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Abstract

Maritime Autonomous Surface Ships (MASS) have the potential to contribute to a more flexible
urban mobility system with reduced emissions of greenhouse gasses. To enable marine autonomy,
the systems have to be thoroughly assessed with regard to safety. Because autonomous systems
are comprised of several layers of complex systems which perform reasoning and decision making,
traditional safety validation methods become insufficient to test the system. To address this
problem, recent research has called for new methods to perform intelligent simulation-based
safety validation of MASS.

Several methods have been proposed to automatically identify challenging scenarios for MASS,
to reduce the number of necessary test scenarios and perform sufficiently exhaustive testing.
However, the author has not found any methods for use in marine autonomy, which address how
the simulation of the scenario evolves. However, such methods have been applied to autonomous
vehicles and aircraft systems by applying methods such as Adaptive Stress Testing (AST).
AST is a simulation-based method which uses reinforcement learning to perform searches for
failures in simulations of the system under test. Failures are found by injecting a sequence of
disturbances and gradually learning the most efficient and likely ways to disturb the system into
failure. This work proposes the use of AST as a step in the safety validation process of MASS.
To demonstrate the method, AST is applied to two different Collision Avoidance (COLAV)
strategies in simulations of the autonomous passenger ferry milliAmpere.

AST constitutes a highly flexible method, as it can be adjusted and adapted to the domain
and the specific purpose. Several such adaptations are proposed in the thesis, to increase the
relevance of the method to the maritime domain. The results demonstrate the potential of
AST in the safety validation process of MASS, as many interesting failures are identified that
uncover potential aspects of the different COLAV systems which can be subject to improvement.
Further research should seek to improve the implementation of the method and to combine AST
with scenario generation methods.
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Sammendrag

Maritime Autonome Overflate-Skip (MAOS) har potensiale til å bidra til en mer fleksibel
urban mobilitetsløsning med reduserte utslipp av drivhusgasser. For å muliggjøre maritim
autonomi må systemene gjennomgå grundig sikkerhetsvalidering. Fordi autonome systemer
består av flere lag med komplekse systemer som utfører vurdering og beslutningstaking, er
ikke tradisjonelle metoder for sikkerhetsvalidering tilstrekkelig for å teste systemene. For å
adressere dette problemet har nylig forskning etterlyst nye metoder for å utføre intelligent
simuleringsbasert sikkerhetsvalidering av MAOS.

Det er foreslått flere metoder for å automatisk identifisere scenarier som er utfordrende for MAOS
å navigere i, for å redusere antall nødvendige testscenarier og utføre tilstrekkelig fullstendig
testing. Forfatteren har imidlertid ikke funnet noen metoder for bruk i maritim autonomi,
som tar for seg måten simuleringen av scenariet utvikler seg. Slike metoder har blitt brukt på
autonome kjøretøy og flysystemer ved bruk av metoder som f.eks Adaptive Stress Testing AST.
AST er en simuleringsbasert metode som bruker forsterkende læring til å utføre søk etter feil i
simuleringer av systemet som testes. Feil blir funnet ved å injisere en sekvens av forstyrrelser og
gradvis lære den mest effektive og sannsynlige måten å forstyrre systemet til å svikte. Dette
arbeidet foreslår bruk av AST som et trinn i sikkerhetsvalideringsprosessen til MAOS. For å
demonstrere metoden brukes AST i tester av to forskjellige kollisjonsunngåelses-strategier i
simuleringer av den autonome passassjerfergen milliAmpere.

AST utgjør en svært fleksibel metode, da den kan justeres og tilpasses domenet og det spesifikke
formålet. Oppgaven foreslår flere slike tilpasninger for å forbedre metoderelevansen for det
maritime domenet. Resultatene viser potensialet til AST i sikkerhetsvalideringsprosessen til
MAOS, ved at mange interessante feil blir identifisert, hvilke avdekker potensielle aspekter ved
de forskjellige kollisjonsunngåelse-systemene hvor det er forbedringspotensiale. Videre forskning
bør utføres for å forbedre metoden og for å kombinere AST med scenario-genereringsmetoder.
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Chapter 1
Introduction

1.1 Motivation

The primary motivation behind this thesis is the emerging need for thorough simulation-based
safety assessment methods which are required to produce a trustworthy and robust autonomous
system, which again can enable a mobility transition towards smarter, emission-free solutions
designed for increasingly densely populated cities.

Climate change is widely acknowledged as one of the main problems faced by the world’s
population, and it will likely continue to pose a challenge for future generations. Strategies to
prevent substantial consequences of climate change are addressed in different manners throughout
the world’s communities. In 2020, The European Union approved the European Green Deal,
constituting a set of policy initiatives to make the EU carbon neutral by 2050. The deal also
poses a set of ambitious short term goals for 2030, with a 55% net decrease in greenhouse gas
emissions compared to 1990 levels. In 2021, this ambition was adopted into a law regulation,
making it a legal obligation for the EU to reach the specified goals (EU, 2022).

While the world is battling the issues related to climate change, the continuing urbanisation of
the world’s cities is putting a toll on the urban mobility sector. Population growth is mainly
occurring in urban areas, and this trend is likely to continue (Satterthwaite, 2009). In 2018,
approximately 55% of the world’s population was situated in urban areas and this is expected
to grow to 68% by 2050 (UN, 2018). Even though the urbanisation is not the main source of
growth in greenhouse gas emissions (Satterthwaite, 2009), it is putting a toll on the mobility
sector of the densely populated areas as it causes congestion, noise pollution and a need to
expand mobility infrastructure (Hildermeier et al., 2014).

As the need for more intelligent mobility solutions in densely populated areas increases, there
is also an urgent need to reduce the greenhouse gas emissions from this sector. The mobility
sector constitutes a significant part of the world’s emissions, as urban mobility accounts for 40%
of all CO2 emissions from road transport and up to 70% of other pollutants from transport
(Tsavachidis et al., 2022). The European Green Deal states the vision to reduce transport-related
greenhouse gas emissions by 90% within 2050. Tsavachidis et al. (2022) states that

"The EU’s decarbonisation objectives cannot be realised without a sustainable urban
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CHAPTER 1. INTRODUCTION

mobility transition" (Tsavachidis et al. (2022))

Thus, there is a need for innovation in both the technology and the structure of the urban
mobility to reduce greenhouse gas emissions and to accommodate for the continuing urbanisation.
The need for more innovative mobility solutions has caused a gained interest and rapid increase
in the research of autonomous vehicles, with applications in many fields and industries such as
automobiles, aviation and agriculture (Faisal et al., 2021). In recent years, autonomy has also
become prominent in the marine industry. Examples include Kongsbergs YARA Birkeland, which
is set out to be the world’s first zero-emission autonomous container ship, with the potential to
replace 40 000 journeys of diesel-powered trucks (Yara Birkeland | Yara International 2021),
shown in Figure 1.1(a). In Amsterdam, researchers have developed the Roboat, an autonomous
boat that can carry up to five people, collect waste, deliver goods and provide on-demand
infrastructure in the Amsterdam canals (One autonomous taxi, please 2021), see Figure 1.1(b).

(a) The YARA Birkeland zero-emission autonomous ship.
Image obtained from Yara Birkeland | Yara International
(2021).

(b) The Roboat, an autonomous boat set to sea in
Amsterdam in October 2021. Image obtained from One
autonomous taxi, please (2021).

Both these projects exemplify innovations which utilise a resource that for years has been
underutilised: the waterways. Due to the historical significance of waterways, many large cities
are situated close to the sea or along rivers. Moreover, about 40% of the world’s population
lives near a coast (Reddy et al., 2019). Waterways are today merely seen as an obstacle
to urban mobility as transportation across them requires expensive and resource-demanding
solutions such as bridges or manned vessels. To further utilise the waterways for urban mobility,
research have been conducted to enable autonomous passenger ferries for use in cities. Reddy
et al. (2019) emphasise the promising aspects of using autonomy to revitalise the urban ferries,
as it can reduce operational costs and thereby increase the economic viability. In addition,
autonomous waterborne transportation systems can also improve traffic capacity and efficiency
on the waterways Wei et al. (2021). By using autonomous ferries, cities can thus potentially
reduce both the environmental and economic costs of expanding infrastructure by building
bridges while simultaneously increasing urban mobility. A prototype of such an autonomous
ferry called milliAmpere was constructed at NTNU as part of a pilot project called Autoferry,
which has been further developed for commercial use by the start-up company Zeabuz. A
simulator of the milliAmpere vessel, shown in Section 1.1, is used as a case study in this thesis.

2



1.1. MOTIVATION

(a) Zeabuz ferry design example. Image obtained
from (ZEABUZ, 2021)

(b) The milliAmpere. Image obtained from (Auto-
ferry - NTNU 2021).

Arguably, autonomous zero-emission marine vehicles have the potential to both enable new
urban mobility solutions and reduce emissions. However, the technology that enables autonomy
is both new and complex, and autonomous solutions have yet to gain traction in public opinion.
Research on people’s attitudes toward autonomous automobiles shows e.g. that there are
substantially more people completely hostile to autonomous cars than those who are totally
in favour (Hudson et al., 2019). Due to the lack of transparency in the decision making in
these systems, there is a rising suspicion to the increasing implementation of them (Ebert et
al., 2019). Even though many believe that autonomy will provide safer solutions by eliminating
human errors, autonomous technology has to prove itself as highly robust and significantly
outperforming human operators. Ebert et al. (2019) state:

"To build trust, we need a level of quality at least one order of magnitude higher
than human-operated systems." (Ebert et al. (2019))

A system intended for autonomy often consists of many complex modules, comprised by
elements such as machine learning, computer vision or intricate reasoning techniques. In these
systems, the actual decision making is often hidden or hard to grasp for humans. Safety
guarantees are therefore hard to obtain as it is often impossible to prove the technology for all
possible combinations of input states. Thus, tools for thorough safety assessment must be in
place, especially when autonomy is deployed in safety-critical systems such as moving vessels,
particularly those designed to transport humans. (Ahvenjärvi, 2016) argues that the most
important aspect of the development of fully autonomous ships is the safety aspect.

Traditional safety validation methods are considered by many to be unfit to cover the complexity
of these new autonomous systems. Ebert et al. (2019) state that

"To achieve dependability and trust [of autonomous systems], we need dedicated,
intelligent validating techniques that cover, for instance, dynamic changes and
learning." (Ebert et al. (2019))

Currently, there are no official safety certification strategies designed for autonomous vehicles,
although it has been called for by industry and researchers (Koopman et al., 2017). In e.g.
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CHAPTER 1. INTRODUCTION

the automobile industry, the current safety standards only regulate automobile safety-related
components without consideration of driving intelligence in completing driving tasks (Feng et
al., 2021). Koopman et al. (2017) state that such a strategy must address the cross-disciplinary
concerns of safety engineering, hardware reliability, software validation, robotics, security,
testing, human-computer interaction, social acceptance, and a viable legal framework. There
are, however, ongoing processes in place to establish strategies to ensure proper regulation of
autonomous ships, as e.g. described in Ringbom (2019) and IMO (2021).

Because it is hard to perform extensive tests of autonomous systems, it is becoming evident to
many autonomy developers that an integral part of the safety validation process of autonomous
systems must include simulation-based testing (Pedersen et al., 2020). Important actors in the
development of autonomous vehicles such as the American company Waymo, state in safety
reports that simulation-based testing is essential for the development and safety validation
of their cars (Waymo, 2021). Moreover, as autonomy technology matures and express less
faulty behaviour, simulations are especially important in the process of obtaining information
about the failure modes of the system, as failures are hard and cost demanding to provoke in
real-world testing. The international classification company DNV, which develops policies for
safety certification for ships, state in a report from 2018 that

"The verification procedures for the control systems [of autonomous vessels] can
be based on physical and on simulator-based verification for software intensive
systems, but since requirements for automatic fault tolerance increase, simulator-
based verification would be more efficient in proving a large set of different fault
scenarios." (Vartdal et al. (2018))

The former statements indicate the need for simulation-based safety validation methods that
tackle the complexity of the autonomous systems, especially methods for identifying failure
modes. One such method is AST, a simulation-based method which applies machine learning to
find ways of bringing the system under test to failure and return the most likely failure scenarios.
In this thesis, AST is applied to identify potential failure modes of the autonomous passenger
ferry prototype milliAmpere.

In summary, this thesis is motivated by the potential of zero-emission autonomous marine
vehicles in reducing emissions and enabling smart urban mobility for densely populated cities.
By illustrating how the simulation-based safety validation method AST adds value to the safety
analysis of the milliAmpere ferry, the thesis attempts to contribute to the development of robust
safety validation methods for autonomous marine vessels, which is a crucial step in enabling the
implementation and commercialisation of such vessels.

1.2 Background and related work

This section presents an overview of the background concepts built upon by the thesis, as well as
related work. The concept of AST is accounted for together with some background information
on autonomous systems and the safety validation process of such systems.
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1.2. BACKGROUND AND RELATED WORK

1.2.1 Adaptive Stress Testing

AST was first proposed in 2015 as a simulation-based testing method to obtain the most
likely sequence of states that lead to failure of a system (Lee, Kochenderfer, Mengshoel, Brat,
et al., 2015). The method formulates the problem of bringing the system to failure as an
Reinforcement Learning (RL) problem and uses RL methods to optimise for failures. The system
applies disturbances to the system it is set out to test, referred to as the System Under Test
(SUT), and learns how to most effectively disturb the system such that a failure occurs in an
iterative manner.

The method was applied to a prototype of a new COLAV system for aircrafts called Airborne
Collision Avoidance Systems (ACAS X) proposed by the Federal Aviation Administration (FAA),
which was set out to replace the at the time dominating aircraft COLAV system called Traffic
Collision Avoidance Systems (TCAS). ACAS X was intended to bring several improvements to
the aircraft COLAV system and reduce both risk of collisions and the number of unnecessary
alerts (Lee, Kochenderfer, Mengshoel, Brat, et al., 2015). AST was used to perform differential
studies of TCAS and ACAS X, which contributed to the acceptance of ACAS X to replace
TCAS in 2018 (Lee, Mengshoel, et al., 2020).

Since the method was proposed, it has been extended and applied to test other domains and
technologies. AST only requires a simulator of the SUT, and some basic interfacing functionality,
which makes the method highly flexible such as information about whether or not a failure has
been detected. Systems that have been tested using AST include the driver model of a car
approaching a crosswalk with pedestrians (Koren, Alsaif, et al., 2018; Corso, Du, et al., 2019;
Koren and Kochenderfer, 2019; Koren and Kochenderfer, 2020), a trajectory planning system of
an aircraft (Robert J. Moss et al., 2020), a financial environment in search of fraud (Adaptive
Stress Testing for Adversarial Learning in a Financial Environment 2021) and a neural net
controller for an aircraft model (Julian et al., 2020).

The theoretical foundation and the workings of AST are elaborated on in Chapter 2 and
Chapter 3.

1.2.2 Autonomous systems

The term autonomous, directly translated from Greek to mean self-governing, is a widely used
term that is sometimes used inaccurately. Many of these systems are better described as hybrids,
with some autonomous functionality and some functionality which is governed by operators. To
distinguish between such systems and how close they are to being fully autonomous, the concept
of Level of Autonomy (LOA) has been introduced into the different fields where autonomy is
applied. UK (2018) describe the LOA for MASS as in Table 1.1.
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CHAPTER 1. INTRODUCTION

Level Name Description
0 Manned Vessel/craft is controlled by operators aboard

1 Operated

Under Operated control all cognitive functionality is controlled by the human operator.
The operator has direct contact with the Unmanned Vessel over e.g., continuous radio
and/or cable. The operator makes all decisions,
directs and controls all vehicle and mission functions.

2 Directed

Under Directed control some degree of reasoning and ability to respond is implemented
into the Unmanned Vessel. It may sense the environment, report its state and suggest
one or several actions. It may also suggest possible actions to the operator, such as e.g.
prompting the operator for information or decisions. However, the authority to make
decisions is with the operator. The Unmanned Vessel will act only if commanded and/or
permitted to do so.

3 Delegated

The Unmanned Vessel is now authorised to execute some functions. It may sense
environment, report its state and define actions and report its intention. The operator has
the option to object to (veto) intentions declared by the Unmanned Vessel during a certain
time, after which the Unmanned Vessel will act. The initiative emanates from the
Unmanned Vessel and decision-making is shared between the operator and the
Unmanned Vessel.

4 Monitored The Unmanned Vessel will sense environment and report its state. The Unmanned Vessel
defines actions, decides, acts and reports its action. The operator may monitor the events.

5 Autonomous

The Unmanned Vessel will sense environment, define possible actions, decide and act.
The Unmanned Vessel is afforded a maximum degree of independence and selfdetermination
within the context of the system capabilities and limitations. Autonomous
functions are invoked by the on-board systems at occasions decided by the same, without
notifying any external units or operators.

Table 1.1: LOA for MASS.

The system’s ability to reason about its environment and make well-informed decisions has to
increase in order for the LOA to increase. For autonomous marine vehicles, LOA 3-5 requires
the vessel to be able to both sense the environment and be able to reason about it, create a
plan of actions, and execute the actions. The structure of these operations has been thoroughly
described in different software architectures, resulting in three main architecture paradigms.
The first software paradigm for autonomous systems was the Sense-Plan-Act (SPA), which was
later replaced by the subsumption paradigm, and subsequently the hybrid deliberative/reactive
paradigm, which is the current software architecture paradigm. The former paradigms are
not elaborated on but are described further in Gat (1998). The hybrid deliberative/reactive
paradigm includes architectures which are either deliberative, consisting of long-term high-level
planning, or reactive, which is based on directly utilizing sensory information for short-term
low-level commands (Pirjanian et al., 2000).

Autonomous vehicles or vessels which are supposed to navigate in environments consisting
of other elements such as pedestrians or other vessels, need a COLAV system to keep from
collisions. COLAV systems can be both deliberate or reactive; deliberate by incorporating
aggregated so-called Situational Awareness (SITAW) information to plan longer-term COLAV
strategies, or reactive by considering current sensory information to employ short-term motion
planning (Eriksen et al., 2019). A complete COLAV system may be a hybrid of both a deliberate
and a reactive COLAV system, utilizing the computational efficiency of the short-term COLAV
for e.g. unexpected events and the high-level features of the long-term COLAV. This thesis
performs experiments using two deliberate COLAV algorithms for MASS, which perform path
planning in separate ways.
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1.2.3 Safety validation of autonomous systems

Safety validation is the process of ensuring the correct and safe operation of a system operating in
an environment (Corso, Robert J. Moss, et al., 2021). The term validation is sometimes confused
with the related term verification, and different definitions of the two exist. For the scope of
this thesis, the two terms are defined as in Corso, Robert J. Moss, et al. (2021). Validation
is thus referred to as the process of making sure the product works right, by performing e.g.
physical tests or numerical simulations. In contrast, verification refers to a more static kind of
testing which ensures that the product is the right product for its purpose by testing of the
design to make sure it complies with regulations and specifications.

Methods for verification of autonomous systems do exist, such as formal verification by the use of
automated theorem proving, as described in Foster et al. (2020). However, these methods rely on
thorough mathematical models of the systems which can be considered in all possible scenarios.
Thus, they typically scale poorly to large problems or problems where a sufficiently describing
model of the system and its environment cannot be obtained (Corso, Robert J. Moss, et al., 2021).
Examples of such systems are black-box systems, where the system’s internal workings are hidden
or too complex to model, or systems designed to interact with an environment that cannot
be modelled due to stochasticity, such as real-world applications. Therefore, the use of safety
validation by rigorous system testing is typically relied on for systems of higher complexity
dedicated for use in stochastic, real-world scenarios.

Traditional methods for safety validation of autonomous systems include fault injection, func-
tionality based testing, Software in the Loop (SIL), Model in the Loop (MIL), Hardware in the
Loop (HIL) and brute force (Ebert et al., 2019). The methods will not be elaborated on, but
further descriptions can be found in Ebert et al. (2019), who further describe four categories of
validation techniques for autonomous systems, depicted with examples in Table 1.2:

Automatic - Simulation environments:
MIL, HIL, SIL

- Simulation environments
MIL, SIL
- Brute-force usage in real world,
while running realistic scenarios
- Intelligent validation: e.g.,
congnitive testing, AI testing

Validation
handling Manual

- Function test
- Fault injection
- Negative requirements:
misuse, abuse, confuse cases
- FMEA, FTA
- Simulation environments:
MIL, HIL, SIL

- Experiments and empirical
test strategies
- Simulation environments
MIL, SIL
- Brute-force usage in real world,
while running realistic scenarios
- Specific quantity requirements,
e.g., penetration, testing and
usability

White box black-box
Validation strategy

Table 1.2: Validation approaches for autonomous vehicles as described in Ebert et al. (2019).

The work of this thesis falls under the category of automated black-box testing, as highlighted
in Table 1.2, as the Artificial Intelligence (AI) based testing approach AST is applied.
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The problem of testing autonomous systems can furthermore be divided into three parts, namely:

• Test scenario generation: How are the initial conditions such as initial positions, velocities
and the path reference of the vessels chosen?

• Episode evolution: How do the scenarios evolve? How do the system elements, such as
adversary vessels, behave throughout the scenario? Are there any disturbances applied,
and if so, how are they generated?

• Test scenario evaluation: How is the scenario evaluated? Which measures are used to
quantify the system behaviour in the scenario?

where the terminology is adapted from Pedersen et al. (2020). A specific scenario describes the
details of the test situation, such as initial positions, velocities and waypoints, and an episode
refers to a single simulation in the particular scenario. The term adversary vessel describe other
vessels within the environment, and the term own ship will further be used to describe the ship
under test.

For the specific application of autonomy in marine vessels, a comprehensive simulation-based
testing system is described in Pedersen et al. (2020). The paper describes different elements
required for thorough simulation-based testing of autonomous navigation systems, and argues
for the use of both traditional methods and systematic simulation-based testing. Based on
a proposal of DNV to apply a digital twin for testing, the article describes a comprehensive
prototype of a test system. The paper calls for methods to perform automatic generation of
challenging scenarios based on some evaluation criteria, as this will limit the search space in
which the system has to be tested to provide sufficient confidence in the system. Similar scenario
generation techniques have been developed for autonomous automobile systems, as described in
e.g. Althoff et al. (2018); Tang et al. (2021). Since the publication of the paper, several scenario
generation techniques have been proposed and applied to marine vessels, with corresponding
scenario evaluation methods. The evaluation methods are often based on measures which
quantify the own ship’s ability to avoid risk, comply with the mission and comply with the
Convention on the International Regulations for Preventing Collisions at Sea (COLREGs),
which is a set of navigation rules for marine vessels that will be elaborated on later in the thesis.
Some of the recent proposals of scenario generation methods are:

• Torben et al. (2022) proposed an automatic simulation-based testing method for au-
tonomous ships, by using formal logic to specify a set of requirements to test against, using
COLREGs compliance, a safety measure and mission compliance. A Gaussian Process
(GP) model was used to predict the performance of the vessel over the entire parameter
space. The system incrementally runs new simulations until the entire parameter space of
the test case is covered to the desired confidence level, or until a case which falsifies the
requirement is identified.

• Bolbot et al. (2021) proposed an automatic scenario generation method for marine
COLAV systems which uses a geometrical risk measure to evaluate scenarios, and sampling
techniques to generate encounter scenarios.

• Bakdi et al. (2021) proposed an automatic scenario generation model for testing autonomous
ships with a big data approach using Automatic Identification System (AIS) data, a
common data source in maritime transportation where ships exchange traffic information.
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• Porres et al. (2020) proposed an automatic scenario generation system for ship COLAV
systems using a scenario generator that generates scenarios with one adversary vessel,
determining the initial positions, velocities and one waypoint for each vessel to follow. The
problem of generating test cases is optimised with Deep Reinforcement Learning (DRL)
for scenarios where it is challenging for the own ship to comply with the COLREGs.

While all of the aforementioned research propose scenario generation methods, only a couple
of them address ways to affect the episode evolution. The method proposed in e.g. Porres
et al. (2020) only provides scenario descriptions with an own ship and one adversary vessel,
with initial positions, velocities and one waypoint for each of the vessels to follow. In Torben
et al. (2022), the episode evolution is addressed in some of the test cases, by introducing a
predetermined number of changes in the course of the adversary vessel, which was varied between
the scenarios to search for collision.

The work in this thesis addresses only the episode evolution, as AST is implemented to affect
the behaviour of the adversary vessels throughout the episode. Thus, it differs from the
aforementioned methods as the adversary vessels are not set up to either follow straight-line
paths or change course at some predefined time. By the use of AST, the adversary vessels in
this work perform continuous navigation manoeuvres throughout the episode, which allows
for simulations with very diverse adversary behaviour. Using AST, we attempt to find several
episodes where own ship collides with the adversary, to obtain information not only about
scenarios in which the vessel possibly can collide but several descriptions of how. For the
COLAV systems of marine vessels, the author has yet to find proposed methods which address
the evolution of the episode in this manner. Furthermore, the author considers this kind of
method to also be a necessity in a complete validation process of autonomous marine vehicles,
as information about failure modes is important and hard to obtain in real-life tests as they
pose significant cost and potential damage to the physical system.

The test scenarios used in this work are chosen manually as situations in which the own ship
and the adversary vessel cross or pass each other and where there is a risk of collision. It is left
for further research or commercial efforts to combine test scenario generation methods with the
evolution-based method implemented here.

1.3 Research Questions

The work on this thesis builds upon work conducted in the previous semester, presented in
(Hjelmeland, 2021), where the AST method was applied and adjusted to the maritime setting
to test the COLAV system of the milliAmpere ferry called SP-VP. The work in this thesis aims
to answer the research questions defined as follows:

RQ1 : Can the AST implementation be further adjusted to the MASS domain and the specific
case study of the SP-VP, by e.g. incorporating domain-based knowledge such as the
COLREGs, to obtain failures which uncover critical aspects of the SP-VP COLAV system?

RQ2 : Can AST be applied to find failure modes in a more dynamic COLAV system such as a
Model Predictive Control (MPC) based controller, with COLREGs compliance?

RQ3 : Can AST be applied to MASS systems to find failure modes in scenarios with multiple
adversary vessels?
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1.4 Contributions

The thesis is divided into two parts, with the following main contributions:

Part 1:

• Several augmentations are proposed to the problem formulation presented in Hjelme-
land (2021), to obtain failures where the ferry is more involved in the cause of the collision.
The results are promising, as failures are identified where the cause of collision can be
credited to e.g. errors in the ferry’s estimation of the adversary.

• A clustering technique called soft-Dynamic Time Warping k-means clustering is applied to
categorise the results based on the shapes of the adversary movement. The use of clustering
aids the analysis when comparing the results from the different problem variations.

Part 2:

• A MPC based COLAV approach with COLREGs compliance is implemented in the Zeabuz
COLAV simulator to enable testing of a COLAV system which performs COLREGs
compliant manoeuvres to avoid collision.

• AST is applied to the MPC approach using the problem variation which yielded the best
results in part 1. Three test scenarios are chosen, which all relate to a specific rule of the
COLREGs.AST is set up to optimise for collisions between the ferry and the adversary
vessel where the ferry violates the COLREGs prior to collision. The results are promising,
as AST identifies various episodes where the MPC controller makes questionable decisions
which lead to a collision.

• The test scenarios are extended to include multiple adversary vessels. AST simulations
are performed where AST is set up to control all vessels. The results show that AST
can uncover more failure modes by the use of several adversaries, and the failures show
interesting scenarios where AST uses the different adversaries in cooperation to induce
COLREGs violations in the ferry and cause collisions.

Furthermore, the results are thoroughly discussed, and suggestions for possible improvements
and further research are provided. Combined results from work done in Hjelmeland (2021)
and this thesis resulted in a paper currently being reviewed for submission to the 14th IFAC
Conference on Control Applications in Marine Systems, Robotics and Vehicles, presented in
Hjelmeland et al. (2022).
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Chapter 2
Theoretical background

This background chapter presents the theory behind the methods applied in the thesis. The
chapter builds upon the background presented in (Hjelmeland, 2021), as well as basic knowledge
about mathematics, physics and computer science. Some of the topics described here are
elaborated on further in (Hjelmeland, 2021), but these chapters will provide a summary of the
most important details and elaborate on topics that are in focus in this work.

2.1 Machine Learning and Deep Learning

Machine Learning (ML) has revolutionised methods of performing tasks in many fields, such as
object detection and classification in images, speech processing and translation as well as search
optimisation (LeCun et al., 2015). Machine learning has been defined in numerous ways. Tom
M. Mitchell gave a fitting definition of the concept:

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. (Mitchell, 1997)

ML methods are often divided into three main categories: supervised, unsupervised and RL.
Supervised machine learning comprises machine learning methods where training is performed
in a supervised manner, using a training set consisting of training examples together with the
corresponding desired network output. The neural network, which will be further described in
this section, is a typical example of a supervised machine learning framework. Unsupervised
methods are methods where the training data is not labelled with a specific output, but the ML
method has to categorise the data using patterns it discovers. An example of an unsupervised
method is the concept of clustering, where data is divided into clusters using some sort of
similarity measure. Clustering will be elaborated on in Section 2.7. RL methods are methods
where the ML model learns not only by looking at data, but by examining and possibly navigating
through an environment and obtaining rewards based on its behaviour. RL will be further
discussed in Section 2.2.

A typical supervised machine learning structure is the Neural Networks (NN), which constitutes
a mathematical imitation of the neural network of the brain. The NN consists of layers of
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weighted nodes, as illustrated in the example network topology shown in Figure 2.1. The nodes
receive input from the nodes of the former layer and output a nonlinear conversion of the input,
in a similar fashion to the brain’s neurons. The NN is typically trained using backpropagation
methods, a group of algorithms used to adjust the network weights. The NN is trained in
iterations by running training samples through the network and comparing the output to a ground
truth. This comparison is made using a predefined loss function, which results in a loss value
used to adjust the values of the network weights through backpropagation. Backpropagation
methods change the network weights in a direction and magnitude proportional to the negative
gradient of the loss function, and they do so efficiently by calculating the derivatives using
the chain rule, one layer at a time. In this way, intermediate calculations are avoided through
dynamic programming, which allows for fast and stable training of NNs.

Figure 2.1: Example neural network topology with n inputs, two outputs and two hidden
layers of size 4.

Deep learning is a subset of machine learning, where NNs are applied and consist of several
layers (LeCun et al., 2015). The different layers are trained to detect various features at varying
levels of abstraction of the data it is supposed to process. Take a multi-layer NN used in object
detection in images, for instance: Gradually throughout training, first layer in the NN may
become trained to detect edges in the image. The second layer becomes able to recognize
arrangements of these edges, while the third layer is able to assemble these arrangements into
recognizable parts of the object it is detecting (LeCun et al., 2015). The more layers, the more
levels of abstraction. This makes multi-layer NNs suitable for complex tasks where different
features of the problem must be identified and assembled for recognition. However, increasing
the number of trainable parameters in the network comes with a price. The available data
becomes more sparse when increasing the dimension of the NN, as summarized in Richard M.
Bellmans term curse of dimensionality (Richard, 1957).

2.2 Reinforcement learning

RL is a ML framework where an agent navigates in an environment and collects rewards as a
result of its behaviour and interaction with the environment. The objective in RL is to learn a
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behavioural strategy, a so-called policy, which gives the maximum total reward - not only in the
following steps, but in a long-term perspective. Thus, the RL agent has to figure out the smart
way to behave to gain short term rewards and a way to behave such that the long-term rewards
are maximised.

RL mimics many of the human learning processes. For instance, we learn that even though
eating a bunch of candy gives an instant high reward, eating a lot of it over a long time is a bad
idea, as the long-term reward is negative. Through progressively worsened shape and stomach
aches, we learn that candy consumption should be restricted to Saturday nights. In this way,
we update our behaviour as a consequence of the feedback from our environment to balance
short term rewards with long-term ones. The development of RL was highly inspired by the
field of psychology and today the fields interact and learn from each other. Research of the
human brain supports the existence of an RL-like mechanism involved in human decision-making
processes (Niv, 2009) and RL-inspired psychological theories of optimising long-term returns
have contributed to explanations of behaviour in humans and animals that were not previously
well understood (Sutton et al., 2018).

2.2.1 Markov Decision Process (MDP)

An RL problem is mathematically formulated as a finite MDP (Sutton et al., 2018). A finite
MDP consists of the tuple (X,U, Pu, Ru), specifying the workings of the RL agent A and its
environment E :

• X is the finite set of states the agent can be in, i. e. the state space.

• U is the finite set of actions the agent can take, i. e. the action space.

• Pu(x, x
′)=P (Xt+1 = x′|Xt = x, Ut = u) is the transition function, which specify the

probability of a possible next state x′ given a state-action pair (x, u).

• Ru(x, x
′) = R(Xt = x,Xt+1 = x′, Ut = u) is the reward function, which specify the reward

the agent obtains as a consequence of transitioning from state x to state x′ due to the
action u.

The RL problem is structured as an iterative interaction between the agentA and the environment
E , as depicted in Figure 2.2. The agent performs actions according to its current policy, denoted
π, and observes the consequences of the action which include the reward rt+1 and the next state
xt+1. Both the reward and the next state are evaluated by the agent and used to update its
policy π, from which the next action ut is drawn.

2.2.2 Value functions

What is good behaviour? To learn optimal ways to behave, the RL agent needs some sort of
metric to quantify the value of being in different states and taking possible actions. The agent
receives rewards which can indicate how good or bad it is to be in the current state, but as the
agent is supposed to maximise total reward, the value of the current state is also dependent on
the possible rewards it can lead to later. The same goes for the value of an action in a given
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Figure 2.2: The structure of an RL problem. The agent acts according to its current
policy and receives feedback from the environment, which it then uses to update its way of
behaviour.

state; the value of the action is determined by the immediate reward it leads to, as well as the
subsequent rewards the agent can obtain later as a consequence of the action. The two concepts
indicated here are called the value function V π and the action-value function Qπ, and they play
an important role in most RL schemes.

The two value functions provide a metric for the expected sum of total rewards, starting in
the current state x and following the current policy π thereafter. The value functions are
mathematically formulated as:

V π(x) = Eπ

[
∞∑
k=0

γkrt+k|Xt = x

]
(2.1)

Qπ(x, u) = Eπ

[
∞∑
k=0

γkrt+k|Xt = x, Ut = u

]
(2.2)

where rt+k is the reward received at time step t + k and the constant γ is a discount factor
between [0, 1] that discounts rewards further into the future. The difference between V π and
Qπ is the inclusion of the effect of the action u in the action-value function Qπ. In the value
function V π, it is assumed that the agent will continue following the policy π and take the
action given by π(x), while the action-value function is able to evaluate the value of all possible
actions from state x. The value functions equal one another when the action evaluated in the
action-value function is the one chosen from the policy:

V π(x) = Qπ(x, π(x)) (2.3)

It is possible to use the difference between the value function and the action-value function to
our benefit, as the numerical difference between them gives a measure of how good an action is,
in comparison to sticking to the policy. This measure is named the advantage function Aπ and
is given as:
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Aπ(x, u) = Qπ(x, u)− V (x) (2.4)

Thus, Aπ(x, u) > 0 will indicate that it is advantageous to go for another action than the one
provided by the current policy π. Naturally, this measure gives a good indication of how well
the agent is utilizing its possible actions and it can thus be a good metric to use in RL training.

The total reward of the full trajectory is dependent on which states the agent will visit before
the episode is over. The trajectory of the RL agent is often stochastic and thus unknown, but
an estimate can be made based on the transition probabilities by weighing future rewards by the
probability of the agent visiting them. The value functions can then be decomposed into a term
describing the reward at the current step, and a recursive term where the value at the future
steps are weighted by their probabilities, known as the Bellman equations (Sutton et al., 2018):

V π(x) = Rπ(x)(x) + γ
∑
x′

Pu(x
′|x, π(x))V π(x′)

Qπ(x, u) = Ru(x) + γ
∑
x′

Pu(x
′|x, u)Qπ(x′, π(x′))

The optimal policy π∗ is the policy which maximises total rewards. The value functions then
become the optimal value functions, given as

V ∗(x) = max
π

Eπ

[
∞∑
k=0

γkrt+k|Xt = x

]

Q∗(x, u) = max
π

Eπ

[
∞∑
k=0

γkrt+k|Xt = x, Ut = u

]

where, from Equation (2.3), it follows that

V ∗(x) = Q∗(x, π∗(x)) = max
u

Q∗(x, u)

2.2.3 Exploration vs exploitation

One of the challenges of RL is the trade-off between exploration and exploitation (Kaelbling
et al., 1996). The trade off is based on the question of whether to exploit the rewards that
the agent has already obtained by exclusively following the current policy, or to explore new
paths with some level of randomness. Adding a level of exploration to the agent is usually
constructive, as it prevents the agent from overseeing possibly smarter solutions by locking itself
to the current policy.
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2.2.4 RL algorithms

As the field of RL has grown, many RL algorithms have been proposed to enhance performance
and tackle problems of different nature. The algorithms differ in many ways, including the
details of the problems they can be applied to, such as

• Discrete or continuous action space. An example of a discrete action space is e.g. navigating
in a grid such as in a maze, where the only allowed actions are up, down, left and right.
An example of a continuous action space is found in control problems, where the actions
can correspond to the actuation of different parts.

• Discrete or continuous state space. Discrete state spaces occur in problems where the
possible states are distinct, such as in the game of chess. A continuous state space may be
found in problems of e.g. real-world applications, such as navigation.

The algorithms also vary greatly in how they are constructed, and what measure they apply to
learn better behaviour. Examples of this are:

• The value function or metric used to update the policy. In so-called action-value methods,
one of the value functions is learned, and actions are chosen based on the value function
estimate. In policy-based methods, the policy is learned and updated directly, with or
without the help of a value function.

• Whether or not the policy used to generate the training data is the same policy as the
one that is optimised. Off-policy methods use a proxy policy to generate the training
data and use it to optimise another, optimal, policy. In On-policy methods, the policy
that is followed during data collection is the same as the one being optimised (Sutton
et al., 2018).

2.2.5 Policy Gradient Methods

Policy gradient methods are a group of policy-based methods where the policy π is parameterised
by a parameter vector θ, and the parameters are updated through steps which approximate
gradient ascent:

θt+1 = θt + α∇̂J(θ) (2.5)

where α is the step size and ∇̂J(θ) is the stochastic estimate of the policy gradient (Sutton
et al., 2018). This approach differs from other RL methods as the actions of the RL agent are
not retrieved from a value function, but drawn directly from the learned parameterised policy.

Policy gradient methods often work well in problems where the action space is continuous, which
is the case for the problems in this work. These methods also provide stronger convergence
guarantees than action-value methods due to the smooth updates of the policy (Sutton et
al., 2018).
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The policy gradient methods are on-policy, meaning that the policy is the same in data collection
and optimisation. When always following the current policy, measures must be made to ensure
sufficient exploration, as consistently following the current policy would lead to no exploration.
This issue is overcome by requiring that the policy is never deterministic, by adding some form of
stochasticity to the policy output (Sutton et al., 2018). Although this ensures exploration, policy
gradient methods typically become gradually less exploratory as the gradient step encourages
exploiting. This can lead to sub-optimal convergence, which policy gradient methods are known
for due to the non-convex nature of the optimisation problem (Bhandari et al., 2020).

The policy can be parameterised in any way as long as a policy gradient can be obtained, i. e.
as long as the policy is differentiable with respect to the parameter vector θ. The DRL methods
applied in this work use policies parameterised by NNs with the policy parameters θ as the NN
weights.

2.3 Deep Reinforcement Learning

In DRL, multi-layer NNs are combined with RL to tackle problems that previous RL methods
could not overcome due to scalability issues for high dimensional problems. DRL is a powerful
tool when dealing with complex, high dimensional function approximation and thus an efficient
way of overcoming the curse of dimensionality (Arulkumaran et al., 2017).

This section presents the policy gradient method Trust Region Policy Optimization (TRPO),
which can be used together with a multi-layer NN parameterised policy, constituting a DRL
framework. Subsection 2.3.1 introduces some theoretical background which TRPO builds upon.

2.3.1 Background

Actor-critic methods

Actor-critic methods describe RL methods which use a separate value function of choice to learn
a policy (Sutton et al., 2018). The name actor-critic is fitting and refers to the policy as the
actor and the value function as the critic, as the value function "criticises" the action selection
of the policy. The actor then uses the feedback from the critic to update its policy, by positively
reinforcing the probability of valuable actions and decreasing the probability of less valuable
actions. A general illustration of the actor-critic structure is depicted in Figure 2.3.

In the case of TRPO, which is an actor-critic method, the most common value function to use
is the advantage function At, see Equation (2.4).

Generalized Advantage Estimation (GAE)

For policy gradient methods to work, a satisfactory estimate of the policy gradient ∇̂J(θ) must
be provided. The policy gradient is found by differentiating some measure which yields the
expectation of the cumulative rewards, with respect to the parameter vector θ:
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Figure 2.3: Architecture of actor-critic methods.

∇J(θ) = ∇θE

[
∞∑
t=0

rt

]
(2.6)

A general expression for this policy gradient is:

∇J(θ) = E

[
∞∑
t=0

Ψt∇θlogπθ(ut|xt)

]
(2.7)

where Ψt may be expressed in several ways, using e. g. approximations of the total reward or
the state-action value function (Schulman, Moritz, et al., 2018). A popular choice of Ψt is the
advantage function At, described in Equation (2.4). The advantage function is unknown and
must be estimated as Ât. GAE is an effective technique to estimate the advantage function.
Using the advantage function is intuitively a good choice of measure, as it quantifies how well
the policy π is performing compared to other possible actions. Thus, computing the gradient
via the advantage function will point the parameters in the direction of improving the policy by
comparing it to other options (Schulman, Moritz, et al., 2018). Learning this relative measure
of how good an action is compared to another is also intuitively easier than learning the full
value of the action (Arulkumaran et al., 2017).

In GAE, a value function estimator is introduced. The estimator is discounted by a factor γ,
which introduces a bias, but reduces variance. This yields the advantage function estimator Aγ
and the following policy gradient approximation:

∇̂J(θ) = E

[
∞∑
t=0

Aγ(xt, ut)∇θlogπθ(ut|xt)

]
(2.8)
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Where the expectation value in practice is found by averaging over a finite batch of samples. An
estimate of the value function is used to compute the advantage function using the expression:

δVt = Rt + γV (xt+1)− V (x). (2.9)

This expression is called the TD residual of the value function, as it is also used as an error
measure in Temporal Difference (TD) methods. It becomes an unbiased estimator of the
advantage function At if the value function is correct, i.e., if V = V π (Schulman, Moritz,
et al., 2018). However, when V ≠ V π, the estimator becomes biased due to the term γV (xt+1).
To overcome the bias of the estimator, it is expanded as a telescoping sum of k terms as

Âkt = δVt + γδVt+1 + γ2δVt+2 + ...+ γk−1δVt+k−1, (2.10)

the intermediate value function terms disappear as the sum expands, and the expression can be
reformulated as

Âkt = −V (xt) + rt + γrt+1 + ...+ γk−1rt+k−1 + γkV (xt+k) =
k−1∑
l=0

γlδVt+l (2.11)

when k → ∞, the bias becomes smaller as the last value function term of future states becomes
heavily discounted. The GAE estimator is given as a λ-weighted sum of these k-step estimators:

Â
GAE(γ,λ)
t = (1− λ)(Â(1)

t + λÂ
(2)
t + λ2Â

(3)
t + ...) =

∞∑
l=0

(λγ)lδVt+l (2.12)

The full GAE gradient approximation thus becomes:

∇̂J(θ) = E

[
∞∑
t=0

∞∑
l=0

(γλ)lδVt+l∇θlogπθ(ut|xt)

]
(2.13)

.

GAE is used as the gradient approximation method in this work.

Importance Sampling

A well known statistical problem is the problem of estimating the expected value of a probability
distribution. In the case where it is possible and simple to draw samples from the distribution,
the problem also becomes simple - the expectation is found by averaging over a set of random
samples, as in traditional Monte Carlo sampling techniques. Importance sampling is useful when
it is hard or impossible to draw samples from the probability distribution of interest, such as
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in cases where we do not have access to samples from the distribution at all. The importance
sampling technique performs a mathematical trick to allow estimating the distribution by using
samples from another known distribution. Let X be a random variable distributed according to
p(x), and f(x) be a function of X. The expectation of f(x) is given as:

µf = Ep[f(X)] =

∫
f(x)p(x)dx (2.14)

which can be reformulated as

µf =

∫
f(x)

p(x)

q(x)
q(x)dx = Eq[f(X)w(X)] = (2.15)

where q(x) is a known distribution. The expression becomes the expected value of f(x)w(x) over
distribution q(x), where w(x) = p(x)

q(x)
is referred to as the importance weight (Tokdar et al., 2010).

The Kullback-Leibler (KL) divergence

The KL divergence is an important statistical measure of the difference between two probability
distributions p(x) and q(x). It is denoted DKL(p(x)||q(x)) and defined as:

DKL(p(x)||q(x)) = Ex∼p[log
p(x)

q(x)
] =

∫
p(x)log

p(x)

q(x)
dx (2.16)

(Kullback et al., 1951).

TRPO uses the three techniques presented in this section. The complete TRPO algorithm will
be elaborated on in the following section.

2.3.2 TRPO

TRPO was proposed in 2015 by Schulman, Levine, et al. (2015), and has since then become a
central algorithm in DRL (Arulkumaran et al., 2017).

For every policy update, the algorithm seeks to maximise an approximation of the expected
total discounted reward ζ(π) of the new policy π, given its advantage over an old policy πθold .
ζ(π) is given as the expected sum of rewards when following policy πθold plus the advantage of
following the new policy π:

ζ(πθ) = ζ(πθold) + E(x,u)∼πθ

[
∞∑
t=0

γAπθold (xt, ut)

]
(2.17)

The expression in Equation (2.17) is hard to optimise directly, which is why the TRPO algorithm
introduces a local approximation to ζ(π) given as:
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Lπθold (πθ) = ζ(πθold) + Ex∼ρπθold ,u∼πθ
[
Aπθold (x, u)

]
. (2.18)

where ρπθold (x) denotes the discounted visitation frequencies of the old policy. The state
visitations are thus assumed to be similar between the new and the old policy, which requires
the policy updates to be sufficiently small. As the term ζ(πθold) is not dependent on θ, it can
be omitted from the optimization problem. The issue of the remaining term is that we want
to evaluate actions drawn from the new policy π, before the policy has been updated. This is
where importance sampling comes into play: action samples from the old policy πθold can be
used instead, as long as the importance weight factor discussed in Section 2.3.1 is included in
the optimization objective. The final objective becomes:

Ex∼ρπθold ,u∼πθold

[
πθ(ut|xt)
πθold(ut|xt)

Aπθold (x, u)

]
. (2.19)

Moreover, a so-called trust region constraint is put on the policy update using an upper bound
on the KL divergence between the old and the new policy, to ensure that the policy updates are
sufficiently small. In practice, a heuristic approximation of the average KL divergence is used,
due to the complexity of finding the KL divergence for the whole state space. The resulting
optimization problem formulation then becomes:

max
θ

Êt
[
πθ(ut|xt)
πθold(ut|xt)

Âπθold (x, u)

]
(2.20)

s. t. Êt [DKL(πθ(◦|xt)||πθold(◦|xt))] ≤ δ (2.21)

where Êt denotes the stochastic estimate found over a batch of trajectories. This optimization
problem formulation is quite elegant and guarantees monotonic improvement of the policy s.
t. ζ(π1) ≤ ζ(π2) ≤ ζ(π3)...) (Schulman, Levine, et al., 2015) while ensuring sufficiently small
policy updates. See (Schulman, Levine, et al., 2015) for further details of the method.

2.4 Adaptive Stress Testing

AST was proposed in 2015 (Lee, Kochenderfer, Mengshoel, Brat, et al., 2015) as a method to
perform falsification by applying RL to find the most likely paths to failure. It is a simulation-
based method that, given a simulator of the system of interest, simulates batches of trajectories
and gradually learns how to uncover failure modes of the system.

2.4.1 The AST formulation

AST seeks to find the most likely sequence of disturbance actions u that lead the system into
failure. Hence, the optimisation problem is mathematically formulated as:
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max
u0,...,uend

tend−1∏
t=0

p(ut|xt) (2.22)

subject to xtend
∈ E

where E ⊂ X is the set of failure states, referred to as the event space, and tend is the final time
step of the episode.

The AST problem is thus a constrained optimisation problem that maximizes the probability of
the disturbance sequence, subject to the constraint that failure occurs in the final state xtend

.

AST solves the optimisation problem by formulating the process of bringing the system to
failure as an MDP and solving it by applying an RL solver. The MDP is formulated as follows:

• The state x of the MDP is the state of the simulator.

• The agent observes the state x and chooses action u.

• The transition to the next state is given by the transition behaviour of the simulator which
is the combined behaviour ofM and E .

• The reward function is set to optimize Equation (2.22).

(Lee, Mengshoel, et al., 2020). The resulting RL structure differs from traditional RL setups. In
most simulated RL problems, the agent navigates in the simulator environment. In the AST
case, the simulator environment and the SUT are joined together to constitute the environment
of the AST agent. The AST structure is presented in Figure 2.4.

Figure 2.4: The AST structure, inspired by (Lee, Mengshoel, et al., 2020)

The MDP reward function R of the RL agent is formulated in a way which maximizes Equa-
tion (2.22). There are many formulations of the MDP reward function in the AST literature.
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Koren, Corso, et al. (2020) proposed a general reward function formulation, that presents three
distinct reward cases:

R =


0, if x ∈ E
−α− βf(x), if x /∈ E, t ≥ tend

−g(u)− ηh(x), if x /∈ E, t < tend

(2.23)

The first reward case in Equation (2.23) is active when a failure mode is obtained, i. e., when
x ∈ E. In this case, the agent obtains a zero-reward. The second case presents the times
when the simulation has run until the end without obtaining any failure, in which case a large
negative reward is distributed according to the user-defined constants α and β, and an optional
heuristic f(x). The heuristic can be added if there exists a measure that can guide the agent
toward the goal faster. Adding such a heuristic is known as reward shaping (Ng et al., 1999).
While reward shaping has the potential to speed up the RL process, it is important not to
implement heuristics which can cause positive reward cycles. These cycles can potentially lead
the agent to develop sub-optimal policies away from the goal as it is incentivised to rather
collect intermediate rewards (Ng et al., 1999). If the heuristic is constructed so that there are
no positive reward cycles, it is called a potential-based reward shaping function. Potential-based
reward shaping functions are shown to preserve the optimal policy while guiding the agent faster
towards the goal (Ng et al., 1999).

The last reward case is active during the episode, i.e., when t < tend and no failure had been
obtained. A reward is given according to g(u), a function which is recommended by Koren,
Corso, et al. (2020) to be proportional to the logarithm of the likelihood of the action such that
the reward function optimizes Equation (2.22). The additional penalty ηh(x) constitutes an
optional training heuristic given at each time step.

2.4.2 Method augmentations

Since the formulation of the AST method, it has been extended with augmentations and
additional logic to overcome certain common issues. Augmentations have mainly been made to
the MDP reward function and the choice of RL solver. A handful of augmentations which is
implemented in this thesis are presented.

Choice of RL solver

In the first implementation of AST, Monte Carlo Tree Search (MCTS) was used as the RL
solver. However, MDPs are solvable in many means, and in later work, the RL solver has been
replaced by other solvers. Koren, Alsaif, et al. (2018) showed that the use of a DRL solver gave
better results in the automobile case. In this work, a DRL solver is implemented similarly to
Koren, Alsaif, et al. (2018). The solving method is further elaborated on in Section 2.1 and
Chapter 3.

Reward augmentations

The work in this thesis implements a reward function similar to the one proposed in Koren,
Alsaif, et al. (2018) as a baseline reward function:
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R =


0 if x ∈ E
−α− βD, if x /∈ E, t ≥ tend

−log(1 +M(u,µu|x)), if x /∈ E, t < tend

(2.24)

In the case of failure, i. e., when x is in the event space E, the RL agent obtains a zero-reward.
In the second case, a large negative reward is distributed according to α, β and the distance
heuristic D, which is the distance between the ferry and the adversary. The distance heuristic
penalizes the agent additionally if the distance between the adversary and the ferry is large in
the end. This heuristic guides the agent towards cases where the two vessels end up in close
proximity. Distance heuristics are shown to be potential based reward functions, and thus it
is guaranteed that the optimal policy is preserved while adding the heuristic (Robert J Moss
et al., 2021).

The last case portrays the reward distributed at every time step. The agent receives a reward
using the Mahalanobis distanceM(u,µu|x) (Mahalanobis, 1936), which is the statistical distance
between the action u and the mean of the action distribution µu given as

DM(u) =

√
(u− µu)TS−1(u− µu)

where S−1 is the inverse covariance matrix of the action distribution. This part of the reward
function is a heuristic measure of the probability of the AST action, which makes the AST
method optimize for the most likely action sequences. The logarithm is taken to optimize the
product of the probabilities in Equation (2.22).

Previous work which has applied the same or similar reward functions has addressed a couple of
common drawbacks with it, such as:

• The identified failures are often unavoidable. In the case of the automobile approaching
a pedestrian, the majority of the initially found failures showed scenarios where the
pedestrian accelerated and ran straight into the car.

• When the RL agent discovers a failure, it tends to rediscover the same or similar failures.

These drawbacks decrease the relevance of the identified failure modes to the developers of the
system, who naturally seek a diverse set of failures where the behaviour of the SUT is, to a
larger extent, the cause of the failure. The literature suggests that the drawbacks occur due to
the RL solver converging to sub-optimal solutions (Corso, Du, et al., 2019) and because of the
reward for failure is so high combined with the fact that rewards distributed during the episode
does not aid exploration, forcing the agent to converge to already found failures (Koren and
Kochenderfer, 2020). These drawbacks were also seen in the work which led up to this thesis,
where the adversary vessel expressed irrational and aggressive behaviour by heading straight
toward the ferry (Hjelmeland, 2021). Corso, Du, et al. (2019) suggest two reward augmentations
designed to aid the search and obtain a more diverse set of failures which are not unavoidable.
Both approaches are implemented in this thesis and are elaborated on in the following sections.
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Optimizing for improper behaviour

To cope with the AST tendency to discover unavoidable failures, Corso, Du, et al. (2019) suggest
optimizing for failures where the SUT is to a larger extent participatory in the lead-up to
the failure. The proposed way to accomplish this is to optimize for failures where there SUT
expresses improper behaviour during the simulation. To do so, two augmentations are made
to the AST problem formulation: the event space E is altered to only register a collision as a
failure if the SUT has expressed a sufficient amount of improper behaviour, measured in the
fraction of improper time steps during the simulation. Furthermore, the distance heuristic in
the reward function Equation (2.24) is also replaced to optimize for improper time steps, based
on the assumption that a larger fraction of improper time steps lead to more failures where
improper behaviour is expressed. Corso, Du, et al. (2019) considers a time step improper if the
behaviour of the SUT in the time step is non-compliant with Responsibility-Sensitive Safety
(RSS), which is a set of rules for responsible driving behaviour.

Let Nimp denote the number of improper time steps, N the total number of steps, fimp =
Nimp

N
the fraction of improper time steps, and fprop = 1 − fimp the fraction of proper time

steps. Let Eimp be the altered event space and ω denote the sequence of AST actions, i.e.,
ω = {uast0 ,uast1 , ...,uastend

}, then:

Eimp = {ω | xtend
∈ E ∧ fimp(ω) > fthresh}. (2.25)

The resulting reward function is 1:

R =


0, if x ∈ Eimp
−α− βfprop, if x /∈ Eimp, t ≥ tend

−log(1 +M(u,µu|x)), if x /∈ Eimp, t < tend

(2.26)

Dissimilarity measure

The issue of the AST method is that the obtained failure modes are highly similar due to the
RL solver becoming trapped in a local optimum. The nature of the AST optimisation makes
it prone to this effect due to the high reward for failure modes and little guidance towards
the failure mode during simulation. Thus, the problem can be described as a hard exploration
problem as the rewards do not aid exploration (Koren and Kochenderfer, 2020).

Solutions have been proposed to deal with this issue in the AST literature. This thesis implements
a solution proposed by Corso, Du, et al. (2019), where a dissimilarity measure was implemented
to reward more dissimilar results. The implementation successfully aided the search for failure
modes in simulations of an automobile approaching a pedestrian, resulting in a more diverse set
of failures.

1Corso, Du, et al. (2019) uses fimp as the heuristic. It is assumed in this work that the intended measure is
fprop, as penalizing a higher fraction of improper time steps would lead to less improper time steps. Might be
(a) a misunderstanding of the definition of fimp or (b) a typo of Corso, Du, et al. (2019).
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The dissimilarity measure is implemented as part of the reward function, by distributing more
rewards to the trajectories that are dissimilar to the ones already obtained. To measure the
dissimilarity, a quantification of the similarity between the trajectories is proposed, where
the trajectories are divided into segments and the Center Of Mass (COM)s of the trajectory
segments are compared. Details of the method implementation are further elaborated on in
Section 3.4.

2.4.3 AST Software

Several open-source software frameworks have been developed, including a Python toolbox
(Koren, Ma, et al., 2021) and a Julia framework (NASA, 2022). The AST Python Toolbox is
applied in this thesis.

2.5 Marine vessel dynamics and control

The simulator used in this thesis portrays simplified 3-Degrees of Freedom (DOF) horizontal
plane models of marine vessels, which will be elaborated on in this chapter.

2.5.1 Dynamics of marine vessel

Let an inertial frame be approximated by the earth-fixed reference frame {e} called North
East Down (NED). A marine vessel is fully described by a 6-DOF model with the state-space
representation

η =


x
y
z
ϕ
θ
ψ



where (x, y, z) represents surge, sway and heave, describing the body position in 3D space
(Fossen, 2011). (ϕ, θ, ψ) are the orientation angles roll, pitch and yaw, see Figure 2.5 for an
illustration.
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Figure 2.5: Vessel with state parameters, inspired by (Fossen, 2011).

in Figure 2.5, xb, yb and zb makes up the body reference frame of the vessel. As a simplification,
one often assumes that the movement in the z-direction is arbitrarily small. The heave parameter
z is then removed from η together with the vertical angles (ϕ, θ), yielding the 3-DOF state
vector

η =

xy
ψ


The velocity vector for the 3-DOF model is given as

ν =

uv
r


where (u, v, r) is called surge speed, sway speed and yaw rate, see Figure 2.5.

As can be deduced by inspection of Figure 2.5, the following relation between η and ν can be
obtained:

η̇ =

ẋẏ
ψ̇

 =

u cos(ψ)− v sin(ψ)u sin(ψ) + v cos(ψ)
r

 = Rz,ψν

where

Rz,ψ =

cos(ψ) sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


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When the assumption of no heave motion is combined with the assumption that there are no
external disturbances to the vessel such as wind, ocean currents and waves, the 3-DOF vessel
dynamics can be formulated as:

η̇ = Rz,ψν

Mν̇ +C(ν)ν +D(ν)ν = τ (2.27)

Here, τ is the vector of forces and torque acting on the vessel, which can include e. g. disturbances
and control actuation. D(ν) is the hydrodynamic damping matrix, M is the mass matrix
and C(ν) is the Coriolis and centripetal matrix. The matrices M and C(ν) represents the
combination of the dynamics of the rigid body and the dynamics due to the hydrodynamic
effect of added mass, denoted RB and A respectively:

M = MRB +MA

C(ν) = C(ν)RB +C(ν)A

Moreover, the matrix function D(ν) represents the linear and nonlinear damping terms, denoted
L and NL respectively:

D(ν) = DL +DNL(ν)

2.5.2 Path-following and the Line Of Sight (LOS) guidance principle

Guidance is a method to obtain state references in order to make a vessel follow a certain
trajectory. One form of guidance system is path-following for straight-line paths, which can
be implemented in several ways. Fossen (2011) describes a guidance principle for this purpose
called look-ahead based steering, which will be elaborated on and used in the simulations in
this thesis.

Consider a straight line path given by the to waypoint wpk and wpk+1. Let the course angle χ
denote the angle of the velocity vector U of the vessel relative to the NED frame, given as the
vessel heading ψ plus an additional angle β. In lookahead-based steering, the desired course
angle χd is given in two parts, consisting of αk, called the path tangential angle plus an angle
referred to as the velocity-path relative angle, denoted χr. The complete expression is then given
as:

χd = αk + χr (2.28)
= arctan2(ywpk+1

− ywpk
, xwpk+1

− xwpk
) + arctan2(−e, LLA) (2.29)

where αk is the path angle relative to the NED frame, e is the cross-track error between the
vessel position and the path and LLA is the distance of the LOS vector L projection onto
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the path. The parameters used in the calculation of the desired course angle are depicted in
Figure 2.6.

Figure 2.6: Parameters used in lookahead based steering, inspired by (Fossen, 2011).

To make the vessel follow several consecutive paths with different velocity profiles, a LOS
controller can be initialized with a sequence of waypoints which chronologically describe the
desired paths. The path to the next waypoint is then activated when the vessel is within a
predefined switching distance LWP of the current waypoint.

When the desired course angle has been obtained, a path-following LOS controller can be used to
align the ship with the desired course. Different control principles are described in Fossen (2011),
but will not be elaborated on here. The LOS based controller implemented in this thesis will be
further described in Chapter 3.

2.6 Collision Avoidance

Autonomous vehicles need collision avoidance systems when navigating amidst obstacles such as
other vehicles or land. In this thesis, a simulator of the milliAmpere ferry which is simplified
and focused for testing the collision avoidance system is used, in which the vessel is simulated
in traffic with other vehicles. The milliAmpere prototype is described thoroughly in Brekke
et al. (2022).
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2.6.1 SP-VP

The collision avoidance system implemented on the milliAmpere ferry is based on the SP-
VP COLAV approach, which is a path-velocity decomposition method proposed in (Thyri
et al., 2020). The method projects all obstacles into a path-time space and builds a search
tree spanning the path-time space of different velocity profiles along a path to a predefined
waypoint. A cost dependent on the speed and closeness to obstacles is applied to each edge in
the search tree, and the optimal trajectory is found using Dijkstra’s algorithm. Three regions
are constructed around the obstacle, namely the Region of Collision (ROC), High Penalty
Region (HPR) and the Low Penalty Region (LPR), defining different levels of cost, as described
in (Uttisrud, 2019) and illustrated in Section 2.6.1. An optimal velocity profile along the
path is then selected based on the cost attached to every node in the graph, as illustrated in
Section 2.6.1. The optimal path-time trajectory is transformed into a time-expanded Euclidean
space and tracked by the ferry using a Dynamic Positioning (DP) controller. Being constrained
to following a nominal path, the SP-VP algorithm is only able to control the velocity of the
vessel along this path, making it unable to make course changes to avoid collisions (Hjelmeland
et al., 2022). Furthermore, the algorithm is parameterized to only allow for a speed within a
certain range, which leads to stopping being the preferred action when the ferry is faced with a
collision situation.

(a) The SP-VP obstacle representation with ROC,
HPR and LPR illustrated. Figure obtained from
(Uttisrud, 2019).

(b) Possible velocity profiles along a predefined
path in the path-time space. The polygons indicate
the path-time representation of the obstacles. The
optimal velocity profile is highlighted in red. Figure
obtained from (Thyri, 2019).

The SP-VP method is a robust and simple approach to collision avoidance as it produces
predictable and intuitive trajectories. As a trade-off of the simplicity of the SP-VP approach,
the method is not able to handle situations where e. g. an obstacle is driving head on towards
the vessel as it is unable to find a path that does not lead to a collision. In cases like these, the
algorithm breaks down due to the problem becoming infeasible.
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2.6.2 MPC based COLAV with COLREGs compliance

MPC is a family of methods that perform closed-loop optimal control, which chooses control
input by predicting its effect on the system in the future. The best possible control input is
chosen by forecasting how the system will develop and choosing the first control input of the
input sequence that leads to the best outcome (Rawlings et al., 2017). The concept of MPC is
thoroughly described in the literature and will not be elaborated on here, see e.g. (Rawlings
et al., 2017) for further descriptions.

MPC based COLAV approaches have been studied and applied in many fields, such as automotive
vehicles (Ammour et al., 2021) and air crafts (Bousson, 2008). The MPC method is a suited fit
for the COLAV problem, especially if there exists a sufficiently good model of the system. If so,
the MPC system is able to predict into the future and possibly foresee collisions and thus avoid
hazardous situations. In the marine setting, a perfect COLAV system is both able to avoid
collision and to do so in compliance with the COLREGs. The COLREGs is an international
framework designed by the International Maritime Organization, which proposes an extensive
set of rules to be followed by ships in order to avoid collisions. A COLREGs compliant method
is a method which avoids collisions, but preferably in ways described as proper behaviour by
the COLREGs.

An MPC based COLAV method for ship collision avoidance with COLREGs compliance was first
described in Johansen et al. (2016). Since then, the method has been extended and proposed in
different manners, e.g. in Hagen et al. (2018). Their approach constitutes a simulation-based
MPC method where a relatively small subset of control behaviours are evaluated at every step.
It is assumed that the ship has a guidance controller which provides references for the ship course
angle ψd and propulsion command ud. The MPC COLAV framework then works as an extension
of the guidance system by proposing modifications, denoted ψm and um, to these references in
order to perform COLAV and to comply with the COLREGs. Johansen et al. (2016) propose a
set of possible control modifications:

• ψm ∈ {-90◦, -75◦, -60◦, -45◦, -30◦, -15◦, 0◦, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

• um ∈ {1, 0.5, 0, -1}, i.e., {keep speed, slow down, stop and full backward propulsion}

which can be adjusted to the domain-specific purpose. The more extensive the set is, the better
performance of the system.

The fact that the modifications are placed on top of the existing guidance system makes
the system both able to follow a predetermined path while performing COLAV, and further
implementations for path following is thus redundant. The control behaviour is kept constant
for the entire simulation horizon, which is a beneficial detail of this method as it both makes
sense, but also reduced the need for computation at each simulation time step.

The cost function to be minimized in the MPC problem consists of three terms: the cost
associated with potential collisions, the cost of violating the COLREGs, and the cost of altering
the controller reference provided by the LOS controller. To evaluate the cost of a situation with
respect to adversary vessel i at time t in control behaviour scenario k, these metrics are used:

• The distance dki (t) between the vessel and the adversary vessel
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• The velocity vector of the vessel, denoted vk0(t)

• The velocity of the adversary vessel, denoted vki (t)

• The angle between the velocity vectors, denoted θi ∈ [−π, π]

• The unit vector in the LOS direction from the vessel to the adversary vessel, denoted
Lk
i (t).

• The bearing angle of the LOS direction vector, denoted θLi

• The angle between own ship velocity vector and the LOS direction vector, denoted θv,l

All vectors vk0(t),vki (t) and Lk
i (t) are 2-dimensional and describe velocities and relative positions

in the NED-frame. The metrics are illustrated in Figure 2.8.

Figure 2.8: Illustration of metrics used in COLREGs violation conditions, based on an
illustration in Hagen et al. (2018). The scenario superscripts k are left out for simplification.

The cost of potential collisions is given in a classical risk assessment manner. In standard
risk analysis, the risk of an unwanted event is given as the product of the probability of the
event occurring, and the consequence of the event occurring. The cost related to collision is
given in a similar manner in the definition by Johansen et al. (2016), namely as the product
between a collision risk factor Rk

i (t) and the collision cost Cki (t). The collision cost thus aids
the vessel by not only alerting the system when there is a potential collision coming up, but
also by prioritizing the potential risks. This is important as there may be scenarios where the
vessel might have to choose between two collisions, which this measure would help with. The
two components are based on the kinetic energy of the two vessels, the distance between them,
given as
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Cki (t) = Kcoll
i |v0(t)− vi(t)|2 (2.30)

Rk
i (t) =

 1
|t−t0|p (

dsafei

dk0,i(t)
)q if dk0,i(t) ≤ dsafei

0 otherwise
(2.31)

where Kcoll
i is a tunable parameter that weight the risk of collision and dsafe is a user-specified

safety distance which quantifies the smallest distance of which an adversary vessel is considered
a risk. The measure |t− t0|p discounts the risk based on how far into the time horizon it occurs,
as the uncertainty increases further into the prediction.

The COLREGs cost is distributed if the vessel is currently in a situation which corresponds to
a COLREGs violation. Johansen et al. (2016) present five definitions describing the relation
between own ship and adversary i:

• CLOSE: The adversary vessel i is said to be close to own ship if dki (t) < dclosei .

• STARBOARD: Adversary i is said to be starboard of own ship if θLi
is bigger than the

heading of own ship ψ.

• OVERTAKEN: Own ship is said to be overtaken by adversary i if CLOSE is satisfied,
|θi| < 68.5◦ and ||vki (t)|| > ||vk0(t)||.

• HEAD-ON: Adversary i is said to be head on of own ship if CLOSE is satisfied, the
adversary velocity is bigger than some close-to-zero constant ϵ, i.e., ||vki (t)|| > ϵ, |θi| >
157.5◦ and |θv,L| < ϕahead, where ϵ and ϕahead are user-specified.

• CROSSED: Adversary i is said to be crossed by own ship if CLOSE is satisfied and |θi|
> 68.5◦

The CLOSE and STARBOARD conditions are quite intuitive. However, the remaining
three conditions can be somewhat hard to visualize. Figure 2.9 illustrates scenarios where
these conditions, which are based on the angle between the velocity vectors, are satisfied. The

scenarios displayed show own ship (blue) with a velocity of v0 =

[
1
0

]
, together with the adversary

(red) and examples of the corresponding adversary velocities which lead to the satisfaction of
the condition. Note that the angles between the velocities are independent of the position of the
vessels, which e.g. makes the CROSSED-condition true when the adversary is positioned both
on the port and starboard side and makes the OVERTAKING-condition true for overtaking
by own ship and by the adversary.
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Figure 2.9: Illustration of possible velocity profiles in the relational conditions, based on
definitions in Johansen et al. (2016)

These relational definitions make up the components of the logical expression that determine if
there is a COLREGs violation when applying the control behaviour of scenario k, at time step t
and with respect to adversary i. Let µki (t) be a binary indicator of a COLREGs violation. The
approach focuses mainly on rules 13-15 of the COLREGs, given by IMO (1972) as:

Rule 13: Overtaking. Any vessel overtaking any other shall keep out of the way of the vessel
being overtaken. A vessel shall be deemed to be overtaking when coming up with another vessel
from a direction more than 22.5 degrees abaft her beam.

Rule 14: Head-on situation. When two power-driven vessels are meeting on nearly reciprocal
courses so as to involve risk for collision, then alter course to starboard so that each pass on the
port side of each other.

Rule 15: Crossing situation. When two power-driven vessels are crossing so as to involve
risk of collision, the vessel which has the other on her own starboard side shall keep out of the
way.

Johansen et al. (2016) defines the indicator as

µki (t) =RULE 14 ∨ RULE 15
RULE 14 =CLOSE ∧ STARBOARD ∧HEAD-ON
RULE 15 =CLOSE ∧ STARBOARD

∧CROSSED ∧ NOT OVERTAKEN

(2.32)

These rule definitions incorporate Rule 13, which states that the overtaking vessel shall keep
out of the way (Johansen et al., 2016).

The total cost associated with each scenario k is then defined as the maximum cost obtained
when applying the scenario control behaviour [um, ψm] and keeping it throughout the prediction
horizon, defined as:
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Hk(t0) =max
i

max
t∈D(t0)

(Cki (t)Rk
i (t) + κµki (t)) + f(um, ψm) + g(um, ψm) (2.33)

where t0 is the starting point of the prediction and D(t0) is the finite set of future time steps
D(t0) = {t0, t0 +∆mpc, ..., t0 + Tmpc}, where ∆mpc is the MPC prediction step size and Tmpc is
the MPC time horizon. κi is a tuning parameter, g(um, ψm) is a grounding term that represents
a penalty that should be defined based on electronic map data and possibly ship sensor data.
Moreover, f(um, ψm) adds cost according to:

f(um, ψm) = Kum(1− um) +Kψmψ
2
m +∆um(um − ulast) + ∆ψm(ψm − ψlast) (2.34)

where Kum and Kψm are tunable parameters that puts a cost on diverging from the reference
given by the LOS controller, and ∆um and ∆ψm are functions designed to put higher costs on big
changes from the last control reference denoted [umlast

, ψmlast
]. (Johansen et al., 2016) suggest

that Kψm and ∆ψm should be asymmetrical, yielding a higher cost on modifications that suggest
turning to port side, in compliance with the COLREGs rule 14, 15 and 17 which all state that
COLAV manoeuvres should be performed by turning to starboard side.

The MPC implementation in this thesis is based on the work of Johansen et al. (2016) and
Hagen et al. (2018) and is elaborated on in Section 3.5.

2.7 Clustering

Clustering is an unsupervised machine learning method where data is partitioned into homoge-
neous groups using some form of similarity measure (Likas et al., 2003). Clustering is applied
in this thesis to categorize the resulting trajectories of the adversary to obtain a summary of
patterns in the adversary behaviour.

2.7.1 Soft-Dynamic Time Warping (DTW) K-means Clustering

The K-means clustering technique seeks to divide a set of data points of arbitrary dimension
into K clusters by minimizing the within-cluster sum of squares (Hartigan et al., 1979). The
method can be applied to time series, but as the standard distance measure is the euclidean
distance, potential time shifts and lags pose a problem. Methods like DTW can be applied to
align the time series before measuring their distance. DTW was proposed in (Sakoe et al., 1978),
and constitutes a method of aligning temporal series of data subject to deformations or varying
speeds as illustrated in Figure 2.10 (Müller, 2007). It is well known and applied to many
problems in fields such as speech recognition. The alignment is done by defining a cost measure,
typically using the distance between the series, and finding a minimum of that cost under a set
of requirements. See (Sakoe et al., 1978) for further details.
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Figure 2.10: Illustration of Dynamic Time Warping matching of time series, based on
Müller (2007).

The DTW loss is not differentiable in nature, and therefore soft-DTW was proposed by Cuturi
et al. (2017), offering a differentiable and less time demanding extension of the DTW. The
soft-DTW has outperformed traditional DTW method baselines.
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Chapter 3
Methodology

This master thesis is divided into two parts. The first part presents an in-depth study of
the SP-VP case which was studied in Hjelmeland (2021). The second part presents further
experiments with the AST method applied to a new case, where the ferry is implemented with
a COLREGs-compliant COLAV system based on MPC.

3.1 Clustering

An AST simulation can generate large sets of data on both trajectories that end in failure, as
well as trajectories that do not. In order to limit the time needed to analyze all this information,
methods to categorize the data can be implemented to present it in a tractable manner.

Lee, Kochenderfer, Mengshoel, and Silbermann (2018) presented the use of Grammar Based
Decision Trees (GBDT) to cluster and categorize the trajectories found in airborne systems.
GBDT is a decision tree with splits on logical expressions. This was beneficial for categorizing
the data sets from these airborne systems, as the aim was to categorize the trajectories on using
not only the temporal and spatial information of the aircraft trajectories, but also the timing of
the alerts given to the simulated pilot and the actions taken by the pilot. With GBDT, the
trajectories could be put into categories which describe the patterns in the trajectory sequences,
such as e.g. a category of near mid-air collisions was the sequence of messages for the pilot
were correctly issued, but a delay in pilot response time caused the messages to bring the
aircrafts closer together, as found in Lee, Kochenderfer, Mengshoel, and Silbermann (2018).
The GBDT method both provided categorizing of the results, but it also aided in explaining the
categorizations as the description of every category could easily be retrieved by the conjunction
of the splits that led to the category leaf node.

The failure trajectories found in this work contain less concrete actions such as e.g. issuing a
message for the pilot. One could argue that the COLAV command to reduce the speed issued
by the SP-VP system, or the COLREGs violations indicated in the MPC COLAV system could
be used for this purpose. However, it was considered more beneficial to use the shape of the
adversary trajectory for categorization of the resulting scenarios, as this seemed to be the crucial
detail to determine whether or not there would be a collision and why the collision occurred.
Moreover, the actions of the AST agent mainly influenced the movement of the adversary, which
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indicate that categorizing the adversary trajectories would also categorize the policy patterns
had by the agent throughout the simulations.

In order to cluster the adversary trajectories, research was done on clustering of multidimensional
time series. The soft-DTW k-means clustering method described in Section 2.7 was found as a
recommended method for such tasks, especially when the objective is to find similar behavioural
patterns, but where the speed of the vessel manoeuvres could vary.

Some experiments were done to find the optimal number of clusters, k, for the purpose.
Determining the value of k is a complete field of its own where methods have been proposed to
do so automatically, using methods such as the elbow method described in e.g. Bholowalia (2014),
where k is chosen such that adding another cluster won’t add much value to the cluster model.
However, experiments where the k-value was chosen manually gave satisfactory results with k
= 4 clusters. The resulting clusters showed a balanced trade-off between generalization and
highlighting specific patterns. It was also desirable to generate the same number of clusters for
the different problem formulations to enable an efficient comparison of the results. Therefore,
further engineering to optimize the k-value was deemed redundant and not an appropriate use of
time. Still, exploring this option could have brought value to the results and should be explored
in further research.

3.2 AST implementation

AST is implemented in this work by applying the Python AST Toolbox, an AST framework
developed and maintained by Stanford Intelligent Systems Lab (Koren, Ma, et al., 2021). The
toolbox is a comprehensive framework consisting of a large network of neatly designed modules,
which contains all necessary elements to run training of an AST agent. The toolbox implements
RL methods from the open-source RL framework Garage (garage — garage v2020.09.0rc2-dev
documentation 2020), which again is built using Tensorflow, an open-source software platform for
machine learning. Although the toolbox is comprehensive, it comes with a set of examples and
is thoroughly documented, which simplifies the familiarization of it. Unfortunately, dependency
issues have made the latest version unstable and in need of a specific Docker image to be able
to run. This made the implementation somewhat challenging, but once it was able to run, the
toolbox offered easy implementation and flexible interfacing with the simulator used for the
experiments.

3.2.1 The AST wrapper

The AST method creates a wrapper around the system simulator to perform batches of
simulations to train the RL agent. In systems where the simulator state is hidden or inaccessible,
it is possible to implement the AST method in an open-loop manner, where the RL agent runs
full simulation episodes without being able to observe the system output. In the cases presented
in this thesis, AST is implemented in closed-loop mode, as the simulator state is accessed and
fed back to the RL agent for every AST step. The AST wrapper requires some interfacing
functions in the simulator in order to run simulation batches and obtain information about the
simulator state:

• reset(x0): reset the simulator to the fixed initial state x0 and return the initial observation
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x0

• step_simulation(u): Take 1 AST step by stepping the simulator ∆A

∆S
steps with action

u, where ∆A is the AST step size and ∆S is the simulator step size, both in seconds.
Return the state xj+1, where j denotes the current AST step.

• is_terminal(): return true if the simulation has finished, i.e., if the number of episode
steps, denoted j, equals the maximum number of AST steps Nast, or if xj+1 ∈ E, i.e., if a
failure is detected

A simplified overview of the AST algorithm, implemented through the AST Python Toolbox
and interfacing with the Zeabuz COLAV simulator, is presented in Algorithm 1:

Algorithm 1 AST algorithm
1: Initialize AST agent with policy πθ0

2: Initialize value function estimate V0
3: for k = 0, 1, ... to k = Nepoch do
4: Se ← 0
5: while Se < bs do
6: x0 ← reset(x0)
7: terminal ← False
8: j ← 0
9: while not terminal do

10: xj+1 ← step_simulation(u)
11: terminal ← is_terminal()
12: Obtain step reward R(xj+1,u)
13: xj ← xj+1

14: j ← j + 1
15: end while
16: Se ← Se + j
17: end while
18: Compute batch rewards R̂k

19: Âk ← GAE(Vk)
20: Compute policy gradient estimate ∇̂J(θk) from Âk and πθk

21: πθk+1
← TRPO(∇̂J(θk))

22: Update value function estimate Vk used in GAE by regression on R̂k

23: end for

where Nepoch is the number of epochs, Se is the number of AST steps in the epoch and bs is the
bath size. The hyperparameters for each experiment configuration are specified in Section 3.4
and Section 3.5.

Additional interfacing was done to enable experiment features such as the training heuristic or
optimizing for improper time steps, where the AST agent also obtained information about the
number of improper time steps and the adversary risk measure.
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3.2.2 DRL Implementation

In order to optimize the AST MDP, an RL solver must be implemented. When AST was first
proposed by Lee, Kochenderfer, Mengshoel, Brat, et al. (2015), the method was implemented
using MCTS as the RL solver. In the subsequent literature, other RL solvers have been proposed
and consequently the AdaptiveStressTesting Toolbox comes with a variety of solvers. In this
work, a DRL solver is chosen as in Koren, Alsaif, et al. (2018), where the DRL solver was
implemented as a policy gradient method using TRPO as the policy stepping method with GAE
to estimate the policy gradient.

The policy of the RL agent is implemented as a NN, and the policy parameter vector θ makes
up the NN weights. The policy maps the RL state input vector, consisting of the position of
the ferry and the adversary, to the mean of a Gaussian distribution with a state-independently
parameterized standard deviation. The AST action uast is then drawn from the resulting
distributions. The process is illustrated in Figure 3.1 for the Part 1 case, further described in
Section 3.4.

Figure 3.1: Illustration of the DRL network implementation, as it is implemented in Part
1. The state of the RL agent, consisting of the ferry and the adversary positions, is fed into
the parameterized policy NN. The action vector u is drawn from Gaussian distributions
with the NN output as mean.

The stochasticity introduced in the last steps, where the action is drawn from a probability
distribution, makes the method exploratory by nature. Still, the level of randomness typically
decreases throughout the training as the TRPO update rule makes it exploit discovered rewards.
This makes the TRPO algorithm prone to becoming stuck in local optima.

3.3 Zeabuz COLAV simulator

The simulator used for the AST experiments performed in this thesis is retrieved from Zeabuz
and referred to as the Zeabuz COLAV simulator. It is constructed to test the COLAV system
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of the milliAmpere ferry in a simplified, non-full-scale manner to reduce the complexity and run
time needed to test different COLAV schemes and bring focus to the workings of the COLAV
system only. Thus, some simulator functionality is simplified or approximated with simple
models, such as adversary vessel behaviour or sensory information. The simulator is written in
Python, which makes integration with the Python AST ToolBox simple. Integration methods
of different complexity are available in the simulator, but simple Euler integration was used as
this gave satisfying results.

The Zeabuz COLAV simulator allows for simulations using two different vessel classes: a
milliAmpere vessel class, which is constructed according to the full 3-DOF dynamics described
in Equation (3.13), with the kinematic parameters of the milliAmpere vessel. Several controllers
are also implemented and easily applied to the vessel models. A simple sensory module is used
in the simulations, which ables the ferry to be aware of the position and velocity of adversary
vessels. In order to simulate approximate milliAmpere behaviour, the milliAmpere vessel model
is equipped with a SP-VP controller which again uses a simplified Dynamic Positioning (DP)
controller to position the vessel. The DP system takes in the state and velocity reference from
the SP-VP system and uses the Proportional–Integral–Derivative (PID) principle to provide a
control input τ needed to reach the reference:

τp = −Kpηe = −Kp(η − ηref )

τi = −Ki

∫
ηe

τd = −Kdη̇e = −Kd(Rz,ψν − η̇ref )

τpid = RT
z,ψ(τp + τi + τd).

(3.1)

The DP controller also accounts for the damping effect of the vessel. The full control input is
then described by Equation (3.2):

D̃(ν) = D̃L + D̃NL(ν)

τ = D̃(ν)ν + τpid
(3.2)

where D̃L and D̃NL(ν) are diagonal matrices which approximate the linear and nonlinear
damping terms of the milliAmpere dynamic.

The second vessel class represents a simplified first-order vessel model based on the kinematic
equation

η̇ = Rz,ψν

ν̇ = − 1

T
τ (3.3)

where τ is given as the error between the current velocity and the reference velocity, i.e.,
τ = νe = ν − νref . The reference velocity is given by a simple speed-heading proportional
controller providing the reference as
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νref =

 uref
0

Kψ(ψ − ψref )

 (3.4)

where the vector of references Γ = [uref , ψref ] is either set initially as a constant reference for
the vessel to follow, or is updated during the simulation by e.g. a LOS guidance controller as
described in Section 2.5.2.

In Part 1 of the thesis, described in Section 3.4, the milliAmpere model will be used to simulate
approximate milliAmpere behaviour. The simulations do, however, not need to include a
milliAmpere model and can just as well be run with only first-order vessels, which will be the
case in Part 2 of the thesis, described in Section 3.5.

The Zeabuz COLAV simulator also inhibits a useful plotting module where the resulting
simulation output can be animated. The plotting module also allows for simulation metrics such
as SP-VP details to be animated as well. Examples from a simulation with the ferry and one
adversary vessel with and without the SP-VP details are shown in Figure 3.2 and Figure 3.3.

Figure 3.2: Snapshots from animated simulation with the ferry and one adversary vessel.

Figure 3.3: Snapshots from animated simulation with the ferry and one adversary vessel,
with the SP-VP regions illustrated around the adversary.

As the AST method has the potential to uncover hundreds, sometimes thousands, of failure
trajectories, analyzing them one by one in these animations is cumbersome and inefficient. To
aid the analysis of the results, an additional plotting module was constructed. The module plots
the entire trajectory of both the ferry and the potential adversaries, with lines that indicate
positions for simultaneous time steps. Information about the heading of the vessels was also
included, in addition to the ferry’s velocity and position estimate of the adversary. The plotting
module will be illustrated in both Chapter 3 and Chapter 4, see e.g. Figure 3.5 for an example
plot.
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3.4 Part 1: The SP-VP case

The first part of this thesis is spent on further experiments with the case study of the SP-VP
system, which was first examined in (Hjelmeland, 2021).

3.4.1 Previous methodology

Experiments were conducted on the SP-VP system in Hjelmeland (2021), using the same COLAV
simulator as used in this thesis. An initial AST problem formulation was presented, with an
MDP reward function implemented as described in Section 2.4.2. The reward function, repeated
here for simplicity, is:

R =


0 if x ∈ E
−α− βD, if x /∈ E, t ≥ tend

−log(1 +M(u,µu|x)), if x /∈ E, t < tend

(3.5)

The covariance matrix used in the Mahalanobis distance in the reward function was initialized to
the identity matrix and stayed unaltered as this gave reasonable results. An identity covariance
matrix indicates that the standard deviation of all variables is equal to 1, and the Mahalanobis
distance thus equals the square of the dot product of the action vector with itself. The mean
action µu is set to zero to penalize high action values, as this is deemed unlikely.

The results of Hjelmeland (2021) were promising as the AST method did identify many failure
modes. However, the majority of identified failure modes showed scenarios where the adversary
behaved very aggressive, as it drove straight into the ferry, as depicted in Figure 3.4(a). A
training heuristic was introduced to improve the model of the probability of the adversary
behaviour, which is used in the reward function to make AST find the most likely failures. A
risk measure was introduced, based on the proximity of the adversary to the ferry, and whether
or not the adversary was heading straight towards the ferry. If the AST action applied at a
time step t resulted in an increased risk measure at time t+ 1, a penalty would be issued. The
intention of the heuristic was based on the hypothesis that it would make the AST method
optimize for action sequences where the adversary did not expose risk-increasing behaviour
and thus act less aggressive. The resulting failure modes did show an effect by applying the
heuristic, as the adversary spent less time heading straight toward the ferry. However, in the
majority of the failures, the adversary exposed very aggressive behaviour in the last couple of
time steps, by e.g., suddenly turning and accelerating into a collision with the ferry, as in the
example depicted in Figure 3.4(b). The results were interpreted as such that the high reward
for collision made it worth exposing some aggressive behaviour in the last time steps, as the
penalty for this would be insignificant compared to the reward of collision. Because of these
results, it was considered to be less constructive to perform more work on the probability model
of the adversary, but instead use approaches from the literature which had shown success in the
problem of unavoidable failures, like the ones described in Section 2.4.2. The first part of this
thesis is thus dedicated to the implementation of these approaches.

There were also certain aspects of the way the simulations were conducted that were considered
to be unnecessary or in disfavour of obtaining the relevant failure modes, such as the fact
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that failures were detected after the ferry had reached and stopped in the final waypoint in
(xf , yf ) = (100, 0), as depicted in Figure 3.4(c). These failures are considered irrelevant as the
ferry is standing still, and an augmentation was made to omit cases like these by ignoring a failure
if this was the case. To increase the potential ways the collision could occur, the waypoint issued
to the ferry was also increased to (xf , yf) = (200, 0) and the initial position of the adversary
was altered from (xa, ya) = (100, 100) to (80, 100). In addition, it was decided to terminate
the simulation if the ferry reached the final waypoint (xf , yf) = (200, 0), to avoid simulating
many cases where the adversary continued to search without the possibility of obtaining failure.
The number of epochs, Nepochs was also decreased from 50 to 30 in this work compared to
Hjelmeland (2021), as the RL agent often converged before it reached 30 epochs and a reduction
of epochs would reduce the total simulation time dramatically.

(a) Baseline (b) With heuristic (c) Baseline, adversary attacks after
the ferry has stopped.

The initial problem formulation of Hjelmeland (2021) is presented in this thesis as a baseline
problem formulation, with the aforementioned augmentations, as it is constructive to have a
baseline version of the system to compare the results of further problem variations to, and
because the said system is further investigated in this work by restricting the action space of
the RL agent.

3.4.2 New experiments

This thesis presents new experiments using AST to test the SP-VP COLAV system, for further
testing of the SP-VP system as well as further adaptation of the AST method to the maritime
domain. The test scenario is a little altered compared to the one presented in Hjelmeland (2021)
as described in Section 3.4.1. The scenario chosen for the tests is a crossing scenario, with one
adversary vessel passing from the starboard side of the ferry. This scenario was chosen as it
constitutes a situation where the COLREGs rules are clear, as it is said explicitly in Rule 15
that the vessel which has the other vessel on its starboard side shall keep out of the way. The
scenario is depicted in Figure 3.5.
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Figure 3.5: Chosen test scenario, illustrated by the additionally created plotting module
described in Section 3.3. The grey lines connecting the vessels indicate positions for
simultaneous time steps.

The AST agent applies actuation in the adversary dynamics described in Equation (3.3), such
that they become:

η̇ = Rz,ψν

ν̇ = − 1

T
τ + uast (3.6)

where uast is the vector of AST actions, where each component affect a DOF of the adversary:

uast =

uxuy
uψ

 (3.7)

The AST problem formulation is augmented in different ways in a total of five different
experiment variations which are all attempts to omprove the relevance of the failure modes to
system developers. The five different problem variations are:

1: The baseline variation

2: The dissimilarity measure

3: Optimizing for improper behaviour

4: Optimizing for improper behaviour with estimation noise

45



CHAPTER 3. METHODOLOGY

5: Optimizing for improper behaviour with estimation time delay

Variation 2 introduces the use of the dissimilarity measure described in Section 2.4.2 by
augmenting the reward function R. In the last three variations, optimization for improper
behaviour is implemented as described in Section 2.4.2 which includes alterations of the AST
problem formulation on a more fundamental level, by augmenting both the reward function and
the definition of failure. Finally, the simulation scenario is tweaked in the last two variations to
allow for errors in the ferry’s tracking system, making the estimates of the adversary prone to
both estimation noise and time delays. Additionally, for every problem variation, the experiment
is conducted three times with different restrictions on the AST agent action space for the
adversary movement. This is done to search for failure modes where the adversary is less able
to do abrupt movements, as seen in the results of (Hjelmeland, 2021).

First, the different problem variations are described. Then, the concept of restricting the
adversary action space is elaborated on. Lastly, an overview of the AST hyperparameters is
presented.

3.4.3 Variation 1: The baseline

This baseline system was implemented and presented in (Hjelmeland, 2021) and (Hjelmeland
et al., 2022), but is presented again here as a baseline system is constructive for comparison and
due to the fact that further experiments were performed with a restricted AST action space.
The variation is described in Section 2.4.2 and Section 3.4.1.

3.4.4 Variation 2: The dissimilarity measure

The dissimilarity measure presented by Koren and Kochenderfer (2020) and discussed in
Section 2.4.2 is implemented as follows: whenever a failure trajectory ρs is obtained, the
trajectory is compared to a subset of the trajectories already obtained, ρ = {ρ0, ρ1, ρ2, ..., ρn}.
The trajectories may be of different lengths and therefore the trajectories are segmented into n
segments. A sequence of COMs of the segments is then computed, denoted c = {c0, c1, ..., cn}, to
provide representative points of the segments, which in turn are used to compare the trajectories.
The COM of a segment is denoted (x̄, ȳ) and is calculated according to Liu et al. (2012):p. 3:

(x̄, ȳ) =

( ∑n−1
i=1 (x

2
i+1 − x2i )

2
∑n−1

i=1 (xi+1 − xi)
,

∑n−1
i=1 (y

2
i+1 − y2i )

2
∑n−1

i=1 (yi+1 − yi)

)
(3.8)

Let the dissimilarity measure between two trajectories ρ1 and ρ2 be denoted D(ρ1, ρ2). The
dissimilarity is then computed as the distance between the COMs of the trajectories, computed
as the distance between them:

D(ρ1, ρ2) =
1

n

n∑
i=1

∥ci1 − ci2∥ (3.9)
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The resulting reward function becomes:

R =


γ
µ

∑µ
i=1D(ρs, ρi) if x ∈ E

−α− βdist(pf , pa), if x /∈ E, t ≥ tend

−log(1 +M(u, µu|x)), if x /∈ E, t < tend

where γ is a user-specified constant gain and µ is the length of ρ defined as min(k, k′) where
k is user-specified and describes the maximum number of top failure trajectories ordered by
reward, and k′ is the number of failure trajectories obtained (Koren and Kochenderfer, 2020).
The parameters used in the dissimilarity measure are illustrated for the trajectory of a vessel in
Figure 3.6.

Figure 3.6: Illustration of parameters used in dissimilarity measure using 5 segments.

3.4.5 Variation 3: Optimizing for improper behaviour

In the results of (Hjelmeland, 2021), the AST agent found failure scenarios where the adversary
attacked the ferry in an aggressive manner. The SP-VP and most COLAV systems are not
designed to avoid aggressive, deliberate attacks of other vessels, and thus, these unavoidable
failures are deemed to be of little value to system designers. As described in Section 2.4.2,
unavoidable failures such as these are often found and converged to by the AST agent.

To deal with the unavoidable failure problem, solutions proposed in the AST literature were
evaluated. As the maritime COLAV case considered in this thesis is in many ways similar to the
automobile-pedestrian COLAV system described in Koren and Kochenderfer (2020), a similar
method to their solution was chosen. The solution consists of an augmentation to the reward
function and the definition of the failure space, as elaborated on in Section 2.4.2.

The solution proposed by Koren and Kochenderfer (2020) requires a definition of improper
behaviour, to which the rules described in RSS were applied. As the COLREGs can be said to
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be the marine equivalent of the RSS, a definition based on the COLREGs was applied. In the
simulation scenario, the adversary is crossing from the starboard side of the ferry. According to
Rule 15 of the COLREGs, the proper behaviour in crossing cases is that the vessel which has
the other vessel on its starboard side is to give way by either lowering its speed to let the vessel
pass or by navigating to pass astern the crossing vessel. As the SP-VP system is only able to
adjust the vessel speed, the only option to behave properly according to the COLREGs is to
lower the vessel speed to a sufficient level and let the adversary pass. Improper behaviour is
then recognized if the ferry has a speed above some predefined limit while in close proximity to
the adversary, while the adversary is crossing. These conditions are formulated as the logical
expression :

S := U > Umax

P := D < Dmin

A := θ ∈ [δmin, δmax]

(3.10)

where S denotes a violation of the speed condition, i.e., when the ferry speed U is above a limit
value Umax. The proximity condition is denoted P and evaluates to true if the proximity D
is less than a minimum proximity Dmin. Condition A is true if the angle from the ferry to
the adversary θ is within the angle sector defined by [δmin, δmax], ensuring that the adversary
is crossing ford the starboard beam of the ferry and thus that the ferry is still in a crossing
situation.

The parameters of the improper conditions were set as follows:

Parameter Value
Umax 0.2 m/s
Dmin 30 m
δmin 0 rad
δmax

π
2

rad

A time step is then deemed improper if the following logical expression evaluates to true:

improper := S ∧ P ∧ A (3.11)

Note that this approach is an oversimplified implementation of COLREGs Rule 15, which
is highly adapted to the simulation scenario. A more comprehensive COLREGs compliance
framework is implemented in Section 3.5.

3.4.6 Variation 4 & 5: Optimizing for improper behaviour with esti-
mation noise and time delay

In the COLAV simulator, the milliAmpere control system uses a tracking module which simulates
sensory information about obstacles and adversary vessels. It is possible to introduce noise in
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the tracker measurements to investigate the effects of sensory errors on the COLAV system,
both in the position and velocity estimate of potential adversaries.

Let the ferry’s estimate of the adversary be denoted q̃a estimate noise be denoted wn. The
tracker estimate is then given as:

q̃a = qa +wn =


x
y
ẋ
ẏ

+


wx
wy
wẋ
wẏ

 (3.12)

where the noise is updated at every time step by the noise vector un. The noise dynamics are
described by the first-order model:

ẇn =
1

K
wn +

1

K
un

where K is a predefined constant.

As sensory errors are a possible cause of malfunction of the COLAV system, this was introduced
into the system as in AST experiments to identify failures where the estimation errors lead the
system to fail. The system with sensory errors was combined with optimizing for improper
behaviour to focus on sensory errors that lead the system to behave improperly and omit failures
where the adversary deliberately attacks the ferry. The AST agent is able to induce noise in
both the position and velocity estimate of the adversary by controlling the values of (up, uv) in
the noise vector in Equation (3.12):

un =


up
up
uv
uv

 .

Note that the added noise in position and velocity is the same in x and y to simplify the action
space of the AST agent.

A time delay of T seconds is also introduced in the ferry’s estimates of the adversary as an
action of the AST agent. The time delay is implemented by withholding new measurements
and feeding the ferry with old measurements corresponding to the given time delay. The time
delay at time step t is saturated by the previous time delay as measurements cannot be delayed
further back in time than the last measurement, expressed as:

Tt = min(Tt, Tt−1 +∆S).
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The complete vector of AST actions becomes:

uast =


ux
uy
uψ
up
uv
T

 .

Note that the aforementioned action space restrictions only apply to the AST agent actions
which affect the motion of the vessel. The noise- and time delay action space was experimented
with until effects were seen in the estimates of the adversary. The resulting action space
configurations for the noise and time delay actions were:

upmax = 2

uvmax = 2

Tmin = 0, Tmax = 15s

The covariance matrix of the Mahalanobis distance function in the reward function can no longer
stay the identity as the noise- and time delay actions are of much larger magnitude than the
motion-related actions. If not altered, the AST agent quickly reduced the noise and time delay
actions to similar values to that of the motion actions, to reduce the penalty on the magnitude
of the actions. The covariance matrix was set to

S =


σ2
x 0 0 0 0 0
0 σ2

y 0 0 0 0
0 0 σ2

ψ 0 0 0
0 0 0 σ2

p 0 0
0 0 0 0 σ2

v 0
0 0 0 0 0 σ2

T

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 10 000 0 0
0 0 0 0 10 000 0
0 0 0 0 0 100 000



where σ2
i denotes the variance of variable i. This covariance matrix indicates that the standard

deviations of the distributions of up, uv and T , respectively σp, σv is 100 and σT = 1000, which
might seem a bit high, but is set in resemblance to the standard deviation of the motion actions
which are also set with standard deviations of 10 - 100 times their own maximum value.

3.4.7 Restricting the adversary action space

The Python AST toolbox allows for infinitely big action spaces. However, in this SUT it was
considered appropriate to restrict the action space both to reduce the size of the action space
and to omit actions that lead to entirely unrealistic behaviour of the adversary. The actions are
restricted to the action space U ,
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uast ∈ U, U = [−umax,umax]

umax =

umaxumax
umax

 , (3.13)

where umax is a user-specified constant which, in this test case, is set to low magnitude values
as the adversary is highly affected by the actuation due to the first-order dynamics. In
Hjelmeland (2021), the actions were restricted to umax = 0.1. This action space configuration
resulted in a movement that seemed realistic, but the resulting failure modes showed adversary
behaviour that was either very aggressive or where the movement of the adversary varied
abruptly. The experiments in this thesis are therefore carried out using three action space
configurations:

U0.1 : umax = 0.1

U0.05 : umax = 0.05

U0.01 : umax = 0.01

(3.14)

These action space configurations were chosen to obtain three different experiment cases
with different levels of adversary aggressiveness and abrupt movement. As mentioned, the
configuration U0.1 gives an identical action space to the one in Hjelmeland (2021). With the
action space configuration U0.05, the adversary is able to perform some aggressive manoeuvres
by heading straight towards the ferry, but it is less able to turn and move abruptly. With the
configuration U0.01, the adversary is only able to adjust its speed and course by a small amount,
which led to scenarios where it performs a realistic and highly predictable crossing.

3.4.8 Discussion on the SP-VP method

It is important to emphasize an augmentation made for the adaption of the SP-VP system to
the experiments conducted in this thesis as well as in Hjelmeland (2021): in the full milliAmpere
system, the SP-VP module is included as a part of a more comprehensive state-machine system.
The SP-VP system is designed to fail-fast, meaning that when the conditions of a scenario are
such that the SP-VP system finds no feasible solutions, it fails, reports the failure back to the
state machine and the state machine delegates control to other modules to e.g. make the vessel
stop. As an approximate behaviour of this system, a modification was made to the SP-VP
system not to crash when the situation is infeasible, but to issue a waypoint at the current
position and with zero velocity to make it stop. This was done because simulations including
the entire state-machine system would decrease the focus of the COLAV system by introducing
several other modules which potentially could fail and cause a collision, making the test less
modularized. However, the tests could be performed with the system in its entire form for more
wholesome integration tests with a focus on COLAV. The behaviour seen in the experiments is
thus an incomplete representation of how the milliAmpere ferry will behave in such situations.
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3.4.9 AST hyperparameters

The hyperparameters for the simulator and the AST simulations used for the experiments of
Part 1 are described in Section 3.4.9.

A collision is registered if the vessels are in proximity of dcoll meters. The simulation end time
tend, the number of AST steps Nast and the batch size bs was altered when the action space of the
agent was restricted by umax = 0.01. This is because the adversary moved in a straightforward
manner with few detours, which reduced the time necessary to simulate a full crossing scenario.
This again reduced the number of AST steps necessary, which reduced the batch size needed to
perform the same number of trajectories. See Section 3.2 for definitions of the parameters.

umax Hyperparameter Value
Nepoch 30
t0 0 s
dcoll 10 m
∆S 0.1 s

All
configurations

∆A 4 s
tend 400 s
Nast 1000.1,

0.05
bs 20 000
tend 200 s
fthresh 2%
Nast 500.01
bs 10 000

3.5 Part 2: The COLREGS-compliant MPC COLAV case

The SP-VP COLAV system trades flexibility for robustness. In most cases with an approaching
adversary, the system will prompt the ferry to stop and wait for the potentially dangerous
situation to pass, instead of performing evasive manoeuvres such as changing course. This
behaviour is desirable in commercial use as it limits the possible ways that the system can be
the cause of failure. In order to test the AST method on a more dynamic COLAV system, a
guidance algorithm was implemented using an MPC approach. This implementation is inspired
by the work of Johansen et al. (2016) and Hagen et al. (2018), where an MPC layer is applied
on top of the guidance system, with the ability to modify course and speed to avoid collision in
a COLREGs-compliant manner while following a predetermined path.

The MPC system is tested in three scenarios where the COLREGs rules clearly state the proper
behaviour. In order to challenge the system further, more adversary vessels are added in further
experiments. The motivation for these experiments is to investigate how AST uncovers failures
in a more dynamic system than the SP-VP, and to see the effect of multiple adversaries. Multiple
adversaries could have been implemented in the SP-VP system as well, but wasn’t as it was
deemed unlikely that it would uncover more special situations as the SP-VP is so conservative,
and also because the workings and potential of AST in multiple adversary scenarios would be
better illustrated in simulations with a more reactive COLAV system.
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3.5.1 Vessel implementations

All vessels, including the ferry, are in this part implemented as first-order vessels. This was
due to time limitations which made it hard to test and tune the MPC configuration to work
sufficiently for the milliAmpere model, combined with the fact that Hagen et al. (2018) use a
simplified kinematic vessel model which in simulations gave minor result differences to a full
3-DOF vessel model. The dynamics of the first-order vessels are given by Equation (3.3).

For the adversaries, the speed-heading reference vector Γref = [uref , ψref ] is set initially and
kept constant throughout the episode, resulting in straight-forward behaviour.

For the ferry, the speed-heading reference vector Γref = [uref , ψref ] is updated every ∆ref

seconds by the LOS guidance controller and subsequently modified by the MPC controller.
The modified speed-heading reference, given as Γrefm = [umuref , ψref + ψm], is then fed to the
speed heading controller, which gives the actuator input τ in an identical manner as in the
adversary case, as the velocity error νe = νf − νfref . The two controller schemes are visualized
in Figure 3.7.

Figure 3.7: Illustrated control schemes for the ferry and potential adversaries in simulations
in Part 2.

The decision block in the ferry control scheme in Figure 3.7 illustrates the if-statement of
whether or not to update the reference vector. The Update ref -statement is true if the time
step is such that it is time for a new reference update according to the refresh rate of 1

∆ref
Hz.

The latest reference is kept for all time steps in-between updates.
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3.5.2 LOS guidance implementation

The LOS guidance controller used in the ferry model is described in Table 3.1. See Section 2.5.2
for further description of the variables.

Parameter Value
LLA 30 m
LWP 20 m

Table 3.1: LOS guidance controller parameters.

The initial position ηf and velocity νf of the ferry is, in all scenarios:

ηf =

00
0

 , νf =
00
0

 (3.15)

meaning that the ferry starts still in the origin. The LOS controller is set up with four waypoints
meant to be followed in sequential order:

wp1 : {N : 50, E : 0, u : 1}
wp2 : {N : 100, E : 0, u : 1}
wp3 : {N : 115.5, E : 0, u : 0}
wp4 : {N : 130, E : 0, u : 0}.

The four waypoints are chosen as a result of experiments to make the ferry keep its nominal
speed of 1 m/s for most of the trajectory until it slows down, in the end, to reach (100, 0) in a
smooth manner. As the waypoint switching distance LWP is set to 20, wp3 is activated when
the ferry reaches (80, 0) which makes the ferry slow down in the last 20m. wp4 is set to ensure
that the speed remains zero also after the ferry has switched from wp3. The resulting behaviour
is shown in snapshots from simulations in Figure 3.8:

Figure 3.8: Snapshots from simulations in ideal scenario with no adversaries. The ferry
stops in a smooth manner under the instructions of the LOS controller, in the desired
endpoint (N = 100, E = 0) and stands still until the end of the simulation.
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3.5.3 MPC implementation

The possible set of control reference modifications are implemented as in Hagen et al. (2018),
with:

• ψm ∈ {-90◦, -75◦, -60◦, -45◦, -30◦, -15◦, 0◦, 0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦}

• um ∈ {1, 0.5, 0}, i.e., {keep speed, slow down, stop}

which constitutes the same set of control behaviours as in Johansen et al. (2016), only without
the speed factor um = −1, which corresponds to full backward propulsion. This configuration
results in a total of 39 scenarios to be evaluated at every MPC update.

The cost function is implemented identically to the one described in Johansen et al. (2016), given
in Equation (2.33), except that the grounding function g(um, ψm) was omitted for simplification.
The update interval ∆ref was proposed to be around 5s by Johansen et al. (2016). This
implementation uses an update interval of 2 seconds, as the vessels move quite fast and are in
close proximity.

The MPC controller needs a model of the environment to make predictions. In this implementa-
tion, the model is given by the vessel models with their corresponding controllers as described
in Section 3.5.1. The prediction is simply made by running the full simulator from the current
time step until the end of the prediction horizon Tmpc. This means that in the ideal case without
AST actions applied, the MPC predictions are exact. However, in the AST simulations, the
MPC predictions do not include the effect of the AST actions on the adversary movements,
which makes the implementation more similar to the real world and as the predictions do
not necessarily match the exact behaviour of the vessels. However, due to the computational
complexity of predicting the outcome of all the possible control behaviours, measures are made
to simplify the predictions, including:

• The time step of the predictions is not the same as the simulator time step ∆S, but set to
∆mpc.

• The evaluation is not performed at every time step, but at an evaluation interval given by
∆eval.

The distance measure di to adversary i is implemented as the distance from the ferry to the
closest point on a sphere of radius ra around the adversary position, representing a safety region
around the adversary. Further, the simulation scenario is set up with a start time t0 and final
time tend. The parameter values are described in Table 3.2.
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Parameter Value
ϵ 0.2 m/s

ϕahead
π
4

t0 0 s
tend 150 s
ra 5 m

∆ref 2 s
Tmpc 30 s
∆mpc 2 s
∆eval 2 s
t0 0 s
tend 150 s

Table 3.2: MPC parameters and hyperparameters for simulations in Part 2

See Section 2.6 for further descriptions of the parameters. The remaining parameters of the
MPC implementation, such as the cost function parameters, are described in the following
section, as two different MPC configurations are implemented.

3.5.4 MPC configurations

To illustrate how AST can be helpful for comparing different controller configurations, two
different MPC configurations are implemented. The first configuration is a conservative one
with a high cost for both COLREGs violations and collision. It also has a small cost of changing
the speed of the vessel to easily allow it to slow down or stop the vessel when risk is prominent.
The second configuration constitutes a more aggressive COLAV approach. The MPC controller
is given a lower cost of collision and COLREGs violation and a very high cost of deviating from
the speed and heading suggested by the LOS controller.

All adversary vessels are treated the same way, for simplicity. This eliminates the need for the
subscript i in the constant definitions. As suggested by Johansen et al. (2016), Kψm and ∆ψm is
defined in an asymmetrical manner, as:

Kψm =

{
5K0 if ψm < 0

K0 if ψm ≥ 0
(3.16)

yielding a higher penalty of a change to the port side. The same is true for ∆ψm . Let the change
of reference angle compared to the last be denoted δψ = ψm − ψmlast

. ∆ψm is then implemented
as:

∆ψm =

{
0.005(10 + 15δ2ψ)) if δψ < 0

0.0005(10 + 15δ2ψ)) if δψ ≥ 0
(3.17)

∆um is defined as a function of the change in velocity δum = um − umlast
:
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∆um = 50 + 750δ2um (3.18)

The functions ∆um and ∆ψm are illustrated in Figure 3.9(a) and Section 3.5.4, respectively.

(a) ∆um
as a function of δum (b) ∆ψm as a function of ∆ψm

The remaining MPC parameters used in the configurations are described in Table 3.3.

Configuration Parameter Value

Both

q 4
p 1

dsafe 50 m
ϵ 0.2 m/s

Conservative

Kcoll 10
κ 1000

Kum 0.005
K0 500

Aggressive

Kcoll 1
κ 100

Kum 50000
K0 500

Table 3.3: Parameters used in the different MPC configurations.

The parameters were found by tuning in experiments. They might not constitute optimal
MPC implementations but gave satisfying results for the purpose. See Section 2.6 for further
descriptions of the functions and parameters.

The performance of the two controllers in the scenario cases with ideal conditions, i.e., without
AST intervention, is presented in the following sections.

3.5.5 COLREGs testing scenarios

Three scenarios were chosen for testing, which all express a situation related to the COLREGs
rules:
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Scenario 1: A crossing situation where an adversary vessel is passing from the starboard side
of the ferry, as in the case study of part 1, Section 3.4. According to COLREGs rule 15, the
ferry becomes the give-way vessel as it has the adversary on its starboard side. This means
that the ferry is obliged to take action, if possible, to avoid crossing in front of the adversary.
Implemented with reference vector Γ = [1,−π

2
] and adversary initial position and velocity:

ηa =

 50
50
−π

2

 , νa =
10
0



Scenario 2: A head on situation, where an adversary vessel starts north of the vessel and
heads straight towards it. Rule 14 of the COLREGs dictates that the proper behaviour in such
a situation is for both vessels to alter their course to the starboard side. Implemented with
reference vector Γ = [1, π] and adversary initial position and velocity:

ηa =

1000
π

 , νa =
10
0



Scenario 3: An overtaking situation, where an adversary vessel starts North of the ferry and
heads in the same direction, but with a lower speed than that of the ferry. COLREGs Rule 13
instructs the ferry to stay out of the way of the adversary as it becomes the overtaking vessel.
Implemented with reference vector Γ = [0.5, 0] and adversary initial position and velocity:

ηa =

200
0

 , νa =
10
0



The scenarios are illustrated in Figure 3.10.
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Figure 3.10: The three COLREGs based test scenarios used in AST simulations with
correct COLREGs-compliant behaviours.

3.5.6 Simulations, scenario 1: Crossing

Snapshots from simulations of the scenario are depicted in Figure 3.11 and Figure 3.12. The
conservative MPC COLAV system handles the crossing scenario by both turning to starboard
side and stopping while the adversary passes. It continues to follow the path when the risk of
doing so is sufficiently low and it is no longer violating the COLREGs when turning port. The
aggressive configuration does not lower its speed but proceeds to pass astern the adversary, in
compliance with COLREGs. Both behaviours comply with COLREGs rule 15.

Figure 3.11: Snapshots from simulations with conservative configured MPC COLAV
system in crossing scenario.
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Figure 3.12: Snapshots from simulations with aggressive configured MPC COLAV system
in crossing scenario.

3.5.7 Simulations, scenario 2: Head on

Snapshots from simulations of the scenario are depicted in Figure 3.13 and Figure 3.14. In the
head on situation, the conservative MPC COLAV system handles the increasing risk of the
approaching vessel by navigating to starboard side in compliance with COLREGs. It proceeds
to stop for a while as it lets the adversary pass before it proceeds to follow the path. As in the
crossing scenario, the aggressive configuration does not lower its speed, but passes the adversary
vessel on the starboard side and efficiently returns to follow the path.

Figure 3.13: Snapshots from simulations with conservative configured MPC COLAV
system in head on scenario.

Figure 3.14: Snapshots from simulations with aggressive configured MPC COLAV system
in head on scenario.

3.5.8 Simulations, scenario 3: Overtaking

Snapshots from simulations of the scenario are depicted in Figure 3.15 and Figure 3.16. The
conservative MPC handles the overtaking by lowering its speed and keeping a safe distance to
the adversary. The aggressive MPC passes the vessel by a manoeuvre to the starboard side, and
efficiently returns to the path.
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Figure 3.15: Snapshots from simulations with conservative configured MPC COLAV
system in overtaking scenario.

Figure 3.16: Snapshots from simulations with aggressive configured MPC COLAV system
in overtaking scenario.

3.5.9 Multiple adversary scenarios

The three scenarios were expanded to include multiple adversaries to challenge the MPC system
further and possibly uncover failures caused by e.g. conflicting COLREGs violations. Note that
the plots of these sections show both the conservative and the aggressive MPC configuration
behaviours.

Scenario 1 was expanded to include two adversaries, where the second adversary was set up to
perform a crossing, but closer to the ferry to investigate how this would affect the vessel as it
attempts to perform the proper manoeuvre to the starboard side of the crossing vessels. See
Figure 3.17 for simulation snapshots of the scenario. The conservative configuration ends up
with a manoeuvre to the port side of the closest crossing vessel, and quite close to it too. There
seem to be some conflicting directions provided by the MPC, as it initially attempts to cross
port of the closest adversary, but stops as it awaits the passing of the second adversary. When
the closest adversary gets even closer, it is forced to evade to the port side. The scenario poses
less challenge to the aggressive configuration, which

(a) Conservative configuration (b) Aggressive configuration

Figure 3.17: Snapshots from simulations with aggressive configured MPC COLAV system
in crossing scenario with two adversaries.
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The scenario was further expanded to include a total of three adversary vessels, by adding a
vessel to be overtaken, see simulation snapshots in Figure 3.18. The conservative configuration
solved the scenario by stopping for a long time initially and proceeding when the crossing
vessels had passed and the distance to the vessel to be overtaken was sufficient. The vessel to
be overtaken seemed to make less challenge for the aggressive configuration, except that the
starboard manoeuvre is performed for a little longer duration.

(a) Conservative configuration (b) Aggressive configuration

Figure 3.18: Snapshots from simulations with aggressive configured MPC COLAV system
in the crossing scenario with three adversaries.

Scenario 2 was expanded to include two adversaries by adding a vessel which approached the
ferry from astern. This was done in order to challenge the starboard manoeuvre that the ferry
is supposed to perform with regard to the head-on vessel. The two configurations solve the
challenge in similar manners, by evading the head-on vessel while keeping clear of the overtaking
vessel. Simulations from the two-vessel scenario are shown in Figure 3.19.

(a) Conservative configuration (b) Aggressive configuration

Figure 3.19: Snapshots from simulations with aggressive configured MPC COLAV system
in head on scenario with two adversaries.

The scenario was further extended to include a crossing vessel, which made the conservative
MPC perform a manoeuvre to starboard side initially and await there until all the vessels
had passed. The aggressive configuration was able to manoeuvre on the starboard side of the
crossing vessel while avoiding the head-on and overtaking vessel, see simulations in Figure 3.20.
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(a) Conservative configuration (b) Aggressive configuration

Figure 3.20: Snapshots from simulations with aggressive configured MPC COLAV system
in head on scenario with three adversaries.

Scenario 3 was extended to include a crossing adversary to challenge the overtaking manoeuvre.
The aggressive configuration solved this by passing in front of the crossing vessel, as the
overtaking manoeuvre had led it to have speed and head toward the port side when the crossing
becomes active. The conservative MPC stops and waits for the crossing to pass, see Figure 3.21.

(a) Conservative configuration (b) Aggressive configuration

Figure 3.21: Snapshots from simulations with aggressive configured MPC COLAV system
in the overtaking scenario with two adversaries.

The last adversary in scenario 3 was set up to induce a head-on situation amid of the overtaking
manoeuvre. The conservative configuration solved this by stopping in the middle of the
trajectories of the head-on and the vessel to be overtaken. The aggressive configuration
performed the overtaking manoeuvre so fast that the head-on vessel did not pose a challenge,
see Figure 3.22

(a) Conservative configuration (b) Aggressive configuration

Figure 3.22: Snapshots from simulations with aggressive configured MPC COLAV system
in the overtaking scenario with three adversaries.
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3.5.10 Discussion on the MPC method

There are signs of a problem described in Hagen et al. (2018), where the COLREGs manoeuvres
are interrupted while performing them due to the decrease of collision risk. This does, in some
of the cases, make the ferry behave somewhat abrupt and little in regard to Rule 17 of the
COLREGs, which urges ships to act in a predictable manner unless there is a prominent need to
take drastic action. Hagen et al. (2018) solve this problem by introducing a cost of interrupting
COLREGs compliant manoeuvres. However, as the implementation of the MPC COLAV system
was sought to be more illustrative than an in-depth safety study of the MPC based methods, it
was decided to keep the implementation simple and understandable. Introducing more terms in
the cost function could also make the system harder to debug during development.

3.5.11 AST implementation

In order to identify collisions where the MPC COLAV system violated the COLREGs, the
AST problem is formulated to optimize for improper behaviour, as described in variation 3 in
Section 3.4. A time step is deemed improper if the binary indicator µi is true for any of of the
adversary vessels, which indicates that either Rule 14 or Rule 15 is violated, and the trajectory
is considered a failure if the fraction of improper time steps, fimp is larger than the threshold
fthresh, as described in Section 3.4.

The AST agent is able to control the adversary vessels in an under-actuated manner, by adding
disturbances to the surge speed and yaw rate only. The disturbance in sway speed was dropped
to limit the action space of the agent to simplify the DRL network when applying multiple
adversaries. The dynamics of the adversary vessels then become:

η̇ = Rz,ψν

ν̇ = − 1

T
τ + u (3.19)

with the disturbance vector u given as:

u =

uu0
uψ

 (3.20)

and the vector of AST actions uast defined as

uast =

[
uu
uψ

]
(3.21)

where uu is the AST disturbance in surge speed and uψ the AST disturbance in yaw rate. The
action space of the agent was restricted to U0.05, which is the middle value of the action space
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configurations from Part 1, resulting in realistic adversary trajectories. In the multiple adversary
case, the vector of AST actions is expanded to

uast =



uu,1
uψ,1
uu,2
uψ,2
...
uu,n
uψ,n


(3.22)

such that the AST agent provides a surge and heading disturbance for all n adversaries.

The AST hyperparameters applied in Part 2 are specified in Table 3.4. Note that the collision
distance is reduced from Part 1, as the vessels are thought to be smaller in Part 2.

Hyperparameter Value
bs 5 000

Nepoch 20
t0 0 s
tend 150 s
dcoll 5 m
∆S 0.1 s
∆A 3 s
fthresh 10%
Nast 50

Table 3.4: AST hyperparameters, part 2.

3.5.12 Computer specs and simulation duration

The experiments were conducted on two computers: a Dell OptiPlex 7060 SFF, with Core i5, 8
GB RAM and 256GB SSD provided by NTNU, and a Dell XPS 15 9510, with Core i7, 16 GB
RAM and 512 GB SSD provided by Zeabuz. The duration of one AST simulation was in the
middle of 4 to 5 hours, in both parts. Via bash scripts, many simulations were set up to run in
sequence, often overnight.
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Chapter 4
Results and discussion

In this chapter, the results from the two parts are presented together with a discussion of the
findings. The advantages and disadvantages of the different approaches are discussed based on
the effect they have on the resulting failure modes as well as the learning process of the RL
agent. The results of the clustering approach are shown in the results from Part 1.

4.1 Part 1: The SP-VP case

This chapter presents the results from further experiments with the SP-VP system, which
builds upon the work of Hjelmeland (2021). The results from Part 1 are meant to illustrate
the differences in the failure modes obtained in the problem variations described in Section 3.4,
as well as the effect of the problem variation on the learning process of the AST agent. In the
cases where it is relevant, the clusters produced with the method described in Section 3.1 are
portrayed. Example failure trajectories are also shown, sometimes together with snapshots from
simulations that illustrate the SP-VP representation of the adversary to illustrate the SP-VP
point of view of the scenario. Three DRL statistics are also presented when relevant, which
illustrate the progress of the training of the DRL policy of the AST agent. The discussion of the
results is done in the presentation of them, as well as in the general discussion in Section 4.1.6.

Table 4.1 presents an overview of the failure statistics from the experiments conducted in
Part 1. The table describes the number of failures found in each scenario, denoted F, with
the corresponding action-space configuration U , the total number of trajectories T and the
percentage of the trajectories. The total number of simulated trajectories varies between the
experiments, as it typically increases when failure is found frequently, as this shortens the
episodes and gives room for more trajectories in the batch.
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Problem
variation U F T %

0.1 1691 8307 20.4%
0.05 290 8427 3.4%Baseline
0.01 0 6000 0%
0.1 677 8102 8.4%

Dissimilarity 0.05 822 7993 10.2%
0.1 364 7418 4.9%
0.05 9 6765 0.1%Improper

behaviour 0.01 0 6000 0%
0.1 220 6954 3.2%
0.05 1910 8881 21.5%

Improper
behaviour &

estimation noise 0.01 10145 11160 90.9%
0.1 737 7918 9.3%
0.05 244 7478 3.3%

Improper
behaviour &
time delay 0.01 0 6000 0%

Table 4.1: Failure statistics from experiments in Part 1. Column F denotes the number
of failures, T the total number of trajectories in the AST simulation and % the failure
percentage.

4.1.1 Variation 1: Baseline

Failure modes were found in AST simulations for the baseline variation with the adversary
action-space configurations U0.1 and U0.05, but none with U0.01. Even though the simulation
scenario was tweaked compared to Hjelmeland (2021), the general tendency of the failure modes
is the same. The adversary vessel expresses aggressive behaviour as it heads straight towards
the ferry to provoke a collision.

An example of a failure trajectory from simulations with U0.1 is depicted in Figure 4.1(a),
together with snapshots from the corresponding simulation showing the SP-VP representation
of the adversary. The ferry stands still for the majority of the simulation, except for small
windows where it perceives the adversary to be heading in the northwest direction. Still, it is
evident that the adversary is responsible for the collision, as it eventually heads straight for the
ferry while the ferry is standing still.

(a) (b) Start of trajectory 1070. (c) Near the end of trajectory 1070.

Figure 4.1: Example failure trajectory together with snapshots from simulations showing
the SP-VP representation of the adversary.
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In the results from the simulations with the action-space configuration U0.05, there is, as expected,
less abrupt and irrational behaviour of the adversary. The behaviour is, however, still quite
aggressive, as it heads straight toward the ferry in all the failure modes obtained. An example
of a failure trajectory from simulations with U0.05 is depicted in Figure 4.2(a), together with
snapshots from the corresponding simulation with the SP-VP details depicted. In this scenario,
the adversary seems to be on a course to pass astern the ferry, which makes the ferry keep its
speed straight ahead. The adversary then turns and attacks the ferry from astern, which is
again, quite obviously not a collision caused by the SP-VP system.

(a)
(b) Start of trajectory 283. (c) Near the end of trajectory 283.

Figure 4.2: Example failure trajectory together with snapshots from simulations showing
the SP-VP representation of the adversary.

The clusters from the simulations are depicted in Figure 4.3 and Figure 4.4. In all clusters,
the aggressive behaviour of the adversary is evident. The effect of the restricted actions space
is also well illustrated in the clusters, as the movement of the adversary is much smoother
in all cases. In order to reduce the space needed to present all the results and enable easy
comparison, the size of the cluster plots is kept small. However, the shape of the clusters is the
most important aspect of these plots, which can still be easily extracted from the plots. The
red lines in the clusters describe the cluster centroids, also known as the cluster barycenters,
which are computed by minimizing the sum of squared DTW distance between the barycenter
and the other series of the cluster.

Figure 4.3: Resulting clusters of the obtained failure modes for the baseline variation under
the adversary action-space configuration U0.1. The red line depicts the cluster centroid.
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Figure 4.4: Resulting clusters of the obtained failure modes for the baseline variation
under the adversary action-space configuration U0.05

The RL statistics of the baseline case are shown in Figure 4.5. The first plot shows the average
return, both the actual return and the discounted return, together with the standard deviation
of returns denoted Std, for all trajectories in the epoch. The average return is typically higher
as the final large negative reward in the case of no failure is discounted for the majority of
the episode. The second plot presents the number of trajectories run in each epoch, which as
previously mentioned, typically increases when failures are found. The bottom plot depicts the
entropy of the policy, which indicates the level of randomness the DRL agent picks its actions
with. The peaks of the entropy plot typically correspond to the largest standard deviation in
the returns, as would be expected as a higher level of stochasticity in the action choice results
in a more significant variation of trajectory outcomes and thus rewards.

The plots show that the AST agent in both cases seems to be unable to identify a strategy
which results in failure every time, as the average return seems to stabilize. However, there
are more signs of convergence in the U0.05 case, as the policy entropy decreases throughout the
simulation, the average return stabilizes and the number of trajectories flattens. This indicates
that the AST agent converged to a sub-optimal strategy in the U0.05 case. The fact that the
agent in the U = U0.05 converges faster than the agent in the U = U0.01 case, is likely due to
the decreased action-space restriction, as the search space is significantly smaller and thus the
alternative ways of bringing the system to failure are fewer. In the U0.01 case, there are signs
of continued exploration, as the entropy stays high throughout the simulation and increases
toward the end, which indicates that the agent has not converged and that the simulation could
have been extended to more epochs to see convergence of the AST agent.

(a) U0.1 (b) U0.05

Figure 4.5: RL statistics over all simulation epochs.
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4.1.2 Variation 2: Dissimilarity measure

The resulting failure modes which are identified when applying the dissimilarity measure in the
reward function are in fact more diverse compared to the baseline case. In the U = U0.1 case,
fewer trajectories were found, but the variation between trajectories is higher and the shapes of
the trajectories are more creative. In the U = U0.05 case, the set of failures is both significantly
bigger, and also more diverse than the baseline case.

Four examples of resulting trajectories are depicted in Figure 4.6, which show more peculiar
adversary trajectories than the ones found in the baseline variation.

(a) U0.1 (b) U0.05

Figure 4.6: Examples of failure trajectories found when applying the dissimilarity measure.

The resulting clusters are shown in Figure 4.7 and Figure 4.8. The effect is evident in the
clusters, as new cluster shapes are introduced in both cases. In the clusters for the U = U0.1

case, the manually chosen number of clusters k seems like a poor fit as e.g. cluster 1 seem to
hide some internal variations. Still, the effect of the dissimilarity measure is evident as the agent
obtained trajectories of completely new shapes.

Figure 4.7: Resulting clusters of the obtained failure modes for the dissimilarity variation
under the adversary action-space configuration U0.1
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Figure 4.8: Resulting clusters of the obtained failure modes for the dissimilarity variation
under the adversary action-space configuration U0.05

In the RL statistics, depicted in Figure 4.9, the dissimilarity measure is evident as the average
return is higher in both cases, which is expected as the dissimilarity measure gives a positive
reward in the case of failure. Other than that, the RL learning process does not seem too
affected by the dissimilarity measure, except that the standard deviation on returns is slightly
higher and that the convergence tendency in the U = U0.05 case is not seen in the return and
number of trajectories. However, the policy entropy is lower than seen in the baseline case and
decreases more steadily, which may be a sign that the policy is on its way to converge toward
the end.

(a) U0.1 (b) U0.05

Figure 4.9: RL statistics over all simulation epochs.

It is possible that the dissimilarity measure could be categorized as over-engineering of the
reward function, as it implements an additional purpose of the AST agent which is not related
to the specific goal of the agent. The effect of the measure seems to have a positive effect
when obtaining failures in this specific case, however, it could have an unwanted effect in other
systems by leading the AST agent away from failure. As it is hard to isolate the effect of the
measure, it was decided not to keep the dissimilarity measure in the reward functions for further
experiments. It can, of course, be implemented as an additional feature if the results of an
AST simulation was highly similar. Other methods exist to ensure more exploration of the
DRL agent, such as the go-explore method implemented in (Koren and Kochenderfer, 2020) or
altering the hyperparameters of the Gaussian distributions of the policy output.
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4.1.3 Variation 3: Optimizing for improper behaviour

Optimizing for improper behaviour gave significantly fewer results compared to only optimizing
for collision, as 364 failure modes were found in the U = U0.1 case and only 9 failures were found
in the U = U0.05 case.

Examples of failure trajectories are shown in Figure 4.10(a) (a) and Figure 4.11(a) (a), with
snapshots from simulations and corresponding SP-VP representation of the adversary. In the
U = U0.1 case, the adversary learns to trick the ferry into behaviour deemed improper by
Equation (3.11) by behaving sufficiently abrupt with turns that indicate that it is headed
elsewhere, such that the ferry continues forward and thus has a certain speed while in close
proximity of the adversary. In the U = U0.05 case, the behaviour is less abrupt, but the tendency
is the same: the adversary pretends to be crossing at a distance which is sufficiently large so that
the SP-VP system withholds the speed, but turns toward the ferry in the end of the simulation.

(a)

(b) Start of trajectory 364. (c) Near the end of trajectory 364.

Figure 4.10: Example failure trajectory together with snapshots from simulations showing
the SP-VP representation of the adversary.

(a)

(b) Start of trajectory 9. (c) Near the end of trajectory 9.

Figure 4.11: Example failure trajectory together with snapshots from simulations showing
the SP-VP representation of the adversary.

The resulting trajectory clusters are shown in Figure 4.12 and Figure 4.13. The abrupt behaviour
of the adversary in the U = U0.1 case is evident in the clusters, and the strategy of heading in
another direction until the end of the simulation is evident in the clusters corresponding to the
U = U0.05 case.
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Figure 4.12: Resulting clusters of the obtained failure modes for the improper variation
under the adversary action-space configuration U0.1

Figure 4.13: Resulting clusters of the obtained failure modes for the improper variation
under the adversary action-space configuration U0.05

Even though the results show adversary behaviour that can be considered abrupt, irrational
or unlikely, they do expose a concept that the SP-VP system and most COLAV systems lack,
namely the concept of understanding intention. With the simplified simulated sensory module
and the SP-VP system, the ferry is able to, at every time step, determine the state of the
environment and potentially react to it. However, the intention of the environment elements
are typically not accounted for, such as the question of "where do we believe this adversary
vessel is going". This is evident in the results of this variation, as the SP-VP system issues
the order to increase the speed of the ferry every time it seems that the adversary is headed
in another direction. There is no accounting for the adversary behaviour in the previous time
steps, which could have led to the conclusion that even though this adversary vessel is behaving
abrupt, the overall tendency of its movement implies that it will at some point cross in front of
the ferry. In similar real-life situations, a human helmsman would probably have registered this
kind of passage as a "drunken driver" and waited for passing. A possible way to implement such
reasoning would be to await speeding up again after a stop has occurred, with the condition
that the overall risk of collision must decrease for some time before returning to nominal speed.
This kind of reasoning could, of course, be made by a system on another layer in the hybrid
deliberative/reactive structure and thus not be the responsibility of the COLAV system.

4.1.4 Variation 4: Optimizing for improper behaviour with estimation
noise

In variation 4, failure modes were obtained under all action-space configurations. Examples
of failure trajectories found in the U = U0.1 and U = U0.05 are depicted in Figure 4.14 and
Figure 4.15 respectively, together with plots showing how the adversary estimates evolve, and
snapshots from the corresponding simulation with the SP-VP adversary representation. In both
action-space configuration cases, the noise is quite significant and highly affects the velocity
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estimate, which causes the ferry to keep its nominal speed as the SP-VP system figures that the
adversary course points north. The results from the two action-space configurations are quite
similar, as it is mainly the estimation noise which causes the collisions.

(a) Start of trajectory 200. (b) Near the end of trajectory 200.

Figure 4.14: Example trajectory for the U = U0.1 case when optimizing for improper
behaviour with estimation noise.
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(a) Start of trajectory 1900. (b) Near the end of trajectory 1900.

Figure 4.15: Example trajectory for the U = U0.05 case when optimizing for improper
behaviour with estimation noise.

The resulting trajectory clusters for the U = U0.1 and U = U0.05 cases are shown in Section 4.1.4
and Section 4.1.4. Clusters were not obtained in the U = U0.01 case, as all the failure modes
were highly similar. The number of failures found in the U = U0.05 case is dramatically higher
than in the U = U0.1 case, which indicates that it is an advantage for the AST agent to not
have to search through the action-space corresponding to the movement of the adversary.

An example of a failure trajectory for the U = U0.01 case is depicted in Figure 4.18. As in the
previous action-space configurations, the noise values are significant throughout the episodes.
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Figure 4.18: Example trajectory for the U = U0.01 case when optimizing for improper
behaviour with estimation noise.

The estimation noise variation was the only variation where failures were obtained in the
U = U0.01 case, and also interestingly the case where most failure modes were found. This
is likely due to the heavy restriction of the action-space, which causes the agent to focus on
exploring the noise values, and quickly converge to high noise levels. The agent is seen to clearly
converge in the RL statistics shown in Figure 4.19.

Figure 4.19: RL statistics over all simulation epochs.

4.1.5 Variation 5: Optimizing for improper behaviour with time delay

Failures were found in variation 5 for both the U = U0.1 and the U = U0.05 cases. Examples of
failure modes, with the corresponding adversary estimate development, are shown in Section 4.1.5
and Figure 4.21. The estimate plots show that there is a significant time delay in the system
in both cases. Note that the plots can be somewhat misleading in this case, as the estimates
plotted typically correspond to vessel position and movements further ahead in the trajectory.

77



CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.20: Example trajectory for the U = U0.1 case when optimizing for improper
behaviour with time delay.

Figure 4.21: Example trajectory for the U = U0.05 case when optimizing for improper
behaviour with time delay.

As the time delay required to bring the system to failure was so significant, the failure modes
are considered somewhat irrelevant. Experiments were performed with lower values of the time
delay value Tmax, but no failures were obtained. The time delay is thus interpreted as a less
appropriate way to induce errors in the SP-VP system.

4.1.6 General discussion of results from Part 1

The results from the experiments of part 1, which is an extension of the work presented in
Hjelmeland (2021), show that the further extensions of the scenarios and problem augmentations
have interesting effects on the failures found by AST.

The restriction of the adversary action-space proved effective, as it resulted in smoother behaviour
of the adversary and thus more reasonable and likely failure modes. The dissimilarity measure
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in variation 2 gave a more diverse set of failures. Still, due to the uncertainty regarding if this is
an over-engineering of the reward function or not, the choice was made to omit the measure in
further experiments.

Measures were made in variations 3, 4 and 5 to obtain failure modes which were not caused by
the aggressive behaviour of the adversary vessel, but by improper behaviour of the ferry under
the control of the SP-VP COLAV system. The results show that this way of formulating the
AST problem has definite benefits. In the cases with estimation noise or time delays, it was
evident that the reason for the collision was, in fact, the estimation noise and the time delay
induced in the SITAW system of the ferry. In variation 3, without estimation errors, failures are
found where the SP-VP system misunderstands the intention of the adversary and proceeds
to keep speed straight ahead, ending in a collision. Even though the adversary still exposes
irrational and improbable behaviour, the failures do uncover this lack of grasp of intention.
However, as mentioned in the variation 3 results, the concept of understanding intention may
not be the responsibility of the COLAV system but could be assigned to another level of the
hybrid/deliberative architecture.

The SP-VP system has, through all the experiments in this work in addition to the ones performed
in Hjelmeland (2021), undergone thorough testing under different problem formulations, and
proven hard to provoke into causing a collision. The system has not been tested in various
scenarios, and thus it is outside the scope of this thesis to comment on its overall performance.
Still, it can be stated with confidence that the SP-VP system has proved substantially robust to
a diverse set of adversary behaviour in the specific crossing scenario used in the experiments.

4.2 Part 2: Experiments with COLREGS-compliant MPC
COLAV system

This chapter presents the results from the experiments conducted in Part 2 of the thesis. The
results from part 2 are meant to illustrate how the AST can be applied to a more dynamic
system with built-in compliance with the COLREGs. The results also show how AST can
be used to illustrate the difference in possible failures of two different COLAV configurations,
and how the introduction of multiple adversaries affects the failures, the COLREGs violations
and the learning process of the AST agent. Example failure modes are shown in the cases
where such were obtained, and the RL statistics are shown in the cases where it is relevant.
Discussion of the results is done in the presentation of them, as well as in the general discussion
in Section 4.2.4.

Clustering is not applied to the results of this part, mainly because the clustering module was
centered around the adversary movement. In the SP-VP system, the movement of the ferry was
restricted to the path and therefore highly similar, allowing for categorization of the failures
using only the trajectory of the adversary. If the DTW method was to be applied to the system
of Part 2, it would have to be altered to take the trajectory of the ferry into account, as it
varied at least as much as the adversary trajectories, and also the trajectories of the additional
adversaries. Moreover, in this case it could have been beneficial to implement a more similar
approach to that presented in Lee, Kochenderfer, Mengshoel, and Silbermann (2018), where
GBDT were applied, to categorize the failures on e.g. similar sequences of COLREGs violations.
Due to lack of time, this was not implemented in this work, but it definitely could have added
value to the results and should be subject for further research.
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Table 4.2 presents an overview of the failure statistics from the experiments conducted in Part
2. The table describes the number of failures found in each scenario, with the corresponding
MPC configuration, total number of trajectories and the percentage of the trajectories. As in
Part 1, the total number of trajectories simulated varies between the experiments, as it typically
increases when failure is found frequently, as this shortens the episodes and gives room for more
trajectories in the batch.

It is evident in the overview that the crossing scenario was the only scenario where failure modes
were found with only one adversary, as well as all the scenarios with more adversary vessels.
For the head on scenario, two adversary vessels had to be introduced to find failures in the
conservative configuration. For the aggressive configuration, failures were not obtained in this
scenario until the three-adversary case. In the overtaking-scenario many failures were found for
the aggressive configuration, but fewer in the case of the conservative configuration.

One adversary Two adversaries Three adversariesScenario MPC
config F T % F T % F T %
Conser-
vative 1115 2705 41.2% 408 2146 19.0% 25 2010 1.2%

1:
Crossing Aggre-

ssive 1425 3086 46.2% 108 2201 4.9% 1189 2869 41.4%

Conser-
vative 0 2007 0% 151 2050 7.4% 667 2310 28.9%

2:
Head on Aggre-

ssive 0 2116 0% 0 2135 0% 388 2339 16.6%

Conser-
vative 0 2000 0% 22 2010 1.1% 119 2041 5.8%

3:
Overtaking Aggre-

ssive 0 2010 0% 4838 5398 89.6% 5082 5550 91.6%

Table 4.2: Failure statistics from experiments in Part 2. The column F denotes the number
of failures, T the total number of trajectories in the AST simulation and % the failure
percentage.

The following sections will present and discuss examples of failure modes from the cases where
failure modes were obtained.

4.2.1 Scenario 1: Crossing

One adversary vessel

In the one adversary vessel case, many failures were found for both MPC configurations. Some
example failure modes are depicted in Figure 4.22 and Figure 4.23, together with the time steps
that are considered violations of either rule 14, rule 15, or both. The failures are similar between
the conservative and the aggressive case, as the adversary heads for the vessel. The ferry initially
attempts to perform a COLREGs compliant manoeuvre to the starboard side in all cases, but
as the course of the adversary changes to seem to be on its way to pass astern the ferry, the
manoeuvre is interrupted and a change to the port side is initiated, which eventually results
in a collision. Although the behaviour of the adversary can again be considered aggressive, it
is evident that the MPC controller could have solved the scenarios in a better manner by not
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interrupting its initial COLREGs compliant manoeuvre to the starboard side. As mentioned in
Section 3.5.10, this is a concept discussed in Hagen et al. (2018), where a cost was put on the
interruption of COLREGs-compliant manoeuvres, a concept which could have resolved these
situations.

Figure 4.22: Examples of failure modes found with the conservative configuration in the
crossing scenario with one adversary vessel.

Figure 4.23: Examples of failure modes found with the aggressive configuration in the
crossing scenario with one adversary vessel.

The RL statistics show signs of converging to an optimal solution in both cases toward the end,
as the average return tend toward zero, see Figure 4.27. The policy entropy is relatively low in
the conservative configuration case, which is also evident in the resulting trajectories as they
are very similar, with only dissimilarities toward the end of the trajectory. In the aggressive
configuration case, the shape of the adversary trajectory varies to a greater extent, which is
evident in the policy entropy. The initial value of the policy entropy is in both cases lower
than the entropies seen in Part 1, which is likely due to the action-vector only consisting of two
elements. The standard deviation on returns are in general a lot higher in Part 2 compared
to Part 1, which corresponds to the more dynamic behaviour of the MPC controller compared
to the SP-VP controller. This naturally results in a variety of different scenario outcomes, as
even a small change in a couple of actions can cause highly different responses in the MPC
system. Periods of low standard deviation can thus be interpreted as periods where the adversary
behaviours are not affecting the MPC response much, which may correspond to scenarios where
the adversaries are headed in directions where they pose no risk to the ferry.

81



CHAPTER 4. RESULTS AND DISCUSSION

(a) Conservative configuration (b) Aggressive configuration

Figure 4.24: RL statistics over all simulation epochs.

Two adversary vessels

With two adversary vessels attempting to cross, the COLREGs compliant manoeuvre to the
starboard side is challenged as the ferry is less able to turn to the starboard side due to
the increased risk of collision with the closest adversary. Failure modes were found for both
configurations and examples are shown in Figure 4.25 and Figure 4.26. In the conservative
configuration case, collisions are found with both adversaries, while in the aggressive configuration
case, the AST agent tends to a strategy of having adversary 2 provoke the ferry into a manoeuvre
to port side to enable collision with adversary 1. It is interesting how, in both cases, the two
adversaries seem to be cooperating to make the collision happen.

Figure 4.25: Examples of failure modes found with the conservative configuration in the
crossing scenario with two adversary vessels.
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Figure 4.26: Examples of failure modes found with the aggressive configuration in the
crossing scenario with two adversary vessels.

Signs of convergence are less evident in these simulations, with a high standard deviation on
returns throughout the simulations and little increase in returns, suggesting that the number of
epochs should have been increased.

(a) Conservative configuration (b) Aggressive configuration

Figure 4.27: RL statistics over all simulation epochs.

Three adversary vessels

When faced with three adversary vessels, where two of the vessels are crossing and one is
positioned such that the ferry becomes the overtaking vessel, the failures found are dramatically
reduced in the conservative configuration case, while it increases from the two-adversary case for
the aggressive MPC. The examples shown in Figure 4.28 and Figure 4.29 can help explain why:
the conservative configuration initially stops due to the vessel being overtaken, which makes it
less prone to collision with the two crossing vessels as well. Thus, the vessel being overtaken
can be said to aid the conservative configuration in this case. For the aggressive configuration,
adversary 2 is mostly used to induce a violation of rule 15 and urge the ferry to a trajectory
closer to the vessel being overtaken, while the vessel being overtaken provokes either a collision
itself, or urges the ferry to either perform a sufficiently large starboard manoeuvre such that
adversary 1 can collide with the ferry. Thus, the vessel to be overtaken poses an additional
challenge for the aggressive configuration. In all scenarios with the aggressive configuration, a
high fraction of improper time steps is seen as it is almost impossible to navigate such a situation
without violating any rules unless it chooses to stop, as in the conservative configuration. This
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is also the first case where a violation of rule 14 is found, as adversary 1 is in some time steps
found to be head on of the ferry.

Figure 4.28: Examples of failure modes found with the conservative configuration in the
crossing scenario with three adversary vessels.

Figure 4.29: Examples of failure modes found with the aggressive configuration in the
crossing scenario with three adversary vessels.

The resulting RL statistics depicted in Figure 4.30 show signs of the AST agent getting lost in
the conservative configuration case, as it stops to discover more failures after 10 epochs have
passed, which will be further discussed in Section 4.3. For the aggressive configuration case,
there is a spike in return at the end of the trajectory, which likely corresponds to the part where
the agent realized it could use the vessel being overtaking to provoke collisions, as this is a
tendency which is seen in all the last failures found in this scenario.
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(a) Conservative configuration (b) Aggressive configuration

Figure 4.30: RL statistics over all simulation epochs.

4.2.2 Scenario 2: Head on

In the head on scenario, no failures were found in the one-adversary case for neither of the two
configurations.

Two adversary vessels

A few failures were found when adding adversary 2, which is set to additionally challenge the
starboard manoeuvre of the ferry as it comes in a straight-forward manoeuvre from aster the
ferry. Three example failure modes are shown in Figure 4.31. In the start, some failures are
found where the ferry collides with the head on-vessel. However, the AST agent tends toward a
strategy of having adversary 2 attack the ferry from astern while the head on-vessel only urges
the ferry to perform the starboard manoeuvre.

Figure 4.31: Examples of failure modes found with the conservative configuration in the
head on scenario with two adversary vessels.

Three adversary vessels

A crossing vessel was added to the scenario in the case with three adversaries. Failures were
obtained with both configurations, however, none of the collisions were with the head on
adversary. Example failure modes are depicted in Figure 4.32 and Figure 4.33. In all cases, the
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head on vessel provokes an initial manoeuvre to the starboard side. The crossing adversary,
adversary 3, then provokes a manoeuvre to port side, where a collision is often found either
with adversary 2 or 3. The aggressive configuration is in general attacked later in the episode
than the conservative one, by an astern attack of adversary 2. Violations of both rule 14 and
rule 15 are found in both cases, as seen in the examples.

Figure 4.32: Examples of failure modes found with the conservative configuration in the
head on scenario with three adversary vessels.

Figure 4.33: Examples of failure modes found with the aggressive configuration in the
head on scenario with three adversary vessels.

4.2.3 Scenario 3: Overtaking

In scenario 3, failures were found for the both configurations with both two and three adversary
vessels.

Two adversary vessels

Example failure scenarios for the case with two adversaries are shown in Figure 4.34 and
Figure 4.35. In this case, the conservative configuration collides only with the additional crossing
vessel. It attempts to perform a COLREGs compliant manoeuvre to starboard side but is
interrupted by the crossing vessel, and thus, the results are similar to the ones obtained in
the crossing scenario, and has little to do with the vessel being overtaken. Under aggressive
configuration, however, failures are found where the ferry collides with the vessel it is overtaking,
as it is unable to perform a sufficiently large evasive starboard manoeuvre because of the crossing
vessel.
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Figure 4.34: Examples of failure modes found with the conservative configuration in the
overtaking scenario with two adversary vessels.

Figure 4.35: Examples of failure modes found with the aggressive configuration in the
overtaking scenario with two adversary vessels.

Three adversary vessels

In the three adversary vessel case, failures are obtained for the conservative configuration where
it is again the crossing vessel which is responsible for the collision. However, the failures were
slightly more diverse in this scenario, as AST can be seen to experiment with the effect of
adversary 3 on the failures, as depicted in the example failure modes shown in Figure 4.36.
Failures were also found for the aggressive configuration where the ferry collides with the vessel
being overtaken, similar to the case with two adversaries. Example failure modes are shown in
Figure 4.37. The AST agent seems to figure out that the head on vessel plays little to no role in
the matter of creating collisions, and the results are thus highly similar to the two-adversary
case.

Figure 4.36: Examples of failure modes found with the conservative configuration in the
overtaking scenario with three adversary vessels.
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Figure 4.37: Examples of failure modes found with the aggressive configuration in the
overtaking scenario with three adversary vessels.

4.2.4 General discussion of results from Part 2

The results from part two illustrate how AST is capable of identifying a diverse set of failures
when applied to the MPC COLAV system, which can perform dynamic manoeuvres in compliance
with the COLREGs. They also verify the implementation of the problem variation 3 introduced
in part 1, which is the only problem variation implemented in this part. Problem formulation 3
introduced optimization for improper behaviour of the ferry, which is evident in most of the
results in this part, as the ferry violates the COLREGs prior to collision.

Although the AST successfully identified interesting scenarios, a possible criticism of the problem
formulation is that the definition of improper behaviour might not lead to more collisions. As
described in Section 3.5, the definition is only based on whether or not the ferry is currently
violating the COLREGs, with the violations defined as in Section 2.6. An additional problem is
that the COLREGs conditions might not be appropriately defined for all cases. An example of
this is shown in Figure 4.38, which shows one of the last trajectories in the head on simulation
scenario with two obstacles for the aggressive configuration. In this experiment, the hypothesis
was that adding a second adversary approaching from astern would make the head on situation
harder to cope with for the ferry, as it would simultaneously have to make way for the overtaking
vessel. However, the AST agent converged to make Adversary 2 head to starboard side, as
this made the angle between the velocity vectors of the ferry and the adversary greater than
68.5◦ and thus the situation is deemed as a violation of Rule 15 of the COLREGs. After
discovering this failure mode, measures were considered to alter the conditions for CROSSED
and STARBOARD, to either make CROSSED false if the ferry had already passed the
adversary in the North direction or to limit the angle categorized as starboard to omit the
lower part of the starboard side. However, it was found that these augmentations could have
unwanted impacts on the violations in other scenarios, such as when the adversary is crossing
from an angle in the stern sector of the starboard side, which would not be detected as an
overtaking due to the angle between the velocities. Hagen et al. (2018) also describe that the
CLOSE-condition can be altered to take more information into account, such as the heading of
the vessels, which could have improved the system by causing it to omit violations like these.
Furthermore, to avoid the cases where optimization for improper behaviour did not lead to
collision, the definition of the improper time step could have been implemented with a different
evaluation metric than just based on the COLREGs compliance, such as a combination of the
COLREGs compliance and a measure of the compliance with safety measures. Several such
evaluation techniques have been proposed in research, as listed in (Pedersen et al., 2020). This
could also have resulted in more collisions, as a measure of the safety could direct the AST

88



4.2. PART 2: EXPERIMENTS WITH COLREGS-COMPLIANT MPC COLAV SYSTEM

agent to optimize for dangerous scenarios as well as cases with COLREGs-non-compliance.

Figure 4.38: Example where optimization for improper behaviour does not lead to collision,
and where the COLREGs conditions are not necessarily appropriately defined.

Another possibly problematic aspect of the problem formulation is that there are no conditions
on how close in time the COLREGs violation had to be to the collision. Some of the failure
modes found depict situations where the improper behaviour takes place long before the collision,
as seen in the example illustrated in Figure 4.39(a). Moreover, it can also be criticized that the
formulation allowed for violations regarding another adversary vessel than the one involved in
the collision, in the multiple adversary scenarios. This led to some episodes where one adversary
provoked improper behaviour, and the other one attacked the ferry deliberately, such as in the
example portrayed in Figure 4.39(b).

(a) (b)

Figure 4.39: Failure examples where the improper behaviour is either registered long prior
to the collision (a), or where the improper behaviour is induced by another vessel than the
one involved in the collision (b).

Furthermore, as some of the results from multiple adversary scenarios suggest, it may be
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redundant to have AST control all adversaries. Some of the adversaries could have been
implemented with simple straight-forward behaviours to limit the AST action space and thus
the search space. There were also no restrictions on the adversary behaviour to avoid the other
adversaries, which could lead to unrealistic scenarios as the adversaries proceeded to drive into
each other.

Although there are some critical aspects of the implementation, the results are promising and
show the potential of AST in use for COLAV systems with COLREGs compliance, as well in
scenarios with multiple vessels. Furthermore, the author can vouch for the usefulness of the
AST method, as AST simulations helped discover errors in the development and implementation
of the MPC controllers.

4.3 General discussion of AST for both cases

In both parts, AST proves itself to constitute an efficient approach to the testing of COLAV
systems. However, some aspects of the implementation and methods could have been done
differently. A general discussion on the methods and the results obtained in both part 1 and
part 2 are presented in this section.

4.3.1 Size of the action space matters: convergence to sub-optimal
solutions

In some of the experiments, the AST agent converges to a sub-optimal solution after it had
previously discovered several failure modes. This phenomenon took place in both part 1 and
part 2, when optimizing for improper behaviour with umax = 0.1 and for the crossing scenario
with three adversary vessels for the conservative configuration, respectively. Example episodes
are shown in Section 4.3.1.

Figure 4.40: Examples of episodes from AST simulations where the AST agent converged
to a sub-optimal solution, likely due to the size of the action space.

In both these cases, failures were found within the first epochs of training, and zero were found
after this, as illustrated in the RL statistics portrayed in Section 4.3.1.
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(a) Noise (b) Conservative crossing, 3 adversaries

Figure 4.41: RL statistics where the agent converges to a sub-optimal solution even though
it has previously identified failures.

After some time, the agent is unable to recreate the conditions that led to failure. In the case
from part 1, the agent continues to explore the movement of the adversary in an inconvenient
direction with respect to obtaining failures, and in the case from part two, the scenarios either
end up with the ferry not violating the COLREGs enough or that it simply stands still.

Issues like these could have been addressed by methods such as Go-Explore, as implemented in
Koren and Kochenderfer (2020). Go-Explore is a method for hard-exploration problems proposed
in Ecoffet et al. (2021). AST can be categorized as a hard-exploration problem due to the crucial
rewards only being distributed in the end, and the fact that the per-step rewards may be leading
the agent away from the goal as collision-provoking actions may be improbable. This is true
especially if a domain-based heuristic is hard to implement (Koren and Kochenderfer, 2020), and
in this case, it has already been up for discussion whether or not the fraction of improper time
steps is a good heuristic or not. In Go-Explore, previously visited states are remembered and
the ones that were promising are chosen and explored. This concept prevents cases where the
agent gradually forgets previously good strategies as the policy is updated (Ecoffet et al., 2021).

4.3.2 Early stopping

The output of the RL training process could have been used to determine whether or not the
AST agent had converged, and the simulations could have been stopped there. The concept is
known in the ML field as early stopping, and it has been proposed for RL problems such as in
Even-Dar et al. (2006). Early stopping could have reduced the simulation time in some of the
experiments where the AST converged early, and similarly expanded the number of epochs in
the cases where the AST agent did not converge, in order to obtain more relevant failures.

4.3.3 Adversary probability model

As AST optimizes for the most likely failure modes of a system, the probability model used
in the reward function is an important factor. Although the probability model was attempted
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altered in Hjelmeland (2021) by adding a heuristic model based on a risk measure to reduce the
risk-seeking behaviour of the adversary, this approach was not continued further as the effect was
not satisfactory. However, it is possible that further development of the adversary probability
model could provide some interesting results. Even though it was seen in Hjelmeland (2021)
that the high reward for collision trumped the penalties for improbable behaviour, causing AST
to return the most probable of the unavoidable failures, such alterations could have an effect
when combined with e.g. optimizing for improper behaviour.

There was also little to no experimenting with the covariance matrix S used in the Mahalanobis
distance in the reward function, which could have had a positive effect. These values could also
have been adjusted when the action space was restricted, which they were not. An improved
probability model of the adversary could also have been acquired by the use of e.g. AIS-data.
This could be an important upgrade of the method to ensure that the behaviours of the vessels
actually relate to the behaviours of real-life vessels.

4.3.4 Further advantages and disadvantages of the AST method

Some advantages and disadvantages of the AST method have already been discussed in the
results. In this section, some general advantages and disadvantages are presented:

• A clear disadvantage of the AST method is that it takes a lot of time, and the analysis
cannot be performed until the end of the simulation. If the simulation of the SUT takes a
lot of time, AST will be very slow unless there’s access to great GPU power. This makes
it hard to e.g. implement AST with more complex simulators, like the simulators that
simulate the full milliAmpere system or evaluate for a long period of time without having
very large AST steps. This issue can be avoided by implementing the method in simplified
simulators, as is done in this thesis. Still, even though faced with long run time, AST can
e.g. be set up to run during nighttime or when the system developers are out of office to
provide valuable feedback when developers return.

• An advantage of AST is that the user can learn by the agent’s learning, i.e. that the agent
discovers methods during the simulations that might not be optimal, but can uncover e.g.
important edge cases.

• Another great advantage of the AST method is that it is highly flexible. The heuristic or
definition of improper behaviour can be implemented in any way desired, and the goal
can be defined and redefined depending on what type of failure mode the system designer
is looking for.
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Conclusion and Further Work

This thesis demonstrates the implementation, use and relevance of AST for marine COLAV
systems and proposes its use as part of the safety validation process of MASS in general. Two
different COLAV approaches are implemented and tested, and failure modes are identified in
both cases using AST. Furthermore, different problem formulations are presented to improve the
relevance of the results to system developers, in order to obtain failure cases where the ferry is
partly or fully responsible for the collision due to improper behaviour. The use of optimisation
for improper behaviour by the use of COLREGs violations proved especially constructive and
served as the most important contribution of the work. Still, there is room for improvement in
the implementation, which should be subject to further research.

The results show how AST is a useful tool for thorough safety testing and how it can easily
be implemented and adjusted to the simulator of choice. AST can be used both under the
development of a COLAV system, to unveil edge cases that have not been considered, or to
uncover errors in the workings of the system. AST also be used after deployment, by running
it whenever the system is updated to search for new potential failures in the updates. Either
way, AST can add significant value to the safety validation, and the author strongly encourages
MASS developers to adopt the method in their safety validation process.

5.1 Further work

Some specific improvements to the AST application to COLAV systems are proposed in the
discussion of the results and these should be taken into account if the methods are subject
to further research. Moreover, further work should be conducted to investigate how the AST
application to MASS systems can be improved, and how the method can and applied in the
safety validation pipeline.

The focus of this work has been on demonstrating the AST method in use for different system
and altering the optimisation problem to find relevant failures. Due to the time consuming
simulations, a prioritization had to be done on whether to focus on this or to go in-depth on the
technical details of the AST method by e.g. altering the MDP solver or changing parameters or
hyperparameters. However, there may be a lot to gain in exploring these areas, such as changing
the DRL solver to use Proximal Policy Optimization (PPO) instead of TRPO, as PPO has
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shown to outperform TRPO in many areas (Schulman, Wolski, et al., 2017).

There might also be information of value in the scenarios which do not end in failure, especially
in the ones that are similar to the failure trajectories. Which details lead the system to fail
in one scenario, but not other similar ones? Comparisons like these could unveil important
workings of the system. In (Lee, Mengshoel, et al., 2020), the scenarios which did not end in
failure were also clustered to provide further insights to system developers. By assessing some
of the episodes which did not end in failure in e.g. part two, some interesting aspects are seen
as they expose cases where the ferry chooses to violate the COLREGs for a long period of time,
to avoid collision. This is similar to real case scenarios, as human helmsmen would also seize to
obey the COLREGs if there was a vessel heading straight towards it.

Furthermore, AST should be combined with an automatic scenario generation method, as
described in Section 1.2. In this way, a test suite of challenging scenarios could be generated,
and AST could be applied to optimize the episodes for failure. The author believes that this
would constitute an efficient and thorough part of a safety validation system and strongly urges
further work to be conducted on the subject.
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