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Abstract

Emission-free autonomous marine transportation systems are expected to contribute to positive
societal development. However, due to the safety critical nature of such transportation systems,
measures have to be made in order to ensure their safety. As new complex technologies are
introduced to these systems, many of which are hard for humans to understand, thorough
simulation based safety validation methods are needed. One such method is called the Adaptive
Stress Testing (AST) method, which was proposed in 2015 (Lee, Kochenderfer, et al., 2015).

AST is a reinforcement learning-based approach which optimizes towards the most likely failure
modes of a system. Optimizing towards failure leads to an efficient search as the need to
perform exhaustive searches over all possible outcomes is eliminated. The AST method has
been applied to air craft and car systems, where it has searched for near mid air collisions of
air crafts and collisions between car and pedestrian, respectively. The AST method has shown
promising results by efficiently identifying more failures compared to other search methods (Lee,
Kochenderfer, et al., 2015).

The AST method has yet to be applied to marine systems. Therefore, this thesis aims to
demonstrate the relevance of the AST method for marine vehicles by implementing the method
in two cases of marine vessel simulators. In the first case, the control system of a simple marine
vessel is tested by attempting to identify scenarios where disturbances has a significant impact
on the vessel. In the second case, the collision avoidance system of the milliAmpere ferry is
tested in order to find failure scenarios where the ferry collides with an obstacle. The AST
method is in both cases able to identify scenarios that contain failure modes.

The results presented in this thesis demonstrate how the AST method successfully identifies
failure modes of different parts of marine vehicle systems. Simultaneously, some drawbacks of
the AST method are presented. The system tends to find scenarios that are very similar or
where failure is unavoidable.

The results can provide insights to system developers as it exposes potentially dangerous
scenarios that can be taken into consideration during development. However, the drawbacks of
the method makes the results less relevant. In order to improve the results of the method in the
marine domain, more domain knowledge can be introduced in the system such as the Convention
on the International Regulations for Preventing Collisions at Sea (COLREGs) framework.
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Chapter 1
Introduction

1.1 Motivation

Industry 4.0, also known as the fourth industrial revolution, is a term describing the ongoing
change into computerized manufacturing (Tang et al., 2019). New technologies are being devel-
oped, among them technology to enable autonomous vehicles. It is expected that autonomous
vehicles will be part of the logistic function in the Industry 4.0 era (Tang et al., 2019). With
the fourth industrial revolution approaching, these new technologies are providing companies
with competition advantages. One of the world leading technology consultant firms, Accenture,
claims that:

"Recently, AI-controlled, autonomous robots have become economically viable.
Driven by a combination of falling prices and the rising practicality cases, "smart"
robots can now be deployed at scale - and harnessed for an ever-increasing number
of ever more complex tasks" (Accenture, Autonomous Robotics Systems | Accenture
(2021))

Autonomous solutions are making many industries rethink the way to perform tasks, among these
the marine industry, where research is being conducted in order to develop fully autonomous
ships. An example of such a project is the YARA Birkeland ship developed by Kongsberg and
Yara, which is a fully electric autonomous container vessel (Yara Birkeland | Yara International
2021), see Figure 1.1.

The greenhouse gas emissions from international shipping is estimated to account for 2.89% of
global emissions (Fourth Greenhouse Gas Study 2020 2021), meaning that electric ships could
have a significant effect on the worlds emissions. The market for autonomous ships is expected
to grow significantly, as the market size was estimated to be valued at $85.84 billion in 2020 and
is expected to reach approximately $165 billion by 2030 (Autonomous Ships Market Growth,
Companies, Trends by 2030 2021).
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CHAPTER 1. INTRODUCTION

Figure 1.1: The YARA Birkeland electric autonomous ship. Image obtained from (Yara Birkeland |
Yara International 2021).

Firms and governments are exploring these new technologies in order to obtain more environ-
mentally friendly solutions. One of the approaches that is being examined is to reduce emissions
via smart transportation (Tang et al., 2019). Emissions from transportation has been recognized
by the UN as a sustainable development challenge towards 2030. Due to the rising urbanization
of the world, the UN has also put emphasis on sustainable development in the worlds cities, by
defining one out of their 17 sustainable development goals as

"Goal 11: Make cities and human settlements inclusive, safe, resilient and sustainable"
(UN, Goal 11 | Department of Economic and Social Affairs (2021))

In a report released in 2021 the UN further states that

"There is an urgent need for transformative action that will accelerate the transition
to sustainable transport at the global level." (UN, Interagency Report for Second
Global Sustainable Transport Conference | Department of Economic and Social
Affairs (2021))

Many large cities are situated near waterways, as this was important when the economy depended
on trade conducted on the waterways. Today, these waterways are causing challenges when
cities are becoming more densely populated due to the ongoing urbanization. With more people,
the demand increases for more flexible mobility solutions. Thus, there is an ongoing challenge
to provide sufficient mobility solutions which also reduce emissions.

Zeabuz is a norwegian startup company that attempts to address the challenge of enabling
smart, emission-free transportation in urban cities by applying autonomy technology to small
marine ferries (ZEABUZ, 2021). The Zeabuz ferry is supposed to offer seamless transportation of
human passengers in waterways and thus avoiding the need to expand mobility solutions by e. g.
building bridges. The Zeabuz technology builds upon decades of research from NTNU, especially
a project called Autoferry (Autoferry - NTNU 2021), where the Zeabuz ferry predecessors

2



1.1. MOTIVATION

milliAmpere and milliAmpere 2 were developed. This thesis is written in colaboration with
Zeabuz, and a simulator of milliAmpere will later be used.

(a) Zeabuz ferry design example. Image obtained
from (ZEABUZ, 2021)

(b) The milliAmpere. Image obtained from (Auto-
ferry - NTNU 2021).

Figure 1.2: The Zeabuz ferry design example and its predecessor milliAmpere.

Similar projects as the Zeabuz ferry have gained attention worldwide, e.g. in Amsterdam, where
researchers from the Massachusetts Institute of Technology and the Amsterdam Institute for
Advanced Metropolitan Solutions have developed the Roboat, an autonomous boat that can
carry up to five people, collect waste, deliver goods and provide on-demand infrastructure in
the Amsterdam canals (One Autonomous Taxi, Please 2021), see Figure 1.3.

Figure 1.3: The Roboat, an autonomous boat that was set sea in Amsterdam in october 2021.

These new technologies that enable autonomous vehicles can thus potentially lead to both
reduced emissions and a more mobile urban design. But, these new technologies also raises new
concerns. How do we make sure these systems are safe?

Evaluating these new and complex algorithms with respect to safety is a complex task, as the
reasoning behind decisions is often hidden or hard to understand. These kinds of systems are
often referred to as black box, as the internal processes of the system are non-intuitive to humans.
A typical example are systems involving artificial neural networks, in which humans typically
understand the input and the output, but have little idea about how the network has reasoned.
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There is a rising concern for the implications of implementing such algorithms into decision
making systems,

"No one really knows how the most advanced algorithms do what they do. That could
be a serious problem as computers become more responsible for making important
decisions." (Will Knight, The Dark Secret at the Heart of AI (2021))

This issue raises several concerns, especially regarding cases where the algorithms are imple-
mented in Safety Critical Systems (SCS)s, which are systems where failure can lead to loss of life
or significant damage to people or property. When black-box concepts are introduced into these
systems, this challenges the safety assessment as traditional methods and industry standards are
not adjusted to such complex methods (Zhao et al., 2020). The Zeabuz ferry is an example of a
SCS where the autonomy system incorporates several different complex systems with varying
levels of black-box-factor, which can be hard to analyze for failures. As the internal workings of
the system becomes hard to analyze, simulation- and operational based testing becomes more
relevant. Zhao et al. (2020) states that an increased reliance on empirical demonstrations of
safety and reliability via simulated and operational testing seems inevitable.

Therefore, as these new and complex methods rise in popularity, the demand for simulation
based testing methods that can provide insight regarding safety is likely to rise as well. This
thesis aims to contribute to the field of safety validation for new and complex technologies with
respect to the marine industry, in order to provide a useful safety assessment tool that can help
bring new, green marine technologies to life in a safe manner.

1.2 Related work and literature review

1.2.1 Safety verification, validation and falsification

There are several approaches to ensure safety. The most robust approach is to perform formal
safety verification. This is done by conducting e. g. mathematical proofs or exhaustive swipes
over all possible scenarios in order to prove or demonstrate whether a safety property holds
(Lee, Mengshoel, et al., 2020). These methods provide completeness guarantees over the entire
model, which of course is desirable to system producers.

Formal safety verification is suitable for systems that operate with in a comprehensible envi-
ronment with respect to size and complexity. However, most cyberphysical systems operate in
large and stochastic environments. In these environments, formal verification methods becomes
too inefficient or even impossible due to complexity. In addition, the stochastic nature of the
environments leads to the fact that failures cannot be completely excluded. Another approach
to ensure system safety is to perform safety validation, which is a process where the system is
rigorously tested and it shows sufficient results in regards to safety.

As mentioned in section 1.1, one proposed way to perform safety validation of complex systems
is by thorough simulation-based testing. This can be done by simulating many scenarios and
recording the number and details of resulting failure modes. However, this approach can be
inefficient and demand a high number of simulations in order to identify failure modes, especially
in systems where failure modes are rare.
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A technique that address the problem of rare failure modes is the AST method, which will be
applied in this thesis. This is a method that performs falsification, which means that the method
optimizes directly towards failures (Corso, Moss, et al., 2021). By introducing optimization
towards failures in the simulations, the search for failures can become more efficient and the
number of simulations required is reduced (Lee, Mengshoel, et al., 2020).

1.2.2 Adaptive Stress Testing (AST)

AST is a reinforcement learning approach to finding the most likely failure states of a system,
provided a simulator of the system is available. AST was first proposed in 2015 (Lee, Kochender-
fer, et al., 2015), where the method was applied to an airborne COLAV system called Airborne
Collision Avoidance Systems (ACAS X), which was supposed to replace the existing airborne
COLAV system called Traffic Collision Avoidance Systems (TCAS). This work contributed to the
approval of ACAS X to replace TCAS, which took place in 2018 (Lee, Mengshoel, et al., 2020).

Since AST was first proposed, augmented versions of the method has been tested and proposed.
A general formulation of the AST method was formulated in 2020 (Koren, Corso, et al., 2020).
In the general formulation, it is evident that there are several parts of the method that can be
replaced by alternative values or methods in order to adapt the method to the test domain.
The AST method is thus flexible with regards to the system under test, and can be applied to
many systems as long as a simulator is provided. There are mainly two systems that appear
frequently in the AST literature:

• Airborne COLAV systems, with other planes as obstacles. Papers that incorporate this
system include: (Lee, Kochenderfer, et al., 2015), (Lee, Mengshoel, et al., 2020), (Moss
et al., 2020)

• Autonomous automobile approaching crosswalk, with pedestrians as obstacles. Papers
that incorporate this system include: (Koren, Alsaif, et al., 2018), (Corso, Du, et al., 2019),
(Koren and Kochenderfer, 2019), (Koren and Kochenderfer, 2020)

The two systems are illustrated in Figure 1.4

(a) Airborne COLAV systems (Lee, Mengshoel, et
al., 2020)

(b) Automobile approaching crosswalk with pedes-
trian (Corso, Du, et al., 2019)

Figure 1.4: Examples of common systems under test in Adaptive Stress Testing papers.

Another augmentation found in the AST literature is the augmentation of the reinforcement
learning solver algorithm and the reward function. These augmentations are performed in order

5
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to better adapt the AST method to the test domain, or to obtain a more efficient algorithm.
In the first proposed version of the AST method, a reinforcement learning solver called Monte
Carlo Tree Search (MCTS) was used, but other versions have shown to outperform the MCTS
for certain tasks. Koren, Alsaif, et al. (2018) proposed the use of Deep Reinforcement Learning
(DRL) as the reinforcement learning solver and reported better performance in the automobile
test case.

An identified problem of the AST method is that the failure scenarios it finds are often very similar
(Koren and Kochenderfer, 2020). When the AST method finds a strategy to lead the system
to failure, it often stops exploring other possible strategies. Koren and Kochenderfer (2020)
proposed that the problem formulation of the AST method makes it a so called hard-exploration
field as the system is not pointed towards failure during the simulation, only when the simulation
has finished. Koren and Kochenderfer (2020) proposed a way to counteract the effects of this by
implementing a method called Go-Explore, which is a method meant to improve performance in
hard-exploration fields.

Another known issue of the method is that the identified failure modes often contain unavoidable
failures (Corso, Du, et al., 2019). An example of this is the autonomous automobile case, where
the method would find a high number failures where the majority included a scenario where the
pedestrian suddenly decides to walk right into the vehicle. This is a scenario that is practically
impossible to prevent for car system designers, and thus it is less relevant in order to improve
the system design specifications.

Corso, Du, et al. (2019) successfully obtained more realistic results for the autonomous vehicle
case, by augmenting the reinforcement learning method used. The augmentation also urged the
RL agent to tend towards less likely failures. The augmentations that were implemented were
based on two measures:

• The degree of which the trajectories were compliant with Responsible-Sensitive Safety
rules, which is a set of driving rules motivated by common-sense driving practises. Thus,
the system was incentivized to find the most likely failures trajectories that also exhibited
rational driving behaviour.

• The degree of which the obtained failure trajectories are dissimilar. The system was
incentivized to obtain less similar trajectories.

The technical details of the AST method is elaborated on in Section 2.4.

1.3 Research Questions and Objectives

The research questions examined in this thesis are:

RQ1: Research question 1: Can the AST Toolbox be applied to find failure modes of the
milliAmpere collision avoidance (COLAV) simulator?

RQ2: Research question 2: Can the information obtained from the AST method generate
valuable insights to the Zeabuz ferry design team?

6
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1.4 Contributions

In this thesis, the last version of the AST Python toolbox is implemented to uncover failure
modes in the control system of a simple marine vehicle and in the COLAV system of the
milliAmpere ferry through simulations. The main contributions of the thesis are:

1: The AST method is demonstrated first using a simple marine vessel simulator. It is shown
to provoke the system into failure more efficiently than uniformly distributed disturbances,
and manages to identify efficient disturbance patterns in order to do so.

2: The AST method is then demonstrated in use for the milliAmpere COLAV system. The
method is able to uncover failure modes in a situation which the collision avoidance system
would have successfully navigated without AST intervention.

3: A heuristic is constructed to model the behaviour of the driver of the obstacle in the
milliAmpere collision avoidance scenario, in order to obtain more realistic failure scenarios.
Use of the heuristic shows sub-optimal results.

7
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Chapter 2
Background

2.1 Machine learning

The approaches used to perform the safety analysis in this thesis is based on the concept of
machine learning. Tom M. Mitchell defines the process of machine learning as

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. (Mitchell (1997))

That is, the computer program is said to learn if its experiences make it become better at the
task it is supposed to perform. As an illustrative example, consider a program that is supposed
to decide if there is a cat or a dog in a picture. Such a program is called a classifier. According
to the definition of Mitchell, the classifier is learning if it became better at predicting if there is
a cat or a dog in the picture, after some learning experience.

Mohri et al. discusses different common learning scenarios. Among these scenarios are supervised
learning and reinforcement learning. Reinforcement learning is elaborated on in Section 2.3.

Supervised learning describes the scenario where the system is handed labeled examples as
training data (Mohri et al., 2012). In the cat- or dog-classifier case, the training data could
consist of images of cats and dogs with associated labels. After training, the system is then
supposed to do predictions on unseen data. In the example cat- or dog-classifier system, the
unseen data could be new images of cats and dogs that were kept separate from the training
data and if the training was successful, it would be able to label the images correctly. Supervised
learning is the most common form learning scenario within machine learning (LeCun et al., 2015).

2.1.1 Artificial Neural Networks (ANN)

ANN is a common framework used to perform supervised machine learning. Inspired by how
the human brain works, an ANN is composed of a network of artificial neurons that together is
able to form functions of desired complexity, including nonlinear functions. The artificial neuron
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is also known as a unit or a node and will be referred to as a node in this thesis. Let x be the
input vector with entries [x0, x1, ..., xn−1, xn] and w be the weight vector belonging to the node,
with entries [w0, w1, ..., wn−1, wn]. Let o(x) be the dot product of the vectors x and w:

o(x) = wᵀx (2.1)

and y = f(o(x)) be the activation function of the node output. The node is illustrated in
Figure 2.1.

Figure 2.1: The artificial neuron, also known as a node.

Each node performs a simple computation of its input (Russell et al., 1995),

y = f(o(x)) = f(wTx)

w0 = −1

where f is known as the activation function, which is a function that makes the neuron give
output on the desired format. By default, w0 equals -1 and together with x0 it forms the node
bias. A typical activation function is the sigmoid:

f(o(x)) =
1

1 + eo(x)

which squashes the input to be between 0 and 1. The rectified linear unit, also known as the
ReLU function, is another commonly used activation function.

f(o(x)) = max(0,o(x))

A single node, or a network with only one layer of nodes, can only represent linearly separable
functions (Russell et al., 1995). To learn and represent problems that are not linearly separable,
more layers of nodes must be added. These layers are called hidden layers, and are elaborated
on in the section on deep learning and multilayer neural networks, see Section 2.2.
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2.2 Deep learning

2.2.1 Multilayer neural networks

To solve problems that are not linearly separable, nodes must be combined in a network. An
example network topology is shown in Figure 2.2.

Figure 2.2: Example neural network topology.

In multilayer neural networks, there are one or more hidden layers, which are nodes that are
not directly connected to the output.

Neural networks can be expanded with more nodes and layers to meet the complexity of the
problem it is supposed to solve, but adding complexity can lead to computational inefficiency in
training.

2.2.2 Training

In a training process, the node weights w are updated in several rounds called epochs. A
multilayer neural network can be trained using the backpropagation algorithm. This algorithm
indicates how the weights of the nodes in the network should change, according to the error
between the output and the labels (LeCun et al., 2015). The error is defined by a predefined
objective function. In the example cat- or dog-classifier introduced in Section 2.1, the output
could be a vector describing the probability of the picture being a cat or a dog, and the error
could be the difference between these probabilities and the actual binary classification, e. g.

error =

[
P(cat)
P(dog)

]
−
[
Cat in picture (0 or 1)
Dog in picture (0 or 1)

]
(2.2)

The error then first affects the output nodes by indicating the direction and magnitude by which
the output nodes missed the target. Subsequently, the error is propagated backwards through
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the layers to adjust the weights of the network in order to output a probability that fit this
picture a little bit better. This process is then repeated for many labeled images of cats and
dogs, until the network weights are adjusted to identify a more generalized pattern indicating
cat or dog and the performance metric, e. g. the accuracy when tested on unseen data, reaches
a sufficient level.

2.3 Reinforcement learning

Reinforcement learning (RL) differs fundamentally from supervised learning. Instead of training
on labeled training data, the RL agent learns by navigating in its environment and collect
positive or negative rewards based on the action it takes.

To illustrate, lets consider two different learning processes of a child. An example of supervised
learning of a child could be a parent telling the child that the name of an apple is "apple". The
child then rehearses pronouncing "apple" by adjusting the pronounciation according to the
feedback of the parent.

But a lot of the learning that happens during childhood is not supervised. It is based on the
experiences the child makes when it navigates the world. For example, a child learns not to
touch a hot plate, because the last time it did, it got burnt. Not necessarily because someone
explicitly told the child to avoid it, but because the experience itself made the child aware of
what this action led to - pain. RL is analogous to this kind of learning.

RL is a computational approach to learning from interacting with an environment (Sutton
et al., 2018). The general structure of RL can be illustrated as in Figure 2.3.

Figure 2.3: The RL structure, inspired by (Sutton et al., 2018).

In a RL problem, an agent navigates within an environment, just like the child navigates the
world. The agent takes actions that potentially can impact the environment, the reward the
agent gets, and the next state the agent will find itself in. In the child with the hot plate case,
the action would be "put hand on plate". The next state the child will be in is with its hand
on the hot plate, and the reward of this state is pain. The next time the child observes this
combination of state, environment and possible action, it will probably not make the same
action, as it is now conscious of the negative reward this will produce. In other words, the

12
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child has learned from its experience. In the same manner, the RL agent gradually learns to
avoid actions and states that lead to negative rewards, and instead tends toward behaviour that
maximize the possible reward. The RL problem can be mathematically formulated as a Markov
Decision Process.

2.3.1 Markov Decision Process (MDP)

A MDP is an idealized mathematical formulation of the RL problem (Sutton et al., 2018). It is
formalized as a tuple (X,U, Pu, Ru) where

• X is the finite set of states the agent can be in, i. e. the state space.

• U is the finite set of actions the agent can take, i. e. the action space.

• Pu(x, x′)=P (Xt+1 = x′|Xt = x, Ut = u) is the transition function, which specify the
probability of a possible next state x′ given a state-action pair (x, u).

• Ru(x, x′) = R(Xt = x,Xt+1 = x′, Ut = u) is the reward function, which specify the reward
the agent obtains as a consequence of transitioning from state x to state x′ due to the
action u.

The state Xt of the agent is observed at every timestep t, and an action Ut is chosen. A
state-action history σt = {X0, U0, X1, U1, ..., Xt} is obtained. The mapping from the state-action
history to an action at timestep t, is called a policy πt(σt) = Ut. A MDP adheres to two
assumptions (Russell et al., 1995):

• Markov assumption: the future is conditionally independent of the past, given the present.
In particular, Ut is conditionally independent of the state-action history given present
state Xt, i. e. {X0, U0, X1, U1, ..., Xt−1, Ut−1} ⊥⊥ Ut|Xt,

• Stationarity assumption: The transition function Pu and reward function Ru are the same
for all t.

Under these assumptions, the policy is simplified to πt(σt) = πt(Xt) = π(Xt). In cases where
the policy is stochastic, it becomes a probability measure of taking action Ut in state Xt, given
as π(Ut | Xt) (Sutton et al., 2018).

The task of the agent is to find the optimal policy π∗ and act thereafter. In decision theory, the
optimal policy is defined as the policy that maximize the expected utility (Russell et al., 1995).
The utility of a policy is a numerical measure of how useful the policy will be to the agent. In a
Markov Decision Process the expected utility of a policy is expressed as a sum of the expected
rewards called the state-value function V π(x):

V π(x) = Eπ

[
∞∑
k=0

γkrt+k|Xt = x

]

13
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where Eπ denotes the expected value of the evaluated expression when following policy π. The
expression consists of rt+k, the reward received at timestep t+ k and the constant γ, which is a
discount factor between [0, 1], which discounts rewards further into the future.

The expression can be reformulated as the output of the reward function at the current step
together with a term describing the probability of moving to the next states with a recursive
term that states the value of said states:

V π(x) = Rπ(x)(x) + γ
∑
x′

Pu(x
′|x, π(x))V π(x′)

The state-value function V π(x) is thus the sum of expected cumulative reward when starting in
state x and executing π thereafter. A similar function that also accounts for the action chosen
is the action-value function, which also can be decomposed into a recursive structure:

Qπ(x, u) = Eπ

[
∞∑
k=0

γkrt+k|Xt = x, Ut = u

]
Qπ(x, u) = Ru(x) + γ

∑
x′

Pu(x
′|x, u)Qπ(x′, π(x′))

The action-value function Q(x, u) is the expected cumulative reward when starting in state x,
choosing action u and executing π thereafter.

If the agent acts according to the optimal policy π∗, the value functions become the optimal
value functions, i.e.

V ∗(x) = max
π

Eπ

[
∞∑
k=0

γkrt+k|Xt = x

]

Q∗(x, u) = max
π

Eπ

[
∞∑
k=0

γkrt+k|Xt = x, Ut = u

]

Another value metric is called the advantage function.

Aπ(x, u) = Qπ(x, u)− V π(x) (2.3)

The advantage function compares the state-value function and the action-value function in order
to describe how much better it is to choose action u than to follow the policy π at the current
timestep (Francois-Lavet et al., 2018).
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2.3.2 Reinforcement learning algorithms

RL algorithms can be used to solve MDPs where

• The rewards are unknown to the agent. The agent must thus learn the characteristics
of the MDP model by exploring it.

• The time horizon is infinite, with discounts on future rewards with discount factor γ.
The discount factor makes the agent take decisions that have emphasis on more rewards
in the near future.

RL algorithms are categorized into model-based and model-free algorithms.

Model-based algorithms include a model of the environment, with e.g. estimates of the transition
function and/or the reward function (Sutton et al., 2018). These methods perform planning
according to their model of the environment. The main drawback of these methods is that
an environment model often is hard to obtain, and in these cases the agent has to learn the
characteristics of the environment by exploration, which can be inefficient.

Model-free methods rely on learning either a value function, or a direct representation of the
policy π and adjust the policy thereafter (Francois-Lavet et al., 2018). Thus, the agent does
not attempt to describe the entire environment, but rather tries to get an idea of what the
consequences of its actions within the environment will be.

Model-free methods can again be separated into action-value methods and policy gradient
methods. Action-value methods are methods where the agent learn the value of actions, and
selects new ones based on the learned value functions. A classic example of an action-value
method is Q-learning, in which the agent learns an approximation of the action-value function
Q(x, u). Policy gradient methods instead learn a parameterized policy, and the agent chooses
its actions directly from this without the need to approximate any value functions, although
some policy gradient methods incorporate value functions in order to learn the policy. This
method is applied in this thesis, and it is elaborated on in Section 2.3.3.

It is worth noting that these categorizations of methods are mostly used to get a general overview
of the existing methods. It can be hard to distinguish the methods from each other as there are
several RL algorithms that combine the different approaches.

2.3.3 Policy optimization

Policy gradient methods

Policy gradient methods maximizes the performance of the agent by updating a parameterized
policy via gradient ascent steps. The parameter vector of the policy is denoted θ and the policy
is denoted as

π(u|x,θ) = P{Ut = u|Xt = x,θt = θ} = πθ(u|x)
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which represent the probability of action u given state x and the parameter vector θ at timestep
t (Sutton et al., 2018). The parameter vector is then updated using gradient ascent, with an
approximated gradient of some cost function J(θ):

θt+1 = θt + α∇̂J(θ)

where α is the gradient ascent step size and ∇̂J(θ) is the estimate of the stochastic cost function.
The most common cost function is (Schulman, Wolski, et al., 2017):

J(θ) = Êt
[
logπθ(Ut|Xt)Ât

]
which consists of the approximated expectation of the log of the policy, multiplied by an
approximation of the advantage function At, see Equation (2.3). As the problem is of stochastic
nature, the expectation E is approximated by an average Êt over a finite batch of samples.

The cost function gradient used in the gradient ascent step then becomes:

∇̂J(θ) = Êt
[
∇θlogπθ(Ut|Xt)Ât

]
(2.4)

2.3.4 Generalized Advantage Estimation Generalized Advantage Es-
timation (GAE)

Generalized Advantage Estimation is a method for estimating the advantage function Equa-
tion (2.3), which in turn can be used to compute the cost function gradient in Equation (2.4).
The method defines an augmented advantage function called the discounted advantage function:

Aπ,γ(x, u) := Qπ,γ(x, u)− V π,γ(x) (2.5)

where γ is a discount factor for future rewards (Schulman, Moritz, et al., 2018).

2.3.5 Trust Region Policy Optimization Trust Region Policy Opti-
mization (TRPO)

Trust region methods, such as TRPO, apply a constraint to the maximization problem in order
to contain the gradient ascent step inside some desired trust region. These methods can be used
in order to step the parameterized policy.

TRPO is, as the name implies, a policy optimization method that implements a trust region
constraint (Schulman, Levine, et al., 2017). It is deemed fit for large nonlinear policies such as
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policies represented by neural networks. This is due to the fact thatthe policy updates become
smoother than with action-value methods, as policies computed through a value function can
change dramatically due to small changes in the value function.

The optimization objective in TRPO becomes:

max
θ

Êt
[ πθ(Ut|Xt)

πθold(Ut|Xt)
Ât
]

(2.6)

s.t.Êt
[
KL
[
πθold(◦|Xt), πθ(◦|Xt)

]
≤ δ (2.7)

where πθold is the policy before the gradient ascent update, δ is the trust region constraint
threshold and KL is the Kullback-Leibler divergence, which is a measure of the difference of
the between the distibutions πθold and πθ (Schulman, Wolski, et al., 2017). The trust region
constraint thus prohibits the gradient update to perform steps that will change the shape of the
policy too drastically.

2.3.6 DRL

Deep Reinforcement Learning techniques has led to new applications and improvement of
algorithms in problems that involve sequential decision making (Francois-Lavet et al., 2018).

DRL combines multilayer neural networks (see Section 2.2) and reinforcement learning (see
Section 2.3) by using a multilayer neural network to represent the learning objective, being e.g.
a model of the environment, a value function, or the policy π.

This thesis implements a DRL method by introducing a multilayer neural network to represent
the policy in a policy gradient method. GAE is applied in order to estimate the cost function
gradient and TRPO is used to step the policy, see Section 2.3.4 and Section 2.3.5.

2.4 Adaptive Stress Testing

AST is a reinforcement learning approach to perform safety validation. The method is imple-
mented using a simulator of the system under test. The goal of the agent is to lead the system
into the most likely failure modes.

The AST method can be implemented in many ways. Consider the case of stress testing a
marine vehicle simulator. If the objective is to make the system fail by adding disturbances,
then the RL agent can be in control of the disturbance value. If the objective is to discover
situations where the vehicle collides with other vessels, the agent can be set up to control the
motion of the other vessels. Both these cases will be presented in this thesis.

In the AST method, the problem of bringing the system to failure is modeled as a discrete time,
continuous state MDP and then optimized by RL. The system consists of

• The simulator S
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• The environment E

• The System Under Test (SUT)M

• The RL agent A

and is structured in a somewhat unintuitive way, see Figure 2.4.

Figure 2.4: The AST structure, inspired by (Lee, Mengshoel, et al., 2020).

In AST, the environment, the system under test and the simulator is merged into one proxy
environment, which the RL agent interacts with. This is due to the fact that failure modes
often includes parts of the environment, and that controlling parts of the environment, such as
other vessels or obstacles, can be beneficial in order to provoke the system into failure. This
differs from traditional RL setups where the agent usually represents the system under test.

As mentioned, AST attempts to find the most likely failure path, which is the history of actions
with the highest likelihood subject to the constraint that the final state is a failure event, i. e.
xtend

∈ E, where E is the event space E ⊂ X and tend is the final timestep of the simulation
(Lee, Mengshoel, et al., 2020:p7). Formulated mathematically, AST optimizes Equation (2.9).

max
u0,...,uend

tend−1∏
t=0

p(ut|xt) (2.8)

(2.9)

subject to xtend
∈ E

2.4.1 Formulation

The AST problem is formulated as an MDP as follows (Lee, Mengshoel, et al., 2020).
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• The state x of the MDP is the state of the simulator.

• The agent observes the state x and chooses action u.

• The transition to the next state is given by the transition behaviour of the simulator which
is the combined behaviour ofM and E .

• The reward functions is set to optimize Equation (2.9).

2.4.2 The reward function

The reward function used in AST is designed to find the most likely failure states of the system.
It is formulated in different manners in different AST papers. Koren, Corso, et al. (2020)
presented a general formulation as:

R =


0 if x ∈ E
−α− βf(x), if x /∈ E, t ≥ tend

−g(u)− ηh(x), if x /∈ E, t < tend

(2.10)

where α is a large number in order to penalize trajectories that do not lead to failure, βf(x)
is an optional, possibly domain specific, heuristic. g(u) is the action reward, proposed to be
proportional to logP (u), i. e. the log likelihood of the action which will make the agent tend
towards the most likely failures and ηh(x) is an optional training heuristic given at each timestep.

2.5 Marine vessel dynamics and control

2.5.1 Dynamics of marine vessel

The simulators used in this thesis portrays simplified 3-Degrees of Freedom (DOF) horizontal
plane models of marine vessels, which will be elaborated on in this chapter.

Let an inertial frame be approximated by the earth-fixed reference frame {e} called North
East Down (NED). A marine vessel is fully described by a 6-DOF model with the state-space
representation

η =


x
y
z
φ
θ
ψ


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where (x, y, z) represents surge, sway and heave, describing the body position in 3D space
(Fossen, 2011). (φ, θ, ψ) are the orientation angles roll, pitch and yaw, see Figure 2.5 for an
illustration.

Figure 2.5: Vessel with state parameters, inspired by (Fossen, 2011).

in Figure 2.5, xb, yb and zb makes up the body reference frame of the vessel. As a simplification,
one often assumes that the movement in the z-direction is arbitrarily small. The heave parameter
z is then removed from η together with the vertical angles (φ, θ), yielding the 3-DOF state
vector

η =

xy
ψ


The velocity vector for the 3-DOF model is given as

ν =

uv
r


where (u, v, r) is called surge speed, sway speed and yaw rate, see Figure 2.5.

As can be deducted by inspection of Figure 2.5, the following relation between η and ν can be
obtained:

η̇ =

ẋẏ
ψ̇

 =

u cos(ψ)− v sin(ψ)
u sin(ψ) + v cos(ψ)

r

 = Rz,ψν
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where

Rz,ψ =

cos(ψ) sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1



When the assumption of no heave motion is combined with the assumption that there is no
external disturbances to the vessel such as wind, ocean currents and waves, the 3-DOF vessel
dynamics can be formulated as:

η̇ = Rz,ψν

Mν̇ +C(ν)ν +D(ν)ν = τ (2.11)

Here, τ is the vector of forces and torque acting on the vessel, which can include e. g. disturbances
and control actuation. D(ν) is the hydrodynamic damping matrix, M is the mass matrix
and C(ν) is the Coriolis and centripetal matrix. The matrices M and C(ν) represent the
combination of the dynamics of the rigid body and the dynamics due to the hydrodynamic
effect of added mass, denoted RB and A respectively:

M = MRB +MA

C(ν) = C(ν)RB +C(ν)A

2.5.2 Path following

Guidance is a method to obtain state references in order to make a vessel follow a certain
trajectory. One form of guidance system is path following for straight line paths. This can be
implemented as a simple LOS look-ahead path controller. This controller gives actuation to
minimize the shortest distance to the path and the look ahead angle between the LOS point on
the path and the vehicle, as seen in Figure 2.6. In addition, it can be set to minimize the error
in surge velocity according to some desired velocity ud.

A new desired value for the heading is found for every time step, given by

ψd = αk + χr

= arctan2(ypk+1
− ypk , xpk+1

− xpk) + arctan2(−e,∆)

Where αk is the path relative angle to the NED frame, χr is the velocity-path relative angle given
by the smallest distance between the vessel and the path e, and ∆, the lookahead distance (the
LOS vector projection onto the path). LOS systems are implemented in both of the simulators
used in this thesis.
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Figure 2.6: LOS following of a simple line. From (Fossen, 2011)

2.5.3 Collision avoidance and the Single Path Velocity Planner (SP-
VP)

Autonomous marine vehicles need collision avoidance systems when navigating amidst obstacles
such as other vehicles or land. In this thesis, a simulator of the milliAmpere ferry collision is
used, in which the the vessel is simulated in traffic with other vehicles and the collision avoidance
system is tested.

The collision avoidance system implemented on the milliAmpere ferry is based on the SP-VP
approach, which is a path-velocity decomposition method proposed in (Thyri et al., 2020).

The method projects all obstacles into a path-time space and builds a graph of different velocity
profiles along a path to a predefined waypoint. An optimal velocity profile along the path is
then selected based on the cost attached to every node in the graph. An example is shown in
Figure 2.7.
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Figure 2.7: Possible velocity profiles along a predefined path in the path-time space. The squares
are obstacles that the system is supposed to avoid. The chosen, and thus optimal velocity profile is
highlighted in red. Figure obtained from (Thyri et al., 2020).

The SP-VP method is a robust and simple approach to collision avoidance as it produces
predictable and intuitive trajectories. As a trade off of the simplicity of the SP-VP approach,
the method is not able to handle situations where e. g. an obstacle is driving head on towards
the vessel as it is unable to find a path that does not lead to collision. In cases like these, the
algorithm breaks down due to the infeasible nature of the problem.
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Chapter 3
Methodology

Two different simulators are used in this thesis. First, a simple simulator hereby referred to
as the SimpleSim, which simulates a simplified model of the milliAmpere ferry. Then a more
complex simulator obtained from Zeabuz which simulates the milliAmpere ferry COLAV system
is used, which is hereby referred to as the milliAmpere COLAV simulator.

To apply AST to the objectives in this thesis, an open source Python package called the AST
toolbox was used (Koren, Ma, et al., n.d.). The SimpleSim was constructed in order to do a
proof of concept of the method. The AST Toolbox is quite comprehensive, which called for a
simplified approach first, in order to get familiarized with the concept and the toolbox itself.

The SimpleSim was tested by injecting disturbances into the system dynamics to cause the
vessel to drift off the path it originally was set to follow. The milliAmpere COLAV simulator
was tested by adding actuation in the control input of an obstacle vehicle in order to search for
scenarios where the obstacle and the milliAmpere vessels crashed.

In this chapter, the two simulators will be presented. Then, the AST implementation will be
elaborated on, as well as the experiment setup.

3.1 Constructing the SimpleSim

In order to gain knowledge of the AST toolbox and how it could be applied to a simulator, a
simple milliAmpere simulator was constructed.

The simulated vessel was controlled by a control input τc and disturbed by a vector w. The
vessel dynamics represented in the simulator can then be described by an augmented version of
Equation (2.11):

η̇ = Rz,ψν

Mν̇ +C(ν)ν +D(ν)ν = τc +w (3.1)

The kinetic parameters of the vessel, including M , C and D, was obtained from Zeabuz and
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corresponds to the kinetics of the milliAmpere ferry.

The simple simulator vessel was instructed to follow a straight line y = 0 by applying a LOS
guidance controller starting with the initial position and velocity

η0 =

0
1
π
4

 ,ν0 =

0
0
0


The system was also set up with two different controller schemes, namely PD and PID controllers,
in order to investigate if controller type would have an effect on the AST results.

3.1.1 PD regulation and LOS guidance

PD regulation and LOS guidance was implemented, which resulted in the following control
input:

τc = R>z,ψτreg

τreg = −Kp(η − ηd) −KdRz,ψ(ν − νd) (3.2)

νd =

 u− ud
0

Kψ(ψ − ψd)


where Kp and Kd are tunable vector gains and Kψ is the yaw gain. ηd was set to [100, 0, 0] and
increased to [200, 0, 0] if the vessel reached x = 80. The guidance and regulator parameters were
tuned until a satisfactory result was obtained. The vessel converges to the path and follows it
throughout the simulation. The result is shown in Figure 3.1.

(a) Position, heading and reference values with PD
regulation and LOS guidance. (b) Trajectory of vessel with PD regulation and

LOS guidance.

Figure 3.1: PD regulated vessel.
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3.1.2 PID regulation and LOS guidance

Integral action was introduced in addition to the previous LOS guidance control in order to
obtain more robust control. This resulted in the following augmentation of the control input
Equation (3.2):

τreg = −Kp(η − ηd) −KdRz,ψ(ν − νd) −Ki

∫
(η − ηd)

Where Ki is an additional tunable regulator constant. The guidance and regulator parameters
were tuned until a satisfactory result was obtained. The result is shown in Figure 3.2.

(a) Position, heading and reference values with PID
regulation and LOS guidance. (b) Trajectory of vessel with PID regulation and

LOS guidance.

Figure 3.2: PID regulated vessel.

3.1.3 Adding disturbances

The AST method was supposed to disturb the vessel so that it was unable to follow the path. In
order to investigate how much disturbance the SimpleSim control system was able to counteract,
thus creating a baseline for the following experiments, both uniformly distributed disturbance
values and a constant disturbance was introduced into the system.

The uniformly distributed disturbances was drawn from a uniform distribution over [0, wmax].
The value of wmax was in increased to test the systems ability to counteract disturbances.

From the resulting trajectories and reference plots, it can be observed that the system is able to
counteract disturbances quite effectively with regards to staying on or near the path for quite
high values of wmax. The offset from the path increases for higher values of wmax, but in all
cases the offset is reduced towards the end of the simulation.

The PID regulated system responded better to disturbance than the PD regulated system. This
is expected, as the integral effect of PID control is known to reduce offsets from the reference
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values. The offset from the path, introduced by the disturbances, is significantly higher for the
PD regulated system in both the uniform disturbance case and the constant disturbance case.
The resulting trajectories, corresponding state values and the regulator control input for both
the PD and the PID regulated vessel are presented in Figure 3.3 and Figure 3.4.

(a) Trajectories, uniform disturbances. (b) Trajectories, constant disturbance.

(c) State values, uniform disturbances. (d) State values, constant disturbance.

(e) Regulator control inputs, uniform disturbances. (f) Control input, constant disturbance.

Figure 3.3: Resulting trajectories for PD regulated vessel with increasing values of wmax.
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(a) Trajectories, uniform disturbances. (b) Trajectories, constant disturbance.

(c) State values, uniform disturbances. (d) State values, constant disturbance.

(e) Regulator control inputs, uniform disturbances. (f) Control input, constant disturbance.

Figure 3.4: Resulting trajectories for PID regulated vessel with increasing values of wmax.

3.1.4 SimpleSim baseline

The results from the disturbance tests was used as a baseline in order to compare the performance
of the AST method. From the tests, some remarks can be made:
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• The maximum path offset, which can be seen as the y-value difference from 0 in the
reference plots, of the PD regulated is ∼2.8m, obtained in the constant disturbance
scenario.

• For the PID regulated vessel, the maximum path offset ∼1.4, also obtained in the constant
disturbance scenario.

3.2 The milliAmpere COLAV simulator

The milliAmpere simulator is a simulator obtained from Zeabuz, which simulates a milliAmpere
ferry together with one or more obstacles, see Figure 3.5. The obstacle can be implemented
using different vehicle models, controller and guidance schemes. The simulator is centered
around the collision avoidance (COLAV) algorithm, to prove the concept and to expose its
vulnerabilities. The COLAV algorithm of the milliAmpere vehicle is based on the SP-VP
algotihm, see section 2.5.3.

(a) One obstacle scenario. (b) Three obstacle scenario.

Figure 3.5: Examples from visualization of the Zeabuz simulator.

It is worth noting that the simulator does not simulate the entire milliAmpere ferry system, only
the COLAV algorithm. The SP-VP algorithm is designed to fail fast, and in the full system, the
state machine of the ferry will take over when it fails and handle the situation by e.g. halting
the speed and eventually stop. This happens when the SP-VP algorithm deems the situation
infeasible and throws an error. In the milliAmpere COLAV simulator, this error is supposed
to terminate the program. In order to avoid termination of the simulation and approximate
the behaviour of the full system, functionality was added to the simulator in order to make the
system stop when the problem became infeasible.
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3.3 Adaptive stress testing implementation

3.3.1 AST specification

In this thesis, the version of the AST method specified in (Koren, Alsaif, et al., 2018) is
implemented. As mentioned in Section 1.2, this paper proposed the use of DRL as the
reinforcement learning solver and reported better solutions using DRL than with the use of
MCTS for use in the autonomous automobile scenario.

The DRL version of the AST method uses a neural network to represent the parameterized
policy πθ. The method runs batches of simulation episodes which is then used to train the
policy network in epochs. The length of the episodes, the batch size and the number of epochs
are predetermined. The GAE method is used to estimate the policy-gradient from the batches,
then TRPO is used to step the policy.

In addition to the replacement of the RL solver, this paper suggested an augmentation of the
reward function to include a domain specific heuristic, namely the distance from the vehicle to
the pedestrians, see Equation (3.3),

R =


0 if x ∈ E
−100000− 10000dist(pv, pp), if x /∈ E, t ≥ tend

−log(1 +M(u, µu|x)), if x /∈ E, t < tend

(3.3)

where pv is the position of the vehicle and pp is the position of the pedestrian, and M(u, µu|x)
is the Mahalanobis distance between the action u and the expected action µu given the state x
(Mahalanobis, 1936). In both the SimpleSim and the milliAmpere COLAV simulator case, a
domain specific heuristic was implemented.

A tutorial for the AST Toolbox was followed when constructing the AST wrapper for the
simulators (Contents — AdaptiveStressTestingToolbox 2020.09.01.0 Documentation 2021). The
AST method works as a wrapper around the simulator that it tests. In this way, the AST
simulator can do multiple batches of simulation to train the RL agent in order to optimize its
actions towards failure mode. In this thesis, the AST method was implemented in closed loop
mode, meaning that the method would be able to step the simulator, evaluate the observation
returned and then provide a new action. This required access for the AST simulator to the
simulator functions

• reset(x0): reset the simulator to the fixed initial position x0

• step_simulation(u): step the simulation with action u

• is_terminal(): return true if the simulation has finished

3.3.2 Wrapping the SimpleSim

The AST method was implemented to control the disturbance w in the SimpleSim dynamics,
see Equation (3.1). The AST method was run with increasing values of wmax, meaning that the
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agent was able to draw actions from the continuous action space U = [0, wmax].

The reward function

The reward function was adjusted to the SimpleSim domain, resulting in

R =


0 if x ∈ E
−100000− 10000 1

dist(path,p) , if x /∈ E, t ≥ tend

−log(1 +M(u, µu|x)), if x /∈ E, t < tend

(3.4)

where dist(path, p) is the shortest distance between the path and the vessel. This domain specific
heuristic was implemented in order to penalize the RL agent additionally if the distance to the
path was small at the end of trajectories that did not lead to failure.

3.3.3 Wrapping the milliAmpere COLAV Simulator

As mentioned in Section 3.2, the milliAmpere COLAV Simulator provided the possibility of
simulating several obstacles of different models and controllers. In this thesis, the scenario with
only one obstacle is chosen, as this was considered as more illustrative of the AST concept. The
obstacle was implemented as a simple first order model with a LOS guidance control system
that instructed it to follow a straight line. The AST method was set to give control input to
the obstacle in order to drive it towards failure.

The reward function

In resemblance to Equation (3.3), a domain heuristic based on the distance to the obstacle was
implemented in the reward function:

R =


0 if x ∈ E
−100000− 10000dist(pv, pobs), if x /∈ E, t ≥ tend

−log(1 +M(u, µu|x)), ifx /∈ E, t < tend

where dist(pv, pobs) is the distance between the ferry and the obstacle. This domain specific
heuristic was implemented in order to penalize the RL agent additionally if the distance from
the ferry to the obstacle was small. The simulator was also tested using an additional training
heuristic h(x):

R =


0 if x ∈ E
−100000− 10000dist(pv, pobs), if x /∈ E, t ≥ tend

−log(1 +M(u, µu|x))− h(x), ifx /∈ E, t < tend

The heuristic was constructed in order to obtain a better model of the obstacle driver probability,
i. e. it was meant to penalize actions that was less likely to be executed by a human driver.
The heuristic was constructed based on the following assumptions:
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• It is likely that the obstacle will take actions that reduce the risk of collision with the
milliAmpere ferry.

• If the distance between the vessels is less than a tolerable limit, and the milliAmpere ferry
is within the field of view of the obstacle, it is likely that the obstacle will take actions
that takes it further away, and/or heads in another direction.

• A simplified measure can be used to assess the risk of collision based on the distance
between the vessels and the difference in angle between the obstacle and the ferry, and
the heading of the obstacle.

A heuristic was developed, based on the field of view of the obstacle and the distance between
the vessels. Let

• L be the distance threshold

• FOV be the maximum field of view angle

• D = dist(pv, pobs) be the distance between the vessels

• φ be the angle following the distance vector between the vessels

• β be the absolute value of difference between the obstacle heading ψobs and φ, illustrated
in Figure 3.6.

Figure 3.6: Illustration of parameters used in driver model heuristic.
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Let r denote the risk measure. The risk measure was set to be

r =


0 if D > L
0.5 (L−D)

L
, if D < L, β > FOV

0.5 (L−D)
L

+ 0.5 (FOV−β)
FOV

, if D < L, β < FOV

(3.5)

Thus, the risk increases if the obstacle is close to the ferry, and it increases further if the obstacle
is headed towards the ferry. If the obstacle is very close to the ferry and it is also headed towards
it, the risk measure approaches 1.

To obtain the heuristic value, the risk had to be evaluated before and after the action. Let rt be
the risk measure before the action, rt+1 the risk measure after the action, and δr = rt+1 − rt.
The resulting heuristic became

h =

{
0, if δr < 0

log(1 + rt+1), if δr > 0
(3.6)

Thus, the system receives negative reward if the action does not reduce the risk, and the penalty
increases with greater risk. This is a simplified approximation of a probability model of the
obstacle driver.

3.4 AST Experiment Setup

The AST method contain several hyperparameters that need to be specified in order to run the
experiments.

When testing both the SimpleSim and the milliAmpere COLAV simulator, the mean action
used in the Mahalanobis distance in the reward function (see Section 3.3.1) was set to zero.
The zero value makes the reward function penalize actions that are far from zero, which gives
a probability estimate that favours smaller actions. This makes sense as an approximation in
both simulator cases, as big disturbances or driver actions are then considered less likely.

3.4.1 Experiment with the SimpleSim

The SimpleSim was tested with increasing values for wmax, in order to compare the results to
the disturbance test scenarios from Section 3.1. The goal of the AST system was set to bringing
the vessel to a desired offset from the path in East direction. While testing, the desired offset
was altered in order to investigate the AST performance for different values. The experiments
was set up with the same initial values as was used in the testing of the system in Section 3.1,
namely:
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Parameter Value

η0

0
1
π
4


ν0

0
0
0



The simulation hyperparameters were set as follows:

Parameter Value
Batch size 10 000
Epochs 30
t0 0 s
tend 100 s
dt 0.1 s

AST step size 1 s
Max number of AST steps 100
Desired offset from path 1.3m, 1.5m, 2m, 2.5m, 3m

3.4.2 Experiment with the milliAmpere COLAV Simulator

The experiment was set up with the following initial values:

Parameter Value

η0

10
0
0


ν0

0
0
0


ηobs0

100
100
0


νobs0

1
0
0



When running the COLAV simulator with these parameters, the ferry is able to stop in order to
let the obstacle pass and later continue, see Figure 3.7.
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Figure 3.7: One obstacle scenario used in the experiment. The milliAmpere ferry stops at x ∼ 25 and
awaits for the obstacle to pass, before it continues.

The simulation hyperparameters were set as follows:

Parameter Value
Batch size 20 000
Epochs 50
t0 0 s
tend 400 s
dt 0.1 s

AST step size 4
Max number of AST steps 100

Crash distance 5 m
wmin -0.1
wmax 0.1

Training heuristic parameters Value
L 50 m

FOV 20 ◦

The goal of the AST system was to bring the obstacle into a collision with the ferry. The crash
distance, namely what distance between the vessels that would evaluate to a collision, was set
to 5m. The magnitude of the obstacle actuation, wmin and wmax, was limited to the action
space [-0.1, 0.1] as higher values gave unrealistic movements of the obstacle. The obstacle in the
simulation is, as mentioned in Section 3.3, a simple model based on first order processes, and
was highly affected by actuation.
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3.4.3 AST steps, simulator timesteps and batch size

In the SimpleSim case, the step size of the AST simulator is set to 1s, meaning that one AST
step corresponds to 1s in the vessel simulators. The step size of the SimpleSim, namely dt, is
set to 0.1. This indicates that for every step of the AST simulator, the vessel simulators does 10
timesteps of size 0.1. The AST simulator thus evaluates the state for every second and then
provides a new action based on the evaluation. In the milliAmpere COLAV simulator case, the
step size of the AST simulator is set to 4s, meaning that for every step of the AST simulator,
the vessel simulators does 40 timesteps of size 0.1.

The evaluation was chosen not to be performed at every timestep due to the fact that this
would cause the DRL network to become unnecessary large, which possibly could introduce
unwanted noise in the network. In the milliAmpere COLAV simulator case, evaluating the state
and providing a new action at an interval of 4s was also deemed similar to human behaviour.

The maximum number of AST timesteps is set to 100, which corresponds to a vessel simulation
of 100s for the SimpleSim and and 400s for the milliAmpere COLAV simulator. The timespan
is reduced when the goal is reached before the maximum number of steps is performed. The
batch size specify how many AST steps the AST simulator runs in one epoch. To illustrate:
in the milliAmpere COLAV simulator, the batch size is set to 20 000, which means one epoch
results in 200 trajectories if every trajectory in an epoch uses the full 100 AST timesteps. If
the goal is reached before the maximum number of AST steps are performed, there is room for
more trajectories in an epoch, and the number of trajectories per epoch increases.
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Chapter 4
Results and discussion

The results from the tests are presented and discussed. In both simulator cases, the AST method
was able to identify failure modes. Some of the failure scenarios are demonstrated and discussed.

Two resulting RL statistics are presented in every test case, namely the:

• Average discounted return: the mean of the discounted return through the epoch. This
measure indicates to which degree the agent is able to improve the discounted return
throughout the AST simulation epochs.

• Number of episodes: The number of episodes ran for every epoch. For some of the epochs
this number is higher than the baseline of batch size divided by the maximum number
of AST steps, which indicates that the agent found failures using a reduced number of
AST steps which gave room for more trajectories in that epoch. Thus, a higher number of
epochs indicate a higher number of trajectories that led to failure.

As described in Section 3.3.1, the actions of the AST agent in the SimpleSim case amount to
disturbances in the vessel dynamics and the goal was hit when the vessel was driven off the
path, to some desired offset value. In the milliAmpere COLAV simulator case, the actions of
the agent amount to actuation in the obstacle vehicle and the goal was hit when the obstacle
collided with the ferry.

4.1 Results using the SimpleSim

In the cases where the AST method was able to identify failures, the action sequences that led
to failure was stored in order to replay these in the SimpleSim and gather the results for analysis
and discussion. Due to the high number of failure cases, only every 100th action sequence
was obtained. The RL statistics are presented together with the state values, the resulting
trajectories, the action sequences and the regulator control input. Early trajectories are plotted
in a lighter color in order to emphasize the latter trajectories, which are the trajectories the
AST agent converges to.
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4.1.1 Results with the PD regulator

With the PD regulated vessel, the AST method was able to identify failures with a path offset
of 2m and 2.5m. The test was also performed with an offset of 3m, but no results were obtained
in this case.

In the 2m case, failure modes were identified for wmax values of 80, 100, 120 and 150. In the
2.5m case, only wmax = 120 and 150 gave results. This is coherent with the baseline tests with
constant disturbance, where wmax = 80, 100, 120 and 150 resulted in an offset past 2m, and
wmax = 120 and 150 resulted in an offset past 2.5m.

Path offset wmax values
Number of
trajectories
with failure

Total number
of trajectories Goal percentage

2m

30
80
100
120
150

0
8 035
8 796
13 924
18 825

3 000
8 158
9 388
14 325
19 032

0%
98.5%
93.7%
97.2%
98.9%

2.5m

30
80
100
120
150

0
0
0

10 749
11 337

3 000
3 000
3 000
11 297
12 238

0%
0%
0%

95.1%
92.6%

3m - - - 0%

In order to illustrate the failure modes identified by the AST method, results for the two test
cases 2m and 2.5m with wmax = 120 are shown in Figure 4.1 and Figure 4.2.

All the failure trajectories that were identified are in both cases highly similar, which is evident
in the trajectory plots.

The results show similar patterns for both the 2m offset and the 2.5m offset case. The agent tends
towards giving full disturbance in surge speed and yaw rate, while the sway speed disturbance is
kept low. In the 2m offset case, the agent tends towards 0-values for the sway speed disturbance
throughout the simulation, while in the 2.5m offset case it tends towards giving a high magnitude
nudge in the sway speed towards the end of the episodes.

Although the AST agent is penalized during training for high action values, it is evident that
the reward of reaching the goal triumphs the desire to keep action values low. The time of the
sequences is reduced throughout the AST simulation, while the magnitude of the sway speed
disturbance is increased, illustrating how the AST agent is willing to apply higher action values
in order to reach the goal faster.

The resulting RL statistics show that the agent quickly converges to smaller values for the
average discounted return, as it identifies ways to make the system fail and thus omits the big
penalty for not failing. The number of episodes approaches 550 and 500 for the 2m and 2.5m
case, respectively. This is coherent with the reduced time span of the failure trajectories, from
100s to ∼20s or less, which correspond to a reduction from 100 to ∼20 AST timesteps.
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(a) Average discounted return (b) Number of episodes

Figure 4.1: Simulation results from AST identified failure scenarios with desired path offset of 2m
with wmax = 120 for PD regulated vessel.
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(a) Average discounted return (b) Number of episodes

Figure 4.2: Simulation results from AST identified failure scenarios with desired path offset of 2.5m
with wmax = 120 for PD regulated vessel.

In the cases where no failure modes were found, the RL statistics were very similar. The average
discounted return converged to some large negative value, and the number of episodes stayed
constant throughout the epochs as all episodes were performed with the maximum number of
AST steps. An example of this is shown for the 2.5m offset case, with wmax = 80 in Figure 4.3,
where no failure was found.
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(a) Average discounted return (b) Number of episodes

Figure 4.3: Reinforcement learning statistics for all epochs with wmax = 80 in the 2.5m offset case.

4.1.2 Results with the PID regulator

The tests with desired offset of 2m, 2.5m and 3m was run with the PID regulated vessel as well,
but no failure modes were identified. The offset was then lowered to 1.5m and 1.3m, and in
the latter case, failure modes were identified for wmax = 150. As in the PD case, this is again
coherent with the results from the baseline tests where only wmax = 150 resulted in an offset
past 1.3m.

Path offset wmax values
Number of
trajectories
with failure

Total number
of trajectories Goal percentage

1.3m

30
80
100
120
150

0
0
0
0

7 107

3 000
3 000
3 000
3 000
8 523

0%
0%
0%
0%

83.4%
1.5m - - - 0%
2m - - - 0%
2.5m - - - 0%
3m - - - 0%

The resulting failure modes show that the AST agent converges to a strategy similar to the
ones found in the PD cases. The surge speed and yaw rate disturbances are kept at full value
throughout the majority of the episodes. An interesting variation in this case is that the
disturbances in sway speed tend to a pattern of two nudges of high value: one between 5s and
10s, and one at the end of the episode. The first nudge takes place around the same time as
the control input is at its lowest values as the vessel is at its closest to the path, which is a
strategically good point to nudge the vessel off the path.

As in the PD case, the failure trajectories that were identified are highly similar.

The resulting RL statistics show that the agent found failure at approximately epoch 15.
Interestingly, the average discounted return seem to converge twice during the simulation. This
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illustrates how the AST agent in this case is able to explore new strategies even though it has
converged to a local maximum.

(a) Average discounted return (b) Number of episodes

Figure 4.4: Simulation results from AST identified failure scenarios with wmax = 150 for PID regulated
vessel.

4.1.3 Further discussion of the SimpleSim case

The AST method is able to disturb the system more efficiently than the uniform disturbances
and performs quite similar to the constant disturbances with respect to path offset. What is
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interesting about the AST results, is that the disturbances are not constant. Thus, the method
has identified disturbance patterns of smaller magnitude than the constant disturbances which
pose similar effect on the vessel. The agent tends towards full disturbance magnitude for the
surge speed and yaw rate disturbances, while the values for the sway speed disturbances are kept
lower and only used to nudge the vessel of the path. This indicates that the most important
disturbances to provoke the vessel of the path are the ones for surge speed and yaw rate, which
translates to a strategy of attempting to turn the vessel away from the path and apply force to
increase the surge speed, which is a logical strategy. The results illustrate how the AST method
might not be more efficient than testing with constant disturbance values, but shows how it can
identify patterns in the disturbances which might not have been identified otherwise.

Once the AST agent is able to identify a failure, it seems to lock itself to this strategy and
improve upon only this strategy. After a failure case is identified, the majority of the subsequent
trajectories are highly similar and lead to failure. These trajectories spend less AST steps as the
goal is found before the maximum number of AST steps is reached, which leads to an increased
number of trajectories which all lead to failure. This is evident in the high values of the goal
percentages, and indicates that there is little exploration once a good strategy is found. Another
indication of this is in the tests that did not result in failure modes, where it seems that the AST
agent converges to a local maximum, as illustrated in Figure 4.3. A known issue of the AST
method it the problem of sparse rewards, i.e. the fact that the agent does not receive rewards
that pushes it towards failure until after the episode has ended, which makes the problem a
hard-exploration field. In the case of hard-exploration fields, methods can be implemented in
order to urge the system to explore additionally in the case that little new rewards are obtained.
Koren and Kochenderfer (2020) implemented a method called Go-Explore in order to counteract
this problem that showed promising results, which could have improved the performance in
these cases as the agent may have been led to explore more creative solutions. Another way to
counteract the phenomenon of similar trajectories, could be to augment the reward function as
in Corso, Du, et al. (2019), where an additional negative reward proportional to a measure of
the dissimilarity between the obtained trajectories was implemented, which successfully gave
less similar trajectories.

Although the AST method obtains results faster and for smaller disturbances for the PD
regulated system than the PID regulated system, it is worth repeating that the AST method is
not exhaustive, as stated in Section 1.2. Therefore these results are no formal guarantee for
PID outperforming PD. The results can, however, function as an indication of this. In order
to get a better idea of the comparison of these to regulators, the Differential Adaptive Stress
Testing (DAST) method presented in (Lee, Kochenderfer, et al., 2015) and (Lee, Mengshoel,
et al., 2020) could have been applied. This method simulates both systems simultaneously and
optimizes for scenarios where it finds failures in one system but not the other. This method does
not generate a formal proof of out-performance either, but it does directly compare the result
of action sequences in both systems which at least could lead to formal proof of one regulator
compensating for an action sequence better than the other.

The disturbance profiles vary abruptly in many of the cases. This is not likely as disturbances
are physical phenomenon that will effect the system in a more continuous manner. This issue
will be discussed further in Section 4.2.4.
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4.2 Results using the milliAmpere COLAV simulator

The AST method was run with the milliAmpere COLAV simulator both with and without the
driver model heuristic described in Section 3.3.3. The resulting plots show simplified trajectories
for both the milliAmpere ferry and the simulated obstacle, where the vessels are drawn at a
given interval determined by the length of the sequence. The colour of the center of the vessels
fade to darker colours towards the end of the simulation. In addition, a line is drawn between
the two vessels to indicate the position of the vessels for simultaneous timesteps.

4.2.1 Without driver model heuristic

Number of trajectories
that led to failure

Total number of
trajectories

Goal
percentage

Without
heuristic 1067 10 606 10.0%

Without the driver model heuristic, the AST agent quickly tends towards actions that makes
the obstacle attack the ferry head on. As there is no penalty for this behaviour, this pattern
is continued with different approaches. In the start, the obstacle attacks from above, which
makes the ferry stop midway. This tactic is continued for a while, before the agent starts to
experiment with attacking from below. These policies increases the time it takes until crash
is reached and thus the agent receives more negative reward in total, which makes the agent
gradually tends towards attacking higher again, and ends up attacking from the side at the end
of the AST simulation.

The resulting RL statistics presented in Figure 4.5 show that the training process is a lot more
unstable for the millAmpere COLAV simulator case than the SimpleSim case. Both the average
discounted reward and the number of episodes is quite unstable and does not converge, which
indicates that the system has not converged to a policy. As mentioned, the experiment was set
up with 40 simulator timesteps of 0.1s for every AST step. This interval is quite big, and thus a
small change in the action sequence can lead to a very different vessel trajectory, which may be
causing the AST agent to explore more. The advantage of this is that there is much exploration
and the resulting trajectories are quite dissimilar. This does however lead to less clear strategies
towards failure, which can make it harder to present this result to system designers.

(a) Average discounted return (b) Number of episodes

Figure 4.5: Reinforcement learning statistics for all epochs without heuristic.
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Examples of resulting trajectories are shown in Figure 4.6 - Figure 4.8.

Figure 4.6: The majority of the early discovered trajectories are scenarios where the obstacle attacks
the ferry from above. This strategy makes the ferry stop in some cases, as in the two latter plots shown
here.
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Figure 4.7: The system does some experimenting with the obstacle attacking from below.
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Figure 4.8: The trajectories reported at the end of the AST simulation present scenarios where the
obstacle attacks the ferry from the side.
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4.2.2 With driver model heuristic

Number of trajectories
that led to failure

Total number of
trajectories

Goal
percentage

With
heuristic 2857 11 182 25.5%

With the driver model training heuristic, the resulting trajectories take slightly different form.
The trajectories express more creative ways to reach the goal without the obstacle spending
long periods of drive driving towards the ferry.

The agent spends some time trying to attack the ferry from above, as it had success with
without the heuristic, but it gradually tends towards doing one or more detours before attacking
the ferry at the end. This makes sense as this detour prevents the negative reward of driving
towards the ferry. Unfortunately, although the trajectories are more creative, they do not seem
more realistic or likely.

The RL agent does not seem to prioritize spending less time as the majority of the trajectories
spend over 200 s, which is likely due to the fact that the negative reward for driving the obstacle
straight towards the ferry is more significant than the reward it receives for the action at each
timestep. Thus, the system has more incentive of not driving towards the ferry than it has to
reach the goal quicker.

The resulting RL statistics presented in Figure 4.5 interestingly present more system and signs
of convergence in the average discounted return than in the case without heuristic. This may be
due to the fact that there is restrictions on the system behaviour which results in less room for
exploration which in turn leads to more optimization on the strategies it finds, which again is
reflected in the fact that a lot more trajectories were discovered in this case than without the
heuristic.

(a) Average discounted return (b) Number of episodes

Figure 4.9: Reinforcement learning statistics for all epochs with heuristic.

Examples of resulting trajectories are shown in Figure 4.10 - Figure 4.12.
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Figure 4.10: The system quickly starts experimenting with creative ways to crash without having the
obstacle drive directly towards the ferry.
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Figure 4.11: Midway in the simulation, the agent experiments with some scenarios where the obstacle
attacks the ferry from above.
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Figure 4.12: The last found trajectories tend to contain scenarios where the obstacle made one or
more drastic detours before attacking the ferry.

4.2.3 Discussion for the milliAmpere COLAV simulator results

The training heuristic that was supposed to make the obstacle exhibit less irrational behaviour,
did not show satisfying results. Although there were less trajectories where the obstacle drove
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straight towards the ferry, the new trajectories still exhibited unlikely obstacle behaviour.
The obstacle no longer drove directly towards the ferry for long periods of time, but the new
behaviours still show an aggressive approach of the obstacle and the majority of the failures
show the obstacle driving towards the ferry for some shorter period of time, typically towards
the end of the episode.

As stated in Section 1.2, the AST method is known to identify scenarios where failure is
unavoidable. Augmentations in the reward function in resemblance to the ones in (Corso,
Du, et al., 2019) could have been made in order to avoid this issue. Corso, Du, et al. (2019)
implemented a model that provided a negative reward at the end of episodes that did not lead to
failure, if the trajectory was not compliant with the Responsible-Sensitive Safety driving rules.
This could have been implemented in a similar manner by making use of the COLREGs, which
is a similar rule framework for marine navigation. The heuristic was a measure implemented in
order to prevent these unavoidable failure scenarios, but the heuristic reward was distributed at
each AST step and not at the end of the trajectory, as in (Corso, Du, et al., 2019). It seems
reasonable to evaluate the probability of the full trajectory rather than the probability of every
action, as actions can seem irrational over a few timesteps, but make sense in the bigger picture.
Also, the simulations could have been conducted using another milliAmpere ferry model as the
obstacle, with its own SP-VP COLAV system, to examine if dangerous situation could occur in
such a system where both vehicles attempt to avoid each other.

In both cases, the training process is quite unstable and there is little pattern in the action
sequences. The number of simulator timesteps per AST step could be reduced in further work
in order to be able to identify patterns that lead to crash more clearly. There is, however, an
upside to this, which is that the agent does not lock itself to one strategy and only improve
upon that one, as in the SimpleSim case.

Similar to the SimpleSim case, the action sequences vary abruptly, which is deemed unlikely
and dissimilar to human behaviour. The issue will be discussed further in Section 4.2.4.

4.2.4 General discussion

TRPO was used for optimization in both cases. Proximal Policy Optimization (PPO) is a
similar, but simpler algorithm that has shown to outperform TRPO on a collection of benchmark
tasks (Schulman, Wolski, et al., 2017). Thus, PPO could potentially have made the system
perform better.

In both simulator cases, the action sequences vary abruptly, which leads to unrealistic action
sequences. A measure to counteract this could be to evaluate the likelihood of the entire
trajectory at the end of an episode, as done in (Corso, Du, et al., 2019), or to add a training
heuristic that penalized the magnitude of the action sequence derivative. Other methods for
evening out the action sequence could also be applied, such as filtering.

The results in both simulator cases has the potential of being valuable to a design team on
the mission to implement an algorithm in their systems. The results in the SimpleSim case
demonstrate the robustness of the PID regulator compared to the PD regulator, and illustrate
patterns in the disturbances which can have big effects the vessel. Failure modes are uncovered
for the the milliAmpere COLAV system, and different failures are found for the cases with and
without the heuristic, which can be useful to the Zeabuz design team. However, both simulator
cases illustrate drawbacks of the AST method. The SimpleSim case demonstrated how the AST
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method finds very similar trajectories, and the milliAmpere COLAV case illustrate how many of
the failure scenarios contain unavoidable failure, as the obstacle drove directly towards the ferry
in the majority of the obtained failure scenarios. As stated in both simulator cases, measures
could have been made in order to avoid this and to obtain more realistic scenarios which could
have provided more value in a system design process.

To improve the value for the Zeabuz design team, a system could have been made in order
to cluster the output trajectories of the milliAmpere COLAV simulations, in order to provide
system designers with more indication of patterns and tendencies in the trajectories the system
finds.
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Chapter 5
Conclusion and Further Work

5.1 Conclusion

The RL-based AST method provides a framework for efficient identification of system failure
modes. The AST method successfully integrates with both a simple milliAmpere simulator
called the SimpleSim and a more complex COLAV simulator of the milliAmpere vessel. In both
cases, the AST system is able to optimize towards and discover failure modes in the simulated
systems. Both test cases demonstrate how the AST method is equally relevant for marine
systems as for aircraft and automobile systems, where it previously has shown promising results.

In the SimpleSim case, the vessel implemented with PID control was shown to be harder to
provoke into failure by adding disturbances, compared to the vessel implemented with PD
control. This illustrates how the method can be used as an indication of method performance in
comparison to other methods, although it is not a formal proof of this. One way to perform more
direct comparison could be to implement the DAST method proposed in (Lee, Kochenderfer,
et al., 2015), which optimizes towards failures that occur in one system but not the other. The
AST method is also shown to identify efficient disturbance patterns in order to provoke the
vessel off the path. A drawback of the AST method is illustrated in this test case, as the failure
modes that are obtained are very similar to each other, and in the cases where the system is
unable to find failure it seems to stagnate in its search process by converging to a local maximum.
This indicates that the system is not sufficiently incentivized to explore new trajectories as it
seems to lock itself to strategies that appear good. This may be due to the problem of sparse
rewards, i. e. that the system is not given rewards which lead it toward failure until the end
of the episode. Koren and Kochenderfer (2020) discussed this issue of the AST method and
proposed a solution using the Go-Explore method, which has shown good effects in other so
called hard-exploration fields.

In the second simulator case, failure modes are successfully identified for the milliAmpere COLAV
system. The results show that the method can be used to identify collision events and expose
potentially dangerous scenarios. However, another drawback of the AST method is illustrated in
this test case, namely that the majority of the failures found contain unavoidable failure scenarios
as the obstacle deliberately drives into the ferry. This is of course an unlikely scenario, and in
discussion with Zeabuz it is also identified as an irrelevant case as the milliAmpere COLAV
system is not meant for preventing deliberate attacks. The issue was addressed by implementing
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a training heuristic which was supposed to make the obstacle behave more realistically. The
results were not satisfactory, as this only made the obstacle do detours before attacking the
ferry in the end of the trajectory. The issue of unavoidable failures has been addressed in the
AST literature, and a method that has proven effective in the automobile case is to evaluate
the full trajectory after the episode is finished and consider if it complies with rules that model
human reasoning in traffic (Corso, Du, et al., 2019).

The information obtained from the AST method does provide insight into the tested systems
of some value to the Zeabuz ferry design team, but the value could definitely be improved by
introducing measures for obtaining more realistic scenarios that are not unavoidable.

5.2 Further Work

In further work, augmentations to the AST reward function with respect to the COLREGs can
be made in order to obtain failure scenarios where both vessels strive to comply with marine
navigation rules. In addition, a COLAV system could be implemented in the obstacle model as
well, in order to emphasize the need to avoid scenarios where the obstacle deliberately drives
into the milliAmpere ferry. The maximum number of simulator time steps per AST step could
be reduced in order to limit the search space to obtain more clear patterns in the policy. If the
problem then exposes signs of being a hard-exploration field, by obtaining similar failure modes,
the Go-Explore method could be implemented as in Koren and Kochenderfer (2020).

Furthermore, more work could be conducted in order to structure the information obtained from
the AST method by e. g. clustering the resulting trajectories and presenting them in a way that
give system designers clear insights as to what scenarios need to be taken into consideration
when assessing the safety of the system. In addition, implementing the DAST method could
provide developers with a helpful tool to directly compare two different algorithms or systems.

As the AST method is flexible with regards to the simulator and the test objective, the method
could also be implemented in other marine technology aspects to supplement the safety validation
process.
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