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Abstract

Legged robotics has been a research topic of great interest for the last half-century. On one
hand, this is due to the field’s potential applications across a wide variety of domains both
military, commercial and humanitarian in nature.

On the other hand, the topic is of great academic interest as it involves a number of sub-
stantial theoretical and application-related challenges. As the field of legged locomotion
generally and quadrupedal locomotion in particular matures, the focus has to a large extent
been on quadrupeds with a mammalian leg configuration.

However, there exist other possible leg configurations which may have distinct advantages
but which have not been thoroughly explored in the existing literature. One of these is the
sprawling leg configuration, exemplified in nature in certain reptiles and arachnids.

In this thesis, a method using a simplified single rigid body dynamics system model and
convex Model Predictive Control is presented to achieve dynamic walking in the sprawling
quadrupedal robot ASTRo. The system dynamics are reduced to a rigid body model, using
the standard assumption of approximately mass-less legs.

The resulting dynamics are linearized with respect to roll and pitch, and a precalculated
reference in yaw is substituted to yield an approximate, Linear Time Varying model for
the system to be used for Model Predictive Control.

Another particularly interesting method utilizing the full hybrid dynamics of the system is
examined and given a thorough presentation as well, though not implemented.

The implemented control algorithm performed well on a trotting stationary and forward
gait. An ambling gait was also examined, although slightly degraded performance was
achieved.

The results suggest that the method in question shows promise for producing dynamic
locomotion in sprawling quadrupeds. However, further modifications to the method may
be required to achieve truly robust locomotion for a wide variety of dynamic gaits.
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1
Introduction

The field of robotics has for decades increased efficiency and reduced the need for human
labor by aiding human workers in carrying out certain tasks, while facilitating the automat-
ing away of others. This automation is expected to continue and gain momentum as we
enter what has at times been referred to as the fourth industrial revolution.

However, a large portion of jobs requires interaction with and locomotion through un-
structured or human-centered environments. Such task may include load-bearing in man-
ufacturing or construction, search-and-rescue, goods delivery, transportation, etc. Thus,
robots which are able to traverse such environments are required. In this context, legged
robots are often considered the solution: They have the abilities to traverse non-smooth
terrains which lack in wheeled robots, while exhibiting greater load-bearing capacity for
less energy output compared to drones.

The problem of robotic walking is a fairly complex one. Firstly, the dynamics of a robot
with any revolute joints are highly nonlinear and do not lend themselves to linearization
if the robot is to traverse any significant part of its configuration space. Walking robots
are also necessarily underactuated: The force used for locomotion is the ground reaction
forces from the feet.

Firstly, this prohibits any sort of thrust downwards apart from gravity. Secondly, as the
static friction force is proportional to the normal force, the force which can be applied in
the surface’s tangent plane is always limited, to a lesser or greater extent. Walking robots
are in addition hybrid systems: Any time a foot is lifted or put down the system inputs
change in a discrete manner, and impacts occur any time a foot lands. These factors make
control of walking robots a challenging problem, possibly requiring novel methods for
control.

In the last decade or so, dynamic bipedal and quadrupedal walking has received increased
public interest as it has started to take the leap from the strictly academic into the com-
mercial arena. Where quadrupedal robots are concerned, most research so far has been

1



1 Introduction 1.0.1 Thesis overview

conducted on robots with a mammalian joint configuration. A mammalian joint config-
uration entails that the first joint of each leg – the hip joint – has a rotational axis which
is aligned with the roll axis of the body coordinate frame, see Figure 1.1a. Examples of
such robots are Boston Dynamic’s Spot, Anybotics’ ANYmal (Hutter et al. (2016)), Ghost
robotics’ Vision 60, as well as the series of Cheetah-robots developed at MIT (Bledt et al.
(2018); Katz et al. (2019)).

On the other hand, research on robots with alternative joint configurations, such as a
sprawling configuration, is relatively sparse. A sprawling joint configuration entails that
the hip joint’s rotational axis is aligned with the yaw axis of the body coordinate frame,
see Figure 1.1b. Sprawling quadrupeds may have certain advantages over mammalian
quadrupeds: They have the ability to widen their stance compared to their mammalian
counterpart. This widens the support polygon of the robot, making it less prone to falling
over and thus more robust. This becomes even more important for rugged terrain, or when
legs hit unforeseen obstacles.

It is thus of interest to examine whether methods for walking developed for and tested
on mammalian-inspired robots are easy to transfer and use with sprawling robots. The
success of a locomotion method may be evaluated in a number of ways, and the following
questions will be considered:

• Does the method produces gaits which remain stable over a long period of time?

• Is the actuator torque expenditure kept reasonably low?

• Is the method flexible, i.e., is it able to produce various gaits as opposed to being
tailored for one specific gait?

This thesis will carry out the following goals:

• A literature survey will be performed, looking at the existing body of research on
the topic of dynamic locomotion in mammalian quadrupeds.

• Based on the literature review, two methods will be selected to be elaborated further
on.

• One of the two methods will be chosen for implementation for use with the sprawl-
ing tetrapod robot developed in Ghansah and Thorseth (2021).

• The implementation will be tested in the simulation framework Gazebo and the
results will be evaluated.

The contribution of this thesis will be an examination of whether methods which have
previously been successfully applied for dynamic locomotion in mammalian quadrupeds
will be successful when applied for dynamic locomotion in sprawling quadrupeds, with
implementation and testing of one.

1.0.1 Thesis overview
The thesis begins with a literature review in chapter 2 in order to give an overview of the
state of the field of mammalian quadrupedal locomotion and examine potentially promis-
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1 Introduction 1.0.1 Thesis overview

(a) Mammal-like configuration (b) Sprawling configuration

Figure 1.1: Illustration of different quadruped leg configurations

ing methods use for sprawling robots. Following that, two methods which were found to
be of particular interest will be described and explained in greater detail in chapter 4, and
the overarching architecture of the system as implemented is presented. In chapter 5 the
results from the method tested in simulation are presented and the method’s performance
and further implications are discussed. Finally, concluding remarks and suggestions for
further work are presented in chapter 6.

3



2
Literature Review

Several methods have previously been proposed for achieving robust dynamic walking and
running in mammalian quadrupeds. In what follows, a few of these efforts are listed and
described in order to give the reader an overview of the state of the field of quadrupedal
robotic locomotion.

2.1 Zero Moment Point
The Zero Moment Point concept is one of the older, more acclaimed concepts in planning
and controlling dynamic gait in both bipedal and quadrupedal robots. In Vukobratovic and
Borovac (2004), Vukobratovic and Borovac give an account of the concept and its role in
the history of legged locomotion.

In a sense, the task of achieving any sort of walking in a robot is the task of achieving some
motion which propels the robot forward while ensuring that it doesn’t fall over. Controlling
the robot’s motion is done indirectly, through the reaction forces from the ground on the
robot.

The support polygon is the convex hull spanned by all the contact points (in the case of
point feet). It is, in other words, the part of the ground in which ground reaction forces act
on the robot. If the robot does not already have angular momentum so as to result in a tilt,
then a lack of applied moment will ensure that it continues to not tilt. There is one axis
along which the sum of all moments and forces acting on the robot can be replaced by a
single force.

Consider the point at which this axis intersects the ground. If this point – known as the
Zero Moment Point – lies within the support polygon, then the sum of ground reaction
forces can be considered also as one single resultant force acting on that point. Under
assumptions of no sliding, this resultant reaction force balances out all other forces acting
on the mechanism.
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2 Literature Review 2.2 Vertical Impulse Scaling

(a) CoG outside of support poly-
gon but ZMP inside

(b) CoG inside of support poly-
gon but ZMP outside

(c) CoG corresponds with ZMP
(stationary case)

Figure 2.1: Illustration of the relation between CoG projection and ZMP

However, if the intersection of this axis with the ground falls outside of the support poly-
gon, this resultant force – applied at one point in the ground plane – and the ground reaction
force – applied at another point – will not balance out but rather generate moments, poten-
tially tilting the robot over. With this in mind, the goal then becomes to plan a combination
of footholds and trajectories which leads the ZMP to be within the support polygon of the
robot at all times, what is known as the ZMP condition.

It may be interesting to note that, in the stationary case where the only non-ground force
affecting the robot is gravity, the ZMP coincides with the projection of the center of gravity
onto the ground. Please see Figure 2.1 for an illustration of the relation between the
projection of center of gravity and the ZMP.

While the ZMP concept has been widely used in the existing literature, it is somewhat
limited. The concept rests on a balance of moments, and does not consider angular mo-
mentum or velocity. Especially for gaits involving higher angular velocities, i.e. more
dynamic gaits, this can lead the robot to tip over even while fulfilling the ZMP condition
(Yeom and Bae (2021)).

2.2 Vertical Impulse Scaling
In Park and Kim (2015), a bioinspired controller is introduced based on a limit cycle
approach.

The initial observation is that in animals, swing phases remain mostly constant while
stance phases may change to alter gait period. As the gait frequency increases and stance
phase decreases, the magnitude of the ground reaction force profiles increases to keep
making up for the vertical momentum lost to gravity.

Initially, a nonlinear optimization problem over the reaction force profiles and the timing
and duration of stances is solved offline for one desired forward velocity in order to obtain
a limit cycle. Having obtained this limit cycle and the corresponding ground reaction
forces and timings, the designed gait is converted to state-feedback control of ground
reaction forces, using the angle between the respective stance leg and the ground as phase
variable.

5



2 Literature Review 2.3 Contact Time Modulation

On top of this feed-forward signal a virtual spring and damper is added in the body height
and pitch, in order to stabilize the limit cycle. Lastly, additional horizontal force is added
to control speed.

Having calculated the desired ground reaction force, it is transformed to a signal in torques
using a simplified version of the inverse dynamics, ignoring leg inertia as well as coriolis
effects. In order to achieve higher speed gaits while respecting friction cone considera-
tions, the stance phase is reduced and the vertical impulse is scaled commensurately, so
that the area under the reaction force curve is constant. This allows for greater horizontal
force to be applied to the ground without slipping, resulting in higher speed gaits.

Though the method seems to allow for highly dynamic locomotion – galloping – both the
simulation and the experiments carried out has the robot constrained to a plane. It is thus
not given that the method will hold – that is, produce feasible stable locomotion – for the
fully 3D case.

2.3 Contact Time Modulation
Yeom and Bae (2021) introduces the Contact Time Modulation method for stabilization of
various quadrupedal gaits. The method builds on observations about typical properties of
walking in animals. Firstly, the duration of the swing phases of a gait tend to be constant
regardless of the gait period. Thus, any variation in gait period is accounted for by a
shrinking or growing of the stance phase of each leg.

Further, the ground force profile of each leg in animals has been shown to be well-
approximated by a quadratic function. The impact applied to the ground by each foot
is also assumed to be identical. Lastly, while one cannot control the exact time at which a
foot makes contact with the ground, one can control when a foot lifts off. Thus, one can
control the stance time of each foot (within limits).

Using conservation of momentum and assuming constant height across gait cycles, one
can thus calculate the nominal stance foot force profile.

A closed form approximation of the pitch after one gait period is derived as a function of
the length of the stance phase of each foot. By imposing that the robot should attain zero
pitch after a full cycle has passed, one can calculate the desirable stance phase – and thus
liftoff time – of each foot.

The controller was proven to be stable in the sense of Lyapunov. As the closed form
expression for pitch after a period was an approximation, a disturbance term was included
in the analysis to account for modeling errors. By keeping the stance duration within a
given disturbance-dependent interval, the pitch of the closed-loop system was shown to be
stable.

Furthermore, a nonlinear disturbance observer was employed to estimate the disturbance
and modeling error. The method was shown to outperform the vertical impulse scaling
method as well as the Zero Moment Point method across a range of metrics, for instance
robustness to disturbances and different ground stiffness.

6
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The critique about planar motion is relevant for this paper as well as the robot’s roll angle
is not modeled or attempted controlled. Extension to roll stabilization is listed as further
work.
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3
System modeling

3.1 Floating base kinematics
The kinematics of ASTRo can be described by a set of generalized coordinates q =
[q⊤
b q⊤

r ]
⊤ where qb ∈ R3 × SO(3) is the pose of the base, while qr ∈ Rnr are the

generalized coordinates describing the robot in the base frame, in this case consisting of
the collection of joint angles. The orientation of the base is chosen to be parametrized
by intrinsic X-Y-Z Tait-Bryan angles (ψ, θ, ϕ) for the system model. While this descrip-
tion has a singularity at θ = π

2 , this configuration is outside of the planned operational
range of the robot. There are three joints for each of the four legs, so nr = 12 and
n = nb + nr = 18.

The position of the robot base in the world frame is denoted pww→b. The orientation of
the robot base as seen from the world frame will be denoted as Rwb , and from our choice
of parametrization we get Rw

b (ψ, θ, ϕ) = Rx(ψ) · Ry(θ) · Rz(ϕ). The homogeneous
transformation matrix describing the base frame as seen in the world frame is denoted
Tw
b , and

Tw
b (qb) =

[
Rw
b (ψ, θ, ϕ) pww→b

0 1

]
(3.1)

Each leg is described by a transformation from the base frame to each hip frame, and
can further be described by a set of Denavit-Hartenberg parameters, a compact form for
describing robotic systems. The transform to each hip frame is a pure translation, pbb→f

with f ∈ {fl, fr, rl, rr} being the foot in question. Each leg consists of three joints and
three corresponding links. The innermost joint is the hip yaw joint, which is centered at
the hip frame and followed by the hip link. Second is the hip pitch joint, which is followed
by the thigh link. Last is the knee pitch joint, which is followed by the calf link. The end
point of the calf link is the placement of the foot of each leg.

8



3 System modeling 3.1.1 Model assumptions

i ai αi di θi
1 l1 ±π

2 0 θh,y
2 l2 0 0 θh,p
3 l3 0 0 θk,p

Table 3.1: DH parameters for a single leg. α1 is positive for front right and rear left legs, negative
for front left and rear right legs

The length of the hip link is denoted as l1, and the length from the hip yaw joint to the hip
link’s center of mass is denoted lc1. Similar denotation structure holds for the thigh and
calf links, with lengths l2, lc2 and l3, lc3 respectively. The DH parameters for a single leg
are found in Table 3.1 and together they give a description of the kinematics of the robot.
In order to calculate the translation to any link’s center of mass the last link length li will
be substituted for the corresponding lci.

3.1.1 Model assumptions
The derived kinematics and dynamical system rests on a few key assumptions with respect
to the robot feet:

• The robot has point feet which have both zero size, zero mass and zero momentum.
These are simply located at the exact end of each calf link.

• The point feet are subject to friction forces when in contact with the ground as any
object with finite nonzero extension would.

• The point feet are not subject to moments in the tangent plane when in contact with
the ground

• The point feet are not subject to rotational friction when in contact with the ground.

3.1.2 System dynamics
The system dynamics can be derived from the robot kinematics as well as the masses and
inertias of each rigid body by the use of the constrained Euler-Lagrange equation:

∂L

∂q̇

⊤
− ∂L

∂q

⊤
=
∂g

∂q

⊤
λ

gc(q) = 0

(3.2)

where L(q, q̇) = K − P , is the Lagrangian of the system, K is the kinetic energy which
can be described as:

1

2

nl∑
i=1

(
mi · q̇⊤ ∂p

w
li

∂q

⊤ ∂pwli
∂q

q̇

)
+

1

2

nl∑
i=1

(
ωli⊤w→liI

li
i ω

li
w→li

)
(3.3)
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3 System modeling 3.1.2 System dynamics

with nl being the number of links,mi being each link’s mass and Ilii being its inertia in the
link frame. pwli is link i’s position in the world frame, while ωliw→li

is its angular velocity
in the link frame.

P is the potential energy of the system, given by

nl∑
i=1

g ·mi · pwiz (3.4)

where pwiz is the vertical position of the ith link in the world frame.

The link frame is chosen for the inertia matrices, as these tend to be constant in the link
frame and nonconstant in the world frame. gc is the constraint function defining the holo-
nomic constraints of the system. In this system, gc is a concatenation of the difference
between initial and current position of all stance legs of the system.

10



4
Methods

4.1 Hybrid Zero Dynamics
The framework of Hybrid Zero Dynamics is a method in which a controller consider-
ing the full state and full-order dynamics of the robot is realized. This sets it apart from
most other control efforts for quadrupeds, in which clever model simplification and heuris-
tics have been more prominent. This method has been applied successfully in numerous
bipedal locomotion applications, and was extended to use on quadrupedal robots in Ma
et al. (2019). The method was chosen to be elaborated further on due to the generality
of the framework as well as the theoretically interesting aspect of producing controllers
considering the full order of the system, making it stand out from most other methods in
the field of quadrupedal locomotion.

This is an Input-output feedback linearization approach in which the dynamics of a higher-
dimensional system is forced to evolve on a lower-dimensional manifold which is defined
by a set of virtual constraints, or outputs. The dynamics as they evolve once constrained
to the lower-dimensional manifold is known as the zero-dynamics of the system (Isidori
(2011)).

The framework of HZD extends the notion of zero-dynamics framework to hybrid systems,
i.e. systems which exhibit both continuous and discrete dynamics. An example of such a
system is a legged robot, in which foot lift-off and impact represent discrete jumps in state
and transitions between different continuous domains.

4.1.1 Hybrid system formulation
Adhering to the formulation in Hamed et al. (2018), the hybrid system of quadruped lo-
comotion can be given as the tuple H = (Λ,X ,U ,S,D,∆, FG). Here, Λ represents a
directed cyclic graph Λ = (V, E) where V is the set of vertices, while E is the set of
edges.

11



4 Methods 4.1.2 Continuous dynamics

We define µ : V −→ V to be the function mapping each vertex to its succeeding vertex.
In this way, we also have that E = {(v → µ(v))}v∈V . Each vertex here represents
a continuous dynamical subsystem, while each edge represents a discrete instantaneous
transition between two such dynamical systems.

Each vertex evolves according to an ordinary differential equation, arising from the La-
grangian dynamics. The discrete transitions in the case of a quadrupedal robot represent
changes in the number and placement of stance legs, a change which is modeled as instan-
taneous. Thus, each lifting or landing of a foot is represented by such a transition between
two vertices.

X is the set of state manifolds for the vertices, i.e. X = {Xv}v∈V . Likewise, the set
of admissible control inputs is U = {Uv}v∈V . D = {Dv}v∈V is the set of domains of
admissibility for each continuous dynamical system, so that Dv ⊆ Xv × Uv . FG =
{(fv, gv)}v∈V is the set of control systems for each domain.

We assume (fv, gv) to be control affine ∀v ∈ V so that ẋv = fv(x) + gv(x)u for (x, u) ∈
Dv . S = {Sv→µ(v)}v∈V is the set of guards so that the instantaneous transition from
one domain to the next occurs when the state and control input (x, u) intersects the guard
Sv→µ(v). ∆ = {∆v→µ(v)}v∈V is then the set of reset laws which relate the end state in
one domain to the initial state in the next, so that x+ = ∆v→µ(v)(x

−) where x− is the
state the instant before impact, while x+ is the state the instant after impact.

4.1.2 Continuous dynamics
In the continuous-time domain Dv , the evolution of the state x = [q⊤, q̇⊤]⊤ is given by
the control system (fv, gv), subject to holonomic constraints ηv(q) = 0 resulting from
static friction on the stance feet. The derivative of holonomic constraints is then Jv(q)q̇.
The system dynamics can be expressed as an implicit second-order ODE resulting from
the Euler-Lagrange equations listed in Equation 4.1:

D(q)q̈+C(q, q̇)q̇+G(q) = Bu+ J⊤
v (q)λ

J⊤
v (q)q̈+

∂

∂q
(Jvq̇) q̇ = 0

(4.1)

where D(q) is the generalized mass matrix, C(q, q̇) pertains to the coriolis and centrifugal
terms and G(q) represents the potential/gravitational terms. B is the input matrix, and
λ is the vector of Lagrange multipliers relating to the constraint forces. The constraint
forces can be solved for explicitly. As D is assumed invertible for well-posed models of
mechanical systems (all generalized coordinates are associated with non-zero generalized
mass), the system can be posed on an explicit control-affine form if desired.

4.1.3 Zero dynamics
The system is to be controlled using a IO feedback linearization controller, in which a
control signal is design so as to drive a set of virtual holonomic constraints, or ”outputs”, to
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4 Methods 4.1.3 Zero dynamics

zero. As described in Hereid et al. (2018); Hamed et al. (2018), these outputs are typically
the deviation in some given state, or combination of states, from a desired setpoint or
time-parametrized trajectory:

yv(t) = yv,a(t)− yv,d(t) (4.2)

where yv,a(t) is referred to as the actual output, a combination of system states, while
yv,d is referred to as the desired output. Here, each yv,d is parametrized as a Bézier
curve, with corresponding parameter vector αv , i.e. yv,d = yv,d(t,αv). By driving
these outputs to zero, the dynamics is forced to lie on a lower-dimensional manifold of
the system dynamics. For the case of walking, this lower-dimensional manifold should
contain an orbitally stable or stabilizable periodic behavior, which is the gait. The driving
of system dynamics to the zero-dynamics is realized by designing u so that

ẏ1,v(t) = −ϵy1,v(t)

ÿ2,v(t) = −2ϵẏ2,v(t)− ϵ2y2,v(t)
(4.3)

where y1,v(t) and y2,v(t) are outputs with relative degree 1 and 2 respectively, and ϵ
is a freely chosen tuning parameter. Roughly speaking, outputs with relative degree 2
correspond to virtual holonomic constraints (as they depend only on configuration) while
outputs with relative degree 1 correspond to virtual nonholonomic constraints, and may
enforce constraints on the derivatives of the configuration variables.

Now, for a set of chosen outputs consider y = [y⊤
1 y⊤

2 ]
⊤. It is important to choose

the outputs in such a way that the map from q to y is a diffeomorphism. This is to say
that the map is invertible, and that both the map and its inverse are differentiable. If and

only if rank
(
∂y
∂q

∣∣∣
q0

)
= n (n being the dimension of the configuration space) the map

is locally diffeomorphic in a neighborhood around q0 ((Khalil, 2002, p. 508)). This map
being diffeomorphic further implies that the matrix given in Equation 4.4 – called the
decoupling matrix – is invertible (Ames (2014)).

A =

[
Lgy1

LgLfy2

]
(4.4)

where Lf , Lg are the Lie derivatives with respect to f and g respectively, as introduced
in subsection 4.1.1. In this case, choosing u as in Equation 4.5 ensures the desired output
dynamics as shown in Equation 4.3.

uv = −A−1
v

([
Lfvy1,v

L2
fv
y2,v

]
+

[
ϵy1,v

2ϵẏ2,v + ϵ2y2,v

])
(4.5)

We hereby refer to the stack of Equation 4.3 and Equation 4.1 as Fv(q, q̇, q̈,u,λ,αv).
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4 Methods 4.1.4 Domain specific inequality constraints

4.1.4 Domain specific inequality constraints
For each vertex v, there exist an admissible domain Dv ⊆ Rn. The admissible domain
can be constrained by a set of equalities or inequalities imposed on variables. Here,
we consider two types of inequalities which define the boundaries of the admissible do-
main:

First, there are constraints imposed on the contact wrenches (or in the case of point feet,
as here, contact forces) of the stance feet, denoted as vv(qv, q̇v)λv ≥ 0. These amount to
1) requiring the normal force from the ground on the robot to be positive and 2) requiring
the tangential forces to be within the friction cone – or a linearization of it – of the foot, as
the model assumes no slipping of the feet:

λfz ≥ 0

∥λfx∥1 ≤ µλfz

∥λfy∥1 ≤ µλfz

(4.6)

It is here assumed that the robot is walking on flat ground, so that the normal force is
identical to the force in the z-direction.

Secondly, there are constraints relating to the state of the system other than the contact
forces, denoted hv(qv, q̇v) ≥ 0. Here, we require that the swing feet are above the
ground:

znsf ≥ 0 (4.7)

for all swing feet.

We summarize these constraints as

Av =

[
vv(qv, q̇v)λv

hv(qv)

]
≥ 0 (4.8)

4.1.5 Guards
Guards are associated with the transition of the HDS from one continuous domain to an-
other along an edge of the DAG. A guard Sv→µ(v) is defined as a proper subset of the
boundary of the domain, that is, Sv→µ(v) ⊂ ∂Dv .

For a discrete transition to occur, the state must be about to exit Dv through a guard. Thus,
for some chosen elementHe of Equation 4.8 we can define a corresponding guard as Se =
{(q, q̇,u) |He = 0, Ḣe < 0} In this paper no-slip contact between the stance feet and the
ground are always assumed. Thus, there are two classes of guard conditions.

Firstly, if a swing foot hits the ground, part of the boundary associated with h is reached,
and the system undergoes a discrete jump to a continuous system in which the previous
swing foot is now a stance foot. This can be stated as
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4 Methods 4.1.6 Discrete dynamics

znsf = 0

żnsf < 0
(4.9)

for any swing foot.

Secondly, if the normal force of any stance foot becomes zero with a negative derivative,
this indicates that the associated foot is about to lift from the ground and become a swing
foot. This can be stated as

λfz = 0

λ̇fz < 0
(4.10)

for any stance foot.

4.1.6 Discrete dynamics
The hybrid system transitions between continuous domains as dictated by its discrete dy-
namics, ∆. The discrete dynamics are distinctly different for the two abovementioned
cases of stance-foot liftoff and swing-foot landing. In the case of lift-off, we assume no
instantaneous change in state. Thus, the reset-law ∆v→µ(v) simply becomes the identity
map.

In the case of landing, we assume a perfectly plastic impact. We also assume no discontin-
uous changes in the generalized coordinates q, although the generalized velocities q̇ may
have discontinuous jumps during impact. From conservation of generalized momentum,
we get

Dq̇+ −Dq̇− = Jµ(v)λimpulse

=⇒ q̇+ = q̇− +D−1Jµ(v)λ
(4.11)

where λimpulse is the intensity of the impulsive contact forces occurring upon impact.
These are determined by the generalized momentum of the system before impact, along
with the holonomic constraints on the stance feet after impact (velocity of stance feet must
be identically zero).

Alongside the assumptions of no abrupt changes to generalized coordinates, i.e. q+ = q−,
this determines the reset map ∆v→µ(v) in the cases of impact.

4.1.7 Optimization problem
A large difficulty in designing this type of controllers for walking is the gait design, which
relates to finding well-suited specific trajectories yv,d(t,αv). These trajectories should
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4 Methods 4.1.7 Optimization problem

result in gaits that are both feasible and stable, and at the same time the ones which are
energetically efficient.

While hand-crafting these desired trajectories is a possibility, the more common approach
is to find these feasible trajectories and corresponding inputs by the use of optimization
methods, a method known as optimal control. The framework of nonlinear optimization is
both powerful and flexible enough to incorporate holonomic constraints, virtual holonomic
and nonholonomic constraints, state inequality constraints and bounds, while searching for
solutions that minimize either energy expenditure, average torque or other desired objec-
tives.

In the approach suggested in Hereid et al. (2018) and later in Ma et al. (2019), direct
collocation methods are used. Direct collocation allows for greater accuracy at longer
time steps, decreasing the number of decision variables needed. In this formulation, both
the state at interior nodes and the slope at cardinal nodes, as well as all constraint forces,
are introduced explicitly as defect variables as opposed to being calculated in closed form.
Although this increases the size of the NLP, it is done to help the convergence properties
of the problem (Hereid et al. (2018)). It also avoids matrix inversion, which is desirable
for a few reasons:

Firstly, there are concerns of numerical stability and accuracy when inverting poorly con-
ditioned matrices. Secondly, matrix inversion is a highly costly operation with time com-
plexity which scales poorly in the number of variables.

The collocation constraints are a set of constraints that forces the state and slope x(i) =
(q(i), q̇(i)) and ẋ(i) = (q̇(i), q̈(i)) at the interior nodes to adhere to some interpolation of
the states at adjacent cardinal nodes. In Hermite-Simpson collocation, these constraints
equal state and slope to the cubic interpolation of state and quadratic interpolation of slope
calculated from the previous and following cardinal nodes. The collocation constraint on
state is δ(i) while the constraint on slope is ζ(i) for the ith node:

δ(i) = x(i) − 1

2

(
x(i+1) + x(i−1)

)
− ∆t(i)

8

(
ẋ(i−1) − ẋ(i+1)

)
ζ(i) = ẋ(i) − 3

2∆t(i)

(
x(i+1) − x(i−1)

)
+

1

4

(
ẋ(i−1) + ẋ(i+1)

) (4.12)

with ∆t(i) = t(i+1) − t(i−1), for i = 1, 3, 5, . . .

The decision variables are, in addition to the states, slopes and input at each node, param-
eters for the desired output trajectories as well as the placement in time of each cardinal
node, t(i) for i = 0, 2, 4, . . .

As the feedback control law is included in the optimization problem, the optimal tra-
jectory parameters yielded in the optimization problem are directly compatible with the
described feedback control law. This is distinct from typical optimal control, where an
open-loop optimal control signal which is assumed to be piecewise linear or constant, is
calculated.
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4 Methods 4.2 Convex MPC over ground forces

Let δv and ζv be the stacked vectors of {δ(i)}, {ζ(i)} respectively. Also, let Fv(qv, q̇v, q̈v,λv,αv)
be the stacked vector of {Fv(q(i), q̇(i), q̈(i),λ(i)),αv}. Then, the full NLP can be stated
as follows:

min
z

J(z) s.t.

Fv(qv, q̇v, q̈v,λv,αv) = 0

δv = 0

ζv = 0

(q(Nv)
v (t(Nv)), q̇(Nv)

v (t(Nv)),uv(t
(Nv))) ∈ Sv→µ(v)

(q
(0)
µ(v)(t

(0)), q̇
(0)
µ(v)(t

(0)),uµ(v)(t
(0))) ∈ Sv→µ(v)

Av(qv, q̇v,λv) ≥ 0

∀v ∈ V

(4.13)

Where z is the entire vector of decision variables, and J(z) is an objective function of
choice. Two typical choices might either be an integral cost over the square of expended
torque:

J(z) =
∑
v∈V

∫ t(Nv )

t(0)
uv(τ)dτ (4.14)

or expended torque divided by the time interval:

J(z) =
∑
v∈V

1

t(Nv) − t(0)

∫ t(Nv)

t(0)
uv(τ)dτ (4.15)

4.2 Convex MPC over ground forces
Finding feasible and optimal trajectories for the full-order quadrupedal system is a highly
nonlinear, non-convex optimization problem. An alternative to finding full state trajecto-
ries through optimization over the full-state nonlinear system is using model simplifica-
tions to yield models which are simpler, and which have greater chances or even theoretical
guarantees of convergence for the corresponding optimization problem. This might also
allow for online recurrent solving, yielding control signals which are more responsive to
the robot’s current situation.

Here, we consider a method using a Single Rigid Body Dynamics approach. In SRBD,
only the dynamics of the robot base itself are considered, as acted upon by forces and
torques – in this case, ground reaction forces. For this approximation to work well, one
assumes that the mass and inertia of the robot legs are so small relative to the base that
they can be ignored without incurring too great costs in accuracy to be detrimental.
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4 Methods 4.2.1 Model description

Di Carlo et al. (2018) describes a method in which the SRBD model is simplified further
in order to yield a model which is Linear Time Varying, making it quick enough to solve
to lend itself to use in Model Predictive Control. The method was chosen due to its leg-
configuration agnostic nature (the simplified model used during MPC does not depend
on leg kinematics), as well as its stated ability to produce and stabilize various types of
gaits.

4.2.1 Model description
As in Di Carlo et al. (2018), we consider the rigid-body dynamics of the robot base, con-
trolled by the reaction forces from the stance feet at any given time. The orientation is
parametrized by extrinsic X-Y-Z Tait-Bryan angles (ϕ, θ, ψ), rendering a 12-dimensional
description of pose and twist:

x(t) =


p(t)
ϕ(t)
θ(t)
ψ(t)
ṗ(t)
ω(t)


The translational dynamics are given by

aw =
1

m

(∑
i

fwr,i + gw

)
(4.16)

Where {fwr,i}i are the ground reaction forces from the stance feet.

The rotational dynamics are given by

d

dt
(Iwωw) = Iwω̇w + ωw × (Iwωw) =

∑
i

rwi × fwr,i (4.17)

ω =

cos θ cosψ − sinψ 0
cos θ sinψ cosψ 0
− sin θ 0 1

ϕ̇θ̇
ψ̇


=⇒

ϕ̇θ̇
ψ̇

 =

 cosψ
cos θ

sinψ
cos θ 0

− sinψ cosψ 0
cosψ tan θ sinψ tan θ 1

ω ∀θ ̸= ±π

(4.18)

Ṙ = [ωw]×R (4.19)
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4 Methods 4.2.2 Optimization problem

where {rwi (t)} are the vectors from the body to the stance feet. For small ω, Iwω̇w +
ωw × (Iwωw) is well approximated by Iwω̇w. Furthermore, for ϕ, θ ≈ 0, Equation 4.18
can be simplified to ϕ̇θ̇

ψ̇

 ≈

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

ω = R⊤
z (ψ)ω (4.20)

The simplified model then becomes

ẋ(t) ≈ A(ψ(t))x(t) +B(ψ, {ri(t)}i)u(t) + g+ (4.21)

with

A(ψ) =


03 03 I3 03

03 03 03 R⊤(ψ)
03 03 03 03

03 03 03 03



B(ψ, {ri(t)}i) =


03 03 03 03

03 03 03 03
1
mI3

1
mI3

1
mI3

1
mI3

Iw
−1

[rw1 ]× Iw
−1

[rw2 ]× Iw
−1

[rw3 ]× Iw
−1

[rw4 ]×


(4.22)

and

u =


fwr,1
fwr,2
fwr,3
fwr,4

 , g+ =

06×1

g
03×1

 (4.23)

The system matrices depend only on ψ and {rwi }i. If these can be calculated beforehand,
the system becomes linear time-varying. A desired reference trajectory xref (t) can be
calculated ahead of time.

Assuming that x(t) ≈ xref (t), and alongside a heuristic for placing new footholds upon
foot landing, this can be used to find approximate values for both ψ(t) and {rwi (t)}i. The
footstep placement is done using the Raibert Heuristic, as discussed in subsection 4.3.1.
Thus, we get an LTV approximation of the system dynamics with A(t) ≈ A(ψref (t)),B(t) ≈
B(ψref (t), {rref,i(t)}i).

4.2.2 Optimization problem
This simplified model lays the foundation for formulating an MPC controller. As in
Di Carlo et al. (2018) a zero-order-hold integration scheme is employed for discretizing

19



4 Methods 4.2.2 Optimization problem

the system, yielding the discrete-time dynamical system

x[k + 1] = Ak,dx[k] +Bk,du[k] + g+
d (4.24)

with

Ak,d = eA(k∆t)∆t, Bk,d =

(∫ ∆t

0

eA(k∆t)τdτ

)
B(k∆t), g+

d = ∆t · g+ (4.25)

It may be noted that due to the required time discretization of the system, and the control
signal being generated by considering the system behavior over a time interval, the hybrid
nature of the system is handled elegantly, simply by changing the corresponding system
matrices through time in accordance with the gait pattern.

For the ground reaction forces to be physically realizable, they must obey certain con-
straints. Firstly, the normal component of the reaction force must be upward-pointing, as
the foot cannot pull the ground closer. Secondly, the force must stay within the friction
cone, parametrized by the static friction coefficient µ. The second corresponds to a nonlin-
ear inequality constraint (friction cone) which is then linearized (friction pyramid). Lastly,
all non-stance feet must generate zero force. These constraints are summarized as

Cf f i[k] ≤ 0 ∀i ∈ Sst,k
f i[k] = 0 ∀i ∈ Snst,k
∀k ∈ {1, . . . , N}

(4.26)

where

Cf =


0 0 −1
1 0 −µ
−1 0 −µ
0 1 −µ
0 −1 −µ

 (4.27)

Sst,k and Snst,k are the index sets for the stance feet and non-stance feet respectively
at timestep k. The system dynamics are imposed as equality constraints between time-
adjacent system states.

The reference trajectory, being calculated simply from initial pose and desired velocities,
may not always be a feasible trajectory. Thus, in stead of imposing equality constraints
between the real and desired state trajectory, a penalty is imposed on the distance between
the two in the objective function. Alongside an imposed cost on the squared norm of the
reaction forces, one can summarize the optimization problem as
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4 Methods 4.3 Swing leg control

min
x,f

∥f∥22 + c2∥x− xref∥22

s.t. x[k + 1] = Ak,dx[k] +Bk,du[k] + gd

x[1] = x0

Cf f i[k] ≤ 0 ∀i ∈ Sst,k
f i[k] = 0 ∀i ∈ Snst,k

∀k ∈ {1, . . . , N}

(4.28)

where

u[k] =
[
f1[k]

⊤ f2[k]
⊤ f3[k]

⊤ f4[k]
⊤]⊤

x =
[
x[1]⊤ . . . x[N ]⊤

]⊤
f =

[
f1[1]

⊤ f2[1]
⊤ f3[1]

⊤ f4[1]
⊤ f1[2]

⊤ . . . f4[N ]⊤
]⊤ (4.29)

This optimization problem is solved recurrently, and output resulting ground reaction
forces. As opposed to in Di Carlo et al. (2018), we choose here to use the correspond-
ing acceleration as input to a whole-body-controller, in stead of converting the forces to
torque directly. This choice will be elaborated upon in section 4.6. Solve times typically
lie between 0.01s− 0.05s, so reaction forces are updated quickly in order to respond both
to unknown disturbances and to effects from modeling errors and simplifications.

The reference trajectory is calculated by considering the current position and yaw, and
having these evolve by a given constant xy velocity and yaw rate. Desired body height is
constant, and desired roll and pitch angles are always 0.

4.3 Swing leg control

4.3.1 Leg placement heuristic

The heuristic used to find new footholds for each foot is the so-called Raibert heuristic
(Bledt et al. (2018)) and can be seen in Equation 4.30:

pbdes = pbref +
Tstance

2
vdes (4.30)

where pref is the reference (shoulder) position of the leg, vdes is the desired velocity and
Tstance is the foot stance period.
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4 Methods 4.3.2 Swing leg trajectory design

Figure 4.1: Gait graph for trotting gait. Swing phases are in blue, while stance phases are in gray

4.3.2 Swing leg trajectory design

The swing leg trajectory design is fairly simple: A linear interpolation is done between the
old foothold and the new desired foothold in the body frame. Then, a sinusoidal term is
added to the z-component in order to get the desired elevation in the step:

p(τ)b = pbold + (pbdes − pbold)τ +

 0
0

h · sin (πτ)

 (4.31)

4.4 Gaits

Three different gaits will be tested with the controller: Standing, trotting and ambling.
Each gait is characterized by its gait graph, which is a diagram illustrating the placement
of stance and swing phases for each leg through the gait cycle.

4.4.1 Standing

In the standing gait, all four legs are in stance phase for the duration of the gait pe-
riod.

4.4.2 Trotting

In trot, diagonal legs share the same sequence of stance and swing phases. See Fig-
ure 4.1.
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4 Methods 4.4.3 Ambling

Figure 4.2: Gait graph for trotting gait. Swing phases are in blue, while stance phases are in gray

4.4.3 Ambling
In amble, the fore and rear legs switch stance and swing leg in an alternating fashion. See
Figure 4.2.

4.4.4 Static and dynamic gaits
Gaits are typically split into two categories: Those which are statically stable, and those
which are dynamically stable. Statically stable gaits are gaits where any configuration
realized during a gait cycle is a feasible standing configuration, i.e. the walker can freeze
in place at any point and not fall over. This corresponds to the robot’s center of mass
consistently residing within the convex hull spanned by its feet, referred to as the support
polygon. For a stationary robot, this translates to a situation in which the ground’s resultant
normal force is able to completely cancel out the gravitational force without any resulting
moment acting on the robot.

Dynamically stable gaits, on the other hand, are gaits in which this is not satisfied for
portions of the gait cycle. This might be due to the center of mass simply being outside
of the support polygon for parts of the gait, or the support polygon may be degenerate for
parts of the gait – that is, it might be spanned by fewer than three feet, resulting in zero
area.

While it is theoretically possible for the robot’s center of mass to coincide with a given
line or point, any real-world scenario or simulation utilizing numerical calculations will
introduce errors or disturbances that makes this impossible as a matter of practicality.
Thus, the robot is for portions of the gait ”falling forwards” and requires the controller to
make continual adjustments in order to not fall over. Dynamic gaits are thus considered to
be more difficult to achieve, as well as less robust than static gaits. On the other hand, they
are typically more energy efficient, and any sort of fast walking or running will be using a
dynamic gait.
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4 Methods 4.5 Implementation notes

Both the trot and the ambling gait are examples of dynamic gaits. However, the amble
may be more difficult to achieve: In the double support phase of the trot, the stance feet
are always diagonal pairs, see Figure 4.1. Thus, the support line is fairly close to the center
of mass, and the robot is as such closer to an unstable equillibrium. If the robot were to
stop in the middle of such a double support phase, it would resemble a sort of pendulum
close to its unstable upward equillibrium: While unstable, the repulsive force acting on the
pendulum is fairly modest.

During parts of the ambling gait, however, there are double support phases in which the
stance legs are on the same side, see Figure 4.2. In these phases, the robot more resembles
a pendulum in its sideways position, with close to the maximal amount of torque acting on
it. This might make the ambling gait slightly more difficult to realize.

4.5 Implementation notes

4.5.1 Code base
The source code for this project is written in C++ and builds and expands upon the code
base developed in Ghansah and Thorseth (2021). The full code base is open source and
hosted in a git repository on Github1. The implementation done in this thesis can be found
in the mpc control feature branch, and is located in the catkin workspace structure
in the convex mpc controller ROS package.

4.5.2 ROS
The control system is written as c++ ROS-nodes. ROS (Robot Operating System) is
a powerful, open source tool for writing robotic software, and provides a collection of
tools, libraries and conventions for facilitating the development of complex robotic sys-
tems.

4.5.3 Simulation
The robot is simulated using the open source simulation environment Gazebo. Gazebo
was chosen for its versatility as well as for its integration with ROS.

4.6 Control system overview
The method used for controlling the robot is based on work done in Di Carlo et al. (2018).
There, ground reaction forces are taken directly from the solution from the MPC, converted
to joint torques and given as input to the stance legs. A different controller is used to
control swing legs.

However, swing legs also generate torque when moving, which is not accounted for when
calculating reaction forces in the MPC. Thus, we have decided to utilize a whole-body

1https://github.com/Norwegian-Legged-Lab/Tetrapod-Robot/tree/mpc_
control_feature
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4 Methods 4.6 Control system overview

Figure 4.3: Block diagram of control system

controller, which is given desired base acceleration as well as the desired states of all
feet.

Calculating the desired base acceleration using MPC gives a desired acceleration which is
realizable with the current number and placement of stance feet, while also resulting in a
feasible trajectory given future footholds.

On the other hand, the use of a whole-body controller to achieve the desired acceleration
makes it possible to take into account and compensate for the torque generated by swing-
legs. The whole-body controller used here was described in Dario Bellicoso et al. (2016)
and implemented for ASTRo in Ghansah and Thorseth (2021). For a block diagram of the
full control system, see Figure 4.3
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5
Results and discussion

5.1 Convex MPC

5.1.1 Model parameters
Parameters related to the gait can be seen in Table 5.1. X-velocities relate to the forward-
moving scenarios for the gaits. Parameters related to the optimization problem can be
seen in Table 5.2. Costs are given for one time step of the discretization, and are identical
across time steps. All force terms have the same cost associated, while the costs asso-
ciated with reference error are the diagonal elements of the diagonal reference error cost
matrix.

5.1.2 Simulated body trajectories
In what follows, the full control pipeline is used to control a simulated ASTRo. Simulation
is performed in the open-source simulation framework Gazebo. The controller is tested
with standing, as well as a trotting and an ambling gait. For the trotting and ambling gaits,
both a walking-in-place and a forward walking scenario is tested.

The controller exhibited some performance issues when simulating at real-time. Thus, all
simulations are performed at half of real-time speed, except for the forward amble, which
is performed at 30% of real-time speed. Fairly long time series are shown in order to
demonstrate the ability to produce stable walking over longer periods. All gait periods are
0.5 seconds in simulated time.

hswing[m] Tgait[s] vref,trotx [m/s] vref,amblex [m/s] vrefy [m/s] ϕ̇ref [rad/s]
0.02 0.5 0.4 0.2 0 0

Table 5.1: Parameters determining the gaits
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∆t[s] 0.05
Tsim[s] 0.5
costf 1
costx 5 · 105
costy 5 · 105
costz 5 · 106
costψ 5 · 106
costθ 5 · 105
costϕ 5 · 105
costẋ 5 · 105
costẏ 5 · 105
costż 5 · 105
costωb

x
5 · 104

costωb
y

5 · 104
costωb

z
5 · 104

Table 5.2: Parameters configuring the optimization problem

Base height, roll and pitch are the states which are important to keeping the robot’s posture
stable, as the robot’s dynamics are not invariant to a shift along these dimensions. On the
other hand, the horizontal position of the base as well as its yaw are dimensions for which
a constant shift does not affect the robot’s dynamics. Thus, roll, pitch and height values
are plotted against references to indicate the controller’s ability to keep the gait stable (in
the sense of not falling over).

For movement in the xy-plane, x-velocity is the only non-zero reference given to the con-
troller. Thus, x-velocity is plotted against its reference value. Torque exertion is important
for real-world feasibility: Inordinately high torque values might indicate that while the
controller works in simulation, physical limitations would likely bar it from working on
hardware.

Standing

As expected, standing is handled fairly well. As seen in Figure 5.1 there is a very slight
constant deviation in the vertical position of the body of roughly 0.6mm RMSE, see Ta-
ble 5.3. This is likely due to the trade-off done in the MPC between minimizing ground
reaction forces – in particular normal force – and minimizing the distance to the nominal
trajectory. Roll and pitch errors are practically zero with the exception of some transients.
These are possibly due to higher solve times for the MPC. Already when standing, hip
pitch torque exertion is moderately high, see Figure 5.2.

This illustrates one of the potential shortcomings of sprawling quadrupeds: A wide stance
implies a large component of the distance from actuators to footholds lying in the trans-
verse plane. This again implies a large cross product between the arm and the normal
force, resulting in a larger torque exertion for a given produced normal ground force. This
is more prominent for the hip pitch than for the knee pitch, as the foot-to-actuator distance
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Figure 5.1: Selected state trajectories for standing

zRMSE[m] ψRMSE[rad] θRMSE[rad] ẋRMSE[m/s]
Stand 6.731 · 10−4 1.961 · 10−4 2.584 · 10−4 5.669 · 10−4

Stat. trot 1.292 · 10−3 1.340 · 10−3 2.950 · 10−4 2.842 · 10−3

Forward trot 1.630 · 10−3 3.765 · 10−3 5.867 · 10−3 2.058 · 10−2

Stat. amble 3.210 · 10−2 1.237 · 10−1 2.404 · 10−2 1.318 · 10−1

Forward amble 1.501 · 10−2 2.390 · 10−2 1.598 · 10−2 6.365 · 10−2

Table 5.3: RMSE values for selected system states

is greater.

Trotting

For trotting, there is one stationary and one forward-moving scenario.

As seen in Figure 5.3, there are slight periodic oscillations affecting all states. This is
most likely explained by the impacts of feet against the floor when establishing a new
foothold, causing a periodic impulse-like disturbance. These effects – while modeled in
the Gazebo simulator – are not in the model-based HO controller and is thus not compen-
sated for.

However, there also seems to be more slowly-varying deviations in the base roll. These
might stem from non-optimal tuning of the MPC, so that aggressive corrections towards
the roll reference are negated by a 0-reference in angular velocity in the transverse plane.
However, the order of magnitude is sufficiently small for these oscillations to not be of
great concern. Base x-velocity is maintained fairly well at its 0 reference, with slight
oscillations here as well. As seen in Figure 5.4 actuator torques are still reasonable, mostly
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Figure 5.2: Actuator torques for standing

staying below 20Nm.

In the forward-moving scenario, we see from Figure 5.5 that both vertical position and
roll continues to lie close to their references, apart from the aforementioned slight periodic
oscillations. What is notable here, though, is that the base pitch lies constantly slightly
above its 0 reference, corresponding to the robot leaning slightly forward when moving
forward.

This might be partially explained by the opposing torque applied to the base during the
swing phase of each leg. The controller tracks the reference fairly closely also in this
case. As seen in Table 5.3, both roll and height RMSE increase roughly one order of
magnitude from the standing case to both trotting cases. This is expected both due to the
more dynamic nature of the movement, as well as the frequent disturbances from foot-
ground impacts.

Ambling

For ambling there are two scenarios as well, one in place and one moving forward. Al-
ready for stationary ambling, we see degradation in controller performance. The periodic
oscillations have a larger amplitude, and the roll angle is consistently below 0, indicating
some stationary error superimposed on the oscillations seen in previous plots. Particularly
the stationary error in roll is indicative of poorer controller performance, as the robot is
unable to stay level in the roll direction but leans consistently to one side. Oscillatory
errors in x-velocity are also roughly one order of magnitude greater compared to those in
Figure 5.3. At the end of the time series in Figure 5.9, it can be seen that the controller
fails to produce a stable gait, so that the robot falls over and collapses.
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Figure 5.3: Selected state trajectories for trotting in place

Figure 5.4: Actuator torques for trotting in place
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Figure 5.5: Selected state trajectories for forward trotting

Figure 5.6: Actuator torques for forward trotting
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Figure 5.7: Selected state trajectories for ambling in place

Additionally, we see from Figure 5.8 that the torque limits of 40Nm are saturated at sev-
eral points. This likely contributes to the degraded controller performance, as the inequal-
ity constraints on torque limit the controller’s ability to fulfill lower-priority tasks such
as foot and base reference tracking. RMSE consistently increase roughly one order of
magnitude from the trotting scenarios, see Table 5.3. This demonstrates the hypothesized
difference in difficulty in producing a trotting and ambling gait put forth in ??.

For the forward moving scenario, the undesirable tendencies seen in the stationary case are
still present. While magnitude of both oscillatory and stationary errors are slightly smaller,
this has to be seen in light of the simulation happening at a lower speed, effectively giving
the controller a higher operating frequency than in previous cases. This further reduction
in simulator speed was due to the inability of the controller to produce a forward ambling
gait at the same real time factor as for the other simulations.

As seen in Figure 5.10 the body torques saturate for some actuators for large portions of
the simulation. Here as well, this might account for some of the degraded performance of
the controller.

The tendency for the robot to veer to one side for more demanding scenarios were also
present in the trotting scenarios at real-time simulation. It is possible that this betrays
some flaw in either the formulation or the current implementation of the MPC.

It is possible that both the periodic oscillatory errors and the saturation of torque could
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Figure 5.8: Actuator torques for ambling in place

Figure 5.9: Selected state trajectories for forward ambling
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Figure 5.10: Actuator torques for forward ambling

both be amended by a more carefully designed swing leg trajectory, where acceleration
and velocity as well as position were continuous. One way to achieve this could be by
using Bézier curves, which are extensively used in the field of trajectory planning (Zhang
et al. (2019); Askari et al. (2016); Ingersoll et al. (2016)).
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6
Conclusion and further work

6.1 Conclusion
The topic of quadrupedal legged locomotion has been a hot research topic, and in the last
few decades we have seen a substantial body of research produced in the field. Further-
more, the last five years has seen the emergence of the first quadrupedal robots in the
commercial sphere, with Boston Dynamics’ Spot having been made available for sale and
other companies following suit. This seems to indicate that legged robotics as a field is in
the process of escaping the purely academic sphere and is starting to mature enough for
serious commercial applications.

As most research has been focused on mammalian quadrupeds, an examination is war-
ranted into whether the methods yielded are applicable to quadrupedal robots with other
leg configurations, which may have their distinct set of advantages. Therefore, in this pa-
per, the question has been posed of whether methods from this rich body of research is
straightforwardly transferable to quadrupeds with a sprawling leg configuration.

In this paper, we examined a number of methods used for dynamic gait generation in
mammalian quadrupeds. Two such methods were selected for further elaboration, and one
was chosen for implementation and testing through simulation. A method utilizing a single
body rigid dynamics model simplification and a convex MPC formulation in series with
a HO controller was implemented and tested on the sprawling quadruped robot ASTRo,
developed and built in Ghansah and Thorseth (2021). The simulation was performed in the
robot simulation framework Gazebo. The simulation was performed at half of real time
speed for controller performance reasons.

For a trotting gait the results were promising, as the controller managed to stabilize the
gait over longer periods of time and to follow a given reference velocity with a low error
(0.021 m/s RMSE). However, the simulations performed with an ambling gait were more
ambiguous, with an RMSE of 0.12 radians in the roll axis for the stationary case. A further
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reduction in simulation speed was necessary to produce a successful forward ambling gait.
As the controller could not stabilize the gait at real time, implementation on hardware
is infeasible for now. Overall, the results show promise for the use of the method for
sprawling locomotion. However, the difficulties in stabilizing more dynamic gaits suggests
that the transfer of this type of controller may not be completely straightforward, but may
in stead require further modification to successfully produce a wide range of gaits.

Additionally, another control method relying on full-order hybrid models of the system
was examined. This method relies on an extension of the concept of zero dynamics to
apply for hybrid systems, and utilizes IO-linearization approaches to control the full-order
dynamics to a zero-dynamics manifold. The desired output trajectories are found through
posing a nonlinear optimization problem utilizing the complete dynamics of the system
and a modified Hermite-Simpson collocation method.

Due to the generality of the framework and the lack of model simplifications, it is possible
that this method may prove more successful at capturing the system dynamics and control-
ling the system where methods utilizing substantial simplifications may fall short.

6.2 Further work
Looking forward, there are some ways to address the limitations of the implementation
chosen for this thesis. Firstly, while the MPC manages to recalculate appropriate ground
reaction forces recurrently in order to stabilize the robot gait, both foot placement and gait
scheduling is static and done in a fairly simplistic manner.

In order to ensure a robust, flexible and efficient gait, animals adapt both ground reaction
forces, footstep placement and gait scheduling to unexpected obstacles or disturbance. In
the future, it would therefore be interesting to attempt to merge a method such as the one
implemented here with reactive gait scheduling methods such as the contact time modula-
tion method introduced in Yeom and Bae (2021) and discussed in section 2.3.

Additionally, one could argue that the challenges faced in certain highly dynamic gaits
warrants a look at more sophisticated, full-model methods such as the HZD approach
examined in section 4.1. Especially higher-order effects such as coriolis and centrifugal
terms of the body and torque generated by leg movement start to become relevant for
higher velocities, and simplified models which do not account for these effects may simply
not be the best choice of method in these cases.

However, methods such as the last one rely on the solving of complex high-dimensional
NLPs. Hence they have the drawback that an essential part of the method consists of offline
trajectory generation, while the online control aspect merely consists of stabilizing the sys-
tem in some vicinity of such a pre-defined trajectories. Such methods will likely be more
vulnerable to large disturbances which perturb the system away from the orbitally stable
vicinity around such a trajectory. Thus, in order to achieve flexible and robust control of
locomotion, further development of fully online methods such as the one implemented
here may be the more interesting future direction of research.

All in all, we strongly believe that the coming decades will witness the widespread adop-
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tion of legged robotics in the commercial sector, and that there are niches which are best
suited for mammalian and sprawling quadrupeds respectively.
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