
Identification of Failure Modes in the
Collision Avoidance System of an

Autonomous Ferry using Adaptive Stress
Testing

Hanna W. Hjelmeland ∗∗ Bjørn-Olav H. Eriksen ∗∗∗

Ole J. Mengshoel ∗∗∗∗ Anastasios M. Lekkas †

Norwegian University of Science and Technology, Trondheim, 7491
Norway

∗∗ e-mail: hannawh@ntnu.no
∗∗∗ e-mail: bjorn.olav.eriksen@zeabuz.com

∗∗∗∗ e-mail: ole.j.mengshoel@ntnu.no
† e-mail: anastasios.lekkas@ntnu.no

Abstract:
As complex autonomous systems emerge in the maritime sector, measures must be taken in
order to ensure thorough safety assessment. Real world testing can be costly and potentially
dangerous, and therefore there is a need for suitable simulation-based methods. This paper
presents an implementation of the Adaptive Stress Testing (AST) method applied to the collision
avoidance (COLAV) system of a small passenger ferry. AST is a simulation-based technique
which has shown promising results in safety assessment of aviation and automobile systems.
Given a simulator of a system, AST uses reinforcement learning to optimize towards system
failure, and returns the most likely failure scenarios. AST is here shown to successfully identify
scenarios where the criteria for failure are met, which is when the ferry collides with an adversary
vessel controlled by AST. However, the majority of the initial results exhibit failures where
the COLAV system of the ferry is not responsible for the failure, which makes the results less
valuable to system developers. In order to improve the relevance, augmentations are made to the
optimization problem. The augmentations result in four distinct problem formulations which
are presented in the paper. Finally, the results are clustered using an unsupervised machine
learning method called Soft Dynamic Time Warping k-means clustering in order to present a
general summary of the identified failure scenarios. Our results demonstrate the relevance and
potential of AST for the maritime sector, and illustrates how common drawbacks of the AST
method can be circumvented by method adjustment.

Keywords: Safety, Simulation, Autonomous Vehicles, Reinforcement Learning, Adaptive Stress
Testing

1. INTRODUCTION

Autonomous solutions are beginning to make an impact on
the marine industry (Torben et al., 2019). The technology
to enable such solutions is complex, and the safety critical
nature of maritime operations makes thorough safety
validation necessary. Due to the high cost of real world
testing and the complexity of these systems, simulation-
based methods are required as a supplement to traditional
methods in order to ensure safety (Zhao et al., 2020).

Knowledge about the potential ways a system can fail
is valuable but hard to obtain in real world tests, as
they can inflict damage on the physical system. Adaptive
Stress Testing (AST) is a simulation-based approach to
finding the most likely ways that a system can fail. AST
which was first proposed by Lee et al. (2015). The AST
method uses reinforcement learning (RL) to gradually
learn ways to make the system fail by influencing the
system in simulations and obtaining reward when failure

occurs. AST has shown promising results when applied
to automobile systems (Koren et al., 2018), and has
also contributed in the aviation industry to the approval
of a new airborne collision avoidance (COLAV) system
by confirming that it outperformed the existing COLAV
system (Lee et al., 2020).

ThIn this work, we investigate and demonstrate the rel-
evance of AST to the marine sector by applying it to
a two-vessel crossing scenario using a simulator of the
MilliAmpere autonomous ferry. The MilliAmpere ferry is a
small passenger ferry developed as a part of the Autoferry
project at NTNU, and it also functions as a prototype
for further development of commercial autonomous ferrys
by Zeabuz. We stress test the COLAV system of the
MilliAmpere ferry by letting AST control the movement
of an adversary vessel, and optimize for collision between
the two vessels.

We provide the following contributions:

1: We demonstrate the AST method in use for a marine
control system, using a similar implementation as
in Koren et al. (2018). The method quickly and
successfully identifies scenarios that contain collision
between the ferry and the adversary. However, the
majority of the initial failure scenarios are caused
by the aggressive and unrealistic behaviour of the
adversary, not by failures of the COLAV system of
the ferry, which decreases the relevance of the results
to system developers.

2: Augmentations are made to the reward function in
order to obtain more relevant failure scenarios:

· We propose an additional training heuristic to
alter the behaviour of the adversary.

· We alter the failure criteria and reward function
to optimize for both improper behaviour of the
ferry as well as collision between the adversary
and the ferry, by adapting the method proposed
in Corso et al. (2019) to the marine setting.

· We add noise the ferry’s estimate of the adversary
to investigate if this can cause the ferry to behave
improperly.

3: We cluster the resulting failure trajectories using Soft
Dynamic Time Warping k-Means clustering, which
provides a more general summary of the behavioural
patterns of the adversary.

The paper is structured as follows: Section 2 provides
preliminaries for the AST method, deep reinforcement
learning and marine vessel modelling. Section 3 presents
the simulator and the COLAV algorithm under test, our
four problem variations, the method implementation and
AST hyperparameters. The results are presented and
analyzed in Section 4. Section 5 concludes the paper.

2. PRELIMINARIES

2.1 Adaptive Stress Testing (AST)

AST is a simulation-based approach to identify the most
likely failure modes of a system under test (SUT) (Lee
et al., 2015). A failure mode is a scenario where the SUT
does not adhere to a certain behaviour, such as when a
COLAV system does not prevent collision. The problem
of bringing the system to failure is modelled as a Markov
Decision Process (MDP). An MDP is formalized as a tuple
(X,U, P,R) describing the behaviour of an agent A, where

• X is the finite set of states the agent can be in, i.e.,
the state space.

• U is the finite set of actions the agent can take, i.e.,
the action space.

• P (x,x′) = P (Xt+1=x′|Xt=x, Ut=u) is the transition
function, which specifies the probability of a possible
next state x′ given a state-action pair (x,u).

• R(x,x′) = R(Xt=x, Xt+1=x′, Ut=u) is the reward
function, which specifies the reward the agent obtains
as a consequence of transitioning from state x to state
x′ due to action u.

The AST optimization problem is formulated mathemati-
cally as:

max
u0,...,uend

tend−1∏
t=0

p(ut|xt)

subject to xtend
∈ E

(1)

where E is the event space E ⊂ X, which is the set
of failure modes, and tend is the final time step of the
simulation (Lee et al., 2020, p7). The reward function R
of the MDP is set to optimize Equation 1. Variations of
the reward function will be presented in Section 3.

2.2 Deep reinforcement learning

AST uses reinforcement learning (RL) to optimize the
MDP. RL is a machine learning method where the objec-
tive is to optimize the policy π of the agent A. The agent
receives rewards for wanted behaviour and penalties for
unwanted behaviour in simulations, and gradually updates
its policy to gain more rewards. The optimal policy π∗ is
the policy that maximizes the sum of expected rewards
with respect to the MDP reward function R. Different RL
solvers have been proposed in the AST literature. Similar
to Koren et al. (2018), we use a deep RL (DRL) solver. The
DRL solver is implemented as a policy gradient method,
meaning that the policy π is parameterized by a vector θ
and is updated via gradient ascent steps. The parameter-
ized policy πθ is implemented as a neural network where
the network weights θ are the policy parameters. The
policy maps the state x to the mean of a Gaussian distribu-
tion, from which the action u is sampled. This means that
at every AST step, the state is fed into the neural network,
and an action is drawn from a Gaussian distribution with
the output of the neural network as mean. The sampling of
actions is thus done with some stochasticity, which adds an
element of exploration to the method as the actions may
deviate from the policy output. The policy is updated by
estimating the policy-gradient from a batch of simulations
using General Advantage Estimation (GAE), and Trust
Region Policy Optimization (TRPO) is used to step the
policy (Koren et al., 2018).

2.3 Marine vessel modelling

The simulator used in this work considers 3-degree of
freedom (3-DOF) planar motion models of marine vessels.
The state and velocity of the 3-DOF vessel are described
by:

η =

[
x
y
ψ

]
, ν =

[
u
v
r

]
(2)

where x, y are the vessel coordinates w.r.t the earth-fixed
reference frame called North East Down (NED), and ψ is
the vessel heading. The vector ν describes the velocity of
the vessel, and the following relation between η and ν can
be obtained:

η̇ =

ẋẏ
ψ̇

 =

[
u cos(ψ)− v sin(ψ)
u sin(ψ) + v cos(ψ)

r

]
= Rz,ψν (3)

where Rz,ψ is the basic rotation about the vertical axis z
of value ψ. The dynamics of the 3-DOF vessel model can
be formulated as:

η̇ = Rz,ψν

Mν̇ +C(ν)ν +D(ν)ν = τ (4)

where τ is the vector of forces and torque acting on the
vessel, D(ν) is the hydrodynamic damping matrix, M is
the mass matrix and C(ν) is the Coriolis and centripetal
matrix (Fossen, 2011).

In order to simulate the adversarial vessel, a simpler vessel
model is used based on first order processes, described by:

η̇ = Rz,ψν

ν̇ = − 1

T
τ (5)

where T is the vector of vessel time constants and τ is a
control input.

3. METHODOLOGY

3.1 Zeabuz COLAV simulator and the The Single path
velocity planner

To simulate the ferry and adversary, the Zeabuz COLAV
simulator is used. This simulator is implemented in
Python, allowing for direct integration with the chosen
AST framework, presented in Section 3.3. The simulator
is highly parameterizable, and suitable for running batch
simulations at high speed.

The COLAV algorithm under test is the Single Path
Velocity Planner (SP-VP), which is based on path-time
decomposition (Thyri et al., 2020). In this concept, a fixed
nominal path is used for transforming obstacles modeled
as moving Euclidean polygons into the path-time space.
By constraining the ferry to be located somewhere on the
nominal path, a search tree spanning the path-time space
can be constructed and used for finding possible velocity
trajectories along the nominal path. Collision avoidance
is assured by requiring that the edges in the search tree
do not intersect with obstacles. A cost dependent on the
speed and closeness to obstacles is applied to each edge in
the search tree, and the optimal trajectory is found using
Dijkstra’s algorithm. The optimal path-time trajectory is
then transformed into a time-expanded Euclidean space
and tracked by the ferry using a Dynamic Positioning (DP)
controller.

Being constrained to following a nominal path, the SP-
VP algorithm is only able to control the velocity of the
vessel along this path, making it unable to make course
changes to avoid collision. Furthermore, the algorithm is
parameterized to only allow for a speed within a certain
range, leading to stopping being the preferred action when
the ferry is faced with a collision situation.

The simulation scenario considered in the experiments is il-
lustrated in Figure 1. It exhibits a crossing situation where
the adversary (red) is passing from the starboard side of
the ferry (blue). The adversary is set up to follow a line

Fig. 1. Baseline experiment scenario: The ferry stops to let
the adversary pass. The grey lines indicate positions
for simultaneous time steps.

in westward direction using a simple proportional speed-
heading controller, while the ferry attempts to follow a line
straight ahead to reach (x, y) = (200, 0) while following
the instructions from the SP-VP system. Without AST
intervention, the ferry is able to navigate the situation by
stopping and letting the adversary pass in front, which is
evident in Figure 1. However, there may be variations of
this scenario in which the ferry is unable to navigate, and
the goal of AST is to uncover these, as we discuss next. In
the experiments, the AST agent is able to add actuation
to the adversary, s.t. the adversary dynamic becomes:

η̇ = Rz,ψν

ν̇ = − 1

T
τ + u (6)

3.2 Problem formulation variations

Building on the baseline scenario, we present four distinct
problem variations. The first three include augmentations
to the MDP reward function used in the AST optimization
problem. In the last variation, estimation noise is intro-
duced in the ferry’s estimate of the adversary position and
velocity.

Variation A: Distance heuristic In the first variation,
the reward function is implemented in a similar manner to
Koren et al. (2018). Three reward cases are specified:

R =

0, if x ∈ E

−α− βD, if x /∈ E, t ≥ tend
−log(1 +M(u,µu|x)), if x /∈ E, t < tend

(7)

In the case of failure, i.e., when x is in the event space
E, the RL agent obtains a zero-reward. The second case
is active if a full simulation is run without failure. In that
case, a large negative reward is distributed according to
the user specified constants α and β, and the distance
heuristic D which is the distance between the ferry and
the adversary. The distance heuristic penalizes the agent
additionally if the distance between the adversary and

the ferry is large in the end. This guides the agent
towards cases where the two vessels end up in close
proximity. The last case portrays the reward distributed
at every time step. The agent receives a reward using the
Mahalanobis distance M(u,µu|x), which is the statistical
distance between the action u and the mean action µu

(Mahalanobis, 1936). This part of the reward function is
a heuristic measure of the probability of the AST action,
which makes the AST method optimize for the most likely
action sequences. The mean action µu is set to zero in
order to penalize high action values, as they are deemed
unlikely.

Variation B: Additional training heuristic In variation
B, we propose an additional training heuristic in order to
make the adversary less aggressive. The value of the heuris-
tic depends on whether or not an AST action increases the
risk of collision, as risk-increasing behaviour is considered
unlikely. Let r denote the measure of risk, defined as:

r =

0, if D > L
1

2

(L−D)

L
, if D < L, |ϕ| > γ

1

2

(L−D)

L
+

1

2

(γ − ϕ)

γ
, if D < L, |ϕ| < γ

(8)

where L is a user defined look-ahead distance, i.e., the
minimum value of the distance between the ferry and the
adversary at which the risk measure becomes active. D
is the distance between the ferry and the adversary, ϕ is
the angle along the distance vector from the adversary to
the ferry relative to the adversary heading and γ is a user
defined adversary field of view angle relative to its heading.

The risk increases if the obstacle is close to the ferry, and
it increases further if the obstacle is headed towards the
ferry. The resulting reward function becomes:

R =

0, if x ∈ E

−α− βD, if x /∈ E, t ≥ tend
−log(1 +M(u,µu|x))− ζh(x), if x /∈ E, t < tend

(9)

where ζ is a user-defined heuristic gain. The heuristic is
given as:

h =

{
0, if ∆r ≤ 0

log(1 + rt+1), if ∆r > 0
(10)

where ∆r = rt+1 − rt, making the heuristic active if the
action led to increased risk. The value of the heuristic
increases according to the risk after the action, causing
the agent to be further penalized for high-risk maneuvers.

Variation C: Improper behaviour In variation C, the
reward function is altered to optimize for improper be-
haviour of the ferry. As the adversary in the simulation
scenario is crossing from the right, the proper behaviour
of the ferry is to let the adversary pass before it continues,
according to rule 15 of the Convention on the International
Regulations for Preventing Collisions at Sea (COLREGS).

The SP-VP system adheres to this behaviour in the sce-
nario without AST intervention, as depicted in Figure 1.
This reward augmentation is based on the work by Corso
et al. (2019), where optimizing for improper behaviour
showed promising results in the autonomous automobile
case. The improper behaviour of the automobile was de-
fined according to navigation rules for automobiles, anal-
ogous to the COLREGS.

We evaluate if a time step is improper based on the speed
of the ferry, the proximity of the ferry to the adversary and
the angle from the ferry to the adversary. Let S be true if
the ferry speed U is above a maximum value Umax, P be
true if the proximity D is less than a minimum proximity
Dmin and A be true if the angle following the vector from
the ferry to the adversary relative to the ferry heading is
within an angle sector [δmin, δmax]. We deem a time step
to be improper if the following logical expression evaluates
to true:

improper := S ∧ P ∧A. (11)

All of the time steps in the simulation are evaluated as
proper or improper, and the fraction of improper time
steps has to exceed a threshold in order for AST to deem a
scenario a failure, in addition to a collision being present.
The event space is thus altered to include the fraction
of improper time steps fimp and the improper time step
threshold fthresh. Let Eimp be the altered event space and
ω be a sequence of actions, then:

Eimp = {ω | ω ∈ E ∧ fimp(ω) > fthresh}. (12)

The resulting reward function is:

R =

0, if x ∈ Eimp
−α− βfprop, if x /∈ Eimp, t ≥ tend
−log(1 +M(u,µu|x)), if x /∈ Eimp, t < tend

(13)

where the fraction of proper time steps, fprop = 1 - fimp,
replaces the distance heuristic used in the other cases to
optimize for improper time steps.

Variation D: Improper behaviour with estimate noise In
the last variation, estimation noise is introduced in the
tracking system of the ferry. This is done to examine the
effect of sensory errors on the ferry behaviour. The AST
actuation of the adversary is restricted to smaller values
than the previous cases in order to make the adversary
behave less abruptly and focus on sensory errors. The
reward function and failure definition remains the same as
in variation C, as we still search for improper behaviour
of the ferry.

The AST agent is able to induce noise in both the
position and velocity estimates of the adversary. Let the
ferry’s estimate of the adversary be denoted q̃a, the actual
measurement of the adversary qa and estimation noisewn.
The estimate is then given as:

q̃a = qa +wn =

xyẋ
ẏ

+

wxwywẋ
wẏ

 (14)

where the noise is updated at every time step by the AST
action vector un,

un =

upupuv
uv

 (15)

such that the noise dynamics become:

ẇn =
1

K
wn +

1

K
un (16)

where K is a predefined constant. The added noise in
position and velocity is the same in x and y to simplify
the action space of the AST agent.

3.3 AST Implementation and hyperparameters

AST is implemented using the Python AST Toolbox
which is developed and maintained by Stanford Intelligent
Systems Lab (Koren et al., 2021). The toolbox creates
a wrapper around the simulator and interfaces with it
through the following functions:

• reset(x0): reset the simulator to the fixed initial
position x0

• step simulation(u): step the simulation one step
forward with action u

• is goal(): return true if x ∈ E

The state x is set to consist of the state vector of the ferry
and the adversary:

x =

xf
yf
ψf
xa
ya
ψa

 (17)

The AST wrapper steps the simulation from start to end
and applies a new action for every AST step. The simulator
is stepped a number of times between every AST step in
order to keep the simulation smooth whilst limiting the
size of the AST action space. The AST wrapper does a
fixed number of steps in one epoch, which is user specified
and referred to as the batch size. The resulting simulation
batch is then used to train and update the DRL network.
The AST hyperparameters were set according to Table 1.

In variation D, the movement of the adversary is less
abrupt. This made the crossing faster and reduced the
number of AST steps necessary to run a full crossing
simulation from 100 to 50, as reflected in Table 1.

3.4 Clustering

The failure trajectories are clustered using soft dynamic
time warping (soft-DTW) k-Means clustering in order

Table 1. AST hyperparameters

Hyperparameter Value

α 100 000
β 10 000

Batch size 20 000
Epochs 30

Collision distance threshold 10
Simulator step size 0.1 s

AST step size 4 s
Max number of AST steps Variation A, B, C: 100, D: 50

ζ 50
γ 20◦

L 50 m
Umax 0.2 m/s
Dmin 30 m
δmin 0 rad
δmax

π
2

rad

fthresh 2%
K 10

Fig. 2. Example failure mode from variation A, distance
heuristic: The adversary attacks the ferry head on to
provoke a collision.

to provide a more general overview of the behavioural
patterns of the adversary. Soft-DTW was first proposed
by Cuturi and Blondel (2017). The method aligns the
trajectories in time before finding the Euclidean distance
between them and thus it is able to identify patterns in the
multidimensional trajectories even if they do not match in
time. We implement a clustering method from the Python
library tslearn called TimeSeriesKMeans with soft-DTW
as the metric, using k = 4 clusters as this gives clusters
that are better balanced between general and specific than
other numbers of clusters.

4. RESULTS AND DISCUSSION

4.1 Variation A: Distance heuristic

Using the problem formulation of variation A, the AST
method is able to discover many failure modes. However,
they all show the adversary deliberately attacking the
ferry. The SP-VP algorithm is not constructed to avoid
the attack of another vessel as this is unrealistic, and thus
the failures are of little concern to system developers. A
failure scenario from variation A is illustrated in Figure 2.

Fig. 3. Example failure mode from variation B, additional
heuristic: The adversary makes detours in order to
avoid the penalty of driving close and straight towards
the ferry.

4.2 Variation B: Training heuristic

In the majority of the resulting failure trajectories from
variation B, the adversary spends less time heading
straight towards the ferry compared to the trajectories
from variation A. In many of the trajectories, the adver-
sary performs one or more detours in order to avoid the
penalty of close proximity and heading straight towards
the ferry, as illustrated in the failure mode shown in Figure
3. It seems, however, that the high reward of collision
trumps the penalty of a little aggressive behaviour at the
end, as the adversary still exhibits unrealistically aggres-
sive behaviour in the last few time steps before collision.

4.3 Variation C: Improper behaviour

The optimization for improper behaviour of the ferry
in variation C gives noticeably fewer results than the
previous variations. The failure modes do indeed display
scenarios where the ferry behaves improper according to
our definition, as the ferry has positive speed while in close
proximity of the adversary. However, most of the scenarios
exhibit cases where the adversary seems to be headed in
other directions until the last few time steps where it
decides to cross, as illustrated in one of the failure scenarios
shown in Figure 4. In this scenario, the ferry is driving
forward as the adversary seem to be crossing in front of the
ferry with good margin. Then the adversary turns, and the
ferry continues forward as the adversary seems to be on on
its way to cross astern of the ferry. In the last time steps,
the adversary turns to cross ahead of the ferry. The ferry
stops due to the adversary crossing, and a collision occurs.
In these specific cases, a better solution for the ferry would
be to continue forward to let the adversary pass astern.
Hence, the scenarios does highlight a way that the SP-VP
system can misunderstand the adversary trajectory. The
result is still, to some extent, reassuring to the system
developers due to the irrational or worst-case behavior of
the adversary.

Fig. 4. Example failure mode from Variation C, improper
behaviour: When the adversary misleads the ferry
system by an apparent crossing astern the ferry, the
ferry is instructed to continue straight ahead. Thus,
the ferry has nonzero speed while in close proximity of
the adversary and the behaviour is deemed improper.

4.4 Variation D: Improper behaviour with estimation
noise

Adding varying noise while restricting the movement of the
adversary resulted in failure modes that differs from the
ones discovered in the previous variations, as illustrated
in the failure scenario in Figure 5. In these failure scenar-
ios, the adversary behaves rationally due to its restricted
movement, as it attempts to cross past the ferry while com-
plying with rule 15 of the COLREGS. The ferry proceeds
to behave improper due to its inaccurate estimates of the
adversary. Although the noise values are quite high and
thus not necessarily probable, the results show how the
SP-VP system is prone to misunderstand the trajectory
of adversary vessels in cases of consistently high estima-
tion noise. It is also evident that the system is especially
impacted by inaccuracies in the velocity estimates.

4.5 Clustering

The soft-DTW clustering technique is effective for the
purpose of clustering the resulting failure trajectories, as
it aids the analysis process by creating an understandable
overview of the patterns in the adversary behaviour. This
is illustrated in Fig 6 and Fig 7, displaying the clusters
from variation A and B, respectively. In these examples,
the change in the behavioural pattern of the adversary
due to the effect of the training heuristic from variation
B is evident. In the results from variation B, the number
of trajectories where the adversary attacks the ferry from
north is reduced, and a new cluster arises where the ad-
versary makes the aforementioned detour before attacking
the ferry from astern.

5. CONCLUSION

This paper demonstrated the use of AST for the COLAV
system of a small autonomous passenger ferry. Four varia-
tions of the AST problem formulation were presented, with
results that displayed a range of different behaviors. The

Fig. 5. Example failure mode from variation D, noisy
estimates: The ferry exhibits improper behaviour
when noise is added in the adversary estimates. The
COLAV system is specially effected by inaccurate
velocity estimates.

Fig. 6. Clusters of failure trajectories from variation A:
All resulting trajectories are plotted. The red lines
illustrate the cluster centroids.

degree of observed irrational or worst-case behaviour of the
adversary changes between the different variations studied.
While sensor noise needs to be set very high to induce
improper behavior of the ferry, it is clear that the system
is impacted by inaccurate velocity estimate. Overall, while
this study is clearly not a proof that other failure modes
do not exist, it builds confidence in the robustness of the
SP-VP COLAV system of the ferry.

In further work, more case studies should be conducted
using different scenarios and more complex COLAV sys-
tems than the SP-VP scheme. The adversary model can
also be further developed into a more complex model that
is more restricted in its behaviour, in order to obtain more
realistic trajectories.

Fig. 7. Clusters of failure trajectories from variation B:
The effect of the training heuristic is evident in the
resulting clusters, as the most prominent cluster is the
one which contains trajectories where the adversary
performs one or more detours and attacks the ferry
from astern.

ACKNOWLEDGEMENTS

This research could not have been conducted without the
use of the Python AST Toolbox which is developed and
maintained by Stanford Intelligent Systems Lab (SISL),
with extra support from Ritchie Lee and Mark Koren. Re-
sources and equipment were provided by the Department
of Engineering Cybernetics at the Norwegian University of
Science and Technology.

REFERENCES

Corso, A., Du, P., Driggs-Campbell, K., and Kochenderfer,
M.J. (2019). Adaptive Stress Testing with Reward
Augmentation for Autonomous Vehicle Validatio. In
2019 IEEE Intelligent Transportation Systems Confer-
ence (ITSC).

Cuturi, M. and Blondel, M. (2017). Soft-DTW: a Differ-
entiable Loss Function for Time-Series. Proceedings of
Machine Learning Research.

Fossen, T.I. (2011). Handbook of marine craft hydrody-
namics and motion control. Wiley, Chichester, West
Sussex.

Koren, M., Alsaif, S., Lee, R., and Kochenderfer, M.J.
(2018). Adaptive Stress Testing for Autonomous Ve-
hicles. In 2018 IEEE Intelligent Vehicles Symposium
(IV).

Koren, M., Ma, X., Corso, A., Moss, R.J., Campbell,
K.D., and Kochenderfer, M.J. (2021). AST Toolbox:
An Adaptive Stress Testing Framework for Validation
of Autonomous Systems.

Lee, R., Kochenderfer, M.J., Mengshoel, O.J., Brat, G.P.,
and Owen, M.P. (2015). Adaptive stress testing of air-
borne collision avoidance systems. In 2015 IEEE/AIAA
34th Digital Avionics Systems Conference (DASC).

Lee, R., Mengshoel, O.J., Saksena, A., Gardner, R.W.,
Genin, D., Silbermann, J., Owen, M., and Kochenderfer,
M.J. (2020). Adaptive Stress Testing: Finding Likely

Failure Events with Reinforcement Learning. Journal
of Artificial Intelligence Research.

Mahalanobis, P.C. (1936). On the generalized distance
in statistics. Proceedings of the National Institute of
Sciences (Calcutta).

Thyri, E.H., Breivik, M., and Lekkas, A.M. (2020). A
Path-Velocity Decomposition Approach to Collision
Avoidance for Autonomous Passenger Ferries in Con-
fined Waters. IFAC-PapersOnLine.

Torben, T.R., Brodtkorb, A.H., and Sørensen, A.J. (2019).
Control allocation for double-ended ferries with full-
scale experimental results. IFAC-PapersOnLine.

Zhao, X., Salako, K., Strigini, L., Robu, V., and Flynn,
D. (2020). Assessing safety-critical systems from opera-
tional testing: A study on autonomous vehicles. Infor-
mation and Software Technology.

