O0 gave that output.
Obfuscation can be applied for witness encryption, func-

tional encryption, and restricted use of software. It can be
applied in blockchain to turn smart contract into a black-
box. An obfuscated smart contract can also possess a secret
key to decrypt an encrypted input to the smart contract. As a
result, publicly running contracts can possess secret data
inside it by obfuscating the smart contract. Figure 12 depicts
an obfuscated smart contract which stores the private key
corresponding to a public key which is used to encrypt the
transaction data. It is hard to get the corresponding private
key because of the obfuscated smart contract.
One of the very first successful attempts to offer a very lim-

ited variant of obfuscation in Bitcoin was the standardization
of the ‘‘Pay to script hash (P2SH) transactions’’ [125]. The
amounts of Bitcoins in P2SH transactions are sent to a script
hash instead of a public key hash. We say that it was a limited
variant of obfuscation because in order to spend Bitcoins
received via P2SH, the recipient must provide a script that
matches the script hash. Still, the successful acceptance of
the P2SH transactions without causing a hard fork in Bitcoin

FIGURE 12. An example of smart contract obfuscation.

showed that there is an interest in obfuscation in Blockchain,
and that subject is a viable research area.
Research on obfuscation in Bitcoin [104] has been con-

ducted and can be compiled for other cryptocurrencies
and blockchain applications. Obfuscation is also used in
blockchain for power grid consumption [171] where noise
is added to the user’s electricity consumption data through
obfuscation, and the electricity consumption data is divided
into random and non-random obfuscated data.
As noted in [172] the definition and characteristics of some

languages determine how easy is to obfuscate programs writ-
ten in those languages. For example C, C++, Java and Perl
are languages that offer easier program obfuscation. What
about scripting languages used in Blockchain? We reformu-
late this question as a research problem:
Research Problem 12: Study the easiness/hardness of
obfuscating programs written in the scripting languages used
in the current blockchain systems. Study the feasibility of
applying some of the developed obfuscation techniques in C,
C++, Java and Perl for the blockchain scripting languages.

VI. PROMISING BUT YET NOT EMPLOYED
CRYPTOGRAPHIC PRIMITIVES IN BLOCKCHAIN
This Section construes some cryptographic concepts which
are promising candidates to be utilized in blockchain. These
cryptographic concepts are not yet well-studied and fully
applied in blockchain but constitute of some excellent
properties which overlap with some desired properties of
blockchain. Therefore, some use cases and blockchain ser-
vices can benefit from these concepts. The included concepts
in this Section have either not at all been studied for use in
blockchain or have been studied but not implemented yet.
We include references which show some initial ideas how to
use these concepts in blockchain, but these references do not
give any details about concrete implementation.

A. AGGREGATE SIGNATURE
An aggregate signature allows creating a single compact
signature from k signatures on k distinct messages from
k distinct signers. It provides faster verification as well

VOLUME 7, 2019 148567

70

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

as reduction in storage and bandwidth. As in blockchain,
the requirement of storage and computation is high; aggregate
signatures can be used for reduction in storage and computa-
tion. Aggregate signatures are the non-trivial generalization
of multi-signatures (where all users sign the same message).
There are two primary mechanisms of signature aggregation:
general and sequential aggregation. In order to describe these
mechanisms, assume a set of k users having public-private
key pair (PKi, SKi) and user i wants to sign messageMi.

1) In general signature aggregation scheme, each user i
(from the group of k users) creates signature �i on
his/her messageMi. Now to create aggregate signature,
anyone can run public aggregation algorithm to take all
k signatures �1, �2, . . . , �k and compress them into a
single signature � .

2) In sequential signature aggregation scheme, user
1 signs M1 to obtain �1; user 2 then combines �1 and
M2 to obtain �2; and so on. The final signature � is
generated by user k which binds Mk and the signature
�k�1. Sequential signature aggregation can only take
place during the signing process.

Techniques for aggregating signatures are known for a
variety of signature schemes such as DSA, Schnorr, pairing-
based, and lattice-based. Aggregate signature schemes should
restrict any adversary from creating a valid aggregate signa-
ture on his/her own. Aggregate signatures have been proposed
for Bitcoin [94], and they can be applied to other cryptocur-
rencies and blockchain designs.
Research Problem 13: Construct an efficient new signature
scheme based on aggregate signatures, that is specifically
tailored for blockchain transactions.

B. IDENTITY-BASED ENCRYPTION (IBE)
Identity-Based Encryption first proposed as idea in [173] and
later realized as complete cryptographic primitive in [174],
allows the encrypting party to use any known (or supposedly
known) identity of any receiving party as its public key.
Upon receiving the encrypted message, the receiving party
asks a trusted third party ‘‘Private Key Generator (PKG)’’
to generate the corresponding private key. Then the receiver
decrypts the message using the private key received by PKG.
Nowadays, by using identity-based encryption, public keys
can be generated using the social identities (Facebook, Twit-
ter, LinkedIn).
There are many flavors and extensions of IBE such as

Hierarchical IBE [175], Attribute-based encryption [176],
Decentralized attribute-based encryption [177], Functional
encryption [178] to name a few.
One of the specifics of IBE is that it replaced the role

of the Public-Key Infrastructure with the trusted third party
PKG. The presence of a trusted third party somehow defeats
the purpose to use it in permissionless blockchain, but still
there is a scope to use it in the distributed ledger. Namely,
it seems that IBE can be used in permissioned blockchain
network. In permissioned blockchain a consortium of trusted

third parties that distribute the private keys to the users can
take the role to be IBE PKG. Another variant could be a
smart contract layer being responsible for the generation of
public-private key pairs inside the PKG using IBE.
We identified that the use of IBE within blockchain has

started in [100] as well as in supply chain management [101].
Still, there are a lot of challenges and opportunities for other
blockchain applications and services.
Research Problem 14: Construct an IBE based (or IBE
related) permissioned blockchain network.

C. VERIFIABLE DELAY FUNCTION (VDF)
Verifiable Delay Function (VDF) is a function f : X !
Y which takes a prescribed number of sequential steps to
compute; however, the output can be easily verifiable by
anyone. This delay function prevents malicious miners from
computing the random output, and it also provides a short
proof which is used during the verification of the output along
with previously generated public parameters. Boneh et al.
described the concept of VDF [179] as well as illustrated the
idea about how it can be applicable to blockchain. VDF can
be efficiently used as a way to add a delay in decentralized
applications. VDF can be used in the application of decentral-
ized systems such as in leader election process of consensus
mechanisms, constructing randomness beacons and proofs of
replication.
Delay function was initially implemented in Ethereum

prototype [180] where the main idea was verification of
delay functions through smart contract by using amulti-round
protocol. After this prototype implementation, the concept
of verifiable delay function was proposed by Boneh et al.
Nowadays several blockchain industries are trying to use
VDF in their consensus mechanisms. Chia Network [120]
which is open source blockchain is trying to use VDF in its
‘‘Proof of space and time’’ consensus mechanism. Ethereum
is also trying to develop a pseudorandom number generator
using VDF. In this way, VDF brings opportunities to dig
deeper and to be applied in the blockchain domain.
Research Problem 15: [181]: Finding a post-quantum
secure simple VDF for the use of blockchain.

D. PRIVATE INFORMATION RETRIEVAL (PIR)
It is a cryptographic primitive in which a client queries to
a server and retrieves the corresponding response from the
server without exposing query terms as well as response.
It is a weaker version of 1-out-of-n oblivious transfer. It can
facilitate private blockchain queries to fetch transaction data
privately from blockchain. Accordingly, it can be used to find
out whether a particular transaction has been appended in the
blockchain or can be used to check the transactions associ-
ated with the set of public keys and find out the remaining
balances. In addition, PIR can be helpful to query transaction
data in simplified payment verification (SPV) clients without
compromising privacy. PIR requires an adequate amount of
processing, but in the future there might be efficient PIR
techniques which can be implemented in blockchain. PIR has

148568 VOLUME 7, 2019

71

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

also been applied in distributed storage [182] which can be
further investigated and adopted in blockchain.
Paper [85] sets several research problems in the area

of blockchain transactions privacy and private information
retrieval. We rephrase some of the research challenges pos-
tulated there:
Research Problem 16: [85]: Develop protocols where
non-anonymous users can publish transactions that cannot be
linked to their network addresses or to their other transac-
tions.
Research Problem 17: [85]: Develop protocols where
non-anonymous users can fetch details of specific transac-
tions without revealing which transactions they seek.
Research Problem 18: [85]: Develop efficient and scal-
able protocols for anonymous publishing on permis-
sioned blockchains, by combining the asynchronous
Byzantine-tolerant consensus protocols for agreeing on trans-
actions with the process of mixing users’ announcements.

E. DECENTRALIZED AUTHORIZATION
Authorization and/or hiding sensitive data and actions are
essential concepts of resource sharing in open and collabo-
rative environments such as the Internet. Furthermore, in a
decentralized form of authorization, parties have full control
over their resources and authority to delegate it whether
entirely or in part to other parties. An authorization system
should provide only as little access to the users as possible to
perform their jobs.
Traditional access control is a centralized authorization

server which imposes a problem of single point of failure. The
centralized authorization scheme has different methods of
authorization such as access control list or role-based access.
In comparison, decentralized authorization is more effi-

cient and easier in terms of time, resource and quality.
A decentralized authorization system should be well admin-
istrated to give access privileges to the users. On the negative
side, having in mind that the auditing is also a key component
of authorization, in a decentralized manner, it is hard to
efficiently implement it and to enforce it.
By using blockchain smart contract, some decentralized

authorization systems have been designed, e.g.,
BlendCAC [97] andWAVE [98]. WAVE introduces an autho-
rization layer for the name spaces and resources. Moreover,
for the outside entities, a delegation of trust is used to obtain
permission on a resource. Decentralized authorization and
blockchain can be used to grow each other by combining one
another in a specific way.
Research Problem 19: Construct a decentralized authoriza-
tion protocol for permissioned blockchain that will provide
access privileges as well as a delegation of these access to the
users.

F. WHITE-BOX CRYPTOGRAPHY
White-box attack is a threat model where the attacker has full
visibility of the internal data flow and can modify the data
and code. White-box cryptography [183] aims to address the

challenge of implementing a cryptographic algorithm in soft-
ware in such a way that cryptographic assets remain secure
even when subject to white-box attacks. A white-box cryp-
tographic implementation must resist black-box (the attacker
has access to only input and output of algorithm), grey-box
(side-channel), and also white-box attacks. White-box cryp-
tography is a way to implement cryptographic algorithms like
RSA andAES so that the keys remain hidden all the time even
during the execution. In some white-box implementations,
the key is baked into the code and further concealed to use
it in a cryptographic algorithm. In blockchain, it can be used
to hide the private key inside the smart contract, and that key
can be unlocked when smart contract executes and further it
can be used to create a signature.
White-box cryptography can be orchestrated in blockchain

to establish trust and privacy of assets. As in blockchain,
key and seed secrets are a single point of compromise; these
are the highly vulnerable and lucrative targets when stored
in memory. To safely store the key, it can be obfuscated
in white-box cryptography and further used for encryp-
tion/decryption. The implementation of white-box cryptog-
raphy should be strong enough to facilitate the key storage
in blockchain. It has been used in runtime self-protection in a
trusted blockchain-inspired ledger [123] and can be promoted
in other blockchain applications and services.

G. INCREMENTAL CRYPTOGRAPHY
The idea behind incremental cryptography [184] is if there
is a modification to some document M to M 0, then the
time to update the result upon modification of M should
be ‘‘proportional’’ to the ‘‘amount of modification’’ done
to M . Incremental cryptography can be used in incremental
collision free-hashing or incremental digital signature. The
initial idea proposed for incremental cryptography uses the
example of a digital signature. The idea was to have a digital
signature which is easy to update upon the modification of
the underlying message. Suppose M is a message and �

is the corresponding signature. If M is changed to M 0 by
adding/deleting any block, then the time to update the signa-
ture from � to � 0 should be ‘‘proportional’’ to the ‘‘amount
of modification’’ done to getM 0 from M .
A proposal for construction of an incremental hash func-

tion based on SHA-3 is given in [185], and a private
blockchain ‘‘Kadena’’ [99] proposes the use of either Merkle
tree or incremental hashing for transaction verification. The
concept of incremental hashing in Kadena blockchain is to
update the distributed log among the blockchain nodes.
Research Problem 20: Construct a new blockchain mecha-
nism that uses an incremental hash function for updates of the
distributed ledger.

H. IDENTITY-BASED BROADCAST ENCRYPTION (IBBE)
IBBE scheme [186] can be considered as a generalization
of identity-based encryption scheme (Section VI-B) where
instead of having one receiver, there are multiple receivers.
In broadcast encryption the users are recognized by their

VOLUME 7, 2019 148569

72

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

identities rather than by their public keys. In a multi-receiver
setting, IBBE proves as a powerful method to provide data
security and privacy. In this scheme, a sender broadcasts the
encrypted message to an intended set of users called privilege
set. There can be many privilege sets with different cardi-
nalities. A revocable IBEE scheme [187] shows a scenario
of IBEE in which the involved players are the key authority,
revoked and non-revoked users. In this setting, the decryption
key is updated through the release of a key update material
by the key authority. These decryption keys are updated only
for the non-revoked users. In this scheme, a membership is
revoked for a user if he/she is found malicious or his/her
keys are compromised. This RIBBE scheme is further imple-
mented in Charm framework [188].
As blockchain is a multi-receiver setting, IBBE can be a

propitious candidate to provide transaction data security and
privacy. It can also be used in a permissioned blockchain to
certify blocks of membership operation logs. RIBBE scheme
as being very efficient in terms of computational complexity
and communication can work efficiently as well in the case
of blockchain.
Research Problem 21: Develop protocols to certify the
blocks of membership operation logs in permissioned
blockchain setting.

I. OTHER TECHNIQUES
1) Message Authentication Code (MAC): It is a short piece

of information (known as a tag) to authenticate a mes-
sage which states that the message comes from the
stated sender and it has not been changed. It can be used
in blockchain to provide integrity of smart contracts
or network data. A blockchain-based system for secure
mutual authentication (BSeIn) [189] uses MAC for the
authentication.

2) Non-Interactive Witness Indistinguishability (NIWI):
These are proof systems which are weaker variants of
Non-Interactive zero-knowledge (NIZK) proofs. Wit-
ness Indistinguishable property states that the verifier
cannot distinguish which witness is used to prove the
statement by the prover, considering the case of exis-
tence of many witnesses. NIWI has been used to con-
struct NIZK over POS based blockchain protocol [190]
as well as recently, a new construction of publicly
verifiable NIWI proofs from blockchain [191] is also
proposed. Hence NIWI proofs bring a new direction to
be exploit within the blockchain domain.

3) Position-based Cryptography: In this cryptographic
protocol [192], the identity or the credentials of a
party are derived from his/her geographical location.
These credentials can be further used for position-based
secure communication and position-based authentica-
tion. Position-based cryptography has not been applied
in blockchain yet, but it looks promising.

4) Elliptic Curve Diffie-Hellman Merkle (ECDHM)
addresses: These addresses [193] can be used to
exchange messages privately in the blockchain. It can

be used in blockchain for secure communication
among parties. ECDHM address is shared between
the sender and the receiver as secret shares, and they
use this shared secret to derive anonymous transacting
addresses of each other. This address may only be
exposed once they have the share to construct these
addresses. In this way, it can be used for the privacy
of transaction data.

5) Verifiable Secret Shuffle: It is a variant of a
zero-knowledge proofs (an honest-verifier zeroknowl-
edge) proposed in [194]. An initial application of ver-
ifiable shuffles has been proposed as a mixing service
for Ethereum [195].

VII. CONCLUSION
The goal of this work was to offer a systematic study of
available cryptographic concepts and to identify different
research directions and problems. Based on these reviewed
concepts and associated properties, we hope that the paper
will help cryptographers interested in blockchain to choose a
challenging research problem and for practitioners to choose
a suitable concept for their particular use case.
Current transitions to blockchain enabled solutions by dif-

ferent industries give rise to more research on this tech-
nology. Academic and industrial research is focused on
making blockchain cost efficient in terms of computational
power, memory requirements and security. Many existing
cryptographic concepts have been embraced for blockchain
use. This paper systematizes the current state-of-the-art
knowledge of existing cryptographic concepts used in the
blockchain. It also gives a brief description of the used crypto-
graphic concept and points to the available blockchainmodels
that are using that concept. The paper also identifies some
concepts which have not yet been used in blockchain but
can be beneficial if applied in the blockchain. Apart from
existing cryptographic concepts, the paper also presents the
basic building blocks of blockchain and how these building
blocks are dependent on each other.
Table 5 summarizes all of the cryptographic concepts (used

or with potentials to be used in blockchain) presented in this
work.

REFERENCES
[1] S. Nakamoto. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System.

[Online]. Available: http://bitcoin.org/bitcoin.pdf
[2] CoinMarketCap. (May 2019). Total Market Capitalization.

Accessed: Jun. 16, 2019. [Online]. Available: https://coinmarketcap.
com/charts/

[3] D. Chaum, ‘‘Blind signatures for untraceable payments,’’ in Advances in
Cryptology, D. Chaum, R. L. Rivest, and A. T. Sherman, Eds. Boston,
MA, USA: Springer, 1983, pp. 199–203.

[4] C. Dwork andM.Naor, ‘‘Pricing via processing or combatting junkmail,’’
in Proc. Annu. Int. Cryptol. Conf. Springer, 1992, pp. 139–147.

[5] R. L. Rivest, A. Shamir, and D. A. Wagner, ‘‘Time-lock puzzles and
timed-release crypto,’’ Massachusetts Inst. Technol., Cambridge, MA,
USA, Tech. Rep. MIT/LCS/TR-684, 1996.

[6] E. Hughes. (1993). A Cypherpunk’s Manifesto. Accessed: Apr. 18, 2019.
[Online]. Available: https://www.activism.net/cypherpunk/manifesto.
html

148570 VOLUME 7, 2019

73

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

[7] A. Back, The Hashcash Proof-of-Work Function, document Draft-
Hashcash-back-00, Internet-Draft Created, Jun. 2003.

[8] W. Dai. (1998). B-Money. Accessed: Apr. 18, 2019. [Online]. Available:
http://www.weidai.com/bmoney.txt

[9] N. Szabo. (2005). Bit Gold. Accessed: Apr. 18, 2019. [Online]. Available:
https://unenumerated.blogspot.com/2005/12/bit-gold.html

[10] N. Satoshi. (Jul. 2010). RE: They Want to Delete the Wikipedia Arti-
cle. Accessed: Apr. 18, 2019. [Online]. Available: https://bitcointalk.
org/index.php?topic=342.msg4508#msg4508

[11] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum, Yellow Paper 1e18248, 2014.

[12] Ether Foundation. (Jan. 2016). The Ether Denominations are
Called Finney, Szabo, and Wei. What/Who are These Named After?
Accessed: Apr. 30, 2019. [Online]. Available: https://ethereum.
stackexchange.com/questions/253/

[13] H. Finney. (Mar. 2013). Bitcoin and Me (Hal Finney).
Accessed: Apr. 30, 2019. [Online]. Available: https://bitcointalk.org/
index.php?topic=155054.0

[14] V. Morabito, Business Innovation Through Blockchain. Cham,
Switzerland: Springer, 2017.

[15] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, ‘‘A survey on security and
privacy issues of bitcoin,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3416–3452, 4th Quart., 2018.

[16] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and
D. I. Kim, ‘‘A survey on consensus mechanisms andmining strategyman-
agement in blockchain networks,’’ 2018, arXiv:1805.02707. [Online].
Available: https://arxiv.org/abs/1805.02707

[17] L. Wang, X. Shen, J. Li, J. Shao, and Y. Yang, ‘‘Cryptographic prim-
itives in blockchains,’’ J. Netw. Comput. Appl., vol. 127, pp. 43–58,
Feb. 2019. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S108480451830362X

[18] B. Preneel, ‘‘The state of cryptographic hash functions,’’ in School orga-
nized by the European Educational Forum. Berlin, Germany: Springer,
1998, pp. 158–182.

[19] P. Gallagher and A. Director, ‘‘Secure hash standard (SHS),’’ FIPS PUB,
vol. 180, p. 183, Mar. 1995.

[20] A. Regenscheid, R. Perlner, S.-J. Chang, J. Kelsey, M. Nandi, and S. Paul,
‘‘Status report on the first round of the SHA-3 cryptographic hash algo-
rithm competition,’’ Inf. Technol. Lab., Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, Tech. Rep. NISTIR 7620, 2009.

[21] E. Heilman, N. Narula, G. Tanzer, J. Lovejoy, M. Colavita, M. Virza,
and T. Dryja, ‘‘Cryptanalysis of curl-P and other attacks on the IOTA
cryptocurrency,’’ in Proc. IACR Cryptol. ePrint Arch., 2019, p. 344.

[22] E. Heilman, N. Narula, T. Dryja, and M. Virza, ‘‘Iota vulnerability report:
Cryptanalysis of the curl hash function enabling practical signature
forgery attacks on the iota cryptocurrency,’’ Tech. Rep., 2017.

[23] C. Lee. (2011). Litecoin. [Online]. Available: https://litecoin.org
[24] C. Percival, ‘‘Stronger key derivation via sequential memory-hard func-

tions,’’ BSDCan, Ottawa, ON, Canada, Tech. Rep., 2009.
[25] H. Krawczyk, M. Bellare, and R. Canetti, ‘‘HMAC: Keyed-hashing for

message authentication,’’ Netw. Work. Group RFC, Tech. Rep., 1997.
[26] D. J. Bernstein, ‘‘The Salsa20 family of stream ciphers,’’ in New Stream

Cipher Designs. Berlin, Germany: Springer, 2008, pp. 84–97.
[27] V. Buterin, QuarkCoin: Noble Intentions, Wrong Approach. Nashville,

TN, USA: Bitcoin Magazine, Dec. 2013. Accessed: Jun. 3, 2019.
[28] M. S. Turan, R. A. Perlner, L. E. Bassham, W. E. Burr, D. H. Chang,

S.-J. Chang, M. J. Dworkin, J. M. Kelsey, S. Paul, and R. C. Peralta,
‘‘Status report on the second round of the SHA-3 cryptographic hash
algorithm competition,’’ NIST Interagency, Gaithersburg, MD, USA,
Tech. Rep. 7764, 2011.

[29] D.Gligoroski, V. Klima, S. J. Knapskog,M. El-Hadedy, and J. Amundsen,
‘‘Cryptographic hash function blue midnight wish,’’ in Proc. 1st Int.
Workshop Secur. Commun. Netw., May 2009, pp. 1–8.

[30] E. Duffield and D. Diaz. (2018). Dash: A Payments-Focused Cryp-
tocurrency. Accessed: Jun. 3, 2019. [Online]. Available: https://github.
com/dashpay/dash/wiki/Whitepaper

[31] Open Source Community at Github. (2018). ProgPoW—A Program-
matic Proof of Work. Accessed: Jun. 3, 2019. [Online]. Available:
https://github.com/ifdefelse/ProgPOW

[32] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry,
S. Meiklejohn, and G. Danezis, ‘‘Consensus in the age of blockchains,’’
2017, arXiv:1711.03936. [Online]. Available: https://arxiv.org/abs/
1711.03936

[33] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, ‘‘Bitcoin-NG:
A scalable blockchain protocol,’’ in Proc. NSDI, 2016, pp. 45–59.

[34] V. Buterin and V. Griffith, ‘‘Casper the friendly finality gadget,’’ 2017,
arXiv:1710.09437. [Online]. Available: https://arxiv.org/abs/1710.09437

[35] L. Ren, ‘‘Proof of stake velocity: Building the social currency of the
digital age,’’ White Paper, 2014, pp. 1–13. [Online]. Available: http://
reddcoin.com

[36] J. Kwon. (2014). Tendermint: Consensus Without Mining. [Online].
Available: https://tendermint.com/static/docs/tendermint.pdf

[37] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, ‘‘Algo-
rand: Scaling byzantine agreements for cryptocurrencies,’’ in Proc. 26th
Symp. Oper. Syst. Princ. (SOSP), New York, NY, USA, 2017, pp. 51–68.
doi: 10.1145/3132747.3132757.

[38] A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov,
‘‘A provably secure proof-of-stake blockchain protocol,’’ in Proc. IACR
Cryptol. ePrint Arch., 2016, p. 889.

[39] M. Milutinovic, W. He, H. Wu, and M. Kanwal, ‘‘Proof of luck: An effi-
cient blockchain consensus protocol,’’ in Proc. 1st Workshop Syst. Softw.
Trusted Execution (SysTEX), 2016, pp. 2:1–2:6. doi: 10.1145/3007788.
3007790.

[40] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, andW. Shi, ‘‘On security analysis
of proof-of-elapsed-time (PoET),’’ in Stabilization, Safety, and Security
of Distributed Systems, P. Spirakis and P. Tsigas, Eds. Cham, Switzerland:
Springer, 2017, pp. 282–297.

[41] I. Bentov, R. Pass, and E. Shi, ‘‘Snow white: Provably secure proofs of
stake,’’ in Proc. IACR Cryptol. ePrint Arch., 2016, p. 919.

[42] E. Duffield, H. Schinzel, and F. Gutierrez. (2014). Transaction Lock-
ing and Masternode Consensus: A Mechanism for Mitigating Double
Spending Attacks. CryptoPapers.info. Accessed: Jun. 3, 2019. [Online].
Available: https://cryptopapers.info/assets/pdf/instasend.pdf

[43] Libra Association. (Jun. 2019). The Libra Blockchain. Accessed:
Jun. 24, 2019. [Online]. Available: https://developers.libra.org/
docs/assets/papers/the-libra-blockchain.pdf

[44] J. Garay, A. Kiayias, and N. Leonardos, ‘‘The bitcoin backbone protocol:
Analysis and applications,’’ in Advances in Cryptology—EUROCRYPT
2015, E. Oswald and M. Fischlin, Eds. Berlin, Germany: Springer, 2015,
pp. 281–310.

[45] I. Bentov, A. Gabizon, and A. Mizrahi, ‘‘Cryptocurrencies without proof
of work,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur. Berlin,
Germany: Springer, 2016, pp. 142–157.

[46] A. Biryukov and D. Khovratovich, ‘‘Equihash: Asymmetric proof-of-
work based on the generalized birthday problem,’’ Ledger J., vol. 2,
pp. 1–30, Apr. 2017.

[47] M. Castro and B. Liskov, ‘‘Practical Byzantine fault tolerance,’’ in Proc.
OSDI, vol. 99, 1999, pp. 173–186.

[48] D. Schwartz, N. Youngs, and A. Britto, ‘‘The Ripple protocol consensus
algorithm,’’ Ripple Labs, San Francisco, CA, USA, White Paper 5, 2014.

[49] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis,
‘‘Blockchain mining games,’’ in Proc. ACM Conf. Econ. Comput.
(EC), New York, NY, USA, 2016, pp. 365–382. doi: 10.1145/2940716.
2940773.

[50] M. Rosenfeld, ‘‘Analysis of bitcoin pooled mining reward sys-
tems,’’ 2011, arXiv:1112.4980. [Online]. Available: https://arxiv.org/
abs/1112.4980

[51] M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar, ‘‘On bitcoin and red
balloons,’’ inProc. 13th ACMConf. Electron. Commerce (EC), NewYork,
NY, USA, 2012, pp. 56–73. doi: 10.1145/2229012.2229022.

[52] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, ‘‘Zerocash: Decentralized anonymous payments from bitcoin,’’
in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 459–474.

[53] The Monero Project. (2014). Monero. [Online]. Available: https://web.
getmonero.org

[54] R. F. A. Britto and D. Schwartz. (2012). Ripple. [Online]. Available:
https://ripple.com

[55] EOS. IO. (2017). EOS. IO Technical White Paper.
Accessed: Dec. 18, 2017. [Online]. Available: https://github.com/EOSIO/
Documentation

[56] LTONetwork. (2014).Blockchain for DecentralizedWorkflows. [Online].
Available: https://www.lto.network

[57] E. Androulaki et al., ‘‘Hyperledger fabric: A distributed operating system
for permissioned blockchains,’’ in Proc. 13th EuroSys Conf., New York,
NY, USA, 2018, pp. 30:1–30:15.

[58] (2014).Monax. [Online]. Available: https://monax.io/

VOLUME 7, 2019 148571

74

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

[59] G. Greenspan. (2015). MultiChain Private Blockchain. [Online]. Avail-
able: https://www.multichain.com/download/MultiChain-White-Paper.
pdf

[60] P. Maymounkov and D. Mazières, ‘‘Kademlia: A peer-to-peer infor-
mation system based on the XOR metric,’’ in Peer-to-Peer Systems,
P. Druschel, F. Kaashoek, and A. Rowstron, Eds. Berlin, Germany:
Springer, 2002, pp. 53–65.

[61] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, ‘‘Eclipse
attacks on bitcoin’s peer-to-peer network,’’ in Proc. 24th USENIX
Secur. Symp. (USENIX Secur.), Washington, DC, USA, 2015,
pp. 129–144. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/heilman

[62] M. Apostolaki, A. Zohar, and L. Vanbever, ‘‘Hijacking bitcoin: Routing
attacks on cryptocurrencies,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2017, pp. 375–392.

[63] J. Mirkovic and P. Reiher, ‘‘A taxonomy of DDoS attack and DDoS
defense mechanisms,’’ ACM SIGCOMMComput. Commun. Rev., vol. 34,
no. 2, pp. 39–53, Apr. 2004. doi: 10.1145/997150.997156.

[64] M. Vasek, M. Thornton, and T. Moore, ‘‘Empirical analysis of denial-
of-service attacks in the bitcoin ecosystem,’’ in Financial Cryptography
and Data Security, R. Böhme, M. Brenner, T. Moore, and M. Smith, Eds.
Berlin, Germany: Springer, 2014, pp. 57–71.

[65] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and
E. W. Felten, ‘‘SoK: Research perspectives and challenges for Bitcoin
and cryptocurrencies,’’ in Proc. IEEE Symp. Secur. Privacy, May 2015,
pp. 104–121.

[66] Bitcoin. (2012). SPV, Simplified Payment Verification.
Accessed: Jun. 8, 2019. [Online]. Available: https://bitcoin.org/en/
glossary/simplified-payment-verification

[67] R. Skudnov. (2012). Bitcoin Clients. [Online]. Available: https://www.
theseus.fi/bitstream/handle/10024/47166/Skudnov_Rostislav.pdf

[68] S. Kadhe, J. Chung, and K. Ramchandran, ‘‘SeF: A secure foun-
tain architecture for slashing storage costs in blockchains,’’ 2019,
arXiv:1906.12140. [Online]. Available: https://arxiv.org/abs/1906.12140

[69] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, ‘‘Network coding for distributed storage systems,’’
IEEE Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, Sep. 2010.

[70] K. Kralevska, D. Gligoroski, R. E. Jensen, and H. Øverby, ‘‘Hashtag
erasure codes: From theory to practice,’’ IEEE Trans. Big Data, vol. 4,
no. 4, pp. 516–529, Dec. 2018.

[71] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, ‘‘On the local-
ity of codeword symbols,’’ IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Aug. 2012.

[72] K. Kralevska, D. Gligoroski, and H. Øverby, ‘‘Balanced locally repairable
codes,’’ in Proc. Int. Sym. Turbo Codes Iterative Inf. Process. (ISTC),
Sep. 2016, pp. 280–284.

[73] G.M. Kamath, N. Prakash, V. Lalitha, and P. V. Kumar, ‘‘Codes with local
regeneration and erasure correction,’’ IEEE Trans. Inf. Theory, vol. 60,
no. 8, pp. 4637–4660, Aug. 2014.

[74] D. Gligoroski, K. Kralevska, R. E. Jensen, and P. Simonsen, ‘‘Repair dual-
ity with locally repairable and locally regenerating codes,’’ in Proc. IEEE
15th Int. Conf. Dependable, Autonomic Secure Comput., 15th Int. Conf.
Pervasive Intell. Comput., 3rd Int. Conf. Big Data Intell. Comput. Cyber
Sci. Technol. Congr. (DASC/PiCom/DataCom/CyberSciTech), Nov. 2017,
pp. 979–984.

[75] L. H. White, ‘‘The market for cryptocurrencies,’’ Cato J., vol. 35, no. 2,
p. 383, 2015.

[76] B. McLannahan, ‘‘Bitcoin exchange MT GOX files for bankruptcy pro-
tection,’’ Financial Times, vol. 28, Feb. 2014.

[77] M. Huillet. (Aug. 2019). Vitalik Buterin Talks Scalability: Ethereum
Blockchain is Almost Full. [Online]. Available: https://cointelegraph.
com/news/vitalik-buterin-talks-scalability-ethereum-blockchain-is-
almost-full

[78] BeamDevelopment Team.Beam. 2019. [Online]. Available: https://www.
beam.mw

[79] T. Rolfe. (Feb. 2019). Turing Completeness and Smart Contract
Security. [Online]. Available: https://medium.com/kadena-io/turing-
completeness-and-smart-contract-security-67e4c41704c

[80] J. Poon and T. Dryja. (2016). The Bitcoin Lightning Network: Scal-
able Off-Chain Instant Payments. Accessed: Jun. 8, 2019. [Online].
Available: https://www.bitcoinlightning.com/wp-content/uploads/2018/
03/lightning-network-paper.pdf

[81] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
‘‘A secure sharding protocol for open blockchains,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), New York, NY, USA,
2016, pp. 17–30. doi: 10.1145/2976749.2978389.

[82] J. Poon and V. Buterin, ‘‘Plasma: Scalable autonomous smart contracts,’’
White Paper, 2017, pp. 1–47. [Online]. Available: http://plasma.io

[83] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, and J. Timón, and P. Wuille. (2014). Enabling Blockchain
Innovations With Pegged Sidechains. [Online]. Available: http://www.
opensciencereview.com/papers/123/enablingblockchain-innovations-
with-pegged-sidechains

[84] C. Burchert, C. Decker, and R. Wattenhofer, ‘‘Scalable funding of bitcoin
micropayment channel networks,’’Roy. Soc. Open Sci., vol. 5, no. 8, 2018,
Art. no. 180089.

[85] R. Henry, A. Herzberg, and A. Kate, ‘‘Blockchain access privacy: Chal-
lenges and directions,’’ IEEE Security Privacy, vol. 16, no. 4, pp. 38–45,
Jul./Aug. 2018.

[86] C. Egger, P. Moreno-Sanchez, and M. Maffei, ‘‘Atomic multi-channel
updates with constant collateral in bitcoin-compatible payment-channel
networks,’’ in Proc. Cryptol. ePrint Arch., 2019, pp. 1–27. [Online].
Available: https://eprint.iacr.org/2019/583

[87] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and
M. Maffei, ‘‘Anonymous multi-hop locks for blockchain scalability and
interoperability,’’ in Proc. NDSS, 2019, pp. 1–30.

[88] M. Dong, Q. Liang, X. Li, and J. Liu, ‘‘Celer network: Bring Internet
scale to every blockchain,’’ 2018, arXiv:1810.00037. [Online]. Available:
https://arxiv.org/abs/1810.00037

[89] N. Kshetri, ‘‘5G in E-commerce activities,’’ IEEE IT Prof., vol. 20, no. 4,
pp. 73–77, Jul. 2018.

[90] R. H. N. J. Dewey and R. Plasencia, ‘‘Blockchain and 5G-enabled Internet
of Things (IoT) will redefine supply chains and trade finance,’’ in Proc.
Secured Lender, Jan/Feb. 2018, pp. 43–45.

[91] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, ‘‘FairAccess: A new
blockchain-based access control framework for the Internet of Things,’’
Secur. Commun. Netw., vol. 9, no. 18, pp. 5943–5964, 2016. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1748

[92] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman, ‘‘Towards a novel
privacy-preserving access control model based on blockchain technology
in IoT,’’ in Europe and MENA Cooperation Advances in Information and
Communication Technologies, Á. Rocha, M. Serrhini, and C. Felgueiras,
Eds. Cham, Switzerland: Springer, 2017, pp. 523–533.

[93] D. Boneh, B. Bünz, and B. Fisch, ‘‘Batching techniques for accumulators
with applications to IOPs and stateless blockchains,’’ Cryptol. ePrint
Arch., Tech. Rep. 2018/1188, 2018.

[94] Y. Zhao, ‘‘Aggregation of gamma-signatures and applications to bitcoin,’’
Cryptol. ePrint Arch., Tech. Rep. 2018/414, 2018. [Online]. Available:
https://eprint.iacr.org/2018/414

[95] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell,
‘‘Bulletproofs: Short proofs for confidential transactions and more,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 315–334. [Online].
Available: https://ieeecomputersociety.org/10.1109/SP.2018.00020

[96] G. Maxwell and A. Poelstra. (2015). Borromean Ring Signatures.
Accessed: Jun. 8, 2019. [Online]. Available: https://raw.
githubusercontent.com/Blockstream/borromean_paper/master/borromean
_draft_0.01_34241bb.pdf

[97] R. Xu, Y. Chen, E. Blasch, and G. Chen, ‘‘BlendCAC: A blockchain-
enabled decentralized capability-based access control for iots,’’ 2018,
arXiv:1804.09267. [Online]. Available: https://arxiv.org/abs/1804.09267

[98] M. P. Andersen, J. Kolb, K. Chen, G. Fierro, D. E. Culler, and R. A. Popa,
‘‘Wave: A decentralized authorization system for iot via blockchain
smart contracts,’’ Dept. Elect. Eng. Comput. Sci., Univ. California,
Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2017-234,
Dec. 2017. [Online]. Available: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2017/EECS-2017-234.html

[99] W. Martino, ‘‘Kadena: The first scalable, high performance private
blockchain,’’ Kadena, Okinawa, Japan, Tech. Rep., 2016.

[100] S. Wei, S. Li, P. Liu, and M. Liu, ‘‘BAVP: Blockchain-based access veri-
fication protocol in LEO constellation using IBE keys,’’ Secur. Commun.
Netw., vol. 2018, pp. 1–14, May 2018.

[101] S. Bose, M. Raikwar, D. Mukhopadhyay, A. Chattopadhyay, and
K.-Y. Lam, ‘‘BLIC: A blockchain protocol for manufacturing and sup-
ply chain management of ICS,’’ in Proc. IEEE Int. Conf. Internet
Things (iThings) IEEE Green Comput. Commun. (GreenCom) IEEE
Cyber, Phys. Social Comput. (CPSCom) IEEE Smart Data (SmartData),
Jul./Aug. 2018, pp. 1326–1335.

[102] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘‘LSB:
A lightweight scalable blockchain for IoT security and privacy,’’ 2017,
arXiv:1712.02969. [Online]. Available: https://arxiv.org/abs/1712.02969

148572 VOLUME 7, 2019

75

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

[103] H. Liu, Y. Zhang, and T. Yang, ‘‘Blockchain-enabled security in elec-
tric vehicles cloud and edge computing,’’ IEEE Netw., vol. 32, no. 3,
pp. 78–83, May 2018.

[104] A. Narayanan and M. Möser, ‘‘Obfuscation in bitcoin: Techniques and
politics,’’ 2017, arXiv:1706.05432. [Online]. Available: https://arxiv.
org/abs/1706.05432

[105] E. Cecchetti, F. Zhang, Y. Ji, A. Kosba, A. Juels, and E. Shi, ‘‘Solidus:
Confidential distributed ledger transactions via PVORM,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur. (CCS), New York, NY, USA,
2017, pp. 701–717. doi: 10.1145/3133956.3134010.

[106] J. Gancher, A. Groce, and A. Ledger, ‘‘Externally verifiable oblivious
ram,’’ Proc. Privacy Enhancing Technol., vol. 2017, no. 2, pp. 149–171,
2017. [Online]. Available: https://content.sciendo.com/view/journals/
popets/2017/2/article-p149.xml

[107] P. Jiang, F. Guo, K. Liang, J. Lai, and Q. Wen, ‘‘Searchain:
Blockchain-based private keyword search in decentralized storage,’’
Future Gener. Comput. Syst., to be published. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17318630

[108] E. V. Mangipudi, K. Rao, J. Clark, and A. Kate, ‘‘Automated penaliza-
tion of data breaches using crypto-augmented smart contracts,’’ Cryp-
tol. ePrint Arch., Tech. Rep. 2018/1050, 2018. [Online]. Available:
https://eprint.iacr.org/2018/1050

[109] W. van der Linde, P. Schwabe, A. Hülsing, and Y. Yarom, ‘‘Post-quantum
blockchain using one-time signature chains,’’ Radboud Univ., Nijmegen,
The Netherlands, Tech. Rep., 2018.

[110] Y.-L. Gao, X.-B. Chen, Y.-L. Chen, Y. Sun, X.-X. Niu, and Y.-X. Yang,
‘‘A secure cryptocurrency scheme based on post-quantum blockchain,’’
IEEE Access, vol. 6, pp. 27205–27213, 2018.

[111] D. Aggarwal, G. K. Brennen, T. Lee, M. Santha, and M. Tomamichel,
‘‘Quantum attacks on bitcoin, and how to protect against them,’’ 2017,
arXiv:1710.10377. [Online]. Available: https://arxiv.org/abs/1710.10377

[112] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, ‘‘Permacoin: Repur-
posing bitcoin work for data preservation,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2014, pp. 475–490. [Online]. Available:
https://ieeecomputersociety.org/10.1109/SP.2014.37

[113] B. Sengupta, S. Bag, S. Ruj, and K. Sakurai, ‘‘Retricoin: Bitcoin based
on compact proofs of retrievability,’’ in Proc. 17th Int. Conf. Distrib.
Comput. Netw. (ICDCN), New York, NY, USA, 2016, pp. 14:1–14:10.
doi: 10.1145/2833312.2833317.

[114] S. Wilkinson, T. Boshevski, J. Brandoff, and V. Buterin, ‘‘Storj a peer-to-
peer cloud storage network,’’ Storj Labs, Atlanta, GA, USA, Tech. Rep.,
2014.

[115] S. Bartolucci, P. Bernat, and D. Joseph, ‘‘SHARVOT: Secret SHARe-
based VOTing on the blockchain,’’ 2018, arXiv:1803.04861. [Online].
Available: https://arxiv.org/abs/1803.04861

[116] (2018).Wanchain. [Online]. Available: https://www.wanchain.org
[117] G. Zyskind, O. Nathan, and A. Pentland, ‘‘Enigma: Decentralized com-

putation platform with guaranteed privacy,’’ 2015, arXiv:1506.03471.
[Online]. Available: https://arxiv.org/abs/1506.03471

[118] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016,
pp. 839–858.

[119] N. van Saberhagen. (2013). Cryptonote. [Online]. Available: https://
cryptonote.org/whitepaper.pdf

[120] B. Cohen. (2017). Chia Network. [Online]. Available: https://www.
chia.net

[121] B. David, P. Ga∫i, A. Kiayias, and A. Russell, ‘‘Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,’’
in Advances in Cryptology—EUROCRYPT 2018, J. B. Nielsen and
V. Rijmen, Eds. Cham, Switzerland: Springer, 2018, pp. 66–98.

[122] T. Hanke, M. Movahedi, and D. Williams, ‘‘DFINITY technology
overview series, consensus system,’’ 2018, arXiv:1805.04548. [Online].
Available: https://arxiv.org/abs/1805.04548

[123] C. Liem, E. AbdAllah, C. Okoye, J. O’Connor, M. S. Ul Alam, and
S. Janes, ‘‘Runtime self-protection in a trusted blockchain-inspired
ledger,’’ in Proc. ESCAR Eur., Nov. 2017, pp. 1–10.

[124] I. Miers, C. Garman, M. Green, and A. D. Rubin, ‘‘Zerocoin: Anonymous
distributed e-cash from bitcoin,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2013, pp. 397–411.

[125] Bitcoin. (2012). Pay to Script Hash. Accessed: Jun. 8, 2019. [Online].
Available: https://en.bitcoin.it/wiki/Pay_to_script_hash

[126] C. Coverdale. (2018). Scaling Bitcoin: Schnorr Signatures. [Online].
Available: https://bitcointechtalk.com/scaling-bitcoin-schnorr-
signatures-abe3b5c275d1

[127] F. Charlon. Openchain. [Online]. Available: https://www.openchain.org/
[128] D. Boneh, M. Drijvers, and G. Neven, ‘‘Compact multi-signatures for

smaller blockchains,’’ in Advances in Cryptology—ASIACRYPT 2018,
T. Peyrin and S. Galbraith, Eds. Cham, Switzerland: Springer, 2018,
pp. 435–464.

[129] D. Chaum, Blind Signature System. Boston, MA, USA: Springer, 1984,
p. 153.

[130] L. Valenta and B. Rowan, ‘‘Blindcoin: Blinded, accountable mixes for
bitcoin,’’ in Financial Cryptography and Data Security, M. Brenner,
N. Christin, B. Johnson, and K. Rohloff, Eds. Berlin, Germany: Springer,
2015, pp. 112–126.

[131] E. Heilman, F. Baldimtsi, and S. Goldberg, ‘‘Blindly signed contracts:
Anonymous on-blockchain and off-blockchain bitcoin transactions,’’
in Financial Cryptography and Data Security, J. Clark, S. Meikle-
john, P. Y. Ryan, D. Wallach, M. Brenner, and K. Rohloff, Eds. Berlin,
Germany: Springer, 2016, pp. 43–60.

[132] F. Zhang and K. Kim, ‘‘Id-based blind signature and ring signature from
pairings,’’ in Advances in Cryptology—ASIACRYPT 2002, Y. Zheng, Ed.
Berlin, Germany: Springer, 2002, pp. 533–547.

[133] S. Meiklejohn and R. Mercer, ‘‘Möbius: Trustless tumbling for trans-
action privacy,’’ Proc. Privacy Enhancing Technol., vol. 2018, no. 2,
pp. 105–121, 2018.

[134] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle,
‘‘CoinParty: Secure multi-party mixing of bitcoins,’’ in Proc. 5th ACM
Conf. Data Appl. Secur. Privacy, New York, NY, USA, 2015, pp. 75–86.

[135] O. Shlomovits and I. A. Seres, ‘‘ShareLock: Mixing for cryptocurrencies
from multiparty ECDSA,’’ Cryptol. ePrint Arch., Tech. Rep. 2019/563,
2019. [Online]. Available: https://eprint.iacr.org/2019/563

[136] D. Johnson, A. Menezes, and S. Vanstone, ‘‘The elliptic curve digital
signature algorithm (ECDSA),’’ Int. J. Inf. Secur., vol. 1, no. 1, pp. 36–63,
Aug. 2001. doi: 10.1007/s102070100002.

[137] S. Josefsson and I. Liusvaara, Edwards-Curve Digital Signature Algo-
rithm (EDDSA), document RFC 8032, Internet Research Task Force,
Crypto Forum Research Group, 2017.

[138] B. Dale. (Aug. 2019). The Vaul is Back: Coder Revives Plan to Shield
Bitcoin Wallets From Theft. [Online]. Available: https://www.coindesk.
com/the-vault-is-back-bitcoin-coder-to-revive-plan-to-shield-wallets-
from-theft

[139] O. Goldreich and Y. Oren, ‘‘Definitions and properties of zero-knowledge
proof systems,’’ J. Cryptol., vol. 7, no. 1, pp. 1–32, Dec. 1994.
doi: 10.1007/BF00195207.

[140] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza, ‘‘Succinct
non-interactive zero knowledge for a von neumann architecture,’’ in
Proc. 23rd USENIX Secur. Symp. (USENIX Secur.), San Diego, CA,
USA, 2014, pp. 781–796. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity14/technical-sessions/presentation/ben-sasson

[141] J. P. Morgan. (2016). Quorum. [Online]. Available: https://github.com/
jpmorganchase/quorum

[142] R. S. Sandhu and P. Samarati, ‘‘Access control: Principle and practice,’’
IEEE Commun. Mag., vol. 32, no. 9, pp. 40–48, Sep. 1994.

[143] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, ‘‘MedRec: Using
blockchain for medical data access and permission management,’’ in
Proc. 2nd Int. Conf. Open Big Data (OBD), Aug. 2016, pp. 25–30.

[144] X. Yue, H. Wang, D. Jin, M. Li, and W. Jiang, ‘‘Healthcare data
gateways: Found healthcare intelligence on blockchain with novel pri-
vacy risk control,’’ J. Med. Syst., vol. 40, no. 10, p. 218, Aug. 2016.
doi: 10.1007/s10916-016-0574-6.

[145] A. Outchakoucht, J. P. Leroy, and H. Es-Samaali, ‘‘Dynamic access
control policy based on blockchain and machine learning for the Internet
of Things,’’ Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 7, pp. 417–424,
2017.

[146] S. H. Hashemi, F. Faghri, and R. H. Campbell, ‘‘Decentralized
user-centric access control using pubsub over blockchain,’’ 2017,
arXiv:1710.00110. [Online]. Available: https://arxiv.org/abs/1710.00110

[147] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘‘Blockchain for
IoT security and privacy: The case study of a smart home,’’ in Proc. IEEE
Int. Conf. Pervas. Comput. Commun. Workshops (PerCom Workshops),
Mar. 2017, pp. 618–623.

[148] S. Tahir and M. Rajarajan, ‘‘Privacy-preserving searchable encryp-
tion framework for permissioned blockchain networks,’’ in Proc.
IEEE Proc. iThings, GreenCom, CPSCom SmartData, Jul./Aug. 2018,
pp. 1628–1633.

[149] D. J. Bernstein. (2014). CAESAR: Competition for Authenticated
Encryption: Security, Applicability, and Robustness. [Online]. Available:
https://competitions.cr.yp.to/caesar.html

VOLUME 7, 2019 148573

76

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

[150] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey, ‘‘Towards better availability and accountability
for IoT updates by means of a blockchain,’’ in Proc. IEEE Eur. Symp.
Secur. Privacy Workshops (EuroS PW), Apr. 2017, pp. 50–58.

[151] M. Luongo and C. Pon, ‘‘The keep network: A privacy layer for public
blockchains,’’ Keep Netw., Tech. Rep., 2018. [Online]. Available: https://
keep.network/whitepaper

[152] A. Shamir, ‘‘How to share a secret,’’ Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979. doi: 10.1145/359168.359176.

[153] R. K. Raman and L. R. Varshney, ‘‘Distributed storage meets secret
sharing on the blockchain,’’ in Proc. Inf. Theory Appl. Workshop (ITA),
Feb. 2018, pp. 1–6.

[154] B. F. França, ‘‘Homomorphic mini-blockchain scheme,’’ Tech. Rep.,
2015.

[155] T. P. Pedersen, ‘‘Non-interactive and information-theoretic secure
verifiable secret sharing,’’ in Advances in Cryptology—CRYPTO’91,
J. Feigenbaum, Ed. Berlin, Germany: Springer, 1992, pp. 129–140.

[156] T. Ruffing and G. Malavolta, ‘‘Switch commitments: A safety switch for
confidential transactions,’’ in Proc. Int. Conf. Financial Cryptogr. Data
Secur. Cham, Switzerland: Springer, 2017, pp. 170–181.

[157] M. O. Rabin, ‘‘How to exchange secrets with oblivious transfer,’’ in Proc.
IACR Cryptol. ePrint Arch., 2005, p. 187.

[158] D. C. Sánchez, ‘‘Raziel: Private and verifiable smart contracts on
blockchains,’’ 2018, arXiv:1807.09484. [Online]. Available: https://arxiv.
org/abs/1807.09484

[159] A. Juels and B. S. Kaliski, Jr., ‘‘PORs: Proofs of retrievability for
large files,’’ in Proc. 14th ACM Conf. Comput. Commun. Secur.
(CCS), New York, NY, USA, 2007, pp. 584–597. doi: 10.1145/1315245.
1315317.

[160] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, and C. A. Reuter, ‘‘Out-
sourced proofs of retrievability,’’ in Proc. 2014 ACM SIGSAC Conf. Com-
put. Commun. Secur. (CCS), New York, NY, USA, 2014, pp. 831–843.
doi: 10.1145/2660267.2660310.

[161] D. J. Bernstein, Introduction to Post-Quantum Cryptography. Berlin,
Germany: Springer, 2009, pp. 1–14.

[162] A. Ekert and R. Jozsa, ‘‘Quantum computation and shor’s factoring
algorithm,’’ Rev. Mod. Phys., vol. 68, no. 3, p. 733, 1996.

[163] K. Chalkias, J. Brown, M. Hearn, T. Lillehagen, I. Nitto, and T. Schroeter,
‘‘Blockchained post-quantum signatures,’’ in Proc. IACR Cryptol. ePrint
Arch., 2018, p. 658.

[164] O. Regev, ‘‘Lattice-based cryptography,’’ in Proc. Annu. Int. Cryptol.
Conf. Berlin, Germany: Springer, 2006, pp. 131–141.

[165] J. Ding and B.-Y. Yang, ‘‘Multivariate public key cryptography,’’ in Post-
Quantum Cryptography. Berlin, Germany: Springer, 2009, pp. 193–241.

[166] R. Overbeck and N. Sendrier, ‘‘Code-based cryptography,’’ in Post-
Quantum Cryptography. Berlin, Germany: Springer, 2009, pp. 95–145.

[167] M. A. Khan and K. Salah, ‘‘IoT security: Review, blockchain solu-
tions, and open challenges,’’ Future Gener. Comput. Syst., vol. 82,
pp. 395–411, May 2018. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0167739X17315765

[168] S. Micali, M. Rabin, and S. Vadhan, ‘‘Verifiable random functions,’’ in
Proc. 40th Annu. Symp. Found. Comput. Sci., Oct. 1999, pp. 120–130.

[169] W. Li, S. Andreina, J.-M. Bohli, andG.Karame, ‘‘Securing proof-of-stake
blockchain protocols,’’ in Data Privacy Management, Cryptocurren-
cies and Blockchain Technology, J. Garcia-Alfaro, G. Navarro-Arribas,
H. Hartenstein, and J. Herrera-Joancomartí, Eds. Cham, Switzerland:
Springer, 2017, pp. 297–315.

[170] A. S. de Pedro, D. Levi, and L. I. Cuende, ‘‘Witnet: A decentralized
oracle network protocol,’’ 2017, arXiv:1711.09756. [Online]. Available:
https://arxiv.org/abs/1711.09756

[171] Z. Guan, G. Si, X. Zhang, L.Wu, N. Guizani, X. Du, and Y.Ma, ‘‘Privacy-
preserving and efficient aggregation based on blockchain for power grid
communications in smart communities,’’ IEEE Commun. Mag., vol. 56,
no. 7, pp. 82–88, Jul. 2018.

[172] A. Binstock. (2003). Obfuscation: Cloaking Your Code From Prying
Eyes. [Online]. Available: https://web.archive.org/web/20080420165109/
and http://www.devx.com/microsoftISV/Article/11351

[173] A. Shamir, ‘‘Identity-based cryptosystems and signature schemes,’’ in
Adv. Cryptol., G. R. Blakley and D. Chaum, Eds. Berlin, Germany:
Springer, 1985, pp. 47–53.

[174] D. Boneh andM. Franklin, ‘‘Identity-based encryption from theWeil pair-
ing,’’ in Advances in Cryptology—CRYPTO 2001, J. Kilian, Ed. Berlin,
Germany: Springer, 2001, pp. 213–229.

[175] D. Boneh, X. Boyen, and E.-J. Goh, ‘‘Hierarchical identity based encryp-
tion with constant size ciphertext,’’ in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn. Berlin, Germany: Springer, 2005, pp. 440–456.

[176] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryp-
tion for fine-grained access control of encrypted data,’’ inProc. 13th ACM
Conf. Comput. Commun. Secur., 2006, pp. 89–98.

[177] A. Lewko and B. Waters, ‘‘Decentralizing attribute-based encryption,’’
in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Berlin,
Germany: Springer, 2011, pp. 568–588.

[178] S. Agrawal, S. Gorbunov, V. Vaikuntanathan, and H. Wee, ‘‘Functional
encryption: New perspectives and lower bounds,’’ in Proc. Annu. Cryptol.
Conf. Berlin, Germany: Springer, 2013, pp. 500–518.

[179] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, ‘‘Verifiable delay func-
tions,’’ in Advances in Cryptology—CRYPTO 2018, H. Shacham and
A. Boldyreva, Eds. Cham, Switzerland: Springer, 2018, pp. 757–788.

[180] B. Bünz, S. Goldfeder, and J. Bonneau, ‘‘Proofs-of-delay and randomness
beacons in ethereum,’’ in Proc. IEEE Secur. Privacy Blockchain (IEEE
S&B), Apr. 2017, pp. 1–11.

[181] D. Boneh, B. Bünz, and B. Fisch, ‘‘A survey of two verifiable delay
functions,’’ in Proc. IACR Cryptol. ePrint Arch., 2018, p. 712.

[182] S. Kumar, E. Rosnes, and A. G. I. Amat, ‘‘Private information retrieval in
distributed storage systems using an arbitrary linear code,’’ in Proc. IEEE
Int. Symp. Inf. Theory (ISIT), Jun. 2017, pp. 1421–1425.

[183] S. Chow, P. Eisen, H. Johnson, and P. C. Van Oorschot, ‘‘White-box
cryptography and an AES implementation,’’ in Proc. Int. Workshop Sel.
Areas Cryptogr. Berlin, Germany: Springer, 2002, pp. 250–270.

[184] M. Bellare, O. Goldreich, and S. Goldwasser, ‘‘Incremental cryptography:
The case of hashing and signing,’’ in Proc. Annu. Int. Cryptol. Conf.
Berlin, Germany: Springer, 1994, pp. 216–233.

[185] H. Mihajloska, D. Gligoroski, and S. Samardjiska, ‘‘Reviving the idea of
incremental cryptography for the zettabyte era use case: Incremental hash
functions based on SHA-3,’’ in Proc. Int. Workshop Open Problems Netw.
Secur. Cham, Switzerland: Springer, 2015, pp. 97–111.

[186] C. Delerablée, ‘‘Identity-based broadcast encryption with constant size
ciphertexts and private keys,’’ in Advances in Cryptology—ASIACRYPT
2007, K. Kurosawa, Ed. Berlin, Germany: Springer, 2007, pp. 200–215.

[187] A. Ge and P. Wei, ‘‘Identity-based broadcast encryption with efficient
revocation,’’ Cryptol. ePrint Arch., Tech. Rep. 2019/038, 2019. [Online].
Available: https://eprint.iacr.org/2019/038

[188] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, ‘‘Charm: A framework for rapidly proto-
typing cryptosystems,’’ J. Cryptograph. Eng., vol. 3, no. 2, pp. 111–128,
2013. doi: 10.1007/s13389-013-0057-3.

[189] C. Lin, D. He, X. Huang, K.-K. R. Choo, and A. V. Vasilakos,
‘‘BSeIn: A blockchain-based secure mutual authentication with fine-
grained access control system for industry 4.0,’’ J. Netw. Comput.
Appl., vol. 116, pp. 42–52, Aug. 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1084804518301619

[190] R. Goyal and V. Goyal, ‘‘Overcoming cryptographic impossibility results
using blockchains,’’ in Theory of Cryptography, Y. Kalai and L. Reyzin,
Eds. Cham, Switzerland: Springer, 2017, pp. 529–561.

[191] A. Scafuro, L. Siniscalchi, and I. Visconti, ‘‘Publicly verifiable proofs
from blockchains,’’ in Public-Key Cryptography—PKC 2019. Cham,
Switzerland: Springer, 2019, pp. 374–401.

[192] N. Chandran, V. Goyal, R. Moriarty, and R. Ostrovsky, ‘‘Position based
cryptography,’’ in Advances in Cryptology—CRYPTO 2009, S. Halevi,
Ed. Berlin, Germany: Springer, 2009, pp. 391–407.

[193] Notes on Bitcoin Privacy Technology, Open Bitcoin Privacy
Project. (2019). ECDHM Address. [Online]. Available: http://wiki.
openbitcoinprivacyproject.org/topics:ecdhm-address

[194] C. A. Neff, ‘‘A verifiable secret shuffle and its application to
e-voting,’’ in Proc. 8th ACM Conf. Comput. Commun. Secur., 2001,
pp. 116–125.

[195] I. A. Seres, D. A. Nagy, C. Buckland, and P. Burcsi, ‘‘MixEth: Effi-
cient, trustless coin mixing service for ethereum,’’ Cryptol. ePrint
Arch., Tech. Rep. 2019/341, 2019. [Online]. Available: https://eprint.
iacr.org/2019/341

148574 VOLUME 7, 2019

77

M. Raikwar et al.: SoK of Used Cryptography in Blockchain

MAYANK RAIKWAR was born in Uttar Pradesh,
India, in 1994. He received the B.Tech. degree
in computer science and engineering from Uttar
Pradesh Technical University, in 2013, and the
M.Tech. degree in computer science from the
Indian Statistical Institute, India, in 2016. He is
currently pursuing the Ph.D. degree with the
Department of Information Security and Com-
munication Technology, Norwegian University of
Science and Technology (NTNU), since 2019.

In 2017, he joined the Department of Computer Science, Nanyang Techno-
logical University, Singapore, as a Research Engineer. His research interests
are in cryptography, blockchain, cryptocurrencies, and security.

DANILO GLIGOROSKI was born in Skopje,
Republic of Macedonia, in 1967. He received the
B.S. and M.S. degrees in applied mathematics
from Ss Cyril andMethodius University in Skopje,
and the Ph.D. degree in computer science from
Ss Cyril and Methodius University in Skopje,
in 1997.
From 1997 to 2008, he was an Assistant Profes-

sor with the Faculty of Natural Sciences, Skopje
University. Since 2008, he has been a Professor

of information security and cryptography with the Norwegian University of
Science and Technology (NTNU). He is an author of more than 180 scientific
publications and more than 10 inventions. His main research interests are
in application of various algebraic structures in cryptography, information
security, and coding theory.

KATINA KRALEVSKA was born in Skopje, Mace-
donia, in 1987. She received the B.Sc. and
M.Sc. degrees in telecommunications from Ss.
Cyril and Methodius University-Skopje, Macedo-
nia, in 2010 and 2012, respectively, and the Ph.D.
degree from the Norwegian University of Science
and Technology (NTNU), in December 2016.
In 2017, she was a Postdoctoral Researcher

with the Department of Information Security and
Communication Technology, NTNU. In 2018, she

became an Associate Professor with the same department. Since 2019, she
has been the Deputy Head of the Department of Information Security and
Communication Technology. Her research interests include coding theory,
blockchain, and mobile and wireless communications. She is an author of
more than 25 scientific publications and more than eight inventions.

VOLUME 7, 2019 148575

78

Paper B

Meshwork Ledger, its Consensus and Reward
Mechanisms

M. Raikwar, D. Gligoroski

Published in 13th International Conference on COMmunication
Systems and NETworkS (COMSNETS), IEEE, 2021

The Meshwork Ledger, its Consensus and Reward
Mechanisms

Mayank Raikwar∗, Danilo Gligoroski∗
∗Norwegian University of Science and Technology (NTNU) Trondheim, Norway

Email: {mayank.raikwar,danilog}@ntnu.no

Abstract—We propose a new blockchain ledger concept called
“Meshwork ledger” and a corresponding consensus algorithm.
Meshwork is a network of coequal client nodes that contribute
to the endorsement of the transactions by providing digital
signatures to a validator node that collects them in an aggregate
signature scheme. The essential sustainability component of the
ledger is the reward mechanism for the meshwork client nodes.
The prime design objective is the coequality of all client nodes,
meaning there is no advantage for getting rewards if the client
is an early adopter, if the client has collected a significant stake
of rewards or if the client just joined the meshwork.

The consensus algorithm is based on aggregate multi-
signatures. A joint aggregate signature on a block of transactions
is constructed with the signatures collected from the mesh client
nodes in a multi-signature scheme. A signature provided on the
block by a client node is acknowledged as approval. The core
idea of the consensus is to race for the maximum number of
signatures (approvals) on a block from the mesh clients, in order
to append the block in the blockchain. The race in the consensus
is among particular types of nodes called validator nodes that try
to collect a maximum number of approvals (signatures) from the
mesh clients. Clients that participated in the aggregate signature
organized by the winner validator node get some reward as a
small share of the total transaction fee. These reward transactions
are performed in an off-chain manner, using a commit-chain.

Compared with other blockchain consensus algorithms, the
meshwork consensus algorithm is faster, significantly more
energy-efficient and scalable.

I. INTRODUCTION

Blockchain technology has evolved rapidly in the past
decade. As a paradigm, it offers many unique features such
as a distributed and trusted ledger of transactions without any
need for a trusted third party, immutability of the ledger,
pseudo-anonymous and anonymous transactions, smart and
secure contracts, to name a few. The peers participating in
the blockchain maintain the ledger, and each peer has a local
copy of the ledger. These peers collectively adhere to some
predetermined set of rules to ensure the consistency of the
ledger. The mechanism to determine this set of rules is the core
of the blockchain and is known as consensus mechanism. The
first consensus mechanism proposed in the use of blockchain
is Proof of Work (PoW) in Bitcoin [1].

Many consensus mechanisms have been introduced after
Bitcoin PoW with their unique functionality. For example,
there are numerous mechanisms that use different and complex
compositions of cryptographic hash functions: QuarkCoin [2]
using a chain of six hash functions, DASH [3] with eleven
hash functions denoted as X11, and Verge [4] with even 17

hash functions (X17). The motives for their proposals were to
offer PoW consensus protocols that will be fair for all users
of the blockchain (not just only to early adopters, nor just to
the powerful hardware miners). A general property of those
consensus protocols is that they suffer from huge energy and
computational power waste.

However, we can say that the short (slightly more than
one decade) history of blockchain and cryptocurrencies [5],
is a history of failed attempts to construct a sustainable
blockchain that will address the issue of fairness by preventing
the appearance of powerful hardware miners that can mine the
blocks with hash computing rates that are several orders of
magnitude higher than the ordinary users that would use just
CPUs (and maybe GPUs).

The energy waste problem of PoW was addressed in several
other consensus mechanisms such as Proof of Stake (PoS) [6],
Proof of Stake Velocity (PoSV) [7], in mechanisms that use
verifiable random functions such as in Algorand [8] and in
the Secure Proof of Stake (SPoS) [9], in mechanisms that use
trusted random functions such as in Proof of Luck (POL) [10],
and in Proof of Elapsed Time (POET) [11]. Some of the
proposed consensus protocols, to boost their energy efficiency,
have also proposed the use of special nodes (master nodes in
DASH [3] or validator nodes in Libra [12]).

Needless to say, the solutions addressing the energy problem
of the original PoW consensus, did not offer solution for the
fairness problem, since the owners of big stakes of coins would
have significant advantage to get newly minted coins.

Since our Meshwork ledger heavily relies on aggregate
multi-signatures, next, we describe a few works done on
multi-signatures and their application to the blockchain. Boneh
at el. [13] constructed a multi-signature scheme using BLS
signatures, which provides public-key aggregation and secu-
rity against rogue public-key attack. The scheme supports a
fast verification of transactions and reduces the blockchain
size. Algorand [8] presented a forward-secure multi-signature
consensus scheme Pixel [14]. Pixel signatures reduce the
storage, bandwidth, and verification costs in the blockchain.
They integrated the Pixel signature with Algorand blockchain
and showed a substantial reduction in the block size and the
verification time. Another work of a multi-signature scheme in
the blockchain is Decisional Diffie-Hellman based construction
of multi-signatures [15].

The use of aggregate signature in consensus algorithms got

81

much attention from academia and industry. Theta blockchain
ledger protocol [16] adapted the concept of aggregate sig-
natures in the BFT consensus algorithm and introduced a
multi-level BFT consensus mechanism. They proposed an
aggregated signature gossip protocol to reduce the communi-
cation complexity of the consensus. However, we notice that
Theta blockchain ledger might suffer from a high signature
verification cost when the number of guardian nodes in the
system increases as more number of pairing operations are
needed. PCHAIN [17] also introduced PDBFT2.0 [18] to
reduce the communication complexity and hardware require-
ments in blockchain consensus using the aggregate signatures,
but it also suffers from high signature verification cost. The
other related works in this domain are [19], [20], [21], [22],
[23], [24]. Another interesting related work is the new Schnorr
multi-signature scheme with deterministic signing [25].

A. Our Contribution
We propose a new permissioned public blockchain ledger

concept called “Meshwork ledger” with two design goals:
1) Its consensus protocol is fair to all ledger members i.e.;

there exists a coequality for all client nodes: there is no
advantage for getting rewards if the client is an early
adopter, if the client has collected a significant stake of
rewards, or if the client has just joined the meshwork;

2) Its consensus protocol is energy efficient, and there is no
advantage if the client has powerful hardware or a single
CPU or MCU just capable to produce digital signatures.

The sustainability of the “Meshwork ledger” is guaranteed
by its reward mechanism, which is also designed to be fair
to all meshwork client nodes. To achieve the design goals for
the consensus algorithm, we use aggregate multi-signatures.
The idea is to construct a joint aggregate signature on a block
of transactions with the signatures collected from the mesh
client nodes in a multi-signature scheme. One single signature
on the block of transactions produced by a single client node
is acknowledged as approval. Then, the main novel idea in
our consensus proposal is to race for the maximum number of
signatures (approvals) on a block of transactions from the mesh
clients. The race in the consensus is among particular types
of nodes called validator nodes that try to collect a maximum
number of approvals (signatures) from the mesh clients. Clients
that participated in the winning aggregate signature get some
reward as a small and equal share of the total transaction
fee. These reward transactions are nano-valued transaction. As
there are many of these transactions, the transactions can be
performed in off-chain manner. We reviewed all the possible
off-chain transaction solutions and concluded that the best way
to perform all these nano-value transaction for our model in a
cost-effective manner is commit-chain [26].

Last but not least, we also provide complexity and security
analysis of our consensus protocol. In the security analysis,
we enlighten possible attack scenarios in the protocol and the
prevention mechanism followed in the consensus protocol. We
also conducted a few experiments for the robustness of the
system.

II. PRELIMINARIES

1) Bilinear Maps: G1 and G2 are two multiplicative groups
of prime order q with generators g1, g2 correspondingly. A map
e : G1 ×G2 → Gt has the following properties:
• Bilinearity: ∀u ∈ G1, v ∈ G2 and a, b ∈ Zp : e(ua, vb) =
e(u, v)ab;

• Non-degeneracy: e(g1, g2) 6= 1Gt
.

We say the pair (G1,G2) is a pair of bilinear groups iff the
group operations in G1 and G2, and the bilinear map e are
efficiently computable.
2) Multi-Signature Scheme: For individual transaction/block
signing and verification we use the BLS signature scheme [27],
and for the multi-signature scheme, we use the aggregate
signature scheme proposed by Boneh et al [28]. In our case,
all the signers sign the same message in the aggregate sig-
nature scheme while ensuring security. BLS signature scheme
requires bilinear map e described as above alongwith a full-
domain hash function for signing process H : {0, 1}∗ → G1.
BLS signature scheme works as follows:

• KeyGen: For a user, choose random sk
$←− Zq , compute

pk ← gsk2 ∈ G2, the user’s keypair is (pk, sk).
• Sign(sk,M): For a user, given secret key sk and a message
M ∈ {0, 1}∗, signature on M is σ ← H(M)sk ∈ G1.

• Verify(pk,M, σ): Given a user’s public key pk, a message
M , accept the signature σ, if e(σ, g2) = e(H(M), pk).

Signature Aggregation: Given n signatures σ1, σ1, . . . , σn on
message M by n users, the procedure for signature aggregation
of n signatures works as: σ ← ∏n

i=1 σi. The aggregate
signature is σ ∈ G1.
Aggregate Verification: To verify the aggregate signature
σ, given the original message M and the n public keys
pk1, pk2, . . . , pkn for all n users, the verifier checks if:

e(σ, g2)
?
= e(H(M), pk1)e(H(M), pk2) . . . e(H(M), pkn)

?
= e(H(M),

n∏

i=1

pki)
?
= e(H(M), apk)

If the equation holds, the verifier “Accept” the signature, else
“Reject”. In the above equation, apk ∈ G2 and stands for
aggregate public key.

This simple aggregation scheme suffers from rogue public-
key attack where an attacker takes the public key pk of an
honest user Alice, and constructs his public key pk∗ as gα2 ·
(pk)−1 (where α $←− Zq). Then, given a message M ∈ {0, 1}∗,
attacker presents an aggregate signature σ := H(M)α ∈ G1

claiming that he and Alice, both has signed the message M .
However in reality, Alice did not sign the message M but the
aggregate verification holds as

e(σ, g2) = e(H(M)α, g2) = e(H(M), gα2)

= e(H(M), pk · pk∗)
Few defense mechanisms [29], [30] against this attack were
proposed which require each user to prove the possession of
the corresponding secret key (PoP). We also apply the PoP in
Meshwork ledger for each party.

82

ValidatorClient
Request to join

Send (σ, pk)

Choose sk $←− Zq
pk ← gsk2 ∈ G1

σ ← Hr(pk)
sk ∈ G1

Verify σ:
If yes,“accept”
else,“reject”

Fig. 1. Client Registration Protocol

Why BLS Multi-Signature
• BLS Multi-signatures are non-interactive and easy to follow

in nature, therefore, it is easier to perform the signature and
key aggregation without any additional round.

• BLS signatures do not rely on random number generator
and BLS signatures are single curve points, so its size is
two times shorter than Schnorr or ECDSA signature [31].

III. MESHWORK LEDGER

A. Entities in the Ledger

In Meshwork ledger model, we have two primary entities
client and validator node participating in the blockchain:
1) Client Node: Client nodes are the ones that invest a
tiny computational power to sign a block, and for that gets
rewarded. A client node can have a few connections with
different validator nodes. For registration, client nodes have
to go through strong authentication checks to prevent the
Sybil attack [32], followed by key registration protocol using
PoP with a validator node to prevent the rogue-key attack as
depicted in Figure 1. Client nodes also execute transactions
with other client and validator nodes in the system.
Client Registration Protocol It is an interactive protocol
between a client node and a validator node as depicted in
Figure 1. In this process, a client node registers itself by
proving the knowledge of its secret key to a validator node by
signing its public key. To completely prevent rogue public-key
attack, the registration protocol uses a different hash function
Hr : {0, 1}∗ → G2 for creating signatures over the public key.
This hash function can be constructed from hash function H
using domain separation. Thus, the client generates a signature
using Hr on its public key, and if verified, the validator
stores the user’s public key. The client node also has a public
identifier associated with it, which is a hash of its public key.
The specific hash function is global for all client nodes. Thus,
rather than sending long public keys, these short identifiers are
used for communication.

Note: The Client Registration Protocol is an important
component for the overall security of the Meshwork ledger, but
it is not an exclusive and non-replaceable component. Namely,
our meshwork can use some pre-existing client registration
protocols based on a national digital identity [33].
2) Validator Node: Validator nodes are the major players
for reaching the consensus in the distributed ledger. Each

validator node maintains its ledger of blocks. Validator nodes
join the system according to the objective participation criteria,
and these nodes have a stake in bootstrapping the blockchain
system. Therefore, these nodes have to lock up some minimum
amount of stake in the system for a period of time. Each
validator node has a pair of public-private keys. The validator
nodes publish their public key along with the Proof of Pos-
session (PoP) of the corresponding secret key. Here, the PoP
scheme is similar to the PoP used in Figure 1. Validator nodes
can also perform transactions in the network. In a consensus
round, validator nodes perform signature aggregation on the
block, thus validator nodes invest resources towards achieving
the consensus. Accordingly, each validator node should be
equipped with enough computational power and storage space.
There are fewer validator nodes than the client nodes, and each
validator node maintains several client node connections. A
validator node also has its publicly available list of connected
client nodes along with their corresponding public keys and
public Identifiers.
Validator Registration Protocol: To join the pool of validator
nodes in the system, a new node has to pass a strong authen-
tication check and also give proof about having enough stake
and enough storage and computational power.

B. Assumptions in the Meshwork ledger

• The network is partially synchronous, which means the
message transmission between two directly linked nodes
arrives within a specified period.

• The majority of the validator nodes are honest for the
security against byzantine fault and the local clock of each
validator node is loosely synchronized.

• The blockchain should be account-based and smart-contract
enabled e.g., Ethereum [34].

Validator Network

Leader at round r

aggSig2

aggSig1

aggSig3

aggSigFinal = ∏"#$
% aggSigi

Client nodes Client nodes

Client nodes Client nodes

Fig. 2. Overview of Consensus at round r

Bootstrapping the System During the deployment of the
system, a common genesis block is given to all the validator
nodes. This genesis block specifies a number s denoting the
minimum number of signatures required from each validator
node during a consensus round. The value s is updated
from time to time, depending on several factors including the
number of participating entities in the system.

83

C. Consensus Algorithm

The consensus algorithm involves the active participation
of validator nodes as well as client nodes of blockchain. The
core idea of the algorithm is to collect the maximum number of
signatures on a block from the nodes participating in consensus
round r as depicted in Figure 2. The taxonomy of the symbols
used in Meshwork ledger is listed in Table I. There are n

Symbols Definition

G1/G2/GT Multiplicative groups of order q
g1, g2 Generator of group G1/G2 respectively
e Bilinear map
(PK,SK) Public and secret key
H,Hr Hash functions for signature and client key registration

V Validator node
C Client node
σ A BLS signature
s Number of required signatures from a validator node

aggSig Aggregate signature
aggPK Aggregate public key
Bk kth Block in the blockchain
τblock Time to wait to receive the new proposed block
τagg Time to wait to receive all the aggregate signatures
Tolerance Upper bound how many times a client node can send the

same signature to multiple validator nodes

TABLE I
LIST OF SYMBOLS IN THE MODEL

validator nodes V1, V2, . . . , Vn and each validator node Vi has
some client nodes Ci1, Ci2, . . . , Cij (where j � n) connected
to it. The detailed algorithm is as follows:
• In a consensus round r, a validator node Vk (where k ∈
[1, n]) is elected as the leader of the round. The leader node
(block proposer) collects different transactions, writes the
recent value of s and prepares a block Bk. After the block
preparation, block proposer Vk sends the block Bk to all
validator nodes. Leader Vk is excluded from the task of
contacting its client nodes in round r.

• After receiving the block Bk, each validator node Vi checks
the minimum number of signatures s required for the block
Bk from its side. The validator node Vi randomly selects
a client node set {Cim} (where m ≤ j but m ≥ s). The
validator node signs the block and creates a signature σVi .
The main goal of each validator node Vi is to collect at least
s signatures from its connected client nodes.

• Each validator node Vi collects the signatures
σi1, σi2, . . . , σim on block Bk from its selected client
nodes Ci1, Ci2, . . . , Cim. Then Vi verifies all the individual
signatures σi1, σi2, . . . , σim, and further creates aggregate
signature aggSigi from the verified signatures including
its own signature σVi

, and aggregate public key aggPKi

from PKi1, PKi2, . . . , PKim and PKVi
. Then Vi sends

aggSigi, aggPKi and a list of client public key Identifiers
Li (IDi1, IDi2, . . . , IDim) to the block proposer Vk.

• Each validator node Vi also gives a Proof of Inclusion PCil

to each of its client nodes Cil. This proof corresponds that
the client signature σil (for l = 1 . . .m) has been included in

the aggregated signature aggSigi. This proof is a signature
over the signature σil which is PCil

= Sign(skVi , σil) and
verifiable using the public key pkVi of Vi.

• The leader Vk collects the received aggregate signatures
aggSig1, aggSig2, . . . , aggSign, along with aggregate pub-
lic keys and identifiers from all the validator nodes in a First
come, First served basis. In the beginning, the leader resets
a variable TotalAggSig that keeps track of the number of
unique aggregated signatures for that round. The leader also
checks the following conditions:

1) The received aggregate signatures aggSigi (for i =
1 . . . n, i 6= k) are valid.

2) For each validator node Vi, check whether the total
number of public key identifiers is si ≥ s. If so, it updates
the variable TotalAggSig:

TotalAggSig ← TotalAggSig + Unique(si)

where Unique(si) ⊆ si is a subset of si that have not
submitted its signatures to multiple validator nodes.

• The leader is also keeping track of how many aggregate
signatures it collected so far:

1) There should be at least 2
3 of (n− 1)s unique signatures

in all the aggregate signatures received by Vk i.e.,
TotalAggSig ≥ 2

3 (n− 1)s

2) Determine a list D of clients that submitted two or more
signatures to two or more validator nodes.

• If all the above conditions satisfy, the leader
Vk constructs final aggregate signature aggSig
from signatures aggSig1, aggSig2, . . . , aggSign
and final aggregate public key aggPK from
public keys aggPK1, aggPK2, . . . , aggPKn (where
n 6= k). Finally, Vk constructs the final block
Bround = (Bk, aggSig, aggPK) by appending the
final aggregate signature aggSig, final aggregate public key
aggPK to the proposed block Bk.

• Leader Vk also gives a Proof of Inclusion Pi (where Pi =
Sign(skVk

, aggSigi)) of the aggregate signature aggSigi to
node Vi which confirms that the aggSigi is included in the
final aggregate signature aggSig.

• Leader Vk attaches the block Bround to its blockchain and
broadcasts the block Bround in the blockchain network.
It also sends the list D to all the validator nodes. After
receiving the block Bround, each node Vi verifies the block
by verifying the final signature aggSig using aggPK. If the
block verifies, the node Vi attaches the block Bround to its
blockchain. Each validator node also checks the received list
D and keeps a record for clients that sent the same signatures
to multiple validator nodes.

D. Reward System
One of the primary goals of this consensus algorithm is

to consume significantly less amount of computational power.
The total reward in each consensus round is the sum of the
transaction fees associated with the transactions of the block.
Then the reward is dispersed among the nodes who participated
in the consensus on that block. The validator nodes invest more

84

resources to get the signatures from their client nodes, and to
aggregate the client signatures, so the validator nodes get more
reward than the client nodes.

In each round, the leader node makes reward transactions
to the validator nodes, which are recorded in the blockchain.
These reward transactions are further distributed by each
validator node to its client nodes that participated in the
signing. Hence each validator node creates many client node
transactions, and so the total client node transactions created
by all the validator nodes are many in numbers.

Let say the total reward in a consensus round r is X , then
the distribution of reward X will be as follows:
• Each validator node VL and its client nodes CL1, . . . , CLm

get the accumulated share of reward as j = X
n

• This share j is further distributed among a validator node
VL and its client nodes CL1, . . . , CLm in following way:

1) Each validator node VL gets share as t ∗ j.
2) Each client node CLi gets share as (1−t)∗j

m (considering
m client nodes connected to VL participated in round r)

Here t is the reward distribution parameter.
Note: In the line of our design goal of the Meshwork

ledger to be fair for early and late adopters that are meshwork
clients as well as for the validator nodes, the incentives for
validator nodes are also tweakable with the parameter t. This
t is recalculated periodically and involves the energy and
communication costs spend by the validator nodes. The process
of including all client node reward transactions in the main
blockchain is a severe bottleneck for the scalability. To tackle
this, we adopted the off-chain solution, commit chain [26].
As the reward transactions for the client nodes are nano-value
transactions, and the client nodes might not always be online,
then to off-loading the transactions in off-chain, commit-chain
fits as the viable option.

IV. CONSENSUS IN THE MESHWORK LEDGER

Algorithm 1 illustrates the steps involved in the consensus.
In this section, we describe all the consensus algorithm func-
tions as LeaderElection, CreateBlock, ClientSelection,
Sign and V erify in detail. It also defines other necessary
factors of our Meshwork ledger.
A. Leader Election

In each consensus round, a validator node is chosen as
a leader by the function LeaderElection(). The leader is
responsible for the creation and finalization of the block. There
are different mechanisms in different PoS blockchains for
leader election. Many of the PoS blockchains [35] are using
verifiable random function [36] for electing the leader. For
our Meshwork ledger, we follow the leader election using an
efficient robust round-robin selection technique [37] with some
modification. In short, leader candidates are selected according
to their age in a round-robin manner. After the candidates’
selection, a set of endorsers give a quorum of confirmations
for the leader candidates. The one having the majority of
confirmation becomes the leader node. In our model, we follow
the same idea with some modifications to prevent the malicious

Algorithm 1: Consensus Algorithm
Input : round, s, {V1, V2, . . . , Vn}
Output: Bround, D

1 Vk ← LeaderElection(round, V1, V2, . . . , Vn);
2 Vk runs CreateBlock(tx1, tx2, . . . , txu) and output Bk;
3 Vk sends block Bk to other validator nodes and waits for

τagg time to receive the required number of signatures;

4 Vi actions:;
5 for each validator node Vi from V1, V2, . . . , Vn, except Vk do
6 run ClientSelection(Ci1, Ci2, . . . , Cim);
7 wait for τblock time to receive new block Bk;
8 if receive Bk then
9 (aggSigi, aggPKi, {IDj}i)← Sign(Bk, s);

10 send (aggSigi, aggPKi, {IDj}i) to node Vk;
11 end
12 end
13 Vk actions:;
14 TotalAggSig ← 0;
15 for tuples (aggSigi, aggPKi, {IDj}i) received from the

validator nodes Vi do
16 · V erify(aggSigi, aggPKi, Bk);
17 · Check if si ≥ s, where si is the number of client

identifiers from Vi;
18 · Determine the number of unique signatures coming

from Vi, Unique(si);
19 · TotalAggSig ← TotalAggSig + Unique(si);
20 if TotalAggSig ≥ 2

3
(n− 1)s then

21 exit for;
22 end
23 end
24 Vk prepares the final block

Bround = (Bk, aggSig, aggPK), appends it to its
blockchain and sends to the other validator nodes;

25 Vk also sends list of double signees D to all Vi;

leader or leader crash issue. We define a threshold value tE
for the number of endorsements and we select an expected
number of leader candidates based on tE . The value tE varies
and computed for each round. Hence, in our model, we have
three sets of validator nodes after the leader election process:

1) Leader validator node is the deterministic leader candi-
date resulted from the robust round-robin technique.

2) Backup validator nodes are the validator nodes which
passes the threshold criteria tE of endorsements.

3) Remaining validator nodes are the nodes which are either
not selected in the robust round-robin technique or did not
pass the threshold tE .

The leader validator node defined as Vk in Section III-C is
responsible for proposing a block and collecting the required
number of signatures from other validator nodes. Backup
validator nodes {Vb} and remaining validator nodes participate
in consensus to get the aggregate signature on the proposed
block by the main leader node. Backup validator nodes are
also responsible for the following things:

• If the leader node crashes or if backup validator nodes
do not receive any new block within τblock time, then a
backup validator node having the next highest quorum of

85

confirmations becomes the leader, announces itself as a
leader, and executes the consensus protocol.

• Backup validator nodes continuously monitor the behavior
of the leader node, and the leader is caught if it performs
malicious activities. For example, if a leader node is mali-
cious, it can give different blocks to different validator nodes
but it will be caught by the backup validator nodes and later
it will be penalized in the system.

B. Block Proposal and Client Selection

The leader of the consensus round collects the transactions
from the client and validator nodes and prepares the block
using CreateBlock() function. The leader also appends value
s, the minimum number of signatures required from each
validator node, in the block. This current s should be the latest
value for the next few consensus rounds. The other validator
nodes wait for a definite amount of time for the new block to
receive. A validator node might not receive the latest block in a
specific amount of time due to some network-related problems
like network congestion, etc.

After receiving the new block from the leader node, each
validator node runs ClientSelection() function. The strategy
under this is to select at least s client nodes to sign the block is
Round Robin With a Reset strategy. That means every validator
node keeps track of how many rounds the clients were waiting
to sign some block. Validator picks randomly s out of those
clients that had the highest waiting time. Once a client is
chosen to sign, its waiting time is reset to 0.
C. Block Signing and Verification

The validator nodes announce the new consensus round
to its connected client nodes. The selected client nodes by
a validator node sign the block and send it to the validator
node. A validator node waits for a certain amount of time to
receive at least the minimum number of required signatures
from its client nodes. Then finally, the validator node verifies
all the client signatures and prepares an aggregate signature
from those, along with an aggregate public key using Sign()
function and sends the aggregate signature and key, along with
the client node public identifiers to the leader node.

The leader node receives the different aggregate signatures
along with other details from different validator nodes. The
leader node first verifies all the aggregate signatures using the
function V erify(). Further, the leader node checks whether
these aggregate signatures qualify the criteria for the minimum
number of required signatures for aggregation. If all the
verification conditions meet, then the leader prepares the final
block by appending other necessary details to the original
block.
D. Race Conditions

The race in the Meshwork ledger is among validator nodes
that are racing to collect at least s signatures and to be included
in the leader signature aggregation that tries to collect at least
2
3 (n− 1)s unique signatures. We find that in comparison with
the classical PoW consensus races, our race conditions have
significantly less consumed energy.

The majority of 2/3 is a tweakable parameter and can be
increased to 3/4 or some other value, but we do not recommend
it to be less than 2/3.
E. Safety and Liveness of Consensus

In every consensus algorithm, safety and liveness are es-
sential factors. These things majorly depend on the network
synchronicity and the number of honest participants in the
consensus. Particularly for our consensus:
• Safety in the blockchain context, ensures that the honest par-

ticipants in consensus should work on the same blockchain.
Hence, safety considers the past and take actions based on
history. That means if an honest participant accepts a new
block in its blockchain, then in the future, this block will
always be in the blockchain of other users. In Meshwork
ledger, a block will be in the blockchain if it gets on an
average at least 2

3s signatures from each of the validator
(Including its client nodes’ signatures) in the blockchain.
This argument implicitly points out that there must be at
least 2

3 honest participants during the consensus round in
the model and hence, ensures safety in the model.

• Liveness ensures that the major participants will be in charge
of keeping the system alive; hence it considers the future.
That means the validator nodes will always make progress
in the blockchain. From the duty of a leader node or backup
validator nodes, a new block will always be created and
added to the blockchain in a consensus round when at least
2
3 participants in the round are honest.

F. Coequality of mesh clients

The coequality of every mesh client is ensured by the pro-
cedure ClientSelection(Ci1, Ci2, . . . , Cim) which is invoked
at line 6 of the algorithm. The core property of this function is
that it selects at least s client nodes to sign the block in a Round
Robin With Reset manner. In such a way, every mesh client
that was once selected to contribute in an aggregate signature
(and possibly get a reward) will have to wait for several rounds
until other mesh clients from that validator node also get its
fair share of contribution.
G. Parameters in the Meshwork Ledger

There are a few parameters in Meshwork ledger. Signature
and timeout parameters play a vital role in reaching consensus
and achieve safety and liveness properties. Details of these
parameters are as follows:
• Signature parameter “s”: The parameter s representing the

minimum number of signatures required from each validator
is updated from time to time (e.g., Weekly or monthly).
This update also depends on the density of the network.
If the number of participants (validator and client nodes)
increases/decreases in a considerable amount, the parameter
s is updated accordingly in a quick manner.

• Timeout parameters: In our consensus, we have a few
timeout parameters. The parameter τblock defines the time to
wait for the proposed block to reach to a validator node in
a consensus round. Another timeout parameter τagg estab-
lishes the time to expect by the leader node in a consensus

86

Reg
ist

er

Off-
ch

ain
 Tr

an
sfe

r

Deposit Funds

Withdraw/Exit Request Withdraw/Exit Request

Register

Receive Transfer

Checkpoint
Submission

Dispute
Handling

Validator node
(Sender)

Client node
(Receiver)

Operator

Smart Contract on Blockchain

Fig. 3. Overview of Reward Mechanism through Commit-Chain

round to receive all the aggregate signatures from the other
validator nodes. Both parameters should be reasonably and
carefully decided using the Poisson distribution to assure the
liveness of the system.

• Reward distribution parameter “t”: It is decided in each
consensus round based on the average number of client
nodes connected to the validator nodes. In general, 0 > t ≤
0.2. The leader node includes t along with the signature
parameter s in the block proposal. Therefore, validator and
client nodes can locally estimate the share they might receive
after the successful consensus round.

V. REWARD MECHANISM USING COMMIT CHAIN

Compared to traditional PoS models, our system has many
nano-value reward transactions. Thus, the reward should be
distributed cost-effectively, which should incur almost zero
transaction fees. Hence we adopted a commit-chain distribu-
tion for the reward transfer. The reward transfer mechanism
performed by commit-chain NOCUST requires an operator.
The execution of the commit-chain protocol is performed in
rounds, which are called eons. Each eon of the commit-chain
will have many consensus rounds of the main blockchain
protocol. Therefore, after completing each eon, the nodes par-
ticipated in the consensus rounds within that eon will receive
the sum of the rewards earned in those consensus rounds. All
these nano-value reward transactions can be made zero-fee
transactions reliably depending on the operator fee schedule.
The correct execution of these transactions is enforced by the
smart contracts of the main blockchain, but the transactions are
performed on the commit chain. Following is the overview of
the reward transaction mechanism using commit-chain:
Register All validator and client nodes create an account
with the commit-chain operator via off-chain messages, hence
register themselves to perform transactions on commit-chain.
Deposit After a consensus round, each validator node locks
the amount of reward transaction (Originated from the leader
validator node to other validator nodes) in the commit-chain.
Transfer To distribute the reward money to the client nodes,
each validator node authorizes itself to the operator to debit
its account and credit the client nodes’ accounts.

Withdraw/Exit To withdraw the balance from the commit-
chain or to exit the commit-chain, the validator or client nodes
submit the off-chain request to the operator.
Checkpoint Constant size periodic checkpoints are used by
the operator to commit the latest states of all the validator and
client node accounts using a smart contract. This checkpoint
is the root of the Merkle tree aggregating client and validator
nodes state and balances. Each of the checkpoints requires an
on-chain transaction.
Challenge/Response Challenge-response dispute mechanism
is enforced by commit chain using the smart contract in case
of operator misbehave.
The above operations are depicted in Figure 3. Moreover, a sin-
gle operator for the off-chain solution becomes a central point
of failure. Depending on the number of nodes participating in
the blockchain, a few commit chains (less than the number of
validator nodes) or watchtowers can be deployed to remove the
single point of failure, but that will incur an extra cost. Hence
in our model, the fairness of the reward mechanism depends
on the fairness of the used commit-chain.

VI. COMPLEXITY ANALYSIS OF THE CONSENSUS

Communication Complexity In every consensus protocol,
many iterations of communication are required to reach the
final consensus and append the block in the blockchain. In
Meshwork ledger, each validator node has to send the new
proposed block to its connected client nodes. Therefore O(sn)
number of messages will be transmitted to propagate the
block in the system. The same will apply for receiving the
aggregate signatures from the validator nodes. So in total, the
communication complexity of the network will be O(sn).

Computational Complexity The signature process requires
computation to create the signature and to verify them. On
average, each validator node receives s signatures and verify
them using 2s pairing computations. Nevertheless, in total, the
number of pairing computations will be n∗2s = O(sn). After
receiving all the aggregate signatures, the leader has to perform
2n pairing computations for verification. Hence in total, the
computational complexity in terms of pairing operations in a
consensus round will be O(sn).

VII. SECURITY

A. Security Model:

1) Malicious Validator Node: If a validator node Vm acts
maliciously and does not include its client node Cmj’s sig-
nature in the aggregate signature aggSigm, the client node
can raise this issue in the blockchain network using its Proof
of Inclusion PCmj . Therefore, the verification of PCmj is
performed by the other validator nodes. If the proof PCmj

is
verified and the client node signature (Can be checked by client
node public identifier IDCmj

) is not found in the aggregate
signature, then the validator nodes agree on penalizing the
validator node Vm.

2) Malicious Client Node: A client node Cm can act
maliciously by submitting the same signature σCm

multiple
times in a consensus round to earn more reward. However,

87

as in a consensus round, each validator node gets a list D
from the leader specifying the public key identifiers of the
client nodes that submitted signatures on the same block to
validator nodes. The validator nodes at the final stage keep
a clean local house by keeping a record for the number of
double signatures incidents for its client nodes. If the number
of incidents caused by a client node exceeds a Tolerance, the
client node is permanently blocked in the system.

3) Security against Existential Forgery: In the Meshwork
ledger, an adversary (a malicious validator) can try to forge
a multi-signature on a block choosing some subset of its
client nodes. The forgery of multi-signature can be reduced
to the Computational Diffie-Hellman (CDH) Problem [28].
The forgery can be defined as; For n signers, an adver-
sary must forge a multi-signature σ ∈ G1 on message M
under the public keys pk1, . . . , pkn. To see how forgery is
equivalent to solving CDH problem, the following descrip-
tion justifies the point: Given randomly chosen g, gsk1 , h(=
H(M)), the adversary can randomly generate (n − 1) key
pairs (sk2, pk2) . . . (skn, pkn). Then adversary creates a multi-
signature σ which should satisfy the the verification equation.

e(σ, g2) =

n∏

i=1

e(h, pki) =

n∏

i=1

e(hski , g2) = e(

n∏

i=1

hski , g2)

which means σ =
∏n
i=1 h

ski ,
From the above check for signature σ, if it passes that

means adversary has computed hsk1 , given randomly chosen
g, gsk1 , h which is equivalent to solving CDH problem.

B. Attacks

• Validator-Specific attacks: In many of the PoS based sys-
tems, the validator nodes try to collude and earn a bigger
reward by increasing their total stake in the system. In
our system, as the reward is equally distributed among the
validator nodes, so in case of collusion, the validator nodes
have to share the joint reward, and that will be less than
the reward of any other validator node. Hence, any kind of
collusion does not bring any advantage in terms of reward.

• Network-Level attacks: In case of a network partition
(Eclipse attack), until the number of received aggregate
signatures and client node identifiers satisfy the consensus
rules to accept the block, the consensus is reached. The
consensus will not be achieved in other scenarios of a
network partition, and the system will go in recovery mode.

• Sybil attack: Sybil attack is prevented in the system using
strong authentication checks for client and validator nodes.

VIII. TECHNICAL DETAILS AND EXPERIMENTS

We conducted experiments to test the robustness and effi-
ciency of the Meshwork ledger. The experiments were car-
ried out on a MacBook Pro system having 2.3 GHz Intel
Core i5 processor and 8 GB 2133 MHz memory. So far,
we have designed a validator network which is connected
with client nodes using Docker containers. Validator nodes
perform the BLS signature aggregation. In our experiments,

0 500 1,000 1,500 2,000 2,500
0

200

400

600

800

1,000

1,200

Number of Signatures

Si
gn

at
ur

e
A

gg
re

ga
tio

n
C

os
t

(i
n

m
s)

Fig. 4. BLS signature aggregation cost vs Number of signatures

we analyze the cost of signature aggregation and verification
in each consensus round by varying the number of nodes
participating in the consensus. The signature aggregation cost
depends on the number of signatures to be aggregated, hence
signature aggregation cost increase linearly with the number
of nodes/signatures. Figure 4 depicts the implementation result
of signature aggregation cost (in milliseconds). In contrast, the
verification cost does not depend on the number of nodes, as
we are verifying a single aggregate signature. An aggregated
BLS signature verification requires the computation of two
bilinear pairing operations. We are using ate pairing scheme
in our implementation, and the verification cost of aggregate
BLS signature is 3.54±0.07 milliseconds. For storing the data
in our account-based blockchain nodes, we use persistent key-
value and fast database store leveldb [38] (see also [39]).

IX. CONCLUSION

We proposed the “Meshwork ledger” which establishes a
network of coequal client nodes that contribute to the en-
dorsement of the transactions by providing digital signatures
to a validator node that collects them in an aggregate signature
scheme. We also proposed a reward mechanism for the mesh-
work client nodes. That reward mechanism had a prime design
objective to offer coequality for all client nodes. Our goal was
to design a blockchain ledger where there is no advantage for
getting rewards if the client is an early adopter, if the client
has collected a significant stake of rewards or if the client just
joined the meshwork.

The pillar design component in our consensus algorithm
is the use of the aggregate multi-signatures. The core idea
of the consensus is to race for the maximum number of
signatures (approvals) on a block from the mesh clients, to
append the block in the blockchain. The race in the consensus
is among validator nodes that try to collect a maximum number
of approvals (signatures) from the mesh clients. The future
direction of work for our consensus algorithm is to perform
a detailed scalability analysis, to evaluate the performance of
consensus in a large network, and to compare it with existing
consensus algorithms to advance its adoption in the practical
world of implementation.

88

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf,” 2009.

[2] V. Buterin, “QuarkCoin: Noble Intentions, Wrong Approach,” Bitcoin
Magazine, Dec 2013, [Online; accessed 3-Jun-2019].

[3] E. Duffield and D. Diaz, “Dash: A payments-focused cryptocur-
rency,” Whitepaper, https://github.com/dashpay/dash/wiki/Whitepaper,
2018, [Online; accessed 3-Jun-2019].

[4] CryptoRekt, “Official Verge Blackpaper 5.0,” Blackpaper, https://
tinyurl.com/y88sd7ze, Jan 2019, [Online; accessed 14-Jun-2020].

[5] M. Raikwar, D. Gligoroski, and K. Kralevska, “SoK of Used Cryptog-
raphy in Blockchain,” IEEE Access, vol. 7, pp. 148 550–148 575, 2019.

[6] S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with proof-
of-stake,” self-published paper, August, vol. 19, 2012.

[7] L. Ren, “Proof of stake velocity: Building the social currency of the
digital age,” Self-published white paper, 2014.

[8] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, ser. SOSP ’17.
New York, NY, USA: ACM, 2017, pp. 51–68.

[9] A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov, “A
Provably Secure Proof-of-Stake Blockchain Protocol.” IACR Cryptology
ePrint Archive, vol. 2016, p. 889, 2016.

[10] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of Luck: An
Efficient Blockchain Consensus Protocol,” in Proceedings of the 1st
Workshop on System Software for Trusted Execution, ser. SysTEX ’16.
ACM, 2016, pp. 2:1–2:6.

[11] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On Security
Analysis of Proof-of-Elapsed-Time (PoET),” in Stabilization, Safety, and
Security of Distributed Systems, P. Spirakis and P. Tsigas, Eds. Springer
International Publishing, 2017, pp. 282–297.

[12] Libra Association, “The Libra Blockchain,” June 2019. [Online].
Available: https://libra.org/en-US/

[13] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures
for smaller blockchains,” in Advances in Cryptology – ASIACRYPT
2018, T. Peyrin and S. Galbraith, Eds. Cham: Springer International
Publishing, 2018, pp. 435–464.

[14] M. Drijvers, S. Gorbunov, G. Neven, and H. Wee, “Pixel: Multi-
signatures for consensus,” Cryptology ePrint Archive, Report 2019/514,
2019, https://eprint.iacr.org/2019/514.

[15] D.-P. Le, G. Yang, and A. Ghorbani, “Ddh-based multisignatures with
public key aggregation.” IACR Cryptol. ePrint Arch., vol. 2019, p. 771,
2019.

[16] J. Long and R. Wei, “Scalable bft consensus mechanism through
aggregated signature gossip,” in 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), May 2019, pp. 360–367.

[17] “Pchain,” 2018. [Online]. Available: https://pchain.org
[18] Graytrain, “PDBFT2.0 — Pchain’s Revolutionary Consensus Algorithm

For Solving The Trilemma,” November 2019. [Online]. Available:
https://tinyurl.com/y58v6koa

[19] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Simple schnorr multi-
signatures with applications to bitcoin,” Designs, Codes and Cryptogra-
phy, vol. 87, no. 9, pp. 2139–2164, Sep 2019.

[20] G. Fuchsbauer, M. Orrù, and Y. Seurin, “Aggregate cash systems: A
cryptographic investigation of mimblewimble,” in Advances in Cryptol-
ogy – EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham: Springer
International Publishing, 2019, pp. 657–689.

[21] Y. Zhao, “Practical aggregate signature from general elliptic curves,
and applications to blockchain,” in Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, ser. Asia CCS
’19. New York, NY, USA: ACM, 2019, pp. 529–538.

[22] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. K. Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: a
scalable decentralized trust infrastructure for blockchains,” CoRR, vol.
abs/1804.01626, 2018.

[23] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, Aug. 2016, pp. 279–
296.

[24] R. El Bansarkhani and J. Sturm, “An efficient lattice-based multisignature
scheme with applications to bitcoins,” in Cryptology and Network

Security, S. Foresti and G. Persiano, Eds. Cham: Springer International
Publishing, 2016, pp. 140–155.

[25] J. Nick, T. Ruffing, Y. Seurin, and P. Wuille, “Musig-dn: Schnorr
multi-signatures with verifiably deterministic nonces,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 1717–1731. [Online]. Available:
https://doi.org/10.1145/3372297.3417236

[26] R. Khalil, A. Gervais, and G. Felley, “Nocust-a securely scalable
commit-chain,” Cryptology ePrint Archive, Report 2018/642, Tech. Rep.,
2018.

[27] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” in Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 514–532.

[28] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Advances in
Cryptology — EUROCRYPT 2003, E. Biham, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 416–432.

[29] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B. Waters, “Sequential
aggregate signatures and multisignatures without random oracles,” in
Advances in Cryptology - EUROCRYPT 2006, S. Vaudenay, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, pp. 465–485.

[30] T. Ristenpart and S. Yilek, “The power of proofs-of-possession: Securing
multiparty signatures against rogue-key attacks,” in Advances in Cryp-
tology - EUROCRYPT 2007, M. Naor, Ed. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 228–245.

[31] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital sig-
nature algorithm (ecdsa),” International journal of information security,
vol. 1, no. 1, pp. 36–63, 2001.

[32] J. R. Douceur, “The sybil attack,” in Peer-to-Peer Systems, P. Druschel,
F. Kaashoek, and A. Rowstron, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2002, pp. 251–260.

[33] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Draft nist special
publication 800-63-3 digital identity guidelines,” National Institute of
Standards and Technology, Los Altos, CA, 2017.

[34] V. Buterin et al., “Ethereum: A next-generation smart con-
tract and decentralized application platform,” URL https://github.
com/ethereum/wiki/wiki/% 5BEnglish% 5D-White-Paper, 2014.

[35] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-
of-stake blockchain protocols,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology, J. Garcia-Alfaro, G. Navarro-
Arribas, H. Hartenstein, and J. Herrera-Joancomartı́, Eds. Cham:
Springer International Publishing, 2017, pp. 297–315.

[36] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), Oct 1999, pp. 120–130.

[37] M. Ahmed-Rengers and K. Kostiainen, “Don’t mine, wait in line: Fair
and efficient blockchain consensus with robust round robin,” 2020.

[38] A. Dent, Getting started with LevelDB. Packt Publishing Ltd, 2013.
[39] M. Raikwar, D. Gligoroski, and G. Velinov, “Trends in development of

databases and blockchain,” in 2020 Seventh International Conference on
Software Defined Systems (SDS), 2020, pp. 177–182.

89

Paper C

R3V: Robust Round Robin VDF-based Consensus

M. Raikwar, D. Gligoroski

Published in 3rd Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS), IEEE, 2021

R3V: Robust Round Robin VDF-based Consensus
Mayank Raikwar∗, Danilo Gligoroski∗

∗Norwegian University of Science and Technology (NTNU) Trondheim, Norway
Email: {mayank.raikwar, danilog}@ntnu.no

Abstract—Proof of Stake (PoS) based consensus provides a
better mechanism than Proof of Work (PoW) consensus for
extending the blockchain without significant energy waste. Most
of the PoS consensus protocols derive or use some randomness to
elect a leader candidate. This makes the consensus weaker and
attracts more attackers to mount different attacks, e.g., long-
range attacks and block withholding attacks. In PoS consensus,
having more stakes gives more chances to be a leader among
participating stakeholders. Therefore, most PoS protocols do not
provide better fairness for the stakeholders participating in the
consensus protocol. Moreover, these protocols suffer from high
communication complexity for selecting a leader candidate in
each consensus round.

In this work, we propose a novel consensus protocol “R3V”
that selects a set of leader candidates in a round-robin manner
according to age. Finally, these leader candidates compete to be
the block leader by solving a Verifiable Delay Function (VDF)
based puzzle. We propose different methods to generate verifiable
identities for the stakeholders. The identities are enrolled in
the blockchain, which provides the age norm needed for the
consensus. Compared with the other PoS consensus protocols,
our protocol shows better resilience against most of the common
attacks on PoS protocols. Additionally, it proclaims low energy
consumption, less communication complexity, and better fairness.

I. INTRODUCTION

Since the advent of blockchain [1], the scientific knowledge
about the core of its underlying technology – its consensus
mechanism – has been growing at a rapid pace. The initial con-
sensus introduced by Bitcoin [1] is known as Proof of Work.
The main idea of PoW consensus is solving computation-
intensive hash-based hard puzzles. Many consensus protocols
were introduced with a similar puzzle-based idea, but all these
consensus protocols suffered from computational power and
huge energy waste. To address and overcome the problems
of PoW, another consensus mechanism, Proof of Stake, was
introduced. PoS protocols randomly elect a block proposer
from the set of participants based on the stake of each
participant. There have been several constructions of different
PoS protocols in the past [2].

These PoS protocols can be categorized into two
types: Chain-based and BFT-based (Byzantine-Fault Tolerant).
Chain-based follows the longest chain rule of PoW protocol
for the selection of the right chain. BFT-based protocols
require voting from the participants and assume that 2/3
of the stakes are held by honest participants. Chain-based
PoS protocols simulate the PoW leader election. There are
only a few implementations of chain-based PoS protocols

which includes Ouroboros [3] and its descendants [4], [5].
Nevertheless, BFT-based protocols have proven mathematical
properties. Therefore, there have been many constructions of
BFT-based protocols such as Algorand [6], Tenderemint [7]
and Casper [8].

In many PoS protocols, the randomness is generated ei-
ther from the previous block or from randomness beacons.
Therefore, these protocols suffer from long-range and grinding
attacks and incur high communication costs. Algorand [6]
and Ouroboros Praos [4] apply the functionality of verifiable
random function in their leader election. However, both proto-
cols suffer from selection bias. Some PoS protocols [9], [10]
including Algorand, have a concept of committee selection
in leader election protocols, which incur high communication
complexity. Not only the complexity but also most of the PoS
protocols do not provide fairness to consensus participants.

To achieve fairness, less communication cost, and less
susceptibility to long-range and grinding attacks, we construct
a round-robin-based consensus mechanism that leverages the
functionality of verifiable delay function [11]. Our construction
involves the creation and subsequent registration of long-term
identities of consensus participants in the blockchain. The
number of registered identities of a consensus participant is
bounded by its stake. Our consensus protocol works in rounds,
and in each consensus round, some of the oldest identities
apply VDF on a common input. The one who finds the solution
to VDF first is chosen as the leader of that round and proposes
a new block.

Our consensus protocol involves two important constituents:
first is the identity creation, and second is the applicability of
VDF. We propose identity creation based on existing infras-
tructure such as Trusted Execution Environment (TEE), e.g.,
Intel Software Guard Extension (SGX). SGX has already been
incorporated in a few consensus protocols, such as Proof of
Elapsed Time (PoET) [12], Proof of Luck (PoL) [13], Proof of
Queue (PoQ) [14], Proof of Trusted Execution Environments
(TEEs) Stake (PoTS) [15]. PoET and PoL select leaders based
on processors’ random waiting time, and their security relies
on the honest majority of TEE processors. However, PoQ and
PoTS weigh consensus participants based on their stake. The
drawback is that compromising a few high-stakes TEEs might
collapse the whole system and halt the consensus. Most of
these TEE-based consensuses do not provide fairness, while
our consensus provides fairness to all consensus participants.

VDF has been applied in consensus protocols, but being a
recent cryptographic primitive, it is not explored in much depth978-1-6654-3924-4/21/$31.00 ©2021 IEEE

93

for use in new consensus protocols. The Chia network [16]
uses VDF with its Proof of space protocol, where consensus
participants evaluate VDF on a random integer and produce
proof of access to its available disk space. The problem with
their approach is that it can be biased, and grinding attacks
can be performed. Another construction involves computing
VDF on the last block information such as [17], [18]. Other
consensus protocols concerning the use of VDF are Proof
of Staked Hardware (PoSH) [19] and a Decentralised Au-
tonomous Organisation (DAO) working as Random Number
Generator (RNG) in Ethereum 2.0 (RANDAO) [20].

A. Our Contribution

We propose a new consensus protocol with the following
novel contributions:

• Our consensus is a composition of round-robin selection
mechanism of participants’ identities with the verifiable
delay function on a common input in the blockchain
system.

• We present different ways to create long-term identities
for consensus participants.

• We briefly analyze our consensus protocol concerning
several possible attacks on PoS protocols. Moreover, we
also describe the security properties of our consensus.

• We exhibit complexity analysis of consensus protocol and
compare it with some of the existing protocols.

B. Structure of the Paper

The rest of the paper is described as follows. Section II
presents the preliminaries needed to design the consensus
protocol. Section III describes consensus elements compre-
hensively and further explains the whole consensus proto-
col. Section IV presents the feasibility of our consensus by
defining all the security properties and shows its security and
resistance against various PoS attacks. Section V demonstrates
the complexity of the consensus protocol and also compares
our consensus with existing consensus mechanisms. Finally, in
Section VI, we conclude the paper and discuss possible ways
to adapt and enhance this work.

II. PRELIMINARIES

A. Infrastructures for Identity Creation

In our consensus, reliable identities are created from in-
frastructures such as a trusted execution environment (TEE)
or trusted public certificates. A TEE is a secure area of the
main processor that provides isolated execution of code and
data. Therefore, with the provided security feature, reliable
identities of stakeholders can be bootstrapped from TEE. The
popular TEEs are Intel SGX and ARM TrustZone. Many of
the PoS consensus protocols make use of Intel SGX as their
TEE. We also demonstrate identity creation using Intel SGX.
Moreover, a similar technique can be used to create identity
using ARM TrustZone. TEE reliance on trusted hardware
poses a challenge for its use in practical deployment in the
blockchain. These challenges such as side-channel attacks [21],
[22], Foreshadow [23] and Spectre [24] vulnerabilities should

not impact the leader election in PoS consensus. Our R3V
consensus provides a reasonable level of security even if an
adversary compromises a significant number of stakeholders
participating in the consensus. Trusted public certificates can
also help in the creation of long-term identities. These public
certificates should provide a method to check their correctness
and integrity. These certificates can be national identity cards,
bank credit cards, or passports.

B. Verifiable Delay Function

Verifiable delay function (VDF) is a cryptographic primitive
proposed in 2018 by Boneh et al. [11]. A function f : X → Y
is a VDF if given an input x ∈ X , the computation of output
y ∈ Y takes predefined number of steps T ; additionally the
verification of y is exponentially easy and efficient. Further-
more, the computation of y cannot be parallelized even if a
polynomial number of processors are available.

Definition 1: (VDF): A VDF is defined as a tuple of
following algorithms:
• Setup(λ, T): It is a randomized algorithm that takes security

parameter λ, time parameter T and outputs public parameter
pp.

• Eval(pp, x, T): The evaluation algorithm takes public para-
mater pp, input value x ∈ X and time parameter T , returns
an output value y ∈ Y together with a proof π. The
algorithm may use random coins to generate the proof π
but not for the computation of output y.

• Verify(pp, x, y, π, T): The verification algorithm outputs a
bit ∈ {0, 1}, given the input as public parameter pp, input
value x, output value y, proof π, and time parameter T .
There have been two main constructions of VDF based

on the modular exponentiations. These two main proposals
are Wesolowski Scheme [25] and Pietrzak Scheme [26]. Both
schemes evaluate an output value y ← H(x)(2

T)modN , along
with a proof π, given an input value x. Here H : X → G is
an efficiently computable hash function, T is the number of
squarings needed to compute the output, and N is an RSA
modulus.

With the growing interest in VDF, Ephraim et al. [27]
introduced a notion of Continuous Verifiable Delay Function
(cVDF). They presented the construction by adapting Pietrzak
Scheme. A VDF f can be a continuous VDF if it gives
computation of function f on intermediate steps (i.e. f(t) for
t < T) along with an efficient proof πt. The intermediate
outputs of cVDF are publicly and continuously verifiable.

III. R3V CONSENSUS

A. Identity Establishment

The identity of the stakeholders can be established by
using different methods. These methods generate long-term
and reliable identities which are recorded in the permissionless
blockchain. Without loss of generality, we consider the public
keys of stakeholders as their respective identities. The identity
generation method should prevent an adversary from establish-
ing multiple valid identities, thereby launching a Sybil attack.

94

Next, we define a few methods to generate reliable identities
for the stakeholders in this consensus.
• Using Trusted Execution Environment Identities of consen-

sus participants can be established using trusted execution
environments (TEE) such as SGX. Intel SGX is defined as a
set of instruction codes built into modern Intel CPU, which
defines enclaves (a private memory region) in isolation,
protected from outside processes. An entity A executing
an enclave E has to be attested by a secure attestation
service (Intel SGX), called Intel Attestation Service (IAS).
This attestation convinces the entity A that the enclave
E is running on an authentic SGX processor. An SGX
platform has a local software called Quoting Enclave QE
that performs local attestation with the enclave E. The
complete attestation process is depicted as in Figure 1 where
an SGX platform attests its enclave E to IAS through a
remote verifier V. If the attestation is successful, then IAS
sends the signed QUOTE. The REPORT prepared by E
contains enclave’s measurement and a USERDATA field
containing application-specific parameters such as a hash of
its public key. QUOTE structure prepared by QE signs the
QUOTE using the processor-specific attestation key before
forwarding it to IAS.

Verifier VPlatform P IAS

Challenge C

QUOTE

QUOTE

σ(QUOTE)

1. E prepares REPORT
2. Send REPORT to QE
3. QE prepares QUOTE

If QUOTE verifies,
Compute σ(QUOTE)

Fig. 1. SGX Remote Attestation

To bootstrap the blockchain, an untrusted entity GC (Genesis
Creator) performs remote attestation with IAS and obtains
an access credential c for IAS. Further, it chooses n number
of platforms as initial blockchain members. Each platform
Pi generates its public-private key pair (PKi, SKi) by
installing enclave code. SKi is sealed in the enclave, and
PKi is given to GC. Each platform Pi attests itself to IAS
through GC as a remote verifier as depicted in Figure 1. The
following operations take place for creating a genesis block.
1) For each platform Pi, QUOTEi includes H(PKi); where

H is a collision-resistance Hash function.

2) After successful attestation of Pi, IAS sends σi to GC,
where σi is the signed QUOTEi by IAS including a
pseudonym Xi for Pi.

3) GC checks whether for each platform Pi, the returned
hash matches in QUOTEi and also checks if Xi 6=
Xj ,∀ i 6= j where i, j ∈ n.

4) After performing all the above steps, GC creates the gen-
esis block GB which includes ({PKi, σi}ni=1, Ce, hGB),
where Ce is the enclave code which will be used as
reference for future identity enrollments, hGB is hash
of all the contents included in the block.

5) GC sends the access credential c to all the attested
enclaves that gets sealed in the attested enclaves.

New users seeking enrollment to the consensus are registered
through the current members of the ledger (whose identities
are already published in the ledger). Thereby, a new user
having platform Pu with key pair (PKu, SKu) establishes
and registers its identity by performing remote attestation
with IAS through a current ledger member Pc. In this attes-
tation process, all the steps are performed as defined previ-
ously. Now the QUOTEu includes H(PKu||cr||hGB ||hCB),
where cr is current round number of consensus, hCB is hash
of the latest block. After a successful remote attestation, Pc

broadcasts an enrollment message M = (PKu, cr, hCB) to
the network. Once M is included in a new block, the new
identity PKu gets established in the blockchain.

• Using Mining Reward Identities can also be created using
mining. For each block creation, the winner participant
Pw receives identity rewards Rw proportional to the stake
rewards Sw. That means, Rw ∝ bγ.Swc, where 0 < γ ≤ 1.
These identity rewards can be further used to enroll new
identities in the blockchain. To control the number of
identities in the system, a threshold T on the identity rewards
can be placed for enrolling new identities. That means, once
an existing member Pi of the ledger having its total identity
rewards from previous j rounds

∑r
j=lR

j
i ≥ T, then Pi can

establish new identity either for itself or for a new user;
here l is the latest round number where an enrollment of
new identity is performed by Pi. The following description
will provide a better understanding of identity creation.
– Bootstrapping of the blockchain can be done using a pre-

liminary PoW-Based phase. In this phase, a set of partic-
ipants {P1, . . . , Pn} having identities {PK1, . . . , PKn}
and valid solutions {s1, . . . , sn} to PoW can run a dis-
tributed cryptographic protocol [28] to create a genesis
block. The genesis block includes valid PoW solution
of each party and the corresponding Identity rewards.
These rewards are further used to enroll new identities
in the ledger. Henceforth, the genesis block includes
({PKi, si}ni=1, hGB).

– Enrollment of new identities can be performed by ex-
isting participants of the ledger. An existing participant
Pi having identity PKi and rewards Ri more than the
threshold T, can create a new identity PKu with the
corresponding secret key SKu. Then Pi broadcasts an

95

enrollment message M = (PKu, πi, R, σi); where πi
is a proof of having sufficient reward that can be a set
of hashes of previous blocks mined by Pi, R is the
remaining identity reward of Pi, and σi is a signature
over all the other information on M . Once the message
M is included in a new block, the new identity PKu gets
confirmed in the ledger. Pi can sell the identity PKu to
new participants using a smart contract and in exchange
for some stakes of the new participant.

• Using Trusted Public Certificates Reliable identities can be
bootstrapped from trusted public certificates such as credit
cards, national identity cards, Passport, etc. Genesis block of
the blockchain can be created using multi-party computation
among initial ledger participants. A new user Pu can gen-
erate its key-pair (PKu, SKu) using the public certificate
PCu, where PKu is the identity of user Pu. Further, Pu

broadcasts a message M = (PKu, πu, π
PoP
u , σu); where

πu is a zero-knowledge proof of valid public certificate
PCu and correct generation of PKu, πPoP

u is a proof of
possession of corresponding secret key SKu, and σi is a
signature over all the other information on M . Once the mes-
sage M is included in a new block, the new identity PKu

gets confirmed in the ledger. Additionally, some interesting
works [29], [30] can be utilized to create a zero-knowledge
proof of identity.
There have been advancements to create decentralized iden-

tity by decentralized identity foundation (DIF) [31]. Once the
DIF ecosystem would be mature, it can be directly applicable
to create identities in our consensus protocol. Moreover, Self-
sovereign identities (SSI) and verifiable credentials are also
potential candidates for identity creation to be investigated and
further integrated in our consensus.

B. VDF Puzzle
A VDF puzzle is constructed using the repeated squaring

functionality of VDF. In what follows, we define the VDF-
puzzle based on continuous VDF.

Definition 2: (VDF Puzzle): Given an input x, a function
F , a constant α, a VDF-puzzle VP asks for a solution S =
(t, s, πs) such that

s = H(x)2
t

(1)

F (s) ≤ α.M (2)

Here input x is a verifiable input for the puzzle, function F :
X → Y is a one-way hash function with M as its maximum
value, (t, s, πs) is an intermediate output of cVDF on x, and
H is a hash function used in cVDF acting as a random oracle.
The value α is the puzzle difficulty and it is updated from
time to time. Moreover, in the above VDF-puzzle, the output
s is computed as in Equation 1 for an intermediate step t.
Subsequently, s satisfies Equation 2, and a proof πs of correct
VDF computation for s is generated. As a result, (t, s, πs)
serves as a solution S to the VDF-puzzle VP.

In the above puzzle VP, the value t is unknown before the
puzzle solution is found. As the puzzle is based on VDF, it
follows the similar properties of VDF:

1) Sequentiality : The computation of the output s of the
puzzle solution S on input x takes O(t) sequential steps,
even on parallel computers.

2) Verifiability : The verification of the puzzle solution S can
be performed efficiently in O(polylog(t)) steps.

To apply the puzzle in the consensus process, each stake-
holder’s input x of the puzzle should be random and efficiently
verifiable. Additionally, different inputs make the time needed
to solve puzzle VP different for each stakeholder. Therefore,
in the essence of generating different verifiable random inputs
for each stakeholder, the functionality of Verifiable Random
Function (VRF) [32] can be leveraged. Each stakeholder P
computes the input x for its verifiable puzzle VPP on the
latest puzzle solution sl as follows:

(x, πx)← V RFSKP
(sl) (3)

C. Consensus Algorithm

In the R3V consensus protocol, the stakeholders operate in a
partially synchronous network where the message transmission
between two directly connected stakeholders occurs within a
specific time-bound. Each stakeholder puts a minimum amount
of stake in the blockchain in order to participate in the con-
sensus. Each stakeholder maintains a list ReceiveNBlock of
received new blocks in the current round, which is set to empty
during the start of the round. R3V consensus algorithm runs in
terms of rounds. On each round, a deterministic set of leader
candidates among the stakeholders are selected according to
their age. These chosen candidates try to solve the current
VDF-puzzle. Once one of the leader candidates solves the
puzzle, it creates a new block and broadcasts the new block.

Algorithm 1: Consensus Algorithm
Input : L, PKi, r, hr−1, sr−1

Output: Br

1 ReceiveNBlock← ∅;
2 if Eligible(L, PKi, r, hr−1) then
3 (xr, π

x
r)← V RFSKi(sr−1);

4 sr ← H(xr)
2;

5 tr ← 1;
6 while F (sr) > α.M do
7 tr ← tr + 1;
8 sr ← sr

2;
9 end

10 if ReceiveNBlock = ∅ then
11 Compute πs

r ;
12 end
13 end
14 Pi prepares a new block Br for round r with the header

(PKi, xr, π
x
r , tr, sr, π

s
r , σi);

15 Pi broadcasts the block Br

In each consensus round r, each stakeholder Pi with en-
rolled identity PKi runs the above Consensus Algorithm 1
where first it checks whether the stakeholder is eligible to
be a leader candidate. If a stakeholder is an eligible leader
candidate, then it tries to find the solution to the current VDF-
puzzle VP on its randomly generated input using Equation 3.

96

If a stakeholder finds the solution before anyone else, then it
prepares a new block Br. The stakeholder signs the content of
the block, which includes the block header and the transaction
lists. The signature is included in the block header. Finally, the
block Br is broadcast to the network. The other stakeholders
(including leader candidates) receive the new block Br and
verify the solution for the puzzle VP and based on the
verification, they accept or reject the block.

The main constituents of R3V consensus are the Eligible
predicate followed by VDF-puzzle. Section III-B describes
the VDF-puzzle in detail. Hence, following we describe the
Eligible predicate in detail:
Eligible(L, PKi, r, hr−1) : This predicate checks whether

a stakeholder Pi with enrolled identity PKi is eligible to be
a leader in round r. Here the robust round-robin part of R3V
comes into the picture. In R3V consensus, each identity PKi

is attached with an age Ai. Here age Ai refers to the number
of rounds since PKi’s latest message appeared in the ledger
L. This message can be either an identity enrollment message
of PKi or a newly created block Br by PKi.

Each stakeholder maintains a round-robin queue of stake-
holders’ identities. The queue is sorted in decreasing order
based on the age of stakeholders’ identities and gets updated
after each consensus round. This queue can be formalized as
a virtual queue containing all the registered identities of the
ledger L as its elements. In that manner, the virtual queue of
all the stakeholders should be the same.

Fig. 2. Round-Robin Selection of Identities

In each consensus round, a window (set) Nw of stakeholders
are chosen from the round-robin queue as leader candidates
based on age. In the Eligible predicate of round r, each
stakeholder parses the ledger L using a threshold value Nv

where the stakeholder selects the Nw oldest leader candidates
from the current block (with block hash hr−1) til the Nv

oldest block. Then, the stakeholder with identity PKi checks
whether PKi is in the selected Nw leader candidates. Further,
all the selected Nw leader candidates compete to be the block
leader by solving the current VDF-puzzle. Moreover, after the
selection of Nw leader candidates, the age of all the identities
in Nw is set to zero and further these identities are placed at the

end of the round-robin queue of each stakeholder as depicted
in Figure 2. The newly updated queue is used for the selection
of leader candidates in the next consensus round r + 1. The
updated queue confirms the fairness of the system by giving
chance to the next oldest identities in round r+1. Additionally,
the values Nw, Nv are adjusted/updated in the blockchain to
make the deterministic selection process of identities fairer.

During a consensus round, each stakeholder including leader
candidates continue checks it ReceiveNBlock list. Once a
stakeholder Pi becomes the block leader of round r as
in Algorithm 1, it broadcasts the new block Br with the
header (PKi, xr, π

x
r , tr, sr, π

s
r , σi). The block Br is added to

the receiving stakeholders’ ReceiveNBlock list. A receiving
stakeholder Pj with identity PKj performs the following
verification checks.

• Eligible(L, PKi, r, hr−1) = 1
• V RF.Verify(PKi, sr−1, xr, π

x
r) = 1

• V DF.Verify(pp, xr, tr, sr, π
s
r) = 1

If all the checks verifies, the stakeholder Pj with identity
PKj extends its blockchain by adding the new block Br. If
the stakeholder Pj is a leader candidate of the round r, it
terminate the process of solving its VDF-puzzle after extending
its blockchain with Br.

Fork in R3V : In R3V consensus, a rare situation may
arise where more than one leader candidates solve the puzzle
almost at the same time and become the block leader. As
the VDF-puzzle input for each leader candidate differs due
to VRF, therefore, solving the VDF-puzzle around the same
time becomes a less probable event. Moreover, the round-robin
selection of Nw stakeholders in each consensus round also
reduces the probability of forking the chain. Nevertheless, even
if a fork happens, our consensus adopts the longest chain rule
to choose between the forks where the branch with the most
number of valid blocks is selected.

IV. SECURITY ANALYSIS

A. Analysis of Attacks

We present the analysis of R3V consensus based on the most
common attacks on proof of stake consensus [33].
• Long-Range Attack: Long-range attacks are one of the most

common attacks in Proof of stake blockchains. In this attack
scenario, an adversary creates a new branch starting from a
distant past (can be a genesis block) and tries to overtake
the main public branch of the blockchain. This attack is
also known as Alternative history or History revision attack.
In R3V consensus, due to the round-robin selection of
leader candidates for each consensus round, and due to the
sequentiality of the VDF puzzle where mining a new block
Br requires solving a puzzle using the previous block puzzle
output sr−1, makes the probability of long-range attack
negligible.

• Nothing-at-Stake Attack: Nothing-at-stake problem arises
when a rational stakeholder publishes blocks on different
forks. As there is no opportunity cost, the rational stake-
holder can follow and extend both branches to maximize

97

its reward. However, in our consensus, this attack is only
feasible when the rational stakeholder has created multiple
successive identities and has become the leader in the con-
secutive rounds. The fair process of creating new identities
and the fair chance of being the leader in a consensus round
significantly reduce the probability of mounting a Nothing-
at-Stake attack.

• Grinding Attack: In a grinding attack, the leader of the pre-
vious consensus rounds aims to gain extra advantage on the
next consensus round by trying different block candidates
(by changing the transactions or block header) and picking
the most advantageous candidate block. To consecutively
win, the leader of the previous consensus rounds iterate
through many block candidates until it becomes the leader
on the next round. In our consensus, VDF-puzzle VP for
each consensus round is fully determined, and the leader of
the previous round cannot perform a grinding attack just by
trying different block candidates.

• Block Withholding Attack: In a block-withholding attack,
an adversary mines new blocks in its forked branch of
the blockchain without publishing the newly mined blocks
in the blockchain network. Later adversary publishes its
branch, and the other stakeholders revert their branch with
the adversary’s branch, resulting in more reward for the
adversary. In the R3V consensus, the selection of leader
candidates in each round is fair. Therefore, an adversary can
only mount a block-withholding attack only if it is eligible
as a leader in successive rounds and if it successfully solves
all the VDF puzzles in each round. Nonetheless, the chances
of doing so are very low.

• Sybil Attack: In a Sybil attack, an adversary creates multiple
Sybil identities and tries to significantly influence the net-
work based on the total voting power of Sybil identities.
Most of the PoS consensus reduce the Sybil attack by
requiring stakeholders to put a mandatory fixed amount of
stake in the blockchain. In R3V consensus, to mount the
Sybil attack, an adversary has to enroll multiple identities
on blockchain and also put a small fixed amount of stake.
Therefore, having no voting in R3V consensus and a fair
identity enrollment process reduces the probability of Sybil
attack significantly.

• Denial-of-service (DoS) Attack: In R3V consensus, the
Eligible predicate makes the selection of leader candidates
very predictable. Therefore, an adversary can prepare the
DoS attack in advance. However, the R3V consensus pro-
vides a fair chance to all leader candidates to solve the VDF-
puzzle. Hence, by adjusting the window parameter Nw, the
DoS attack can be made harder. Another approach to make
the DoS attack harder is for each leader candidate to change
its IP address in each round where it is selected as a leader.
An interesting research problem can be to introduce the
concept of heartbeats similar to Raft consensus [34] in case
of leader faces a DoS attack and choosing another leader
candidate as a leader.

B. Security Properties

A consensus protocol should achieve three security proper-
ties: Persistence, Liveness and Fairness.
• Persistence: It ensures that once an honest stakeholder ac-

cepts a new block in its blockchain, the probability of getting
the block reverted is negligible as the chain continues to
grow. In the R3V consensus, due to the deterministic nature
of leader candidates selection, the probability of reverting a
block is negligible. Therefore, R3V consensus is persistent.

• Liveness: It ensures that blockchain will continue to progress
by adding new blocks and valid transactions submitted by
an honest stakeholder will eventually be included in the
blockchain. In each round of R3V consensus, a set of
stakeholders try to solve VDF-puzzle, and the one solving
the puzzle first extends the chain by creating a new block.
Therefore, in the R3V consensus, a new block is added
in each round, and hence R3V consensus achieves better
liveness.

• Fairness: As blockchains rely on reward in the forms of
transaction fees when a leader is elected, fairness is about
how often a leader is rewarded. In the R3V consensus, each
stakeholder gets a fair chance of creating a new block and
getting the associated reward due to the robust round-robin
leader candidate selection. Most PoS consensus algorithms
lack fairness due to selection bias; however, R3V provides
better fairness.

V. CONSENSUS ANALYSIS

A. Complexity Analysis

Regarding computation complexity, in each round of the
R3V consensus protocol, only Nw leader candidates try to
solve the VDF puzzle. Solving the puzzle involves computing
the repeated squaring, so in total, the computation complexity
is O(Nwt), where t is the average number of steps performed
by each leader candidate.

As R3V consensus does not involve any voting or complex
endorsing procedures similar to BFT-based consensus; the
communication complexity is similar to the communication
complexity of chain-based protocols. Moreover, in the R3V
consensus, a race on solving the VDF-puzzle is among Nw

leader candidates out of total N stakeholders. Finally, the
block leader who solves the VDF-puzzle first broadcasts the
new block to the network. Thereby, the total communication
complexity is linear with the size of the network, that is O(N).

B. Comparison Analysis

In Table I, we compare different consensus protocols with
respect to some necessary attributes. The two columns about
Attacks show whether it is easy to mount these attacks on
the corresponding consensus protocol or not. Randomness
shows whether the consensus protocol uses some kind of
randomness for leader election. Liveness shows how early the
valid transactions are included in the blockchain. Deterministic
Selection manifest if the consensus selects a deterministic set

98

Consensus
Scheme

Long-range
Attack

Block-withholding
Attack Randomness Liveness Deterministic

Selection
Communication

Complexity
DoS

Resistance

Dfinity
[35] Moderate Hard 3 Good 7 Moderate Less

RRR
[10] Moderate Hard 3 Good 3 Moderate Less

PoTS
[15] Hard Hard 3 Better 7 Moderate Moderate

NC-VDP
[18] Hard Moderate 7 Better 7 Less Moderate

Our
Scheme Hard Hard 7 Better 3 Less Less

TABLE I
COMPARISON TABLE OF DIFFERENT CONSENSUS SCHEMES

of participants for leader election in each round. The deter-
ministic selection also affects the fairness of the consensus
protocol. Communication Complexity indicates whether the
consensus uses multiple rounds of communication to finalize
the leader. DoS Resistance exhibits how resistant the consensus
protocols are in case of a DoS attack. Our consensus protocol
performs better in most of the listed attributes. One significant
advantage of our consensus is its fairness to all the blockchain
participants as every participant gets a fair chance to race in a
consensus round due to the round-robin selection of identities.

In Table I, we use the terms ‘Moderate’, ‘Hard’, ‘Good’,
‘Better’, and ‘Less’ subjectively that justifies the evaluation
and comparison of the respective attributes of consensus pro-
tocols. We are open to suggestions of other terms that quanti-
tatively justify the comparison of attributes in our comparison
table.

NC-VDP consensus scheme in Table I achieves almost
similar performance as R3V consensus. However, in NC-VDP
consensus, all the participants try to solve the VDF puzzle
in each round. Hence, it increases the chances of mounting a
block-withholding attack, as well as does not provide better
fairness to all the participants in contrast to R3V consensus.

VI. CONCLUSION

In this paper, we proposed a consensus protocol that selects
the leader candidates based on the age status in a round-robin
manner, and further, a block leader is chosen using a VDF
based puzzle. Our consensus does not depend on any kind of
randomness; instead, it provides a deterministic selection of
leader candidates with the resilience towards the long-range
and block withholding attacks. Our consensus shows lower
energy consumption, less communication complexity, and
better fairness than most of the Proof of stake based consensus
mechanisms.

Future Directions: There are several ways to extend
this work. One interesting direction would be to find other
ways for identity generation. The identity generation can also
be made anonymous and publicly verifiable using the amazing
features of zero-knowledge proofs. Not only the identity
creation but also the anonymity of the leader candidate can
be achieved using zero-knowledge proofs and anonymous
verifiable random function similar to [36], [37]. Performing a
formal verification of R3V consensus will be an interesting
area for proving the correctness of the protocol. Furthermore,
due to round-robin selection, our consensus lacks better DoS
resistance; therefore, exploring the direction of providing
better DoS-resistant to our consensus would be an interesting
avenue to look into.

VII. ACKNOWLEDGEMENT

We thank the anonymous reviewers for their valuable and
constructive comments to improve the quality and readability
of the paper.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf,” 2009.

[2] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen,
and E. Dutkiewicz, “Proof-of-stake consensus mechanisms for future
blockchain networks: fundamentals, applications and opportunities,”
IEEE Access, vol. 7, pp. 85 727–85 745, 2019.

[3] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol,” in Annual International
Cryptology Conference. Springer, 2017, pp. 357–388.

[4] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2018, pp. 66–98.

99

[5] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas, “Ouroboros
genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity,” in Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 913–930.

[6] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, 2017, pp. 51–68.

[7] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of
blockchains,” 2016.

[8] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

[9] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 931–
948.

[10] M. Ahmed and K. Kostiainen, “Don’t mine, wait in line: Fair and
efficient blockchain consensus with robust round robin,” arXiv preprint
arXiv:1804.07391, 2018.

[11] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, “Verifiable delay func-
tions,” in Advances in Cryptology – CRYPTO 2018, H. Shacham and
A. Boldyreva, Eds. Cham: Springer International Publishing, 2018, pp.
757–788.

[12] H. Foundation, “Sawtooth lake, https://github.com/hyperledger/sawtooth-
core,” 2016.

[13] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck:
An efficient blockchain consensus protocol,” in proceedings of the 1st
Workshop on System Software for Trusted Execution, 2016, pp. 1–6.

[14] G. D. Bashar, A. A. Avila, and G. G. Dagher, “Poq: A consensus protocol
for private blockchains using intel sgx,” in International Conference on
Security and Privacy in Communication Systems. Springer, 2020, pp.
141–160.

[15] S. Andreina, J.-M. Bohli, G. Karame, W. Li, and G. A. Marson,
“Pots: A secure proof of tee-stake for permissionless blockchains,” IEEE
Transactions on Services Computing, 2020.

[16] B. Cohen, “Chia network,” 2017. [Online]. Available: https://
www.chia.net

[17] A. Biryukov and D. Feher, “Recon: Sybil-resistant consensus from
reputation,” Pervasive and Mobile Computing, vol. 61, p. 101109, 2020.

[18] J. Long and R. Wei, “Nakamoto consensus with verifiable delay puzzle,”
arXiv preprint arXiv:1908.06394, 2019.

[19] R. Khalil and N. Dulay, “Short paper: Posh proof of staked hardware
consensus,” ePrint, 2020.

[20] J. Drake, “Minimal vdf randomness beacon,” Ethereum Research, 2018.
[21] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,

H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land: Un-
derstanding memory side-channel hazards in sgx,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 2421–2434.

[22] N. Zhang, K. Sun, D. Shands, W. Lou, and Y. T. Hou, “Truspy: Cache
side-channel information leakage from the secure world on arm devices.”
IACR Cryptol. ePrint Arch., vol. 2016, p. 980, 2016.

[23] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel {SGX} kingdom with transient out-of-
order execution,” in 27th {USENIX} Security Symposium ({USENIX}
Security 18), 2018, pp. 991–1008.

[24] E. M. Koruyeh, K. N. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre returns! speculation attacks using the return stack buffer,” in
12th {USENIX} Workshop on Offensive Technologies ({WOOT} 18),
2018.

[25] B. Wesolowski, “Efficient verifiable delay functions,” in Advances in
Cryptology – EUROCRYPT 2019, Y. Ishai and V. Rijmen, Eds. Cham:
Springer International Publishing, 2019, pp. 379–407.

[26] K. Pietrzak, “Simple Verifiable Delay Functions,” in 10th Innovations
in Theoretical Computer Science Conference (ITCS 2019), ser.
Leibniz International Proceedings in Informatics (LIPIcs), A. Blum,
Ed., vol. 124. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2018, pp. 60:1–60:15. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2018/10153

[27] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass, “Continuous
verifiable delay functions,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2020,
pp. 125–154.

[28] M. Andrychowicz and S. Dziembowski, “Pow-based distributed cryp-
tography with no trusted setup,” in Annual Cryptology Conference.
Springer, 2015, pp. 379–399.

[29] U. Feige, A. Fiat, and A. Shamir, “Zero-knowledge proofs of identity,”
Journal of cryptology, vol. 1, no. 2, pp. 77–94, 1988.

[30] D. Cerezo Sánchez, “Zero-knowledge proof-of-identity: Sybil-resistant,
anonymous authentication on permissionless blockchains and incentive
compatible, strictly dominant cryptocurrencies,” Anonymous Authentica-
tion on Permissionless Blockchains and Incentive Compatible, Strictly
Dominant Cryptocurrencies (May 22, 2019), 2019.

[31] DIF, “Decentralized identity foundation,” https://identity.foundation,
Mar 2021, [Online; accessed 12-Mar-2021].

[32] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039), 1999, pp. 120–130.

[33] E. Deirmentzoglou, G. Papakyriakopoulos, and C. Patsakis, “A survey
on long-range attacks for proof of stake protocols,” IEEE Access, vol. 7,
pp. 28 712–28 725, 2019.

[34] D. Ongaro and J. Ousterhout, “In search of an understandable con-
sensus algorithm,” in 2014 {USENIX} Annual Technical Conference
({USENIX}{ATC} 14), 2014, pp. 305–319.

[35] T. Hanke, M. Movahedi, and D. Williams, “Dfinity technology overview
series, consensus system,” arXiv preprint arXiv:1805.04548, 2018.

[36] C. Ganesh, C. Orlandi, and D. Tschudi, “Proof-of-stake protocols for
privacy-aware blockchains,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 2019,
pp. 690–719.

[37] F. Baldimtsi, V. Madathil, A. Scafuro, and L. Zhou, “Anonymous lottery
in the proof-of-stake setting,” in 2020 IEEE 33rd Computer Security
Foundations Symposium (CSF). IEEE, 2020, pp. 318–333.

100

Paper D

Non-Interactive VDF Client Puzzle for DoS Mitigation

M. Raikwar, D. Gligoroski

Published in European Interdisciplinary Cybersecurity Conference
(EICC), ACM, 2021

Non-Interactive VDF Client Puzzle for DoS Mitigation
Mayank Raikwar

Norwegian University of Science and Technology
Trondheim, Norway

mayank.raikwar@ntnu.no

Danilo Gligoroski
Norwegian University of Science and Technology

Trondheim, Norway
danilog@ntnu.no

ABSTRACT
Denial of Service (DoS) attacks pose a growing threat to network
services. Client puzzles have been proposed to mitigate DoS attacks
by requiring a client to prove legitimate intentions. Since its intro-
duction, there have been several constructions of client puzzles.
Nevertheless, most of the existing client puzzles are interactive,
where a server constructs a puzzle for a client request and asks the
client to solve it before giving access to a resource. Additionally,
most existing client puzzles do not provide desirable properties
such as fairness, non-parallelizability, or non-interactivity. In this
work, we propose a non-interactive client puzzle that achieves all
these desired properties through a verifiable delay function (VDF).
In a non-interactive puzzle, the client generates a puzzle and sends
its solution along with the puzzle to access a resource of the server.
We present different methods to generate verifiable client puzzles
to prevent puzzle forgery and attacks from the client side. Further,
we exhibit a transformation of the client puzzle into a DoS-resistant
protocol. We also demonstrate the applicability of the DoS-resistant
protocol in different contexts of the blockchain ecosystem.

CCS CONCEPTS
• Security andprivacy→Denial-of-service attacks;Distributed
systems security; Cryptography.

KEYWORDS
Denial-of-service, Client Puzzles, Verifiable Delay Function, Ran-
dom Beacon, Blockchain
ACM Reference Format:
Mayank Raikwar and Danilo Gligoroski. 2021. Non-Interactive VDF Client
Puzzle for DoS Mitigation. In European Interdisciplinary Cybersecurity Con-
ference (EICC), November 10–11, 2021, Virtual Event, Romania. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3487405.3487406

1 INTRODUCTION
Client puzzles, initially introduced by Dwork and Naor [12], have
been considered a valuable defense mechanism against DoS at-
tacks [22]. In a client puzzle, a client has to provide a solution to
the puzzle before being granted access to a resource by a server.
These puzzles, that counter resource depletion DoS attacks, are
moderately hard to solve (in terms of CPU or memory usage, or

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EICC, November 10–11, 2021, Virtual Event, Romania
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9049-1/21/11. . . $15.00
https://doi.org/10.1145/3487405.3487406

time required to solve) and are called proofs of work. They can be
turned on and off based on necessity and the server’s amount of
requested traffic. Many client puzzle constructions have been pro-
posed [1, 5], which are primarily dedicated to rigorously defining
the client puzzles based on the required computation, memory to
solve the puzzle.

The motivation for DoS attacks can vary from a business compe-
tition, hacktivism, ransom, to politics. The intensity and frequency
of DoS attacks have been continuously increasing every year, and
that is why the DoS attack is considered one of the biggest threats
for the Internet industries. In October 2016, a DDoS attack was
mounted on DNS servers that provide DNS services for the major
websites, including Netflix, Twitter, and PayPal, which resulted in a
cut off the access to these websites for several hours [37]. These DoS
attacks have also been mounted on many different places ranging
from cloud services, IoT devices to cryptocurrencies and blockchain.
Many works have been carried out in the past [11, 17] to detect and
prevent these attacks.

1.1 Related Work
In a general context, a client puzzle demands a client to commit
some of its resources by solving the puzzle. These resource types
can vary, and depending upon the resource type, different types of
client puzzles have been proposed. Some of the important puzzles
are: CPU-bound puzzles which are quantified by the number of
CPU cycles to solve the puzzle, Memory-bound puzzles which are
quantified by the number of memory access to solve the puzzle, and
Network-bound puzzles which are evaluated by the time required
to solve the puzzle bounded by the network latency.

The earlier introduction of the CPU-bound (computation bound)
puzzle was proposed by Back [5] in his Hashcash system, which
was based on the difficulty of inverting a hash function. Although
most of the computation bound puzzles follow the same idea, these
puzzles have a drawback regarding the mismatch in the processing
power available to the clients over time [33] (fairness). Moreover,
these puzzles’ parallelizability nature allows the clients to solve the
puzzle substantially faster by utilizing customized hardware. There-
fore, Abadi et al. [1] introduced memory-bound puzzles, which led
to many subsequent constructions of memory-bound puzzles [13].
However, these puzzles are still not fair for resource-constrained
devices. The memory-bound puzzles depend on the number of
memory accesses (or cache misses). Additionally, another variant
of this puzzle, memory-hard puzzles requires a significant amount
of memory. Conclusively, these puzzles cannot provide fairness to
resource-constrained devices (e.g., IoT).

Time-lock puzzle [28] is also an interesting cryptographic puz-
zle that encapsulates messages for a precise amount of time. The
solution to these puzzles can only be computed sequentially by
performing a deterministic number of steps. Nonetheless, these

103

EICC, November 10–11, 2021, Virtual Event, Romania Mayank Raikwar and Danilo Gligoroski

Scheme Based
On

Construction
Cost

Verification
Cost Granularity State-

less
Deter-
ministic

Publicly
Verifiable

Non
Parallel

Non
Interactive

Client Puzzles
[22]

Multiple Hash
Inversion

1
hash

1
hash Exponential ✓ ✗ ✗ ✗ ✗

Hashcash
[5]

Single Hash
Inversion

1
hash

1
hash Exponential ✓ ✗ ✓ ✗ ✓

Hint-based
[14]

Single Hash
Inversion

1
hash

1
hash Linear ✗ ✗ ✗ ✗ ✗

Trapdoor-RSA
[16]

RSA Trapdoor
Problem

3 mod mul
2 additions

1
comparison Linear ✗ ✗ ✗ ✗ ✗

Trapdoor-DLP
[16]

Discrete Log
Trapdoor

2 mod mul
3 additions

1
comparison Linear ✗ ✗ ✗ ✗ ✗

D-H Puzzle
[35]

Diffie-Hellman
Problem

1
mod exp

1
comparison Linear ✓ ✗ ✗ ✗ ✗

Subset Sum
[34]

Subset-Sum
Problem

1
hash

1
comparison Polynomial ✓ ✓ ✓ ✗ ✗

Guided-Tour
[2]

Network-Tour
Puzzle

1
hash

1
comparison Linear ✓ ✓ ✗ ✓ ✗

Time-Lock
[28]

On Repeated
Squaring

2
mod mul

2
mod mul Linear ✗ ✓ ✗ ✓ ✗

Y-M Puzzle
[20]

Single Hash
Inversion

1
hash

1
hash Exponential ✓ ✗ ✓ ✗ ✓

Y-M Puzzle
[21]

Modular Square
Root

c
hash

c hash
1 mod exp Polynomial ✓ ✗ ✓ ✓ ✓

Our Scheme VDF Based
Puzzle

1
hash

2
mod exp Linear ✓ ✓ ✓ ✓ ✓

Table 1: Comparison Matrix of Different Client Puzzle Schemes for DoS Resistance.
In the table, ‘✓’ indicates that the feature is present, and ‘✗’ indicates that the feature is not present in the corresponding scheme. The operation
mod mul represents modular multiplication; mod exp represents modular exponentiation; and comparison represents memory look-up.

puzzles are defined in a private-key setting, and henceforth these
are not publicly verifiable.

Most of the existing client puzzles do not offer asymptotically
efficient verification and public verifiability. Boneh et al. [7] defined
verifiable delay function (VDF) that provides efficient verification
and public verifiability. They mentioned VDF as a moderately hard
cryptographic function, which can be viewed as a client puzzle,
but they didn’t explicitly formulate a client puzzle based on VDF.
Their VDF construction can be directly applied in interactive client
puzzles. Therefore, we construct a non-interactive VDF-based puz-
zle for DoS prevention where the server verifies the puzzle. We
explored different ways to construct verifiable puzzles.

Most of the fundamental interactive client puzzle schemes lack
the authentication of packets with the puzzle parameters sent by
the server. Therefore, a malicious server or an adversary pretending
to be the server can send fraudulent puzzle parameters to a client,
leading to a DoS attack on the client or a connection refusal to
the genuine server. Nevertheless, with the non-interactivity fea-
ture, a client does not need to authenticate any parameter sent
by a malicious server, preventing a DoS attack against legitimate

clients from a bogus server. Furthermore, a client can compute and
solve a puzzle in an offline manner. Hence, the client does not need
to remain connected with the server, in contrast to most existing
schemes where the client engages its resources and remains con-
nected with the server while solving the puzzle in an online fashion.
Additionally, our scheme does not suffer from a DoS attack on puz-
zle verification where a client floods the bogus puzzle solutions to
the server. So our scheme prevents DoS attacks in both directions,
from adversarial server to legitimate clients and from adversarial
clients to legitimate server. In addition, our puzzle captures the
following essential properties.

(1) Asymmetry Puzzle verification is easier than solving it.
(2) Granularity A server is allowed to finely adjust the puzzle

parameters (e.g., difficulty parameter, solution time).
(3) Unforgeability An adversary cannot forge a valid puzzle.
(4) Fairness Evaluation of a puzzle does not depend on the clients’

processing power (available hardware).
(5) Stateless A server does not store information for verification.
(6) Deterministic The number of operations required for solving

a client puzzle is deterministic.

104

Non-Interactive VDF Client Puzzle for DoS Mitigation EICC, November 10–11, 2021, Virtual Event, Romania

(7) Non-parallelizability A client cannot gain any advantage
from having multiple machines to solve the puzzle.

(8) Public Verifiability The puzzle solution should be verifiable
by anyone without having any trapdoor information.

Furthermore, we present a comparison of various client puzzle
schemes for DoS resistance with the idiosyncratic features of client
puzzles in Table 1. Our scheme achieves all the essential proper-
ties of a client puzzle compared to the existing schemes. The only
drawback of our scheme is the high verification cost compared to
the existing schemes. Yves and Martin [21]’s scheme achieves most
of the properties, but increasing puzzle difficulty in their scheme
makes the verification too expensive and solution size larger; hence
hindering its applicability in complex networks (blockchain). More-
over, their scheme does not entirely solve the replay attack problem
which our scheme solves. Our scheme can be particularly useful
for the mitigation of resource depletion DoS attacks.

1.2 Our Contribution
• Wepropose a novel non-interactive VDF client puzzle scheme.
• We present a transformation of a VDF client puzzle scheme
to a DoS-resistant protocol.
• We analyze the security of our scheme and show a few ap-
plications of our protocol in the blockchain ecosystem.

2 VERIFIABLE DELAY FUNCTION
A verifiable delay function is a recent cryptographic primitive de-
fined in 2018 by Boneh et al. [7]. Formally, it can be described as a
function 𝑓 : X → Y which takes a predefined number of steps 𝑇
to compute the output 𝑦 ∈ Y, given an input 𝑥 ∈ X; furthermore,
the verification of the output is exponentially easy. VDF produces
a unique output that is efficiently and publicly verifiable. Given a
polynomial number of processors, the computation of the function
cannot be done in less than 𝑇 time. Since the introduction of VDF,
to date, there are two main follow-up constructions of VDF based
on modular exponentiation. The two main proposals, Wesolowski
Scheme [36] and Pietrzak Scheme [27] define VDF as a tuple of the
following algorithms.

• Setup(_,𝑇): It is a randomized algorithm that takes security
parameter _, time parameter 𝑇 and outputs public parameter
𝑝𝑝 := (G, 𝑁 , 𝐻,𝑇), where G is a finite abelian group of unknown
order, 𝑁 is an RSA modulus, and 𝐻 : X → G is a hash function.
• Eval(𝑝𝑝, 𝑥,𝑇): The evaluation algorithm applies𝑇 squarings in G
starting with 𝐻 (𝑥) and outputs the value 𝑦 ← 𝐻 (𝑥) (2𝑇)mod 𝑁 ,
along with a proof 𝜋 .
• Verify(𝑝𝑝, 𝑥,𝑦, 𝜋,𝑇): The verification algorithm outputs a bit ∈
{0, 1}, given the input as public parameter pp, input value 𝑥 ,
output value 𝑦, proof 𝜋 , and time parameter 𝑇 .

The security of these schemes depends on the factorization of 𝑁 ;
otherwise, the computation of 𝑦 can be reduced to simpler modular
exponentiation. In more details, group G is (Z/𝑁Z)×/{±1}, where
𝑁 = 𝑝.𝑞 and 𝑝 and 𝑞 are large primes. 𝑁 is the public key 𝑝𝑘 and the
corresponding secret key 𝑠𝑘 is 𝜙 (𝑁) = (𝑝−1) (𝑞−1). The secret key
is available to the verifier of the scheme. Therefore, the evaluator
(who runs the Eval algorithm) has to compute 2𝑇 squaring, but the

verifier can do the same evaluation with two exponentiations by
first computing 𝑎 = 2𝑇mod 𝑠𝑘 , followed by 𝐻 (𝑥)𝑎mod 𝑁 .

The two schemes differ in the proof generation and especially
in the verification of the output. Both schemes have their own
strengths. Pietrzak’s construction has better performance, but the
bigger proof size creates a huge overhead for the network. In com-
parison, Wesolowski scheme has fast verification (2 exponentiation
versus 2 𝑙𝑜𝑔2𝑇) and shorter proof size (1 group element versus
𝑙𝑜𝑔2𝑇) compared to the Pietrzak scheme. Therefore, we adapt the
Wesolowski scheme to construct a VDF-based client puzzle (espe-
cially in a blockchain context), owing to the construction of the
DoS-resistant protocol using the puzzle. Furthermore, the downside
of the Wesolowski scheme is the need for more group operations
for proof construction, which is also beneficial for making the client
spending more time solving the puzzle in DoS-resistant protocol.

Wesolowski scheme can be defined as: Given the public param-
eters as 𝑝𝑝 := (G, 𝑁 , 𝐻,𝑇), a prover P and a verifier V run the
following protocol to prove 𝑦 ← 𝑔(2𝑇)mod𝑁 , where 𝑔 = 𝐻 (𝑥) and
𝑥 is an input to the prover P:
(1) The verifierV uniformly samples a randomprime 𝑙 $← 𝑃𝑟𝑖𝑚𝑒𝑠 (_),

where 𝑃𝑟𝑖𝑚𝑒𝑠 (_) contains the first 2_ primes. Then, the verifier
V sends 𝑙 to the prover P.

(2) Given 𝑙 from the verifierV , the prover P computes 𝑞, 𝑟 such
that 2𝑇 = 𝑞𝑙 + 𝑟 where 0 ≤ 𝑟 < 𝑙 , and sends a proof 𝜋 ← 𝑔𝑞 to
the verifierV .

(3) The verifier V computes 𝑟 ← 2𝑇mod 𝑙 and checks the two
conditions: 1) 𝜋 ∈ G, 2) 𝑦 = 𝜋𝑙𝑔𝑟mod𝑁 ∈ G. If both conditions
satisfy, the verifierV outputs accept.

3 DOS-RESISTANT PROTOCOL
3.1 Non-Interactive VDF Client Puzzle
In a non-interactive puzzle scheme, a client C creates and solves
the puzzle for its request 𝑅𝑒𝑞 and sends the solution along with
the puzzle to a server S for the verification. The public parameters
𝑝𝑝 are generated by the server S using VDF Setup algorithm. The
difficulty parameter 𝑇 is included in 𝑝𝑝 and can be modified by the
server to make the puzzle hard. Our puzzle scheme is as follows:
• Compute(𝑅𝑒𝑞): Client runs this algorithm to construct value 𝑖 .
• GenPuz(𝑇, 𝑖, 𝑝𝑝): Client runs this algorithm to create a puzzle 𝑝 .
Client computes 𝑔 = 𝐻 (𝑖), and sets the puzzle 𝑝 = 𝑔.
• FindSol(𝑖, 𝑝, 𝑝𝑝): Client runs this algorithm to solve the puzzle 𝑝 .
Client does the following computations

(1) Compute 𝑦 ← 𝑝 (2𝑇)mod 𝑁 by performing 2𝑇 squarings.
(2) Compute 𝑙 = 𝐻𝑝𝑟𝑖𝑚𝑒 (𝑖 + 𝑦), 𝐻𝑝𝑟𝑖𝑚𝑒 : {0, 1}∗ → 𝑃𝑟𝑖𝑚𝑒𝑠 (2_).
(3) Compute proof 𝜋 = 𝑖 ⌊2𝑇 /𝑙⌋ .
Client sets solution 𝑠 = (𝑦, 𝑙, 𝜋) and sends (𝑠, 𝑝, 𝑖) to the server.
• VerSol(𝑖, 𝑝, 𝑠, 𝑝𝑝): Server verifies 𝑖 , computes 𝑟 ← 2𝑇mod 𝑙 , and
accepts if 𝑝,𝑦, 𝑠 ∈ G, 𝑦 = 𝜋𝑙𝑝𝑟mod 𝑁 , and 𝑙 = 𝐻𝑝𝑟𝑖𝑚𝑒 (𝑖 + 𝑦).
Here, Compute(𝑅𝑒𝑞), where 𝑅𝑒𝑞 $← {0, 1}∗, is the main con-

stituent that makes the scheme secure. If the client C has complete
control over the computation of 𝑖 , C cannot only do the forgery,
but C can also perform the following two attacks.
• Pre-computation Attack In this attack, a client constructs several
valid puzzles and corresponding solutions in advance. Later, the

105

EICC, November 10–11, 2021, Virtual Event, Romania Mayank Raikwar and Danilo Gligoroski

client floods the server with these valid puzzle requests. To pre-
vent it, there should be a limit either on the number of valid
puzzles an attacker can generate or on the validity of the puzzles.
• Replay Attack In this attack, a client reuses the same puzzle
solution for several requests. To prevent it, a binding between
a request and the puzzle is necessary so that each new request
should force the client to construct and solve a new puzzle.
To address the above two attacks and the puzzle forgery in non-

interactive puzzles, the Compute(𝑅𝑒𝑞) algorithm should generate
verifiable inputs for the puzzle, which the server can easily verify.
This verifiable input should have randomness so that each client
puzzle would be different for each client request, and hence, each
solution will differ too. We propose and describe few methods to
construct verifiable input 𝑖 in Section 4.

3.2 DoS-resistant Protocol from
Non-Interactive VDF Client Puzzle

We construct a non-interactive DoS-resistant protocol by utilizing a
non-interactive VDF client puzzle. Due to its non-interactive nature,
there is no need for server authentication. The puzzle scheme can
be employed when the server is facing the DoS attack. Therefore,
to avoid the waste of CPU resources and time when the server is
not suffering from DoS, clients can send only request without a
puzzle solution. In the normal operation case, the server responds
regularly, but the server drops the client request during a DoS
attack and switches from normal to DoS-Defend-Mode. A client not
receiving any reply has to solve a puzzle and provide the solution
to the server before being served. The server identifies the event
of DoS by network traffic monitoring and analysis. The server can
create an alert to switch to DoS-Defend-Mode upon experiencing
a legitimate traffic spike or an abnormal traffic load. Additionally,
the server can also set a threshold on the number of requests it can
serve at a time based on the incoming and drop requests.

Figure 1 depicts the non-interactive DoS-resistant protocol, where
𝑒 represents the extra information needed for the server to verify
the correctness of the puzzle generation.

Non-Interactive DoS-resistant Protocol
Client C Server S

𝑖 ← Compute(𝑅𝑒𝑞)
𝑝 ← GenPuz(𝑇, 𝑖, 𝑝𝑝)
𝑠 ← FindSol(𝑖, 𝑝, 𝑝𝑝)

(𝑠, 𝑝, 𝑖, 𝑒)

If VerSol(𝑖, 𝑝, 𝑠, 𝑝𝑝) = 0,
Reject
Else,
Serve the client request

Figure 1: VDF-based Non-Interactive DoS-resistant Protocol

4 VERIFIABLE INPUT GENERATION
4.1 From Random Beacon Server
We follow the similar idea of Yves and Martin [20] scheme where
client and server share a common source of randomness. This source
is a random beacon server 𝐵 located in LAN, which broadcasts
beacon packets containing random values. These beacon packets
are generated in advance for a longer time span, and the beacon
server 𝐵 periodically broadcasts these packets. Therefore, public
availability and the periodically changing nature of beacon packets
make the puzzle valid for a short period. All the clients in LAN get
a signed fingerprint of these beacon packets by the server 𝐵 for
easy verification. To make the server 𝐵 DoS-resistant, the beacon
only provides outgoing traffic, and all the incoming traffic is simply
dropped without inspecting them. After every 𝛿 time, the current
random value 𝑟𝐵 is replaced by a new random value 𝑟𝐵+𝛿 . A client
receiving the current randomness 𝑟𝐵 creates an input 𝑖 for a VDF
puzzle 𝑝 for his request message 𝑅𝑒𝑞. A server receiving the puzzle
first verifies 𝑖 using the current randomness obtained from the
beacon server 𝐵. The idea of a beacon server can be embraced on
Internet by utilizing multicast or unicast transmission. We refer the
readers to [20] for more details on the random beacon server.

A client computes 𝑖 as 𝑖 ← (𝑅𝑒𝑞 | |𝑟𝐵). Subsequently, the client
generates the puzzle 𝑝 , corresponding solution 𝑠 . Further, the client
sends (Request : 𝑠, 𝑝, 𝑖, 𝑅𝑒𝑞) to the server. After receiving the
client’s Request, the server verifies the received 𝑖 with a constructed
𝑖 ′ on its end using current randomness 𝑟𝐵 and received message
𝑅𝑒𝑞. Further, it verifies the hash of 𝑖 with the received 𝑝 to check the
puzzle integrity. Finally, it checks the puzzle solution 𝑠 and grants
the client request Request based on the check.

4.2 From Verifiable Random Function
In this approach, we use the concept of verifiable random function
(VRF). A VRF has three algorithms: 1) 𝐾𝑒𝑦𝐺𝑒𝑛(𝑟) → (𝑠𝑘, 𝑣𝑘) for
key generation; 2) 𝐸𝑣𝑎𝑙 (𝑠𝑘,𝑀) → (𝑂, 𝜋) for producing a pseudo-
random output 𝑂 and a proof 𝜋 ; 3) 𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑣𝑘,𝑀,𝑂, 𝜋) → 0/1 for
verification of output 𝑂 . To generate publicly verifiable input for
the client puzzle, each client applies VRF on its request message
𝑅𝑒𝑞. To produce different puzzles for each client request message,
the client uses a value 𝑥 . This 𝑥 is publicly available unique infor-
mation that is periodically changing and accessible to the server.
For example, this information can be the current block hash in the
bitcoin blockchain (which changes every 10 minutes).

For each client request message 𝑅𝑒𝑞, the client C computes an
intermediate input 𝑗 ← (𝑅𝑒𝑞 | |𝑥). Further, the client applies on
input 𝑗 as 𝑉𝑅𝐹 .𝐸𝑣𝑎𝑙 (𝑠𝑘C, 𝑗) → (𝑖, 𝜋𝑖) using its secret key 𝑠𝑘C and
constructs a pseudorandom output 𝑖 and proof of the output 𝜋𝑖 . Now,
the client C uses input 𝑖 to construct the puzzle 𝑝 and henceforth
the corresponding solution 𝑠 . Further, the client sends (Request :
𝑠, 𝑝, 𝑖, 𝜋𝑖 , 𝑅𝑒𝑞). The server first verifies the proof 𝜋𝑖 for the correct
generation of valid input 𝑖 for the puzzle 𝑝 . For the verification, the
server first retrieves current publicly available information 𝑥 and
uses it along with the received request message 𝑅𝑒𝑞 from the client
to computes 𝑗 ′. Further, the server runs 𝑉𝑅𝐹 .𝑉𝑒𝑟𝑖 𝑓 𝑦 (𝑣𝑘C, 𝑗 ′, 𝑖, 𝜋𝑖),
and verifies the input for the generated client puzzle. Finally, the
server checks the puzzle solution 𝑠 and grants the client request
Request based on the check.

106

Non-Interactive VDF Client Puzzle for DoS Mitigation EICC, November 10–11, 2021, Virtual Event, Romania

4.3 From Distributed Random Beacon
Protocols

In this approach, the client and server get a periodically changing
common randomness from a random beacon protocol. We assume
the existence of a random beacon protocol that produces contin-
uous randomness at a regular rate that is unpredictable, publicly
verifiable, and bias-resistant. This randomness is available to the
client and server. We studied and reviewed several constructions
of random beacon protocols that differ in their cryptographic con-
stituents, complexity, and properties. Finally, we propose the fol-
lowing protocols that can be used for verifiable input generation.

HERB [9] protocol is based on additive homomorphic encryp-
tion for perpetual randomness generation but requires a trusted
dealer or a distributed key generation (DKG). HydRand [31] is a
random beacon protocol that employs a publicly verifiable secret
sharing scheme to generate consecutive random values in a byzan-
tine setting. HydRand does not require a trusted dealer but has high
complexity similar to HERB. Furthermore, a recent construction,
RandRunner [30] does not require any trusted dealer and shows bet-
ter complexity by avoiding the necessity of byzantine fault-tolerant.
RandRunner exploits the functionality of VDF and exhibits better
performance, safety, and liveness. With the recent advancements
and interests in constructing new distributed random beacon proto-
cols [6], we will further investigate on finding the suitable randomn
beacon protocol constructions for our protocol. We will give a de-
tailed construction of our non-interactive puzzle using one of the
distributed randomness beacon protocols with complete security
proofs in the full version of the paper.

After receiving the current common randomness 𝑟𝑏 from the bea-
con, the further computation of 𝑖, 𝑝, 𝑠 is similar to the construction
with the random beacon server in Section 4.1.

4.4 Discussion
• Replay Protection All the above-described verifiable input gener-
ation methods prevent the pre-computation attack and puzzle
forgery. They prevent the replay attack to some extent due to the
periodic change in random value from the beacon or in the pub-
licly available information. A client (or a set of colluding clients)
having a request message 𝑅𝑒𝑞 can mount the replay attack on the
server by sending many identical requests (Request : s, p, i, e)
for the same puzzle 𝑝 constructed using 𝑅𝑒𝑞. These identical
requests can be identified by a queue Q maintained by the server.
The queue Q of length 𝑙 , keeps the client request messages 𝑅𝑒𝑞’s
for a time period 𝑡 . The server decides the length 𝑙 based on the
number of client requests it can serve in time period 𝑡 . Each re-
quest message is deleted after spending time 𝑡 in Q . The time 𝑡 is
decided based on the refresh time 𝑡𝑟 of the current random value,
and network delay 𝑡𝑑 to receive/retrieve the current randomness;
such that 𝑡 > 𝑡𝑟 + 𝑡𝑑 . Moreover, with the change in the random
value, the request messages linked to the previous random value
are deleted from Q , making previous puzzles no longer valid.
• Randomness Update The randomness used to construct verifi-
able inputs must be updated after a certain time. This update
depends on the frequency of randomness generation. The fre-
quency should be kept at a certain rate but should be changed

depending on the clients’ statistics about the use of expired ran-
domness. In our client puzzle scheme, clients who indulge in
solving their client puzzles using the current randomness should
always retrieve the updated randomness. However, as a downside,
some unlucky clients can be caught during the randomness up-
date, as they have been solving the puzzle using the randomness
that expired during the update. Therefore, the server receiving
the client puzzles from those clients will reject those puzzles,
resulting in a wastage of clients’ computational power.
The more frequent randomness update happens, the more se-
cure the server is against the replay and the pre-computation
attack. Nonetheless, this might cause rejection of valid client
requests due to the frequent change in randomness. Therefore,
the randomness update time and VDF-puzzle solving time should
be correlated and carefully chosen. The correlation and careful
selection might reduce the number of client requests getting
rejected. However, the problem of at least a few clients getting
caught during the randomness update still persists. While a sim-
ple rejection solves these types of problems in practice, it would
be interesting to analyze the implication of randomness update
frequency in general. Another interesting direction would be to
find a correlation among randomness update time, puzzle solving
time, and network delay.
• Comparison The described three methods to generate verifiable
random input differ significantly. Each method has its own ad-
vantage and disadvantage. 1) Randomness generation through a
random beacon server can be easily applicable in organizations
within a LAN. Therefore, all organizations can benefit from a
single beacon server. However, as it is a centralized server, dif-
ferent attacks can be mounted against the beacon server, which
further hinders the beacon server’s availability, followed by the
generation of fresh randomness. 2) Randomness generation from
VRF shows that many public sources involving periodic change
can be used to construct verifiable input for a client puzzle. The
problem with this approach is the trust in the public source and
its information update frequency. For example, in the case of
the block hash of a blockchain as a public information source,
problems might arise when a fork happens in the blockchain,
and choosing the actual current block hash might lead to incon-
sistency for the clients. 3) From distributed randomness beacon
protocols, the randomness generated for the client puzzle has all
the properties of randomness beacon. Therefore, it can be easily
verified by the clients and the server. The disadvantage with this
approach is not being able to tweak the randomness update.

5 EVALUATION OF NON-INTERACTIVE VDF
CLIENT PUZZLE

5.1 Security
In client puzzle schemes, an adversary A can perform two mali-
cious actions, either by forging a valid client puzzle or by solving
a client puzzle quickly without considering the difficulty param-
eter. However, our puzzle constructions already achieve puzzle
unforgeability; therefore, this Section provides security against the
adversary A trying to solve the puzzle quicker than expected time.
To define security, we formalize the security notions in terms of

107

EICC, November 10–11, 2021, Virtual Event, Romania Mayank Raikwar and Danilo Gligoroski

games between an adversary A and a server S. We first define
necessary helper oracles that will be used to define a security game.
• GetP(𝑖) : Set a puzzle 𝑝 ← GenPuz(𝑇, 𝑖, 𝑝𝑝), record (𝑖, 𝑝) in
a list.
• GetS(𝑖, 𝑝) : If (𝑖, 𝑝) was not recorded in the list by GetP,
return ⊥. Else, find a solution 𝑠 such that VerSol(𝑖, 𝑝, 𝑠, 𝑝𝑝) =
true. Record (𝑖, 𝑝, 𝑠) and return 𝑠 .
• VerS(𝑖, 𝑝, 𝑠) : Return true if all these conditions satisfy a)
VerSol(𝑖, 𝑝, 𝑠, 𝑝𝑝) = true; b) (𝑖, 𝑝) has been recorded byGetP;
c) (𝑖, 𝑝, 𝑠) has not been recorded by GetS. Else, return false.

Let _ be a security parameter, 𝑇 be a difficulty parameter, and 𝑞
be the number of queries made by an adversary A to each oracle.
The security game between the adversary A and a server S for a
VDF client puzzle scheme VP can be defined as follows:

ExecA𝑇,VP (1_)
1 : (𝑝𝑎𝑟𝑎𝑚, 𝑝𝑝) ← S.Setup(1_)
2 : {(𝑖𝑘 , 𝑝𝑘 , 𝑠𝑘) : 𝑘 = 1, . . . , 𝑞 } ← AGetP,GetS (𝑝𝑎𝑟𝑎𝑚)
3 : Return AVerS (𝑝𝑎𝑟𝑎𝑚)

In the above security game ExecA𝑇,VP (1_), the adversaryA make
queries to the oracles, A wins only if A submits a correct solution
𝑠 𝑗 to a valid puzzle 𝑝 𝑗 (where 𝑗 ∉ [1, . . . , 𝑞]) where 𝑠 𝑗 has not been
recorded by GetS.

Theorem 5.1. Let VP be a VDF client puzzle scheme with security
parameter _, and 𝑇 ∈ D. Let all the probabilistic polynomial-time
adversariesA are making 𝑞 number of queries to GetP,GetS in total.
For the client puzzle VP, for all 𝑖 ∈ I, 𝑝 ∈ P, 𝑠 ∈ S, and for all
adversaries A running in time 𝑡 ≪ 𝑇 the following condition holds:

Pr[ExecA𝑇,VP (1_) = true] ≤ 𝜖_,𝑞 (𝑡) + negl(_) . (1)

where 𝜖_,𝑞 (𝑡) is a monotonically increasing function in 𝑡 , such that
for all 𝑡, 𝑞 : 𝜖_,𝑞 (𝑡) ≤ 1, and it asymptotically reach 1 as the square
of the number of queries 𝑞2 gets closer to 2_ .

The only way for an adversary A to solve VP in time 𝑡 ≪ 𝑇 ,
is if A knows the factorization of modulus 𝑁 . Thus, the sketch of
the proof of the theorem follows the well-known hard problem of
factorization and the reduction techniques introduced in the paper
of Kurosawa and Takagi [24].

5.2 Performance Estimate
To estimate the performance, a few crucial points should be taken
into account. The RSA modulus 𝑁 as a setup parameter should be
generated efficiently (in a decentralized way [8]), and the factoriza-
tion should be unknown to the clients. We follow the implementa-
tion study of VDF [4] for performance estimation. The RSA group
size has a significant impact on the evaluation time of the VDF
puzzle. The evaluation time grows linearly with fine-tuning of the
difficulty 𝑇 of the puzzle. Let us consider the 128-bit security and
the difficulty𝑇 between 216 to 220 for the DoS-resistant protocol. In
this setting, the client can evaluate the puzzle in the𝑂 (𝑀) (order of
minutes). The computation time for the proof of the puzzle output
is approximately similar to the evaluation time. Therefore, the total
running time for the FindSol algorithm in the protocol is in the
order of minutes. Moreover, on the server-side, the verification of

the client puzzle is in 𝑂 (𝑚𝑠) (order of milliseconds), which can be
optimized further using Dimitrov’s multiexponentiation [10]. The
optimization in verification time will enhance the server’s capabil-
ity to verify more client puzzles during an event of DoS. Hence,
with the above given estimate, our DoS-resistant protocol can be
efficiently applied in real-world cases for DoS mitigation.

5.3 Applications
Besides the DoS mitigation, our non-interactive VDF client puzzle
posses additional applicability. It can be applied in a variety of
applications, e.g., metering client accesses (to solve the problem of
forged client website visits) [15], achieving pseudonymous secure
computation [23], constructing an offline submission protocol [19],
achieving digital forgetting [3], and constructing a non-malleable
commitment scheme [25]. Besides these applications, our VDF client
puzzle can also be used to generate publicly verifiable proof of
sequential work [26] with fast verification. Further, these proofs
can be used to timestamp documents in a non-interactive manner.

Our DoS-resistant protocol also shows applicability in various
domains. In what follows, we briefly present the pertinency of our
DoS-resistant protocol in the blockchain ecosystem. Due to the lack
of a trusted third party in a decentralized P2P system, and given
the fact that our puzzle scheme is non-interactive along with other
properties, our DoS-resistant protocol can be efficiently applied
in the blockchain ecosystem. The setup parameter and difficulty
(periodically update similar to bitcoin difficulty) is embedded in
the blockchain. To generate different and publicly verifiable puzzle
input 𝑖 for each client C (blockchain user), its previously confirmed
transaction 𝑡𝑥C on the blockchain is used as the input 𝑖 for a puzzle
𝑝 . In a case where the client announces its first transaction, it can
use the timestamp as an input; this timestamp will also be present
in the transaction to make it verifiable. Henceforth, a client C
trying to publish a transaction during DoS attack, computes 𝑖 ←
𝑡𝑥C , constructs puzzle 𝑝 , and corresponding solution 𝑠 , and sends
(Request : 𝑠, 𝑝, 𝑖) as defined in Section 3.1.

In most of the DoS events, the transaction flooding situation
arises when the cost of creating a transaction is low. Inmost settings,
these transactions are monetary payment transactions of a very
tiny value, but for some cases, these can be data transactions (e.g.,
IoT blockchain transactions). By applying the non-interactive DoS-
resistant protocol, we add a cost for creating a transaction, thereby
reducing the attacker’s throughput as in the following scenarios.

In a mempool, unconfirmed transactions are stored and picked
by a miner for their addition to the blockchain. A DoS attack can
be launched by flooding the mempool with several small fee trans-
actions, making the other legitimate low fee transactions rejected
by the miners [29]. Henceforth, it leads users to pay higher mining
fees to prevent the rejection of their transactions. Our DoS-resistant
protocol can force the clients to solve the VDF puzzle on its previ-
ously confirmed transaction before broadcasting a new transaction
in the network and storing it in mempool.

A DoS attack can be mount on a mining pool by: 1) A hacker
whose aim is to make money by asking the ransom from the at-
tacked mining pool with the promise of stopping the DoS attack for
the time being [18], 2) A competing mining pool whose goal is to
increase his winning probability. Our non-interactive DoS-resistant

108

Non-Interactive VDF Client Puzzle for DoS Mitigation EICC, November 10–11, 2021, Virtual Event, Romania

protocol can be applied where the pool operator can act as the
server and handles the client request.

Due to the small fee or no fee transactions in IoT blockchain
networks [32], a DoS attack can be performed by creating several
transactions. Our protocol can be applied where each node solves
the puzzle before propagating its transaction in the network.

6 CONCLUSION
In this paper, we proposed a new client puzzle scheme that lever-
ages the functionality of VDF. We explored the deficiencies in the
existing client puzzle schemes and compared those schemes with
our scheme. Our scheme achieves all the desirable properties, such
as non-parallelizability and non-interactivity, that are preferable in
DoS mitigation. Then, we constructed the DoS-resistant protocols
from our new puzzle schemes. We further propounded the perfor-
mance estimate of VDF in our protocols. To demonstrate the utility
of the DoS-resistant protocol, we scrutinized applications of our
protocol in the blockchain ecosystem.

Future Directions: There are various ways to adapt this work.
The non-interactive puzzle construction can be further studied and
optimized to generate verifiable random inputs for the puzzles that
the server can efficiently verify. One possible way for efficient verifi-
cation is to optimize the VDF verification time using parallelization
and multi-exponentiation. Finding the applicability of our client
puzzle scheme to combat some existing problems in existing sys-
tems or schemes can be an interesting avenue to explore. Another
future direction is to have a formal analysis of our DoS-resistant
protocol. Furthermore, studying the implication of randomness
update in our DoS-resistant protocol will be an exciting area to
research.

REFERENCES
[1] Martin Abadi, Mike Burrows, Mark Manasse, and Ted Wobber. 2005. Moderately

hard, memory-bound functions. ACM Transactions on Internet Technology (TOIT)
5, 2 (2005), 299–327.

[2] Mehmud Abliz and Taieb Znati. 2009. A guided tour puzzle for denial of service
prevention. In 2009 Annual Computer Security Applications Conference. IEEE,
279–288.

[3] Ghous Amjad, Muhammad Shujaat Mirza, and Christina Pöpper. 2018. Forget-
ting with puzzles: using cryptographic puzzles to support digital forgetting. In
Proceedings of the Eighth ACM Conference on Data and Application Security and
Privacy. 342–353.

[4] Vidal Attias, Luigi Vigneri, and Vassil Dimitrov. 2020. Implementation Study of
Two Verifiable DelayFunctions. IACR Cryptol. ePrint Arch. 2020 (2020), 332.

[5] Adam Back et al. 2002. Hashcash-a denial of service counter-measure.
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf (2002).

[6] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2020. RandPiper-
Reconfiguration-Friendly Random Beacons with Quadratic Communication.
IACR Cryptol. ePrint Arch. 2020 (2020), 1590.

[7] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable
Delay Functions. In Advances in Cryptology – CRYPTO 2018, Hovav Shacham and
Alexandra Boldyreva (Eds.). Springer International Publishing, Cham, 757–788.

[8] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee, Schuyler
Rosefield, and Abhi Shelat. 2020. Multiparty Generation of an RSA Modulus. In
Annual International Cryptology Conference. Springer, 64–93.

[9] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. 2019. Homomorphic
Encryption Random Beacon. IACR Cryptol. ePrint Arch. 2019 (2019), 1320.

[10] Vassil S Dimitrov, Graham A Jullien, and William C Miller. 2000. Complexity
and fast algorithms for multiexponentiations. IEEE Trans. Comput. 49, 2 (2000),
141–147.

[11] Christos Douligeris and Aikaterini Mitrokotsa. 2004. DDoS attacks and defense
mechanisms: classification and state-of-the-art. Computer Networks 44, 5 (2004),
643 – 666. https://doi.org/10.1016/j.comnet.2003.10.003

[12] Cynthia Dwork and Moni Naor. 1992. Pricing via processing or combatting junk
mail. In Annual International Cryptology Conference. Springer, 139–147.

[13] Cynthia Dwork, Moni Naor, and Hoeteck Wee. 2005. Pebbling and proofs of
work. In Annual International Cryptology Conference. Springer, 37–54.

[14] Wu-chi Feng, Edward Kaiser, and Antoine Luu. 2005. Design and implementation
of network puzzles. In Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies., Vol. 4. IEEE, 2372–2382.

[15] Matthew K Franklin and Dahlia Malkhi. 1997. Auditable metering with light-
weight security. In International Conference on Financial Cryptography. Springer,
151–160.

[16] Yi Gao, Willy Susilo, Yi Mu, and Jennifer Seberry. 2010. Efficient trapdoor-based
client puzzle against DoS attacks. In Network Security. Springer, 229–249.

[17] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang. 2013. DoS and DDoS in Named Data
Networking. In 2013 22nd International Conference on Computer Communication
and Networks (ICCCN). 1–7. https://doi.org/10.1109/ICCCN.2013.6614127

[18] Stan Higgins. 2015. Bitcoin Mining Pools Targeted in Wave of DDOS Attacks.
https://www.coindesk.com/bitcoin-mining-pools-ddos-attacks. [Online; ac-
cessed 07-June-2021].

[19] Yves Igor Jerschow andMartinMauve. 2010. Offline submissionwith rsa time-lock
puzzles. In 2010 10th IEEE International Conference on Computer and Information
Technology. IEEE, 1058–1064.

[20] Yves Igor Jerschow and Martin Mauve. 2012. Secure client puzzles based on
random beacons. In International Conference on Research in Networking. Springer,
184–197.

[21] Yves Igor Jerschow andMartin Mauve. 2013. Modular square root puzzles: Design
of non-parallelizable and non-interactive client puzzles. Computers & Security
35 (2013), 25–36. https://doi.org/10.1016/j.cose.2012.11.008 Special Issue of the
International Conference on Availability, Reliability and Security (ARES).

[22] Ari Juels. 1999. Client puzzles: A cryptographic countermeasure against con-
nection depletion attacks. In Proc. Networks and Distributed System Security
Symposium (NDSS), 1999.

[23] Jonathan Katz, Andrew Miller, and Elaine Shi. 2014. Pseudonymous broadcast and
secure computation from cryptographic puzzles. Technical Report. Cryptology
ePrint Archive, Report 2014/857, 2014. http://eprint. iacr. org

[24] Kaoru Kurosawa and Tsuyoshi Takagi. 2003. Some RSA-based encryption schemes
with tight security reduction. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 19–36.

[25] Huijia Lin, Rafael Pass, and Pratik Soni. 2020. Two-round and non-interactive
concurrent non-malleable commitments from time-lock puzzles. SIAM J. Comput.
49, 4 (2020), FOCS17–196.

[26] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. 2013. Publicly verifiable
proofs of sequential work. In Proceedings of the 4th conference on Innovations in
Theoretical Computer Science. 373–388.

[27] Krzysztof Pietrzak. 2018. Simple verifiable delay functions. In 10th innovations
in theoretical computer science conference (itcs 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[28] Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-lock puzzles
and timed-release crypto. Massachusetts Institute of Technology, Laboratory for
Computer Science (1996).

[29] Muhammad Saad, Laurent Njilla, Charles Kamhoua, Joongheon Kim, DaeHun
Nyang, and Aziz Mohaisen. 2019. Mempool Optimization for Defending Against
DDoS Attacks in PoW-based Blockchain Systems. In 2019 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 285–292.

[30] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar
Weippl. 2021. Randrunner: Distributed randomness from trapdoor vdfs with
strong uniqueness. (2021).

[31] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. 2020.
Hydrand: Efficient continuous distributed randomness. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 73–89.

[32] Jayasree Sengupta, Sushmita Ruj, and Sipra Das Bit. 2020. A Comprehensive
Survey on Attacks, Security Issues and Blockchain Solutions for IoT and IIoT.
Journal of Network and Computer Applications 149 (2020), 102481. https://doi.
org/10.1016/j.jnca.2019.102481

[33] Douglas Stebila, Lakshmi Kuppusamy, Jothi Rangasamy, Colin Boyd, and Juan
Gonzalez Nieto. 2011. Stronger Difficulty Notions for Client Puzzles and Denial-
of-Service-Resistant Protocols. In Topics in Cryptology – CT-RSA 2011, Aggelos
Kiayias (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 284–301.

[34] Suratose Tritilanunt, Colin Boyd, Ernest Foo, and Juan Manuel González Nieto.
2007. Toward non-parallelizable client puzzles. In International Conference on
Cryptology and Network Security. Springer, 247–264.

[35] Brent Waters, Ari Juels, J Alex Halderman, and Edward W Felten. 2004. New
client puzzle outsourcing techniques for DoS resistance. In Proceedings of the
11th ACM conference on Computer and communications security. 246–256.

[36] Benjamin Wesolowski. 2019. Efficient Verifiable Delay Functions. In Advances in
Cryptology – EUROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer
International Publishing, Cham, 379–407.

[37] Nicky Woolf. 2016. DDoS attack that disrupted internet was largest of its kind in
history, experts say. The Guardian 26 (2016).

109

Paper E

DoS Attacks on Blockchain Ecosystem

M. Raikwar, D. Gligoroski

Published in Euro-Par 2021: Parallel Processing Workshop,
4th International Workshop on Future Perspective of Decentralized

Applications (FPDAPP), 2021

DoS Attacks on Blockchain Ecosystem

Mayank Raikwar and Danilo Gligoroski

Norwegian University of Science and Technology (NTNU) Trondheim, Norway
{mayank.raikwar,danilog}@ntnu.no

Abstract. Denial of Service (DoS) attacks are a growing threat in net-
work services. The frequency and intensity of DoS attacks are rapidly
increasing day by day. The immense financial potential of the Cryptocur-
rency market is a prevalent target of the DoS attack. The DoS attack
events are kept on happening in cryptocurrencies and the blockchain
ecosystem. To the best of our knowledge, there has not been any study
on the DoS attack on the blockchain ecosystem. In this paper, we iden-
tify ten entities in the blockchain ecosystem and we scrutinize the DoS
attacks on them. We also present the DoS mitigation techniques applica-
ble to the blockchain services. Additionally, we propose a DoS mitigation
technique by the use of verifiable delay function (VDF).

Keywords: Denial-of-service · Verifiable Delay Function· Non-Interactive
· Blockchain

1 Introduction

Blockchain had brought a paradigm shift in digital innovation and the financial
world since the advent of Bitcoin [26]. Today, the cryptocurrency market con-
sists of 5424 cryptocurrencies that all together built a financial market worth
around $1.71 trillion (as of 26 May 2021) [9]. The immense financial potential of
the cryptocurrency market has become a growing concern for the targeted at-
tacks. Some of the well-known attacks in current blockchain systems are selfish
mining, blockchain forks, 51% attack, double spending, Sybil attack, and Denial-
of-service attacks [33]. A Denial-of-service (DoS) attack prevents legitimate user
requests and depletes the server’s resources. Due to the various configurations
and decentralized features of blockchain, many of the attacks are preventable.
Nevertheless, DoS attacks, especially its distributed variant (DDoS), are still
prominent attacks on cryptocurrencies and blockchain-based applications.

Due to the increasing intensity and frequency of DoS attacks, it is contem-
plated as one of the biggest and severe threats for the Internet industries. One
of the major DoS attacks was mounted on a DNS server in October 2016, which
manifested in a cut of access to major websites, including PayPal, Netflix, and
Twitter, for several hours [46]. The spectrum of DoS attacks can range from DNS
services, cloud providers, IoT devices to the cryptocurrency and blockchain mar-
ket. Nowadays, the cryptocurrency market is a popular target of DoS attacks,
with the motivation of ransom, stealing funds, or business competition. In the

113

2 Mayank Raikwar and Danilo Gligoroski

past, many works[21,19,12] regarding the detection and prevention of DoS at-
tacks have been carried out. Moreover, DoS/DDoS solutions based on blockchain
are an emerging area of research. Applying the most recent advances of cryp-
tographic research for the DoS/DDoS1 problem can open new directions and
avenues for addressing this ever-present problem.

In the general context of a DoS attack in blockchain, an adversary usually
mounts a DoS attack when the cost of mounting an attack is very low. There-
fore, various countermeasures, such as increased block size, increased transaction
fees, or limiting transaction size have been proposed for mitigating the attacks.
However, most of these countermeasures also force legitimate system users to
invest their economic or computational power. This behavior shows a dire need
to construct new methods for DoS prevention that do not require extra-economic
or computational power of blockchain users. In this paper, we study and review
DoS attacks on ten different entities in the blockchain ecosystem and possible
mitigation techniques. In addition, we propose DoS mitigation by applying the
astonishing functionality of verifiable random function (VDF) [8].

1.1 Related Work

Many DoS attacks have been mounted in the blockchain ecosystem and its ser-
vices in the past few years. Some of these DoS attacks or threats on cryptocur-
rencies were disclosed a couple of years after they had been discovered. It requires
new techniques to detect and counter the attack. Some of those new blockchain-
based DoS mitigation techniques are devised from the decentralized nature and
the deployed smart contracts of blockchain [30,36]. Even different machine learn-
ing techniques have been proposed to fight the DoS attack in cryptocurrency [14].

Specifically for the Bitcoin blockchain (as the blockchain of the most popu-
lar and valuable cryptocurrency), several DoS attacks have been mounted [40],
which include mining pools, currency exchanges, eWallets, and financial services.
Like most high visibility businesses, mining pools and currency exchanges are the
primary DoS targets, which drives them to buy DDoS protection services such
as Incapsula, CloudFlare, or Amazon Cloud. A report from September 2020 [18]
revealed that the Bitcoin software implementation had a vulnerability for an un-
controlled memory consumption that was repeatedly used as a DoS vulnerability
until it was patched in June 2018. This DoS vulnerability existed in many other
branched Bitcoin implementations, including Litecoin and Namecoin.

Another major cryptocurrency, Ethereum [45] has also suffered from DoS
attack [4]. In September 2016, a DoS attack against the Ethereum network was
begun by exploiting a flaw in its client node. Furthermore, the same week, an-
other DoS attack was mounted on the processing nodes of Ethereum [44]. A
recent disclosure on Ethereum shows that a very cheap DoS attack could have
brought down the Ethereum main net due to a bug in Geth Ethereum client [16].

1 Throughout the paper, we use DoS to refer to both DoS and DDoS attacks, unless
explicitly mentioned.

114

DoS Attacks on Blockchain Ecosystem 3

Recent work shows an Incentive-based blockchain denial of service attack
(BDoS) [25] on Proof-of-work-based blockchains that exploits the reward mech-
anism to discourage the miner participation. This BDoS could theoretically be
able to grind the (Bitcoin’s) blockchain to a halt with significantly fewer re-
sources (21% of the network’s mining power). This attack raises a concern about
the liveness of the Proof-of-work-based cryptocurrencies. This big concern and
recent ongoing DoS attack disclosures compel researchers to find new ways to
construct efficient DoS mitigation techniques.

1.2 Denial of Service Attack

A denial of service (DoS) attack targets to disrupt the availability of the network,
server or application, and prevents legitimate requests from taking place. For a
DoS attack to be successful, the attacker has to send more requests than the
victim server can handle. These requests can be legitimate or bogus. The DoS
attack depletes the server’s resources such as CPU, memory, or network.

Definition 1. (DoS): Let a server S be given, with the available resources R1, R2,
. . . , Rn (Ri can be bandwidth, memory, CPU etc.). Let A or a set of {Aj} are
an attacker or a set of attackers and let the legitimate users are represented by
the set {Uk}. A DoS attack on server S is expressed by a set of probabilities
for successful resource-depletion {PR1

, PR2
, . . . , PRn

}. The total probability for
a success of a DoS attack is then a probability the server S to refuse legitimate
transactions from a user u, where u ∈ {Uk} and is modeled as the probability of
blocking the legitimate traffic in at least one of the resources:

PDoS = 1− (1− PR1
)(1− PR2

).(1− PRn
) (1)

Note that the situation when attacker(s) exhausts at least one resource Ri

implies the attack probability is PRi = 1, which from equation (1) further leads
to PDoS = 1.

DoS attacks can be categorized into several categories based on network and
application layers or volume and protocol attacks. Network-level DoS attacks
aim to overload the server’s bandwidth or cause CPU usage issues. However,
application-level DoS attacks focus on applications, websites, or online services.

1.3 Our Contribution

The contributions of our work are as follows:

1. We thoroughly investigate the DoS attacks in the blockchain ecosystem.
2. We present different mitigation techniques of DoS attacks in the blockchain

ecosystem.
3. We propose a VDF-based DoS resistant protocol by using the functionality

of VDF.

The rest of the paper is as follows: Section 2 shows a detailed analysis of DoS
attacks in the blockchain ecosystem. Further, Section 3 presents DoS mitigation
techniques, including our VDF-based proposal. Finally, in Section 4, we conclude
the paper and discuss the possible future directions.

115

4 Mayank Raikwar and Danilo Gligoroski

2 DoS Attacks on Blockchain Ecosystem

The blockchain ecosystem has suffered from many DoS attacks in the past, and
that situation is a continuing trend. The DoS attack can be launched against a
specific entity or a network in the blockchain. We present a nonexclusive list of
ten entities in the Blockchain ecosystem with their corresponding DoS attacks.

1. On cryptocurrency wallets A crypto wallet is a software program in which a
user stores cryptocurrency. The wallet contains a set of signing keys for the
user to sign new transactions. Wallets are also integrated with decentralized
applications (DApps) to hold and manage users’ signing keys and transac-
tions securely. In a wallet service, a user is the sole owner of his account keys.
However, if someone steals the signing keys, then the cryptocurrency held in
that account can be spent. Therefore, hardware wallets (e.g., TREZOR) are
ways to store cryptocurrency and the signing key in an offline manner. Never-
theless, online wallets are still a preferable choice for blockchain users. These
online crypto wallets also suffer from DoS attacks [28] due to inconsistency
in its smart contracts that further hinders the services of integrated DApps.
Recently, a DDoS attack was mounted on the Wasabi bitcoin wallet [15].

2. On cryptocurrency exchange services A cryptocurrency exchange allows clients
to buy, sell and store crypto-currencies at some exchange rate and leverages
the clients to trade their currencies and earn some profit due to the fluc-
tuations in the price of currencies. Besides, the exchange charges some fee
for every trade made by its client and also converts the cryptocurrency into
fiat currencies. Many exchange services also provide a wallet, but the wal-
let signing keys are controlled by the exchange service apart from the wallet
user. Furthermore, these exchange services are online platforms, hence sus-
ceptible to DoS attacks that can cause the temporary unavailability of the
platform. In the past, many of the crypto-currency exchange services were
jeopardized by the DoS attacks (especially DDoS). One such example is the
Bitcoin exchange platform, Bitfinex which has been a victim of DDoS attacks
several times [2]. Another well-known bitcoin exchange service, Mt. Gox, was
completely disrupted by DDoS attacks over time [17]. Over the years, many
cryptocurrency exchange platforms have suffered DoS attacks. Recently, a
UK-based exchange EXMO was hit by DDoS attack [10].

3. On memory (transaction) pools A memory pool (mempool) is a repository of
unconfirmed transactions in a cryptocurrency blockchain, e.g., Bitcoin. Once
a user creates a new transaction, it is broadcast to the network and stored in
the mempool. In the mempool, the transaction waits to be picked by a miner
to be added in a block and subsequently to the blockchain, therefore acquir-
ing the transaction’s confirmation. If a transaction remains unconfirmed for
a long time in the mempool, it gets rejected eventually. As the transactions
with high fees are most likely to be selected by a miner, it poses a threat
to flood the mempool by small fee transactions, consequently affecting the
mempool size. In that direction, it creates uncertainty among the users for
their transactions and leads them to pay higher mining fees to prevent the

116

DoS Attacks on Blockchain Ecosystem 5

rejection of their transactions. The work [34] studies such an attack on Bit-
coin mempool and proposes a few countermeasures. However, the proposed
solutions have limitations regarding the minimum payable fee and rejection of
fast transactions. A follow-up work [32] provides similar prevention measures
for Proof-of-work-based blockchain but suffers from the similar problems.

4. On mining pools Mining pools are the major players in Proof-of-work-based
cryptocurrencies, e.g., Bitcoin. The mining pool’s goal is to accumulate min-
ers’ power and solve the Proof-of-work puzzles. As the difficulty of Proof-of-
work puzzles gives a very low probability of solving the puzzle to a single
miner, the miner usually prefers to join a mining pool where the miner gets
a fair share of the reward proportional to his/her effort, if the mining pool
finds the solution. Two kinds of entities can mount a DDoS attack on a min-
ing pool: 1) A hacker whose aim is to make money by asking the ransom from
the attacked mining pool with the promise of stopping the DDoS attack [22],
2) A competing mining pool whose goal is to increase his winning probability
by undermining the power of competing mining pools. Few game-theoretic
studies [48,47] are also conducted to analyze DoS attacks in mining pools.

5. On layer-two blockchain protocols Layer-two blockchain protocols are built on
the top of the main blockchain that moves a sufficient amount of transaction
load from the main blockchain to the off-chain in sub-seconds (instead of min-
utes or hours) with a reduced fee and similar security. Hence, these protocols
are referred to as an orthogonal solution for the scalability problem in the
blockchain. In recent years, there has been tremendous growth in construct-
ing new layer-two protocols [20] for blockchain scalability such as channel
networks. In a channel network, channels are established between the parties
of the network and governed by the smart contracts of the main chain. It pro-
vides a fast and scalable approach for off-chain interactions. These protocols
also suffered from DoS attacks in the past [39,42].

6. On sharding protocols Similar to layer-2 blockchain solutions, sharding proto-
cols [41] also tackle the scalability issue of blockchain. The idea of sharding is
to partition the blockchain state into multiple shards. Each shard processes a
set of transactions; therefore, all shards can process the transactions parallelly
and hence increases the blockchain throughput. The majority of the sharding
protocols are built on the top of the Bitcoin blockchain, and some are built for
the Ethereum blockchain. A sharding protocol deals with challenges involv-
ing the shard assignment to validators, transaction assignment to shard, and
intra-shard consensus. A DoS attack can be mounted on sharding protocol by
flooding a single shard which becomes the bottleneck for the whole system. A
recent work [27] studies the DoS-attack on sharding protocols and proposes
a Trusted Execution Environment (TEE) based countermeasure.

7. On commit-chain operator A commit-chain [23] is an off-chain scaling solu-
tion where the transactions are performed off-chain by a non-custodial and
untrusted operator. The operator commits the balances of users periodically
to the blockchain by computing a checkpoint and feeding it to an on-chain
smart contract. The scheme involves users publishing challenges to the smart
contract in case of a dispute with the operator, which imposes a drawback

117

6 Mayank Raikwar and Danilo Gligoroski

where a malicious user can flood the smart contract with unwarranted chal-
lenges. Another significant issue is the operator being a central entity can
become a victim of a DoS attack, resulting in collapsing the whole system.

8. On smart contract A smart contract is a transaction protocol in blockchain
that takes actions according to the terms of the contract. In the Ethereum
blockchain, each block has a maximum gas limit that is spent by executing a
smart contract, and exceeding the gas limit causes a DoS attack. An attacker
can mount a DoS attack on smart contract [4] in several possible ways such
as: 1) By sending a computationally intensive transaction to a contract thus
preventing other transactions from being included in a block; 2) By adding a
couple of refund addresses at once that can end up smart contract exceeding
the gas limit while refunding to those addresses; 3) By unexpected revert of
refund to a legitimate user by using fallback function. A recent work [35] shows
a method to detect DoS attacks caused due to unexpected revert in Ethereum
smart contract. An example of a DoS attack on a smart contract is an auction
contract where an attacker can constantly call the bidding function (e.g.,
bid()), preventing other legitimate users from making their bids. In the NEO
blockchain, a vulnerability allowed attackers to invoke a malicious contract
that created a DoS attack by crashing each node that tried to execute the
contract [37]. Moreover, a DoS attack on a smart contract triggers stopping
a node from executing the functions for all the DApps it hosts.

9. On mixing services Amixing service is a protocol that allows a cryptocurrency
user to utilize its currency anonymously. It provides unlinkability of the user’s
input to its output and prevents the user’s identification from being revealed.
There are centralized [6] and decentralized [31] mixing services. Centralized
mixing services being a single-point-of-failure are more vulnerable to DoS
attacks (e.g. by competing services). However, both types of mixing services
suffer from DoS due to different actions of its users, such as 1) By providing
inconsistent input for the shuffle, leading the whole verification step of shuffle
to fail; 2) By denying to perform some required task e.g., to sign a group
transaction; 3) By several participation requests in the mixing transaction
pool leading to the depletion of a precomputed pool by participants [49].

10. On consensus participants In the blockchain, consensus participants are the
major players who decide on the blockchain’s new block. Therefore, consensus
participants are the usual DoS target for an attacker. In deterministic leader
election protocols of consensus, the leader of the consensus round can be
a primary target for DoS attacks which can make the whole system halt
if the leader suffers a DoS attack. Other main targets can be stakeholders
in Proof of Stake consensus mechanisms that hold some stake in the system,
therefore attracting an attacker to mount DoS. A DoS attack can be mounted
on PBFT-based permissioned blockchains and its participants, where a DDoS
attack can be launched if an adversary controls over 33 % of the replicas. As
in the BFT-based blockchains, network size is known to the participants, an
attacker creates the required number of Sybil replicas needed for a DoS attack.
Hence, for each transaction sent by the primary, the Sybil replicas will not
reply to their approvals, leading the whole system to halt.

118

DoS Attacks on Blockchain Ecosystem 7

3 DoS Mitigation Techniques for Blockchain Systems

In most of the DoS events, an attacker floods the network by creating multiple
transactions in a short time period, hence maximizing his throughput. This kind
of situation arises when the cost of creating a transaction is low. In most settings,
these transactions are monetary payment transactions of a tiny value, but for
some cases, these can be data transactions (e.g., IoT blockchain transactions).
To mitigate the DoS attack, some cost should be imposed on the attacker to slow
down or stop unnecessary requests in the blockchain system. Hence, following,
we present the DoS mitigation techniques in the blockchain ecosystem.

Blockchain Ecosystem Applicable Solutions

Cryptocurrency Wallets Client Puzzle (Inside Smart Contract)

Cryptocurrency Exchange Services Client Puzzle (On Exchange Clients)

Memory Pools Fee-based Approach/NI-Client Puzzle

Mining Pools Fee-based Approach/NI-Client Puzzle

Layer-2 Blockchain Protocols Fee-based Approach

Sharding Protocols Fee-based Approach

Commit-chain Operator Client Puzzle (On Commit-chain Users)

Smart Contract Client Puzzle (Inside Smart Contract)

Mixing Services Fee-based Approach/NI-Client Puzzle

Consensus Participants Client Puzzle (On Participant Registration)
Table 1. DoS Mitigation Techniques in Blockchain Ecosystem

– Client Puzzles Client puzzles are one of the most effective prominent tech-
niques to defend against DoS attacks. In a client puzzle, a client has to solve a
puzzle before being granted access to a service or a resource by a server. The
initial introduction of the client puzzle was given by Dwork and Naor [13]
to combat the spam attacks. Client puzzles can be categorized into different
types based on the resource used by the client for solving the puzzle such
as number of CPU cycles or a number of memory access, quantifying CPU-
bound puzzles [5] and memory-bound puzzles [1] respectively. Several client
puzzles such as Time-lock puzzles [29], Hash-chain [24] and Equihash [7] are
employed in the blockchain ecosystem. A client puzzle scheme can be Inter-
active where server creates the puzzle for the client or Non-Interactive (NI)
where the client creates a puzzle, solves the puzzle and sends it to the server.

– Fee-based Approach In many events of DoS attack, to disincentivize an at-
tacker an extra or minimum fee can be introduced in the blockchain ecosys-
tem. This fee can be of different types based on the underlying blockchain
system. The fee can be a mining fee in mining pools, a mixing fee in mixing
services, a transaction fee in transaction pools, a relay fee in a blockchain
network, a registration fee for user registration (e.g. a user of a permissioned
blockchain), etc. Therefore, with the introduction of a minimum fee, launch-
ing a DoS attack becomes costlier for an attacker. However, the fee-based
approach adversely affects legitimate users who do not want to pay this
minimum amount of fee.

119

8 Mayank Raikwar and Danilo Gligoroski

Table 1 presents the possible DoS mitigation solutions for corresponding
blockchain ecosystem. Fee-based approach can be applied in almost every case
but will not be favorable for all blockchain users. In the table, for layer-2 and
sharding protocols, the use of client puzzle will defeat the purpose of scalabil-
ity due to its time consumption, therefore fee-based approach is a more viable
option. For memory pools, mining pools, and mixing services, non-interactive
client puzzle schemes can be applied where the miner/user presents a verifiable
puzzle and its solution for the inclusion of its new transaction (Rewarding puz-
zle solution in case of mining pool). Apart from the above described techniques,
other mechanisms such as packet filtering techniques or DoS protection services
e.g. Incapsula can be used for DoS mitigation in some blockchain contexts.

3.1 VDF-based DoS-resistant Protocol

Most of the existing client puzzles lack public verifiability, non-parallelizability,
non-interactivity, and easy verification. Therefore, the initial introduction of
VDF [8] as a moderately hard function can be configured as a client puzzle
for DoS mitigation achieving all these properties. A VDF can be described as a
function f : X → Y which takes a predefined number of steps T to compute the
output y ∈ Y, given an input x ∈ X and a polynomial number of processors.
Furthermore, the verification of the output is exponentially easy. VDF produces
a unique output that is efficiently and publicly verifiable. There have been a few
constructions of VDF. We employ the Wesolowski VDF scheme [43] to construct
our client puzzle due to its fast verification and short proof size properties.

We define an Interactive VDF client puzzle, where a server S creates a puzzle
p and asks for solution s of the puzzle from the client C before giving access to its
resource. In the following construction, K is a key space, P is a puzzle space, O
is a solution space, D is a puzzle difficulty space, and I is a puzzle input space.

– Setup(1λ): Select K = ∅,D ⊆ N,P ⊆ {0, 1}∗,O ⊆ {0, 1}∗, I ⊆ {0, 1}∗. Gen-
erate a group G of unknown order, an RSA modulus N , a hash function H :
{0, 1}∗ → G and D ← T . Set param← (P,O,D, I) and pp← (G, N,H, T),
return (param, pp).

– GenPuz(T, i, pp): Server runs this algorithm to create a puzzle for the client.

It generates an input i ∈ I for VDF-evaluation, samples l
$← Primes(λ).

Return a puzzle p = l to the client.
– FindSol(i, p, pp): Client runs this algorithm to solve the puzzle p. Client com-

putes g = H(i), further computes y ← g(2
T)mod N . It computes q, r such

that 2T = ql + r where 0 ≤ r < l, and computes a proof π = gq. Send a
solution s = (y, π) to the server.

– VerSol(i, p, s, pp): Server computes r ← 2Tmod l and accepts if g, y, s ∈ G
and y = πlgrmodN .

An Interactive VDF-based DoS-resistant protocol can be designed using client
puzzle as depicted in Figure 1. The protocol construction follows from the Stebila
et al. [38]. To define this interactive protocol, we assume server and client have

120

DoS Attacks on Blockchain Ecosystem 9

public identities IDS and IDC . Our VDF-based client puzzle can also be made
Non-Interactive where the client constructs a puzzle and its solution. The client
and server share a common source of randomness (e.g. random beacon). The
client creates publicly verifiable puzzles using randomness. Further, the non-
interactive VDF client puzzle can be transformed into a DoS-resistant protocol
that can be efficiently applied in the blockchain ecosystem during DoS events.

Interactive DoS-resistant Protocol

Client C Server S

SKC , IDC , NC
$← {0, 1}k SKS , IDS

(Request : IDC , NC)

NS
$← {0, 1}k

i← (IDC , IDS , NC, NS)

p← GenPuz(T, i, pp),

σ ← MACSKS (i, p)

(Challenge : NS , p, σ)

i← (IDC , IDS , NC, NS)

s← FindSol(i, p, pp)

(Response : s, p, i, σ)

If IDC ∈ {List of Recorded IDs},

Reject

If σ ̸= MACSKS (i, p), Reject

If VerSol(i, p, s, pp) = 0, Reject

Store IDC

Fig. 1. Interactive DoS-resistant Protocol

Following the implementation study of VDF [3], for 128-bit security and
the difficulty between 216 to 220, our DoS-resistant protocol can be efficiently
employed for DoS mitigation in the blockchain. With the aforementioned setting,
the running time for FindSol, VerSol algorithms are in order of minutes and
order of milliseconds respectively. The verification time on the server side can be
further optimized using Dimitrov’s multiexponentiation method [11]. As a future
work, we will put a demonstration of a proof-of-concept and initial experiments
with Wesolowski VDF for DoS mitigation.

121

10 Mayank Raikwar and Danilo Gligoroski

4 Conclusion

In this work, we offered a thorough study of DoS attacks in the blockchain ecosys-
tem. To the best of our knowledge, this is the first investigation in the context of
blockchain. As the frequency and intensity of DoS attacks are increasing rapidly,
it raises a concern about efficient detection and mitigation techniques. Therefore,
we listed out main mitigation approaches which can be used for DoS mitigation
in the blockchain ecosystem. We also identify verifiable delay function as an effec-
tive primitive to mitigate DoS attacks. A proper construction of non-interactive
VDF puzzle and experimental results will be provided in the continuation of
this work. This paper will help academic and industrial researchers to study the
possible venues and impact of the DoS attack in the blockchain context and to
improve upon the existing solutions.

References

1. Abadi, M., Burrows, M., Manasse, M., Wobber, T.: Moderately hard, memory-
bound functions. ACM Transactions on Internet Technology 5(2), 299–327 (2005)

2. Abhishta, A., Joosten, R., Dragomiretskiy, S., Nieuwenhuis, L.J.M.: Impact of
Successful DDoS Attacks on a Major Crypto-Currency Exchange. In: 2019 27th
Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP). pp. 379–384 (2019)

3. Attias, V., Vigneri, L., Dimitrov, V.: Implementation Study of Two Verifiable Delay
Functions. IACR Cryptol. ePrint Arch. 2020, 332 (2020)

4. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (sok). In: Maffei, M., Ryan, M. (eds.) Principles of Security and Trust. pp.
164–186. Springer Berlin Heidelberg, Berlin, Heidelberg (2017)

5. Back, A., et al.: Hashcash - a denial of service counter-measure.
ftp://sunsite.icm.edu.pl/site/replay.old/programs/hashcash/hashcash.pdf (2002)

6. Bao, Z., Shi, W., Kumari, S., Kong, Z.y., Chen, C.M.: Lockmix: a secure and
privacy-preserving mix service for Bitcoin anonymity. International Journal of In-
formation Security pp. 1–11 (2019)

7. Biryukov, A., Khovratovich, D.: Equihash: Asymmetric proof-of-work based on the
generalized birthday problem. Ledger 2, 1–30 (2017)

8. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In:
Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology – CRYPTO 2018. pp.
757–788. Springer International Publishing, Cham (2018)

9. CoinMarketCap: Total market capitalization. https://coinmarketcap.com (May
2021), [Online; accessed 26-May-2021]

10. Crawley, J.: UK Crypto Exchange EXMO Offline Amid DDoS Attack. https:
//tinyurl.com/u8kk94ry (Feb 2021), [Online; accessed 08-June-2021]

11. Dimitrov, V.S., Jullien, G.A., Miller, W.C.: Complexity and fast algorithms for
multiexponentiations. IEEE Transactions on Computers 49(2), 141–147 (2000)

12. Douligeris, C., Mitrokotsa, A.: Ddos attacks and defense mechanisms: classification
and state-of-the-art. Computer Networks 44(5), 643 – 666 (2004)

13. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Annual
International Cryptology Conference. pp. 139–147. Springer (1992)

122

DoS Attacks on Blockchain Ecosystem 11

14. Eduardo A. Sousa, J., Oliveira, V.C., Almeida Valadares, J., Borges Vieira, A.,
Bernardino, H.S., Moraes Villela, S., Dias Goncalves, G.: Fighting Under-price
DoS Attack in Ethereum with Machine Learning Techniques. ACM SIGMETRICS
Performance Evaluation Review 48(4), 24–27 (2021)

15. Explica.co: Cryptocurrency : Wasabi bitcoin wallet servers suffered DDoS attack.
https://tinyurl.com/s6sbunam (June 2021), [Online; accessed 10-June-2021]

16. Fadilpasic, S.: Disclosed: Ethereum ’Lived’ With a Major Threat for 18 Months.
https://tinyurl.com/h7478aej (May 2021), [Online; accessed 07-July-2021]

17. Feder, A., Gandal, N., Hamrick, J., Moore, T.: The impact of DDoS and other
security shocks on Bitcoin currency exchanges: Evidence from Mt. Gox. Journal of
Cybersecurity 3(2), 137–144 (2017)

18. Fuller, B., Khan, J.: CVE-2018-17145: Bitcoin Inventory Out-of-Memory Denial-
of-Service Attack. https://invdos.net/paper/CVE-2018-17145.pdf (2020)

19. Gasti, P., Tsudik, G., Uzun, E., Zhang, L.: DoS and DDoS in Named Data Net-
working. In: 2013 22nd International Conference on Computer Communication and
Networks (ICCCN). pp. 1–7 (2013)

20. Gudgeon, L., Moreno-Sanchez, P., Roos, S., McCorry, P., Gervais, A.: Sok: Layer-
two blockchain protocols. In: Financial Cryptography and Data Security. pp. 201–
226. Springer International Publishing, Cham (2020)

21. Gupta, B., Badve, O.P.: Taxonomy of DoS and DDoS attacks and desirable defense
mechanism in a cloud computing environment. Neural Computing and Applications
28(12), 3655–3682 (2017)

22. Higgins, S.: Bitcoin Mining Pools Targeted in Wave of DDoS Attacks. https:

//tinyurl.com/5jew979z (March 2015), [Online; accessed 07-July-2021]
23. Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., Gervais, A.: Commit-

Chains: Secure, Scalable Off-Chain Payments. Tech. rep., Cryptology ePrint
Archive, Report 2018/642 (2018)

24. Mahmoody, M., Moran, T., Vadhan, S.: Publicly verifiable proofs of sequential
work. In: Proceedings of the 4th conference on Innovations in Theoretical Computer
Science. pp. 373–388 (2013)

25. Mirkin, M., Ji, Y., Pang, J., Klages-Mundt, A., Eyal, I., Juels, A.: BDoS:
Blockchain Denial-of-Service. In: Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security. p. 601–619. CCS ’20, ACM, NY,
USA (2020)

26. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf (2009)

27. Nguyen, T., Thai, M.T.: Denial-of-service vulnerability of hash-based transaction
sharding: Attacks and countermeasures. arXiv preprint arXiv:2007.08600 (2020)

28. Praitheeshan, P., Pan, L., Doss, R.: Security Evaluation of Smart Contract-Based
On-chain Ethereum Wallets. In: International Conference on Network and System
Security. pp. 22–41. Springer (2020)

29. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release
crypto. Massachusetts Institute of Technology, Laboratory for Computer Science
(1996)

30. Rodrigues, B., Bocek, T., Stiller, B.: Multi-domain ddos mitigation based on
blockchains. In: Tuncer, D., Koch, R., Badonnel, R., Stiller, B. (eds.) Security
of Networks and Services in an All-Connected World. pp. 185–190. Springer Inter-
national Publishing, Cham (2017)

31. Ruffing, T., Moreno-Sanchez, P., Kate, A.: Coinshuffle: Practical decentralized coin
mixing for Bitcoin. In: European Symposium on Research in Computer Security.
pp. 345–364. Springer (2014)

123

12 Mayank Raikwar and Danilo Gligoroski

32. Saad, M., Njilla, L., Kamhoua, C., Kim, J., Nyang, D., Mohaisen, A.: Mempool
Optimization for Defending Against DDoS Attacks in PoW-based Blockchain Sys-
tems. In: 2019 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC). pp. 285–292. IEEE (2019)

33. Saad, M., Spaulding, J., Njilla, L., Kamhoua, C., Shetty, S., Nyang, D., Mo-
haisen, A.: Exploring the attack surface of blockchain: A systematic overview.
arXiv preprint arXiv:1904.03487 (2019)

34. Saad, M., Thai, M.T., Mohaisen, A.: POSTER: deterring ddos attacks on
blockchain-based cryptocurrencies through mempool optimization. In: Proceed-
ings of the 2018 on Asia Conference on Computer and Communications Security.
pp. 809–811 (2018)

35. Samreen, N.F., Alalfi, M.H.: SmartScan: An approach to detect Denial of Service
Vulnerability in Ethereum Smart Contracts. preprint arXiv:2105.02852 (2021)

36. Singh, R., Tanwar, S., Sharma, T.P.: Utilization of blockchain for mitigating the
distributed denial of service attacks. Security and Privacy 3(3), e96 (2020).
https://doi.org/https://doi.org/10.1002/spy2.96

37. Sotnichek, M.: NEO Smart Contract Vulnerabilities: DoS Vulnerability. https:
//tinyurl.com/faxjbby5 (October 2018), [Online; accessed 07-July-2021]

38. Stebila, D., Kuppusamy, L., Rangasamy, J., Boyd, C., Gonzalez Nieto, J.: Stronger
difficulty notions for client puzzles and denial-of-service-resistant protocols. In:
Kiayias, A. (ed.) Topics in Cryptology – CT-RSA 2011. pp. 284–301. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

39. Tochner, S., Zohar, A., Schmid, S.: Route Hijacking and DoS in Off-Chain Net-
works, p. 228–240. ACM, New York, NY, USA (2020)

40. Vasek, M., Thornton, M., Moore, T.: Empirical analysis of denial-of-service attacks
in the bitcoin ecosystem. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.)
Financial Cryptography and Data Security. pp. 57–71. Springer Berlin Heidelberg,
Berlin, Heidelberg (2014)

41. Wang, G., Shi, Z.J., Nixon, M., Han, S.: SoK: Sharding on blockchain. In: 1st ACM
Conference on Advances in Financial Technologies. pp. 41–61 (2019)

42. Weintraub, B., Nita-Rotaru, C., Roos, S.: Exploiting Centrality: Attacks in Pay-
ment Channel Networks with Local Routing (2020)

43. Wesolowski, B.: Efficient verifiable delay functions. In: Ishai, Y., Rijmen, V. (eds.)
Advances in Cryptology – EUROCRYPT 2019. pp. 379–407. Springer International
Publishing, Cham (2019)

44. Wilcke, J.: The Ethereum network is currently undergoing a DoS attack. https:
//tinyurl.com/ww6kp2nu (2016), [Online; accessed 07-July-2021]

45. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1–32 (2014)

46. Woolf, N.: DDoS attack that disrupted internet was largest of its kind in history,
experts say. The Guardian 26 (2016)

47. Wu, S., Chen, Y., Li, M., Luo, X., Liu, Z., Liu, L.: Survive and Thrive: A Stochastic
Game for DDoS Attacks in Bitcoin Mining Pools. IEEE/ACM Transactions on
Networking 28(2), 874–887 (2020)

48. Zheng, R., Ying, C., Shao, J., Wei, G., Yan, H., Kong, J., Ren, Y., Zhang, H., Hou,
W.: New Game-Theoretic Analysis of DDoS Attacks Against Bitcoin Mining Pools
with Defence Cost. In: International Conference on Network and System Security.
pp. 567–580. Springer (2019)

49. Ziegeldorf, J.H., Matzutt, R., Henze, M., Grossmann, F., Wehrle, K.: Secure and
anonymous decentralized Bitcoin mixing. Future Generation Computer Systems
80, 448–466 (2018)

124

Paper F

PriBank: Confidential Blockchain Scaling Using Short
Commit-and-Proof NIZK Argument

K. Gjøsteen, M. Raikwar, S. Wu

Published in Cryptographers’ Track at the RSA Conference (CT-RSA),
2022

PriBank: Confidential Blockchain Scaling Using
Short Commit-and-Proof NIZK Argument

Kristian Gjøsteen, Mayank Raikwar, and Shuang Wu

Norwegian University of Science and Technology, NTNU, Trondheim, Norway
{kristian.gjosteen,mayank.raikwar,shuang.wu}@ntnu.no

Abstract. Decentralized financial applications demand fast, cheap, and
privacy-preserving cryptocurrency systems to facilitate high transaction
volumes and provide privacy for users. Off-chain Layer-2 scaling solutions
such as Plasma, ZK-Rollup, NOCUST are appealing innovations devised
to enable the scalability and extensibility account-based blockchains that
support smart contracts. The essential idea is simple yet powerful: move
expensive computations off-chain and commit the abbreviated transac-
tion data on-chain. Nevertheless, these solutions do not provide privacy
for the users’ balances and off-chain transaction data. In this paper, we
propose PriBank, a novel privacy-preserving cryptocurrency system that
enables private balances and transaction values on top of these Layer-2
scaling solutions. To construct PriBank system, we propose a Commit-
and-Prove short NIZK argument for quadratic arithmetic programs. The
Commit-and-Prove short NIZK argument is built on top of the existing
zero-knowledge proof scheme: Bulletproof. It allows a prover to commit
to an arbitrary set of witnesses by Pedersen commitments before proving,
which may be of independent interest. We construct security models and
definitions for Layer-2 privacy-preserving scaling solutions and analyse
the security of our scheme under the security model. We also implement
and evaluate the system, and present a comparative analysis with the
existing solutions.

Keywords: Blockchain · Privacy · Scalability · Commitments · Zero-
knowledge proofs · Smart contract

1 Introduction

Blockchain-based cryptocurrencies enable a peer-to-peer digital transfer of values
by keeping an immutable, distributed but globally synchronised public ledger,
the blockchain. However, the transactions in many of these blockchain-based
systems such as Bitcoin [26], Ethereum [33] are public. Current blockchains are
not suitable for daily financial transactions due to their privacy and scalability
issues. For instance, the average throughput of Bitcoin is 4.6 transactions per
second while Visa does around 1,700 transactions per second on average. Privacy
and scalability, however, are hard to achieve at the same time. Since adding
privacy and confidentiality for a blockchain inevitably adds more computation
and data to the blockchain that results in reducing the transaction throughput

127

2 K. Gjøsteen et al.

and increasing the transaction fees and hence downgrading the scalability of the
system.

There are many anonymous cryptocurrencies ranging from Zcash [30], Mon-
ero [32] based on Bitcoin-like blockchains, to works [8,31,20] built on top of the
smart contracts. The systems built on these models can have private user bal-
ances, private and anonymous transactions. While most of the systems focus
on improving privacy, a few (none) of them discuss the scalability of their de-
signs. Monero employs anonymity sets in a ring structure to achieve privacy,
however, these privacy sets are fairly small. Zcash and Monero rely on recording
every transaction in the history to perform further transactions, this model is
called unspent transaction output (UTXO) model. Zcash and its follow-up de-
signs [23,7,20] inherit the same limitation of the UTXO model and also employ
a zk-SNARK proof algorithm that has a sophisticated structured common ref-
erence string (CRS) requisite more trust for the parties to set up the system.
Account-based systems [8,15] where transaction take place between accounts also
incorporate zero-knowledge proof for privacy. The transactions in these systems
are directly sent to the blockchain resulting in computation overload. All these
systems do not achieve scalability due to the expensive blockchain transactions.

Many constructions such as Plasma [29], NOCUST [21], ZK-Rollup [19] aim
to improve the scalability of blockchain by moving a large amount of data and
computation off-chain through an untrusted operator. The operator puts a short
summary of the transactions on-chain. The blockchain scaling designs following
this architecture are called Layer-2 scaling solutions. Plasma/NOCUST claim
to decrease the transaction cost nearly to zero. However, these systems send
less data to the blockchain but they suffer from the problem of mass exit and
long waiting time in case of withdraw (Detailed explanation in Section 1.2).
Moreover, users need to keep online and monitor the behaviour of the operator
and other users in case of a dispute. Dziembowski et al. [16] proved that mass
exit is inevitable in these systems. ZK-Rollup is designed to avoid these issues
by submitting a zero-knowledge proof with extra data to the blockchain, but it
has less throughput and needs a trusted setup. We follow the similar scalability
approach as ZK-Rollup but without trusted setup, and above all, provide privacy.

Based on the above observations, one possible approach to balance privacy
and scalability is to build privacy on the top of these scaling architectures. How-
ever, it is not simply adapting the cryptographic techniques used in anonymous
cryptocurrencies to the blockchain scaling solutions. First, the fundamental ar-
chitecture difference of having an operator or not gives different security and
threat models. Second, the goal of introducing an off-chain operator is to out-
source the computation, while if the transactions are private, the operator needs
to compute on private data. Third, the operator is supposed to send as minimal
data as possible to the blockchain as long as the data can represent a unique and
correct transaction history. While if the transactions are encrypted, inevitably
it is more complex to “compress” the data and still be able to prove its correct-
ness. Meanwhile, the overall cost ‘to build privacy on scaling solutions’ method
is unknown, and is still a worthwhile question to be asked and to be investigated.

128

PriBank: Confidential Blockchain Scaling 3

Motivated by the above, the contributions of this paper are as follows:

1. We construct an efficient Commit-and-Prove NIZK protocol for quadratic
arithmetic program by modifying the Bulletproof protocol [9]. Our Commit-
and-Prove NIZK protocol can be of independent interest (Section 3).

2. We formally define a privacy-preserving cryptocurrency system built on the
top of layer-2 scaling and further, we present a security model of the system
(Section 4).

3. We construct a privacy-preserving cryptocurrency system PriBank where
the large computation of the user transactions is delegated to an off-chain
operator while keeping the users’ balances and transaction values private.
Users trust the operator for confidentiality, but the system is trust-less for
its integrity (Section 5).

4. We provide a security analysis of the system (Section 6) and implement the
Commit-and-Prove NIZK protocol of PriBank in Go and further evaluate
the performance of the protocol (Section 7).

Furthermore, in our system, the computation load and data sent to the
blockchain is quadratic to the number of users in the worst case. The zero-
knowledge argument for inner-product in our system allows a prover to commit
to a subset of witness by Pedersen commitment, compared with Bulletproof
where all the witness are committed by vector Pedersen commitment.

1.1 Overview of PriBank

The PriBank system aims to enhance the privacy of blockchain-based cryptocur-
rency scaling approaches, and concurrently manages the computation and data
overload at a practical level. There are three types of entities in PriBank: Users,
Bank (Operator), and a Smart Contract running on the blockchain. The users
make the transactions with other users of the system through the bank operator.
From a privacy perspective, the operator serves as a bank on top of a blockchain
where users’ transactions and balances are hidden from other entities apart from
the bank. The bank operator maintains users’ balances and transactions, keeps
them private, and periodically submits commitments to the users’ data and
zero-knowledge proofs to the smart contract. The smart contract validates the
operator’s commitments and proofs and records them on the blockchain only
if they are valid. The difference between the traditional bank and PriBank is
that PriBank is not trusted to execute users’ requests honestly, yet the bank can
do no harm apart from leaking user’s information. As an additional benefit in
the current regulatory climate, the information that the operator holds enables
auditing of transactions, which is important to prevent financial crimes.

PriBank system operates in terms of epochs. An epoch is divided into three
phases: Transaction phase, Commit phase and Exit phase. The beginning of
an epoch is the Transaction phase which consists of three processes: Register,
Deposit and Transfer. These process can run parallel. The operator collects all
the transaction data in the Transaction phase, and sends the commitments and

129

4 K. Gjøsteen et al.

proofs to the smart contract in the Commit phase. At the end of epoch is the
Exit phase where users can withdraw or exit the system with the balances that
smart contract has confirmed during the Commit phase. Moreover, during the
Transaction phase, a user can make multiple transactions to another user, but
only the final balance is uploaded to the blockchain. Figure 1 depicts a general
overview of PriBank.

epoch r − 1 epoch r

Register/Transfer Commit Exit Register/Transfer Commit Exit

epoch r − 2 epoch r + 1

Fig. 1: An Overview of PriBank System

PriBank Workflow: A general working flow of PriBank is as follows:

– Firstly, a smart contract is set up on the blockchain. It includes all the public
parameters in the system. Then user register and deposit funds in the system
through this smart contract.

– After registration, a user sends a plain text transaction to the operator using
a secure channel. The operator then commits to the transaction value and
generates its proof. Then, it returns the commitment and proof to the user
along with a collection of all the transactions commitments made for this user
within a specific period and asks for a signature on the collection. The user
checks that the collection is valid, and if so signs the transaction collection.

– Through above operation, the operator collects a list of transaction commit-
ments of a user and also gets the user’s signature on them. At the end of a
period, the operator updates each user’s balance, submits the balance com-
mitments and the lists of transaction commitments from the users along with
a zero-knowledge proof to the smart contract on blockchain. The balances
of users in the system are represented in the form of their commitments.

– Upon receiving the data from the operator, the smart contract verifies the
signatures and the zero-knowledge proof, and updates the new balance com-
mitment for each user if the data passes all the verification checks.

– The withdrawal or exit process are on the blockchain between the smart
contract and users. The users have the necessary proof that they received
from the operator beforehand for the withdrawal. They submit the requests
and the proof to the smart contract. The smart contract checks the proof
and processes the withdrawal or exit.

Functionality : PriBank processes the user transactions in an off-chain man-
ner through an operator and smart contract, hence amortizes the cost incurred in
the parent blockchain. As PriBank is deployed alongside the parent blockchain,
the parent blockchain has a global view of user accounts. The parent blockchain
should be account-based, smart-contract enabled (e.g. Ethereum [33]), and oper-
ated by an honest majority. Furthermore, PriBank operations should take place

130

PriBank: Confidential Blockchain Scaling 5

under the partially synchronous network where messages between two entities
should reach within an upper bound delay. Users of PriBank should also be
online at least once in each epoch to send or receive transactions in the system.

Verifiable Operation through Commit-and-Prove Zero-knowledge Proof For the
correct execution of the PriBank workflow, we build a commit-and-prove zero-
knowledge proof system. The commit-and-prove approach in zero-knowledge
proofs dates back to the works of Kilian [22] and Canetti et al. [11], follow-
ing by the works [3,10,5]. The algorithms are zero-knowledge proof in which
the prover proves statements about values that are committed. In PriBank, this
proof system is built over an arithmetic circuit that represents the computation
of the bank operator. We commit to the circuit wires and then prove that they
satisfy the circuit. We use Pedersen commitment scheme to represent users’ bal-
ances and transactions privately, these values are part of the wires of the circuit.
For the other secret wires, we use the vector Pedersen commitment to shrink
the size of the overall commitment to being logarithmic in the circuit size. We
also use the signature and zero-knowledge proof verification in the smart con-
tract that guarantees the correctness and verifiability of the updates from the
bank operator. Details about the arithmetic circuit and mentioned commitment
schemes are given in Section 2.

1.2 Related Work

The problem of scalability in blockchain has become more urgent recently. A
large amount of work has been done to address this issue and many solutions have
been proposed [25,14,21,4,29]. The majority of these solutions support off-chain
interactions and computations. In these off-chain solutions, a large number of
transactions take place off-chain through an operator who puts a short summary
of these transactions on-chain. However, some of these systems are vulnerable
to mass exit. In a mass exit scenario, the operator goes rogue and users of the
systems need to send ownership proofs of their assets to the main chain, in order
to exit the system with their respective assets. This event causes congestion on
the main chain and the users might not be able to exit the system in time.

Apart from the problem of mass-exit, some of these solutions do not pro-
vide integrity of the transactions. Moreover, some solutions do incorporate zero-
knowledge proofs to achieve the integrity of blockchain and off-chain systems.
Nevertheless, transaction data in all these systems are public and therefore fail
to address the privacy implications of blockchain.

In the blockchain context there are different privacy notions, ranging from
privacy of transaction amounts [30,23,8] and transacting parties [15,17] to the
privacy of embedded functional calls in a smart contract [7]. Different solu-
tions have been proposed to achieve meaningful privacy notions. Several of these
solutions employ advanced cryptographic techniques such as zero-knowledge
proofs [30], ring signature [32], homomorphic encryption [34] and mixing tech-
niques [6,24] to achieve various forms of privacy. Financial systems zkLedger [27],

131

6 K. Gjøsteen et al.

Solidus [12], RSCoin [13] also achieve privacy of their transactions, but banks
regulate the supply of funds and a blockchain is used to make transactions.

Hawk [23] is the first framework to construct privacy-preserving smart con-
tracts. Hawk combines the idea of Zcash and multi-party computation that
achieves on-chain privacy through the use of zero-knowledge proofs. The on-
chain privacy is guaranteed by a party that performs off-chain computation,
generates a cryptographic zk-SNARKs proof, and puts these results on-chain.

A zk-SNARK provides a succinct cryptographic proof attesting to the cor-
rectness of a computation. However, the use of zk-SNARK puts a bound on the
number of participants (in Hawk) due to its trusted setup and circuit-dependent
CRS. Ledger-based construction, Zexe [7], follows the similar idea of performing
off-chain computation using zk-SNARKs and subsequently produces privacy-
preserving transactions. In addition to Hawk, Zexe also hides which computa-
tions were performed off-chain, but both suffer from limitation of zk-SNARKs.

To build a privacy-preserving ledger system along with stateful computations
in the smart contract, several new constructions have been proposed such as
zKay [31], Zether [8], and Kachina [20]. All these constructions extend Ethereum
with privacy-preserving currency or data. zKay achieves privacy of data using
encryption and correctness using NIZK proof of encryption. zKay presents a
new language that extends Ethereum smart contracts with private data types.
Zether, on the other hand, proposes a privacy-preserving payment mechanism
using ElGamal encryption and zero-knowledge proofs (Bulletproof-based range
proofs). Kachina realizes a large class of privacy-preserving smart contracts.
Kachina uses NIZK proofs and state oracles to establish the desired privacy-
preserving smart contract. The security model of Kachina is based on Universal
Composition (UC) model, encompassing the other mentioned models. However,
many find UC hard to work with.

Quisquis [17] is a hybrid construction of UTXO and account-based model
that provides a provably secure notion of anonymity. It achieves this notion by
combining a DDH-based updatable public key system with NIZK proofs.

Although all the above-described privacy-preserving constructions achieve
various privacy notions, none of the constructions explicitly provide scalabil-
ity analysis. Furthermore, many of these constructions provide implementations
without integrity and do not have a proper security model. Moreover, even some
of these constructions involve off-chain transactions that might result in better
scalability, but fail to mention and analyse it. To the best of our knowledge,
PriBank is the only construction that enables a useful form of privacy along
with scalability in account-based blockchain with a proper security model.

Tables 1 and 2 compare PriBank with the existing popular schemes for scal-
ability and privacy, respectively. In these tables, ‘✓’ denotes that the respective
system has the corresponding feature, and ‘✗’ denotes that the scheme lacks
that feature. Table 1 compares PriBank with existing scalable off-chain systems.
Table 2 compares PriBank with the existing privacy-preserving systems. How-
ever, schemes such as Monero and Zcash do not have a concept of off-chain third
party, therefore they achieve stronger privacy notions. Irrespective of that, we

132

PriBank: Confidential Blockchain Scaling 7

Table 1: Comparison Matrix for different off-chain systems.

Scheme Plasma [29] ZK-Rollup [19] State Channel [25] Our Scheme

No Mass Exit Assumption ✗ ✓ ✓ ✓

Security No Watch Tower Assumption ✗ ✓ ✗ ✓

Cryptographic Primitives Standard New Standard Standard

Withdraw Time 1 week 10 minutes 1 confirmation 1 epoch
Usability Transaction Finalization Time 1 confirmation 1 confirmation Instant 1 confirmation

User Verification ✗ ✗ ✓ ✓

Performance Cost of Transaction Very low Very low Low Low
No Collateral Required ✓ ✓ ✗ ✓

Table 2: Comparison Matrix for different privacy-preserving systems.

Scheme Monero [32] Zcash [30] Zexe [7] Zether [8] Quisquis [17] Our Scheme

Confidential Transaction ✓ ✓ ✓ ✓ ✓ ✓

Privacy Confidential User Address ✓ ✓ ✓ ✗* ✓ ✓

Anonymity Set Small Large Large Small Small Large

Security Security Model ✗ ✗ ✓* ✓* ✗ ✓

Cryptographic Primitives Standard Standard New New Standard Standard

Performance Transaction Size 2–∞KB 2KB 0.945–∞KB 1.472KB 13.4KB 0.033–1.9KB
No Trusted Setup Required ✗ ✗ ✗ ✓ ✓ ✓

compare our PriBank scheme to all these systems. ‘✗*’ denotes that Zether itself
does not provide anonymity, however, another construction Anonymous Zether
does provide anonymity, though with extra cost. ‘✓*’ denotes that the scheme
does not provide extensive security analysis.

2 Preliminaries

Notation : Throughout the paper, we use bold font to denote vectors, i.e. a ∈ Zn
p

is a vector with elements a1, ..., an ∈ Zp. The inner product between two vectors
a, b is denoted by ⟨a, b⟩. The Hadamard product or entry wise multiplication of
two vectors a, b is denoted by a ◦ b = (a1 · b1, ..., an · bn) ∈ Zn

p . We denote slices

of a vector as: a[:l] = (a1, ..., al) ∈ Zl
p,a[l:] = (al+1, ..., an) ∈ Zn−l

p .

2.1 Commitment schemes

A commitment scheme allows one to commit to a chosen value (or chosen state-
ment) while keeping it secret, with the ability to only reveal the commitment
to the committed value later. A commitment schemes has Hiding and blinding
properties. In PriBank, commitment schemes are used to commit to user’s bal-
ance or transaction data. For the construction, we use Pedersen commitment [28]
and Vector Pedersen commitment scheme.

– Given a group G of order q and two generators g, h of group G, a Pedersen

commitment for a value a ∈ Zq is defined as Ca = gahr ∈ G, where r
$← Zq.

– Given a group G of order q, g := (g1, . . . , gn), h ← G and a vector a :=

(a1, ..., an), a vector Pedersen commitment is Ca =
∏n

i=1 g
ai
i hr ∈ G, r

$← Zq.

In Section 3.2, we are using the commitment scheme in slightly different way.
We are constructing a collection of Pedersen commitments that are using the
same randomness over different generators of the group.

133

8 K. Gjøsteen et al.

2.2 Quadratic Arithmetic Program

We represent the operations that the bank operator do to compute the new bal-
ances from the old balances and transaction history into an arithmetic circuit
satisfaction problem. The circuit gives the necessary range checks as well. The
work of Gennaro et al. [18] shows how to further translate an arithmetic cir-
cuit satisfaction problem to a Quadratic Arithmetic Program (QAP), where the
circuit is reduced to a polynomial equation.

Definition 1 (Quadratic Arithmetic Program [18]). A quadratic arith-
metic program (QAP) Q over a field Zp consists of three sets of polynomials
V = {vk(x) : k ∈ {0, ..., n}}, U = {uk(x) : k ∈ {0, ..., n}},W = {wk(x) : k ∈
{0, ..., n}} and a target polynomial z(X), all are defined over Zp.

Let a circuit C, where all the wires including inputs, outputs and inner circuit
wires variables are labelled a0, a1, ..., an (where a0 = 1). A QAP Q is said to
compute C if the following holds:
a1, ..., an ∈ Zn

p is a valid assignment to the wires variables of C iff there exist
h(X) such that

n∑

i=1

aiui(X) ·
n∑

i=1

aivi(X) =

n∑

i=1

aiwi(X) + h(X)z(X)

The size of QAP is n, and degree is deg(z(X)), which is also the number
of gates in the circuit C. The polynomials uk(X), vk(X), wk(X) have degree at
most deg(z(X))− 1.

2.3 Commit-and-Prove Zero-knowledge Argument

A zero-knowledge argument is a protocol in which a prover wants to convince
a verifier that a statement is true without revealing any private information.
A commit-and-prove zero-knowledge argument is a zero-knowledge argument in
which a prover proves statements about values that are committed. It allows a
prover to commit to the secrets it holds before the prover knows what it is going
to prove. For instance, a prover makes a commitment to a user’s balance, later
it can convince the verifier that this balance is in or out of a certain range.

We follow the notation of [9]. A commit-and-prove argument consists of three
PPT algorithms (G,P,V). These are the common reference generator G, the
interactive prover P and verifier V. Take input as 1λ, G outputs the common
reference σ. The communication transcript between P and V when interacting
on inputs s and t is denoted by tr ← ⟨P(s),V(t)⟩. We write the output of the
protocol as ⟨P(s),V(t)⟩ = b. If verifier accepts, b = 0, otherwise b = 1.

The language of commit-and-prove zero-knowledge argument proving is de-
fined over a polynomial time decidable relation R and a commitment scheme
Com = (Setup,Commit,VerCommit). R is defined over Dσ×Dx×Du×Dw: given
a common reference σ, for a triple (x, u, w), we call x the statement, u the
committed witness and w the non-committed witness. Define RCom as a fam-
ily of relations that every relation R ∈ RCom

λ can be represented by a tuple

134

PriBank: Confidential Blockchain Scaling 9

(σ, c, r, x, u, w). Let L be the language associated with R, i.e.,

Lσ = {σ, c, x | ∃w, u, r s.t. VerCommit(c, u, r) = 1 ∧R(σ, x, u, w) = 1}

The commit-and-prove argument algorithm that we define has completeness,
special soundness and perfect zero-knowledge. The formal definitions are given
in Appendix F.

3 Commit-and-Prove Short NIZK Argument for
Quadratic Arithmetic Program

In this section, we introduce the construction of commit-prove short interactive
zero-knowledge proof for the quadratic arithmetic program. The protocol is lying
on three sub-protocols: a zero-knowledge argument for a product of Pedersen
commitments; a zero-knowledge argument for the inner product of a collection
of Pedersen commitments and a public vector; a zero-knowledge argument for
the inner product of a vector Pedersen Commitment and a public vector. We
describe the sub-protocols at the beginning and then describe how we combine
them and build the final protocol.

3.1 Zero-Knowledge Argument of Knowledge for Product of
Pedersen Commitments

Consider two Pedersen commitments ca = gahra and cb = gbhrb , the following
Protocol 3.1 is to prove a Pedersen commitment c is committed to the product
of a and b, i.e. c = gabht.

Protocol Input: (g, h, c, ca, cb ∈ G; a, b, ra, rb, t ∈ Zp)
Protocol Output: (V accepts or V rejects)

P’s input:(g, h, a, b, ra, rb, t)
V’s input:(g, h, ca, cb, c)
1. P chooses randoms α, β, r1, r2, s0, s1

and computes
d1 = gαhr1 , d2 = gβhr2 , c0 =
gαb+βahs0 , c1 = gαβhs1 .
P sends (d1, d2, c0, c1) to V.

2. V: x $←− Zp, sends x to P.

3. P computes θa = α − ax, θb =
β − bx, θ1 = r1 − rax, θ2 = r2 − rbx

θab = x2t − xs0 + s1 then sends
θa, θb, θ1, θ2 to V.

4. V checks cxag
θahθ1 = d1, cxb g

θbhθ2 =

d2, g
θaθbhθabcx0 = cx

2

c1, output 1 if
all the equations hold otherwise out-
put 0.

Fig. 2: Protocol 3.1

We prove the protocol has perfect completeness,computational soundness and
perfect zero-knowledge in Appendix B

135

10 K. Gjøsteen et al.

3.2 Zero-Knowledge Argument for Inner Product of Pedersen
Commitments and a Public Vector

Consider a vector a = (a1, ..., an) and a collection of Pedersen commitments
{ci}ni=1 where ci = gaihγ

i . These Pedersen commitments are commitments to
the elements of a using the same randomness γ but over different generators
hi. We give a zero-knowledge argument Protocol 3.2 that claims c is a Pedersen
commitment that commits to the inner product between a and a public vector

b, i.e. c = g

n∑
i=1

aibi
ht.

Statement: Vector b, Pedersen commitments {ci}ni=1 and generators g, {hi}ni=1

Prover’s Witness: Openings a, γ and t
Protocol Input: ({hi}ni=1, {ci}ni=1, g, c ∈ G;a, b ∈ Zn

p ; γ, t ∈ Zp)
Protocol Output: (V accepts or V rejects)

P’s input:({hi}ni=1, g,a, b, γ, t)
V’s input:({hi}ni=1, g, c, {ci}ni=1)

1. P chooses randoms α, β, t
$←− Zp,

computes

c0 = hγ , τ =
n∏

i=1

hbi
i , Ω = τγh−t,

d1 = hα, d2 = ταhβ and sends
(c0, Ω, d1, d2) to V.

2. V chooses a challenge x
$←− Zp and

sends it to P.
3. P computes θ1 = α−xγ, θ2 = β+xt.

4. V computes τ =
n∏

i=1

hbi
i , output ac-

cept if and only if

c =

n∏
i=1

c
bi
i

Ω
∧ d1 = cx0h

θ1 ∧ d2 =

Ωxτθ1hθ2

Fig. 3: Protocol 3.2

We prove the argument of knowledge presented in Protocol 3.2 has perfect
completeness, computational soundness and perfect special honest-verifier zero-
knowledge in Appendix C.

3.3 Zero-knowledge Argument of Knowledge for Inner Product of
Vector Pedersen Commitment and Public Vector

Consider a vector Pedersen commitment ca =
n∏

i=1

gai
i hra that commits to a :=

(a1, ..., an). We give a zero-knowledge argument protocol that claims cab is a
Pedersen commitment that commits to the inner product between a and a public

vector b, i.e. cab = g

n∑
i=1

aibi
hrab .

This algorithm is a variant of the inner product argument construction in
Bulletproof [9]. We modify it to have the zero-knowledge property which we will
use to build PriBank system. We prove the argument of knowledge presented in
Protocol 3.3 has perfect completeness, computational knowledge soundness and
perfect special honest-verifier zero-knowledge. The proofs for completeness and
honest-verifier zero-knowledge are in Appendix D. The soundness proof follows
the proof of Bulletproof and can be found in the full version of the paper.

136

PriBank: Confidential Blockchain Scaling 11

Statement: Generators vector g: = {g1, ..., gn}, generator h, vector b: = {b1, ..., bn},

vector Pedersen commitment ca =
n∏

i=1

gai
i hra and cab = g

n∑
i=1

aibi
hrab

Prover’s Witness: Openings for the commitments a, ra, rab
V randomly chooses a challenge x′ and sends it to P. Let c = cac

x′
ab, r = ra +

rabx
′, u = gx

′
and runs the following protocol Prove on input (g, u, h,a, b, c, r).

Protocol Prove:
Input: (g ∈ Gn, u, h, c ∈ G;a, b ∈ Zn

p , r ∈ Zp) Output: (V accepts or V rejects)

P’s input:(g, u, h, c,a, b)
V’s input:(g, u, h, c, b)
if n = 1 (a := {a1}, g := {g1}):

1. P chooses randomness α1, α2
$←− Zp,

computes and sends d = gα1
1 uα1b1hα2

to V.
2. V chooses x

$←− Zp challenge x, sends
it to the P.

3. P computes θ1 = α1 − xa1, θ2 =
α2 − xr, sends θ1 and θ2 to V

4. V accepts if cxgθ11 ub1θ1hθ2 = d, oth-
erwise it rejects.

if n > 1:

1. Let n′ = n
2
, P chooses random r1

$←−
Zp and r2

$←− Zp, computes L,R as
follows and sends L,R to V.

L = g
a[:n′]
[n′:] · u

⟨a[:n′],b[n′:]⟩ · hr1 ∈ G

R = g
a[n′:]
[:n′] · u

⟨a[n′:],b[:n′]⟩ · hr2 ∈ G

2. V chooses challenge x and sends it to
the prover, i.e.

V → P : x
$←− Zp

3. Both P and V compute

g′ = gx−1

[:n′] ◦ gx
[n′:] ∈ Gn′

b′ = x−1b[:n′] + xb[n′:] ∈ Zn′
p

c′ = c · Lx2 ·Rx−2 ∈ G

4. P computes:

a′ = xa[:n′] + x−1a[n′:]

r = r + x2r1 + x−2r2

5. Recursively run Prove on input
(g′, u, h, c′,a′, b′, r)

Fig. 4: Protocol 3.3

3.4 Commit-and-Prove Zero-Knowledge Argument For QAP

We give a commit-and-prove zero-knowledge argument Protocol 3.4 for the satis-
fiability of a QAP for an arithmetic circuit C. For wires in the circuit {ai}ni=0, we
denote the input witnesses are {ai}ki=0, the inner circuit witnesses are {ai}li=k+1

and the statements wires are {ai}ni=l+1. The quadratic arithmetic program, Ped-
ersen commitment and vector Pedersen commitment give a relation of the form
R = (G,Zp, k, l, {ui(X), vi(X), wi(X)}ni=0, z(X), {ai}ni=0, cl, {ci}ki=1, {ai}li=1, γ, r)
such that with a0 = 1

n∑

i=1

aiui(X) ·
n∑

i=1

aivi(X) =
n∑

i=1

aiwi(X) + h(X)z(X) ∧ {ci = gaihγ
i }ki=1

∧ cl = hr
l∏

i=k+1

gai
i ∧ ch = ht

n−2∏

i=0

geii

137

12 K. Gjøsteen et al.

where e0, ..., en−2 are the coefficients of h(X).

Statements: A collection of Pedersen commitments c1, ..., ck that commit to a1, ..., ak,
two vector Pedersen commitments cl and ch that commit to ak+1, ..., al and the coef-
ficients of polynomial h(x) = e0 + e1x+ ...+ en−2x

n−2, the public values al+1, ..., an

Witnesses: a1, ..., al, γ, r, t, e0, ..., en−2

Input: (g, h, {hi}ki=1, {ci}ki=1, cl, ch ∈ G, g ∈ Gn−2; {ai}ni=1, γ, r, t, {ei}n−2
i=1 ∈ Zp)

Output: (V accepts or V rejects)
P’s input:(g, h, {hi}ki=1, {ci}ki=1, cl, ch, g, {ai}li=1, γ, r, t, {ei}n−2

i=1)
V’s input:(g, h, {hi}ki=1, {ci}ki=1, cl, ch, g)

1. V sends challenge x1
$←− Zp to the P,

computes {ui(x1), vi(x1), wi(x1)}mi=0.

2. P chooses tu, tv, tw
$←− Zp and com-

putes

cu = g

k∑
i=1

aiui(x1)

htu , cv =

g

k∑
i=1

aivi(x1)

htv , cw = g

k∑
i=1

aiwi(x1)

htw

as the inner product between Ped-
ersen commitments {ci}ki=1 and
{ui(x1)}ki=1,{vi(x1)}ki=1,{wi(x1)}ki=1

respectively. Run protocol 3.2 to give
the proof of the correct constructions.

3. P chooses su, sv, sw
$←− Zp and com-

putes

cu = g

l∑
i=k+1

aiui(x1)

hsu ,

cv = g

l∑
i=k+1

aivi(x1)

hsv

cw = g

l∑
i=k+1

aiwi(x1)

hsw

as the inner product of vector
Pedersen commitment cl between
{ui(x1)}li=k+1, {vi(x1)}li=k+1 and
{wi(x1)}li=k+1 respectively. P also

chooses sh
$←− Zp and computes

chz = gh(x1)z(x1)hsh , which is
an inner product of vector Peder-
sen commitment and public vector
z(x1), x1z(x1), ..., x

n−2
1 z(x1).

Run Protocol 3.3 to give a proof for
the above constructions.

4. P computes

ca = cu · cu · g
n∑

i=l+1
aiui(x1)

,

cb = cv · cv · g
n∑

i=l+1
aivi(x1)

,

cc = cw · cw · g
n∑

i=l+1
aiwi(x1)

· chz

Run Protocol 3.1 to prove cc commits
to the product of the committed val-
ues of ca and cb.

Fig. 5: Protocol 3.4

We prove the protocol has perfect completeness, computational soundness
and perfect special honest verifier zero-knowledge in Appendix E.

4 Blockchain-based Bank Protocol

In this algorithm we isolate the blockchain functionality. The transactions/data
that are sent to blockchains are denoted by trans, when a trans is accepted by
the blockchain, the public state, bank state and users’ states are all updated.

138

PriBank: Confidential Blockchain Scaling 13

Definition 2 (BBank). A blockchain-based bank protocol BBank is a tuple of
algorithms (Setup,KeyGen,EstablishBank,NewUser,Deposit,Withdraw,Pay,
Commit) with the following syntax and semantics

– Setup The algorithm Setup generates the public parameters pp, to be dis-
tributed off-chain.

– KeyGen The algorithm KeyGen takes the public parameters pp and gener-
ates the key pair for users or for a bank.

– EstablishBank The algorithm establishes a bank, it takes the public pa-
rameters and a key pair as inputs, generates the initial state of the bank
TempStb and a transaction trans. Once the transaction trans is accepted by
the blokchain, it launches the smart contract.
(trans,TempStb)← EstablishBank(pkb, skb, pp)

– NewUser This algorithm is performed by a user to register on the smart
contract, but without any deposit for her account yet. It takes the public pa-
rameters and the key pair of a user as inputs, outputs trans and the initial
state of this user.
(trans,Tempstu)← NewUser(pkb, sku, pku, pp)

– Deposit The protocol is run by the operator and a user to deposit money
on smart contract. It takes pp, the key pairs and states of a user and a bank,
epoch counter, deposit value as inputs, outputs a trans and temporary states of
user and bank. Once the transaction trans get accepted by the smart contract,
the user gets a commitment for her initial balance.
(trans,TempStb,TempStu)← Deposit(pkb, skb, pku, sku,Stb,Stu, pp, v, epoch)

– Withdraw The algorithm is performed by a registered user who wants to exit
the PriBank. It takes pp, the key pairs of a user, generates a trans and updates
the temporary states of this user and the bank.
(trans,TempStb,TempStu)←Withdraw(pku, sku,Stb,Stu, pp, v, epoch)

– Pay The protocol is run by the bank and a user (payer) to send transactions
to other users. It takes the public key of the receiver, the key pair of the payer
and the bank, the temporary states of the payer and the bank, the epoch counter
and the transferred value as inputs, and then it updates the temporary states
of both user and bank.
(TempSt′p,TempSt′b)← Pay(pkb, skb, pkp, skp, pkr,TempStp,TempStbank, pp, v, epoch)

– Commit The algorithm is performed by the bank. It takes the public state,
the key pair of the bank, the state and temporary state of the bank as inputs
and generates a trans and updates the temporary state of the bank.
(trans,TempSt′b)← Commit(pkb, skb,Stb,TempStb, epoch)

– Contract The algorithm takes the public parameters, a trans, the public state,
all users’ states and bank public states as inputs and then updates all of them.
(St′pb,St

′
b, {St′u},TempSt′b, {TempSt′u})← Contract(Stpb, {Stu}, {TempStu},Stb,TempStb, trans, pp)

4.1 Security Definition

We define two security definitions for the blockchain-based bank protocol; trans-
action indistinguishability and overdraft safety. Informally speaking, transaction

139

14 K. Gjøsteen et al.

indistinguishability is from typical left-or-right setting used for indistinguishability-
based definitions, it specifies an adversary cannot distinguish two confidential
transactions. Overdraft safety says the honest users are guaranteed to be able
to withdraw all their funds from the system.

We firstly describe the experiment that defines the security of the above two
security definitions, and the formal definitions for security follow behind. Given a
(candidate) blockchain-based bank scheme Π, an adversary A, and the security
parameter λ, the (probabilistic) experiment consists of interactions between A
and the experiment. We assume the adversary A has full control of the network,
we also assume that the adversary forwards the transactions to the blockchain
on time (i.e. send query Q = Contract on time, we explain the query below).
The experiment accepts different types of queries from the adversary. Figure 6
describes each type of query Q.

4.2 Transaction Indistinguishability

Informally, transaction indistinguishability specifies an experiment where an ad-
versary sends two different transactions to the ledger. Only one will be recorded,
while the adversary is not able to distinguish which one of these two is recorded.
This security property could indicate the anonymity of the users as well as the
privacy of the transaction values, depending on leakage.

Transaction indistinguishability is defined by an experiment Tx-IND, which
involves a polynomial-time adversary A attempting to break a given (candi-
date) BBANK scheme. We now describe the Tx-IND experiment mentioned above.
Given a (candidate) BBANK scheme Π, an adversary A, and security parameter
λ, the (probabilistic) experiment Tx-IND(Π,A, λ) proceeds as the adversary is
capable of sending the listed queries in the experiment described in the previous
section, while the adversary is not allowed to send reveal query for the secret
key of the bank. In addition, the adversary sends the challenge queries we de-
scribe next. In the challenge epoch, the experiment randomly chooses b← {0, 1},
the adversary sends many challenge queries as Q = Challenge(Q0,Q1); for
each challenge query,these two queries leaks some information and the experi-
ment only performs Qb. After finishing the queries, the adversary sends query
Q = Commit and gets the output transb. At the end, the adversary outputs
b′ ∈ {0, 1}. The adversary wins the game if b′ = b. During the challenge epoch,
we require the queries sent by the adversary to be Public Consistent as defined.

Definition 3 (Leakage Function). A leakage function Leakage takes the out-
put from the experiment as input, and the function outputs the leaked information
about the related queries.

η ← Leakage(Q)

Definition 4 (Public Consistent). To avoid an adversary winning the exper-
iment trivially, we require the query pairs for Commit and Pay.User must be
jointly consistent with respect to public information and A’s view, namely,

– For all the users that the adversary controls (adversary has asked Reveal
query for them), their states in the two banks should be consistent.

140

PriBank: Confidential Blockchain Scaling 15

Q = (KeyGen)
1. Compute (pk, sk) := KeyGen(pp)
2. Add (sk, pk) to the key list KeyList
3. Output the public key pk

Q = (EstablishBank, pk)
1. If (pk, sk) is not in KeyList, output ⊥.
2. Start a bank instance (trans,TempStb)
← EstablishBank(pkb, skb, pp)
3. Store key pair and the temporary
state of the bank, initiate the bank epoch
counter as n = 1
4. Output trans

Q = (NewUser, pk, sk)
1. If (pk, sk) is not in KeyList, outpt ⊥.
2. Compute (trans,Tempstu)← NewUser
(pkb, sku, pku, pp)
3. Store the temporary state of the user
(pk, sk,TempStu)
4. Output trans

Q = (Deposit, pkuser, v, epoch)
1. If (pku, sku,TempStu) is not recorded,
output ⊥
2. Execute i-th instance of deposit proto-
col (trans,TempStb,TempStu)← Deposit
(pkb, skb, pku, sku, Stb,Stu, pp, v, epoch),
when the bank/user sends m, sends (i,m)
to A.
3. Output trans

Q = (Pay, pkp, pkr, v)
1. If pkp or pkr is not in the KeyList,
output ⊥

2.Execute the ith pay protocol instance
(TempSt′p,TempSt′b)← Pay(pkb, skb, pkp,
skp, pkr,TempStp,TempStbank, pp, v, epoch),
when the bank/ user send m, send (i,m)
to A.

Q = (Send, i,m)
1. If (i,TempStb,TempStu, trans) is
recorded, send ⊥ to adversary.
2. Send m to the ith instance. If the ith
instance outputs ⊥, record (i,⊥) and
sends (i,⊥) to the adversary. If the ith in-
stance outputs (TempStb,TempStu, trans),
then record (i,TempStb,TempStu, trans)
and output trans. If the instance sends a
message m′, send (i,m′) to the adversary.

Q = (Commit, epoch)

1. Compute (trans,TempSt′b)← Commit
(pkb, skb, Stb,TempStb, epoch)
2. Output trans

Q = (Withdraw, pku, v)
1. Compute (trans,TempStb,TempStu) ←
Withdraw(pku, sku, Stb, Stu, pp, v, epoch)
2. Output trans

Q = (Contract, trans)

1. Compute (St′b, {St′u},TempSt′b, {TempSt′u})
← Contract({Stu}, {TempStu}, Stb,TempStb,
trans, pp)
2. Output {St′u},St′b

Q = (Reveal, pk)
Output the secret key and the state of
the user/bank who owns pk, i.e., output
Sku, Stu

Fig. 6: Query Description in Blockchain-Bank Experiment

141

16 K. Gjøsteen et al.

– If one of the queries Q0 and Q1 is not legitimate, the other query will not
proceed by the experiment as well.

– The leaked information of Q0 and Q1 should be the same, i.e., Leakage(Q0) =
Leakage(Q1)

Definition 5. Let Π = (Setup,KeyGen,EstablishBank,NewUser,Deposit,Withdraw,
Pay,Commit,Contract) be a candidate BBANK scheme and λ is the security pa-
rameter. We define the advantage of an adversary A in the Tx− IND experiment
as follows,

AdvTx-INDΠ,A(λ) = |2Pr[b = b′]− 1|

4.3 Overdraft Safety

Informally, overdraft safety specifies that an honest user can withdraw all the
balance that she owns according to her state in the withdraw phase of any epoch.
This security requirement prohibits an adversary to withdraw more than what
it has, since otherwise there must be an honest user who cannot withdraw all of
his balance because of the lack of the funds in the smart contract.

Overdraft safety is defined by an experiment Overdraft, which involves a
polynomial-time adversary A attempting to break a given (candidate) BBANK
scheme. We now describe the Overdraft experiment mentioned above. Given a
BBANK scheme Π, an adversary A, and security parameter λ, the (probabilistic)
experiment Overdraft(Π,A, λ) proceeds as the adversary is capable of sending
all the queries in the experiment that we define in the beginning of this section.
In addition, adversary can send Q = Reveal for the secret key and state of the
bank. In the challenge epoch, the adversary wins if in a certain epoch, there is
an honest user who tries and fails to withdraw all his balance within one epoch.

Definition 6. Let Π = (Setup,KeyGen,EstablishBank,NewUser,Deposit,Withdraw,
Pay,Commit,Contract) be a candidate BBANK scheme and λ is the security pa-
rameter. We define the advantage of an adversary A in the Overdraft game as

AdvOverdraft
Π,A(λ) = Pr[∃u ∈ U such that ⊥ ←Withdraw(bmax, pku, v)]

5 PriBank: Privacy-Preserving Scaling Construction

We present the construction of algorithms of PriBank in Figure 7 with a brief
descriptions as follows. A taxonomy of symbols is provided in Appendix G.

– Proof of commitment Operator commits to a user’s balance, transaction
values, a randomness using Pedersen commitment, ComProve algorithm. A
user verifies these commitments using ComVerify algorithm.

– NIZK for updated balance Operator collects all transactions of the users
in one epoch, computes the new commitments for users’ updated balances and
gives NIZK proof using ProBal. The verification algorithms is VeriBal.

– Signature To provide the authenticity of data exchanged between users and
operator, standard digital signatures are used in PriBank.

142

PriBank: Confidential Blockchain Scaling 17

ProBal({c}, {c′}, {cv}, {cti}, {di}, {vij}, g,
h, γ, c0, {hi}, {h′

i}, {ti}, {bi}, {b′i}, C)

Take ({di}, {ti}, {bi}, {b′i}, {vij}) as
inputs of the circuit C, compute all the
inner wires of C as ak+1, ..., al

set {ck} = ⟨{ci}, {c′i}, {cv}, {cti}⟩
Compute cl as described in protocol 3.4
Run protocol 3.4 as a prover, generate
proof πzk

return : πzk

VeriBal({c}, {c′}, {cv}, {cti}, g, h, γ, c0,
{hi}, {h′

i}, , C, πzk)→ {0, 1}:
Run protocol 3.4 as a verifier, generate
b ∈ {0, 1}
return : b

ComProve(hγ , hγ
i , γ, hi):

α← Zp

Compute d = hα, d′ = hα
i

x← Hash(h, hi, h
γ , hγ

i , d, d
′)

Compute θ ← θ − xγ.
return : π ← (d, d′, θ).

ComVerify(g, h, hi, c0, ci, bi, π):

Compute x← H(h, hi, h
γ , c0, d, d

′)
Let c′ = ci/g

bi .
if cx0h

θ = d ∧ c′xhθ = d′ then
return 1

else
return 0

Sign(m, skE)→ σE

VerifySig(m,σE , pkE)→ {0, 1}

Fig. 7: PriBank Construction Algorithms, including syntax for digital signatures.

Following, we provide a brief description of the main processes of PriBank:
Register To register an account, a user ui sends a request Reg consisting of

signature σbi on its balance bi to the operator during an epoch r. The opera-
tor returns a randomness ti with its commitment proofs and signature on these
values. Further, user verifies all the details and accordingly sends a registration
request to the smart contract along with a deposit transaction. The smart con-
tract verifies the request and registers the user accordingly (Figure 8). After a
send/receive transaction, the user’s balance becomes private in later epochs.

Operator O
{Reg : pki, bi, σbi} ←
If VerifySig(bi, σbi , pki)

1. ti
$←− Zp, cti ← gtihγ

ti

2. π1 ← ComProve(c0, h
γ
ti
,

γ, hti)
3. m := {cti , r, pki}
4. σo ← Sign(m, sko)
5. Send {m,σo, ti, π1}

to U →

User U

d1 ← VerifySig(m,σo, pko)
d2 ← ComVerify(g, h, hti ,
c0, cti , ti, π1)
If d1 ∧ d2 :

1. σi ← Sign(⟨m,σo⟩, ski)
2. Send {Reg : m,σo, σi, bi}

to SC →

Smart Contract SC

d1 ← VerifySig(m,σo, pko)
d2 ← VerifySig(⟨m,σo⟩,
σi, pki)
If d1 ∧ d2 :

1. cbi ← gbic0
2. Record(cti , cbi , pki)
3. B ← B + bi

Fig. 8: User Registration

Transfer In each epoch r, each user ui needs to get a fresh randomness
ti from the operator. The randomness is computed in similar way as in regis-

143

18 K. Gjøsteen et al.

tration. To agree on the randomness computed by the operator, a user sends
σi ← Sign(⟨m,σo⟩, ski) to the operator and the operator verifies the signature
by VerifySig(⟨m,σo⟩, σi, pki) and records cti , ti. This randomness allows users to
compute their balances di = ti−bi during the end of the epoch, where di is pub-
lished by the operator. The user ui can compute the correctness of his balance
by the published di before the end of the epoch. The randomness ti is used as a
‘mask’ for the user’s balance. The necessity of this randomness is for the balance
to be sealed by the operator. Therefore, if a user receives some transactions that
it doesn’t know the transaction value, then, the user cannot compute its balance
directly from its own transaction history.

Operator O
Transaction lists: Tr, CT r

d← ValidateTx(Tx′ij , bi)
If ¬(Online(ui) ∧ Online(uj) ∧ d): abort

bi
′ ← bi − vij , c′i ← gbi

′
hγ
i , cij ← gvijhγ

ij

Let Txij : (pki, pkj , vij , cij , r, n), CTx
′
ij : (pkj , cij)

CT ′
r = {CTxik|CTxik ∈ CT r ∧ k ̸= j} ∪ {CTx′ij}

π ← ComProve(c0, h
γ
ij , γ),m := {π, CT ′

r}
σo ← Sign(m, sko)
Send {m,σo} to U →

d1 ← VerifySig(CT ′, σi, pki)
If d1; Update transaction lists
Tr ← {Txik|Txik ∈ Tr ∧ k ̸= j} ∪ {Txij}
CT r ← CT ′

r

User U
Transaction lists: Tr, CT r

Tx′ij :(pki, pkj , vij ,Null, r, n, σij)
← Send Tx′ij to O

Check if CT ′
r is the correct history

d1 ← VerifySig(m, pko, σo)
bi

′ ← bi − vij
d2 ← ComVerify(g, h, hij , c0, cij , vij , π)
If d1 ∧ d2 : σi ← Sign(CT ′, ski)
← Send σi to O

Fig. 9: Transfer

If a user wants to send transactions in an epoch, he/she needs to keep records
of two transaction lists Tr and CT r, the operator keeps records of these two
lists for each user. The list Tr contains the plain transactions that user sent
in epoch r, while CT only contains the confidential abbreviated transactions,
i.e. CT = {CTxij |CTxij : (pkj , Cij)} To send a transaction, a user sends the
plain transaction to the operator. The operator checks its validation, commits
to the transaction value, signs the transaction, and gives a proof of commitment.
Meanwhile, the operator aggregates all the transactions sent by the user in this
epoch, signs the confidential transaction list, and sends it to the user. If the user
agrees to the confidential transaction list, he/she returns its signature on the
list. Henceforth, a user confirms all its sent transactions in this epoch. Before
the end of one epoch, the operator collects all the confidential lists of each user

144

PriBank: Confidential Blockchain Scaling 19

and sends them to the smart contract. The smart contract checks these lists and
records the transactions accordingly. Figure 9 depicts the transfer process.

Commit Before the end of an epoch, the operator collects all the confidential
transaction lists of the users, compute the new balance and its commitments
for each user i.e. ci = gbihγ

i . Further, it computes di = bi − ti,∀i ∈ {1, ..., N}
where ti is the randomness that the operator agrees on with each user during
the start of epoch. In case where a user has some receiving transactions during
an epoch but the user did not agree on a randomness with the operator, the
operator sets di = ⊥. Subsequently, it generates a zero-knowledge proof for the
correct computation by π ← ProvBal({CT r}, {ci}, {di}), where the inputs are the
confidential transaction lists, the balance commitments in the previous epoch,
the updated balance commitments, the randomness commitments and di of all
users. Finally, it submits the following data to the smart contract:

User Index CT and Sig ti and Sig Balance d

u1 CT r
1, σ1 ct1 , σt1 c1 d1

...
...

...
...

...

ui ⊥, ⊥ cti , ⊥ ci di
...

...
...

...
...

uN CT r
N , σN ctN , σtN cN dN

Operator signature on the above data: σo

zero-knowledge proof: π

Upon receiving the data submitted by the operator, the smart contract checks
the validation of each signature by VerifySig(m,σi, pki) and the validation of the
zero-knowledge proof VerifyBal({CT r}, {ci}, {di}). For every user ui who did not
agree on a randomness with the operator in this epoch, smart contract updates
this user’s balance commitment as his/her balance commitment in the previous
epoch and for the other users who have send transaction with value Cji to this
user, it updates their balance commitments as cj = ci · Cji.

Exit At the end of every epoch, a user who wants to exit the system can send
a request to smart contract during the exit phase. The smart contract transfers
the funds back to the user if the request is valid. The user who wants to exit gets
the randomness and its proof of the latest randomness commitment that it agreed
on with the operator. Generate the request as {exit, pki, ti, π, σi} where σi is the
user’s signature on the request. Upon receiving the request, the smart contract
verifies the signatures and verifies the proof of the most recently committed
randomness by ComVerify(g, h, hti , c0, cti , ti, π). Transfer user’s balance bi = ti−
di if all the verification get accepted.

6 Security Proof

6.1 Proof for Transaction Indistinguishability

We describe a simulation experiment Expsim in which the adversary A inter-
acts with an experiment as in the Tx-IND experiment. While the answer of the

145

20 K. Gjøsteen et al.

experiment to the challenge queries is independent of b, therefor the A’s advan-
tage in the Expsim is 0. We further prove that the simulation experiment is
indistinguishable from the real experiment Expreal.

Expsim In the challenge phase, how the simulated experiment answers the
queries from the adversary is different from the Expreal as follows,

– Q = (Commit, epoch)

1. The operator collects all the transaction lists in this epoch, calculates
the new balance for each user. Then the operator computes the balance
masks as d = t−b for users that the adversary has asked reveal key query
before and select random values as balance masks for honest users.

2. Simulate a zero-knowledge proof for the statement.
3. Output trans.

Experiment Exp1. The experiment Exp1 modifies the real experiment by sim-
ulating the zero-knowledge proof. Since the zk-SNARK system is perfect honest-
verifier zero knowledge, the distribution of the simulated proof is identical to the
proof computed in a real experiment. Hence, the advantage of distinguishability
of the adversary for experiments Expreal and Exp1 is 0.
Experiment Exp2. The experiment Exp2 modifies Exp1 by replacing all the
commitments for honest users’ balances, randomness ti and transactions values
by commitments to random values. Precisely, in the real experiment, every time a
user sends a transaction to the operator, the operator hides the transaction value
by making a commitment to it (Figure 9) and publishes the commitment on the
blockchain later. In Exp2, the operator commits to a random value instead of the
transaction value, by Lemma 1 (see below), |AdvExp1 −AdvExp2 | ≤ q ·AdvDDH.
Experiment Expsim.Expsim modifiesExp2 by replacing all the balance masks
di for honest users to random values. Since the adversary does not know the
honest users’ ti and these values are also random, hence the distributions for di
in Expsim is indistinguishable.

As argued above, the responses of the adversary A to Expsim is independent
of b, so that AdvExpsim = 0. Then, by summing over A’s advantages in the
hybrid experiments, we can bound A’s advantage in Expreal by

AdvExpreal ≤ q · AdvDDH

Lemma 1. Let AdvDDH be the advantage of an adversary in DDH problem.
Then after q Pay.User queries, |AdvExp2 − AdvExp1 | ≤ q · AdvDDH

Proof. In the challenge phase of the experiment, when the adversary sends the
query Commit, the experiment replies with a trans that includes all the commit-
ments for the transaction values and all the commitments for users’ balances in
the current epoch. While in Exp2, the commitments for the transactions and
balances of honest users are actually commitments to the random values. We
argue the two experiments are indistinguishable.

146

PriBank: Confidential Blockchain Scaling 21

In Exp1, a commitment for a transaction from ui to uj is cij = gvhγ
ij where v

is the transaction value that known by the adversary, hij is a random generator
such that the commitment key is unknown, γ is a secret held by the operator,
while hγ is publicly known. In Exp2, a commitment for such a transaction is
computed as c = gvhs

ij where s is uniformly selected from Zp. If an adversary can
distinguish the tuple (hγ , hij , g

vhγ
ij) from (hγ , hij , g

vhs
ij), it can also solve the

DDH tuple (hγ , hij , h
z
ij). The similar argument applies to the commitments for

users’ balances and the commitments for agreed randomness ti. Hence, we have
q ·AdvDDH ≥ |AdvExp1−AdvExp2 | where q is the total number of commitments.

6.2 Proof for Overdraft Safety

Assuming the challenge epoch is n, the output of the experiment for query
Q = Commit is transn. At the end of this epoch, an honest user ui fails to
withdraw her total balance bi. bi is the balance recorded in the state of ui. It
is computed by the user’s balance in the previous epoch being deduced by the
user’s spending and being added by the user’s receiving in the current epoch. The
experiment is performed under a setting that the signature forgery is impossible.

In the exit phase, an honest user ui submits an exit request {exit, pk′i, ti, π, σi},
the smart contract accepts the request only if 1← ComVerify(g, h, hti , c0, cti , ti, π).
Suppose ComVerify fails, it indicates the proof π is incorrect. While we observe
that the same algorithm with the same parameter is run by the user before the
operator commits to blockchain (due to randomness agreement), since the user
is honest, it should abort the execution in the transfer phase and refuse to sign
the randomness commitment at that point.

Apart from the failure of ComVerify, a user can also fail to withdraw in the
case that bi ̸= b′i, i.e., the user withdraws less than what she believes to have.
This can be the result of bi ̸= ti − di or the lack of funds in the smart contract.
In the earlier case, it indicates the soundness of zero-knowledge proof is broken.
In the later case, it implies that there must be at least one adversary, say uj ,
who withdraws more than what it has, namely, bj ≥ tj−dj , which also indicates
the soundness of zero-knowledge is broken.

7 Implementation and Evaluation

We evaluate the usability of the commit-and-prove zero-knowledge proof of PriB-
ank and give its implementation in Go. We use elliptic curve secp256k1 with 128-
bit security, the balances and transactions are 8-bits length, we test the proof
size per user, transaction size, the proof generation time, verification time, the
time for pre-processing. We do not deploy optimization on the implementation,
therefore the performance in terms of time is not desirable that results in “low”
cost of transaction instead of “Very low” cost similar to ZK-Rollup as depicted
in Table 1. Particularly, the pre-processing to generate a QAP takes too long
to perform further experiments on more users cases. We refer to the work [9,2]

147

22 K. Gjøsteen et al.

for optimization and faster implementation. The experiments were performed on
2×24 Xeon 2.4 GHz cores. The code of the implementation can be found in [1].

The commitment sent by the operator to the smart contract includes balance
and transaction commitments, balance mask d, two signatures for each user, and
a proof. The computation circuit of the operator allows each user in the system
to send a transaction to every other user, Therefore, for an n user circuit the
maximum transaction number is n(n−1). Assuming a user can send a transaction
with a zero value, the total commitment size of the operator is computed based
on the maximum transaction number. While the number of transactions that
have positive value might be much less, we measure the transaction size in a
case where we assume a user send non-zero transactions to half of the other
users in one epoch. Following, we depict the proof size, transaction size, and
circuit gate numbers dependency of users in Figure 10.

0 2 4 6 8
0

500

1,000

1,500

2,000

N
u
m
b
er

o
f
G
a
te
s

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

Number of Users

K
B

Proof Size, Transaction Size and number of Gates

Gate Number

Transaction Size

Proof Size per User

0 2 4 6 8
0

2

4

6

8

10

12

Number of Users

M
in
u
te
s

Prove Time and Verification Time

0 2 4 6 8
0

5

10

S
ec
o
n
d
s

Prove Time

Verification Time

Fig. 10: Experimental Results

8 Conclusion

Our goal in this work was to implement privacy over an account-based blockchain
system. We formally defined a blockchain-based bank model along with security
definitions. Following that, we presented a novel privacy-preserving cryptocur-
rency system PriBank, for that, we constructed an efficient Commit-and-Prove
NIZK protocol. Our construction achieves privacy together with scalability in
the blockchain which has not been achieved by the previous schemes. As most
of the schemes are concerned with achieving privacy or scalability alone, hence,
we compared our scheme separately with the popular privacy and scalability
solutions. We provided a detailed security analysis and performance evaluation.

Future Directions There are various ways to adapt and extend this work.
One possibility is to reduce the complexity of the data which is sent to the
smart contract in each epoch, henceforth increasing the efficiency of the overall
system. Another direction of work is to build more efficient proof algorithm to
reduce the verification complexity.

148

PriBank: Confidential Blockchain Scaling 23

References

1. Pribank in Go
2. libsnark: a C++ library for zkSNARK proofs
3. Agrawal, S., Ganesh, C., Mohassel, P.: Non-interactive zero-knowledge proofs for

composite statements. In: Annual International Cryptology Conference. pp. 643–
673. Springer (2018)

4. Back, A., Corallo, M., Dashjr, L., Friedenbach, M., Maxwell, G., Miller, A., Poel-
stra, A., Timón, J., Wuille, P.: Enabling blockchain innovations with pegged
sidechains. http://www. opensciencereview. com/papers/123/enablingblockchain-
innovations-with-pegged-sidechains 72 (2014)

5. Benarroch, D., Campanelli, M., Fiore, D., Kolonelos, D.: Zero-knowledge proofs for
set membership: Efficient, succinct, modular. IACR Cryptol. ePrint Arch. 2019,
1255 (2019)

6. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mix-
coin: Anonymity for bitcoin with accountable mixes. In: International Conference
on Financial Cryptography and Data Security. pp. 486–504. Springer (2014)

7. Bowe, S., Chiesa, A., Green, M., Miers, I., Mishra, P., Wu, H.: Zexe: Enabling
decentralized private computation. In: 2020 IEEE Symposium on Security and
Privacy (SP). pp. 947–964 (2020). https://doi.org/10.1109/SP40000.2020.00050

8. Bünz, B., Agrawal, S., Zamani, M., Boneh, D.: Zether: Towards privacy in a smart
contract world. In: International Conference on Financial Cryptography and Data
Security. pp. 423–443. Springer (2020)

9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on
Security and Privacy (SP). pp. 315–334. IEEE (2018)

10. Campanelli, M., Fiore, D., Querol, A.: Legosnark: Modular design and composi-
tion of succinct zero-knowledge proofs. In: Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. pp. 2075–2092 (2019)

11. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party
and multi-party secure computation. In: Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing. pp. 494–503 (2002)

12. Cecchetti, E., Zhang, F., Ji, Y., Kosba, A., Juels, A., Shi, E.: Solidus: Confidential
distributed ledger transactions via pvorm. In: Proceedings of 2017 ACM SIGSAC
Conference on Computer and Communications Security. pp. 701–717 (2017)

13. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. arXiv preprint
arXiv:1505.06895 (2015)

14. Decker, C., Wattenhofer, R.: A fast and scalable payment network with bitcoin
duplex micropayment channels. In: Symposium on Self-Stabilizing Systems. pp.
3–18. Springer (2015)

15. Diamond, B.E.: Many-out-of-many proofs and applications to anony-
mous zether. In: 2021 2021 IEEE Symposium on Security and Pri-
vacy (SP). pp. 1800–1817. IEEE Computer Society, Los Alamitos, CA,
USA (may 2021). https://doi.org/10.1109/SP40001.2021.00026, https:

//doi.ieeecomputersociety.org/10.1109/SP40001.2021.00026
16. Dziembowski, S., Fabiański, G., Faust, S., Riahi, S.: Lower bounds for off-chain

protocols: Exploring the limits of plasma. In: 12th Innovations in Theoretical Com-
puter Science Conference (ITCS 2021) (2021)

17. Fauzi, P., Meiklejohn, S., Mercer, R., Orlandi, C.: Quisquis: A new design for
anonymous cryptocurrencies. In: International Conference on the Theory and Ap-
plication of Cryptology and Information Security. pp. 649–678. Springer (2019)

149

24 K. Gjøsteen et al.

18. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct nizks without pcps. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in
Cryptology – EUROCRYPT 2013. pp. 626–645. Springer Berlin Heidelberg (2013)

19. Gluchowski, A.: Zk rollup: scaling with zero-knowledge proofs. Matter Labs (2019)
20. Kerber, T., Kiayias, A., Kohlweiss, M.: Kachina–foundations of private smart con-

tracts. In: 2021 IEEE 34th Computer Security Foundations Symposium (CSF). pp.
1–16. IEEE (2021)

21. Khalil, R., Zamyatin, A., Felley, G., Moreno-Sanchez, P., Gervais, A.: Commit-
chains: Secure, scalable off-chain payments. Cryptology ePrint Archive, Report
2018/642 (2018)

22. Kilian, J.: Uses of randomness in algorithms and protocols. In: Massachusetts In-
stitute of Technology (1990)

23. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE
symposium on security and privacy (SP). pp. 839–858. IEEE (2016)

24. Maxwell, G.: Coinjoin: Bitcoin privacy for the real world. In: Post on Bitcoin forum
25. Miller, A., Bentov, I., Kumaresan, R., McCorry, P.: Sprites: Payment channels that

go faster than lightning. CoRR abs/1702.05812 306 (2017)
26. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system,

http://bitcoin.org/bitcoin.pdf (2009)
27. Narula, N., Vasquez, W., Virza, M.: zkledger: Privacy-preserving auditing for dis-

tributed ledgers. In: 15th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 18). pp. 65–80 (2018)

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp.
129–140. Springer Berlin Heidelberg, Berlin, Heidelberg (1992)

29. Poon, J., Buterin, V.: Plasma: Scalable autonomous smart contracts. White paper
(2017)

30. Sasson, E.B., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer, E., Virza,
M.: Zerocash: Decentralized anonymous payments from bitcoin. In: 2014 IEEE
Symposium on Security and Privacy. pp. 459–474. IEEE (2014)

31. Steffen, S., Bichsel, B., Gersbach, M., Melchior, N., Tsankov, P., Vechev, M.: zkay:
Specifying and enforcing data privacy in smart contracts. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security. pp.
1759–1776 (2019)

32. The Monero Project: Monero (2014), https://web.getmonero.org
33. Wood, G.: Ethereum: A Secure Decentralised Generalised Transaction Ledger. Yel-

low Paper (2014)
34. Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain to protect

personal data. In: 2015 IEEE Security and Privacy Workshops. pp. 180–184. IEEE
(2015)

A Commit-Prove Zero-Knowledge Proof Construction

Circuit: The arithmetic circuit C of the zero-knowledge proof is in Figure 11

B Proof of Protocol 3.1

Proof. Soundness. By the rewinding, the prover, the extractor X gets two valid
transcripts that have the same commitments:

150

PriBank: Confidential Blockchain Scaling 25

Inputs:

– Transaction values vij where i, j ∈
1, .., N, i ̸= j

– Users’ randomness {ti}Ni=1

– Users’ balances of the previous epoch
br−1
i and the updated balance bri

– User’s balance mask di, i ∈ {1, ..., N}
– Total balance of the contract B

The circuit check the following constraints for the inputs:

bri = br−1
i −

N∑
j=1

vij +
N∑

j=1

vji ∧ bri = ti − di ∧ B =
N∑
i=1

bri ∧ vij ≥ 0 ∧ br−1
i −

N∑
j=0

vij ≥ 0

Fig. 11: Circuit

(d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab), (d1, d2, c0, c1, x
′, θ′a, θ

′
b, θ

′
1, θ

′
2, θ

′
ab)

from the verification, we get equations

cxag
θahθ1 = d1 cx

′
a gθ

′
ahθ′

1 = d1

By the binding property of Pedersen commitment, This implies a =
θ′
a−θa
x−x′ , by

the same technique, X can compute b =
θ′
b−θb
x−x′ and α, β.

Next, assume c is a commitment that committed to z, we will prove z = ab.
Assume c0 = guhrc0 , c1 = gvhrc1 , observe that gθaθbhθabcx0 = cx

2

c1, it implies

gabx
2−(aβ+bα)x+αβ+uxhθab+xrc0 = gzx

2+vhrcx
2+rc1

Since a, b, α, β, u, v are all predefine value, either X can extract non-trivial
relation between g, h or u = αb + βa and the extractor can extract z = ab =
θaθb−θ′

aθ
′
b+(αb+βa)(x−x′)
x2−x′2

Perfect special honest-verifier zero-knowledge. The simulator randomly
chooses θ1, θ2, θa, θb, θab, u, r ← Zp and randomly chooses a challenge x← Zp, it

computes d1 = cxag
θahθ1 , d2 = cxb g

θbhθ2 , c0 = guhr, c1 = gθaθbhθabcx0/c
x2

. Thus
the simulator produces a valid transcript (d1, d2, c0, c1, x, θa, θb, θ1, θ2, θab) that
has the identical probability distributions with the real proof.

C Proof of Protocol 3.2

Proof. Soundness. For an accepting transcripts (c0, Ω, d1, d2, x, θ1, θ2), assume
that

c0 = hγ , Ω = τuh−v, d1 = hα, d2 = τ δhβ

since d1 = cx0h
θ1 , d2 = Ωxτθ1hθ2 we have

hxγ+θ1 = hα, τux+θ1hθ2−vx = τ δhβ

If u ̸= γ then it means θ1 = δγ−uα
γ−u and x = α−δ

γ−u or the cheating prover is able
to compute the Pedersen commitment key logg h. Since α, δ, γ are pre-defined

values, Pr[x = α−δ
u−γ] =

1
p .

151

26 K. Gjøsteen et al.

Since in the verification, c =
n∏

i=1

cbii /Ω, assume c = gwht, this implies

gwht = g

n∑
i=1

aibi
hv

Hence, either w =
n∑

i=1

aibi or the prover is able to compute the discrete logarithm.

Perfect special honest-verifier zero-knowledge The simulator randomly

chooses γ, θ1, θ2 ← Zp and computes c0 = hγ , Ω =
n∏

i=1

cbii /c. Then the simulator

chooses a challenge randomly x← Zp and computes d1 = cx0h
θ1 , d2 = Ωxτθ1hθ2 .

The transcript trs = (c0, d1, d2, x, θ1, θ2) is a valid transcript that has the iden-
tical probability distributions with the real proof.

D Proof of Protocol 3.3

Proof. We follow the proof of [9] for the soundness, and give our proof for the
zero-knowledge property.
Soundness. We firstly construct an extractor X1 of protocol Prove, then con-
struct an extractor X2 for protocol 3.3. For X1, we use an inductive argument
showing that in each step, we either extract a witness or a discrete log relation.
If n = |g| = 1, rewinding P to get 2 transcripts with the same randomness used
by P but different challenges from V, assume the witness of P are (a1, c, r),
d = gt11 ut2ht3 , the transcripts are

tr := (d, x, θ1, θ2)

tr′ := (d, x′, θ′1, θ
′
2)

then we get ga1x+θ1
1 ucx+b1θ1hθ2+xr = g

a1x
′+θ′

1
1 ucx′+b1θ

′
1hθ′

2+x′r = d.
Since a1, c, d are predefined value, either extractor can compute

logg1 u+ logg1 h =
θ1 − θ′1

b1θ′1 + θ′2 − b1θ1 − θ2

or a1 =
θ1−θ′

1

x′−x and c = a1b1
Next, on the k-th recursive step that on input(g, u, h, c, b), assume that the

(k+1)th recursive step has input(g′, u, h, c′, b′) and the witness can be extracted
from this recursive are r′,a′, ⟨a′, b′⟩. We show that with the witness of the (k+
1)th recursive step, an extractor can effectively compute a witness of the k-th
recursive step or a non-trivial discrete logarithm relation between the generators.

On k-th recursive step, the extractor runs the prover to get L and R. Then, by
rewinding the prover four times and giving it four different challenges x1, x2, x3, x4,
the extractor obtains four a′

i ∈ Zn′
p such that

152

PriBank: Confidential Blockchain Scaling 27

c · Lx2
i ·Rx−2

i =
(
g
x−1
i

[:n′] ◦ g
x2
i

[n′:]

)a′
i

hr′iu⟨a′
i,b

′
i⟩ for i = 1, ..., 4 (1)

compute v1, v2, v3 ∈ Zp such that

3∑

i=1

vix
2
i = 1,

3∑

i=1

vi = 0,

3∑

i=1

vix
−2
i = 0 (2)

Then taking a linear combination of the first three equations with v1, v2, v3 as
the coefficients,

cvi · Lx2
i vi ·Rx−2

i vi = (g
x−1
i

[:n′]g
xi

[n′:])
a′

ivihvir
′
iu⟨a′

i,b
′
i⟩vi for i = 1, 2, 3

we can compute

L = gaLhrLusL , where

rL =

3∑

i=1

vir
′
i, aL[:n′] =

3∑

i=1

x−1
i a′

ivi, aL[n′:] =

3∑

i=1

xia
′
ivi, sL =

3∑

i=1

⟨a′
i, b

′
i⟩vi

Repeating this process with different combinations (compute v1, v2, v3 of equa-
tion 2 with different summations), we can also compute R, c such that

R = gaRhrRusR

c = gachrcusc

Now, we can rewrite equation 1, for each x ∈ {x1, x2, x3, x4} as

gaLx2+ac+aRx−2

hx2rL+rc+x−2rRux2sL+sc+x−2sR = ga′·x−1

[:n′] ga′·x
[n′:]h

r′u⟨a′,b′⟩

This implies that

a′ · x−1 = x2aL[:n′] + ac[:n′] + x−2aR[:n′]

a′ · x = x2aL[n′:] + ac[n′:] + x−2aR[n′:]

⟨a′, b′⟩ = x2sL + sc + x−2sR

Either the extractor can obtain a non-trivial discrete logarithm relation between
the generators (g, h, u) if these equations do not hold, or we can deduce that for
each challenge x ∈ {x1, x2, x3, x4}

x3aL[:n′] + x(ac[:n′] − aL[n′:]) + x−1(aR[:n′] − ac[n′:])− x−3aR[n′:] = 0

153

28 K. Gjøsteen et al.

The only way the above equation hold for all challenges is if

aL[:n′] = aR[n′:] = 0, ac[:n′] = aL[n′:], aR[:n′] = ac[n′:]

Thus a′ = xac[:n′] + x−1ac[n′:] Using these values we can see that:

x2sL + sc + x−2sR = ⟨a′, b′⟩
= ⟨ac[:n′], b[n′:]⟩ · x2 + ⟨ac, b⟩+ ⟨ac[n′:], b[:n′]⟩ · x−2

Since the relation holds for all x ∈ {x1, x2, x3, x4}, it must be that

⟨ac, b⟩ = sc

The extractor, thus, either extracts a discrete logarithm relation between the
generators, or the witness ac.

We now show that at the beginning of the protocol 3.3, on input (ca, cab, g, b),
the extractor X2 runs P with challenge x and uses X1 to obtain a witness a, r
such that cac

x
ab = gagx⟨a,b⟩hr. Rewinding P with a different challenge x′ and

X1 extracts new witness a′, r′ such that cac
x′
ab = ga′

gx⟨a
′,b⟩hr′ . Then we get

gs(x−x′)hrab(x−x′) = ga−a′
gx⟨a,b⟩−x′⟨a′,b⟩hr−r′

Unless a = a′ we get a not trivial discrete log relation between g, hand g.

Otherwise we get s = ⟨a, b⟩, rab = r−r′

x−x′ , ra = r − x(r−r′)
x−x′ .

Perfect Zero-Knowledge. The simulator chooses randomly a vector a ∈ Zn
p

as witness and we show it can generate a valid transcripts for this vector.
For each recursive step when a prover asks for L,R, the simulator chooses

randomly r1, r2 ∈ Z∗
p, and computes

L = g
a[:n′]
[n′:] · u⟨a[:n′],b[n′:]⟩ · hr1 ∈ G

R = g
a[n′:]
[:n′] · u⟨a[n′:],b[:n′]⟩ · hr2 ∈ G

Assume that at the last recursive step the input commitment is c′, the challenge
is x. The simulator randomly choose θ1, θ2 ∈ Z∗

p, compute d = c′xgθ11 ub1θ1hθ2 .
The transcript trs = (c, L1, R1, x1, L2, R2, x2, ..., d, x, θ1, θ2) is a valid tran-

script that has the identical probability distributions with the real proof.

E Proof of Protocol 3.4

Proof. SoundnessA valid transcript of protocol 3.4 consists of 8 sub-transcripts:
three transcripts of Protocol 3.1 on statements

({c1}ki=1, {hi}ki=1, g, h, cu, {ui(x1)}ki=1);

({c1}ki=1, {hi}ki=1, g, h, cv, {vi(x1)}ki=1);

({c1}ki=1, {hi}ki=1, g, h, cw, {wi(x1)}ki=1)

154

PriBank: Confidential Blockchain Scaling 29

respectively; four transcripts of Protocol 3.2 on statements
(g, b := {uk+1(x1), ..., ul(x1)}, cl, cu), (g, b := {vk+1(x1), ..., vl(x1)}, cl, cv), (g, b :=
{wk+1(x1), ..., ul(x1)}, cl, cw) and (g, b := {xz(x1), ..., x

n−2z(x1)}, ch, chz)
respectively; one transcript of Protocol 3.3 on statement (ca, cb, cc).
The soundness of protocol 3.1 implies

cu = g

k∑
i=1

aiui(x1)
htu , cv = g

k∑
i=1

aivi(x1)
htv , cw = g

k∑
i=1

aiui(x1)
htw

The soundness of protocol 3.3 implies

cu = g

l∑
i=k+1

aiui(x1)

hsu , cv = g

l∑
i=k+1

aivi(x1)

hsv ,

cw = g

l∑
i=k+1

aiwi(x1)

hsw , chz = gh(x1)z(x1)hsh

The knowledge extractor described in the proof of Protocol 3.1 can extract
a, ra and b, rb such that

ca = cu · cu · g
n∑

i=l+1

aiui(x1)

= gahra

cb = cv · cv · g
n∑

i=l+1

aivi(x1)

= gbhrb

cc = cw · cw · g
n∑

i=l+1

aiwi(x1)

· chz = gabhrc

which means

n∑

i=1

aiui(x1) ·
n∑

i=1

aivi(x1) =

n∑

i=1

aiwi(x1) + h(x1)z(x1)

Apart from the challenge x1, all the variables in the above equation are prede-
fined, therefore either the prover can compute the non-trivial discrete logarithm

relation between the generators or
n∑

i=1

aiui(X) ·
n∑

i=1

aivi(X) =
n∑

i=1

aiwi(X) +

h(X)z(X).
Perfect special honest-verifier zero-knowledge The zero-knowledge prop-
erty follows by the zero-knowledge properties of the sub-protocols. The simula-
tor can utilize the sub-protocols’ simulator to produce a valid transcript without
knowing the witnesses.

F Definitions for Commit-and-Prove Zero-Knowledge
Proof

Definition 7 (Perfect Completeness). The triple (G,V,P) has perfect com-
pleteness if for all non-uniform PPT adversary A such that

155

30 K. Gjøsteen et al.

Pr

[
(σ, c, r, x, u, w) /∈ RCom

λ

or ⟨P(σ, c, r, x, u, w),V(σ, c, x)⟩ = 1

∣∣∣∣
σ ← G(1λ)
(c, r, x, u, w)← A(σ)

]
= 1

Definition 8 (Computational Soundness). (G,V,P) has computational sound-
ness if it is not possible to prove a false statement where no witness exist, i.e.
for all non-uniform polynomial time interactive adversary A1,A2, the function
negl(λ) is negligible.

Pr

[
A1(tr) = 1 (i.e. tr is accepting) ∧
(σ, c, r, x, u, w) /∈ RCom

λ)

∣∣∣∣
σ ← G(1λ)
(c, x, s)← A2(σ)

]
≤ negl(λ)

Definition 9 (Computational Knowledge Soundness). (G,V,P) has com-
putational knowledge soundness if for all deterministic polynomial time P∗, there
exists an polynomial time knowledge extractor E such that for all non-uniform
polynomial time interactive adversary A1,A2, the function negl(λ) is negligible.

∣∣∣∣∣∣∣∣∣∣∣∣

Pr

[
A1(tr) = 1

∣∣∣∣
σ ← G(1λ), (c, x, s)← A2(σ)
tr ← ⟨P∗(σ, c, x, s),V(σ, c, x)

]
−

Pr

A1(tr) = 1∧
(tr is accepting i.e. (σ, c, r, x, u, w) ∈ RCom

λ)

∣∣∣∣∣∣

σ ← G(1λ)
(c, x, s)← A2(σ)
(tr, w)← EO(σ, c, x)

∣∣∣∣∣∣∣∣∣∣∣∣

≤ negl(λ)

where the oracle is given by O = ⟨P∗(σ, c, x, s),V(σ, c, x)⟩.

The oracle O permits rewinding to a specific point and resuming with fresh
randomness for the verifier from this point onwards. Informally, if there is an
adversary that can produce an argument that satisfies the verifier with some
probability, then there exists an emulator that can extract the witness. The value
s is the internal state of P∗, including randomness. The emulator is permitted
to rewind the interaction between the prover and verifier to any move, then
resuming with fresh randomness for the verifier.

Definition 10 (Perfect Special Honest-Verifier Zero-Knowledge).
A triple (G,P,V) is a perfect special honest verifier zero knowledge argument

of knowledge for RCom
λ if there exists a probabilistic polynomial time simulator

S such that for all pairs of interactive adversaries A1,A2

Pr

[
(σ, c, r, x, u, w) ∈ RCom

λ and A1(tr) = 1

∣∣∣∣
σ ← G(1λ), (c, x, r, u, w, ρ)← A2(σ)
tr ← ⟨P∗(σ, c, x, r, u, w),V(σ, c, x; ρ)⟩

]

= Pr

[
(σ, c, r, x, u, w) ∈ RCom

λ and A1(tr) = 1

∣∣∣∣
σ ← G(1λ), (c, x, r, u, w, ρ)← A2(σ)
tr ← S(σ, c, x, ρ)

]

where ρ is the randomness used by the verifier.

156

PriBank: Confidential Blockchain Scaling 31

Definition 11 (Commit-and-Prove Zero-knowledge Argument of Knowl-
edge).

The triple (S,P,V) is a commit-and-prove zero-knowledge argument of knowl-
edge for a family of relations RCom if it satisfies the perfect completeness, perfect
special honest-verifier zero-knowledge and computational soundness or computa-
tional knowledge soundness.

G Notations

- Op : the operator
- SC : the smart contract
- r : the epoch number
- pki : the public key of user ui

- bi : the balance of user ui

- ci : the commitment for the balance
of user ui

- ti : the randomness of user ui

- cti : the commitment for the random-
ness ti

- vij : the value of transaction that is
sent from ui to uj

- σ : a signature
- B : the total balance in the smart
contract.

- Tx′ij :(pki, pkj , vij ,Null, r, n, σij) :
The plain transaction sent by user
to the operator.

- Txij :(pki, pkj , vij , cij, r, n, σij) : The
plain transaction after that the oper-
ator commits to the value and replace
the Null with the commitment.

- CTxij : (pkj , cij) The abbreviated
confidential transaction that sends
value from ui to uj

- T r : the plain transaction list
- CT r : the abbreviated confidential
transaction list

- H : a collision resistant hash function
- {xi}Ni=1 : a set of values {x1, ..., xN},
we use curly brackets to indicates a
set of values.

157

Paper G

Security Model for Privacy-preserving Blockchain-based
Cryptocurrency Systems

K. Gjøsteen, M. Raikwar, S. Wu

Submitted to 13th Conference on Security and Cryptography for
Networks (SCN), 2022

This paper is awaiting publication and is therefore not included.

Paper H

SoK: Decentralized Randomness Beacon Protocols

M. Raikwar, D. Gligoroski

Accepted in 27th Australasian Conference on Information Security and
Privacy (ACISP), 2022

(To be presented during 28-30 Nov 2022)

This paper is awaiting publication and is therefore not included.

Paper I

Competitive Decentralized Randomness Beacon
Protocols

M. Raikwar

Published in ACM ASIACCS Workshop,
4th ACM International Symposium on Blockchain and Secure Critical

Infrastructure (BSCI), 2022

Competitive Decentralized Randomness Beacon Protocols
Mayank Raikwar

Norwegian University of Science and Technology
Trondheim, Norway

mayank.raikwar@ntnu.no

ABSTRACT
A distributed and reliable source of randomness is always a critical
element in cryptography, both in the construction and application of
cryptographic primitives. Modern cryptography such as blockchain,
cryptocurrencies, decentralized finance is heavily dependent on a
trusted randomness source. In particular, Decentralized Random-
ness Beacon (DRB) protocols can be a reliable source of randomness.
A DRB protocol generates a continuous stream of publicly verifiable
random values. Almost all the available DRB protocols are collabo-
rative in nature where participants of a DRB protocol collaborate
their local entropy to generate global randomness.

A DRB protocol can also be competitive where the participants
compete to generate the global randomness. RANDCHAIN (ePrint
2020/1033) is the first Competitive Decentralized Randomness Bea-
con Protocol. Although RANDCHAIN claims to provide fairness
and scalability, it still has a few problems concerning blockchain-
oriented attacks and fairness to the participants. Therefore, to solve
the existing problems of RANDCHAIN, we present a general model
to construct competitive DRB protocols. Our competitive DRB
model is a composition of committee selection strategy followed
by a moderately hard cryptographic puzzle. To provide different
levels of fairness, we present a variety of committee selection strate-
gies. Our competitive DRB protocols provide better fairness, linear
communication complexity, and better scalability compared to the
existing DRB protocols.

CCS CONCEPTS
• Security and privacy→ Cryptography; • Theory of compu-
tation→ Cryptographic protocols.

KEYWORDS
Random Beacon; Bias-resistance; Unpredictability; Secret Sharing;
Verifiable Delay Function

ACM Reference Format:
Mayank Raikwar. 2022. Competitive Decentralized Randomness Beacon
Protocols. In Proceedings of the Fourth ACM International Symposium on
Blockchain and Secure Critical Infrastructure (BSCI ’22), May 30, 2022, Na-
gasaki, Japan. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3494106.3528679

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
BSCI ’22, May 30, 2022, Nagasaki, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9175-7/22/05. . . $15.00
https://doi.org/10.1145/3494106.3528679

1 INTRODUCTION
Provably secure cryptographic primitives and protocols require a
reliable source of randomness. Generating trustworthy randomness
in a network of mutually distrusting participants was first intro-
duced in a coin-tossing protocol presented by Blum [5]. Further,
Rabin formalized the notion of random beacon protocol [38]. Since
then, there have been many works addressing the construction of
public randomness by using different well-established approaches.
However, to make the public randomness source distributed and
unbiasable (by a third party), the notion of a decentralized random-
ness beacon (DRB) was proposed. To date, most of the available
constructions of beacon protocol are decentralized where trust is
distributed among participants.

Furthermore, due to the prolific development in blockchain tech-
nology since the advent of bitcoin [34], there have been a plethora
of blockchain consensus protocols and blockchain applications that
heavily rely on publicly verifiable randomness. Therefore, many
DRB protocols have been proposed in recent years.

Existing DRB protocols [4, 10–13, 15, 17, 18, 20–24, 26, 29, 30, 41–
43] are Collaborative where participants work together to generate
a global random output (beacon output) using their local entropy.
These DRB protocols differ in their designs, underlying crypto-
graphic primitives, and security properties. Current DRB protocols
are based on Publicly Verifiable Secret Sharing (PVSS) schemes [4,
11, 12, 17, 29, 42, 43], Threshold Crypto-Systems [10, 15, 21, 26],
Verifiable Random Functions (VRF) [18, 23, 24], or Verifiable Delay
Functions (VDF) [20, 22, 25, 30, 41].

These DRB protocols have inherent limitations due to their de-
sign, initial setup, and applied cryptographic primitive. The main
limitations are complexity, scalability and fairness; scalability refers
to the number of participants a DRB can handle, and fairness refers
to each participant having comparable power on deciding DRB out-
put. A few recent protocols [17, 26, 41] try to address some of these
limitations, but most of these protocols are based on time-sensitive
cryptographic primitives e.g., Sloth [30], VDF [6].

DRB Protocols based on time-sensitive cryptography:
Lenstra andWesolowski [30] constructed a random beacon protocol,
Unicorn, using a delay function. The main idea of the Unicorn
protocol is to collect a pool of inputs from a set of distrusting
participants and feed those inputs to a slow-time hash function
named sloth. The output of the hash function is the random beacon
value. As long as at least one participant provides a random input
value, the beacon’s output remains bias-resistant and unpredictable.
However, the verification of the output of the delay function was
not efficient. Keeping Unicorn protocol as a successor to VDF, a
few VDF-based DRB protocols [20, 22, 41] are constructed.

The participants of a VDF-based DRB evaluate an Iteratively
Sequential Function (ISF) to generate their local random values.
The verification of these values can be efficiently done using the

213

verification algorithm of VDF. Further, these local randomvalues are
used to generate the DRB output. The main idea behind using VDF
is that an adversary cannot bias the output of the DRB due to the
non-parallelizable property of VDF. However, hardware solutions
may give some advantage in accelerating the VDF computation.

A smart contract-based DRB protocol [20] was constructed by
Justin Drake that also leverages VDF to produce unbiasable random
values. However, the presented construction lacks a formal security
analysis. In accordance, Ephraim et al. [22] constructed a notion of
Continuous Verifiable Delay Function (cVDF) that can be utilized
to construct a random beacon protocol. Nevertheless, in the con-
tinuous VDF based DRB, a node equipped with a fast processor is
always able to learn the beacon output before other participants
hence breaking the unpredictability property of a beacon protocol.

A recent DRB construction based on VDF is RandRunner [41].
RandRunner employs trapdoor VDF with the property of strong
uniqueness in its construction. The idea of RandRunner is fairly
simple and the protocol works in rounds. During the bootstrapping
(Initialization phase), each node 𝑃𝑖 of RandRunner initializes its
public parameters 𝑝𝑝𝑖 along with a secret key 𝑠𝑘𝑖 . All the nodes
participating in RandRunner during initialization exchange their
public parameter with each other and verify the received param-
eters. In each round, a node is selected as a leader and it tries to
solve a VDF using its trapdoor information (secret key). Nonethe-
less, in the same round, the other nodes attempt to solve the VDF
using the public parameter of the leader. The main drawback of
RandRunner is its unpredictability guarantee of random beacon
output. In RandRunner, in each round, a leader is elected using a
leader election mechanism. Once an adversarial node with powerful
hardware becomes a leader, it can withhold the beacon output and
further hinder the unpredictability by corrupting the leaders in
each round while working on the next round output.

Competitive DRB Protocol: The above described DRB proto-
cols provide good scalability and fairness guarantee but still face
problems regarding the beacon properties e.g., unpredictability.
Therefore, to solve these limitations, Han et al. [25] introduced a
new class of DRB, called Competitive DRB. In a Competitive DRB,
participants compete to solve cryptographic puzzles, and the partic-
ipant who solves the puzzle first becomes the leader and broadcasts
its puzzle solution. The participants in the beacon network apply
Nakamoto consensus [34] to agree upon the puzzle solution that
is subsequently used to generate the beacon output. The compet-
itive DRB protocols not only solve the main limitations of DRB
protocols but are also easy to integrate with blockchain platforms.
It enables the randomness generation as a side effect of the normal
system operation in the blockchain. Han et al. [25] presented the
first construction of competitive DRB called RANDCHAIN.

RANDCHAIN is built upon a cryptographic puzzle that takes an
unpredictable and random number of steps to solve. RANDCHAIN
is scalable and provides fairness to the participants. However, the
fairness of RANDCHAIN can be weakened by selfish mining attacks
e.g., a front-running attack. For which the authors cited some of the
existing defense mechanisms against selfish mining to be deployed
in RANDCHAIN. However, most of these mechanisms are hard
to exploit in RANDCHAIN. We present a brief discussion about
existing front-running attacks’ defense mechanisms and why these
mechanisms cannot be deployed in RANDCHAIN.

1.1 Problems in RANDCHAIN
RANDCHAIN is the only competitive DRB protocol as per our
knowledge. It introduces Sequential Proof of Work (SeqPoW) which
is a non-parallelizable, memory-hard cryptographic puzzle and
takes an unpredictable and random number of sequential steps.
RANDCHAIN presents a formal definition, followed by construc-
tions of SeqPoW based on VDF and Sloth which uses public key 𝑝𝑘
for its algorithms, namely Init(), Solve(), Prove().

The idea of SeqPoW is fairly straightforward: In the Init() al-
gorithm, an initial solution is computed as 𝑆0 ← 𝐻𝐺 (𝑝𝑘 | |𝑥) by a
prover, where 𝑝𝑘 is the public key of the prover and 𝑥 is an input.
Given the initial solution 𝑆0, the prover further keeps incrementing
an ISF and produces a new output 𝑆𝑖 in each increment (step 𝑖)
using Solve() algorithm. In each step, the prover checks whether
the output satisfies a certain threshold (difficulty) condition. If 𝑆𝑖
satisfies the checks, then 𝑆𝑖 is considered as a valid solution and
the prover runs Prove() algorithm to generate a proof 𝜋𝑖 for the
correctness of the output 𝑆𝑖 . A verifier verifies the solution 𝑆𝑖 using
the proof 𝜋𝑖 and executing the algorithm Verify(). To note, 𝑆0 is
computed in Prove(),Verify() algorithms.

Furthermore, the authors also mentioned that SeqPoW can also
be instantiated using secret key 𝑠𝑘 instead of public key 𝑝𝑘 in the
above-mentioned algorithms except for the Verify() algorithm. Be-
cause a verifier should not know the secret key of a prover. The
RANDCHAINDRB construction proposed by the author uses the se-
cret key for the Init(), Solve(), Prove() algorithms. With this regard,
there are two shortcomings with the RANDCHAIN construction:
• Init(), Solve(), Prove() algorithms use 𝑠𝑘 and hence the initial
solution is computed as 𝑆0 ← 𝐻𝐺 (𝑠𝑘 | |𝑥). This initial solution
can easily be computed for Prove() algorithm as a part of the
construction to compute the proof. However, for the verification
algorithm Verify(), the authors did not justify how a verifier will
construct the initial solution 𝑆0 without having knowledge about
the secret key 𝑠𝑘 of the prover.
• Another point about using secret key 𝑠𝑘 for the computation of
𝑆0 is how the prover will prove that the initial solution has been
computed correctly without revealing his secret key 𝑠𝑘 . A zero-
knowledge proof can be a useful tool to deal with this issue but
the authors have not mentioned this issue and the corresponding
solution. This is crucial for the correctness of 𝑆0.
• Consider a case where the prover’s public key 𝑝𝑘 is used to con-
struct the initial solution and also for all the other algorithms.
In this scenario, an adversary can easily compute the initial so-
lutions for every node in the DRB. After computing the initial
solutions, a powerful adversary can run the 𝑆𝑜𝑙𝑣𝑒 () algorithm
in parallel for each honest node in the DRB and can easily get
to know which node is going to solve the puzzle first. Here, the
adversary breaks the unpredictability guarantee of the DRB pro-
tocol. In this case, an adversary can either make the targeted
attack towards the winning node or can mount a bribery attack
(ask for a bribe) on the winning node. The adversary can keep
corrupting the expected winning nodes in DRB protocol and can
further lead to the unavailability of the system.
In conclusion, RANDCHAIN suffers from mainly three issues,

front-running attack, breaking the unpredictability guarantee, and
not providing enough fairness to all the DRB participants.

214

Basic Idea of our competitive DRB protocol
To solve the challenges of RANDCHAIN and to provide bet-

ter fairness and mitigation against blockchain-related attacks, we
present a general model to construct competitive DRB protocols.
The general model is a composition of committee selection strat-
egy followed by a moderately hard cryptographic puzzle. Depend-
ing upon the different committee-selection strategies and different
cryptographic puzzles, a class of competitive DRB protocols can
be constructed. The committee selection is an integral part of the
construction because it confers fairness in the DRB protocol and
also makes blockchain attacks less probable.

The basic idea of a competitive DRB protocol is as follows: the
protocol operates in a permissioned setting similar to the existing
DRB protocols and works in rounds. Each participant1 of DRB
maintains its local chain and syncs its chain with the main chain
in each round. In each round of the DRB protocol, a committee
is selected from the participants of DRB. Further, the members of
the committee compete to solve a moderately hard cryptographic
puzzle. The one who solves the puzzle first becomes the leader of
that round. The leader creates a new block, appends the solution
of the puzzle with corresponding proofs in the block, and further
broadcasts the block in the DRB network. The other participants
verify the received block by checking the solution using the proof.
If the verification is successful, the participants add that block to
their local chains. The current random value is computed using the
solution of the puzzle appended in the block.

1.2 Our Contribution
Motivated by the challenges in RANDCHAIN DRB, the contribu-
tions of the paper are as follows.
• We propose a model to construct a class of competitive DRB
protocols using a committee selection strategy followed by a
moderately hard cryptographic puzzle.
• We present the advantages of competitive DRB over the current
DRB protocols.
• We discuss the security properties of our competitive DRB and
present the proofs for the properties.

1.3 Outline
The remainder of the paper is as follows: In Section 2, we describe
the preliminaries needed to construct competitive DRB protocols.
In Section 3, we define the model to construct competitive DRB
protocols. In Section 4, we give a brief description of the main
challenges faced in present DRB protocols and how a competitive
DRB overcomes some of these challenges. Further, the properties of
our competitive DRB are presented in Section 5. Finally, in Section 6,
we conclude the paper and provide a few future research directions.

2 PRELIMINARIES
2.1 Verifiable Delay Function
Verifiable delay function (VDF) is a cryptographic primitive pro-
posed in 2018 by Boneh et al. [6]. A function 𝑓 : X → Y is a VDF
if given an input 𝑥 ∈ X, the computation of output 𝑦 ∈ Y takes
predefined number of steps 𝑇 ; additionally the verification of 𝑦 is
1Note: Throughout the paper, we use node and participant interchangeably.

exponentially easy and efficient. Furthermore, the computation of
𝑦 cannot be parallelized even if a polynomial number of processors
are available.

Definition 2.1. (VDF): A VDF is defined as a tuple of following
algorithms:
• Setup(_,𝑇): It is a randomized algorithm that takes security pa-
rameter _, time parameter 𝑇 and outputs public parameter 𝑝𝑝 .
• Eval(𝑝𝑝, 𝑥,𝑇): The evaluation algorithm takes public parameter
𝑝𝑝 , input value 𝑥 ∈ X and time parameter 𝑇 , returns an output
value 𝑦 ∈ Y together with a proof 𝜋 . The algorithm may use
random coins to generate the proof 𝜋 but not for the computation
of output 𝑦.
• Verify(𝑝𝑝, 𝑥,𝑦, 𝜋,𝑇): The verification algorithm outputs a bit ∈
{0, 1}, given the input as public parameter 𝑝𝑝 , input value 𝑥 ,
output value 𝑦, proof 𝜋 , and time parameter 𝑇 .

There have been two main constructions of VDF based on the
repeated squaring (modular exponentiation). These two main pro-
posals are Wesolowski Scheme [44] and Pietrzak Scheme [37]. In
both schemes, the number of VDF evaluation cycle is already known
since the initialization of VDF. Both schemes evaluate an output
value 𝑦 ← 𝐻 (𝑥) (2𝑇)mod 𝑁 , along with a proof 𝜋 , given an input
value 𝑥 . Here𝐻 : X → G is an efficiently computable hash function,
𝑇 is the number of squarings needed to compute the output, and 𝑁
is an RSAmodulus. More information about these VDF construction
can be found in Appedix A.

2.2 Verifiable Random Function
Definition 2.2. (VRF): A VRF is defined as a tuple of following

algorithms:
• KeyGen(𝑟): On input value 𝑟 , the algorithm generates a secret
key 𝑠𝑘 and a verification key 𝑣𝑘 .
• Eval(𝑠𝑘,𝑀): Evaluation algorithm produces pseudorandom out-
put 𝑜 and the corresponding proof 𝜋 on input sk and a message
𝑀 .
• Verify(𝑣𝑘,𝑀, 𝑜, 𝜋): Verify algorithm outputs 1 if and only if the
output produced by evaluation algorithm is 𝑜 and it is verified
by the proof 𝜋 given the verification key 𝑣𝑘 and the message𝑀 .

More information about VRF is presented in Appendix B.

2.3 Decentralized Randomness Beacon
A decentralized randomness beacon (DRB) allows a group of par-
ticipants to continuously produce random values without having
any central party. A DRB requires following properties [15, 42]:
• Unpredictability: An adversary’s ability to predict (precompute)
beacon outcome is negligible.
• Bias-resistance: Any single participant or colluding participants
should not be able to influence the beacon outcomes to their
advantage.
• Availability (or liveness): Any single participant or colluding par-
ticipants should not be able to prevent the progress of the DRB
protocol.
• Public Verifiability: Third parties should always be able to verify
the correctness of the beacon outcome using publicly available
information.

215

3 COMPETITIVE DRB
In a competitive DRB, instead of all the participants competing in
each round, we can select a committee in each round. The selection
of the committee should provide better fairness to all the partic-
ipants so that all the participants can get an equal chance to be
elected as a leader. The motive of selecting a committee is that a
powerful adversary should not be able to take part in the committee
of each round and so the adversary will not be able to continuously
build his advantage to be the leader of future rounds. Therefore,
following we define a new definition of a fair competitive DRB.

A fair competitive DRB can be defined as a composition of com-
mittee selection strategy followed by a process of solving a cryp-
tographic puzzle. Different committee selection strategies provide
different levels of fairness for competitive DRB protocols. Therefore,
in the following Section 3.2 we present a few methods of committee
selection.

3.1 DRB Model
• System Model: A competitive DRB consists of 𝑁 participants P =
(𝑃1, 𝑃2, . . . , 𝑃𝑁). Each participant 𝑃𝑖 has a key-pair (𝑝𝑘𝑖 , 𝑠𝑘𝑖) and
the node can be identified by its public key 𝑝𝑘𝑖 . These participants
are connected in a distributed manner and for every round 𝑟 ∈
{1, 2, . . .}, the protocol DRB(𝐼𝑟) receives a generically denoted
input 𝐼𝑟 and further collectively produces a random output 𝑂𝑟 .
• Network Model: Our DRB protocol works in a synchronous net-
work where messages between participants are delivered within
a bounded network delay 𝛿 . The DRB protocol works in rounds,
and the synchronous network assumption provides guaranteed
message delivery.

3.2 Committee Selection Strategies
In a competitive DRB protocol, in each round, a set of participants
are selected as committee members using a predetermined commit-
tee selection technique. These committee members further advance
the DRB protocol to the next step where these committee members
compete to solve a cryptographic puzzle and henceforth, propose
the next beacon output.

Definition 3.1. (Committee Selection) Given a set of participants
P = (𝑃1, 𝑃2, . . . , 𝑃𝑁), for a round 𝑟 a committee selection strategy
CS generates a committee set C = (𝐶1,𝐶2, . . . ,𝐶𝑘), where C ⊆ P,
provided 𝑎𝑢𝑥 as an auxiliary information. 𝑎𝑢𝑥 can be a previous
round output 𝑂𝑟−1 or a seed 𝑠𝑟 computed from the previous round.

There are many constructions of committee selection in the
literature due to mainly its applicability in consensus protocols. In
most of the committee-based consensus protocols, the committee
is selected to execute Byzantine fault-tolerant (BFT) distributed
consensus to decide on the next block that will be added to the
blockchain. Most of the committee selection strategies show strong
statistical similarities [16]. Moreover, as committee members are
responsible to generate the next block (or next random output in
our DRB), in order to enforce the honest behavior, the committee
members can be incentivized using a fair rewarding mechanism [2].

A committee can also be selected as proposed by benhamouda
et al. [3]. In their construction, a selected committee has an honest
majority and committee members remain anonymous until the start

of the next round where a new committee is selected. Similarly, a
committee can be selected for our DRB protocol where an adversary
can not be able to guess the current round committee members and
due to the honest majority of committee members, the next random
output can be generated fairly. A committee with a predefined
size should be selected in a distributed verifiable manner (Using
verifiable lotteries). The committee size depends on the total number
of participants in the DRB and it can be updated based on the total
number of existing and new participants from time to time.

For this work, we describe a few committee selection strategies
that can be used for the construction of competitive DRB protocols.
Each of these strategies brings a different level of fairness for the
participants of the DRB protocol. Nevertheless, perfect and univer-
sal committee selection strategies are hard to find, for which more
research is required.
• Robust Round Robin : In this method, each DRB participant main-
tains a round-robin queue of participants’ identities. Identity of
a participant 𝑃𝑖 corresponds to his public key 𝑝𝑘𝑖 . This queue is
maintained and sorted in decreasing order based on the age of
the participants’ identities. Once a committee of size 𝑘 is selected
from the queue for a round 𝑟 , those 𝑘 committee members are all
placed at the end of the queue for round 𝑟 +1. In this manner, each
participant gets a fair and equal chance of being a committee
member. In case, a new participant joins the DRB protocol, the
identity of the new participant is placed at the end of the queue.
• Randomized Round Robin : A randomized round robin method
can be employed to select a committee. In this method, an initial
seed 𝑠0 is used to deterministically derive a random sequence P1

of DRB participants P for round 1. The seed 𝑠𝑟 is used to shuffle
the DRB participant set P and hence to obtain a randomized
set P𝑟 . The initial seed is computed using distributed random
number generation [9].
The seed is refreshed in every round and a new random sequence
is generated for the round. A new seed for round r is computed
as 𝑠𝑟 = 𝐻𝑠 (𝑠𝑟−1 | |𝑟 | |𝑂𝑟−1), where𝐻𝑠 : {0, 1}∗ → {0, 1}256. A com-
mittee member 𝐶𝑖 from a committee of 𝑘 members is computed
as follows from the random sequence P𝑟 for a round 𝑟 :

𝐶𝑖 = P𝑟 [𝑟 𝑚𝑜𝑑 𝑁] + 𝑖 (1)
• Uniformly Random Sampling : In this method, a committee can be
uniformly sampled using the round output of the last round. By
interpreting the output as a 256-bit number, a committee of size
𝑘 can be sampled using a simple approach. A committee member
𝐶𝑖 from a committee of 𝑘 members is computed as follows, for
round 𝑟 :

𝐶𝑖 = (𝑂𝑟−1𝑚𝑜𝑑 𝑁) + 𝑖 (2)
• Cryptographic Sortition : A committee can be selected using cryp-
tographic sortition as defined in Algorand [24]. In this method,
all the DRB participants individually apply VRF on a common
input using their secret keys and if the VRF output computed by
a participant is less than a certain threshold then that participant
is selected as a committee member. The threshold can be set or
modified to control the number of committee members. Further,
these committee members execute the cryptographic puzzle to
be the leader of the round and to propose beacon output.

216

In Algorand, if a committee is of size 𝐶 , then an adversary only
needs to corrupt 𝐶

3𝑁 out of 𝑁 nodes in the Algorand blockchain.
Due to the local predictability of VRF output, only the participants
can know becoming a committee member or leader in Algorand.
An adversary can perform a bribery attack by advertising it in
a black market and hence adversary can abrupt the Algorand
consensus. Nevertheless, in our DRB, the output of DRB in a
round does not depend on every member of the committee, as the
output is generated by a participant who solves the cryptographic
puzzle first. Therefore, an adversary cannot decide which or how
many committee participants need to be corrupted.

3.3 Cryptographic Puzzle
For a competitive DRB protocol, a cryptographic puzzle should
be provided to each selected committee participant to compete
in each round. This cryptographic puzzle should be moderately
hard and non-parallelizable. The reason for making the puzzle non-
parallelizable is that a powerful adversary with more processors
should not have an advantage in solving a puzzle. Therefore, we
use VDF to make it non-parallelizable. Sloth can also be used for the
puzzle construction instead of VDF (similar to RANDCHAIN), but
the verification cost in sloth is linear which makes it less favorable
for the puzzle construction.

As mentioned above, Pietrzak [37] andWesolowski [44] schemes
for VDF are based on repeated squaring. Nevertheless, both schemes
require the number of VDF evaluations to be known during the ini-
tialization of VDF. Moreover, even though both schemes have fast
verification, these scheme needs to store all the intermediate proofs
to verify the final output value.Wesolowski scheme solves this issue
by aggregating the intermediate proofs to a single proof but the ver-
ification time still grows with the number of iterations. Therefore,
we adopt Continuous Verifiable Delay Function (cVDF) [22] where
verification time does not depend on the number of iterations. cVDF
was introduced by Ephraim et al. which is based on the construc-
tion of Pietrzak scheme. A VDF 𝑓 is a continuous VDF (cVDF) if it
provides the computation of function 𝑓 on intermediate steps (i.e.
𝑓 (𝑡) for 𝑡 < 𝑇) along with an efficient proof 𝜋𝑡 , in addition, the
intermediate outputs of cVDF are public and continuous verifiable.

Following, we provide a formal definition of non-parallelizable,
publicly verifiable, moderately hard puzzle for a participant 𝑃 .

Definition 3.2. (Non-parallelizable Cryptographic Puzzle) It con-
sists of following polynomial time algorithms :
• Init(𝑅𝑟−1, 𝑝𝑘𝑃 , 𝑟): Given input as previous puzzle output 𝑅𝑟−1,
the participant’s public key 𝑝𝑘𝑃 , and current round 𝑟 , it outputs
a verifiable input 𝑥 for the puzzle. An extra information 𝑒1 might
also be output needed for public verifiability of 𝑥 . The initial-
ization of input 𝑥 can also be done using secret key 𝑠𝑘𝑃 of the
participant instead of 𝑝𝑘𝑃 .
• Solve(𝑥, 𝜏, 𝑟): Given input as initial puzzle input 𝑥 , threshold 𝜏 ,
and the current round 𝑟 , it outputs a solution to the puzzle 𝑅𝑟 , a
proof 𝜋𝑟 for the correct computation and an extra information 𝑒2
might be needed for solution verification satisfying the threshold.
• Verify(𝑥, 𝑟, 𝑅𝑟 , 𝜋𝑟 , 𝑝𝑘𝑃 , 𝜏, 𝑒1, 𝑒2): Given inputs as 𝑥, 𝑟, 𝑅𝑟 , 𝜋𝑟 , 𝑝𝑘𝑃 ,
𝜏, 𝑒1, 𝑒2, it outputs 1 if 𝑅𝑟 is a valid solution for round 𝑟 computed
by participant 𝑃 ; otherwise it outputs 0.

Cryptographic Puzzle based on VDF:
A VDF-based cryptographic puzzle CP is constructed using the

repeated squaring functionality of VDF as defined in [19, 25, 31, 39].
Following, we present the definition of VDF-based puzzle

Definition 3.3. (VDF-based Puzzle): For a participant 𝑃 in round
𝑟 , given an input 𝑥 , a function 𝑓 , a threshold 𝜏 , a VDF-based puzzle
CP has a solution S𝑟 = (𝑡, 𝑅𝑟 , 𝜋𝑟) such that

𝑅𝑟 = 𝐻 (𝑥)2𝑡 (3)
𝑓 (𝑅𝑟) ≤ 𝜏 (4)

In the above puzzle, solution S𝑟 = (𝑡, 𝑅𝑟 , 𝜋𝑟) is an intermediate
output (on step 𝑡) of cVDF on input 𝑥 using random oracle𝐻 . In the
puzzle, the main output 𝑅𝑟 is computed using equation 3, which
satisfies the equation 4. The proof of correct computation 𝜋𝑟 for
output 𝑅𝑟 is provided using cVDF. In equation 4, function 𝑓 can be
a one-way hash function or it can even be a VRF. The threshold
𝜏 depends on the function and it can be fixed for each round or it
can also vary from participant to participant. Function 𝑓 is defined
considering the way of input computation.

Input Computation:
In the direction of constructing cryptographic puzzle CP based

on VDF, we want the puzzle CP to be different for each participant
and also have the same difficulty level. Therefore, in each round,
input for each participant’s puzzle should be different and should be
publicly verifiable. On the contrary, initial input in RANDCHAIN
is computed using the participant’s secret key which can not be
verified by other participants. We want to avoid this situation,
therefore, following we present two ways of input computation.
(1) An input 𝑥 for participant 𝑃 in a round 𝑟 can be computed

by applying VRF on previous round puzzle output 𝑅𝑟−1 (last
winner solution). Furthermore, VRF output 𝑥 ∈ X.

(𝑥, 𝜋𝑥) ← 𝑉𝑅𝐹𝑠𝑘𝑃 (𝑅𝑟−1) (5)
From the above method, a verifiable input 𝑥 is computed. Fur-
thermore, an adversary can not compute the input of the par-
ticipant 𝑃 without having knowledge of participant’s secret
key 𝑠𝑘𝑃 . With this context, function 𝑓 can be replaced by a
hash function 𝐻𝐼 : {0, 1}∗ → X in equation 4, hence the new
condition would be:

𝐻𝐼 (𝑝𝑘𝑝 | |𝑅𝑟) ≤ 𝜔.𝑀 (6)
In equation 6, 𝜔 is a parameter controlling the difficulty of the
puzzle and𝑀 is the maximum value of hash function𝐻𝐼 . In this
case of input computation, the extra information needed in the
puzzle definition 3.2 𝑒1, 𝑒2 are 𝜋𝑥 and 𝜙 respectively.

(2) An input 𝑥 for participant 𝑃 in a round 𝑟 can be computed by
applying hash function as follows:

𝑥 ← 𝐻𝐼 (𝑝𝑘𝑃 | |𝑅𝑟−1) (7)
Here, input 𝑥 can be verified by again performing the hash on
public key 𝑝𝑘𝑃 and previous round puzzle output 𝑅𝑟−1. Nev-
ertheless, a powerful adversary can easily compute the puzzle
input for every participant as everything needed to compute 𝑥 is
public. We don’t want a powerful adversary to compute the puz-
zle solution 𝑆 for the honest participants beforehand and then

217

corrupt/targeted attack the honest participants. Furthermore, as
computation of output 𝑅𝑟 is performed using continuous VDF
(as in equation 3), we don’t want delegation of any participant’s
puzzle to the powerful adversary. In order to prevent corruption
and delegation, we want function 𝑓 to be solely computed by
every participant. Therefore, we consider function 𝑓 as a VRF
because it can only be computed using the secret key of the
participant. Henceforth, equation 4 is replaced by the following
equation.

𝑉𝑅𝐹𝑠𝑘𝑃 (𝑅𝑟) ≤ 𝜏 (8)
The above equation checks whether the output of the VRF is
≤ threshold 𝜏 . This 𝜏 can be a difficulty parameter and it can
be updated from time to time (similar to bitcoin difficulty). VRF
also produces the proof which is used to prove the correct
generation of VRF output. In this case of input computation,
the extra information needed in puzzle definition 3.2 𝑒1, 𝑒2 are
𝜙 and (𝑜, 𝜋𝑜) respectively; where 𝑜 is VRF output on 𝑅𝑟 and 𝜋𝑜
is the corresponding proof about correct computation of VRF.
In our DRB construction, the above puzzle can be replaced by any

cryptographic puzzle that requires an unknown number of sequen-
tial steps and is moderately hard in nature. Therefore, an interesting
research direction would be to construct new non-parallelizable,
moderately hard cryptographic puzzles.

3.4 Structure of Competitive DRB
Following the Nakamoto consensus, each participant 𝑃𝑖 maintains
his local chain in a form of a directed acyclic graph of blocks. With
each round, a new block is added to the main chain B follow-
ing the Nakamoto consensus and longest chain rule in the case
of forks. In each round, a participant becomes the leader of the
round by being a committee member first, followed by solving a
puzzle first. Further, the leader 𝑃𝑙 creates a block 𝐵𝑟 for round 𝑟 .
In case, we follow the first input computation method (Following
equation 5, 6) for the DRB protocol, the header ℎ𝑟 of the block 𝐵𝑟
contains (𝑝𝑘𝑙 , 𝑆𝑟 , 𝑥, 𝜋𝑥 ,𝑂𝑟 , 𝜎𝑠𝑘𝑙 (ℎ𝑟)), where 𝑝𝑘𝑙 is the public key of
the leader node 𝑃𝑙 ; 𝑆𝑟 = (𝑡, 𝑅𝑟 , 𝜋𝑟) is the solution for round 𝑟 ; 𝑥, 𝜋𝑥
corresponds to the input and proof for input computation in round
𝑟 for the leader 𝑃𝑙 ; 𝑂𝑟 is the output of the random beacon which
can be computed as 𝑂𝑟 = 𝐻𝑜𝑢𝑡 (𝑅𝑟) where 𝐻𝑜𝑢𝑡 : Y → {0, 1}256;
and 𝜎𝑠𝑘𝑙 (ℎ𝑟) is a signature on the block header.

A signature 𝜎𝑠𝑘𝑙 (ℎ𝑟) is required to avoid the fork by the leader
node 𝑃𝑙 in the blockchain. The cryptographic puzzle used in our
DRB protocol can have multiple valid solutions due to not hav-
ing uniqueness in solutions (as in eq. 4). Therefore, an adversarial
leaderA can create forks by solving the same puzzle and providing
different valid solutions to the puzzle. If an adversarial leader tries
to fork the chain, other nodes can easily confirm it by checking
that the new block in the fork chain and in the main chain have the
same signature and share the same parent block. To avoid the fork,
a slashing rule can be applied in the protocol where an adversarial
leader trying to fork the chain will be punished. The punishment
can be a direct exit from the protocol or slashing of stakes deposited
in the case of stake-based blockchain.

Each participant 𝑃 𝑗 receiving the block 𝐵𝑟 performs several
checks before accepting and adding the block to his local chain.

First 𝑃 𝑗 verifies the input 𝑥 using the proof 𝜋𝑥 , if it verifies, 𝑃 𝑗 ver-
ifies the solution 𝑆𝑟 . To verify the solution 𝑆𝑟 , 𝑃 𝑗 checks whether
the equation 6 satisfies or not. Further, 𝑃 𝑗 verifies the proof 𝜋𝑟 for
𝑡 VDF-evaluations on input 𝑥 .

Beacon Output:
The output of our DRB beacon 𝑂𝑟 can be computed by applying
a deterministic function to the puzzle solution 𝑅𝑟 for round 𝑟 . In
our case, we apply hash function 𝐻𝑜𝑢𝑡 to the puzzle solution 𝑅𝑟 to
compute the output. However, due to the non-uniqueness property
of the cryptographic puzzle, an adversarial leader 𝐴 can fork the
chain by biasing the output. Nevertheless, a slashing rule can be
applied in the event of a fork as mentioned previously but an adver-
sary can still try to gain financial advantage by manipulating the
output. If the puzzle outputs a unique random output in each round,
then our DRB protocol is considered as strong bias-resistance.

To provide strong-bias resistance property, we can make an
adversary not able tomanipulate the beacon output instantly during
the end of the round. In simple words, an adversary (or any node)
has to wait for a few rounds to compute the beacon output. In that
sense, a VDF can be applied to the puzzle output 𝑅𝑟 such that the
output𝑂𝑟 can not be extracted instantly. Therefore, before learning
the output𝑂𝑟 , an adversary has to decide on whether to publish the
block (makes the block irreversible) or withhold the block (makes
it as an invalid block from round 𝑟 + 1).

4 MAIN CHALLENGES IN CURRENT DRB
PROTOCOLS

There has been a growing interest in the construction of new DRB
protocols. However, many of these constructions still face different
challenges due to their design and underlying cryptographic prim-
itive. In this section, we give a brief description of some of these
challenges. This section provides a complete overview of the limita-
tions in existing DRB protocols and it also describes the advantage
of competitive DRB protocol to solve some of these challenges.

4.1 Attacks
• Front-Running Attack In this attack, an adversary learns the bea-
con output earlier than the honest participants. This attack is
more probable in non-interactive DRB protocols where partic-
ipants do not interact with each other to generate the beacon
output in each round. In some of these DRBs, each participant
can generate the global beacon output from its local entropy, and
further, it can withhold the output and let the other honest partic-
ipants invest their energy to find another output. Therefore, these
attacks are hard to capture as it is hard to differentiate whether
a message (e.g., beacon output) is withheld by the adversary or
delayed by the network.
In the case of cryptocurrencies (blockchain), this attack has been
an everlasting problem and a few defense mechanisms [27, 35, 45]
against front-running attacks (selfish mining) have been pro-
posed in the literature. The motive of an attacker in the case of
cryptocurrencies is to gain more reward by mounting an attack
which also puts a risk on the attacker’s withholding reward. How-
ever, in the case of DRB, the motive of an attacker is to disrupt the
unpredictability and availability property of the DRB protocol.

218

As in the DRB case, the attacker has no risk of losing anything,
the attacker can always try to mount this attack.
Heilman [27] presented a strategy to combat this attack by us-
ing a freshness preferred approach. In this approach, the block
with a recent valid timestamp is chosen by a miner (participant)
when the miner receives two blocks from the branches of equal
length. However, the approach fails to defend against a power-
ful attacker whose selfish chain is longer than the public chain.
Zhang et al. [45] improves Hellman approach and proposes back-
ward compatible defense against selfish mining by revising the
fork-resolving technique.
These mechanisms are hard to deploy in DRB protocols directly
as there is no award affiliated with the participants, which goes
for RANDCHAIN as well. Nevertheless, the freshness preferred
approach can be introduced by introducing a timestamp param-
eter in competitive DRB protocols. A slot parameter defined in
PoSAT [19] used in a necessary check for leader election. This
slot parameter is analogous to time-ordering. In the same way, it
can also be used in RANDCHAIN or in our cryptographic puzzle
inside DRB protocol. Nevertheless, the committee selection and
the cryptographic puzzle in our DRB construction already make
the front-running attack less probable.
• Nothing at Stake Attack This is a general problem in Proof-of-
Stake (PoS) consensus. In this attack, a rational stakeholder pub-
lishes many blocks in different forks in the blockchain. The rea-
son for extending all forks is that there is no opportunity cost so
the rational stakeholder can extend all the branches in order to
maximize his reward.
A similar situation might arise in the case of DRB protocols that
use blockchain as a public bulletin board for publishing the bea-
con output where an attacker can always try to create many
forks. However, DRB protocols based on slow-time functions,
especially the protocols not knowing the number of sequential
steps for computation in advance, are less probable to have noth-
ing at stake attack. Hence, our competitive DRB protocol has
fewer chances of having nothing at stake attack.
• Bribery Attack Some DRB protocols are leader-based where a
leader is elected using a leader-electionmechanism and the leader
is solely responsible to compute the beacon output. In these DRB
protocols, a bribery attack is possible where an adversary can
advertise a reward in a black market or bribe a leader to get to
know the beacon output beforehand; hence tampering with the
unpredictability guarantee of beacon output. The motive of an
attacker can not only be just to tamper with the beacon properties
but also to use the beacon output to his advantage by using it in
an application such as a lottery protocol.
For example, in RandRunner [41] DRB, all the participants know
the identities of all the upcoming leaders if a randomized round-
robin strategy is used for leader election. Hence, an adversary
can bribe one of the upcoming leaders and can get to know
the beacon output before anyone else knows it. This opens the
possibility of different strategic attacks on the DRB. As knowing
the output first gives an advantage to the adversary, the adversary
can try to compute the next beacon output through mounting
a front-running attack to the DRB protocol. In our competitive
DRB protocol, committee selection instead of a leader-election
mechanism makes this attack harder to be mounted.

• Network-related AttacksDuring network-related attacks, the prop-
erties of a DRB protocol can be obstructed. For example, during
the network outage (a rare event), an adversary can hamper the
availability and bias-resistance of the beacon output. Moreover,
an external entity can also eclipse some participants from the
beacon (e.g., by a DoS attack) or even the whole beacon from the
participants. This attack is challenging to realize.
In the case of competitive DRB, each participant maintains his
local chain and tries to sync his local chain with the main chain
through all his connected peers (neighboring participants). Fur-
thermore, in our competitive DRB, as a committee is responsible
to generate the beacon output in each round, the network-related
attacks might not disrupt the beacon properties. Some counter-
measures [28, 33] can also be used to protect against these attacks.

4.2 Complexity
Complexity in a DRB protocol is inferred from the computation
of beacon output, further dissemination of the output, and then
verification of the output. Therefore, protocols can be computation-
intensive or communication expensive. The major challenge while
designing a DRB protocol is to reduce its computation and com-
munication effort. Therefore, many recent constructions focus on
reducing the complexity of their protocol. The computation com-
plexity is measured as the total amount of computation required
to generate a beacon output. However, the communication com-
plexity is the total amount of communication required to complete
the DRB protocol. These complexities are mainly dependent on the
underlying network structure, underlying cryptographic primitive,
involved interaction among participants, and output dissemination
method.

Based on the interaction, DRB protocols can also be categorized
into interactive and non-interactive protocols as defined in [23]. In-
teractive DRB protocols involve multiple rounds of communication
to generate a beacon output. These protocols are based on Publicly
Verifiable Secret Sharing schemes (PVSS) [4, 11, 13, 17, 29, 42, 43]
and hence require high communication (at least O(𝑛2)). A recent
DRB protocol, ALBATROSS [12] reduces the communication cost
to O(𝑛) by using packed Shamir secret sharing scheme.

A DRB protocol incurs three major costs (complexity): computa-
tion cost for beacon output, the communication cost of output gener-
ation, and dissemination and verification cost of the beacon output.
Following, we describe all these costs and existing approaches used
in DRB protocols to reduce these costs. In addition, we also discuss
the complexity of our competitive DRB protocol.

• Communication Complexity Communication cost highly depends
on the network model (Synchronous V/s Asynchronous) and
message dissemination approach. It can also incur during the
initial setup of the DRB protocols. Many DRB protocols [10, 15,
21, 26] require a Distributed Key Generation (DKG) setup that
incurs high communication cost.
The initial interactive DRB protocols e.g., Ouroboros [29], Rand-
Share [43], and SCRAPE [11] require a broadcast channel to
broadcast DRBmessages (e.g., PVSS share, beacon output); hence-
forth, suffer from a high communication complexity of O(𝑛3).
Further, to improve the communication cost, committee-based
or leader-based strategies were employed where respectively a

219

committee is responsible for output computation [26, 43] or a
leader is responsible to performs the share distribution [12, 23].
The non-interactive DRB protocols [8, 18, 24, 41] incur less com-
munication cost, usually O(𝑛), as in these protocols a single
participant has to perform only one broadcast to disseminate the
beacon output among the protocol participants. Furthermore, a
few DRB constructions use blockchain as a public bulletin board
to publish the beacon output which can result in very less com-
munication complexity but threatens the finality of the random
beacon output. As our competitive DRB protocol is also a non-
interactive DRB protocol, hence it incurs linear communication
complexity.
• Computation Complexity Similar to communication complexity,
the initial interactive DRB protocols e.g., Ouroboros [29], Rand-
Share [43] suffer from high computational cost of O(𝑛3). This
cost in interactive DRB was reduced in SCRAPE [11] to O(𝑛2)
and further reduced to O(log𝑛) in ALBATROSS [12]. Neverthe-
less, DRB protocols based on VRF have very less computational
complexity.
Some of the DRB protocols (non-interactive DRB) are puzzle-
based where participants are required to solve puzzles in each
round. These DRB protocols incur high computation complexity
for their underlying puzzle design. These puzzles can be based
on Proof-of-Work [7] or Proof-of-Delay [8]. DRB protocols based
on slow-time functions also face the same problem of high com-
putational cost. Therefore, the puzzle should be designed in a
way that is moderately hard and requires less computation.
The computation complexity remains arguable for puzzle-based
DRB protocols compared to protocols based on PVSS or threshold
cryptographic primitives. The question arises as to whether the
computation required to generate a DRB output using a thresh-
old cryptographic primitive is less computation-intensive than
computation needed in a puzzle-based DRB. In our competitive
DRB protocol, computational complexity depends not only on
the hardness of the VDF-based cryptographic puzzle but also on
the size of the committee in each round.
• Verification Complexity Verification cost is the total number of
operations performed by an external participant to verify the
beacon output. Verification cost in almost all of the interactive
DRB protocols is O(𝑛) due to the share verification. Nonetheless,
VRF-based DRB protocols incur less verification cost similar to
less computation cost. Furthermore, puzzle-based DRB protocols
involving VDF as their underlying cryptographic primitive also
outputs less verification cost.
Ideally, the verification cost in a DRB protocol should be constant
so that any external participant can verify the DRB output in
constant time which is more preferable in real-time applications
of DRB protocols such as in e-voting protocols [1], or in online
gaming and lottery services [7].
Our competitive DRB protocol is based on VDF, therefore, its
verification complexity is equal to the cost needed to verify the
output of the VDF puzzle. The output of the VDF puzzle includes
proof of correctness for the puzzle output generation which is
required to verify the puzzle output. Generally, VDF has fast
verification, hence, our competitive DRB protocol has constant
verification cost.

4.3 Scalability
Scalability implies that even having a large number of participants
in DRB protocol, the protocol should advance as usual and produce
beacon output regularly. To scale a DRB protocol, the communica-
tion complexity (should be linear) for output generation and the
network latency should be minimized.

Scalability in DRB protocols is still an everlasting problem de-
spite a decade of research that has been conducted to design new
efficient DRB protocols. A few recent DRB protocols [17, 25, 41]
have taken scalability into account while constructing their DRB.
DRB protocols having DKG in their setup offer poor scalability.
As DKG requires a fixed number of participants (key holders) and
inclusion of new participants will trigger the setup modification
which will incur huge communication costs and does not seem
realistic to scale.

Scalability is directly related to communication complexity as
mentioned above. Therefore, the same approaches described above
to improve communication complexity can also be applied to achieve
better scalability. Therefore, committee-based approach [24, 26, 43]
(sharding) or leader-based approach can be leveraged to improve
the scalability of DRB protocols. In general, sharding is a very effi-
cient approach to scale a blockchain where participating nodes are
grouped into smaller size groups.

Another important factor directly impacting the scalability of
DRB protocol is Reconfiguration Friendliness. A DRB protocol is
said to be reconfiguration-friendly if the public parameters and the
list of participating nodes are allowed to be modified dynamically
without causing any disturbance in the current protocol execution.
Therefore, non-interactive DRB protocols and competitive DRB
protocols show better scalability as new participants are allowed
to join at any time.

4.4 Fairness
Fairness in a DRB protocol refers to that each participant gets a
fair and equal chance of computing the beacon output. In the case
of PVSS-based collaborative DRB protocols, all the participants
contribute their local entropy to compute the global entropy. How-
ever, in puzzle-based DRB protocols, an adversary having extensive
computational resources have an advantage in solving the puzzle,
hence generating the beacon output.

The definition of fairness in RANDCHAIN is about comparable
voting power for output computation regardless of participants’
hardware resources. In other words, it is themaximum voting power
difference between an honest participant and a powerful adversary.
Achieving fairness in a real-world scenario where we can not bound
the participants to the actual available hardware resources is hard.
In RANDCHAIN, fairness is > 1

5 due to powerful VDF hardware
which computes 5 times faster than normal hardware.

Fairness in a competitive DRB protocols can be improved by
giving equal chance for randomness computation for a set of partic-
ipants (committee) in each round so that a powerful adversary can
not participate in each round and hence can not have a withholding
advantage (by becoming a leader in a round and withholding the
output) for many consecutive rounds. In that way, better fairness
can be provided in a competitive DRB protocol which is embraced
in our DRB construction.

220

4.5 Problems with Competitive DRB
There can be following problems or possible attacks due to the
chosen committee selection strategy. We described these problems
in detail and propose some solutions to deal with the problems.

(1) Block Withholding An adversary being a committee member
in a round can solve the puzzle first and can try to withhold
the block (puzzle solution) in order to increase his advantage
for the subsequent rounds. To mount the withholding (front-
running) attack, the adversary has to be in the committee for
each subsequent round and has to be able to solve the crypto-
graphic puzzle first among all the committee members. Due to
the selection of committee through a fair committee selection
strategy and having a different cryptographic puzzle than other
committee members in each round (requiring a different num-
ber of unknown steps to solve the puzzle), the chances of an
adversary to mount the withholding attack are less likely.

(2) Local Predictability Depending on the committee selection strat-
egy, an adversary might be able to know the committee mem-
bers for the upcoming rounds of DRB protocol. The adversary
can advertise for the winning leader in some round on a black
market. In that scenario, the adversary would be able to know
the beacon output through the bribed leader participant in some
round before the other honest participants get to know about
the output. The adversary can use this as an advantage to either
plan for a front-running attack or break the unpredictability
guarantee of the DRB protocol.

(3) Finality Finality refers to the participants of DRB protocol
should have a consistent view on random beacon output. Due to
following Nakamoto consensus, finality is a probabilistic event
as the fork might arise in some cases. As finality is essential
in some randomness-based applications, there should be some
ways to achieve finality in DRB protocols.
To achieve finality in competitive DRB protocols, a few mech-
anisms can be used. Mainly, herding [14] or quorum mecha-
nism [32] can be particularly helpful in achieving finality for
our random beacon output. These mechanisms might increase
the time complexity of the beacon output. Therefore, it would
be interesting to integrate these mechanisms with the protocol
or to look for other mechanisms that can help to achieve finality.

(4) Sybil Attack An adversary can create multiple identities (public
keys) and form amajority in the DRB network. In Proof-of-Work
(PoW) and Proof-of-Stake (PoS) consensus forming a majority
requires having huge computational power (mining power) or a
majority of stake (voting power). In our DRB protocol, an adver-
sary should not be able to create multiple identities, otherwise,
an adversary can be a part of every committee selection and
might increase his advantage in each round of DRB protocol.
To prevent Sybil attack, either a staking mechanism can be
involved which will require a fixed minimum amount of stake
from each participant to be put on the blockchain, or binding
of the public key of a participant with the participant’s unique
identifier such as a passport is to be incorporated. Moreover,
each participant should provide a Proof of Possession (PoP)
of a secret key corresponding to his public key, during the
bootstrapping of DRB protocol or during the joining in the DRB
protocol.

5 PROPERTIES
Following are the few main properties of our DRB protocol.
• Fairness In our DRB, each participant gets a fair and equal chance
for being a committee member due to the respective commit-
tee selection strategy. Even the participants having a difference
in their available resources, the chances of being a committee
member are independent of the available resources to the partici-
pants. The resources (computational power) can help to solve the
puzzle faster than honest participants having commodity avail-
able resources. The collusion of participants will not give any
more advantage in solving the puzzle compared to the fastest
processor available to a powerful adversary. Since the puzzle
is non-parallelizable and takes an unknown number of steps
to solve brings more fairness to the protocol. Nevertheless, the
composition of committee selection and cryptographic puzzle
provides a fair chance for each participant to be a leader and
propose the random beacon output.
• Scalability Scalability is hard to achieve in DRB protocols, es-
pecially those involving DKG setup or secret sharing among
participants. As mentioned in Section 4.3, in order to scale the
protocol with a large number of participants, the communication
complexity needs to be minimized. In our competitive DRB pro-
tocol, in each round a leader participant has to send his block to
other participants of DRB protocol, it requires only O(𝑛) com-
munication. Moreover, a new participant can easily join our DRB
protocol by following the Nakamoto consensus and adapting the
longest chain from his neighboring participants. Low communi-
cation complexity and easy joining of participants guarantee our
DRB protocol scalable.
• Unpredictability Unpredictability ensures that the adversary’s
availability to predict the random output for the future rounds is
bounded. In case of this property breaks, an adversary can take
advantage of beacon output in randomness-based applications.

Theorem 5.1. An adversaryA can not predict the random beacon
output 𝑂𝑟+𝑚 of DRB protocol at the beginning of round 𝑟 .

Proof. We present a sketch for the proof. Due to the fair selec-
tion of committee selection strategy, the committees of these
rounds C𝑟 , C𝑟+1, . . . , C𝑟+𝑚 will not always contain many adver-
sarial participants. Moreover, having a different cryptographic
puzzle with an unpredictable number of solution steps poses one
claim such that in consecutive rounds {𝑟, 𝑟 + 1, . . . , 𝑟 +𝑚}, there
is at least one correct leader participant 𝑃𝑒

𝑙
for round 𝑒 . For the

round 𝑒 , the best an adversary can do is guess with negligible
probability. Therefore, the adversary can not compute the output
𝑂𝑒 , and output of the consecutive rounds are unpredictable. □
• Unbiasability Unbiasability refers to the adversary’s ability to
bias the produced random beacon output for its advantage. An
adversary cannot manipulate an output 𝑅𝑟 of round 𝑟 , as it will
not pass the required checks in order to be accepted by other
participants. Even if an adversary tries to withhold the beacon
output, it will not give any advantage for the next round because,
in the next round, the adversary might not be in the committee
and does not know the exact number of steps to solve the puzzle
for the next round. Therefore, the adversary will not be able to
bias the beacon output.

221

Table 1: Comparison of DRB Protocols based on Time-sensitive Cryptography
Pr
ot
oc
ol

N
et
w
or
k
M
od

el

Ad
ap
tiv

e
Ad

ve
rs
ar
y

Li
ve
ne
ss

Un
pr
ed
ic
ta
bi
lit
y

Bi
as
-R
es
ist
an
ce

Fa
ul
t-t
ol
er
an
ce

Co
m
m
un

ic
at
io
n

Co
m
pl
ex
ity

Co
m
pu

ta
tio

n
Co

m
pl
ex
ity

Fr
on

t-r
un

ni
ng

A
tta

ck

Tr
us
te
d
D
ea
le
r

or
D
KG

re
qu

ire
d

Unicorn [30] asyn. ✗ ✓† ✓ ✓ 1/2 O(1) Sloth Hard ✓

Continuous VDF [22] asyn. ✗ ✓† ✓ ✓ 1/2 O(1) VDF Easy ✗

RANDAO [40] asyn. ✗ ✓ ✗ ✗ 1/2 O(𝑛) VDF Easy ✓

RANDCHAIN [25] syn. ✓ ✓ ✓ ✓ 1/3 O(𝑛) VDF Moderate ✓

RandRunner [41] syn. ✓ ✓ ✓‡ ✓ 1/2 O(𝑛2) VDF Moderate ✓

Our Protocol syn. ✓ ✓ ✓ ✓ 1/3 O(𝑛) VDF Hard ✓

• Network-model refers to whether messages in the DRB protocol are delivered within a known
time-bound (synchronous (syn.)) or without a known time-bound (asynchronous (asyn.)).
• Fault-tolerance refers to the number of byzantine faults a DRB can tolerate.
• Adaptive Adversary corrupts the participants during the protocol execution.
• Front-running Attack vector shows whether it is easy or moderate or hard to mount a front-
running (block withholding) attack in the DRB protocol.
‡ refers to probabilistic guarantees for unpredictability and has a bound on the number of future
rounds an adaptive rushing adversary can predict the beacon output.
† The node with more computational power learns the beacon output earlier than others.

Theorem 5.2. An adversary A cannot influence the random bea-
con output 𝑂𝑟 for any round 𝑟 ≥ 1.

Proof. The output 𝑂𝑟 is derived from the puzzle solution 𝑅𝑟
using a deterministic hash function 𝐻𝑜𝑢𝑡 that can not be influ-
enced by an adversary. In case, an adversarial leader A tries to
send two (or multiple) valid solutions 𝑆1𝑟 , . . . , 𝑆

𝑗
𝑟 (forking) will

be caught due to his signature on all the block headers corre-
sponding to these solutions. Further, due to the slashing rule, the
adversary A will be punished. Therefore, the adversary will not
try to bias the beacon output. On the contrary, this shows a weak
bias-resistance. □

To achieve strong bias-resistance, the output should be computed
using VDF as described in Section 3.4. In this case, due to the
sequential property of VDF, the adversary can get to know (com-
pute) the random beacon output after a certain number of rounds
and till then the main chain has already grown by the honest
participants.
In this case of random beacon output computation using VDF, the
header ℎ𝑟 parameter𝑂𝑟 (as𝑂𝑟 will be available after 𝑟 + 𝑗 rounds,
where 𝑗 ≥ 1) will no longer be considered as actual random
beacon output, however, it will be used for committee selection.
The actual random beacon output is computed by applying VDF
for a certain time parameter 𝑇𝑜𝑢𝑡 .
• Availability Availability ensures that the protocol will always
proceed and generate continuous random beacon output. Given
the maximum network delay, and an approximate solution time
for the VDF puzzle, the protocol should produce a random beacon

output within the total of these times, let say 𝑡𝑚𝑎𝑥 . Therefore,
in each round, at least one committee member would be able to
solve the puzzle and produce the random beacon output within
the known time bound 𝑡𝑚𝑎𝑥 .

Theorem 5.3. Each correct participant knowing the random beacon
output 𝑂𝑟−1, can always access the random beacon output 𝑂𝑟 by
the end of round 𝑟 .

Proof. Due to the fact that our competitive DRB applies Nakamoto
consensus, it also follows the chain-growth definition [36] where
the blocks are added to the main chain by the correct participants
at a certain rate. Depending upon the hardness of the crypto-
graphic puzzle, the puzzle output is produced at a certain rate 𝛿 .
Since the time required for both the committee selection and for
applying the hash function 𝐻𝑜𝑢𝑡 is negligible, a correct partici-
pant can always get the output 𝑂𝑟 within 𝛿 seconds. Therefore,
at the end of a round 𝑟 , the chain will always make progress and
an output 𝑂𝑟 will be available to the participants. □

• Public Verifiability Given a block, it is always possible to verify the
correctness of random beacon output. In each block, a transcript
for the corresponding round execution is provided in the header
which involves a proof that corresponds to the random output.
Hence, any third party first verify whether the given transcript
is correct and further verifies the output using the provided
information in the header. Therefore, our DRB protocol achieves
public verifiability and can be used efficiently in randomness-
based applications.

222

Theorem 5.4. An external participant E can always verify the
correctness of random beacon output 𝑂𝑟 at the end of round 𝑟 .

Proof. Given a valid transcript needed to prove the correctness
of beacon output, an external participant can easily verify the
output. A valid transcript T for a round 𝑟 can consist of the
following necessary information and is provided to E by any
correct participant.
– Public key of leader participant 𝑝𝑘𝑙
– Proof of correct input generation 𝑥, 𝜋𝑥
– Solution to the puzzle (𝑡, 𝑅𝑟 , 𝜋𝑟 , 𝜏)
The external participant E can perform verify algorithms of VRF
and VDF to check the correctness of 𝑥 and 𝑅𝑟 by using 𝜋𝑥 , 𝜋𝑟
respectively. It can further check the threshold condition and
beacon output correctness using equation 4 and applying 𝐻𝑜𝑢𝑡

on 𝑅𝑟 respectively. □

6 CONCLUSION
In this paper, we presented a general way to construct competitive
DRB protocols. Our competitive DRB protocol is scalable and pro-
vides better fairness to the participants compared to the existing
competitive DRB protocol. We pointed out some of the main chal-
lenges in existing DRB protocols. Our competitive DRB protocols
solve most of these challenges and achieve all the necessary prop-
erties of a random beacon. We also mentioned some of the major
problems in competitive DRB protocols and provided a few possi-
ble solutions. We also compare time-sensitive cryptography-based
DRB protocols in Table 1. At the last, we discuss all the properties
achieved by our competitive DRB protocol.

There are many ways to extend and adapt our work. As this
work proposes a general way for competitive DRB construction, it
would be fulfilling to provide a brief construction of a competitive
DRB protocol with detailed security proofs. It would be interesting
to conduct a thorough experiment to check the robustness and
efficiency of our DRB protocols, especially provided the number
of participants and adversary-controlled participants, what should
be an optimal committee size is an intriguing question to work
with. Another exciting direction would be to follow the solutions
mentioned to deal with the problems in competitive DRB and also
to research for finding better solutions. Instead of proof sketch, it
would be interesting to prove all the properties of the DRB protocol
by providing concrete detailed proofs.

REFERENCES
[1] Ben Adida. 2008. Helios: Web-based Open-Audit Voting.. In USENIX security

symposium, Vol. 17. 335–348.
[2] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and

Sara Tucci-Piergiovanni. 2019. On fairness in committee-based blockchains.
arXiv preprint arXiv:1910.09786 (2019).

[3] Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo
Krawczyk, Chengyu Lin, Tal Rabin, and Leonid Reyzin. 2020. Can a Public
Blockchain Keep a Secret?. In Theory of Cryptography Conference. Springer, 260–
290.

[4] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. 2020. RandPiper-
Reconfiguration-Friendly Random Beacons with Quadratic Communication.
IACR Cryptol. ePrint Arch. 2020 (2020), 1590.

[5] Manuel Blum. 1983. Coin flipping by telephone a protocol for solving impossible
problems. ACM SIGACT News 15, 1 (1983), 23–27.

[6] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. 2018. Verifiable
Delay Functions. In Advances in Cryptology – CRYPTO 2018, Hovav Shacham and
Alexandra Boldyreva (Eds.). Springer International Publishing, Cham, 757–788.

[7] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a
public randomness source. IACR Cryptol. ePrint Arch. 2015 (2015), 1015.

[8] Benedikt Bünz, Steven Goldfeder, and Joseph Bonneau. 2017. Proofs-of-delay and
randomness beacons in ethereum. IEEE Security and Privacy on the blockchain
(IEEE S&B) (2017).

[9] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Se-
cure and efficient asynchronous broadcast protocols. In Annual International
Cryptology Conference. Springer, 524–541.

[10] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random oracles in Con-
stantinople: Practical asynchronous Byzantine agreement using cryptography.
Journal of Cryptology 18, 3 (2005), 219–246.

[11] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable randomness
attested by public entities. In International Conference on Applied Cryptography
and Network Security. Springer, 537–556.

[12] Ignacio Cascudo and Bernardo David. 2020. Albatross: publicly attestable batched
randomness based on secret sharing. In International Conference on the Theory
and Application of Cryptology and Information Security. Springer, 311–341.

[13] Ignacio Cascudo, Bernardo David, Omer Shlomovits, and Denis Varlakov. 2021.
Mt. Random: Multi-Tiered Randomness Beacons. Cryptology ePrint Archive,
Report 2021/1096.

[14] T-H Hubert Chan, Rafael Pass, and Elaine Shi. 2019. Consensus through herding.
InAnnual International Conference on the Theory andApplications of Cryptographic
Techniques. Springer, 720–749.

[15] Alisa Cherniaeva, Ilia Shirobokov, and Omer Shlomovits. 2019. Homomorphic
Encryption Random Beacon. IACR Cryptol. ePrint Arch. 2019 (2019), 1320.

[16] Tarun Chitra and Uthsav Chitra. 2019. Committee selection is more similar than
you think: Evidence from avalanche and stellar. arXiv preprint arXiv:1904.09839
(2019).

[17] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2021. SPURT:
Scalable Distributed Randomness Beacon with Transparent Setup. IACR Cryptol.
ePrint Arch. 2021 (2021), 100.

[18] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 66–98.

[19] Soubhik Deb, Sreeram Kannan, and David Tse. 2021. PoSAT: Proof-of-work
availability and unpredictability, without the work. In International Conference
on Financial Cryptography and Data Security. Springer, 104–128.

[20] Justin Drake. 2018. Minimal VDF randomness beacon. Ethereum Research (2018).
[21] drand. 2020. Drand - a distributed randomness beacon daemon. https://github.

com/drand/drand
[22] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass. 2020. Contin-

uous verifiable delay functions. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques. Springer, 125–154.

[23] David Galindo, Jia Liu, Mihai Ordean, and Jin-MannWong. 2020. Fully Distributed
Verifiable Random Functions and their Application to Decentralised Random
Beacons. IACR Cryptol. ePrint Arch. 2020 (2020), 96.

[24] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zel-
dovich. 2017. Algorand: Scaling byzantine agreements for cryptocurrencies. In
Proceedings of the 26th symposium on operating systems principles. 51–68.

[25] Runchao Han, Haoyu Lin, and Jiangshan Yu. 2020. RandChain: A Scalable and
Fair Decentralised Randomness Beacon. Cryptology ePrint Archive (2020).

[26] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. Dfinity technol-
ogy overview series, consensus system. arXiv preprint arXiv:1805.04548 (2018).

[27] Ethan Heilman. 2014. One weird trick to stop selfish miners: Fresh bitcoins, a so-
lution for the honest miner. In International Conference on Financial Cryptography
and Data Security. Springer, 161–162.

[28] Sebastian Henningsen, Daniel Teunis, Martin Florian, and Björn Scheuermann.
2019. Eclipsing ethereum peers with false friends. arXiv preprint arXiv:1908.10141
(2019).

[29] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual
International Cryptology Conference. Springer, 357–388.

[30] Arjen K Lenstra and Benjamin Wesolowski. 2015. A random zoo: sloth, unicorn,
and trx. IACR Cryptol. ePrint Arch. 2015 (2015), 366.

[31] Jieyi Long and RibaoWei. 2019. Nakamoto consensus with verifiable delay puzzle.
arXiv preprint arXiv:1908.06394 (2019).

[32] Dahlia Malkhi and Michael Reiter. 1998. Byzantine quorum systems. Distributed
computing 11, 4 (1998), 203–213.

[33] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. 2018. Low-Resource Eclipse
Attacks on Ethereum’s Peer-to-Peer Network. IACR Cryptol. ePrint Arch. 2018
(2018), 236.

[34] Satoshi Nakamoto. 2009. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf.

[35] Kevin Alarcón Negy, Peter R Rizun, and Emin Gün Sirer. 2020. Selfish mining
re-examined. In International Conference on Financial Cryptography and Data
Security. Springer, 61–78.

223

[36] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain
protocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 643–673.

[37] Krzysztof Pietrzak. 2018. Simple verifiable delay functions. In 10th innovations in
theoretical computer science conference (itcs 2019).

[38] Michael O Rabin. 1983. Transaction protection by beacons. J. Comput. System
Sci. 27, 2 (1983), 256–267.

[39] Mayank Raikwar and Danilo Gligoroski. 2021. R3V: Robust Round Robin VDF-
based Consensus. In 2021 3rd Conference on Blockchain Research & Applications
for Innovative Networks and Services (BRAINS). IEEE, 81–88.

[40] Randao. [n.d.]. RANDAO: A DAO working as RNG of Ethereum. https://github.
com/randao/randao. [Online; accessed 1-Nov-2021].

[41] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and Edgar
Weippl. 2020. Randrunner: Distributed randomness from trapdoor vdfs with
strong uniqueness. IACR Cryptol. ePrint Arch. 2020 (2020), 942.

[42] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. 2020.
Hydrand: Efficient continuous distributed randomness. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 73–89.

[43] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. 2017. Scalable bias-
resistant distributed randomness. In 2017 IEEE Symposium on Security and Privacy
(SP). Ieee, 444–460.

[44] Benjamin Wesolowski. 2019. Efficient Verifiable Delay Functions. In Advances in
Cryptology – EUROCRYPT 2019, Yuval Ishai and Vincent Rijmen (Eds.). Springer
International Publishing, Cham, 379–407.

[45] Ren Zhang and Bart Preneel. 2017. Publish or perish: A backward-compatible
defense against selfish mining in bitcoin. In Cryptographers’ Track at the RSA
Conference. Springer, 277–292.

A VERIFIABLE DELAY FUNCTION
Following, we define a basic construction of VDF based on modular
exponentiation as it is discussed in the two schemes.

Definition A.1. (VDF based on modular exponentiation): A VDF
based on modular exponentiation is defined as a tuple of following
algorithms:
• Setup(_,𝑇): It is a randomized algorithm that takes security
parameter _, time parameter 𝑇 and outputs public parameter
𝑝𝑝 := (G, 𝑁 , 𝐻,𝑇), where G is a finite abelian group of unknown
order, 𝑁 is an RSA modulus, and 𝐻 : X → G is a hash function.

• Eval(𝑝𝑝, 𝑥,𝑇): The evaluation algorithm applies𝑇 squarings in G
starting with 𝐻 (𝑥) and outputs the value 𝑦 ← 𝐻 (𝑥) (2𝑇)mod 𝑁 ,
along with a proof 𝜋 .
• Verify(𝑝𝑝, 𝑥,𝑦, 𝜋,𝑇): The verification algorithm outputs a bit ∈
{0, 1}, given the input as public parameter pp, input value 𝑥 ,
output value 𝑦, proof 𝜋 , and time parameter 𝑇 .

A VDF ensures the following three security properties:
(1) 𝜖-Evaluation time: The evaluation algorithm Eval of VDF runs

in at most (1 + 𝜖)𝑇 time.
(2) Sequentiality: An algorithm using at most 𝑝𝑜𝑙𝑦 (_) parallel pro-

cessors can not compute the function output in less than time
𝑇 .

(3) Uniqueness: Evaluation algorithm should produce exactly one
output value 𝑦 for an input value 𝑥 which can be verified using
the Verification algorithm.

B VERIFIABLE RANDOM FUNCTION
A VRF has the following security properties:
(1) Uniqueness: It ensures that for any input 𝑀 and for a fixed

public key of VRF 𝑣𝑘 , there is a unique VRF output 𝑂 that can
be proved valid using 𝑣𝑘 .

(2) Collison resistance: VRF should be collision resistant which
means that a single VRF output 𝑂 should not be generated
two from different inputs𝑀1, 𝑀2.

(3) Pseudorandomness: VRF output 𝑂 should be indistinguishable
from a random value in a view of adversarial verifier without
having proof 𝜋 in his view.

(4) Unpredictability: Pseudorandomness does not hold if the VRF
keys are generated in adversarial manner. Therefore, a different
type of unpredictability property is desirable in certain VRF
applications. This property states that if the VRF input has
enough entropy, then the VRF output is indistinguishable from
uniform, similar to an ordinary hash function.

224

Part III

Secondary Papers

Paper J

Trends in Development of Databases and Blockchain

M. Raikwar, D. Gligoroski and G. Velinov

Seventh International Conference on Software Defined Systems (SDS),
IEEE, 2020, pp. 177-182

This work is about the mutual influence between two technologies:
Databases and Blockchain. It addresses two questions: 1. How the
database technology has influenced the development of blockchain
technology?, and 2. How blockchain technology has influenced the
introduction of new functionalities in some modern databases? For
the first question, we explain how database technology contributes to
blockchain technology by unlocking different features such as ACID
(Atomicity, Consistency, Isolation, and Durability) transactional
consistency, rich queries, real-time analytics, and low latency. We
explain how the CAP (Consistency, Availability, Partition tolerance)
theorem known for databases influenced the DCS (Decentralization,
Consistency, Scalability) theorem for the blockchain systems. By
using an analogous relaxation approach as it was used for the
proof of the CAP theorem, we postulate a “DCS-satisfiability
conjecture.” For the second question, we review different databases
that are designed specifically for blockchain and provide most of
the blockchain functionality like immutability, privacy, censorship
resistance, along with database features.

Paper K

Aggregation in Blockchain Ecosystem

M. Raikwar, D. Gligoroski

Eighth International Conference on Software Defined Systems (SDS),
IEEE, 2021, pp. 1-6

Blockchain has evolved rapidly in the past decade, but it still faces
challenges such as scalability, large block size, slow block verification,
high communication overhead. Though multiple solutions have been
proposed to overcome these challenges, a few solutions perform
aggregation of blockchain data. Moreover, blockchain data can be
a blockchain state, transaction, or consensus message. Therefore,
the solutions involving aggregation have immense potential to solve
several existing challenges in the blockchain ecosystem. In this
work, we investigate and scrutinize possible aggregations in the
blockchain. For that purpose, we first briefly describe cryptographic
primitives with aggregation scheme and their applicability in
the blockchain. These schemes can empower the blockchain
with improved scalability, reduced block size, low communication
overhead, and fast block verification. Then, we identify nine research
problems related to these cryptographic primitives.

Paper L

Efficient Novel Privacy Preserving PoS Protocol
Proof-of-concept with Algorand

K. Stevenson, O. Skoglund, M. Raikwar, and D. Gligoroski

3rd Blockchain and Internet of Things Conference (BIOTC), ACM,
2021, pp. 44-52

Proof of Stake (PoS) emerged to replace and tackle the problem
of vast energy consumption in Proof of Work (PoW) consensus.
PoS is based on the assumption that the majority of the stake is
owned by honest participants. Consequently, instead of solving
a computationally hard puzzle to propose the next block in the
blockchain, PoS selects a participant with probability proportional
to its stake in the network. In contrast to the solution to the puzzle,
the proof of selection in PoS has inherent privacy issues. The
identity of the selected participant is revealed to other participants
to verify the proof, and the stake of the selected can be deducted
by frequency analysis. Therefore, Private Proof of Stake (PPoS)
emerged to provide a valid alternative to PoW, aiming to tackle
the energy consumption in PoW while preserving the privacy of the
selected participant in a consensus round. Recent PPoS protocols
by Baldimtsi et al. and Ganesh et al., rely on an anonymous
broadcast channel and have a large proof size that hinders the
practical implementation of the protocols.
In this paper, we identify issues and areas of improvement within
the current PPoS protocols. We built our privacy-preserving PoS
scheme upon the anonymous lottery by Baldimtsi et al. with an
instantiation of Algorand as the underlying PoS protocol. We
apply fully homomorphic encryption along with zero-knowledge
proof techniques to reduce the proof size and to achieve privacy
of selected participant’s stake and identity. In comparison with
the original anonymous lottery scheme, our scheme achieves better
efficiency and complexity.

Paper M

Databases fit for blockchain technology: A complete
overview

J. Kalajdjieski, M. Raikwar, N. Arsov, G. Velinov, D. Gligoroski

Submitted to Elsevier Journal on Blockchain: Research and
Applications, 2022

Efficient data storage and query processing systems play a vital
role in many different research areas. Blockchain technology
and distributed ledgers attract massive attention and trigger
multiple projects in various industries. Nevertheless, Blockchain
still lacks features from databases, such as high throughput, low
latency, and high capacity. There have been many proposed
approaches for handling the data storage and query processing
solutions in Blockchain for that purpose. This paper presents
a complete overview of many different types of databases and
how these databases can be used to implement, enhance, and
further improve Blockchain technology. More concretely, we
give an overview of 13 transactional databases, an extensive
overview of 16 analytical database engines, and 15 hybrids, i.e.,
translytical databases. We explain how the database technology has
influenced the development of Blockchain technology by unlocking
different features such as Atomicity, Consistency, Isolation, and
Durability (ACID), transaction consistency, rich queries, real-time
analysis, and low latency. Using a relaxation approach analogous
to the one used to prove the CAP theorem, we postulate a
“Decentralization, Consistency, and Scalability (DCS)-satisfiability
conjecture” and give concrete strategies for achieving the relaxed
DCS conditions. We also provide an overview of the different
databases, emphasizing their architecture, storage manager, query
processing, and implementation.

Paper N

Cryptographic Primitives in Blockchain

M. Raikwar, S. Wu

Book chapter in S. Kanhere, M. Conti, and S. Ruj, (editors)
“Blockchains - A Handbook on Fundamentals, Platforms, and

Applications”, Springer, 2022

Blockchain is promising, powerful, and still a growing technology.
However, it still encounters many research challenges. Some of the
important challenges are scalability, key management, protection
against different attacks, smart contract management, and further
improvements on security and privacy in blockchain designs. These
challenges emerge due to the underlying consensus mechanism,
network infrastructure, and participants’ behavior. Therefore, to
overcome these challenges and to achieve the proper functioning
of blockchain, many cryptographic primitives can be investigated,
scrutinized, and applied in the blockchain.
In this chapter, we present a brief description of cryptographic
primitives employed in blockchain. For each cryptographic primitive,
we provide the definition, properties and their use in blockchain
domain. Furthermore, we also postulate research problems which
can be of independent interest.

ISBN 978-82-326-5180-1 (printed ver.)
ISBN 978-82-326-6420-7 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2022:241

Mayank Raikwar

Cryptography for Innovative
Blockchain Services

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2022:241
M

ayank Raikw
ar

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

	Abstract
	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	i Summary
	Introduction
	Motivation
	Research Questions
	Thesis Structure

	Background and Related Works
	Blockchain
	Consensus Mechanism
	Security
	Privacy
	Scalability
	Cryptographic Primitives Used in the Thesis

	Contributions
	Research Contributions
	Summary of Results Contributing to the Thesis
	Contributions toward Research Questions

	Conclusion
	Concluding Remarks
	Future Research Directions

	References
	ii Included Papers
	Paper A: SoK of Used Cryptography in Blockchain
	Paper B: Meshwork Ledger, its Consensus and Reward Mechanisms
	Paper C: R3V: Robust Round Robin VDF-based Consensus
	Paper D: Non-Interactive VDF Client Puzzle for DoS Mitigation
	Paper E: DoS Attacks on Blockchain Ecosystem
	Paper F: PriBank: Confidential Blockchain Scaling Using Short Commit-and-Proof NIZK Argument
	Paper G: Security Model for Privacy-preserving Blockchain-based Cryptocurrency Systems
	Paper H: SoK: Decentralized Randomness Beacon Protocols
	Paper I: Competitive Decentralized Randomness Beacon Protocols
	iii Secondary Papers
	Paper J: Trends in Development of Databases and Blockchain
	Paper K: Aggregation in Blockchain Ecosystem
	Paper L: Efficient Novel Privacy Preserving PoS Protocol Proof-of-concept with Algorand
	Paper M: Databases fit for blockchain technology: A complete overview
	Paper N: Cryptographic Primitives in Blockchain
	Blank Page

