
D
ynam

ic W
alking in a Spraw

ling Q
uadruped

M
ads Erlend Bøe Lysø

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Mads Erlend Bøe Lysø

Exponentially Stable Dynamic
Walking in a Sprawling Quadruped

Transfer of Methods and Comparison

Master’s thesis in Cybernetics and Robotics
Supervisor: Kristin Ytterstad Pettersen
Co-supervisor: Esten Ingar Grøtli
June 2022

M
as

te
r’s

 th
es

is

Mads Erlend Bøe Lysø

Exponentially Stable Dynamic Walking
in a Sprawling Quadruped

Transfer of Methods and Comparison

Master’s thesis in Cybernetics and Robotics
Supervisor: Kristin Ytterstad Pettersen
Co-supervisor: Esten Ingar Grøtli
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Problem description

The following thesis will look at the problem of motion planning and control of
dynamic walking in a sprawling quadrupedal robot. It will do so in the following
manner:

• First, a range of existing methods previously used on mammalian quadrupedal
robots will be reviewed.

• One of the reviewed methods will be selected as a basis for implementation on
the sprawling quadrupedal robot ASTRo.

• The method will be evaluated in simulations on the ASTRo robot as well as on a
mammalian robot (vision60), and results will be discussed and compared.

i

Abstract

Legged robots have been a topic of research of increasing academic and public interest
for the last half-century. The potential uses for robust autonomous locomotion through
environments which prove difficult for wheeled vehicles are manifold both in the
military and commercial sectors, as well as in the realm of humanitarian work.

The topic is also interesting for strictly academic reasons: The problem of control-
ling such robots in ways that are both secure, robust and flexible enough to handle
varied environments, while simultaneously being energy-efficient, has proven to be a
tremendous challenge. While especially the last decade has seen impressive progress,
the problem of robust dynamic legged locomotion is not a solved problem by any
stretch of the imagination.

In the realm of quadrupedal locomotion, most research so far has focused on robots
with a so-called mammalian leg configuration. However, there are other choices of leg
configurations which are found in the natural world, and which may warrant further
investigation.

One such example, found among other places in arachnids and certain reptiles, is
the sprawling leg configuration. In this thesis we wish to draw upon the rich body of
existing research on locomotion in mammalian quadrupeds, in order to investigate
whether methods found there are easily adapted and transferred for use on sprawl-
ing quadrupeds. We first survey the existing literature on control for mammalian

ii

quadrupedal locomotion, and select a method.
The selected method, which is based on an extension of the concept of zero-

dynamics to Hybrid Dynamical Systems (HDS), uses trajectory optimization to directly
synthesize a closed-loop IO-feedback-linearization controller which drives the system
dynamics to a zero-dynamics manifold. A method of post-processing is employed to
ensure that the controlled dynamics are exponentially orbitally stable on the manifold,
resulting in an exponentially orbitally stabilizing controller for the system.

A modification was proposed to the control structure suggested in the original
method, which represents a more principled approach to overconstrained systems,
in which the number of actuators is greater than the number of actuated degrees
of freedom. It is also shown that the modified approach results in the same system
behavior, while using equal or smaller amounts of torque.

The method is implemented both on the sprawling quadruped ASTRo and the
mammalian quadruped vision60 from Ghost Robotics, and both are tested in simulation.
The results show that the resulting controller exponentially stabilizes both robots to
period gait behaviors, demonstrating that the selected method is well-suited for use
on sprawling quadrupeds as well. The resulting cost of transport also indicates that
mammalian quadrupeds may have an energy-efficiency advantage over sprawling
quadrupeds, while results obtained for unmodeled ground height changes indicate
that sprawling quadrupeds may be less sensitive to such changes.

Results comparing the original controller structure to the proposed modification,
suggest that there are in practice concrete and potentially significant energy-efficiency
gains to be made from the modification.

iii

Sammendrag

Roboter med ben har vært et forskningsområde av økende akademisk og offentlig
interesse de siste 50 årene. Roboter som evner å bevege seg robust og autonomt
gjennom områder som byr på utfordringer for konvensjonelle kjøretøy med hjul vil ha
utstrakte bruksområder, både innenfor militære og kommersielle sektorer, men også
innenfor humanitært arbeid.

Området er også interessant i rent akademisk øyemed: Problemet med å styre slike
roboter på en måte som er sikker, robust og fleksibel nok til å håndtere varierte mijøer
– og som samtidig er energieffektiv – har vist seg å være en formidabel utfordring. Selv
om man særlig det siste tiåret har vært vitne til imponerende fremgang innen feltet, er
robust dynamisk gange fortsatt ikke i noen forstand et løst problem.

Innenfor firbeint gange har brorparten av forskning så langt fokusert på roboter
med en såkalt pattedyrliknende benkonfigurasjon. Det finnes likevel andre benkon-
figurasjoner, noen eksemplifisert i dyreriket, som fortjener en grundigere behandling
enn så langt gitt.

Et eksempel på dette, som vi blant annet finner hos araknider og enkelte reptiler,
er en edderkoppliknende benkonfigurasjon. I denne oppgaven vil vi benytte den store
mengden eksisterende forskning på gange hos pattedyrliknende roboter, for å under-
søke hvorvidt metoder herfra enkelt kan tilpasses og overføres til edderkoppliknende
roboter. Vi begynner med en undersøkelse av eksisterende litteratur for regulering av

iv

pattedyrliknende roboter og velger en metode.
Den valgte metoden, som baserer seg på en utvidelse av konseptet null-dynamikk

(zero dynamics) til hybride dynamiske systemer, bruker baneoptimering til direkte
å produsere en lukket-sløyfe IO-feedback-lineariseringsregulator som driver system-
dynamikken til en nulldynamikkmangfoldighet. En metode benyttes deretter til å
postprosessere regulatorparametrene, for å sikre at den styrte dynamikken er ekspo-
nensielt orbitalt stabil på mangfoldigheten. Dette resulterer igjen i en eksponensielt
orbitalt stabiliserende regulator for systemet.

En endring ble foreslått til regulatorstrukturen som var foreslått i den originale
metoden. Denne endringen representerer en mer prinsipiell tilnærming til å håndtere
overbegrensede systemer, hvor antall pådrag er større enn antall frihetsgrader på-
dragene kan påvirke. Vi viser også at denne endrede tilnærmingen resulterer i lik
systemoppførsel, og bruker like mye eller mindre pådrag.

Denne metoden er implementert både på den edderkoppliknende roboten ASTRo,
og på den pattedyrliknende roboten vision60 utviklet av Ghost Robotics. Begge roboter
testes i simulering. Resultatene viser at den resulterende regulatoren eksponensielt
stabiliserer begge roboter til periodiske ganglag, og demonstrerer dermed at den valgte
metoden er velegnet til bruk på edderkoppliknende roboter. Den resulterende trans-
portkostnaden peker også i retning av at pattedyrliknende roboter kan ha et fortrinn
over edderkoppliknende med hensyn til energieffektivitet. Resultater fra simulering på
terreng med umodellerte høydeendringer, tyder dog på at edderkoppliknende roboter
kan være mindre sensitive til slike endringer.

Resultater som sammenlikner regulatoren med foreslåtte endringer med den op-
prinnelige regulatorstrukturen, tyder på at det er konkrete og til tider betydelige
fordeler med hensyn til energieffektivitet ved å benytte den endrede regulatoren.

v

Contents

Problem description i

Abstract ii

Sammendrag iv

Preface xiv

Acronyms xvi

1 Introduction 1
1.1 Assumptions . 5
1.2 Contributions . 5
1.3 Outline . 6

2 Literature Review 7
2.1 Selected methods . 7
2.2 Zero Moment Point . 8
2.3 Vertical Impulse Scaling . 9
2.4 Contact Time Modulation . 10

vi

CONTENTS CONTENTS

2.5 Reduced-order Convex Model Predictive Control 11
2.6 Nonlinear Model Predictive Control with soft contact model 12
2.7 Model predictive control with adaptive Control Lyapunov Function . 14
2.8 Data-driven methods using privileged learning 15
2.9 Choice of method . 17

3 System Modeling 19
3.1 System kinematics . 19

3.1.1 Ground contact constraints 24
3.2 System Dynamics . 25

4 Methods 29
4.1 Hybrid Zero Dynamics . 30

4.1.1 Hybrid Dynamical Systems 31
4.1.2 Continuous dynamics . 32
4.1.3 Discrete dynamics . 32
4.1.4 Continuous domain constraints 33
4.1.5 Guards . 35
4.1.6 Zero-dynamics . 36
4.1.7 IO-linearization for overconstrained systems 39

4.2 Direct collocation . 45
4.3 Closed-loop Trajectory Optimization 47
4.4 Controller post-processing for orbital stability 50

4.4.1 Poincaré return maps . 50
4.4.2 Floquet multipliers and Orbital stability 51
4.4.3 Reduced-dimension stability analysis 52
4.4.4 Extension to Hybrid Dynamical Systems 54
4.4.5 Linear/Bilinear matrix inequalities 56
4.4.6 Sensitivity analysis and post-processing 58
4.4.7 Managing and reducing computational complexity 62

4.5 Implementation details . 64
4.5.1 Robot models . 64

vii

CONTENTS CONTENTS

4.5.2 Closed-loop trajectory optimization 64
4.5.3 Controller parameter post-processing 66
4.5.4 Simulation . 66

5 Results and Discussion 67
5.1 Optimal gaits . 68
5.2 Gait stabilization . 73
5.3 Simulation results . 73

5.3.1 vision60 . 74
5.3.2 ASTRo . 75
5.3.3 Deviations between initial state and fixed point for the state

on the Poincaré section . 81
5.4 Response to unmodeled changes in ground height 89

5.4.1 vision60 . 89
5.4.2 ASTRo . 89

5.5 Torque and energy expenditure . 94
5.5.1 Cost of Transport . 95
5.5.2 vision60 . 95
5.5.3 ASTRo . 98
5.5.4 Performance comparison across robots 98
5.5.5 Performance comparison between 11 and 12 actuators 101

5.6 Possible limitations . 102

6 Conclusion and further work 103
6.1 Further work . 104

References 107

viii

List of Tables

3.1 List of Denavit-Hartenberg (DH) parameters for the transformation
from each leg frame to its respective foot. Visualization made using
RVIZ (ROS visualization tool) . 23

3.2 Translation to link Centers of Mass (CoMs) and feet from frames in
which they are fixed . 24

3.3 Masses and inertias of robot links . 25

5.1 Spectral radii of the projection of the Poincaré map Jacobian for differ-
ent gaits, before and after post-processing the controller parameters
for exponential stability . 73

5.2 Performance metrics for ASTRo and vision60 for respectively 11 (non-
overconstrained) and 12 (overconstrained) actuators 102

ix

List of Figures

2.1 Illustration of the relation between Center of Gravity (CoG) projection
and Zero Moment Point (ZMP) . 9

3.1 Illustration of rotational axes for a sprawling joint configuration. Blue
lines indicate rotational axes and direction 20

3.2 Illustration of robot links and coordinate frames 22

4.1 Illustration of an axis ®𝑘 around which the available contact forces can
generate no torque/moment . 42

4.2 Geometric illustration of change in impact point and time as a function
of initial perturbation . 57

4.3 Norm of the sensitivity of Ã0 with respect to each parameter in H . . 65

5.1 Diagram for one cycle of an ambling gait. Grey stretches indicate
stance phases while blue stretches indicate swing phases. 68

5.2 Phase portraits for optimized stationary ambling gait on the ASTRo
robot. First letter signifies "front" or "rear" leg, last letter signifies "left"
or "right" leg. Red dots signify initial values. Phase portraits for x- and
y-position do (by design) not constitute clear orbits and are omitted. . 69

x

LIST OF FIGURES LIST OF FIGURES

5.3 Phase portraits for optimized forward ambling gait on the ASTRo robot.
First letter signifies "front" or "rear" leg, last letter signifies "left" or
"right" leg. Red dots signify initial values. Phase portraits for x- and
y-position do (by design) not constitute clear orbits and are omitted. . 70

5.4 Phase portraits for optimized stationary ambling gait on the vision60
robot. First letter signifies "front" or "rear" leg, last letter signifies "left"
or "right" leg. Red dots signify initial values. Phase portraits for x- and
y-position do (by design) not constitute clear orbits and are omitted. . 71

5.5 Phase portraits for optimized forward ambling gait on the vision60
robot. First letter signifies "front" or "rear" leg, last letter signifies "left"
or "right" leg. Red dots signify initial values. Phase portraits for x- and
y-position do (by design) not constitute clear orbits and are omitted. . 72

5.6 Phase portraits for stationary gait on the vision60 robot during simula-
tion. First letter signifies "front" or "rear" leg, last letter signifies "left"
or "right" leg. Red dots indicate initial values. x- and y-positions are
excluded as they are not attempted stabilized. 75

5.7 Trajectories of base pose states during 250 cycles of stationary gait for
the vision60 robot during simulation 76

5.8 Norms of the error for iterative applications of the Poincaré map (cor-
responding to successive intersections between state and Poincaré
section) between each other and between initial state, for a stationary
gait for the vision60 robot during simulation 77

5.9 Phase portraits for forward (0.2 m/s) gait on the vision60 robot during
simulation. First letter signifies "front" or "rear" leg, last letter signifies
"left" or "right" leg. Red dots indicate initial values. x- and y-positions
are excluded as they are not attempted stabilized. 78

5.10 Trajectories of base pose states during 250 cycles of forward gait on
flat ground for the vision60 robot during simulation 79

xi

LIST OF FIGURES LIST OF FIGURES

5.11 Norms of the error for iterative applications of the Poincaré map (cor-
responding to successive intersections between state and Poincaré
section) between each other and between initial state, for a forward
gait on flat ground for the vision60 robot during simulation 80

5.12 Phase portraits for stationary gait on the ASTRo robot during simula-
tion. First letter signifies "front" or "rear" leg, last letter signifies "left"
or "right" leg. Red dots indicate initial values. x- and y-positions are
excluded as they are not attempted stabilized. 82

5.13 Trajectories of base pose states during 250 cycles of stationary gait for
the ASTRo robot during simulation 83

5.14 Norms of the error for iterative applications of the Poincaré map (cor-
responding to successive intersections between state and Poincaré
section) between each other and between initial state, for a stationary
gait for the ASTRo robot during simulation 84

5.15 Phase portraits for forward (0.2 m/s) gait on the ASTRo robot during
simulation. First letter signifies "front" or "rear" leg, last letter signifies
"left" or "right" leg. Red dots indicate initial values. x- and y-positions
are excluded as they are not attempted stabilized. 85

5.16 Trajectories of base pose states during 250 cycles of forward gait on
flat ground for the ASTRo robot during simulation 86

5.17 Norms of the error for iterative applications of the Poincaré map (cor-
responding to successive intersections between state and Poincaré
section) between each other and between initial state, for a forward
gait on flat ground for the ASTRo robot during simulation 87

5.18 Trajectories of base pose states during 250 cycles of forward gait on
ground with a ramp of 0.3% elevation for the vision60 robot during
simulation . 90

xii

LIST OF FIGURES LIST OF FIGURES

5.19 Norms of the error for iterative applications of the Poincaré map (cor-
responding to successive intersections between state and Poincaré
section) between each other and between initial state, for a forward
gait on ground with a ramp of 0.3% elevation for the vision60 robot
during simulation. Note that for this plot, the entire base position is
omitted as the z-position is not periodic when the ground slopes. . . 91

5.20 Trajectories of base pose states during 250 cycles of forward gait on
groundwith a ramp of 2% elevation for the ASTRo robot during simulation 92

5.21 Norms of the error for iterative applications of the Poincaré map (cor-
responding to successive intersections between state and Poincaré
section) between each other and between initial state, for a forward
gait on ground with a ramp of 2% for the ASTRo robot during simula-
tion. Note that for this plot, the entire base position is omitted as the
z-position is not periodic when the ground slopes. 93

5.22 Overview of torques for vision60 robot during forward gait on flat
ground using 11 actuators . 96

5.23 Overview of torques for vision60 robot during forward gait on flat
ground using 12 actuators . 97

5.24 Overview of torques for ASTRo robot during forward gait on flat
ground using 11 actuators . 99

5.25 Overview of torques for ASTRo robot during forward gait on flat
ground using 12 actuators . 100

xiii

Preface

The following thesis is submitted as a part of the requiremeents for the master’s
degree at the Department of Enginering Cybernetics at the Norwegian University
of Science and Technology, and is written in collaboration with the independent
research organization SINTEF. The thesis dives into the field of robotic walking, and
is simultaneously inspired by both the apparent simplicity and true difficulty of the
control problem.

This master’s thesis is a continuation of a specialization project I conducted during
the autumn of 2021. As is customary, the specialization project is not published. This
means that important background theory and methods from the project report will be
restated in full throughout this report to provide the best reading experience. Below, a
complete list of the material included from the specialization project [1] is listed.

• chapter 2 (specifically sections 2.2 to 2.4)

• chapter 4 (specifically sections 4.1 and 4.3 with some adaptations overall and
larger extensions to section 4.1.6.)

Unless otherwise stated, all figures and illustrations have been created by the
author.

I would like to express my gratitude to my academic supervisors, Prof. Kristin

xiv

LIST OF FIGURES LIST OF FIGURES

Ytterstad Pettersen and Dr. Esten Ingar Grøtli for their time and invaluable guidance,
expertise and feedback.

I would like to thank my partner, Silje-Marie, for her support through the ups and
downs which constitute the day-to-day experience of writing such a thesis. She has
listened mostly patiently to a great deal of frustrations about the searching for and
finding of long-hidden computer bugs introduced by yours truly, for which I am deeply
grateful. In addition, she read and reviewed the thesis. I would also like to thank my
friends. In particular, I want to thank Karl Hole Totland; not only have we enjoyed (at
the very least, tolerated) each others’ company for 21 years, he also read and reviewed
this thesis not only once but twice. Finally, I would like to thank my family; Gro Ellen,
Nils Are, Joar, Ingeborg, Margrethe, Severin, Ingrid and Martin for their continued
support to reach this point.

xv

Acronyms

AD Automatic Differentiation 13

BMI Bilinear Matrix Inequality 29, 56, 58, 61, 62

CLF Control Lyapunov Function 14, 15

CoG Center of Gravity x, 9

CoM Center of Mass ix, 24, 25

CoT Cost of Transport 4, 94, 98, 101, 102, 104

DH Denavit-Hartenberg ix, 22, 23

DOF Degree of Freedom 19, 20, 41, 43

DRL Deep Reinforcement Learning 15

HDS Hybrid Dynamical System iii, 31, 35, 54

HZD Hybrid Zero-Dynamics 29, 30

LFC Lyapunov Function Candidate 60

xvi

Acronyms Acronyms

LICQ Linear Independence Constraint Qualification 13

LMI Linear Matrix Inequality 56, 58, 61

LQ Linear-Quadratic 13

LTV Linear Time-Varying 11

MPC Model Predictive Control 12, 14, 15

MPP Moore-Penrose Pseudoinverse 44, 45

NLOC Nonlinear Optimal Control 13

NLP Nonlinear Programming 13

NMPC Nonlinear Model Predictive Control 14

ODE Ordinary Differential Equation 32, 36

PE Persistently Exciting 14

PHZD Partial Hybrid Zero Dynamics 39

RMS Root Mean Square 4, 94, 102, 104

SRBD Single Rigid-Body Dynamics 11

URDF Unified Robot Description Format 64

ZMP Zero Moment Point x, 8, 9, 11

xvii

Acronyms Acronyms

xviii

1
Introduction

The process of automating work for increases in productivity has been a hallmark of
most technological revolutions throughout history, illustrated by such examples as the
printing press and the industrial revolution. The next such large-scale disruption in the
conditions under which production occurs - coined as "The fourth industrial revolution"
by economist Klaus Schwab [2] - is expected to rely heavily on the increased assistance
and replacement of human workers by robots. This shift is expected to occur to a
greater or lesser extent across various domains, from industrial and logistics settings,
to construction of buildings and infrastructure, to transportation and goods-delivery,
to search-and-rescue operations, etc.

Each of these domains will require robots with various degrees of autonomy, situa-
tional awareness and ability to engage with unstructured or unexpected environments.
While a stationary robot will often be appropriate in an industrial setting and a wheeled
robot might be sufficient for a perfectly flat storage floor, any application that requires
navigation in the outside world where the ground may be neither level, flat nor free
of obstacles - or that requires traversing a flight of stairs - will need greater mobility
than is offered by wheels or belts. While airborne robots might fill parts of this niche,
their load-bearing capacities are fairly modest compared to land-borne alternatives,

1

2 1. INTRODUCTION

and their high power consumption puts hard constraints on their longevity between
charges (assuming a battery power source).

The alternative then, which is in principle both significantly more mobile than a
wheeled robot while outperforming flying alternatives with regards to longevity and
load-bearing, would be legged robots. The transportation mode of legged walking has
been extensively tested for these purposes with some success in the animal kingdom.

However, the problem of robotic walking introduces distinct difficulties and is a
significantly more complex task than wheeled locomotion. If the robot has revolute
joints - which is the typical case - its kinematics and dynamics are highly nonlinear,
and the linearization of such dynamics would not be valid for a very large portion of
the robot’s configuration space.

The robot is also by necessity underactuated: A walking robot moves itself by the
reaction forces from pushing on the ground beneath itself. Firstly, this bars the robot
from moving downwards at any greater rate than what is dictated by gravitational
forces. Secondly, these reaction forces must lie within a cone which is determined by
the friction coefficient of the specific ground material, so as to not slip. The robot may
be in configurations where it is locally fully actuated, in so far as it may change its
configuration in any direction with some bounded acceleration. It may also perform
entire gait patterns where this is the case. However, these gaits, known as static
gaits, are known to be quite energy-inefficient. Thus, in order to achieve energy-
efficient dynamic walking, the robot must exhibit behavior in which it is also locally
underactuated (in that it may only change its acceleration in certain directions of the
configuration space) for parts of or the entirety of its gait.

Walking robots are also examples of hybrid systems, that is, systems where the
state undergoes both continuous dynamics, and discrete jumps in state space and
dynamics. Such jumps will occur at any point when the robot either lifts a foot from
the ground or puts it down. All of these factors contribute to making legged locomotion
a continually challenging control problem, which may require as well as motivate
research into novel control methods.

In the last few decades, research on walking in both bipedal and quadrupedal robots
have made significant progress. Both academic endeavors and emerging commercial

3

efforts have contributed to advances that has taken walking robots from the realm of
science fiction to what seems to be close to industry-ready products. On the commercial
side, Boston Dynamics and ANYbotics have impressed with robots such as Spot and
Atlas, and ANYmal, respectively, and both offer quadrupedal robots for sale to be
used for work such as inspection of industrial sites. In the academic realm, notable
contributors are MIT - lately behind robots such as the series of Cheetah-robots as
well as being the cradle of Boston Dynamics - Caltech’s AMBER lab - known for work
on robots such as Cassie and DURUS - and ETH, behind StarlETH, the predecessor of
the ANYmal robot.

However, most research on quadrupedal robots has been focused on robots with a
leg configuration resembling that of mammalian animals such as dogs, cats, or cheetahs,
where the hip abductor/adductor joint has a rotational axis which is aligned with the
length of the animal’s body. A different choice, also represented in nature in both
reptilian and arachnid animals, would be the sprawling leg configuration. In such
a configuration, the hip abductor/adductor joint axis is not aligned with the body
lengthwise, but is rather orthogonal to the flat ground and the frontal plane of the
animal. While the mammalian configuration might exhibit certain advantages with
respect to energy efficiency, it is plausible that sprawling quadruped robots might be
more robust to disturbances or uneven terrain: They have the ability to widen their
stance. This again increases the area of their support polygon and with it, their safety
margin with respect to falling over. This is likely to translate into a greater robustness
against falling when faced with rough terrains or unforeseen obstacles.

It would thus be of interest to draw on and build upon the rich already existing
literature on walking in mammalian quadrupedal robots and investigate whether it is
straightforward to transfer such methods and adapt them for sprawling quadrupeds.
In selecting such a method, we are interested in the following properties:

• Does the method allow for mathematical proofs of orbital stability or disturbance
rejection? (Control-theoretical soundness)

• Can the resulting gait be exhibited over long periods of time without the robot
losing its balance? (Empirical demonstration of stability)

4 1. INTRODUCTION

• Is the energy expenditure and maximal torque output reasonably low? (Energy
efficiency)

• Can the method be altered with relative ease (no structural changes) in order to
produce a variety of gait behaviors? (Flexibility)

In reviewing the success of the adapted method to a sprawling quadruped, we will
be interested in evaluating how these properties hold for the method on a sprawling
quadruped, and considering how this compares to the results from the method on a
mammalian quadruped.

Furthermore, we posit two hypotheses at the outset, whose plausibility will later
be reviewed in light of the presented evidence:

• The gait of the sprawling quadruped will be less sensitive to unmodeled terrain
changes than that of themammalian quadruped, due to its wider support polygon
relative to the base size

• The gait of the mammalian quadruped will be more energy efficient than that of
the sprawling quadruped with respect to Cost of Transport (CoT), as the wide
stance of the latter may result in more torque being needed to enact a certain
force on the base

In order to investigate these questions, we will first perform a literature survey,
getting an overview of the existing body of research on mammalian quadrupedal
dynamic locomotion. Having evaluated the apparent strengths and weaknesses of
each method with respect to these measures, we will select one for further evaluation
by adapting and implementing the method for our own sprawling quadruped ASTRo,
designed and built in [3]. Additionally, we will implement it on the mammalian
quadruped vision60 developed by Ghost Robotics for comparison purposes.

Following this, we will simulate the closed-loop systems for various gaits and
evaluate their performance on measures of energy efficiency and torque use – CoT and
Root Mean Square (RMS) torque as well as peak torque output – as well as adaptability
to unmodeled changes in ground height. We then build on a method for full-order

1.1. ASSUMPTIONS 5

model-based control previously tested on mammalian quadrupeds and adapt it to the
sprawling quadruped robot ASTRo, designed and built in [3]. Further, we implement
the method for both the mammalian quadruped vision60 developed by Ghost Robotics
and ASTRo and compare the two on measures of energy efficiency and robustness in
simulation.

The observant reader might have noticed that it might be difficult to evaluate
whether a given outcome with respect to energy efficiency is best explained by dif-
ferences in the suitability of the method, or by inherent differences caused by the leg
configuration which would be present regardless of chosen method. This as well will
be discussed in light of the observed results and the chosen method in chapter 5.

1.1 Assumptions

The assumptions made in the development and applications of the methods in this
thesis are as follows:

• The robot’s links and body are all perfectly rigid, and the framework of rigid
body dynamics is appropriate for modeling the system.

• The robot’s foot experiences no slipping or sliding while in contact with the
ground, so long as the ground reaction forces are within a friction cone given
by a constant friction coefficient.

• The robot’s foot contact with the ground can be modeled as a point contact,
where there is only translational friction along the ground plane but no rotational
friction along its normal axis.

• The establishing or breaking of contact between the robot foot and the ground
are both instantaneous, and are well modeled as discrete dynamical events.

1.2 Contributions

The contributions of this thesis are

6 1. INTRODUCTION

• Evaluation of the suitability of the selected method for use with sprawling
quadrupeds through implementation, stability analysis and simulation results

• Comparison of the method implemented on one mammalian and one sprawling
quadruped on response to unmodeled ground height changes as well as on
measures of energy and torque expenditure in simulation

• Extension and systematization of Poincaré stability analysis for hybrid systems
(as described in [4]) to the case with an arbitrary number of continuous domains

• Proposed modification of the controller from the selected method to handle
overconstrained systems (more actuators than actuated degrees of freedom) in a
more principled manner, with proof of at-worst equivalent torque use

• Empirical demonstration of reductions in energy and torque expenditure with
modified controller for both mammalian and sprawling quadrupeds in simulation

1.3 Outline

The thesis proceeds in the following manner: First, in chapter 2 a literature review is
conducted in which previous research is discussed in order to give an account of the
current state of the field. Following this, a description is given in chapter 3 of the model
of the system for which the methods are developed. Then, the theory and methods are
presented and explained in chapter 4. The results are presented in chapter 5, alongside
a discussion of their implications as well as possible limitations. Finally, a conclusion
is given in chapter 6 along with a discussion of possible directions for further work.

2
Literature Review

Several different approaches have been taken to the problem of robotic walking, and
to quadrupedal robot locomotion in particular. In what follows, a selection of such
efforts is presented in order to give an overview of the history and current state of the
field.

Sections 2.2 to 2.4 are from the specialization project report [1] and are restated
here for the benefit of the reader.

2.1 Selected methods

We first give a short overview of the methods we selected. In [5], Hereid et.al. intro-
duces a formulation for trajectory optimization for humanoid robots. The formulation
differs from standard offline trajectory optimization-approaches in its inclusion of
an IO-feedback-linearization controller in the optimization problem. Thus, what is
synthesized is not an open-loop set of torques, but a closed-loop control policy. This
method is extended to a quadrupedal mammalian robot in [6] by Ma et.al.

Furthermore, [4] introduces a systematic method to tune controllers that can be
parameterized by a finite-dimensional parameter vector to guarantee exponential

7

8 2. LITERATURE REVIEW

orbital stability. For certain classes of controllers, e.g. IO-feedback-linearization
controllers for underactuated systems, finding a choice of parameters that renders the
full state asymptotically stable is far from trivial, making such a systematic approach
to post-processing quite useful.

Both of these methods will be given a thorough treatment in chapter 4.

2.2 Zero Moment Point

The Zero Moment Point (ZMP) concept is one of the older, more acclaimed concepts in
planning and controlling dynamic gait in both bipedal and quadrupedal robots. In [7],
Vukobratovic and Borovac give an account of the concept and its role in the history of
legged locomotion.

In a sense, the task of achieving any sort of walking in a robot is the task of
achieving some motion which propels the robot forward while ensuring that it doesn’t
fall over. Controlling the robot’s motion is done indirectly, through the reaction forces
from the ground on the robot.

The support polygon is the convex hull spanned by all the contact points (in the
case of point feet). It is, in other words, the part of the ground in which ground reaction
forces act on the robot. If the robot does not already have angular momentum so as to
result in a tilt, then a lack of applied moment will ensure that it continues to not tilt.
There is one axis along which the sum of all moments and forces acting on the robot
can be replaced by a single force.

Consider the point at which this axis intersects the ground. If this point – known as
the ZMP – lies within the support polygon, then the sum of ground reaction forces can
be considered also as one single resultant force acting on that point. Under assumptions
of no sliding, this resultant reaction force balances out all other forces acting on the
mechanism.

However, if the intersection of this axis with the ground falls outside of the support
polygon, this resultant force – applied at one point in the ground plane – and the
ground reaction force – applied at another point – will not balance out but rather
generate moments, potentially tilting the robot over. With this in mind, the goal then

2.3. VERTICAL IMPULSE SCALING 9

(a) CoG outside of support poly-
gon but ZMP inside

(b) CoG inside of support poly-
gon but ZMP outside

(c) CoG corresponds with ZMP
(stationary case)

Figure 2.1: Illustration of the relation between CoG projection and ZMP

becomes to plan a combination of footholds and trajectories which leads the ZMP to
be within the support polygon of the robot at all times, what is known as the ZMP
condition.

It may be interesting to note that, in the stationary case where the only non-ground
force affecting the robot is gravity, the ZMP coincides with the projection of the Center
of Gravity (CoG) onto the ground. Please see fig. 2.1 for an illustration of the relation
between the projection of CoG and the ZMP.

While the ZMP concept has been widely used in the existing literature, it is some-
what limited. The concept rests on a balance of moments, and does not consider
angular momentum or velocity. Especially for gaits involving higher angular velocities,
i.e. more dynamic gaits, this can lead the robot to tip over even while fulfilling the
ZMP condition ([8]).

2.3 Vertical Impulse Scaling

In [9], a bioinspired controller is introduced based on a limit cycle approach.
The initial observation is that in animals, swing phases remain mostly constant

while stance phases may change to alter gait period. As the gait frequency increases and
stance phase decreases, the magnitude of the ground reaction force profiles increases
to keep making up for the vertical momentum lost to gravity.

Initially, a nonlinear optimization problem over the reaction force profiles and the

10 2. LITERATURE REVIEW

timing and duration of stances is solved offline for one desired forward velocity in
order to obtain a limit cycle. Having obtained this limit cycle and the corresponding
ground reaction forces and timings, the designed gait is converted to state-feedback
control of ground reaction forces, using the angle between the respective stance leg
and the ground as phase variable.

On top of this feed-forward signal a virtual spring and damper is added in the body
height and pitch, in order to stabilize the limit cycle. Lastly, additional horizontal force
is added to control speed.

Having calculated the desired ground reaction force, it is transformed to a signal
in torques using a simplified version of the inverse dynamics, ignoring leg inertia
as well as Coriolis effects. In order to achieve higher speed gaits while respecting
friction cone considerations, the stance phase is reduced and the vertical impulse is
scaled commensurately, so that the area under the reaction force curve is constant.
This allows for greater horizontal force to be applied to the ground without slipping,
resulting in higher speed gaits.

Though the method seems to allow for highly dynamic locomotion – galloping –
both the simulation and the experiments carried out has the robot constrained to a
plane. It is thus not given that the method will hold – that is, produce feasible stable
locomotion – for the fully 3D case.

2.4 Contact Time Modulation

[8] introduces the Contact Time Modulation method for stabilization of various
quadrupedal gaits. The method builds on observations about typical properties of
walking in animals. Firstly, the duration of the swing phases of a gait tend to be
constant regardless of the gait period. Thus, any variation in gait period is accounted
for by a shrinking or growing of the stance phase of each leg.

Further, the ground force profile of each leg in animals has been shown to be
well-approximated by a quadratic function. The impact applied to the ground by each
foot is also assumed to be identical. Lastly, while one cannot control the exact time
at which a foot makes contact with the ground, one can control when a foot lifts off.

2.5. REDUCED-ORDER CONVEX MODEL PREDICTIVE CONTROL 11

Thus, one can control the stance time of each foot (within limits).
Using conservation of momentum and assuming constant height across gait cycles,

one can thus calculate the nominal stance foot force profile.
A closed form approximation of the pitch after one gait period is derived as a

function of the length of the stance phase of each foot. By imposing that the robot
should attain zero pitch after a full cycle has passed, one can calculate the desirable
stance phase – and thus liftoff time – of each foot.

The controller was proven to be stable in the sense of Lyapunov. As the closed
form expression for pitch after a period was an approximation, a disturbance term
was included in the analysis to account for modeling errors. By keeping the stance
duration within a given disturbance-dependent interval, the pitch of the closed-loop
system was shown to be stable.

Furthermore, a nonlinear disturbance observer was employed to estimate the
disturbance and modeling error. The method was shown to outperform the vertical
impulse scaling method as well as the ZMP method across a range of metrics, for
instance robustness to disturbances and different ground stiffness.

The critique that motion is only attempted controlled in the plane applies to this
method as well. Extension to roll stabilization is listed as further work.

2.5 Reduced-order Convex Model Predictive Control

In [10], Di Carlo et.al. utilizes a simplified linear kinematic and dynamic model to
optimize over ground reaction forces from footsteps. The model used is a Single
Rigid-Body Dynamics (SRBD) model, where only the base of the robot is considered
in the dynamics. This is an approximation that works fairly well when the mass of
the legs is negligible compared to the mass of the robot base. In fact, the kinematics
of the legs are not considered either in the optimization problem, which rather uses
the ground reaction forces as decision variables. The paper linearizes the rotational
dynamics in the roll and pitch dimensions around an upright orientation, and, lastly,
predetermines the footstep positions of the robot for the entire prediction horizon.

This renders model dynamics which are Linear Time-Varying (LTV), which again

12 2. LITERATURE REVIEW

allows for formulating a linear optimal control problem. The method does this in order
to arrive at an optimal control problem which can be solved efficiently enough to run
in a receding-horizon fashion in real time, rendering a linear Model Predictive Control
(MPC) algorithm.

Having generated desired ground reaction forces, these are translated to desired
joint torques through the Jacobian of the leg joint positions. The swing legs, on the
other hand, are position-controlled through an inverse dynamics controller. Placement
of new footsteps in the ground plane is done through the Raibert heuristic: p𝑑𝑒𝑠 =

p𝑟𝑒 𝑓 + v𝑐𝑜𝑚 Δ𝑡
2 where p𝑟𝑒 𝑓 is the position of the respective hip, v𝑐𝑜𝑚 is the projection

of the center of mass velocity onto the ground plane, while Δ𝑡 is the time the foot will
spend on the ground. It is this heuristic, along with knowledge of the desired robot
velocity, which allows for predetermining placement of the footsteps.

The controller is tested on the MIT Cheetah 3 quadruped in experiments. The paper
demonstrates a variety of behaviors, including trotting, walking up stairs without
any environmental knowledge, bounding, galloping and pronking (a gait consisting
of a sequence of short jumps). The controller is demonstrated to be fairly robust to
disturbances, and reached a maximum galloping speed of 3𝑚

𝑠
without constraining

the robot in its sagittal plane.

2.6 Nonlinear Model Predictive Control with soft
contact model

In [11], Neunert et.al. introduces a method for MPC using a nonlinear model. The
method employs a full-order nonlinear model of the robotic system to pose a receding
horizon optimal control problem which is then solved in a recurrent fashion.

One of the advantages of this method, is the avoidance of pre-specifying gait
sequences, instead letting this be a part of the optimization problem. This is intuitively
desirable: By avoiding reliance on hand-crafted gait sequences, the method is likely to
be more flexible and adaptive to unexpected situations as they arise.

This also excludes use of the most typical contact modeling, which utilizes explicit

2.6. NONLINEAR MODEL PREDICTIVE CONTROL WITH SOFT CONTACT MODEL 13

positional constraints on contact feet. One way of modeling contact which does
not necessitate pre-specifying which feet are in contact at what time, is the use of
complementarity constraints, 𝑝𝑧 · f𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 0, where 𝑝𝑧 is the height above ground of a
foot while f𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is the contact force associated with each foot. While this constraint
does encode the relationship between foot position and contact forces, they do not
satisfy the Linear Independence Constraint Qualifications (LICQs) which the authors
argue are assumed by most or all available Nonlinear Optimal Control (NLOC) or
Nonlinear Programming (NLP) solvers.

Instead, this method formulates the contact force of each foot as an explicit function
of the robot state. This contact force is modeled as a combination of multiple linear
springs and dampers, where some are parallel to the surface (friction) and some
are perpendicular (ground normal force). These forces are then multiplied by an
exponential function so as to diminish quickly when the foot leaves the surface.
While this is not representative of how contact forces work, the authors argue that
the non-disappearance of the contact force (and thus also its gradient) helps aid
the optimization algorithm in finding new footholds. It is further argued that no
detrimental effects from this "slight nonphysicality" are observed during experiments.
The explicit formulation of ground contact forces allows the problem to be posed
as an unconstrained optimal control problem, and to then recurrently use a first-
order method where this is approximated as an Linear-Quadratic (LQ) optimal control
problem.

The method utilizes packages for Automatic Differentiation (AD) for quick and ac-
curate calculation of derivatives. It also focuses on the importance of lower-level steps
to enhance computational efficiency, such as ensuring a high extent of vectorization
in code and utilizing the ability of parallelizing forward-simulation when employing a
multiple-shooting method. The impact of different choices of instruction sets is also
briefly discussed.

The method is tested experimentally on two quadrupedal platforms, namely the
ANYbotics’ ANYmal and the IIT’s hydraulic quadrupedHyQ. Themethod tests different
behaviors such as trotting and a squat jump. Crucially, as the method does not require
nor allow for pre-specifying contact patterns, such behaviors are induced by modifying

14 2. LITERATURE REVIEW

the cost function to encourage e.g. a specific upwards base velocity to ensure a lift-off.
The flexibility of the controller also results in a compliant controller that adapts to
disturbances in e.g. ground height by adjusting its gait instead of reacting aggressively
to such disturbances.

2.7 Model predictive control with adaptive Control
Lyapunov Function

In [12], Minniti et.al. proposes a provably stable adaptive Nonlinear Model Predictive
Control (NMPC) scheme. The method uses a somewhat simplified kino-dynamic model
where dynamic constraints must be satisfied only on the main base, while kinematic
constraints are considered for both the robot base and its legs. As mentioned earlier,
this is a decent approximation in cases where the robot leg masses are negligible in
comparison with the base mass.

The stability guarantee is given in terms of a Control Lyapunov Function (CLF)
- i.e. a function which, if kept negative, gives a theoretical guarantee of the stability
of the system - which is integrated into the MPC scheme as an inequality constraint.
The CLF is defined on a subset of the system state, thus driving the state to some
lower-dimensional manifold (such as an optimal trajectory).

In addition, an adaptive control scheme is integrated into the MPC formulation
which accounts for an unknown disturbance torque (on a form which allows for both
errors in e.g. gravitational forces as well as modeling errors in the generalized mass)
in the system dynamics. The parameters of this disturbance is then estimated online
based on errors between predicted and observed system behavior. For linear systems,
there are guarantees to be made that the model estimate will converge to the correct
model for Persistently Exciting (PE) inputs.

While such guarantees are not to be found for nonlinear systems in general (i.e.
the parameters of the unmodeled disturbance may not converge to its ground truth),
the resulting dynamics of the model will still converge. The result is the ability of
the MPC to adjust online to apparent changes in base mass, e.g. from the robot

2.8. DATA-DRIVEN METHODS USING PRIVILEGED LEARNING 15

carrying a payload, in a way which substantially outperforms a non-adaptive version
in comparisons. Also in presence of such uncertainties, the inclusion of the CLF is
shown to lead to convergence of the system state onto a lower-dimensional manifold.

Compared with the MPC approaches discussed above, the method discussed here
shows some clear advantages. None of the previously discussed papers consider
theoretical stability guarantees, and consequently no stability properties are shown
for the controlled system. Furthermore, none of them account for possible changes
in base mass and inertia. In addition to possibly adjusting for modeling errors in the
robot itself, this is more importantly crucial for using the robot for carrying of payload
in a flexible, versatile manner.

However, the approach still uses a somewhat simplified model, not accounting
for the dynamics of the legs and how they affect the dynamics of the base. This is a
smaller issue for less dynamic motion, but becomes a bigger shortcoming if one wants
the robot to perform running gaits, jumps, or other motion where the dynamic effects
of swing legs may be used to balance the body.

2.8 Data-driven methods using privileged learning

In recent years, parts of the field has taken a turn towards the use of statistical learning
methods, mostly in the form of so-called Deep Reinforcement Learning (DRL). An
example of this is a recent paper out of the Robotic Systems Lab at ETH. In [13], Miki
et.al. introduce a method using learning in simulation to overcome the usual problem
of training data shortage often encountered in machine learning.

The main contribution of the paper is to synthesize a controller which trades off be-
tween the robustness of proprioceptive locomotion and the efficiency of exteroceptive
locomotion in a principled way, without the use of hand-crafted heuristics to weight
exteroceptive input. The method operates instead with an "integrated belief state"
about its state and the environment, which is informed in part by exteroception and
proprioception respectively.

The paper uses a privileged learning approach: At first, a controller is trained
to act optimally given full ground-truth knowledge of the environment. Then, a

16 2. LITERATURE REVIEW

new controller is trained to predict the privileged controller’s behavior given its own
incomplete or flawed knowledge of the environment, which stands in for the rich
range of ways in which exteroceptive sensors may fail.

By not modeling specific sensor failure modes or environment uncertainty ex-
plicitly, the paper argues, the controller learns the most efficient trade-off between
exteroception and proprioception for flawed sensor input, including sensors being
disabled completely. The results are obtained without any fine-tuning of the resulting
policy, instead transferring it directly to hardware. The paper boasts impressive results,
demonstrating robust and fast locomotion in a range of real-world scenarios. The
longest and most challenging of these is traversing the hiking route Etzel Kulm in
Switzerland, in total 2.2 km with a variety of rough terrain, reaching the summit
slightly faster than the route sign’s estimated time of a human hiker. This hike was
completed without a single failure, only stopping to swap batteries.

In this way, the paper may credibly claim to have achieved human-level perfor-
mance in traversing rough terrain. However, even with its impressive results during
empirical evaluation, the controller can boast no claims of robustness or even stability
on theoretical grounds. While this may sound like a somewhat pedantic objection, this
is a well-known trait of learning based methods which makes one unable to guarantee
that the network functions as expected even under conditions that are seemingly well
within its demonstrated capabilities. Indeed, convolutional neural networks trained
for image classification have been known to be prone to "one pixel attacks" in which
modifying the value of a single pixel of an image can take it from being accurately
identified to grossly mis-classified (exemplified in [14]).

While there are ways of ameliorating such shortfalls (such as regularization), they
are still a demonstration that methods whose workings are hard to explain are prone
to fail in ways which are equally hard to anticipate. For operations where robustness
and safety are paramount, such shortcomings pose real issues.

2.9. CHOICE OF METHOD 17

2.9 Choice of method

We have presented a selection of methods from the existing literature on quadrupedal
locomotion. The methods, along with their apparent strengths and weaknesses have
been discussed. In choosing methods for further elaboration, implementation and
evaluation through simulation, we have used the criteria we outlined in chapter 1.
After evaluating the apparent merits of each method, we believe that a combination of
the approaches presented in [6] and [4] presents the most promising starting point for
the following reasons:

• In treating the control problem as an optimization problem, it is relatively
straightforward to define objectives so as to reach solutions that are (at least
locally) optimal with respect to e.g. torque use

• The use of high-order models and full system dynamics increases the likelihood
that such solutions are also close to optimal for the physical system

• Defining gait patterns through optimization constraints should allow for the
synthesis of a wide variety of gaits without modification to the overarching
method

• The resulting controller in combinationwith the selected post-processingmethod
should yield controllers that can be shown to be exponentially stable in analysis

18 2. LITERATURE REVIEW

3
System Modeling

The robotic system to bemodeled is the quadrupedal robot ASTRo, short for Articulated
Sprawling Tetrapod Robot. This robot is (under reasonable assumptions on velocities
and applied forces/torques) well-approximated as a floating-base rigid multibody
system. The robot has one floating base which is not directly actuated, as well as four
legs, each having 3 actuated joints. The joint configuration of each leg is similar: The
first joint in the hip/shoulder which rotational axis is normal to the dorsal plane of the
robot (parallel to the yaw axis when the robot is in an upright orientation). This is
followed by a joint between the hip and upper leg whose axis is in the dorsal plane
(normal to the length of the leg), and a knee joint with an axis parallel to the second
axis. See fig. 3.1 for an illustration of this.

3.1 System kinematics

The robot base, by virtue of being a floating base, has 6 Degrees of Freedom (DOFs) -
3 positional and 3 rotational. For the orientation of the robot we choose an intrinsic
XYZ Tait-Bryan angle parametrization. While such a parametrization has a singularity
at \ = 𝜋

2 (and is poorly conditioned nearby), this configuration is not supposed to be

19

20 3. SYSTEM MODELING

Figure 3.1: Illustration of rotational axes for a sprawling joint configuration. Blue lines indicate
rotational axes and direction

reached at any point during a regular gait. Each joint has only a single orientational
DOF, around its rotational axis. These DOFs are ordered by leg in the order front left -
rear left - front right - rear right, and within each leg by their distance from the base.

The full set of generalized coordinates then becomes

3.1. SYSTEM KINEMATICS 21

q =

©«

p𝑏
𝝓𝑏

𝜽fl

𝜽 rl

𝜽 fr

𝜽 rr

ª®®®®®®®®®®®®®¬
where

p𝑏 = (𝑥𝑏, 𝑦𝑏, 𝑧𝑏)⊤ ∈ R3,

𝝓𝑏 = (𝜓𝑏, \𝑏, 𝜙𝑏)⊤ ∈ R3,

𝜽 𝑖 =
(
\hip1,𝑖 , \hip2,𝑖 , \knee,𝑖

)⊤ ∈ R3, 𝑖 ∈ Ifeet

(3.1)

where Ifeet = {fl, rl, fr, rr} is the index set for the robot’s feet (front left, rear left, front
right, rear right).

The position of the robot base in the world frame is given as t𝑤
𝑤→𝑏

= p𝑏 , and the
rotation matrix encoding its orientation is given as R𝑤

𝑏
(𝝓𝑏) = R𝑥 (𝜓𝑏) ·R𝑦 (\𝑏) ·R𝑧 (𝜙𝑏).

Let 𝑙𝑥 and 𝑙𝑦 be the unsigned distances to each of the hip abduction joints, in the
𝑥 and 𝑦 directions respectively, from the base origin in the base coordinate system.
Further, let 𝑙1 be the distance from the hip abduction joint to the hip joint along the
x-axis of the hip coordinate system, let 𝑙2 be the distance from the hip abduction joint
to the knee joint along the x-axis of the upper leg coordinate system, and let 𝑙3 be
the length from the knee joint to the end of the foot along the x-axis of the lower leg
coordinate system. We place the origins of each leg coordinate system at

22 3. SYSTEM MODELING

Figure 3.2: Illustration of robot links and coordinate frames

t𝑏
𝑏→𝑓 𝑙

=
(
𝑙𝑥 , 𝑙𝑦, 0

)⊤
t𝑏
𝑏→𝑟𝑙

=
(
−𝑙𝑥 , 𝑙𝑦, 0

)⊤
t𝑏
𝑏→𝑓 𝑟

=
(
𝑙𝑥 ,−𝑙𝑦, 0

)⊤
t𝑏
𝑏→𝑟𝑟

=
(
−𝑙𝑥 ,−𝑙𝑦, 0

)⊤
(3.2)

and, using the Denavit-Hartenberg (DH) convention, we sum up the transforma-
tion from each leg coordinate system to the coordinate system at the end of its foot
in table 3.1. See fig. 3.2 for an illustration of the robot kinematics with links and
corresponding coordinate frames. Frames 1, 3, 5 and 6 (as well as the base frame) from
table 3.1 are shown.

The base center of mass is located at the origin of the base coordinate system. For

3.1. SYSTEM KINEMATICS 23

Leg Frame 𝑑 \ 𝑎 𝛼

fl 1 (frame at hip joint 1) 0 \ℎ𝑖𝑝1,𝑓 𝑙 0 0
2 0 0 𝑙1 −𝜋

2
3 (frame at hip joint 2) 0 \ℎ𝑖𝑝2,𝑓 𝑙 0 0
4 0 0 𝑙2 0
5 (frame at knee joint) 0 𝜋 − \𝑘𝑛𝑒𝑒,𝑓 𝑙 0 0
6 (end of foot) 0 0 𝑙3 0

rl 1 (frame at hip joint 1) 0 \ℎ𝑖𝑝1,𝑟𝑙 + 𝜋 0 0
2 0 0 𝑙1 −𝜋

2
3 (frame at hip joint 2) 0 \ℎ𝑖𝑝2,𝑟𝑙 0 0
4 0 0 𝑙2 0
5 (frame at knee joint) 0 𝜋 − \𝑘𝑛𝑒𝑒,𝑟𝑙 0 0
6 (end of foot) 0 0 𝑙3 0

fr 1 (frame at hip joint 1) 0 \ℎ𝑖𝑝1,𝑟𝑙 0 0
2 0 0 𝑙1 −𝜋

2
3 (frame at hip joint 2) 0 \ℎ𝑖𝑝2,𝑟𝑙 0 0
4 0 0 𝑙2 0
5 (frame at knee joint) 0 𝜋 − \𝑘𝑛𝑒𝑒,𝑟𝑙 0 0
6 (end of foot) 0 0 𝑙3 0

rr 1 (frame at hip joint 1) 0 \ℎ𝑖𝑝1,𝑟𝑙 − 𝜋 0 0
2 0 0 𝑙1 −𝜋

2
3 (frame at hip joint 2) 0 \ℎ𝑖𝑝2,𝑟𝑙 0 0
4 0 0 𝑙2 0
5 (frame at knee joint) 0 𝜋 − \𝑘𝑛𝑒𝑒,𝑟𝑙 0 0
6 (end of foot) 0 0 𝑙3 0

Table 3.1: List of DH parameters for the transformation from each leg frame to its respective
foot. Visualization made using RVIZ (ROS visualization tool)

24 3. SYSTEM MODELING

Legs Frame Link Translation
fl/rr 1 hip (𝑙𝑐1, 𝑑𝑐1, 0)⊤

4 upper (𝑙𝑐2, 0,−𝑑𝑐2)⊤

5 lower (𝑙𝑐3, 0, 0)⊤

5 foot (𝑙3, 0, 0)⊤

rl/fr 1 hip (𝑙𝑐1,−𝑑𝑐1, 0)⊤

4 upper (𝑙𝑐2, 0, 𝑑𝑐2)⊤

5 lower (𝑙𝑐3, 0, 0)⊤

5 foot (𝑙3, 0, 0)⊤

Table 3.2: Translation to link Centers of Mass (CoMs) and feet from frames in which they are
fixed

completeness, we also give the translation to the center of mass of each link in the
frame where it is fixed, in table 3.2.

With this, we may write the positions and orientations of the link CoMs, as well
as the of the feet, as

p𝑗,𝑖 (q) = p𝑏 + R𝑤
𝑏
(𝝓b)

©«t𝑏
𝑏→𝑖

+
[
I3 03×1

]
T𝑏
𝑖→𝑗,𝑖 (𝜽 𝑖) ©«

t𝑗,𝑖
𝑗,𝑖→𝑗cm,𝑖

1
ª®¬ª®¬ (3.3a)

R𝑤
𝑗,𝑖 (q) = R𝑤

𝑏
(𝝓𝑏)

[
I3 03×1

]
T𝑏
𝑖→𝑗,𝑖 (𝜽 𝑖)

I3

01×3

 (3.3b)

where 𝑗 ∈ {hip, upper, lower, foot}, 𝑖 ∈ Ifeet

T𝑏
𝑖→𝑗,𝑖 are constructed by utilizing the DH parameters found in table 3.1, while

t𝑗,𝑖
𝑗,𝑖→𝑗cm,𝑖

are found in table 3.2.

3.1.1 Ground contact constraints

For any foot that is in contact with the ground, we impose a kinematic constraint on
the position of the foot until lift-off. Note that the constraint is only on position, which

3.2. SYSTEM DYNAMICS 25

Link Mass 𝐼𝑥𝑥 𝐼𝑦𝑦 𝐼𝑧𝑧

[kg] [kgm2] [kgm2] [kgm2]
Base 10.10 141 · 10−3 143 · 10−3 254 · 10−3

Hip 1.18 29.9 · 10−3 33.3 · 10−3 4.6 · 10−3

Upper leg 1.39 1.7 · 10−3 6.6 · 10−3 6.4 · 10−3

Lower leg 0.28 66.5 · 10−6 3.2 · 10−3 3.2 · 10−3

Table 3.3: Masses and inertias of robot links

means we assume 0 rotational friction around the normal axis to the ground.

3.2 System Dynamics

The system base has a mass of𝑚𝑏kg with an inertia matrix J𝑏kgm2 around the base
CoM. Each leg has identical masses and inertias, which are, respectively,𝑚hip,𝑚upper,
𝑚lower, and Ihip, Iupper, Ilower, with inertias being around each link’s CoM, in a coordinate
system fixed to the link. These values, reported in [3], are recited in table 3.3 for
completeness.

The robot has 12 actuators – one for each of its 12 joints – so that u ∈ R12. We
assume here that we control the torque applied to each motor directly, as opposed to
controlling e.g. the current and subsequently modeling motor dynamics. With this
assumption, the transfer from each input to the corresponding generalized input force
is simply 𝜏𝑖 = 𝑢𝑖 for the joint coordinates, while the pose of the robot base is not
directly affected by the input. Thus, B ∈ R18×12:

B =

06×12

I12

Using the kinematics and inertial parameters given above, we may calculate the

potential energy P and kinetic energy K of the robot as a function of q, ¤q. From this,
we define the Lagrangian as L(q, ¤q) = K(q, ¤q) − P (q). For g𝑐 (q) being the stack of{

p𝑓𝑖
(q)

}
𝑖∈Isf

– where p𝑓𝑖
(q) is the position of foot 𝑖 in the inertial world frame and Isf

26 3. SYSTEM MODELING

is the index set containing indices of stance feet – we may then use the constrained
forced Euler-Lagrange-equations:

d
d𝑡

(
𝜕

𝜕 ¤qL
⊤
)
− 𝜕

𝜕q
L⊤ = 𝝉 + 𝜕

𝜕q
g⊤𝑐 (q)𝝀 (3.4a)

g𝑐 (q) = 0 (3.4b)

to get the full constrained system dynamics:

D(q) ¥q + C(q, ¤q) ¤q + G(q) = Bu + J⊤𝑐 𝝀 (3.5a)

J𝑐 ¥q + 𝜕

𝜕q
(J𝑐 ¤q) = 0 (3.5b)

where D(q) is the generalized mass matrix, C(q, ¤q) is the Coriolis matrix, G(q)
represents potential (incl. gravitational) terms:

D(q) =
∑︁

𝑖∈Ilinks

(
𝑚𝑖

𝜕

𝜕q
p⊤
𝑖 (q)

𝜕

𝜕q
p𝑖 (q) + J𝑖𝑅,𝑖

⊤ (q) I𝑖𝑖 J𝑖𝑅,𝑖 (q)
)

(3.6a)

C(q, ¤q) =
∑︁

𝑖∈Ilinks

(
𝑚𝑖

𝜕

𝜕q
p⊤
𝑖 (q)

𝜕

𝜕q
¤p𝑖 (q) + J𝑖𝑅,𝑖

⊤ (q)
(

I𝑖𝑖 ¤J𝑅,𝑖 (q) +
(
J𝑖𝑅,𝑖 (q) ¤q

)
× I𝑖𝑖 J𝑖𝑅,𝑖 (q)

))
(3.6b)

G(q) =
∑︁

𝑖∈Ilinks

(
−𝑚𝑖𝑔

𝜕

𝜕q
p⊤
𝑖 (q)e3

)
(3.6c)

where

Ilinks = {𝑏} ∪ (Ifeet × {hip, upper, lower})

J𝑖𝑅,𝑖 (q) =
3∑︁

𝑘=1

𝑟𝑤
𝑖𝑘,3

(q) 𝜕
𝜕q𝑟

𝑤
𝑖𝑘,2

(q)

𝑟𝑤
𝑖𝑘,1

(q) 𝜕
𝜕q𝑟

𝑤
𝑖𝑘,3

(q)

𝑟𝑤
𝑖𝑘,2

(q) 𝜕
𝜕q𝑟

𝑤
𝑖𝑘,1

(q)

Here, 𝑟𝑤

𝑖𝑘,𝑙
(q) is entry 𝑘, 𝑙 of the rotation matrix R𝑤

𝑖 (q) so that J𝑖
𝑅,𝑖
(q) ¤q = 𝝎𝑖

𝑤→𝑖 .

3.2. SYSTEM DYNAMICS 27

e3 = (0, 0, 1)⊤, while 𝑔 = 9.81.
J𝑐 = 𝜕

𝜕q g𝑐 (q). B is the input matrix, and 𝝀 is the vector of Lagrange multipliers
relating to the constraint forces. The constraint forces can be solved for explicitly. As
D is assumed invertible for well-posed models of mechanical systems (all generalized
coordinates are associated with non-zero generalized mass), the system can be posed
on an explicit control-affine form if desired.

28 3. SYSTEM MODELING

4
Methods

In this chapter we describe the methods used and give an account of some neces-
sary theoretical background material. We choose to base our controller on a Hybrid
Zero-Dynamics (HZD) approach, in which an IO-feedback-linearization controller is
synthesized through a method of closed-loop trajectory optimization. The method
was first presented in [5], where it was applied to the bipedal robot DURUS, and was
extended to the mammalian quadruped vision60 in [6].

In order to ensure the exponential stability of the full system state, we have
chosen a method that post-processes the controller parameters to ensure exponential
orbital stability. The method, first introduced in [4] and elaborated upon in [15][16],
formulates the problem of exponential orbital stability as an optimization problem using
Bilinear Matrix Inequalities (BMIs). In order to improve computational tractability,
the controller is linearized around its current set of parameters. A perturbation of
parameters is found that makes the linearized problem exponentially stable, while
minimizing the norm of the perturbation to reduce the gap in behavior between
the linearized approximation and the actual system. If the true system is not yet
exponentially stable for the new set of parameters, this approach can be applied
iteratively until an exponentially stabilizing set of parameters is reached.

29

30 4. METHODS

The trajectory optimization method was chosen due to the generality of the pro-
posed framework; as the method involves few simplifications to the system the result-
ing gaits should comply with system dynamics also for more dynamic gaits, where
higher-order effects such as Coriolis forces become more pronounced. Even for more
conservative gaits, it is likely that this consideration of system dynamics results in gaits
which are close to being optimal for the physical system as well. The post-processing
method was chosen for its ability to synthesize demonstrably stabilizing controllers,
and to solve this highly nontrivial problem in a systematic manner.

Sections 4.1 and 4.3 are based on sections from the specialization project report [1]
– with some organizational changes done for clarity as well as some bigger extensions
to section 4.1.6.

4.1 Hybrid Zero Dynamics

The framework of HZD is a method in which a controller considering the full state
and full-order dynamics of the robot is realized. This sets it apart from most other
control efforts for quadrupeds, in which clever model simplification and heuristics
have been more prominent. This method has been applied successfully in several
bipedal locomotion applications, and was extended for use on quadrupedal robots in
[6].

This is an input-output feedback linearization approach in which the dynamics of a
higher-dimensional system is forced to evolve on a lower-dimensional manifold which
is defined by a set of virtual constraints, or outputs. The dynamics as they evolve once
constrained to the lower-dimensional manifold is known as the zero-dynamics of the
system ([17]).

The framework of HZD extends the notion of zero-dynamics framework to hybrid
systems, i.e. systemswhich exhibit both continuous and discrete dynamics. An example
of such a system is a legged robot, in which foot lift-off and impact are phenomena
which are well-modeled as discrete jumps in state and transitions between different
continuous domains.

4.1. HYBRID ZERO DYNAMICS 31

4.1.1 Hybrid Dynamical Systems

Adhering to the formulation in [18], the hybrid system of quadruped locomotion can
be given as the tupleH = (Λ,X ,U ,S,D,Δ, 𝐹𝐺).

Here, Λ represents a directed graph Λ = (V, E) where V is the set of vertices, while
E is the set of edges. Each vertex here represents a continuous dynamical subsystem,
while each edge represents a discrete instantaneous transition between two such
dynamical systems. We define ` : V −→ V to be the function mapping each vertex to
its succeeding vertex. In this way, we also have that E = {(𝑣 → ` (𝑣))}𝑣∈V .

X is the set of state manifolds for the vertices, i.e. X = {X𝑣}𝑣∈V . Likewise, the
set of admissible control inputs is U = {U𝑣}𝑣∈V . S = {𝑆𝑣→` (𝑣) }𝑣∈V is the set of guards
so that the instantaneous transition from one domain to the next occurs when the
state and control input (𝑥,𝑢) intersects the guard S𝑣→` (𝑣) . D = {D𝑣}𝑣∈V is the set of
domains of admissibility for each continuous dynamical system, so that D𝑣 ⊆ X𝑣 × U𝑣 .
Δ = {Δ𝑣→` (𝑣) }𝑣∈V is then the set of reset laws which relate the end state in one domain
to the initial state in the next, so that 𝑥+ = Δ𝑣→` (𝑣) (𝑥−) where 𝑥− is the state the instant
before impact, while 𝑥+ is the state the instant after impact. 𝐹𝐺 = {(𝑓𝑣, 𝑔𝑣)}𝑣∈V is
the set of control systems for each domain, according to which the state evolves on
vertex 𝑣 . We assume (𝑓𝑣, 𝑔𝑣) to be control affine ∀𝑣 ∈ V so that ¤𝑥𝑣 = 𝑓𝑣 (𝑥) +𝑔𝑣 (𝑥)𝑢 for
(𝑥,𝑢) ∈ D𝑣 . This involves, among others, all systems whose dynamics can be derived
from the Euler-Lagrange equations.

The discrete transitions in the case of a quadrupedal robot represent changes in
the number and placement of stance legs, a change which is modeled as instantaneous.
Thus, each lifting or landing of a foot is represented by such a transition between two
vertices. It should be noted that while each vertex 𝑣 ∈ V must be part of at least one
directed cycle, the framework in general allows for multiple cycles to exist in Λ. In
this case each vertex 𝑣 will be associated with multiple guards, and which guard is
intersected determines which vertex will be given by the successor function.

As the dynamics related to each vertex for this Hybrid Dynamical System (HDS)
differs only because of holonomic constraints, it is characterized by which feet are
currently supporting the robot and which are swinging. Consider the index set Ifeet

32 4. METHODS

as introduced in section 3.1. We now introduce Isf,𝑣 and Insf,𝑣 to be the index sets
containing indices for respectively stance feet and swing feet (non-stance feet) for
vertex 𝑣 , where Isf,𝑣 ∪ Insf,𝑣 = Ifeet, Isf,𝑣 ∩ Insf,𝑣 = ∅.

4.1.2 Continuous dynamics

In the continuous-time domain D𝑣 , the evolution of the state x = [q⊤, ¤q⊤]⊤ is given
by the control system (𝑓𝑣, 𝑔𝑣), subject to holonomic constraints 𝜼𝑣 (q) = 0 resulting
from static friction on the stance feet. The derivative of holonomic constraints is
then J𝑣 (q) ¤q. The system dynamics relating to domain D𝑣 can then be expressed as
an implicit second-order Ordinary Differential Equation (ODE) resulting from the
Euler-Lagrange equations as described in the general case in eq. (3.5), given here for
vertex 𝑣 :

D(q) ¥q + C(q, ¤q) ¤q + G(q) = Bu + J⊤𝑣 (q)𝝀

J𝑣 (q) ¥q + 𝜕

𝜕q
(J𝑣 ¤q) ¤q = 0

(4.1)

4.1.3 Discrete dynamics

The hybrid system transitions between continuous domains as dictated by its discrete
dynamics, Δ. As mentioned in section 4.1.1, the transition between vertices for the
system in question can be divided into cases where a stance foot lifts off, and cases
where a swing foot hits the ground. The related discrete dynamics are distinctly
different for each of the two cases. In the case of lift-off, we assume no instantaneous
change in state. Thus, the reset-law Δ𝑣→` (𝑣) simply becomes the identity map.

In the case of landing, we assume a perfectly plastic impact. We also assume no
discontinuous changes in the generalized coordinates q, although the generalized
velocities ¤q may have discontinuous jumps during impact. From conservation of
generalized momentum, we get

4.1. HYBRID ZERO DYNAMICS 33

D¤q+ − D¤q− = J` (𝑣)𝝀impulse

=⇒ ¤q+ = ¤q− + D−1J` (𝑣)𝝀
(4.2)

where ¤q− is the generalized velocity right before impact, while ¤q+ is the generalized
velocity right after impact. 𝝀impulse is the intensity of the impulsive contact forces
occurring upon impact. These are determined by the generalized momentum of the
system before impact, along with the holonomic constraints on the stance feet after
impact (velocity of stance feet must be identically zero).

Alongside the assumptions of no abrupt changes to generalized coordinates, i.e.
q+ = q−, this determines the reset map Δ𝑣→` (𝑣) in the cases of impact.

4.1.4 Continuous domain constraints

For each vertex 𝑣 , there exist an admissible domain D𝑣 ⊆ R𝑛 . The admissible domain
can be constrained by a set of equalities or inequalities imposed on variables. Here,
we consider two types of inequalities which define the boundaries of the admissible
domain:

First, there are constraints imposed on the contact wrenches (or in the case of point
feet, as in this instance, contact forces) of the stance feet, denoted as v𝑣 (q𝑣, ¤q𝑣)𝝀𝑣 ≥ 0.
These amount to 1) requiring the normal force from the ground on the robot to be
positive and 2) requiring the tangential forces to be within the friction cone – or a
linearization of it – of the foot, as the model assumes no slipping of the feet:

_
𝑓𝑧
𝑖,𝑣

≥ 0 (4.3a)

∥_𝑓𝑥
𝑖,𝑣
∥1 ≤ `_

𝑓𝑧
𝑖,𝑣

(4.3b)

∥_𝑓𝑦
𝑖,𝑣
∥1 ≤ `_

𝑓𝑧
𝑖,𝑣

(4.3c)

where _𝑓𝑧
𝑖,𝑣

are the contact forces in the 𝑧-direction while _𝑓𝑥
𝑖,𝑣
, _

𝑓𝑦

𝑖,𝑣
are the contact forces

in the 𝑥- and 𝑦-directions respectively, working on foot 𝑖 ∈ Isf,𝑣 .

34 4. METHODS

With this, we may write v(q𝑣, ¤q𝑣)𝑣 as

v𝑣 (q𝑣, ¤q𝑣) = blkdiag
(
{v𝑖,𝑣 (q𝑣, ¤q𝑣)}𝑖∈Isf,𝑣

)
where

v𝑖,𝑣 (q𝑣, ¤q𝑣) =

−1 0 `

1 0 `

0 −1 `

0 1 `

0 0 1

(4.4)

where blkdiag ({·}) signifies the blockdiagonal matrix constructed from the elements
of the set. We here assume that 𝝀𝑣 is a vertical concatenation of

{
(_𝑓𝑥

𝑖,𝑣
, _

𝑓𝑦

𝑖,𝑣
, _

𝑓𝑧
𝑖,𝑣
)⊤

}
𝑖∈Isf,𝑣

,

stacked in the same order as v𝑣 (q𝑣, ¤q𝑣).
It is here assumed that the robot is walking on flat ground, so that the normal

force is identical to the force in the z-direction. For the general case, the constraints
in eq. (4.3) should be modified so that _𝑓𝑛 – the force along the normal direction of
the contact surface – is substituted for _𝑓𝑧 , while _𝑓𝑇 1 , _𝑓𝑇 2 – contact forces along two
vectors spanning the tangent plane of the contact surface – should be substituted for
_𝑓𝑥 , _𝑓𝑦 .

In the case of unmodeled uneven terrain, it would thus not be the unexpected
height changes per se, but the differences in slope which could cause problems. For a
certain unexpected slope, a proportion of the force in the z-direction proportional to
the angle would not actually work along the normal vector, but in the tangent plane.
This could either increase or decrease the net tangential force depending on alignment
with the already existing tangent force. Likewise, a component of the force in the
tangent plane would work not in the tangent plane but along the normal vector. This
as well could both increase and decrease the net normal force. However, if normal
force is decreased below 0 this would result in violation of ?? regardless of what the
tangential force is.

Physically, the violation of eq. (4.3a) would result in breaking contact with the

4.1. HYBRID ZERO DYNAMICS 35

ground and exiting the current continuous domain. violating eq. (4.3b) or eq. (4.3c)
would result in slipping, which would likely impact controller performance less se-
riously. For small unmodeled slopes, however, these effects should be negligible –
especially so if a conservative estimate for the friction constant ` is used.

Secondly, there are constraints relating to the state of the system other than the
contact forces, denoted h𝑣 (q𝑣, ¤q𝑣) ≥ 0. Here, we require that the swing feet are above
the ground:

h𝑣 (q𝑣, ¤q𝑣) =
(
{𝑧foot,𝑖 (q𝑣)}𝑖∈I𝑛𝑠𝑓 ,𝑣

)
(4.5)

where ({·}) signifies a column vector resulting from vertically stacking the elements
of the set. For the system in question, 𝑧foot,𝑖 (q) is the third element of pfoot,𝑖 (q) as
described in eq. (3.3a).

We summarize these constraints as

A𝑣 =

v𝑣 (q𝑣, ¤q𝑣)𝝀𝑣 (q𝑣)

h𝑣 (q𝑣, ¤q𝑣)

 ≥ 0 (4.6)

4.1.5 Guards

Guards are associated with the transition of the HDS from one continuous domain to
another along an edge of the graph. A guard S𝑣→` (𝑣) is defined as a proper subset of
the boundary of the domain, that is, S𝑣→` (𝑣) ⊂ 𝜕D𝑣 .

For a discrete transition to occur, the state must be about to exitD𝑣 through a guard.
Thus, for some chosen element 𝐻𝑣→` (𝑣) of eq. (4.6) which determines part of 𝜕D𝑣 we
can define a corresponding guard asS𝑣→` (𝑣) = {(q, ¤q, u) |𝐻𝑣→` (𝑣) = 0, ¤𝐻𝑣→` (𝑣) < 0}. In
this paper no-slip contact between the stance feet and the ground are always assumed.
Thus, there are two types of guard conditions.

Firstly, if a swing foot hits the ground, part of the boundary associated with h𝑣 is
reached, and the system undergoes a discrete jump to a continuous system in which
the previous swing foot is now a stance foot. Secondly, if the normal force of any
stance foot becomes zero with a negative derivative, this indicates that the associated

36 4. METHODS

foot is about to lift from the ground and become a swing foot.
As each domain differs by which feet are currently supporting the robot and which

ones are swinging, each guard condition may be associated with a foot. Within the
framework as presented, as only one scalar guard condition may be associated with
a guard and thus with a transition, edges (𝑣 → ` (𝑣)) will only occur between a two
vertices that differ only by the addition or removal of exactly one stance foot. For
edges where no new stance feet are added, some swing foot is added which determines
the guard of the edge. For edges where no new swing feet are added, some stance
foot is added which determines the guard of the edge. We may now state the guard
conditions as

𝐻𝑣→` (𝑣) =

𝑧𝑖 , 𝑖 = Insf,𝑣 ∩ Isf,` (𝑣) if Isf,𝑣 ∩ Insf,` (𝑣) = ∅

_
𝑓𝑧
𝑖
, 𝑖 = Isf,𝑣 ∩ Insf,` (𝑣) if Insf,𝑣 ∩ Isf,` (𝑣) = ∅

(4.7)

4.1.6 Zero-dynamics

The system is to be controlled using an IO feedback linearization controller, in which a
control signal is designed so as to drive a set of virtual holonomic constraints, or "out-
puts", to zero. As described in [5, 18], these outputs are typically the deviation in some
given state, or combination of states, from a desired set-point or time-parametrized
trajectory:

y𝑣 (q, ¤q, 𝑡) = y𝑣,𝑎 (q, ¤q) − y𝑣,𝑑 (𝑡) (4.8)

where y𝑣,𝑎 (q, ¤q) is referred to as the actual output, a combination of system states,
while y𝑣,𝑑 (𝑡) is referred to as the desired output. Here, each y𝑣,𝑑 is parametrized as
a Bézier curve, with corresponding parameter vector 𝜶 𝑣 , i.e. y𝑣,𝑑 = y𝑣,𝑑 (𝑡,𝜶 𝑣). By
driving the outputs y𝑣 to zero, the state is driven exponentially to a lower-dimensional
manifold of the state space, called the zero-dynamics manifold. Outputs can be grouped
by their relative degree. An output with relative degree 𝑟𝑖 is one for which the system
input directly affects its 𝑟𝑖𝑡ℎ derivative. Consequently, the dynamics of an output of
relative degree 𝑟𝑖 (when decoupled) are modeled by an 𝑟𝑖𝑡ℎ -order ODE. For second order

4.1. HYBRID ZERO DYNAMICS 37

systems, we may have outputs of either relative degree 1 (outputs from generalized
velocities) and relative degree 2 (outputs from generalized coordinates). We may group
all outputs of the same relative degree as a vector and denote them as y1,𝑣 and y2,𝑣

respectively.

The zero-dynamics manifold is a manifold where all outputs are identically zero,
and which has (for the closed-loop system) the property of forward invariance: That
is, when the system state has reached the manifold it stays there for all future time.
In addition to y𝑟𝑖 ,𝑣 being 0, all output derivatives not directly affected by inputs must
also equal 0. We then arrive at this definition of the zero-dynamics manifold:

Z𝑣 =
{
(q, ¤q) ∈ D𝑋

𝑣 : y1,𝑣 = 0, y2,𝑣 = 0, ¤y2,𝑣 = 0
}

(4.9)

where D𝑋
𝑣 is the subset of X𝑣 so that D𝑣 =

(
D𝑋

𝑣 ×D𝑈
𝑣

)
⊂ (X𝑣 × U𝑣).

For the case of walking, this lower-dimensional manifold should contain an orbitally
stable or stabilizable periodic behavior, which is the gait. The driving of system
dynamics exponentially to the zero-dynamics is realized by designing u so that

¤y1,𝑣 (¤q, 𝑡,𝜶 𝑣) = −𝜖y1,𝑣 (¤q, 𝑡,𝜶 𝑣)

¥y2,𝑣 (q, ¤q, 𝑡,𝜶 𝑣) = −2𝜖 ¤y2,𝑣 (q, ¤q, 𝑡,𝜶 𝑣) − 𝜖2y2,𝑣 (q, 𝑡,𝜶 𝑣)
(4.10)

where 𝜖 is a freely chosen tuning parameter. Roughly speaking, outputs with rela-
tive degree 2 correspond to virtual holonomic constraints (as they depend only on
configuration) while outputs with relative degree 1 correspond to virtual nonholo-
nomic constraints, and may enforce constraints on the derivatives of the configuration
variables which correspond to generalized velocity.

Now, consider a set of chosen outputs y𝑣 = [y⊤
1,𝑣 y⊤

2,𝑣]⊤. It is important to choose
the outputs in such a way that the map from q to y is a diffeomorphism. This is to say
that the map is invertible, and that both the map and its inverse are differentiable. If

and only if 𝑟𝑎𝑛𝑘
(
𝜕y
𝜕q

���
q0

)
= 𝑛 (𝑛 being the dimension of the configuration space) the

map is locally diffeomorphic in a neighborhood around q0 ([19, p. 508]). This map
being diffeomorphic further implies that the matrix given in eq. (4.11) – called the

38 4. METHODS

decoupling matrix – is invertible ([20]).

A𝑣 (q, ¤q, 𝑡,𝜶 𝑣) =

𝐿𝑔y1,𝑣 (¤q, 𝑡,𝜶 𝑣)

𝐿𝑔𝐿𝑓 y2,𝑣 (q, 𝑡,𝜶 𝑣)

 (4.11)

where 𝐿𝑓 , 𝐿𝑔 are the Lie derivatives with respect to 𝑓 and 𝑔 respectively, as introduced
in section 4.1.1. Note that this denotation of the decoupling matrix is specific to the
case with two vector outputs, y1 with relative degree 1 and y2 with relative degree 2.
In this case, choosing u as in eq. (4.12) ensures the desired output dynamics as shown
in eq. (4.10) (dependencies omitted for space reasons).

u𝑣 = −A−1
𝑣

©«

𝐿𝑓𝑣y1,𝑣

𝐿2
𝑓𝑣

y2,𝑣

 +

𝜖y1,𝑣

2𝜖 ¤y2,𝑣 + 𝜖2y2,𝑣

ª®¬ (4.12)

As can be seen from eq. (4.10), the output dynamics are exponentially stable and
the zero-dynamics manifold is forward-invariant throughout the continuous domain.
If the manifold is also invariant through discrete transitions between domains, i.e.
(q, ¤q) ∈ Z𝑣 =⇒ Δ𝑣→` (𝑣) (q, ¤q) ∈ Z` (𝑣)∀(q, ¤q) ∈ S𝑣→` (𝑣)∀𝑣 ∈ V , then we say that
the system has a Hybrid Zero Dynamics. However, as discussed in section 4.1.3, the
discrete dynamics Δ𝑣→` (𝑣) of a domain will in general preserve the configuration of
the system across a domain (ignoring the potential reset map) but will not in general
preserve the generalized velocities of the system.

Furthermore, the discrete dynamics of the system are not a function of the actuation,
so that we will not have a means of counteracting such jumps in generalized velocities
through control action. Thus it is impossible in general to ensure this invariance
through certain discrete transitions, such as impacts. We may then consider the partial
zero dynamics manifold, which is the manifold defined by only the position-modulating
outputs:

PZ𝑣 =
{
(q, ¤q) ∈ D𝑋

𝑣 : y2,𝑣 = 0, ¤y2,𝑣 = 0
}

(4.13)

We denote that the manifold (across the entire hybrid system) PZ =
⋃

𝑣∈V PZ𝑣 as

4.1. HYBRID ZERO DYNAMICS 39

hybrid invariant if it is invariant over all continuous domains and (q, ¤q) ∈ PZ𝑣 =⇒
Δ𝑣→` (𝑣) (q, ¤q) ∈ PZ` (𝑣)∀𝑣 ∈ V . If the closed-loop system has such a hybrid invariant
manifoldPZ , then we say that the system has a Partial Hybrid Zero Dynamics (PHZD).
This relaxation is necessary to encompass hybrid systems with impact dynamics, which
are typically present in legged locomotion.

We now stack eq. (3.5) and eq. (4.10) in implicit form:

F𝑣 (q, ¤q, ¥q, u,𝝀, 𝑡,𝜶 𝑣) =

©«

D𝑣 (q) ¥q + C𝑣 (q, ¤q) ¤q + G𝑣 (q) − B𝑣u − J⊤𝑐,𝑣 (q)𝝀

J𝑐,𝑣 (q) ¥q + 𝜕
𝜕q

(
J𝑐,𝑣 (q) ¤q

)
¤y1,𝑣 (¤q, 𝑡,𝜶 𝑣) + 𝜖y1,𝑣 (¤q, 𝑡,𝜶 𝑣)

¥y2,𝑣 (q, ¤q, 𝑡,𝜶 𝑣) + 2𝜖 ¤y2,𝑣 (q, ¤q, 𝑡,𝜶 𝑣) + 𝜖2y2,𝑣 (q, 𝑡,𝜶 𝑣)

ª®®®®®®®¬
(4.14)

so that F𝑣 (q, ¤q, ¥q, u,𝝀, 𝑡,𝜶 𝑣) ≡ 0 signifies that (q, ¤q, ¥q, 𝑡) satisfy the constrained system
dynamics of vertex 𝑣 , and that the chosen outputs parametrized by 𝜶 𝑣 tend exponen-
tially towards 0.

4.1.7 IO-linearization for overconstrained systems

A nonlinear n-dimensional system subject to certain assumptions about its inputs and
outputs, may be transformed into an equivalent system where a subset of the states
are the outputs and their derivatives up to their relative degree.

A number of unobservable states are added to ensure that the transformation be-
tween the state space of the original and the transformed system is a diffeomorphism, at
least locally. For an in-depth discussion on feedback linearization and IO-linearization,
we refer the reader to either [19] or [21]. Consider the system equations of the trans-
formed system, which are reproduced for convenience from [21, pp. 160–164] in
eq. (4.15):

40 4. METHODS

¤b𝑖1 = b𝑖2 (4.15a)
¤b𝑖2 = b𝑖3 (4.15b)
...

¤b𝑖𝑟𝑖 = 𝑏𝑖 (𝝃 ,𝜼) +
𝑚∑︁
𝑗=1

𝑎𝑖 𝑗 (𝝃 ,𝜼)𝑢 𝑗 (4.15c)

¤𝜼 = q(b, [) +
𝑚∑︁
𝑗=1

pj (𝝃 ,𝜼)𝑢 𝑗 (4.15d)

𝑦𝑖 = b𝑖1 (4.15e)

Here, the states b𝑖𝑗 relate to the 𝑖𝑡ℎ output of the original system, 𝑟𝑖 is the relative
degree of the 𝑖𝑡ℎ output, 𝜼 are the internal (unobservable) dynamics of the system,
and 𝑏𝑖 can be written as a function of x as 𝑏𝑖 (x) = 𝐿

𝑟𝑖
𝑓
ℎ𝑖 (x). We may now define

𝝃 𝑟 ≜
(
b1𝑟1 , b

2
𝑟2 , . . . , b

𝑚𝑦

𝑟𝑚𝑦

)⊤
, with the following dynamics:

¤𝝃 𝑟 = b(x) +A(x)u (4.16)

where b(x) = [𝑏1 (x), 𝑏2 (x), . . . , 𝑏𝑚𝑦
(x)]⊤ and A is the decoupling matrix, which is

defined in the general case as

A(x) =

𝐿g1𝐿

𝑟1−1
f ℎ1 (x) . . . 𝐿g𝑚𝑢

𝐿
𝑟1−1
f ℎ1 (x)

...
. . .

...

𝐿g1𝐿
𝑟𝑚𝑦−1
f ℎ𝑚𝑦

(x) . . . 𝐿g𝑚𝑢
𝐿
𝑟𝑚𝑦−1
f ℎ𝑚𝑦

(x)

(4.17)

The goal of IO-linearization is to choose u so that ¤𝝃 𝑟 = v where v is chosen so that
the (now linear) output dynamics are exponentially stable. To proceed, the relative
degree of each output must be known and constant, and the decoupling matrix must

4.1. HYBRID ZERO DYNAMICS 41

be invertible. In this case, the input u is chosen according to the control law

u(x) = A−1 (x) (−b(x) + v) (4.18)

For the method of IO-linearization as described above to work, the decoupling
matrix A must be square and full rank – as its inverse is used for calculating u. The
decoupling matrix has as many rows as there are outputs, and as many columns as
there are actuators. Thus, in the method as described above, there must be as many
outputs as there are actuators – and actuated degrees of freedom. However, in the
case of multi-contact robotics, one must take extra care when determining how many
actuated degrees of freedom are actually present.

A legged robot is often in some contact configuration which makes it underactuated
– as has been mentioned already – this is what constitutes dynamic walking as opposed
to static walking. However, as has been noted in [6] andmore in-depth in [22, pp. 62-63],
a robotmay simultaneously be underactuated and overconstrained. An overconstrained
system has directions along which internal forces may be enacted by different actuators
in such a way as to cancel each other out; that is to say, there are several different
choices of the vector u which lead to the same system dynamics, but result in different
internal forces.

Consider the four-legged robot system eq. (3.5) in a configuration where two of
its legs are in contact with the ground. The unconstrained system has 18 DOFs. Each
of the holonomic foot position constraints impose 3 independent constraints, leaving
the constrained system with 12 DOFs. At first glance, as the robot has 12 actuators,
one might imagine that this leaves us with a fully actuated system. However, consider
the line passing through each of the foot contacts (see fig. 4.1 for an illustration). As
the feet are modeled as point contacts, there is no ground reaction forces or moments
which may be enacted by the stance feet so as to rotate the robot body around this axis.
Thus, we have one unactuated DOF. As the total DOFs equals the sum of actuated and
unactuated DOFs, it follows that the system must have only 11 actuated DOFs. Having
12 actuators, the system with two contact feet must be overconstrained.

The IO-linearization method can be applied straightforwardly to underactuated

42 4. METHODS

Figure 4.1: Illustration of an axis ®𝑘 around which the available contact forces can generate no
torque/moment

systems, so long as the number of outputs match the number of actuators, and the
relation between the chosen outputs and the actuators are such that A has full rank at
all times. However, as far as the author of this thesis could find, there is not a canonical
way to apply IO-linearization to overconstrained systems. Indeed, in [6] in order to
circumvent this issue, the author suggests simply to remove one stance leg actuator
from each continuous domain. This again would leave one of the stance leg joints
unactuated, rendering the system only underactuated (not overconstrained).

There are several objections one might have to this approach. Firstly, the choice
of which actuator is "turned off" is not justified or elaborated upon further. Secondly,
even if such a justification were given, the removal of one available actuator hardly
seems like an optimal solution in any sense. It is likely – or at least conceivable – that
a "better" (with respect to minimization of e.g. actuator torques or minimization of
tangential contact forces) choice of actuation will involve some combination of all of
the actuators collaborating in an overconstrained system, as opposed to leaving joints
unactuated to avoid overconstrainedness.

We propose a modification to IO-feedback-linearization which makes it readily

4.1. HYBRID ZERO DYNAMICS 43

applicable to overconstrained systems. This is a modification to the approach suggested
in [6] which is arguably more principled, as well as resulting in concrete benefits with
respect to torque use. We will show that

1. For an overconstrained system with𝑚𝑢 actuators and a choice of𝑚𝑦 outputs
for which some subset of 𝑚𝑦 actuators can be chosen so as to successfully
synthesize a conventional IO-linearization controller, the output-dynamics of
our closed-loop system will exhibit the same behavior.

2. Of all inputs that result in this behavior of the output-dynamics, our controller
ensures that the inputs are as small as possible, in a least-squares sense.

3. Given sufficiently smooth system dynamics and output functions, the resulting
controller can be made continuous, and, furthermore, its derivative can be made
well-defined and continuous.

Suppose a system with state x ∈ R𝑛 , input u ∈ R𝑚𝑢 and control-affine dynamics
¤x = f (x) + g(x)u with

g(x) =
[
g1 (x) g2 (x) . . . g𝑚𝑢

(x)
]

(4.19)

Suppose further that the system has 𝑚𝑦 actuated DOFs with 𝑚𝑦 < 𝑚𝑢 so that the
system is overconstrained. Let S𝑔 =

{
g1, g2, . . . , g𝑚𝑢

}
and let I𝑔 be its index set,{

I𝑔 = 1, 2, . . . ,𝑚𝑢

}
.

Suppose a selection of actuators and corresponding set S𝑔 given by an index set
I𝑔 ⊂ I𝑔, |I𝑔 | =𝑚𝑦 so that S𝑔 =

{
g𝑖

}
𝑖∈I�̃� with corresponding ũ ∈ R𝑚𝑦 . The auxiliary

system will have system dynamics ¤x = f (x) + g̃(x)ũ, where

g̃(x) =
[
gI�̃� {1} (x) gI�̃� {2} (x) . . . gI�̃� {𝑚𝑦 } (x)

]
(4.20)

As the original system is overconstrained, there is some index set I𝑔 so that the
number of actuated DOFs remains unchanged, but the system is no longer overcon-
strained. Suppose we have a set Sℎ = {ℎ𝑖 (x)} of𝑚𝑦 outputs so that, when considering
the system as actuated by ũ, g̃(x) the decoupling matrix Ã ∈ R𝑚𝑦×𝑚𝑦 has full rank.

44 4. METHODS

We may now construct a non-square "decoupling matrix" A ∈ R𝑚𝑦×𝑚𝑢 to the
original system. As each row of the decoupling matrix corresponds to an output while
each column corresponds to an input, all columns of Ã are also columns of A. Thus,
the rank of A must be at least the rank of Ã, which is assumed to be full rank. But the
rank ofA can also not be greater than its number of rows. Thus, rank (A) = rank

(
Ã

)
.

We now compare the output dynamics of the system actuated by ũ, Sg̃ to the
ones of the system actuated by u, Sg. In deriving the equations to the transformed
system, the functions

{
g𝑖

}
𝑖∈Ig̃

, resp.
{
g𝑖

}
𝑖∈Ig

, show up only in the equations of ¤b𝑖𝑟𝑖
(through 𝑎𝑖 𝑗 (𝝃 ,𝜼) resp. 𝑎𝑖 𝑗 (𝝃 ,𝜼)) as well as in the equations of ¤𝜼 (through p̃𝑗 (𝝃 , [),
resp. p𝑗 (𝝃 , [)).

Our goal is to render the output-dynamics of the overconstrained system equal
to the output-dynamics of the dynamical system rendered by substituting S𝑔 for S𝑔.
However, as A is not square, we may not simply invert it as in eq. (4.18).

The columns of A and Ã both span R𝑚𝑦 (by assumption). Thus, if we want to
achieve

A(x)u ≡ Ã(x)ũ = −b(x) + v (4.21)

we may choose
u(x) = A+ (x) (−b(x) + v) (4.22)

where A+ is the Moore-Penrose Pseudoinverse (MPP) of A.
The MPP has a number of properties which makes it desirable. Most importantly,

for non-overdetermined systems (at least as many linearly independent columns as
rows), the MPP solution solves the system exactly. This ensures that our controller as
described in eq. (4.22) impacts the output dynamics exactly as would a conventional IO-
linearization controller, see eq. (4.21). As the conventional IO-linearization controller
can exponentially stabilize the output dynamics by the proper choice of v, so will our
controller by the same choice of v. This shows the first claim.

Moreover, the solution yielded by the MPP in the underdetermined case is guar-
anteed to be the minimum-norm solution in the least-squares sense. This shows the
second claim.

4.2. DIRECT COLLOCATION 45

Thirdly, if a matrix M(𝑥) has constant rank then its MPP is continuous, and its
derivative is well-defined and continuous [23] (dependency on 𝑥 omitted for space
reasons):

𝜕

𝜕𝑥
(M+) =

M+
(
𝜕

𝜕𝑥
M

)
M+ + M+M+⊤

(
𝜕

𝜕𝑥
M

) (
I − MM+) + (

I − M+M
) (

𝜕

𝜕𝑥
M

)
M+⊤M+

(4.23)

Under the assumptions posed, A will have constant rank𝑚𝑦 . The Lie derivatives in
the controller will be smooth under the assumption of sufficiently smooth system
dynamics, and v can be chosen smooth – a typical choice is a linear combination of
system outputs and their derivatives. This shows the third claim.

The effect of this choice of u on the internal dynamics is not the topic of discussion
here. However, the construction of conventional IO-linearization controllers give no
guarantees on the stability of the internal dynamics to begin with. Thus, the stability
of the internal dynamics will be a matter of separate analysis in both cases.

4.2 Direct collocation

There are several ways of transcribing a control problem into a discrete time opti-
mization problem. While some of the simpler methods - such as single and multiple
shooting methods - may be computationally cheaper for each time step, there may be
a trade-off compared to more complex methods with respect to accuracy as a function
of step length. One could say that a collocation based optimization scheme relates to
a given implicit integration scheme (depending on which form of collocation) in the
same way multiple shooting methods relates to the simple forward-Euler integration
scheme. As a result, using a collocation scheme to relate the time steps - while not
as straightforward as a simple forward Euler-relation - allows for longer intervals
between discretization steps (nodes) while retaining solution accuracy. In the colloca-
tion framework one operates with two different types of nodes, interior and cardinal,
which alternate throughout the step sequence. The first and the last nodes are both

46 4. METHODS

cardinal, so that (with a 0-indexed set of nodes) even nodes are cardinal, while odd
nodes are interior.

For each cardinal node, the state of the system is made a decision variable. The
method rests on the notion that one can approximate the state between two cardinal
nodes from the system state and slope at these nodes. The slope at each cardinal
node is then given by the dynamics of the system. The set of states and slopes at two
neighboring cardinal nodes may vary across 4 dimensions in total. If an approximation
in between them is desired that matches the state and slope at both endpoints and
is completely determined by them, it should have 4 parameters. One possible choice,
which we will use in our case, is the cubic polynomial:

p(𝑡) =
3∑︁

𝑖=0
a𝑖𝑡𝑖 (4.24a)

s.t.

p(𝑡 (𝑛𝑐𝑖)) = x(𝑛𝑐𝑖) (4.24b)

p(𝑡 (𝑛𝑐𝑖+1)) = x(𝑛𝑐𝑖+1) (4.24c)

¤p(𝑡 (𝑛𝑐𝑖)) = f (x(𝑛𝑐𝑖)) (4.24d)

¤p(𝑡 (𝑛𝑐𝑖+1)) = f (x(𝑛𝑐𝑖+1)) (4.24e)

(4.24f)

Let Δ𝑡 (𝑖) = 𝑡 (𝑖+1) − 𝑡 (𝑖−1) for each interior node 𝑖 . Then, by choosing each interior
node as lying at the center between its adjacent cardinal nodes, we may approximate
both the state and the slope at the interior node in terms of the two adjacent nodes as:

x(𝑖) =
1
2

(
x(𝑖+1) + x(𝑖−1)

)
+ Δ𝑡 (𝑖)

8

(
f (x(𝑖−1)) − f (x(𝑖+1))

)
(4.25a)

¤x(𝑖) =
3

2Δ𝑡 (𝑖)
(
x(𝑖+1) − x(𝑖−1)

)
− 1
4

(
f (x(𝑖−1)) + f (x(𝑖+1))

)
(4.25b)

Finally, the relation between the cardinal nodes x(𝑖−1) , x(𝑖+1) is constrained by

4.3. CLOSED-LOOP TRAJECTORY OPTIMIZATION 47

imposing ¤x(𝑖) = f (x(𝑖)). This form of collocation is known as Hermite-Simpson
collocation.

4.3 Closed-loop Trajectory Optimization

A large difficulty in designing this type of controllers for walking is the gait design,
which relates to finding well-suited specific trajectories y𝑣,𝑑 (𝑡,𝜶 𝑣). These trajectories
should result in gaits that are both feasible and stable, and that are energetically
efficient.

While hand-crafting these desired trajectories is a possibility, the more common
approach is to find these feasible trajectories and corresponding inputs by the use
of optimization methods, a method known as optimal control. The framework of
nonlinear optimization is both powerful and flexible enough to incorporate holo-
nomic constraints, virtual holonomic and nonholonomic constraints, state inequality
constraints and bounds, while searching for solutions that minimize either energy
expenditure, average torque or other desired objectives.

In the approach suggested in [5] and later in [6], direct collocationmethods are used.
As mentioned in section 4.2, such methods allow for greater accuracy at longer time
steps, decreasing the number of decision variables needed. In this formulation referred
to as "modified Hermite-Simpson collocation", both the state at interior nodes and
the slope at cardinal nodes, as well as all constraint forces, are introduced explicitly
as defect variables as opposed to being calculated in closed form. Although this
introduction of defect variables increases the size of the NLP, it is done to improve the
convergence properties of the problem ([5]). It also avoids matrix inversion, which is
desirable for a few reasons:

Firstly, there are concerns of numerical stability and accuracy when inverting
poorly conditioned matrices. Secondly, matrix inversion is a highly costly operation
with time complexity which scales poorly in the number of variables.

The collocation constraints are a set of constraints that forces the state and slope
x(𝑖) = (q(𝑖) , ¤q(𝑖)) and ¤x(𝑖) = (¤q(𝑖) , ¥q(𝑖)) at the interior nodes to adhere to some interpo-
lation of the states at adjacent cardinal nodes. In Hermite-Simpson collocation, these

48 4. METHODS

constraints equal state and slope to the cubic interpolation of state and quadratic inter-
polation of slope calculated from the previous and following cardinal nodes. There are
in total N𝑣 nodes approximating the dynamics on vertex 𝑣 , of which N 𝑐

𝑣 = (N𝑣 + 1)/2
are cardinal nodes and N 𝑖

𝑣 = (N𝑣 − 1)/2 are interior nodes. The collocation constraint
on state is 𝜹 (𝑖) while the constraint on slope is 𝜻 (𝑖) for the 𝑖𝑡ℎ node:

𝜹 (𝑖) = x(𝑖) − 1
2

(
x(𝑖+1) + x(𝑖−1)

)
− Δ𝑡 (𝑖)

8

(
¤x(𝑖−1) − ¤x(𝑖+1)

)
𝜻 (𝑖) = ¤x(𝑖) − 3

2Δ𝑡 (𝑖)
(
x(𝑖+1) − x(𝑖−1)

)
+ 1
4

(
¤x(𝑖−1) + ¤x(𝑖+1)

) (4.26)

with Δ𝑡 (𝑖) = 𝑡 (𝑖+1) − 𝑡 (𝑖−1) , for 𝑖 = 1, 3, 5, . . . , 𝑁𝑣 − 2 where 𝑁𝑣 is the total number of
nodes The decision variables are, in addition to the states, slopes and input at each
node, parameters for the desired output trajectories as well as the placement in time
of each cardinal node, 𝑡 (𝑖) for 𝑖 = 0, 2, 4, . . . , 𝑁𝑣 − 1

As the method includes closed-loop controller in the NLP, it synthesizes a control
law for u directly. This is distinct from typical optimal control, where an open-loop
optimal control signal which is assumed to be piecewise linear or constant, is calculated.
We denote the constraint on input (dependencies on the right hand side have been
omitted for space reasons) as

G𝑣 (q(𝑖) , ¤q(𝑖) , u(𝑖) , 𝑡 (𝑖) ,𝜶 𝑣) = u(𝑖) +A−1
𝑣

©«
𝐿𝑓𝑣y1,𝑣 + 𝜖y1,𝑣

𝐿2
𝑓𝑣

y2,𝑣 + 2𝜖 ¤y2,𝑣 + 𝜖2y2,𝑣

ª®¬ (4.27)

where A−1
𝑣 may be replaced by A+

𝑣 if the system is overconstrained.
While, as mentioned in section 4.1.1, the graph Λ may in general contain several

cycles, for the sake of employing the trajectory optimization tool we restrict Λ to
consist of a single cycle so that each vertex 𝑣 has only one possible successor.

Let 𝜹𝑣 =

(
𝜹 (1)
𝑣

⊤, 𝜹 (3)
𝑣

⊤, . . . , 𝜹 (𝑁𝑣−2)
𝑣

⊤
)⊤

and 𝜻 𝑣 =

(
𝜻 (1)
𝑣

⊤, 𝜻 (3)
𝑣

⊤, . . . , 𝜻 (𝑁𝑣−2)
𝑣

⊤
)⊤
.

Also, let F𝑣 (q𝑣, ¤q𝑣, ¥q𝑣, u𝑣,𝝀𝑣, t𝑣,𝜶 𝑣) be the stacked vector of
{F𝑣 (q(𝑖) , ¤q(𝑖) , ¥q(𝑖) , u(𝑖) ,𝝀 (𝑖) , 𝑡 (𝑖) ,𝜶 𝑣)}. Finally, letG𝑣 (q𝑣, ¤q𝑣, u𝑣, t𝑣,𝜶 𝑣) be the stacked

4.3. CLOSED-LOOP TRAJECTORY OPTIMIZATION 49

vector of {G𝑣 (q(𝑖) , ¤q(𝑖) , u(𝑖) , 𝑡 (𝑖) ,𝜶 𝑣)}. Then, the full NLP can be stated as follows:

min
𝑧

J(z) s.t.

F𝑣 (q𝑣, ¤q𝑣, ¥q𝑣,𝝀𝑣, t𝑣,𝜶 𝑣) = 0

G𝑣 (q𝑣, ¤q𝑣, u𝑣, t𝑣,𝜶 𝑣) = 0

𝜹𝑣 = 0

𝜻 𝑣 = 0

(q(N𝑣)
𝑣 , ¤q(N𝑣)

𝑣 , u(N𝑣)
𝑣) ∈ S𝑣→` (𝑣)

(q(0)
` (𝑣) , ¤q

(0)
` (𝑣) , u

(0)
` (𝑣)) ∈ S𝑣→` (𝑣)

A𝑣 (q𝑣, ¤q𝑣,𝝀𝑣) ≥ 0

y2,𝑣 (q(0) , 𝑡 (0) ,𝜶 𝑣) = 0

¤y2,𝑣 (q(0) , ¤q(0) , 𝑡 (0) ,𝜶 𝑣) = 0

J𝑣 (q(0)) ¤q(0) = 0

∀𝑣 ∈ V

(4.28)

Here, z is the entire vector of decision variables, and J(z) is an objective function of
choice.

Two typical choices for J(z) might either be an integral cost over the 2-norm of
expended torque:

𝐽 (z) =
∑︁
𝑣∈V

∫ 𝑡 (N𝑣)

𝑡 (0)
∥u𝑣 (𝜏)∥2𝑑𝜏 (4.29)

or the 2-norm of expended torque divided by the time interval:

𝐽 (z) =
∑︁
𝑣∈V

1
𝑡 (N𝑣) − 𝑡 (0)

∫ 𝑡 (N𝑣)

𝑡 (0)
∥u𝑣 (𝜏)∥2𝑑𝜏 (4.30)

Here, the second choice might be preferable: Intuitively, one solution for a gait
cycle whose integral of torque is 0 is one which lasts for 0 seconds. From this, we

50 4. METHODS

might infer that the first cost function would drive the solver towards solutions which
are as short as possible, which might not be the solution that minimizes torque when
walking for a given duration of time (not a given number of gait cycles).

4.4 Controller post-processing for orbital stability

The closed-loop dynamics of the system subject to the controller synthesized through
the optimization procedure discussed previously exhibit an orbit in system state which
corresponds to the desired gait. However, the existence of such an orbit does not
guarantee its stability as such. The IO-feedback linearization controller only guaran-
tees the exponential stability of the chosen outputs, driving the system to its zero-
dynamics manifold. While for simpler systems one may have some luck in choosing
"intuitive" outputs which successfully accomplishes the (asymptotic) stability of the
zero-dynamics, selecting the outputs in such a way is in general non-trivial.

In order to keep the system’s trajectory close to the orbit over time – given initial
conditions which are merely in the close vicinity of the orbit – the orbit must be stable,
and in order for such a trajectory to converge to the orbit from some vicinity of it, it
must be attractive as well – thus asymptotic stability of some sort is desirable.

Here, we describe a systematic post-processing of the IO-feedback-linearization
controller, based on work presented in [4], so as to render the full state orbit in the
closed-loop dynamics exponentially orbitally stable, thus achieving our desired goal.

4.4.1 Poincaré return maps

Consider a dynamical system f (x) with x ∈ R𝑛 . Define the flow

𝜑 (x0, 𝑡) = x(𝑡)

s.t.

x(0) = x0, ¤x = f (x) ∀𝑡 ≥ 0

(4.31)

For a given x0 the flow describes the system’s trajectory through time from the initial
condition. Let S be some 𝑛 − 1-dimensional surface which is transverse to 𝜑 (x0, 𝑡),

4.4. CONTROLLER POST-PROCESSING FOR ORBITAL STABILITY 51

and which intersects it in x0. Further, let ℎS : R𝑛 → R be the function that defines S
in the following way:

S = {x ∈ R𝑛 |ℎS (x) = 0} (4.32)

Then, let y0 ≜ projS (x0) be the projection of x0 ∈ R𝑛 onto the 𝑛 − 1-dimensional
manifold S (i.e. a 𝑛 − 1-dimensional description of the point on S that intersects x0).
Let proj−1S (y) denote the canonical embedding of y in R𝑛 (i.e. the point in R𝑛 that
intersects S at y). Then, the first Poincaré map PS (y) for S is defined as

PS (y0)) = projS (𝜑 (proj−1S (y0), 𝑡1))

𝑠 .𝑡 .

𝜑 (proj−1S (y0), 𝑡1) ∈ S,

𝜑 (proj−1S (y0), 𝑡) ∉ S ∀𝑡 ∈ (0, 𝑡1)

(4.33)

If PS (y0) = y0, i.e. y0 ≜ y∗ is a fixed point of the Poincaré first return map, then
the trajectory originating at x0 ≜ x∗ is periodic and the set O = {𝜑 (x∗, 𝑡) |𝑡 ≥ 0} is an
orbit of the system.

4.4.2 Floquet multipliers and Orbital stability

Now, consider at first 𝜑 (x0, 𝑡1) with 𝜑 (·) as defined in eq. (4.31), where x0 is the initial
condition of the system and 𝑡1 is the time of the trajectory’s first return to the Poincaré
section S . Its Jacobian Φ(x0, 𝑡1) ≜ 𝜕

𝜕x0
𝜑 (x0, 𝑡1), is known as the fundamental solution

matrix. The set of eigenvalues of this matrix for a periodic solution, _(Φ(x0, 𝑡1)) is
known as the Floquet multipliers of the solution, and gives information about the
stability properties of the orbit. The linearization of 𝜑 (x, 𝑡1) around the fixed point x∗

results in a linear discrete dynamical system of the form

𝛿x𝑘+1 = Φ(x∗, 𝑡1)𝛿x𝑘 (4.34)

One of the Floquet multipliers of a periodic solution will necessarily be 1, with

52 4. METHODS

the corresponding eigenvector equal to the direction of flow at the fixed point, i.e.
Φ(x∗, 𝑡1)f (x∗) = f (x∗). However, if the rest of the Floquet multipliers have magnitude
strictly less than one, then the orbit is locally asymptotically – in fact, exponentially –
stable [24].

A closed-form analytical expression for 𝜑 (x0, 𝑡) is generally not available, and one
may therefore not differentiate 𝑃S (y) with respect to y in a straightforward manner.
However, using the variational equation of f along the trajectory originating at x∗ one
might obtain Φ(x∗, 𝑡1) as the solution of the LTV matrix differential equation

¤Φ =
𝜕f (x)
𝜕x

����
𝜑 (x∗,𝑡)

Φ,

Φ(0) = Φ0

(4.35)

evaluated at time 𝑡1. Further, from observing that 𝜑 (x0, 0) = x0 and thus 𝜕𝜑 (x0,0)
𝜕x0

= I𝑛 ,
it follows that Φ0 = I𝑛 .

4.4.3 Reduced-dimension stability analysis

Suppose we want to arrive at a linear discrete-time system that is exponentially stable
when the orbit of the original system is exponentially stable. We may then simply
project the system in eq. (4.34) onto the tangent space of S around x∗ – as f (x∗) is by
construction transverse.

However, for certain systems and orbits such as a legged robot walking forward, we
do not want orbital stability of the full state: At the very least the horizontal position
of the base should in fact move forward if the system acts as desired, and so the desired
behavior isn’t even an orbit in the full state. Thus, it is the system state projected on
some lower-dimensional subspace (or in general, manifold) X̃ of dimension 𝑛ld that
has an orbit. Thus, we want to study the stability properties by looking at how this
projection of the state trajectory intersects with the projection of the Poincaré section
onto the same manifold.

For the case at hand, where the state trajectory is an orbit in the state except

4.4. CONTROLLER POST-PROCESSING FOR ORBITAL STABILITY 53

horizontal position, X̃ is the subspace of R𝑛 spanned by orthonormal unit vectors
{e𝑖 }𝑖∈3:𝑛 . We want to look at the behavior of the state projected on the intersection
of this subspace and S , which around x∗ locally behaves as its tangent space TS (x∗).
This tangent space will be the orthogonal complement of 𝜕

𝜕xℎS (x)
��
x∗ where ℎS is as

defined in eq. (4.32). We denote the projection matrix from R𝑛 onto the intersection of
X̃ and TS (x∗) as 𝝅proj ∈ R𝑛ld×𝑛 . We also introduce the lift matrix 𝝅 lift ∈ R𝑛×𝑛ld , which
takes a point from the subspace to its canonical embedding in R𝑛 . This is equivalent
to satifying the conditions 𝝅proj𝝅 lift = I𝑛ld , 𝝅proj − 𝝅proj𝝅 lift𝝅proj = 0𝑛ld .

The orthogonal complement of a matrix’s range is the null space of its transpose.
Furthermore, lifted points lie in the null space of span

{
𝜕
𝜕xℎS (x)

��
x∗ , e1, e2

}
. Together,

this gives us

𝝅proj = Null
([

𝜕
𝜕xℎS (x)

��
x∗ e1 e2

]⊤)
(4.36a)

𝝅 lift = Null
([

𝜕
𝜕xℎS (x)

��
x∗ e1 e2

])
(4.36b)

Let S̃ ≜ S ∩ X̃ and denote z ≜ projS̃ (x). Further, let 𝑃S̃ : R𝑛ld−1 → R𝑛ld−1 be
the Poincaré map of the system projected on X̃ with respect to the surface S̃ . The
linearization of the system of Poincaré iterations around z∗ = projS̃ (x∗) will be

𝛿z𝑘+1 = A(z∗)𝛿z𝑘

where

A(z∗) = 𝝅projΦ(𝝅 liftz∗, 𝑡1)𝝅 lift

(4.37)

The exponential stability of this system is then equivalent to the orbital exponential
stability of the orbit in X̃ . For the rest of the chapter, any use of 𝑃 (·) refers to 𝑃S̃ .

54 4. METHODS

4.4.4 Extension to Hybrid Dynamical Systems

For the case of a HDS, while the idea of the Poincaré map and the related stability
analysis remains unchanged, the calculation of A(z∗) becomes somewhat more in-
volved. For a cycle in the graph representation of the HDS, consisting of an ordered
alternating sequence of 𝑛𝑐 continuous domains and 𝑛𝑐 discrete transitions, let 𝜑𝑣𝑖 (x, 𝑡)
describe the flow of the 𝑖th continuous domain and let Δ𝑣𝑖 (x) be the discrete dynamics
succeeding the 𝑖th continuous domain. Let x01 be the initial state of the system in
the first continuous domain of the cycle, and assume that x01 is the initial condition
for some solution of the system whose projection on X̃ is periodic. Seeing as we
have a good candidate for the Poincaré section in the form of the guard of the last
edge, S𝑣𝑛𝑐→𝑣1 , we want the point at which we analyze the Poincaré map to lie on
this surface. Thus, let z∗ ≜ 𝝅projΔ

−1
𝑣𝑛𝑐→𝑣1 (x01) be the projection of the preimage of x01

under Δ𝑣𝑛𝑐→𝑣1 .
The Poincaré map for the system around z∗ then becomes a composition of func-

tions alternating between the flow through each domain and the discrete dynamics
function from the guard of one vertex to the domain of the successor:

𝑃 (z0) = 𝝅proj (𝜑𝑣𝑛𝑐
(𝑡𝐼𝑛) ◦ Δ𝑣𝑛𝑐−1→𝑣𝑛𝑐

◦ . . . ◦ Δ𝑣1→𝑣2 ◦ 𝜑𝑣1 (𝑡𝐼1) ◦ Δ𝑣𝑛𝑐→𝑣1) (𝝅 liftz∗)

where

𝑡𝐼𝑖 (x0𝑖) = 𝑡 s.t. 𝜑𝑣𝑖 (x0𝑖 , 𝑡) ∈ S𝑣𝑖→𝑣𝑖+1 ,

x0𝑖 = Δ𝑣𝑖−1→𝑣𝑖 (𝜑𝑣𝑖−1 (x0𝑖−1 , 𝑡𝐼𝑖−1))
(4.38)

Here, it is important to note that as the time of impact 𝑡𝐼 for each domain is
simply the time at which 𝜑 (x0, 𝑡) intersects a guard S𝑣𝑖→𝑣𝑖+1 , it too is dependent on
the initial condition of the domain. In order to calculate d

dx0
𝜑 (x0, 𝑡𝐼), consider within

one continuous domain the solution x originating at x0 which intersects with S𝑣 at 𝑡𝐼 ,
and consider also the slightly perturbed solution x𝑝 originating at x𝑝0 which intersects
with S𝑣 at 𝑡

𝑝

𝐼
. Denote the difference between the initial conditions as 𝛿x = x𝑝0 − x0.

There are two cases to be considered: Either 𝑡𝐼 ≤ 𝑡
𝑝

𝐼
, or 𝑡𝐼 > 𝑡

𝑝

𝐼
.

4.4. CONTROLLER POST-PROCESSING FOR ORBITAL STABILITY 55

Assume first 𝑡𝐼 ≤ 𝑡
𝑝

𝐼
, so that the non-perturbed solution intersects first with S𝑣

or simultaneously. In this case, both x(𝑡𝐼), x𝑝 (𝑡𝐼) are in the closure of the admissible
domain. For this small perturbation, we would like to find x𝑝 (𝑡𝑝

𝐼
) − x(𝑡𝐼). We first

approximate x𝑝 (𝑡𝐼) by a first-order Taylor expansion, x𝑝 (𝑡𝐼) ≈ x(𝑡𝐼)+ 𝜕
𝜕x0

x(𝑡𝐼)·𝛿x. Thus,
𝛿x𝐼 := x𝑝 (𝑡𝐼) − x(𝑡𝐼) ≈ 𝜕

𝜕x0
x(𝑡𝐼) · 𝛿x. Secondly, we need x𝑝 (𝑡𝑝

𝐼
) − x𝑝 (𝑡𝐼). Assuming

the perturbation is small, this vector is well-approximated by f (x(𝑡𝐼)) · 𝛿𝑡 where
𝛿𝑡 = 𝑡

𝑝

𝐼
− 𝑡𝐼 . As ℎ(x𝑝 (𝑡𝑝𝐼) = 0 must hold, we have 0 ≈ ℎ(x(𝑡𝐼) + 𝛿x𝐼 + f (x(𝑡𝐼)) · 𝛿𝑡) ≈

ℎ(x(𝑡𝐼)) + 𝜕
𝜕xℎ(x(𝑡𝐼)) · (𝛿x𝐼 + f (x(𝑡𝐼) · 𝛿𝑡). As ℎ(x(𝑡𝐼)) = 0, this gives

𝛿𝑡 ≈ −
𝜕
𝜕xℎ(x(𝑡𝐼)) · 𝛿x𝐼

𝜕
𝜕xℎ(x(𝑡𝐼)) · f (x(𝑡𝐼))

or, by denoting
𝜕
𝜕xℎ (x(𝑡𝐼))

⊤

∥ 𝜕
𝜕xℎ (x(𝑡𝐼)) ∥

as the normal vector n to the surface S𝑣 at x(𝑡𝐼) (and,
equivalently for small perturbations, at x𝑝 (𝑡𝑝

𝐼
))

𝛿𝑡 ≈ − n⊤ · 𝛿x𝐼
n⊤ · f (x(𝑡𝐼))

In the end, we get

x𝑝 (𝑡𝑝
𝐼
) − x𝑝 (𝑡𝐼) ≈ −f (x(𝑡𝐼)) ·

n⊤ · 𝛿x𝐼
n⊤ · f (x(𝑡𝐼))

and thus

x𝑝 (𝑡𝑝
𝐼
) − x(𝑡𝐼) ≈ 𝛿x𝐼 − f (x(𝑡𝐼)) ·

n⊤ · 𝛿x𝐼
n⊤ · f (x(𝑡𝐼))

=

(
I − f (x(𝑡𝐼)) · n⊤

n⊤ · f (x(𝑡𝐼))

)
· 𝜕

𝜕x0
x(𝑡𝐼) · 𝛿x

Now, consider the case when 𝑡 > 𝑡𝑝 , i.e. the perturbed solution intersects S𝑣

before the non-perturbed solution. In this case, both x(𝑡𝑝
𝐼
) and x𝑝 (𝑡𝑝

𝐼
) are in the

closure of the domain. By switching the roles of x, x𝑝 and 𝑡𝐼 , 𝑡
𝑝

𝐼
, and observing that

𝜕
𝜕x0

x(𝑡𝐼)𝛿x = 𝜕

𝜕xp
0
xp (𝑡𝑝

𝐼
)𝛿x to the first-order approximation, one will for reasons of

symmetry get the same expression.
The derivation here is based on one in [24], but is altered so as to apply to the case

56 4. METHODS

when one solution is at the boundary, as opposed to the case when one has crossed
the boundary. Please see fig. 4.2 for an illustration of the magnitudes involved.

Letting 𝛿x have the direction of each vector in the standard basis forR𝑛 respectively,
and dividing both sides by its norm and letting it tend towards 0, we end up with

d
dx0

𝜑 (x0, 𝑡𝐼 (x0)) = Π(x𝑓) ·
𝜕

𝜕x0
𝜑 (x0, 𝑡𝐼),

Π(x𝑓) =
(
I −

f (x𝑓) · n⊤

n⊤ · f (x𝑓)

)
,

x𝑓 = 𝜑 (x0, 𝑡𝐼)

(4.39)

Seeing as each discrete dynamics functionΔ𝑣𝑖→𝑣𝑖+1 depends solely on the pre-impact
state, we get the following:

A(z∗) =

𝝅proj

𝑛𝑐∏
𝑖=1

(
Π𝑣𝑖 (x𝑓𝑖) ·

𝜕

𝜕x0𝑖
𝜑𝑣𝑖 (x0𝑖 , 𝑡𝐼𝑖) ·

𝜕

𝜕x𝑓
`−1 (𝑣𝑖)

Δ`−1 (𝑣𝑖)→𝑣𝑖 (x𝑓
`−1 (𝑣𝑖)

)
)
𝝅 lift

(4.40)

If all of the eigenvalues of A(z∗) are strictly less than 1 in magnitude then the trajectory
originating at x01 , projected on X̃ , is exponentially orbitally stable.

4.4.5 Linear/Bilinear matrix inequalities

In typical optimization problems, the task is to minimize some scalar objective function
under a series of scalar linear or nonlinear constraints. However, there are two other
classes of constraints (one a subset of the other) which are nontrivial to translate into
a series of scalar inequalities: Linear Matrix Inequalities (LMIs) and BMIs.

A LMI posits the following:

A0 +
𝑝∑︁
𝑖=1

(
A𝑝𝑥𝑝

)
≻ 0 (4.41)

4.4. CONTROLLER POST-PROCESSING FOR ORBITAL STABILITY 57

Figure 4.2: Geometric illustration of change in impact point and time as a function of initial
perturbation

58 4. METHODS

where A𝑖 ∈ R𝑛×𝑛 are constant and given, while x ∈ R𝑝 is a variable to be determined.
Several nonlinear constraints, including quadratic constraints, can be formulated as
LMIs through certain reformulation tricks. However, there are some problems, for
instance in control, which do not admit to being reformulated as an LMI. For many
of these problems, they do however admit to being reformulated into a more general
class of matrix constraints, called BMIs. These inequalities are on the following form:

A0 +
𝑝∑︁
𝑖=1

(A𝑖𝑥𝑖) +
𝑞∑︁
𝑖=1

(B𝑖𝑦𝑖) +
𝑝∑︁
𝑖=1

𝑞∑︁
𝑗=1

(
C𝑖 𝑗𝑥𝑖𝑦 𝑗

)
≻ 0 (4.42)

where A𝑖 ,B𝑖 ,C𝑖 are square constant matrices, while x, y are variables to be determined.
Their upside is that they capture a much wider class of problems. However, their
downside (as opposed to the case of LMIs) is the lack of systematic, efficient ways of
solving optimization problems that contain such constraints [25].

One relation used to transform constraints which are not obviously LMIs/BMIs
into such constraints is to consider the relation between a block matrix and its Schur
complement, reproduced here from [26, p. 34]:

for A =

A11 A12

A⊤
12 A22

 ,
A ≻ 0 ⇐⇒ A11 ≻0 and A/A11 ≻ 0

where A/A11 is the Schur complement of A with respect to A11

(4.43)

4.4.6 Sensitivity analysis and post-processing

As mentioned in section 4.4, while the synthesized controller yields a closed loop
trajectory that is periodic in part of the system state, the trajectory is not necessarily
orbitally stable. Our goal here is to alter the actual and desired outputs of the controller
in a way which retains the same periodic trajectory, but changes its properties so as
to make it orbitally stable. The methods described here are based on the paper [4],
though the formulation is extended to systems which exhibit arbitrarily many domains

4.4. CONTROLLER POST-PROCESSING FOR ORBITAL STABILITY 59

and left-right symmetry simultaneously.

First, note that the actual outputs chosen in the original controller synthesis is a
special case of

y𝑎 (𝑡) = H · q(𝑡)

Here, H ∈ R𝑛𝑦×𝑛𝑞 is a matrix of constant coefficients. Similarly, the desired outputs is
a special case of

y𝑑 (𝑡) = H · q∗ (𝑡)

where q∗ (𝑡) is the periodic trajectory which we want to stabilize. By considering
the synthesized controller as an instance of this more general form, we have a finite-
dimensionally parametrized family of controllers which all relate to the same trajectory,
in the sense that y(q, ¤q, 𝑡) = 0 ∀q(𝑡) = q∗ (𝑡) ∀H ∈ R𝑛𝑦×𝑛𝑞 where y(q, ¤q, 𝑡) is as
described in eq. (4.8).

Consider the discrete-time system in eq. (4.44). We now want to consider this
system describing the development of 𝛿z lying on the Poincaré section S𝑣𝑛𝑐→𝑣1 ∩ X̃ ,
where A(z∗) is given as in eq. (4.40).

We may consider the controller as parametrized by a vector 𝝃 which is a concate-
nation of each column of H and denote the parametrization which coincides with
the previously synthesized controller as 𝝃 ∗. Then, the linear discrete-time system
describing the evolution of 𝛿z is given by

𝛿z𝑘+1 = A(z∗, 𝝃 ∗)𝛿z𝑘 (4.44)

Thus, it is necessary to perturb the vector 𝝃 ∗ by some 𝛿𝝃 so that the system
with system matrix A(z∗, 𝝃 ∗ + 𝛿𝝃) is exponentially stable. Tuning 𝝃 directly through
nonlinear optimization would require recalculating A(z∗, 𝝃) for each iteration, which
would entail a substantial computational burden. An alternative to this is to linearize
eq. (4.44) around (z∗, 𝝃 ∗) wrt. 𝝃 , and to find 𝛿𝝃 which stabilizes the system

60 4. METHODS

𝛿z𝑘+1 =

(
A0 +

𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)
𝛿z𝑘

where

A0 = A(z∗, 𝝃 ∗),

A𝑖 =
𝜕

𝜕b𝑖
A(z∗, 𝝃 ∗)

(4.45)

Now, consider the Lyapunov Function Candidate (LFC) 𝑉𝑘 = 𝛿z⊤
𝑘

W−1𝛿z𝑘 where
W = W⊤ ≻ 0. We get

𝑉𝑘+1 = 𝛿z⊤
𝑘+1W

−1𝛿z𝑘+1 = 𝛿z⊤
𝑘

(
A0 +

𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)⊤
W−1

(
A0 +

𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)
𝛿z𝑘 , (4.46a)

Δ𝑉𝑘 ≜ 𝑉𝑘+1 −𝑉𝑘 (4.46b)

The LFC itself satisfies the criteria for showing exponential stability (positive
definiteness). If one can also show Δ𝑉𝑘 < −`𝑉𝑘 ∀𝛿z ≠ 0 for some ` ∈ R > 0, then the
system in eq. (4.45) is exponentially stable. This property is equivalent to(

A0 +
𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)⊤
W−1

(
A0 +

𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)
− W−1 ≺ −`W−1

⇐⇒ (1 − `)W − W

(
A0 +

𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)⊤
W−1

(
A0 +

𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)
W ≻ 0

(4.47)

By observing that eq. (4.47) is the Schur complement of a symmetric block matrix

M

A B

B⊤ C

 , A = W, B =

(
A0 +

𝑛b∑︁
𝑖=1

A𝑖𝛿b𝑖

)
W, C = (1 − `)W

and considering eq. (4.47), one can see that the positive definiteness of W and the

4.4. CONTROLLER POST-PROCESSING FOR ORBITAL STABILITY 61

requirement Δ𝑉𝑘 < −`𝑉𝑘 ∀𝛿z ≠ 0 are both satisfied iff

W

(
A0 +

∑𝑛b

𝑖=1 A𝑖𝛿b𝑖

)
W

W⊤
(
A0 +

∑𝑛b

𝑖=1 A𝑖𝛿b𝑖

)⊤
(1 − `)W

 ≻ 0 (4.48)

However, this constraint only ensures that the linearization wrt. 𝝃 is stable. To
increase the likelihood that the linearization approximates the true system well, it is
also desirable to search for solutions that are close to the linearization point. In [4] this
is done by introducing a scalar decision variable 𝛾 and minimizing this while imposing
the constraint ∥𝛿𝝃 ∥2 ≤ 𝛾 (though reformulated as an LMI constraint).

However, during implementation it was found that by simply including ∥𝛿𝝃 ∥2 =
𝛿𝝃⊤𝛿𝝃 directly in the cost function - making the cost function quadratic but removing
a large matrix constraint - the computations sped up by a factor of ∼ 60.

Furthermore, the rate of convergence to the stable orbit increases for larger `,
thus it is also desirable while minimizing ∥𝛿𝝃 ∥2 to maximize ` with a coefficient 𝑤
determining the soft priority between the two. All in all, this can be formulated as a
BMI constrained optimization problem:

min
𝛿𝝃 , `,W

−𝑤 · ` + 𝛿𝝃⊤𝛿𝝃 (4.49a)

s.t.
W

(
A0 +

∑𝑛b

𝑖=1 A𝑖𝛿b𝑖

)
W

⋆ (1 − `)W

 ≻ 0 (4.49b)

` > 0 (4.49c)

There are several both commercial and open-source solvers which are able to solve
BMI constrained problems. However, some solvers require a feasible starting point,
which would in this case translate into having an exponentially stable solution to
begin with, and would thus defeat the purpose of solving the optimization problem.
However, certain solvers rely on an Augmented Lagrangian approach (related to both

62 4. METHODS

penalty and barrier methods) which does not require a feasible initial point.

4.4.7 Managing and reducing computational complexity

Even when avoiding the recalculation of A(z∗, 𝝃) for each iteration of the optimization
routine, the BMI constrained optimization problem is fairly computationally heavy.
This computational burden scales with both the size of the matrix constraints as well
as the number of variables.

In this subsection we describe some measures taken to reduce the size of the
problem to curtail the computational burden somewhat. Firstly, one could argue that
from a consideration of what properties the gait should have, there are certain states
that it is not desirable to include in the feedback. For instance, while one may have
included a constraint on velocity in the xy-plane during the synthesis of the gait, the
exact xy-position at a certain time 𝑡 is not really a matter of concern: If the gait keeps
the robot stable with respect to its height above the ground, and its roll and pitch
orientation, it would still "keep its balance" so to speak, and its exact position in the
xy-plane might be better accounted for by a higher-level controller.

Additionally, attempting to ensure stability in the absolute base height may not be
desirable. The height relative to the ground is already described through a combination
of base orientation and stance leg configuration, and stabilizing the absolute height
to some precomputed trajectory might lead to trouble if the robot encounters an
unexpected slope and the absolute base height increases if the robot walks forward.

Secondly, consider gait symmetry. Intuitively, this is when the second half of
a gait is a mirroring of the first half. We may write this more formally as x𝑣𝑖 (𝑡) =

S𝑥x𝑣𝑗 (𝑡) ∀𝑖 − 𝑗 =
𝑛𝑐
2 for some matrix S𝑥 s.t. S2𝑥 = I. Assume the same is true for y𝑎 for

some matrix S𝑦 , i.e. H𝑣𝑖 x𝑣𝑖 = S𝑦H𝑣𝑗 x𝑣𝑗 .

Further, as we assume the above conditions hold ∀x0𝑣∀𝑡 ∈ [𝑡0𝑣 , 𝑡𝐼𝑣), it follows
that f 𝑣𝑖 (x𝑣𝑖) = S𝑥 f 𝑣𝑗 (x𝑣𝑗), Δ𝑣𝑖→` (𝑣𝑖) (x𝑓𝑣𝑖

) = S𝑥Δ𝑣𝑗→` (𝑣𝑗) (x𝑓𝑣𝑗
), or equivalently, that

S𝑥 f 𝑣𝑖 (S𝑥x𝑣𝑗) = f 𝑣𝑗 (x𝑣𝑗), and S𝑥Δ𝑣𝑖→` (𝑣𝑖) (S𝑥x𝑓𝑣𝑗
) = Δ𝑣𝑗→` (𝑣𝑗) (x𝑓𝑣𝑗

).
With this, we may rewrite eq. (4.38) as

4.4. CONTROLLER POST-PROCESSING FOR ORBITAL STABILITY 63

𝑃 (z∗) = 𝝅proj ((S𝑥 ◦ 𝜑𝑣𝑛𝑐
2
(𝑡𝐼 𝑛

2
) ◦ S𝑥) ◦ (S𝑥 ◦ Δ𝑣𝑛𝑐

2 −1→𝑣𝑛𝑐
2
◦ S𝑥) ◦ . . .

◦ (S𝑥 ◦ Δ𝑣1→𝑣2 ◦ S𝑥) ◦ (S𝑥 ◦ 𝜑𝑣1 (𝑡𝐼1) ◦ S𝑥) ◦ (S𝑥 ◦ Δ𝑣𝑛𝑐→𝑣1 ◦ S𝑥))

◦ (𝜑𝑣𝑛𝑐
2
(𝑡𝐼 𝑛

2
) ◦ Δ𝑣𝑛𝑐

2 −1→𝑣𝑛𝑐
2
◦ . . . ◦ Δ𝑣1→𝑣2 ◦ 𝜑𝑣1 (𝑡𝐼1) ◦ Δ𝑣𝑛𝑐→𝑣1) (𝝅 liftz∗)

= 𝑃ℎ𝑎𝑙 𝑓 ◦ 𝑃ℎ𝑎𝑙 𝑓 (z∗)

where

𝑃ℎ𝑎𝑙 𝑓 (z∗) = 𝝅projS𝑥 ◦ 𝜑𝑣𝑛𝑐
2
(𝑡𝐼 𝑛

2
) ◦ Δ𝑣𝑛𝑐

2 −1
◦ . . . ◦ Δ𝑣1 ◦ 𝜑𝑣1 (𝑡𝐼1) ◦ Δ𝑣𝑛𝑐

(𝝅 liftz∗)

(4.50)

As the stability analysis of an orbit should not depend on which point in the
orbit is chosen as the initial point, we may now equivalently analyze the orbit from
z̃∗ ≜ 𝝅projx𝑓𝑣 𝑛𝑐

2
instead, leaving us with

𝑃 (z̃∗) = 𝑃ℎ𝑎𝑙 𝑓 ◦ 𝑃ℎ𝑎𝑙 𝑓 (z̃∗),

𝑃ℎ𝑎𝑙 𝑓 (z̃∗) = S𝑥 ◦ 𝑃ℎ𝑎𝑙 𝑓 ◦ S𝑥
(4.51)

The derivative of 𝑃ℎ𝑎𝑙 𝑓 then becomes

d
dz̃∗

𝑃ℎ𝑎𝑙 𝑓 (z̃∗) =

𝝅proj

𝑛𝑐
2∏

𝑖=1

(
Π𝑣𝑖 (x𝑓𝑣𝑖

) · 𝜕

𝜕x0𝑖
𝜑𝑣𝑖 (x0𝑖 , 𝑡𝐼𝑖) ·

𝜕

𝜕x𝑓
`−1 (𝑣𝑖)

Δ`−1 (𝑣𝑖) (x𝑓
`−1 (𝑣𝑖)

)
) · S𝑥𝝅 lift

(4.52)

We denote this last matrix Ã(z̃∗).
As d

dz̃∗ 𝑃 (z̃
∗) =

(
d
dz̃∗ 𝑃ℎ𝑎𝑙 𝑓 (z̃

∗)
)2

wehave that _(d
dz̃∗ 𝑃 (z̃

∗)) =
{
_2𝑖 |_𝑖 ∈ _(d

dz̃∗ 𝑃ℎ𝑎𝑙 𝑓 (z̃
∗))

}
.

This implies that the spectral radius of the former is less than 1 iff the spectral radius
of the latter is less than 1. We may thus conduct our analysis on half of the cycle,
reducing both the number of domains to integrate over and the number of parameters

64 4. METHODS

to optimize over by half.
Secondly, having conducted the initial sensitivity analysis of Ã(z̃∗, 𝝃) with respect

to 𝝃 , we may find that its spectral radius exhibits a much greater sensitivity to some
parameters than others. Indeed, by plotting the matrix norm of each 𝜕

𝜕b𝑖
Ã(z̃∗, 𝝃 ∗) we

see that three columns of the H-matrix for each domain account for the vast majority
of the sensitivity of Ã with respect to 𝝃 (see fig. 4.3).

By restricting our optimization problem to these variables, we reduce the size of 𝛿𝝃
from 616 variables to 66 variables. As the optimization method involves computations
of the Hessian, which has a lower bound of𝑂 (𝑛2) in terms of computational complexity
in the general case, this is expected to speed up computations significantly.

4.5 Implementation details

4.5.1 Robot models

The model of the ASTRo robot was written and generated based on the properties
found in [3] using the Xacro XML macro language to generate a model in Unified
Robot Description Format (URDF). The model of the vision60 robot was obtained from
GitHub: https://github.com/KodlabPenn/kodlab_gazebo and is free to use under
the MIT license.

4.5.2 Closed-loop trajectory optimization

The closed-loop trajectory optimization problem is formulated using the FROST (Fast
Robotics Optimization and Simulation Toolkit) framework [27]. FROST is an open-
source framework developed in collaboration between researchers at the AMBER lab
at California Institute of Technology and the BipedLab at the University of Michigan,
which is designed for formulating optimal control problems for hybrid dynamical
systems.

FROST utilizes a collocation based discretization, implicit formulation of dynamics
pre-compilation of symbolic derivatives to allow for full-order optimal control of even
high-dimensional systems such as quadrupeds while retaining tractable computation

https://github.com/KodlabPenn/kodlab_gazebo

4.5. IMPLEMENTATION DETAILS 65

0

50

1
142 13

First domain

3

100

124 11
105

Row

9

Column

6 8
7 7

68 59 4
310 211 1

0

5

1
142

10

13

Second domain

3 12

15

4 11
105

Row

9

Column

6 8
7 7

68 59 4
310 211 1

Figure 4.3: Norm of the sensitivity of Ã0 with respect to each parameter in H

66 4. METHODS

times. It is written primarily in MATLAB, but uses the Wolfram Mathematica symbolic
engine for formulating and pre-compiling symbolic expressions to efficient C-code.

FROST is hosted at Github:https://github.com/ayonga/frost-dev.

4.5.3 Controller parameter post-processing

The Bilinear Matrix Inequality optimization problem for post-processing controller
parameters was formulated in YALMIP [28], a MATLAB toolbox for formulating
optimization problems. While YALMIP comes with some in-house solvers, it interfaces
with numerous known commercial and open-source solvers. Here, the PENBMI [29]
solver of PENLAB was chosen. The PENBMI solver utilizes an Augmented Lagrangian-
approach to reformulate the nonlinearly constrained problem as a nonconstrained NLP
approximation, which is solved iteratively. The primary challenge of some BMI solvers
– such as the open-source BMIsolver MATLAB package which utilizes concave-convex
decomposition [30] – is that it requires a feasible initial guess. For many BMI problems
finding a feasible initial guess to feed a solver which requires feasibility is nontrivial;
the problem to be solved here, for instance, is essentially a feasibility problem with
some additional minimization of the solution norm to improve validity of the solution.
Thus, finding an initial feasible guess is some of the point of the optimization problem.
The PENBMI solver, using an Augmented Lagrangian-approach, allows for initial
guesses which are infeasible.

4.5.4 Simulation

The simulation of the closed-loop systems was done in MATLAB through the FROST
framework. For simulation FROST simply serves as an interface for the standard set of
MATLAB solvers, and uses ode45 as its standard solver.

The code-base for the implementation can be found at https://github.com/
Norwegian-Legged-Lab/Tetrapod-Robot under the hzd-control-feature branch.

https://github.com/ayonga/frost-dev
https://github.com/Norwegian-Legged-Lab/Tetrapod-Robot
https://github.com/Norwegian-Legged-Lab/Tetrapod-Robot

5
Results and Discussion

In this chapter we present and discuss the obtained results. Gaits were synthesized for
the sprawling ASTRo robot as well as the mammalian vision60. The chapter proceeds
with presentation and discussion of results as follows:

• Results of the closed loop trajectory optimization for two gaits for each robot

• Results of the controller post-processing procedure for all gaits

• Results from simulation of the closed loop systems under nominal conditions

• Results from simulation of the closed loop systems with unmodeled changes to
the ground topology

• Results on energy and torque expenditure

Evaluating the method for both robots with respect to successful synthesis and
stability of gaits was done in order to evaluate its suitability for a sprawling robot, and
to compare it directly with replication of results previously achieved in [6].

For results regarding responses to unmodeled change in ground height, we compare
across robots to evaluate whether results support the hypothesis that sprawling robots
have an advantage to mammalian ones when it comes to handling such changes.

67

68 5. RESULTS AND DISCUSSION

Figure 5.1: Diagram for one cycle of an ambling gait. Grey stretches indicate stance phases
while blue stretches indicate swing phases.

When it comes to the results on torque expenditure, both robots were evaluated
to compare inter-robot differences and consider them in light of the hypothesis that
mammalian robots may be more energetically efficient. Importantly, this was also
done to evaluate the effect of the modified controller on robots of both types of robot.

5.1 Optimal gaits

An ambling gait was chosen for synthesis. The ambling gait consists of 4 phases,
where the two last phases constitute a left-right mirroring of the two first. In the first
phase, the front right and the rear left legs are supporting legs, with the front left and
rear right legs swinging. In the second phase, the front right and rear right legs are
supporting legs, while the front left and rear left legs are swinging. See fig. 5.1 for an
illustration.

For each robot, gait patterns were synthesized for two desired forward velocities.
Firstly, an ambling-in-place gait was synthesized. Secondly, a forward ambling gait
was synthesized with a desired forward velocity of 0.2𝑚/𝑠 . For both robots the bounds
of the optimization problem (e.g. desired foot clearance, initial and terminal swing
foot velocities etc.) were kept similar, in order to attempt to keep the comparison of
method fair. The objective function used was the squared integral average of torque
over time. At first simply the integral of squared torque was chosen, but it was found

5.1. OPTIMAL GAITS 69

0.3 0.301 0.302 0.303

m

-0.1

0

0.1

m
/s

Base z-position

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Base roll

-11 -10 -9 -8

rad 10
-3

-0.05

0

0.05

ra
d

/s

Base pitch

-2 -1 0 1 2

rad 10
-3

-0.2

0

0.2

ra
d

/s

Base yaw

0.2 0.3 0.4 0.5

rad

-5

0

5

ra
d

/s

Fl hip roll

0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Fl hip pitch

1.05 1.1 1.15 1.2 1.25

rad

-2

0

2

4

ra
d

/s

Fl knee pitch

-0.5 -0.4 -0.3 -0.2 -0.1

rad

-5

0

5

ra
d

/s

Rl hip roll

0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Rl hip pitch

1.05 1.1 1.15 1.2

rad

-2

0

2

ra
d

/s

Rl knee pitch

-0.5 -0.4 -0.3 -0.2

rad

-5

0

5

ra
d

/s
Fr hip roll

0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Fr hip pitch

1.05 1.1 1.15 1.2 1.25

rad

-2

0

2

4

ra
d

/s

Fr knee pitch

0.1 0.2 0.3 0.4 0.5

rad

-5

0

5

ra
d

/s

Rr hip roll

0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Rr hip pitch

1.05 1.1 1.15 1.2

rad

-2

0

2

ra
d

/s

Rr knee pitch

Figure 5.2: Phase portraits for optimized stationary ambling gait on the ASTRo robot. First
letter signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots signify initial
values. Phase portraits for x- and y-position do (by design) not constitute clear orbits and are
omitted.

that this resulted in the solution always converging to the shortest allowed gait period.

In general, a moving gait on flat ground will exhibit periodic behavior in all states
except for the base horizontal position. Therefore, phase portraits are shown of all
system states except these. Phase portraits for respectively the stationary and forward
gaits of ASTRo are shown in fig. 5.2 and fig. 5.3. Phase portraits for respectively the
stationary and forward gaits of vision60 are shown in fig. 5.4 and fig. 5.5.

During optimization, no clear differences were noticed in convergence rates of the
problem, neither for the presented gaits nor for any other produced gaits. This would
indicate that the method presented in [6] for closed loop trajectory optimization is
equally well-suited for sprawling quadrupeds as it is for mammalian ones.

70 5. RESULTS AND DISCUSSION

0.3 0.301 0.302 0.303 0.304

m

-0.1

0

0.1

m
/s

Base z-position

-0.04 -0.02 0 0.02 0.04

rad

-0.5

0

0.5

ra
d

/s

Base roll

2 3 4 5

rad 10
-3

-0.2

-0.1

0

0.1

ra
d

/s

Base pitch

-0.1 -0.05 0 0.05

rad

-2

0

2

ra
d

/s

Base yaw

0.4 0.5 0.6 0.7 0.8

rad

-5

0

5

ra
d

/s

Fl hip roll

0.3 0.35 0.4

rad

-2

0

2

4

ra
d

/s

Fl hip pitch

1.05 1.1 1.15 1.2

rad

-2

0

2

4

ra
d

/s
Fl knee pitch

-0.8 -0.6 -0.4 -0.2

rad

-5

0

5

ra
d

/s

Rl hip roll

0.36 0.37 0.38 0.39 0.4

rad

0

1

2

ra
d

/s

Rl hip pitch

1.05 1.1 1.15 1.2

rad

-5

0

5

ra
d

/s

Rl knee pitch

-0.8 -0.7 -0.6 -0.5 -0.4

rad

-5

0

5

ra
d

/s

Fr hip roll

0.3 0.35 0.4

rad

-2

0

2

4

ra
d

/s

Fr hip pitch

1.05 1.1 1.15 1.2

rad

-2

0

2

4

ra
d

/s

Fr knee pitch

0.2 0.4 0.6 0.8

rad

-5

0

5

ra
d

/s

Rr hip roll

0.36 0.37 0.38 0.39 0.4

rad

0

1

2

ra
d

/s

Rr hip pitch

1.05 1.1 1.15 1.2

rad

-5

0

5

ra
d

/s

Rr knee pitch

Figure 5.3: Phase portraits for optimized forward ambling gait on the ASTRo robot. First letter
signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots signify initial
values. Phase portraits for x- and y-position do (by design) not constitute clear orbits and are
omitted.

5.1. OPTIMAL GAITS 71

0.2 0.202 0.204 0.206

m

-0.2

-0.1

0

0.1

m
/s

Base z-position

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d
/s

Base roll

-0.04 -0.038 -0.036 -0.034

rad

-0.1

0

0.1

ra
d
/s

Base pitch

-4 -2 0 2 4

rad 10
-3

-0.1

0

0.1

ra
d
/s

Base yaw

-0.3 -0.2 -0.1 0

rad

-2

0

2

ra
d
/s

Fl hip roll

0.46 0.48 0.5 0.52

rad

-2

0

2

4

ra
d
/s

Fl hip pitch

0.4 0.5 0.6 0.7

rad

-2

0

2

4

ra
d
/s

Fl knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d
/s

Rl hip roll

0.3 0.35 0.4 0.45 0.5

rad

-2

0

2

4

ra
d
/s

Rl hip pitch

0.35 0.4 0.45 0.5 0.55

rad

-2

0

2

4

ra
d
/s

Rl knee pitch

0 0.1 0.2 0.3

rad

-2

0

2

ra
d
/s

Fr hip roll

0.46 0.48 0.5 0.52

rad

-2

0

2

4

ra
d
/s

Fr hip pitch

0.4 0.5 0.6 0.7

rad

-2

0

2

4

ra
d
/s

Fr knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d
/s

Rr hip roll

0.3 0.35 0.4 0.45 0.5

rad

-2

0

2

4

ra
d
/s

Rr hip pitch

0.35 0.4 0.45 0.5 0.55

rad

-2

0

2

4

ra
d
/s

Rr knee pitch

Figure 5.4: Phase portraits for optimized stationary ambling gait on the vision60 robot. First
letter signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots signify initial
values. Phase portraits for x- and y-position do (by design) not constitute clear orbits and are
omitted.

72 5. RESULTS AND DISCUSSION

0.2 0.202 0.204 0.206

m

-0.2

-0.1

0

0.1

m
/s

Base z-position

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d
/s

Base roll

-0.066 -0.064 -0.062 -0.06

rad

-0.1

0

0.1

ra
d
/s

Base pitch

-0.01 -0.005 0 0.005 0.01

rad

-0.2

0

0.2

ra
d
/s

Base yaw

-0.3 -0.25 -0.2 -0.15 -0.1

rad

-2

0

2

4

ra
d
/s

Fl hip roll

0.2 0.3 0.4 0.5

rad

-2

0

2

ra
d
/s

Fl hip pitch

0.5 0.55 0.6 0.65 0.7

rad

-2

0

2

4

ra
d
/s

Fl knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d
/s

Rl hip roll

0.2 0.3 0.4 0.5

rad

-2

0

2

4

ra
d
/s

Rl hip pitch

0.35 0.4 0.45 0.5 0.55

rad

-2

0

2

4

ra
d
/s

Rl knee pitch

0.1 0.15 0.2 0.25 0.3

rad

-4

-2

0

2

ra
d
/s

Fr hip roll

0.2 0.3 0.4 0.5

rad

-2

0

2

ra
d
/s

Fr hip pitch

0.5 0.55 0.6 0.65 0.7

rad

-2

0

2

4

ra
d
/s

Fr knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d
/s

Rr hip roll

0.2 0.3 0.4 0.5

rad

-2

0

2

4

ra
d
/s

Rr hip pitch

0.35 0.4 0.45 0.5 0.55

rad

-2

0

2

4

ra
d
/s

Rr knee pitch

Figure 5.5: Phase portraits for optimized forward ambling gait on the vision60 robot. First
letter signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots signify initial
values. Phase portraits for x- and y-position do (by design) not constitute clear orbits and are
omitted.

5.2. GAIT STABILIZATION 73

ASTRo vision60
Gait type Stationary Forward Stationary Forward

SR before BMI opt. 1.0018 1.2024 0.9962 1.1296
SR after BMI opt. 0.7266 0.6267 0.5402 0.6392

Table 5.1: Spectral radii of the projection of the Poincaré map Jacobian for different gaits, before
and after post-processing the controller parameters for exponential stability

5.2 Gait stabilization

Here, we present the results of the post processing-procedure to render an exponentially
stabilizing controller. As discussed in section 4.4, the system state modulo x- and y-
position is orbitally exponentially stable if the spectral radius of d

dx∗ 𝑃 (x
∗) is strictly

less than 1. In table 5.1, we present the spectral radii of the closed loop system for both
robots for both gaits, before and after the postprocessing of controller parameters.

As can be seen, the spectral radius is significantly reduced for all gaits, successfully
changing the corresponding closed loop system orbits from either unstable or close to
unstable, to exponentially stable within a comfortable margin. While the primary goal
is simply to reduce the spectral radius to less than 1, any extra reduction in spectral
radius also entails a lower bound on how quickly trajectories in the orbit’s vicinity
converge to the orbit, and is as such desirable.

5.3 Simulation results

In what follows, we present the results from simulating the closed loop systems for
both gait behaviors for both robots. In order to empirically verify and demonstrate the
exponential stability of the gaits, each gait was simulated for 500 consecutive full gait
cycles. In plots where fewer cycles are plotted for clarity, this is specified in the figure
text.

74 5. RESULTS AND DISCUSSION

5.3.1 vision60

By looking at the phase portraits for the stationary gait in fig. 5.6, we notice clear
cyclic behavior in each state of the vision60 robot’s stationary gait modulo horizontal
position. This indicates an asymptotically stable limit cycle in the closed loop behavior,
corresponding to an asymptotically stable gait.

From fig. 5.7, we see clear convergence to periodic behavior the entire base state
except for x-position. This is hardly surprising: while the goal x-velocity for this gait
is 0, there is no state feedback on x-position to the controller and as such some drift is
to be expected over time.

In fig. 5.8 we have plotted the distance in states modulo base position between
each successive intersection between the state and the Poincaré section previously
used for stability analysis. This discrete dynamical system of "snapshots" of the system
state at each intersection with the Poincaré section, is exponentially stable iff the orbit
of the original system is exponentially stable.

As the discrete dynamical system converges to a fixed-point instead of a periodic
behavior, it might be simpler to evaluate the orbital stability of the original system
by looking at the distance between each iteration of this system. As we see, the state
distance (modulo position) converges to 0 as the number of iterations increase, which
does indeed indicate that the system is orbitally asymptotically stable.

In fig. 5.9 we see the phase portraits for the forward gait. Once again, convergence to
periodic behavior is clear in all depicted states. This once again indicates asymptotically
stable behavior of the limit cycle corresponding to the forward gait. In fig. 5.10, we see
the state trajectories of the robot base. Once again, convergence to periodic behavior
is evident for all states except x-position and y-position. The x-velocity of the gait
is by design nonzero, and the x-position is seen here evolving linearly as expected,
though the gait velocity seems to be slightly lower than 0.2𝑚/𝑠 . As there is currently
no state feedback from the x-velocity, some discrepancy between desired and actual
forward velocity might be expected. There is some very slight drift in y-position as
well, which is again explained by the lack of state-feedback from y-position.

The orbital stability is also once again clearly seen from the evolution of the state

5.3. SIMULATION RESULTS 75

0.195 0.2 0.205

m

-0.2

0

0.2

m
/s

Base z-position

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Base roll

-0.05 -0.045 -0.04 -0.035 -0.03

rad

-0.1

0

0.1

ra
d

/s

Base pitch

-0.01 -0.005 0 0.005 0.01

rad

-0.2

0

0.2

ra
d

/s

Base yaw

-0.3 -0.2 -0.1 0

rad

-2

0

2

ra
d

/s

Fl hip roll

0.46 0.48 0.5 0.52

rad

-2

0

2

4

ra
d

/s

Fl hip pitch

0.4 0.5 0.6 0.7

rad

0

2

4

ra
d

/s

Fl knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Rl hip roll

0.3 0.35 0.4 0.45 0.5

rad

-2

0

2

4

ra
d

/s

Rl hip pitch

0.3 0.35 0.4 0.45 0.5

rad

0

2

4

ra
d

/s

Rl knee pitch

0 0.1 0.2 0.3

rad

-2

0

2

ra
d

/s
Fr hip roll

0.46 0.48 0.5 0.52

rad

-2

0

2

4

ra
d

/s

Fr hip pitch

0.4 0.5 0.6 0.7

rad

0

2

4

ra
d

/s

Fr knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Rr hip roll

0.3 0.35 0.4 0.45 0.5

rad

-2

0

2

4

ra
d

/s

Rr hip pitch

0.3 0.35 0.4 0.45 0.5

rad

-2

0

2

4

ra
d

/s

Rr knee pitch

Figure 5.6: Phase portraits for stationary gait on the vision60 robot during simulation. First
letter signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots indicate
initial values. x- and y-positions are excluded as they are not attempted stabilized.

(modulo horizontal position) on the Poincaré section, as seen in fig. 5.11.

5.3.2 ASTRo

For the stationary gait of the ASTRo robot, we see from the phase portraits in fig. 5.12
clear convergence to periodic behavior modulo horizontal position, though the conver-
gence in base pitch and yaw is somewhat slower than the remaining states. This is in
agreement with what can be seen from looking at the base state trajectory in fig. 5.13,
where convergence to periodic behavior can be seen in all states except horizontal
position. Again, while the desired x-velocity is 0, some drift is to be expected in the
absence of state feedback from x-position. Here as well, the evolution of the state on

76 5. RESULTS AND DISCUSSION

0 5 10 15 20 25 30

t [s]

-0.34

-0.32

-0.3

-0.28

-0.26

-0.24

m

Base x-position

0 5 10 15 20 25 30

t [s]

-0.1

-0.05

0

0.05

0.1

ra
d

Base roll

0 5 10 15 20 25 30

t [s]

0.14

0.15

0.16

0.17

0.18

m

Base y-position

0 5 10 15 20 25 30

t [s]

-0.06

-0.05

-0.04

-0.03

-0.02

ra
d

Base pitch

0 5 10 15 20 25 30

t [s]

0.18

0.19

0.2

0.21

0.22

m

Base z-position

0 5 10 15 20 25 30

t [s]

-0.02

-0.01

0

0.01

0.02

ra
d

Base yaw

Figure 5.7: Trajectories of base pose states during 250 cycles of stationary gait for the vision60
robot during simulation

5.3. SIMULATION RESULTS 77

0 100 200 300 400 500

Iteration

0

0.02

0.04

0.06

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Iteration

0

0.02

0.04

0.06

0.08

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

Figure 5.8: Norms of the error for iterative applications of the Poincaré map (corresponding to
successive intersections between state and Poincaré section) between each other and between
initial state, for a stationary gait for the vision60 robot during simulation

78 5. RESULTS AND DISCUSSION

0.198 0.2 0.202 0.204 0.206

m

-0.2

-0.1

0

0.1

m
/s

Base z-position

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Base roll

-0.07 -0.065 -0.06

rad

-0.1

0

0.1

ra
d

/s

Base pitch

-0.01 -0.005 0 0.005 0.01

rad

-0.2

0

0.2

ra
d

/s

Base yaw

-0.3 -0.25 -0.2 -0.15 -0.1

rad

-2

0

2

4

ra
d

/s

Fl hip roll

0.2 0.3 0.4 0.5

rad

-2

0

2

ra
d

/s

Fl hip pitch

0.5 0.55 0.6 0.65 0.7

rad

-2

0

2

4

ra
d

/s

Fl knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Rl hip roll

0.2 0.3 0.4 0.5

rad

0

2

4

ra
d

/s

Rl hip pitch

0.3 0.35 0.4 0.45 0.5

rad

0

2

4

ra
d

/s

Rl knee pitch

0.1 0.15 0.2 0.25 0.3

rad

-4

-2

0

2

ra
d

/s

Fr hip roll

0.2 0.3 0.4 0.5

rad

-2

0

2

ra
d

/s

Fr hip pitch

0.5 0.55 0.6 0.65 0.7

rad

-2

0

2

4

ra
d

/s

Fr knee pitch

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Rr hip roll

0.2 0.3 0.4 0.5 0.6

rad

0

2

4

ra
d

/s

Rr hip pitch

0.3 0.35 0.4 0.45 0.5

rad

0

2

4

ra
d

/s

Rr knee pitch

Figure 5.9: Phase portraits for forward (0.2 m/s) gait on the vision60 robot during simulation.
First letter signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots indicate
initial values. x- and y-positions are excluded as they are not attempted stabilized.

5.3. SIMULATION RESULTS 79

0 5 10 15 20 25 30

t [s]

0

1

2

3

4

5

m

Base x-position

0 5 10 15 20 25 30

t [s]

-0.1

-0.05

0

0.05

0.1

ra
d

Base roll

0 5 10 15 20 25 30

t [s]

0.14

0.15

0.16

0.17

m

Base y-position

0 5 10 15 20 25 30

t [s]

-0.08

-0.07

-0.06

-0.05

-0.04

ra
d

Base pitch

0 5 10 15 20 25 30

t [s]

0.18

0.19

0.2

0.21

0.22

m

Base z-position

0 5 10 15 20 25 30

t [s]

-0.02

0

0.02

ra
d

Base yaw

Figure 5.10: Trajectories of base pose states during 250 cycles of forward gait on flat ground
for the vision60 robot during simulation

80 5. RESULTS AND DISCUSSION

0 100 200 300 400 500

Iteration

0

0.005

0.01

0.015

0.02

0 100 200 300 400 500

Iteration

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500

Iteration

0

0.05

0.1

0.15

0.2

0.25

0 100 200 300 400 500

Iteration

0

0.005

0.01

0.015

0 100 200 300 400 500

Iteration

0

0.05

0.1

0.15

0 100 200 300 400 500

Iteration

0

0.05

0.1

0.15

Figure 5.11: Norms of the error for iterative applications of the Poincaré map (corresponding to
successive intersections between state and Poincaré section) between each other and between
initial state, for a forward gait on flat ground for the vision60 robot during simulation

5.3. SIMULATION RESULTS 81

the Poincaré section in fig. 5.14 shows convergence, further supporting that the system
exhibits asymptotic orbital stability for the gait.

In the phase portraits of the states for the forward gait in fig. 5.15, we again see
convergence to periodic behavior in the state modulo horizontal position, although
this is slightly less clear in the base pitch. However, from fig. 5.16 we see that all
base states modulo horizontal position seem to converge to periodic behavior. The
y-position seems to drift slightly, which again is not unexpected as it is not attempted
stabilized. The x-position develops linearly, which corresponds to the base maintaining
a desired constant forward velocity. Again, the forward velocity is slightly smaller
than specified during the gait optimization, but this is not unexpected due to the gait
velocity not being explicitly stabilized by the controller.

Given that there is some more transient behavior leading to slightly less clear
phase portraits here, it is especially helpful to look at the evolution of the state on the
Poincaré section in fig. 5.17, which still clearly shows convergence to a fixed point and
thus indicates asymptotic stability.

No clear differences were noted in the convergence rates of the BMI optimization
problem to create stabilizing controllers for the two robots. Both gaits for both robots
also end upwith corresponding spectral radii well under 1, and their orbital exponential
stability is backed up by considering the simulated trajectories as presented above.
One may, however, from figures 5.8, 5.11, 5.14, 5.17 note that vision60 exhibits slightly
less transient behavior before converging to a truly periodic gait than ASTRo does.

5.3.3 Deviations between initial state and fixed point for the
state on the Poincaré section

The initial state for all simulations is set to be the initial state x0 of the respective
optimized gait. This initial state is supposed to be part of a stable or unstable orbit
of the system in closed loop. When looking at the discrete dynamical system of
successive intersections between system state and the Poincaré section, this would
be equivalent to z0 = 𝝅projx0 being a fixed point of the discrete dynamical system.
The post-processing is supposed to ensure specifically that the orbit resulting from

82 5. RESULTS AND DISCUSSION

0.298 0.299 0.3 0.301 0.302

m

-0.1

0

0.1

m
/s

Base z-position

-0.1 -0.05 0 0.05 0.1

rad

-2

0

2

ra
d

/s

Base roll

-9 -8 -7 -6

rad 10
-3

-0.05

0

0.05

0.1

ra
d

/s

Base pitch

-2 0 2 4

rad 10
-3

-0.2

0

0.2

ra
d

/s

Base yaw

0.2 0.3 0.4 0.5

rad

-5

0

5

ra
d

/s

Fl hip yaw

0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Fl hip pitch

1.05 1.1 1.15 1.2 1.25

rad

-2

0

2

4

ra
d

/s

Fl knee pitch

-0.5 -0.4 -0.3 -0.2 -0.1

rad

-5

0

5

ra
d

/s

Rl hip yaw

0.25 0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Rl hip pitch

1.05 1.1 1.15 1.2

rad

-2

0

2

ra
d

/s

Rl knee pitch

-0.5 -0.4 -0.3 -0.2

rad

-5

0

5

ra
d

/s

Fr hip yaw

0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Fr hip pitch

1.05 1.1 1.15 1.2 1.25

rad

-2

0

2

4

ra
d

/s

Fr knee pitch

0.1 0.2 0.3 0.4 0.5

rad

-5

0

5

ra
d

/s

Rr hip yaw

0.25 0.3 0.35 0.4

rad

-2

0

2

ra
d

/s

Rr hip pitch

1.05 1.1 1.15 1.2

rad

-2

0

2

ra
d

/s

Rr knee pitch

Figure 5.12: Phase portraits for stationary gait on the ASTRo robot during simulation. First
letter signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots indicate
initial values. x- and y-positions are excluded as they are not attempted stabilized.

5.3. SIMULATION RESULTS 83

0 2 4 6 8 10 12 14 16 18

t [s]

-0.3

-0.2

-0.1

0

0.1

0.2

m

Base x-position

0 2 4 6 8 10 12 14 16 18

t [s]

-0.05

0

0.05

ra
d

Base roll

0 2 4 6 8 10 12 14 16 18

t [s]

0.13

0.14

0.15

0.16

0.17

m

Base y-position

0 2 4 6 8 10 12 14 16 18

t [s]

-0.02

-0.01

0

0.01

ra
d

Base pitch

0 2 4 6 8 10 12 14 16 18

t [s]

0.28

0.29

0.3

0.31

0.32

m

Base z-position

0 2 4 6 8 10 12 14 16 18

t [s]

-0.02

-0.01

0

0.01

0.02

ra
d

Base yaw

Figure 5.13: Trajectories of base pose states during 250 cycles of stationary gait for the ASTRo
robot during simulation

84 5. RESULTS AND DISCUSSION

0 100 200 300 400 500

Iteration

0

0.01

0.02

0.03

0 100 200 300 400 500

Iteration

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

Iteration

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

Iteration

0

0.005

0.01

0.015

0 100 200 300 400 500

Iteration

0

0.1

0.2

0.3

0.4

0 100 200 300 400 500

Iteration

0

0.1

0.2

0.3

0.4

Figure 5.14: Norms of the error for iterative applications of the Poincaré map (corresponding to
successive intersections between state and Poincaré section) between each other and between
initial state, for a stationary gait for the ASTRo robot during simulation

5.3. SIMULATION RESULTS 85

0.298 0.3 0.302 0.304 0.306

m

-0.1

0

0.1

m
/s

Base z-position

-0.04 -0.02 0 0.02 0.04

rad

-0.5

0

0.5

ra
d

/s

Base roll

-10 -5 0 5

rad 10
-3

-0.2

-0.1

0

ra
d

/s

Base pitch

-0.1 -0.05 0 0.05

rad

-2

0

2

ra
d

/s

Base yaw

0.4 0.5 0.6 0.7 0.8

rad

-5

0

5

ra
d

/s

Fl hip yaw

0.3 0.35 0.4

rad

-2

0

2

4

ra
d

/s

Fl hip pitch

1.05 1.1 1.15 1.2

rad

0

2

4

ra
d

/s

Fl knee pitch

-0.8 -0.6 -0.4 -0.2

rad

-5

0

5

ra
d

/s

Rl hip yaw

0.36 0.38 0.4 0.42

rad

0

1

2

ra
d

/s

Rl hip pitch

1 1.05 1.1 1.15 1.2

rad

-5

0

5

ra
d

/s

Rl knee pitch

-0.8 -0.7 -0.6 -0.5 -0.4

rad

-5

0

5

ra
d

/s

Fr hip yaw

0.3 0.35 0.4

rad

-2

0

2

4

ra
d

/s

Fr hip pitch

1.05 1.1 1.15 1.2

rad

0

2

4

ra
d

/s

Fr knee pitch

0.2 0.4 0.6 0.8

rad

-5

0

5

ra
d

/s

Rr hip yaw

0.34 0.36 0.38 0.4 0.42

rad

0

1

2

ra
d

/s

Rr hip pitch

1 1.05 1.1 1.15 1.2

rad

-5

0

5

ra
d

/s

Rr knee pitch

Figure 5.15: Phase portraits for forward (0.2 m/s) gait on the ASTRo robot during simulation.
First letter signifies "front" or "rear" leg, last letter signifies "left" or "right" leg. Red dots indicate
initial values. x- and y-positions are excluded as they are not attempted stabilized.

86 5. RESULTS AND DISCUSSION

0 5 10 15 20 25

t [s]

0

1

2

3

m

Base x-position

0 5 10 15 20 25

t [s]

-0.05

0

0.05

ra
d

Base roll

0 5 10 15 20 25

t [s]

0.06

0.08

0.1

0.12

0.14

0.16

m

Base y-position

0 5 10 15 20 25

t [s]

-0.02

-0.01

0

0.01

0.02

ra
d

Base pitch

0 5 10 15 20 25

t [s]

0.28

0.29

0.3

0.31

0.32

m

Base z-position

0 5 10 15 20 25

t [s]

-0.1

-0.05

0

0.05

ra
d

Base yaw

Figure 5.16: Trajectories of base pose states during 250 cycles of forward gait on flat ground
for the ASTRo robot during simulation

5.3. SIMULATION RESULTS 87

0 100 200 300 400 500

Iteration

0

0.02

0.04

0.06

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0 100 200 300 400 500

Iteration

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

Figure 5.17: Norms of the error for iterative applications of the Poincaré map (corresponding to
successive intersections between state and Poincaré section) between each other and between
initial state, for a forward gait on flat ground for the ASTRo robot during simulation

88 5. RESULTS AND DISCUSSION

the initial state and the controller parameters, becomes exponentially orbitally stable,
which would be equivalent to z0 being an exponentially stable fixed point of the
discrete dynamical system. However, from looking at any of figures 5.8, 5.11, 5.14, 5.17,
it is clear that while the state of the discrete system converges, it does not converge to
z0 even though it begins there. This would indicate that z0 is not even a fixed point,
and certainly not an asymptotically stable one.

The explanation for this is likely numerical errors. Firstly, assuming that the collo-
cation scheme of the trajectory optimization results in a close-to-perfect representation
of the system dynamics, the equality imposed between the initial and terminal condi-
tion of the state during trajectory optimization has some slack (in this case 10−4), as has
all "equality constraints" in optimization problems when solved numerically. Secondly,
choosing the number of nodes for the collocation scheme is a trade-off between accu-
racy of the solution and computational tractability, and accuracy of the "integration"
of the dynamics in an optimization problem will by necessity likely be lower than
during simple forward integration during simulation of the system afterwards.

The variational equation will still characterize system behavior around whatever
trajectory it is integrated across. However, for this characterization to say something
about the orbital stability of trajectory, it requires both that the trajectory is a feasible
trajectory given the system dynamics, and that the trajectory is an orbit of the system.
That the trajectory given by the trajectory optimization problem is not truly or exactly
a feasible orbit of the system, might explain why the systems do not converge to an
orbit that includes z0. However we see from the same plots that the system state does
indeed converge to a fixed point on the Poincaré section, even if that fixed point is not
the initial value and expected fixed point z0.

While not guaranteed, it is not by complete accident that when the spectral radius of
d
dz𝑃 (z) is less than 1 around z0 and ∥𝑃 (z0)−z0∥ is small, then we find an attractive fixed
point in its vicinity. Let 𝜌 (·) denote the spectral radius. By assumption, 𝜌

(
d
dz𝑃 (z0)

)
< 1.

The induced matrix norm of the Jacobian of a discrete map determines whether the map
is a contraction. If for a map f : X → X we have ∥ 𝜕

𝜕x f (x)∥ ≤ 𝑘 < 1 for x ∈ X , then
the map is a contraction on X [31]. Furthermore, the norm of a matrix is always lower
bounded by its spectral radius, and for amatrixMwe have lim𝑛→∞∥M𝑛 ∥ 1

𝑛 = 𝜌 (M). The

5.4. RESPONSE TO UNMODELED CHANGES IN GROUND HEIGHT 89

matrix norm and the spectral radius are continuous functions, so if 𝜌 (d
dz𝑃 (z0)) = 𝑘 < 1

then this should also hold in some vicinity around z0. It would therefore stand to
reason that a lower spectral radius of d

dz𝑃 (z0) should increase the chances of 𝑃 (𝑛) (z0)
converging to a nearby attractive fixed point (though this is by no means given).

5.4 Response to unmodeled changes in groundheight

To check how both robots responded to unmodeled changes in ground height, we
simulated the forward gaits (which were synthesized under an asssumption of flat
ground) of the robots in a scenario where the ground, after staying flat for 2m, started
ramping upwards at a constant slope. Elevation is given in percent throughout, with
100% elevation corresponding to a 45° angle with the horizontal plane.

5.4.1 vision60

For the forward gait of the vision60 robot, the maximum elevation that still allowed the
robot to continue walking for an indefinite period was 0.3% elevation. When increasing
the elevation beyond this, the robot would stumble and eventually fall. In fig. 5.18,
from looking at the pitch we see that the robot encounters the ramp at around 𝑡 = 10 s,
and that the trajectories seem to not change noticeably as a result (except for base
height and pitch). However, we see from the fig. 5.19 that having already converged
to a stable orbit prior to the ramp, the previously stable orbit no longer exists for the
system with sloping ground. Thus, the system dynamics converge to a stable orbit of
the new system if it is currently within its region of attraction. This can be seen in the
plot as the discrete system suddenly moving away from the previously attractive fixed
point and converging to a new fixed point.

5.4.2 ASTRo

For the forward gait of the ASTRo robot, the maximum elevation that could be reached
while seemingly allowing the robot to keep walking indefinitely was 2% elevation.
Increasing the slope beyond this would make the robot stumble and fall. We see in

90 5. RESULTS AND DISCUSSION

0 5 10 15 20 25 30

t [s]

0

1

2

3

4

5

m

Base x-position

0 5 10 15 20 25 30

t [s]

-0.1

-0.05

0

0.05

0.1

ra
d

Base roll

0 5 10 15 20 25 30

t [s]

0.14

0.15

0.16

0.17

m

Base y-position

0 5 10 15 20 25 30

t [s]

-0.09

-0.08

-0.07

-0.06

-0.05

-0.04

ra
d

Base pitch

0 5 10 15 20 25 30

t [s]

0.18

0.19

0.2

0.21

0.22

0.23

m

Base z-position

0 5 10 15 20 25 30

t [s]

-0.02

0

0.02

ra
d

Base yaw

Figure 5.18: Trajectories of base pose states during 250 cycles of forward gait on ground with a
ramp of 0.3% elevation for the vision60 robot during simulation

5.4. RESPONSE TO UNMODELED CHANGES IN GROUND HEIGHT 91

0 100 200 300 400 500

Iteration

0

0.01

0.02

0.03

0.04

0.05

0 100 200 300 400 500

Iteration

0

0.1

0.2

0.3

0 100 200 300 400 500

Iteration

0

0.1

0.2

0.3

0 100 200 300 400 500

Iteration

0

0.005

0.01

0.015

0 100 200 300 400 500

Iteration

0

0.05

0.1

0.15

0 100 200 300 400 500

Iteration

0

0.05

0.1

0.15

Figure 5.19: Norms of the error for iterative applications of the Poincaré map (corresponding to
successive intersections between state and Poincaré section) between each other and between
initial state, for a forward gait on ground with a ramp of 0.3% elevation for the vision60 robot
during simulation. Note that for this plot, the entire base position is omitted as the z-position is
not periodic when the ground slopes.

92 5. RESULTS AND DISCUSSION

0 5 10 15 20 25

t [s]

0

1

2

3

m

Base x-position

0 5 10 15 20 25

t [s]

-0.05

0

0.05

ra
d

Base roll

0 5 10 15 20 25

t [s]

0.06

0.08

0.1

0.12

0.14

0.16

m

Base y-position

0 5 10 15 20 25

t [s]

-0.04

-0.02

0

0.02

ra
d

Base pitch

0 5 10 15 20 25

t [s]

0.28

0.3

0.32

0.34

0.36

m

Base z-position

0 5 10 15 20 25

t [s]

-0.1

-0.05

0

0.05

ra
d

Base yaw

Figure 5.20: Trajectories of base pose states during 250 cycles of forward gait on ground with a
ramp of 2% elevation for the ASTRo robot during simulation

fig. 5.20 from the pitch that the ramp is encountered at around 𝑡 = 12.5 s. Here as well,
only base height and pitch of the base seem to be clearly affected by the change in
ground slope. Looking at fig. 5.21, the picture is not quite as clear as for the vision60
robot. After the robot reaches the slope, the discrete state does not seem to converge
to a fixed point. However, the robot was tested on this slope for extended periods
without failing. Also, while there is not convergence, there does seem to be some
periodicity to the pattern emerging. There may be that while no fixed point is reached,
some point x∗ is reached so that 𝑃 (𝑛) (x∗) = x∗ for some 𝑛. In that case, the behavior
would still have converged to an orbit, albeit one that corresponds to 𝑛 gait cycles as
opposed to 1.

Unfortunately, none of the synthesized gaits managed to produce stable walking

5.4. RESPONSE TO UNMODELED CHANGES IN GROUND HEIGHT 93

0 100 200 300 400 500

Iteration

0

0.02

0.04

0.06

0.08

0.1

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Iteration

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Iteration

0

0.05

0.1

0.15

0 100 200 300 400 500

Iteration

0

0.5

1

1.5

2

0 100 200 300 400 500

Iteration

0

0.5

1

1.5

2

Figure 5.21: Norms of the error for iterative applications of the Poincaré map (corresponding to
successive intersections between state and Poincaré section) between each other and between
initial state, for a forward gait on ground with a ramp of 2% for the ASTRo robot during
simulation. Note that for this plot, the entire base position is omitted as the z-position is not
periodic when the ground slopes.

94 5. RESULTS AND DISCUSSION

for ramps of elevation greater than 2%. However, the ASTRo robot managed this for a
relatively significantly greater slope than the vision60 robot, somewhat supporting the
hypothesis that sprawling quadrupeds may handle unmodeled terrain changes better
than mammalian ones.

Here, a caveat must be given. As there is no practical way to optimize for adapt-
ability to ground changes within the trajectory optimization problem, and as stability
of the gait is also quite a different matter, it may well be that gaits could be produced
for both robots which would have handled greater changes to the terrain that were
presented here. As tuning the parameters for the optimization problem in order to
yield such a gait is something of an art, we did unfortunately not yield any such gaits
during experimentation with the gait synthesis.

5.5 Torque and energy expenditure

In what follows, the performance in terms of torque and energy expenditure are
compared in two ways. Firstly, the performance is compared between the two robots
which serve as examples of respectively sprawling and mammalian quadrupedal robots.
Although a comparison with one sample of each is hardly comprehensive, it may serve
to give an indication of what impact robot joint configuration has on performance.
Secondly, we compare the performance for each robot between the scheme where 11 of
12 actuators are used in each domain – which is compatible with regular IO-feedback
linearization and suggested as a solution to the problem of an over-constrained system
in [6] – with our suggested modification to the conventional IO-feedback linearization
controller as presented in section 4.1.7 – which allows for using all 12 actuators in
an over-constrained system in a way which is, in one sense, optimal. In the interest
of making a fair comparison, the same choice as in [6] is made for which actuator to
"turn off" for each domain, namely, the hip pitch actuator of the rear stance leg.

The performance is summarized in the three measures CoT, peak torque and the
RMS of the torques. We give a quick introduction to the CoT below.

5.5. TORQUE AND ENERGY EXPENDITURE 95

5.5.1 Cost of Transport

Cost of Transport is a measure of the amount of energy expended by an entity (e.g. a
vehicle or an animal) per mass transported and the distance it is moved. As the cost of
transport is calculated per mass unit, it is a practical measure for comparing different
modes of transportation or different entities against one another. The expression for
calculating cost of transport is

CoT =
𝐸

𝑚𝑔𝑑
(5.1)

where 𝐸 is the energy expended during transport,𝑚 and 𝑑 is the mass transported
and the distance it is transported, and 𝑔 is standard gravity.

5.5.2 vision60

In fig. 5.22 we see a plot of the torque profiles of the vision60 robot while ambling
forward using 11 actuators. If we compare this with the plot in fig. 5.23 where the
robot is ambling forward using 12 actuators we may notice a couple of things.

Firstly, the peaks in hip roll torque is markedly reduced for all legs. For hip pitches
the picture is less clear cut, with front leg torques being markedly decreased while rear
torques actually increasing quite a bit. However, this should not be that surprising:
The actuator which is being turned off for each domain is consistently the rear stance
leg hip pitch actuator.

Assuming that each leg exerts most torque while being a supporting leg, this
increase is exactly what one should expect to see. Further, it seems that the torque
exertion is dividedmore evenly between front and rear hip pitches when all 12 actuators
are used: While the front legs had peaks above 20 in the first case, the rear legs have
peaks close to but below 20Nm in the second case.

For the knee pitch torques, we also notice a redistribution: While all legs had
peaks above 40Nm for the 11 actuator case, only rear legs have peaks above 40Nm.
However, it also seems that the peak torque expenditure among the knees are actually
greater for the 12 actuator case.

96 5. RESULTS AND DISCUSSION

0 10 20 30

t [s]

-20

-10

0

T
o

rq
u

e
 [

N
m

]

Fl hip roll

0 10 20 30

t [s]

-20

-10

0

T
o

rq
u

e
 [

N
m

]

Fl hip pitch

0 10 20 30

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Fl knee pitch

0 10 20 30

t [s]

-20

-10

0

T
o

rq
u

e
 [

N
m

]

Rl hip roll

0 10 20 30

t [s]

-2

0

2

T
o

rq
u

e
 [

N
m

]

Rl hip pitch

0 10 20 30

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Rl knee pitch

0 10 20 30

t [s]

0

10

20

T
o

rq
u

e
 [

N
m

]

Fr hip roll

0 10 20 30

t [s]

-20

-10

0

T
o

rq
u

e
 [

N
m

]

Fr hip pitch

0 10 20 30

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Fr knee pitch

0 10 20 30

t [s]

0

10

20

T
o

rq
u

e
 [

N
m

]

Rr hip roll

0 10 20 30

t [s]

-2

0

2

T
o

rq
u

e
 [

N
m

]

Rr hip pitch

0 10 20 30

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Rr knee pitch

Figure 5.22: Overview of torques for vision60 robot during forward gait on flat ground using
11 actuators

5.5. TORQUE AND ENERGY EXPENDITURE 97

0 10 20 30

t [s]

-4

-2

0

2

T
o
rq

u
e
 [
N

m
]

Fl hip roll

0 10 20 30

t [s]

-4

-2

0

2

T
o
rq

u
e
 [
N

m
]

Fl hip pitch

0 10 20 30

t [s]

0

20

40

T
o
rq

u
e
 [
N

m
]

Fl knee pitch

0 10 20 30

t [s]

-6

-4

-2

0

T
o
rq

u
e
 [
N

m
]

Rl hip roll

0 10 20 30

t [s]

-20

-10

0

T
o
rq

u
e
 [
N

m
]

Rl hip pitch

0 10 20 30

t [s]

0

20

40
T

o
rq

u
e
 [
N

m
]

Rl knee pitch

0 10 20 30

t [s]

-2

0

2

4

T
o
rq

u
e
 [
N

m
]

Fr hip roll

0 10 20 30

t [s]

-4

-2

0

2

T
o
rq

u
e
 [
N

m
]

Fr hip pitch

0 10 20 30

t [s]

0

20

40

T
o
rq

u
e
 [
N

m
]

Fr knee pitch

0 10 20 30

t [s]

0

2

4

6

T
o
rq

u
e
 [
N

m
]

Rr hip roll

0 10 20 30

t [s]

-20

-10

0

T
o
rq

u
e
 [
N

m
]

Rr hip pitch

0 10 20 30

t [s]

0

20

40

T
o
rq

u
e
 [
N

m
]

Rr knee pitch

Figure 5.23: Overview of torques for vision60 robot during forward gait on flat ground using
12 actuators

98 5. RESULTS AND DISCUSSION

5.5.3 ASTRo

In fig. 5.24, we see a plot of the torque profiles for the ASTRo robot while ambling
forward using 11 actuators. We may compare this with the plot in fig. 5.25 of ASTRo
ambling forward with 12 actuators.

For the hip yaw actuators, we note quite a clear reduction in the peaks for the front
legs, and no clear increase (if anything, a light decrease) in the peaks for the rear legs.

For the hip pitch actuators, we notice that the torque exertion is more evenly
divided for the 12 actuator case: The front legs experience a marked reduction from
above 50Nm peaks (after initial transients) to below 40Nm, while the rear legs increase
from below 2Nm peaks to slightly above 20Nm after transients. Again, the increase
in rear leg torque peaks is to be expected as they were only active in the swing phase
for the 11-actuator scenario.

For the knee pitches, the front legs seem to experience a reduction in peaks from
slightly below 50Nm to slightly below 30Nm, while the rear legs increase peaks from
approximately 30Nm to approximately 50Nm. In other words, there seems to be no
clear net increase or decrease in the knee torques or how evenly they are distributed
between legs for the knees.

5.5.4 Performance comparison across robots

We now compare vision60 and ASTRo on the performance metrics listed in table 5.2.
It should be noted that the torque metrics are not directly comparable across robots,
as the vision60 robot is somewhat heavier than ASTRo (26 kg vs 21.5 kg). However,
in the case of the peak torques – though one would assume a heavier robot to have
higher torques in general – we note that vision60 actually has markedly lower peak
torques than ASTRo.

The CoT, being normalized with respect to weight, is directly comparable between
robots. Here, we notice a marked difference both for the 11 and 12 actuator scenarios:
For the first one, ASTRo has a CoT which is ∼ 2.9 times as high as vision60. For the
second scenario – as ASTRo benefits slightly more from the use of all actuators – this
reduces somewhat to ∼ 2.6 times, which is still quite significant.

5.5. TORQUE AND ENERGY EXPENDITURE 99

0 5 10 15 20 25

t [s]

-10

0

10

20

T
o

rq
u

e
 [

N
m

]

Fl hip yaw

0 5 10 15 20 25

t [s]

0

50

100

T
o

rq
u

e
 [

N
m

]

Fl hip pitch

0 5 10 15 20 25

t [s]

-50

0

50

T
o

rq
u

e
 [

N
m

]

Fl knee pitch

0 5 10 15 20 25

t [s]

-20

-10

0

10

T
o

rq
u

e
 [

N
m

]

Rl hip yaw

0 5 10 15 20 25

t [s]

-2

0

2

T
o

rq
u

e
 [

N
m

]

Rl hip pitch

0 5 10 15 20 25

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Rl knee pitch

0 5 10 15 20 25

t [s]

-20

-10

0

10

T
o

rq
u

e
 [

N
m

]

Fr hip yaw

0 5 10 15 20 25

t [s]

-50

0

50

100

T
o

rq
u

e
 [

N
m

]

Fr hip pitch

0 5 10 15 20 25

t [s]

-50

0

50

T
o

rq
u

e
 [

N
m

]

Fr knee pitch

0 5 10 15 20 25

t [s]

-10

0

10

20

T
o

rq
u

e
 [

N
m

]

Rr hip yaw

0 5 10 15 20 25

t [s]

-2

0

2

T
o

rq
u

e
 [

N
m

]

Rr hip pitch

0 5 10 15 20 25

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Rr knee pitch

Figure 5.24: Overview of torques for ASTRo robot during forward gait on flat ground using 11
actuators

100 5. RESULTS AND DISCUSSION

0 5 10 15 20 25

t [s]

-10

0

10

T
o

rq
u

e
 [

N
m

]

Fl hip yaw

0 5 10 15 20 25

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Fl hip pitch

0 5 10 15 20 25

t [s]

-40

-20

0

20

T
o

rq
u

e
 [

N
m

]

Fl knee pitch

0 5 10 15 20 25

t [s]

-10

0

10

T
o

rq
u

e
 [

N
m

]

Rl hip yaw

0 5 10 15 20 25

t [s]

-40

-20

0

20

T
o

rq
u

e
 [

N
m

]

Rl hip pitch

0 5 10 15 20 25

t [s]

0

20

40

60

T
o

rq
u

e
 [

N
m

]

Rl knee pitch

0 5 10 15 20 25

t [s]

-10

0

10

T
o

rq
u

e
 [

N
m

]

Fr hip yaw

0 5 10 15 20 25

t [s]

0

20

40

T
o

rq
u

e
 [

N
m

]

Fr hip pitch

0 5 10 15 20 25

t [s]

-40

-20

0

20

T
o

rq
u

e
 [

N
m

]

Fr knee pitch

0 5 10 15 20 25

t [s]

-10

0

10

T
o

rq
u

e
 [

N
m

]

Rr hip yaw

0 5 10 15 20 25

t [s]

-40

-20

0

20

T
o

rq
u

e
 [

N
m

]

Rr hip pitch

0 5 10 15 20 25

t [s]

0

20

40

60

T
o

rq
u

e
 [

N
m

]

Rr knee pitch

Figure 5.25: Overview of torques for ASTRo robot during forward gait on flat ground using 12
actuators

5.5. TORQUE AND ENERGY EXPENDITURE 101

Whether this difference in energy efficiency points to the method being less suited
for use on sprawling quadrupeds, or whether it points to sprawling quadrupeds simply
being less energy efficient, is a matter of interpretation. However, the trajectory
optimization problem converges without any clear trouble for the sprawling quadruped.
This would by definition mean that the resulting gait is an – at least locally – optimal
gait for ASTRo with respect to torque expenditure and for a given desired velocity. We
take this to mean that it is unlikely that the difference in energy efficiency stems from
some shortcoming in the method when applied to sprawling quadrupeds, in so far as
it seems unlikely that a different method would yield a less torque-hungry gait.

All in all, this would indicate that sprawling robots may indeed be less energy-
efficient than their mammalian counterparts.

5.5.5 Performance comparison between 11 and 12 actuators

We now compare the conventional IO-linearization controller utilizing 11 actuators –
as suggested in [6] – to our modified IO-linearization controller which allows utilizing
all 12 actuators at all times.

When comparing the summarizingmetrics in table 5.2 for the vision60 robot, we see
that the 12 actuator case does have a slightly higher peak torque than the 11 actuator
case (∼ 8.6% increase). While this may seem surprising on its face, the guarantee
given in section 4.1.7 on torque expenditure was that the vector of all torques would
be point-wise smaller in a least-squares sense (∥·∥2). This does not necessarily mean
that the largest unsigned torque (∥·∥∞) would be smaller. Further, we note that there
is indeed a ∼ 9.9% decrease in RMS torque and, arguably most importantly, a ∼ 10.9%
decrease in CoT from the 11 to the 12 actuator scenario.

For the ASTRo robot, the picture of difference in performance is quite clear. The
peak torque is reduced by ∼ 20.7%, the RMS of the torque is reduced by ∼ 17.9%, and –
importantly – the CoT is reduced by ∼ 20.3%.

All in all, the evidence put forth supports that there are concrete, practical ad-
vantages to the modified IO-linearization controller as a solution to overconstrained
systems, when compared to the suggestion put forth in [6]. A 10 − 20% reduction in

102 5. RESULTS AND DISCUSSION

ASTRo vision60
actuators 11 12 11 12

CoT 4.1974 3.3449 1.4310 1.2744
Peak torque [Nm] 83.97 66.55 50.03 54.32
Torque RMS [Nm] 9.66 7.93 17.52 15.79

Table 5.2: Performance metrics for ASTRo and vision60 for respectively 11 (non-
overconstrained) and 12 (overconstrained) actuators

CoT is quite significant, and we also invite the reader to consider that this is achieved
without any change in the desired gait. In that sense, this decrease in CoT is achieved
"for free" so to speak.

5.6 Possible limitations

The empirical evidence from simulations seems to support and confirm what has
been shown mathematically – for orbital stability and the energy expenditure of the
modified controller – and hypothesized at the outset – for robustness with respect to
unmodeled ground changes and energy expenditure of different robots.

However, we also point out that we have synthesized only two gaits for one robot
of each type. This is arguably a greater weakness for the hypotheses regarding inter-
robot differences, than for the demonstration of what is already shown theoretically.
Thus we point out that the results merely point in a direction of support when it
comes to which type of robot is more robust to unmodeled changes and which is more
energetically efficient, and should not be considered confirmatory in any way.

When it comes to the comparison in energy expenditure for the different controllers,
while the efficiency increase may not be as dramatic as demonstrated here for all gaits,
there should never be an increase in torque expenditure.

6
Conclusion and further work

The recent years have seen impressive progress in the fields of bipedal and quadrupedal
robotic locomotion, and with it, the attempts at tackling increasingly challenging
problems. The first commercial robots are already walking around industrial plants for
surveillance, and the last year has seen the first quadrupedal robot complete a rough
terrain hiking trail without falling, faster than the suggested average human time.

In this thesis we have surveyed various methods used to produce dynamic walking
in mammalian quadrupedal robots, with the goal of evaluating if such methods are
suited for sprawling quadrupedal robots as well. A method utilizing closed-loop
trajectory optimization and stabilizing post-processing was chosen for adaptation
and implementation on a sprawling quadrupedal robot. The chosen method utilizes
a full-order model of the system, which sets it apart from most methods used for
quadrupedal dynamic walking and should allow for the synthesis of a wide variety of
highly dynamic gaits. Additionally, a method for post-processing the parameters of the
synthesized controller is used to render controllers that are shown to be exponentially
stable in analysis. Two different gaits were synthesized for one mammalian and one
sprawling quadruped, and results from simulation were obtained in order to validate
and evaluate the methods.

103

104 6. CONCLUSION AND FURTHER WORK

Results were evaluated on rate of convergence of the resulting trajectories, adapt-
ability to unmodeled changes in ground height, peak and RMS torque and CoT. Results
indicate that the method is well-suited for use on sprawling quadrupeds, as gaits were
synthesized successfully and simulation of post-processed gaits indicated exponential
orbital stability. Comparisons were made between robots on adaptability to terrain
and energy-efficiency. Results indicate that mammalian robots may be more energy-
efficient in terms of CoT, while sprawling robots may be less sensitive to unmodeled
changes in ground height. However, a larger comparison involving several robots of
each type and several gaits should be conducted to confirm these findings.

Additionally, a modification to the control structure of the chosen method was
proposed to handle overconstrained systems without making an arbitrary selection of
actuators, and it was shown that the modified method results in an equal or smaller
torque use. Results indicate that this modified method compares favorably to the
method as originally proposed on measures such as CoT and RMS torque.

6.1 Further work

The use of higher-order models for which stability can be ensured theoretically is part
of a maturation in the field of quadrupedal robotic locomotion, both in order to develop
and execute highly dynamic and sophisticated gaits as well as to give better guarantees
on robot behavior. However, in order to flexibly react to unmodeled real-world envi-
ronments, controllers must be endowed with the ability to deviate from precomputed
trajectories. Consequently, the gap between high-order, computationally expensive
trajectory optimization methods and flexible, fully-online locomotion methods with
weaker theoretical guarantees should be bridged.

While this may take many forms, efforts to combine offline trajectory optimization
with Model Predictive Control approaches – while still attempting to show stability
– might be a valuable way forward. This might take the form of utilizing a bank of
such trajectories as initial guesses, as in [32], or to integrate convergence to such
a gait into the terminal cost of the problem, as in [33]. However, it is also clear
that a combination of clever problem formulations, research within optimization and

6.1. FURTHER WORK 105

advances in hardware has and continues to narrow the gap to fully online trajectory
optimization with high-order models.

In conclusion, we strongly believe that the coming decades will see the already
emerging market of legged robots come to affect a wide variety of commercial sectors.
Further research into the strengths and weaknesses of sprawling and mammalian
quadrupeds should be done in order to appreciate which niches are best filled by each.

106 6. CONCLUSION AND FURTHER WORK

References

[1] M. E. B. Lysø, “Robust dynamic walking in a sprawling quadrupedal robot,”
Norwegian University of Science and Technology, Tech. Rep., 2022.

[2] K. Schwab, The fourth industrial revolution. Geneva: World Economic
Forum, 2016, tex.added-at: 2017-04-15T12:00:39.000+0200 tex.biburl:
https://www.bibsonomy.org/bibtex/2ff7fa4c3e5e06e332bc41758a4f3e74b/flint63
tex.interhash: 715dea162e742a1b489ffcd54183d463 tex.intrahash:
ff7fa4c3e5e06e332bc41758a4f3e74b tex.timestamp: 2018-04-16T12:09:57.000+0200
tex.username: flint63.

[3] A. Ghansah and P. Thorseth, “Design and Control of a Torque Controllable
Quadrupedal Robot - A study on the development of ASTRo,” Ph.D. dissertation,
Norwegian University of Science and Technology, Nov. 2021.

[4] K. Akbari Hamed, B. Buss, and J. Grizzle, “Exponentially Stabilizing Continuous-
Time Controllers for Periodic Orbits of Hybrid Systems: Application to Bipedal
Locomotion with Ground Height Variations,” The International Journal of Robotics
Research, accepted to appear, Jun. 2015.

[5] A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames, “Dynamic Humanoid
Locomotion: A Scalable Formulation for HZD Gait Optimization,” IEEE Transac-

107

108 REFERENCES

tions on Robotics, vol. 34, no. 2, pp. 370–387, Apr. 2018, conference Name: IEEE
Transactions on Robotics.

[6] W.-L. Ma, K. A. Hamed, and A. D. Ames, “First Steps Towards Full Model Based
Motion Planning andControl of Quadrupeds: AHybrid ZeroDynamics Approach,”
in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Nov. 2019, pp. 5498–5503, iSSN: 2153-0866.

[7] M. Vukobratovic and B. Borovac, “Zero-Moment Point - Thirty Five Years of its
Life.” I. J. Humanoid Robotics, vol. 1, pp. 157–173, Mar. 2004.

[8] H. Yeom and J. Bae, “A dynamic gait stabilization algorithm for quadrupedal
locomotion through contact time modulation,” Nonlinear Dynamics, vol. 104,
no. 3, pp. 2275–2289, May 2021. [Online]. Available: https://doi.org/10.1007/
s11071-021-06376-5

[9] H.-W. Park and S. Kim, “Quadrupedal galloping control for a wide range
of speed via vertical impulse scaling,” Bioinspiration & Biomimetics, vol. 10,
no. 2, p. 025003, Mar. 2015, publisher: IOP Publishing. [Online]. Available:
https://iopscience.iop.org/article/10.1088/1748-3190/10/2/025003/meta

[10] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic Locomotion in
the MIT Cheetah 3 Through Convex Model-Predictive Control,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct. 2018, pp.
1–9, iSSN: 2153-0866.

[11] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hut-
ter, and J. Buchli, “Whole-Body Nonlinear Model Predictive Control Through
Contacts for Quadrupeds,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
1458–1465, Jul. 2018, conference Name: IEEE Robotics and Automation Letters.

[12] M. V. Minniti, R. Grandia, F. Farshidian, and M. Hutter, “Adaptive CLF-MPC With
Application to Quadrupedal Robots,” IEEE Robotics and Automation Letters, vol. 7,
no. 1, pp. 565–572, Jan. 2022, conference Name: IEEE Robotics and Automation
Letters.

https://doi.org/10.1007/s11071-021-06376-5
https://doi.org/10.1007/s11071-021-06376-5
https://iopscience.iop.org/article/10.1088/1748-3190/10/2/025003/meta

REFERENCES 109

[13] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
robust perceptive locomotion for quadrupedal robots in the wild,” Science
Robotics, vol. 7, no. 62, p. eabk2822, Jan. 2022, arXiv: 2201.08117. [Online].
Available: http://arxiv.org/abs/2201.08117

[14] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep
neural networks,” IEEE Transactions on Evolutionary Computation, vol. 23,
no. 5, pp. 828–841, Oct. 2019, arXiv: 1710.08864. [Online]. Available:
http://arxiv.org/abs/1710.08864

[15] K. A. Hamed and R. D. Gregg, “Decentralized Feedback Controllers for Robust
Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walk-
ing,” IEEE transactions on control systems technology: a publication of the IEEE
Control Systems Society, vol. 25, no. 4, pp. 1153–1167, Jul. 2017.

[16] K. A. Hamed, R. D. Gregg, and A. D. Ames, “Exponentially Stabilizing Controllers
for Multi-Contact 3D Bipedal Locomotion,” in 2018 Annual American Control
Conference (ACC), Jun. 2018, pp. 2210–2217, iSSN: 2378-5861.

[17] A. Isidori, “The Zero Dynamics of a Nonlinear System: from the Origin to the
Latest Progresses of a Long Successful Story,” in Proceedings of the 30th Chinese
Control Conference, Jul. 2011, pp. 18–25, iSSN: 2161-2927.

[18] K. A. Hamed, Wen-Loong, and A. D. Ames, “Dynamically Stable 3D Quadrupedal
Walking with Multi-Domain Hybrid System Models and Virtual Constraint
Controllers,” arXiv:1810.06697 [math], Oct. 2018, arXiv: 1810.06697. [Online].
Available: http://arxiv.org/abs/1810.06697

[19] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002, google-Books-ID:
t_d1QgAACAAJ.

[20] A. D. Ames, “Human-Inspired Control of Bipedal Walking Robots,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 5, pp. 1115–1130, May 2014, conference
Name: IEEE Transactions on Automatic Control.

http://arxiv.org/abs/2201.08117
http://arxiv.org/abs/1710.08864
http://arxiv.org/abs/1810.06697

110 REFERENCES

[21] M. A. Henson and D. E. Seborg, Nonlinear Process Control. Prentice Hall PTR,
1997, google-Books-ID: tZceAQAAIAAJ.

[22] M. Hutter, StarlETH & Co - Design and Control of Legged Robots with Compliant
Actuation. ETH, 2013, google-Books-ID: KSa2zQEACAAJ.

[23] G. H. Golub and V. Pereyra, “The differentiation of pseudo-inverses and
nonlinear least squares problems whose variables separate,” SIAM Journal
on Numerical Analysis, vol. 10, no. 2, pp. 413–432, 1973, tex.eprint:
https://doi.org/10.1137/0710036. [Online]. Available: https://doi.org/10.1137/
0710036

[24] R. I. Leine and H. Nijmeijer, “Fundamental Solution Matrix,” in Dynamics
and Bifurcations of Non-Smooth Mechanical Systems, ser. Lecture Notes
in Applied and Computational Mechanics, R. I. Leine and H. Nijmeijer,
Eds. Berlin, Heidelberg: Springer, 2004, pp. 101–124. [Online]. Available:
https://doi.org/10.1007/978-3-540-44398-8_7

[25] “Convex Relaxation of Bilinear Matrix Inequalities Part I: Theoretical Results,”
Sep. 2018, number: arXiv:1809.09814 arXiv:1809.09814 [math]. [Online]. Available:
http://arxiv.org/abs/1809.09814

[26] F. Zhang, “BlockMatrix Techniques,” in The Schur Complement and Its Applications,
ser. Numerical Methods and Algorithms, F. Zhang, Ed. Boston, MA: Springer US,
2005, pp. 83–110. [Online]. Available: https://doi.org/10.1007/0-387-24273-2_4

[27] A. Hereid andA. D. Ames, “FROST: Fast robot optimization and simulation toolkit,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Sep. 2017, pp. 719–726, iSSN: 2153-0866.

[28] J. Lofberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,”
in 2004 IEEE International Conference on Robotics and Automation (IEEE Cat.
No.04CH37508), Sep. 2004, pp. 284–289.

https://doi.org/10.1137/0710036
https://doi.org/10.1137/0710036
https://doi.org/10.1007/978-3-540-44398-8_7
http://arxiv.org/abs/1809.09814
https://doi.org/10.1007/0-387-24273-2_4

REFERENCES 111

[29] D. Henrion, J. Lofberg, M. Kocvara, and M. Stingl, “Solving polynomial static out-
put feedback problems with PENBMI,” in Proceedings of the 44th IEEE Conference
on Decision and Control, Dec. 2005, pp. 7581–7586, iSSN: 0191-2216.

[30] Q. Tran Dinh, S. Gumussoy, W. Michiels, and M. Diehl, “Combining Con-
vex–Concave Decompositions and Linearization Approaches for Solving BMIs,
With Application to Static Output Feedback,” IEEE Transactions on Automatic Con-
trol, vol. 57, no. 6, pp. 1377–1390, Jun. 2012, conference Name: IEEE Transactions
on Automatic Control.

[31] “k-Contraction: Theory and Applications,” Sep. 2021, number: arXiv:2008.10321
arXiv:2008.10321 [math]. [Online]. Available: http://arxiv.org/abs/2008.10321

[32] M. Bjelonic, R. Grandia, M. Geilinger, O. Harley, V. S. Medeiros, V. Pajovic,
E. Jelavic, S. Coros, and M. Hutter, “Offline motion libraries and online
MPC for advanced mobility skills,” Jun. 2022. [Online]. Available: https:
//journals.sagepub.com/doi/full/10.1177/02783649221102473

[33] M. Y. Galliker, N. Csomay-Shanklin, R. Grandia, A. J. Taylor, F. Farshidian,
M. Hutter, and A. D. Ames, “Bipedal Locomotion with Nonlinear Model
Predictive Control: Online Gait Generation using Whole-Body Dynamics,”
arXiv:2203.07429 [cs], Mar. 2022, arXiv: 2203.07429. [Online]. Available:
http://arxiv.org/abs/2203.07429

http://arxiv.org/abs/2008.10321
https://journals.sagepub.com/doi/full/10.1177/02783649221102473
https://journals.sagepub.com/doi/full/10.1177/02783649221102473
http://arxiv.org/abs/2203.07429

D
ynam

ic W
alking in a Spraw

ling Q
uadruped

M
ads Erlend Bøe Lysø

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Mads Erlend Bøe Lysø

Exponentially Stable Dynamic
Walking in a Sprawling Quadruped

Transfer of Methods and Comparison

Master’s thesis in Cybernetics and Robotics
Supervisor: Kristin Ytterstad Pettersen
Co-supervisor: Esten Ingar Grøtli
June 2022

M
as

te
r’s

 th
es

is

	Problem description
	Abstract
	Sammendrag
	Preface
	Acronyms
	Introduction
	Assumptions
	Contributions
	Outline

	Literature Review
	Selected methods
	Zero Moment Point
	Vertical Impulse Scaling
	Contact Time Modulation
	Reduced-order Convex Model Predictive Control
	Nonlinear Model Predictive Control with soft contact model
	Model predictive control with adaptive Control Lyapunov Function
	Data-driven methods using privileged learning
	Choice of method

	System Modeling
	System kinematics
	Ground contact constraints

	System Dynamics

	Methods
	Hybrid Zero Dynamics
	Hybrid Dynamical Systems
	Continuous dynamics
	Discrete dynamics
	Continuous domain constraints
	Guards
	Zero-dynamics
	IO-linearization for overconstrained systems

	Direct collocation
	Closed-loop Trajectory Optimization
	Controller post-processing for orbital stability
	Poincaré return maps
	Floquet multipliers and Orbital stability
	Reduced-dimension stability analysis
	Extension to Hybrid Dynamical Systems
	Linear/Bilinear matrix inequalities
	Sensitivity analysis and post-processing
	Managing and reducing computational complexity

	Implementation details
	Robot models
	Closed-loop trajectory optimization
	Controller parameter post-processing
	Simulation

	Results and Discussion
	Optimal gaits
	Gait stabilization
	Simulation results
	vision60
	ASTRo
	Deviations between initial state and fixed point for the state on the Poincaré section

	Response to unmodeled changes in ground height
	vision60
	ASTRo

	Torque and energy expenditure
	Cost of Transport
	vision60
	ASTRo
	Performance comparison across robots
	Performance comparison between 11 and 12 actuators

	Possible limitations

	Conclusion and further work
	Further work

	References

