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Abstract

When modelling physical phenomena in science and engineering, Partial Dif-
ferential Equations (PDEs) are ubiquitous. A wide range of problems involves
describing how fluids interact with the surroundings. Examples include fluid-
structure interaction problems and multi-phase flows. Complicated multiphysics
problems often involve moving computational domains undergoing large geomet-
rical deformations. A classical finite element method (FEM) with moving meshes
might lead to a highly deformed or invalid mesh. Then costly re-meshing might
be required. The Cut Finite Element Method (CutFEM) is a promising dis-
cretisation technique that allows the geometry of the domain to be represented
independently of the computational grid. This method can significantly simplify
the mesh generation for problems posed on complex domains.

As an unfitted method, CutFEM allows complex and moving boundaries to
be represented independently of the finite element mesh. The geometry of the
domain is described as a level set function, and Dirichlet boundary conditions
are enforced using Nitsche’s method. By extending the weak formulation with a
stabilisation term, CutFEM remains a stable and optimally convergent approx-
imation method for arbitrary cut configurations. Since generating high-quality
meshes can be costly, CutFEM can offer a vast improvement on computing time,
especially when PDEs are solved on moving domains. For stationary domains, the
theory of CutFEM is well-developed, and several numerical studies corroborate
the theoretical results. However, there are not many detailed studies investigating
the convergence properties of CutFEM on moving domains.

In this thesis, we perform a detailed investigation of CutFEM’s suitability for
solving complex PDEs on moving domains. The main focus is to assess the stabil-
ity and convergence properties of CutFEM. This is done by performing thorough
numerical experiments of parabolic problems and flow problems on domains with
prescribed motion. We investigate the existing theory for parabolic problems
on moving domains. Then, the presented technique is applied for solving fluid
dynamical problems on moving domains. The experiments require the practical
implementation of CutFEM to cope with challenges not present in the stationary
domain case. The detailed experiments show optimal convergence for the heat,
Stokes and Navier-Stokes equations on both stationary and moving domains.
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Sammendrag

Når kompliserte fysiske fenomener innenfor forskning og ingeniørvitenskap under-
søkes, er modellering med partielle differensialligninger (PDE-er) nærmest uun-
ngåelig. Et vidt utvalg av fysiske problemer omhandler hvordan fluider beveger
seg og interagerer med omgivelsene. Eksempler på dette kan være problemer
som beskriver fluid/struktur-interaksjoner eller flerfasestrømninger. Kompliserte
problemer innen multifysikk involverer ofte at domenet gjennomgår store ge-
ometriske deformasjoner. Hvis slike problemer løses med den klassiske element-
metoden ved å transformere nettet, kan dette føre til store deformasjoner eller et
ugyldig nett. CutFEM er en variant av elementmetoden, og er en lovende diskre-
tiseringsteknikk som tillater geometrien til domenet å representeres uavhengig
av elementoppdelingen. Med CutFEM trenger man altså ikke tilpasse nettet til
domenet. Denne metoden kan derfor forenkle nettgenereringen betraktelig for
problemer på kompliserte domener.

Siden CutFEM er en ikke-tilpasset metode, kan komplekse og bevegelige
domenegrenser representeres uavhengig av nettet. Geometrien til domenet be-
skrives av en nivåmengdefunksjon, og Dirichlet grensebetingelser settes ved hjelp
at Nitsches metode. Ved å utvide den svake formuleringen med et stabiliser-
ingsledd, blir CutFEM en stabil og optimalt konvergent diskretiseringsmetode for
vilkårlige kuttkonfigurasjoner. Siden generering av et høykvalitetsnett kan være
kostbart, kan bruk av CutFEM føre til en stor forbedring i beregningstid. Dette
gjelder spesielt for PDE-er løst på bevegelige domener. Når det gjelder stasjonære
domener, er teorien bak CutFEM godt utviklet, og et utvalg numeriske studier
bekrefter de teoretiske resultatene. Imidlertid finnes det få detaljerte studier som
undersøker konvergensegenskapene til CutFEM på bevegelige domener.

I denne oppgaven foretar vi en detaljert undersøkelse av CutFEMs egnethet
for løsing av komplekse PDE-er på bevegelige domener. Hovedfokuset vil være å
evaluere stabilitets- og konvergensegenskapene til metoden. Dette gjøres ved å
gjennomføre grundige numeriske eksperimenter av parabolske og fluiddynamiske
problemer på domener med kjent bevegelse. Vi undersøker eksisterende teori
og teknikker for løsing av parabolske problemer på bevegelige domener. Videre
bruker vi disse teknikkene for å løse fluiddynamiske problemer på bevegelige
domener. Eksperimentene krever at den praktiske implementeringen av CutFEM
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håndterer utfordringer som ikke forekommer for problemer på stasjonære domener.
De grundige konvergensstudiene viser at CutFEM oppnår optimal konvergens for
varmeligningen, Stokes-problemet og Navier-Stokes-ligningene på både stasjonære
og bevegelige domener.
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Chapter 1

Introduction

In mathematical modelling, partial differential equations (PDEs) have proved to
be an especially powerful and versatile tool. PDEs have successfully been em-
ployed to model phenomena from nature, economy and engineering and has been
an essential part of numerous technological and scientific advances. However,
solving PDEs analytically is only possible for problems in their most simple form.
Therefore, one must mostly resort to numerical approximations when simulating
realistic problems with advanced geometries or based on multiphysics.

Among many other discretisation methods, the finite element method (FEM)
is a widespread technique for solving PDEs numerically. As both computer pro-
cessors and memory has kept the pace of capacity increase according to Moore’s
law, the size and resolution of PDE problems solved have been able to follow
the same steep growth. However, computing power and computing time are still
limited resources, now as ever. Therefore, developing methods that lead to more
efficient algorithms is the core research motivation in numerical mathematics.

When applying FEM, creating a mesh for the physical domain can be a
markedly part of the computing effort. This is especially the case for time-
dependent problems on moving domains. When dealing with moving domains
in classical fitted FEM, the Arbitrary Lagrangian-Eulerian (ALE) formulation is
often preferred [Donea et al., 2004, Fernández et al., 2009]. When solving, e.g.
fluid-structure interaction problems [Richter, 2017] one is interested in the fluid
velocity field in the fluid domain and the material displacement in the structural
domain. Since the fluid boundary is deformed, the computational mesh needs to
follow this deformation. The PDEs governing the fluid is typically given in Eu-
lerian coordinates, but the moving domains are often represented using moving
meshes with an artificial motion. Therefore, the fluid flow equations need to be
rewritten using ALE coordinates. However, for large deformations or topological
changes, the underlying mesh motion might lead to highly distorted or invalid
finite element meshes, see Figure 1.1. This might require costly re-meshing.
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2 Chapter 1. Introduction

(a) Initial mesh. (b) Transformed mesh.

Figure 1.1: On the left we have the initial configuration of a matched mesh. The
transformed mesh on the right, leads to a mesh with lower quality and remeshing might
be needed.

Therefore, it can be advantageous to consider an unfitted method since the ge-
ometry of the physical domain can then be represented independently of a fixed
background mesh, see Figure 1.2. This eliminates the need for complicated mesh
generation or algorithms for moving the mesh along with the domain.

A particular instance of unfitted FEM is the eXtended Finite Element Method
(XFEM), which was introduced in [Moës et al., 1999]. In this method, the poly-
nomial space is enriched to allow for the representation of cracks or interfaces
independently of the mesh [Fries and Belytschko, 2010]. However, the method is
not stabilised, so the error and the condition number of the system matrix are
therefore not necessarily robust in the presence of so-called small cut elements.
These are elements cut by the domain boundary in such a way that the inter-
section of the element and the domain is significantly smaller than the element
itself.

The Cut Finite Element Method (CutFEM) is an alternative unfitted method.
This method was developed in [Burman and Hansbo, 2012,Burman and Hansbo,
2014, Burman et al., 2015], and allows full decoupling of the physical domain
from the computational mesh. In CutFEM, the domain is represented as the
zero contours of a level set function, allowed to cut arbitrary through a fixed
background mesh. Dirichlet boundary conditions are then enforced weakly using
Nitsche’s method. In addition, the weak formulation is extended with stabili-
sation terms. This simplifies the translation from classical fitted discretisation
methods to the unfitted scenario. In addition to the advantages of easy mesh
generation, CutFEM offers the same convergence rates of the error and scaling
of the condition number of the stiffness matrix as classical FEM. Combined, this
makes CutFEM a promising alternative when solving time-dependent PDEs on
complex geometries. In problems with moving interfaces, CutFEM is even more
advantageous. Since a pre-generated general background mesh can be used, mov-
ing the domain’s interface amounts to moving a level set function defined on top
of the mesh. In [Burman et al., 2015] CutFEM was used to discretise an inter-
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Figure 1.2: When using an unfitted method, the geometry of the domain can be moved
arbitary over the background mesh.

face problem of a variant of the Poisson problem, and in [Massing et al., 2014]
the Stokes problem was solved. A moving domain method for CutFEM was in-
troduced in [Lehrenfeld and Olshanskii, 2019] for the Poisson problem, and for
the Stokes problem in [Burman et al., 2022]. Since then, CutFEM has been
used in a multitude of model problems. In [Massing et al., 2015, Schott et al.,
2019] fluid-structure interaction problems were solved, and in [Claus and Ker-
friden, 2019,Frachon and Zahedi, 2019] two-phase flow problems were analysed.
In [Burman et al., 2019] a method for flow in fractured porous media was pro-
posed. The Trace Finite Element Method (TraceFEM) introduced in [Olshanskii
et al., 2009] is a variant of CutFEM, developed for solving surface and surface-
bulk problems. Instead of extending the surface functions, one takes the trace
of the background volumetric finite element functions on the embedded surface.
The method was further extended for evolving surfaces in [Olshanskii and Xu,
2017,Lehrenfeld et al., 2018].

For stationary domain problems, the CutFEM theory is well developed, and
the promising properties of the method have been assessed through numerous
numerical studies. However, there are few theoretical results for moving domains,
and numerical investigations of the stability of CutFEM is largely lacking.

Contributions and outline. In this thesis, we evaluate a practical realisation
and the suitability of CutFEM for numerically solving complex PDEs on moving
domains. The robustness and correctness of the method will be analysed through
detailed numerical experiments of flow problems.

We start by assessing the CutFEM theory for parabolic problems and flow
problems on stationary domains. Further, we examine the theory and techniques
for solving moving domain problems. We then apply the CutFEM techniques for
parabolic problems on moving domains to flow problems. Extensive numerical
convergence tests are performed with the aim of contributing to filling in the gap
of numerical studies of problems on moving domains. The work culminates in the
implementation of a one-way coupled fluid rigid body problem, where the fluid
is modelled with the Navier-Stokes equations, and the submerged body moves
along a known path.



4 Chapter 1. Introduction

In Chapter 2 an introduction to CutFEM is given. The chapter uses the
heat equation as the model problem and derives a CutFEM formulation of the
problem. First, we introduce Nitsche’s method for weakly enforcing the Dirichlet
boundary conditions. The time derivative is discretised using the BDF-method
before the stabilisation needed for CutFEM is finally added. The chapter also
features a short review of the theory behind how the CutFEM stabilisations
assess control of the norms on small cut elements and hence results in a stable
approximation. Numerical experiments corroborate the convergence results for
the heat equation. The following Chapter 3 explains how CutFEM can be used
for solving fluid dynamical problems. By first considering the stationary Stokes
problem, the inf-sup condition is briefly explained to lead up to stable function
spaces for flow problems. Again, the weak formulation is first extended with the
needed Nitsche terms for the Stokes problem before the fully discrete formulation
of the time-dependent problem is given. Moreover, the CutFEM stabilisations
for the Stokes problem are given, and finally, a CutFEM formulation for the
Navier-Stokes problem is derived. The implementations of the time-dependent
Stokes problem and Navier-Stokes equations attains optimal order of convergence.
In Chapter 4 the CutFEM formulation for the heat equation in Chapter 2 is
extended for a moving domain. By extending the active mesh, the stabilised
weak formulation implicitly defines an extension operator for the approximated
solution. This enables the terms of the BDF-method to be well defined, even as
the domain moves. Finally, numerical implementations of the heat equation on
a moving domain are presented. The CutFEM formulation for a moving domain
is then further extended for flow problems in Chapter 5. CutFEM formulations
for the time-dependent Stokes and Navier-Stokes equations are presented before
the results of the convergence tests are presented.



Chapter 2

CutFEM for parabolic
problems on stationary domains

In this chapter, we start by giving an introduction to Nitsche’s method. This
method is used for enforcing Dirichlet boundary conditions in a weak manner.
When using an unfitted method, the boundary of the domain can cut through
the elements of the mesh arbitrarily. Nitsche’s method is therefore central for im-
posing Dirichlet boundary conditions when using CutFEM. As the heat equation
is used as the model problem of the section, a multistage time-stepping method
is presented to give a fully discrete Nitsche formulation on a fitted mesh. In
Section 2.2, an introduction to CutFEM is given, based on the Poisson problem.
The Nitsche formulation of the previous section is then further extended by a
stabilisation term to ensure the unfitted mesh method is stable and optimally
convergent. The section is concluded with a CutFEM formulation for the heat
equation. Lastly, numerical results for the solution of the heat equation using
CutFEM is presented in Section 2.3. The results corroborate the theoretical re-
sults presented in Section 2.2.2, which state that CutFEM achieves the same
optimal convergence in error as classical FEM.

2.1 Nitsche’s method for the heat equation
The heat equation is a well-known parabolic partial differential equation (PDE).
This PDE can describe physical phenomena as the evolution of the concentration
of some physical quantity or how the density of heat evolves in some domain over
time.

Let Ω ⊂ Rd be an open and bounded domain, with a piecewise smooth bound-
ary Γ = ∂Ω. The heat equation is an initial boundary-value problem defined on

5



6 Chapter 2. CutFEM for parabolic problems on stationary domains

Ω, given by

ut − ν∆u = f in (0, T )× Ω, (2.1a)
u = g on [0, T ]× Γ, (2.1b)

u(0, ·) = u0 in Ω. (2.1c)

The function u is a scalar valued function in two variables, such that u = u(t, x) :
[0, T ]× Ω→ R, where T > 0 is the end time. The diffusivity coeffisient ν > 0 is
often referred to as the thermal diffusivity of the medium. Here, ut = ∂tu = ∂u/∂t

is the first order derivative of u with respect to time, while ∆ =
∑d
i=1 ∂

2
xi
u

denotes the Laplacian. The right hand side f : [0, T ] × Ω → R is scalar valued,
and represents a heat source. Written on the form above, Dirichlet boundary
conditions are applied along the whole boundary with the function g : [0, T ]×Γ→
R. The function u0 : Ω→ R is the given initial state of the problem. For a vector
x = (x1, . . . , xd) ∈ Rd, we denote the 2-norm by ‖x‖2 =

√
x · x.

For a classical, strong solution to the problem (2.1), we would require the
function u to be one time continuously differentiable in time and twice contin-
uously differentiable in space. Finding a function u that satisfies the equation
in the strong form might be impossible. Therefore, we will instead search for
weak solutions to the problem. To find such solutions, we will use the method of
Galerkin to introduce a weak formulation of the problem. Discretising this weak
formulation is the key idea of the Finite Element Method (FEM).

To derive a weak formulation of the problem, multiply with a suitable test
function v on both sides of (2.1a), and integrate by parts over the domain using
Green’s identity. This gives,∫

Ω
utv dx+ ν

∫
Ω
∇u∇v dx− ν

∫
Γ
v∂nu dS =

∫
Ω
fv dx, (2.2)

where ∂nv = ∇v · n denotes the directional derivative of v in direction n, the
outward pointing normal of the domain. The L2 inner product over some subset
K ⊂ Rd will be denoted by (v, w)K =

∫
K
vw dx, and the corresponding L2-norm

is defined by ‖v‖K := (v, v)1/2
K . For a surface ∂K ⊂ Rd−1 the L2 inner product

is denoted by (v, w)∂K =
∫
vw dS. The space of all square integrable functions

on K is denoted by L2(K), that is

L2(K) = {v : K → R :
∫
K

v2 dx <∞}. (2.3)

When solving the problem in the weak sense, we search for a solution u
satisfying (2.2) for all test functions v in some test function space V . Since u is
time-dependent, this must hold for all times t ∈ [0, T ]. The choice of function
space depends on the required regularity of u and v. In this case, only one weak
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derivative is needed. We will therefore let the test function space be the Sobolev
space H1(Ω), where we define

Hm(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω) for |α| 6 m}. (2.4)

Above, Dαv denotes the weak derivative of order α, where α is a multi index (see
e.g. [Borthwick, 2018, Ch. 10]). The Sobolev norm will be denoted by

‖v‖2m,K = ‖v‖2Hm(K) := (v, v)K =
∑
|α|6m

(Dαv,Dαv)K , (2.5)

and |v|m,K =
∑
|α|=m(Dαv,Dαv)K is the corresponding seminorm.

So far, we have not described what function space u belongs to. Since u is
time dependent, we can consider it as a mapping u : [0, T ]→ V , for some Banach
space V . For any fixed t ∈ [0, T ], u takes values in the Banach space V , such
that u(t) = u(t, ·) ∈ V . The function u is referred to as a vector-valued function
in [Tröltzsch, 2010, Ch. 3.4]. Now let the space L2(a, b;V ) denote the space of
vector-valued functions u : [a, b]→ V s.t.

‖u‖2L2(a,b;V ) =
∫ b

a

‖u‖2V dt <∞. (2.6)

When denoting the dual space of V by V ′, we say that a function

u ∈ L2(0, T ;V ), with ut ∈ L2(0, T ;V ′), (2.7)

is a weak solution to the parabolic initial boundary-value problem (2.1) provided
(2.2) holds for all v ∈ V for all t ∈ [0, T ]. See [Evans, 2010, Ch. 7.1] or [Tröltzsch,
2010, Ch. 3.4] for a more thorough description.

The usual FEM approach for solving PDEs with Dirichlet conditions applied
along the boundary is to define a lifting function to reduce the problem to the
homogeneous Dirichlet condition case. One can then let the space V of test
functions be H1

0 (Ω), the subspace of H1(Ω), with functions satisfying v|Γ = 0.
This leads to a vanishing boundary integral in (2.2). In this way, the boundary
conditions are built into the chosen function space. This method will thus only
work when the discretisation of the domain approximates the boundary Γ, that is,
for fitted methods. Since we aim to use an unfitted method, where the boundary
Γ is allowed to pass straight through the elements T of the triangulation, this
method for enforcing the boundary conditions will not suffice.

In the following, we will present a method that allows for imposing Dirichlet
boundary conditions in a weak sense. Instead of building the boundary conditions
into the functions space, the weak formulation of the problem is extended with
certain penalty terms. This boundary penalisation method was introduced in
[Nitsche, 1971] and is also presented in [Ern and Guermond, 2021, Ch. 37]
and [Hansbo, 2005]. The method is now widely referred to as ‘Nitsche’s method’.
But first, we will need to discretise the weak formulation above.
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2.1.1 Semidiscrete formulation
The variational formulation of the heat equation given in the previous section is
infinite-dimensional. Since we want to use FEM to solve the problem numerically,
we need to discretise the problem. In this section, a spatial discretisation of the
formulation will be presented.

To perform a spatial discretisation, we first partition the domain into a mesh
Th of quadrilateral/hexahedral closed elements T . This is done in such a way
that the intersection of two elements are either empty, or exactly equal to their
common face, side or vertex. For fitted methods, these elements cover the domain,
such that Ω = ∪Tk∈Th

Tk. The size of an element Tk is measured by its diameter
hk = diamTk, where the diameter of a bounded set K ⊂ Rd is defined as

diamK = sup{‖x− y‖2 : x, y ∈ K}, (2.8)

and ‖·‖2 denotes the usual 2-norm in Rd. The mesh size h is given by the largest
element diameter in Th, i.e. h = maxTk∈Th

hk. If we let ρT be the largest inscribed
circle in element T , we say that a family of meshes {Th}h>0 is shape regular if
there exists some constant δ > 0 such that

hT
ρT

6 δ, ∀T ∈ Th. (2.9)

As a finite-dimensional subspace of the function space H1(Ω), we will use the
space of continuous, piecewise polynomials of degree p on Th,

Qcp(Th) = {v : v|T ∈ Qp(T ), T ∈ Th} ∩ C(Ω). (2.10)

Above, Qp(T ) denotes a finite element of polynomial degree p on a quadrilateral
or hexahedral T (see [Brenner and Scott, 2008, Ch. 3]), while C(Ω) denotes the
space of all continuous functions on Ω.

As a discrete test function space we will now use Vh = Qcp(Th). Now, restrict
the search to finding a spatially discrete solution uh ∈ L2(0, T ;Vh) with ut,h ∈
L2(0, T, V ′h) such that

(ut,h, v)Ω + ν(∇uh,∇v)Ω − ν(∂nuh, v)Γ = (f, v)Ω ∀v ∈ Vh, t ∈ [0, T ], (2.11)

such that uh(0, ·) = u0(x).
The above formulation is often referred to as a semidiscrete formulation

[Thomée, 2007, Ch. 1], [Quarteroni, 2017, Ch. 5]. In a later section, a time-
stepping method will be introduced to present a fully discrete problem formu-
lation of the problem (2.1). First, however, we will give a brief introduction to
Nitsche’s method for weakly applying the Dirichlet boundary conditions.
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2.1.2 Nitsche’s method
To derive the weak Nitsche formulaton for the problem (2.1), we will continue
from the variational formulation in (2.11). The discrete test function space will
be Vh = Qcp(Th). In the current variational formulation, the boundary conditions
are not implemented. Therefore, the next step is to extend the weak formulation
above with some additional terms to apply the boundary conditions in a weak
sense.

First, the term µ(uh − g, v)Γ is added to (2.11). This term is the Nitsche
penalty term, that in a way enforces the Dirichlet boundary condition u = g on Γ.
The positive constant µ is the Nitsche penalty parameter. The semidiscrete weak
formulation is then updated to finding a uh ∈ L2(0, T ;Vh) with ut,h ∈ L2(0, T ;V ′h)
such that

(ut,h, v)Ω + ν(∇uh,∇v)Ω − ν(∂nuh, v)Γ + µ(uh, v)Γ

= (f, v)Ω + µ(g, v)Γ ∀v ∈ Vh,∀t ∈ [0, T ].
(2.12)

Ignoring the term (ut,h, v)Ω in the expression above, we note that the bilinear
form defined by the terms on the left-hand side is not symmetric. Therefore, a
symmetrisation term

− ν(uh − g, ∂nv)Γ, (2.13)

is added to the weak formulation. Note that the added terms vanish when the
solution satisfies u = g on the boundary Γ. The weak formulation is thus still con-
sistent with the original problem. The Nitsche formulation of the problem (2.1),
is then formulated as follows. Find a uh ∈ L2(0, T ;Vh) with ut,h ∈ L2(0, T, V ′h)
such that

(ut,h, v)Ω + ah(uh, v) = lh(v) ∀v ∈ Vh, t ∈ [0, T ], (2.14)

if uh(0, ·) = u0(x). The bilinear form ah : Vh × Vh → R and the linear form
lh : Vh → R are defined as

ah(uh, v) = ν(∇uh,∇v)Ω − ν(∂nuh, v)Γ − ν(uh, ∂nv)Γ + µ(uh, v)Γ,

lh(v) = (f, v)Ω − ν(g, ∂nv)Γ + µ(g, v)Γ.
(2.15)

In [Hansbo, 2005] it was shown for the Poisson problem that if the Nitsche
penalty parameter is set to

µ = νγ

h
, γ > 0, (2.16)

the bilinear form ah is discretely coercive in a mesh dependent energy norm,
implying stability of the discretised method. Also, it was shown that the Nitsche
formulation resulted in optimal convergence in the energy norm and the L2-norm.
When using Qp finite elements, this means that the error converges as hp+1 when
measured in the L2-norm, and as hp when measured in the energy norm.



10 Chapter 2. CutFEM for parabolic problems on stationary domains

Table 2.1: Coefficients for the BDF-methods up to order 33.

s α0 α1 α2 α3
1 1 −1
2 3/2 −2 1/2
3 11/6 −3 3/2 −1/3

The Nitsche formulation above is still continuous in time, so to be able to solve
the equation (2.1) for a discrete number of time steps, a time-stepping method
has to be introduced. This will be done by replacing the first term in (2.14) by
a finite difference approximation. In the next section, we will see that the time-
stepping method for the heat equation involves solving the Poisson problem with
an added reaction term in every time step. The results in [Hansbo, 2005] can
easily be shown to hold for this problem with the same Nitsche penalty parameter
if we include the reaction term in the mesh dependent norm.

2.1.3 A fully discrete Nitsche formulation

To rewrite the semidiscrete Nitsche formulation (2.14) of the problem (2.1) into a
fully discrete formulation, the time derivative has to be approximated. This can
be done by applying the Backward Difference Formula (BDF) method, a finite
difference approximation to the first-order derivative. The BDF-s method is a
multistage approximation of order s. First, we discretise the time into uniform
time steps of length τ , and write tn = nτ . Then, a finite element problem is
solved in each of these time steps. The total number of time steps is M = T/τ .
An upper index denotes the solution at a given time step, such that u(tn) = un,
and correspondingly uh(tn) = unh.

The time derivative of the solution u is approximated by the solutions in the
previous time steps. The first term in the semidiscrete formulation (2.14), is
approximated as

(ut(tn), v)Ω ≈
1
τ

s∑
k=0

αk(un−k, v)Ω, (2.17)

for an s-stage BDF-method, referred to as BDF-s. A s-stage BDF-method is
an approximation of order s, and the coefficients up to order three is listed in
Table 2.1. Note that a stage-1 BDF-method is just the implicit Euler method.

When the above approximation for the derivative in (2.17) is inserted into the
spatially discrete formulation in (2.14), we arrive at the following fully discrete
Nitsche formulation of the heat equation. Given ujh ∈ Vh for j = 0, . . . , s−1, find
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unh such that
s∑

k=0
αk(un−kh , v)Ω + ah(unh, v) = lh(v) ∀v ∈ Vh, (2.18)

for n = s, s + 1, . . . ,M . The bilinear form ah and the linear form lh are defined
as in (2.15). Note that u0

h is the interpolated initial value of the problem. Also,
note that only the first term unh in the sum is unknown. The other terms in the
sum are solutions of previous time steps and can be moved to the right-hand side
and assembled into the right-hand side vector of the linear system. When BDF-1
is run, only the interpolated initial values u0

h are needed to run the method. If a
BDF-method of higher order is run, more steps are needed to start the method.
In practice, one would therefore need to run one step each of BDF-1, BDF-2
and so on, up to BDF-(s − 1) before the rest of the time-steps can be run with
BDF-s. In numerical experiments, all the initial steps needed for the start-up
can be interpolated when solving a problem with a known analytical solution.

So far, the discretisation has been for a fitted mesh, where the elements T in
the triangulation Th approximate the domain boundary. In the following section,
the Cut Finite Element Method (CutFEM) will be introduced. This method
allows the boundary Γ to cut straight through the mesh elements. This enables
the geometry of the problem to be represented as a level set function, and we
only need a background mesh covering the domain. This representation will
be a significant simplification when solving time-dependent problems on moving
domains, which is the topic of Chapter 4 and Chapter 5. However, the decoupling
of the mesh and the physical domain introduces new problems with regard to
stability. To retain a stable method, the weak formulation needs to be extended
with a stabilising ghost penalty term. The following section will explain why this
stabilisation is needed, and we will give exact realisations of this term.

2.2 An introduction to CutFEM
In the previous section, Nitsche’s method enabled us to enforce Dirichlet bound-
ary conditions weakly by extending the weak formulation by specific penalty
terms. When using this method, there was no longer a need to only search
for solutions in the space of functions already satisfying the Dirichlet boundary
conditions. However, the method was still a fitted finite element method since
the edges of the elements in the triangulation were required to approximate the
domain boundary.

In this section, the Cut Finite Element Method (CutFEM) will be presented.
This method allows us to use a mesh that does not fit the domain, i.e. we use
an unfitted mesh, see Figure 2.1. This means that the domain boundary may cut
through the elements arbitrarily. This can be a vast simplification of geometry
representation and mesh generation. With CutFEM, one only needs a uniform
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Ω

(a) Fitted mesh.

Ω

Γ

(b) Unfitted mesh.

Figure 2.1: On the left, the mesh approximates the domain boundary, while on the
right, it cuts through the elements of the background mesh. The gray cells in the figure
on the right make up the active mesh Th, consisting of all elements in the background
mesh T̃h with a non-empty intersection with the physical domain Ω.

background mesh covering the domain instead of generating a mesh that fits the
boundary. In other words, CutFEM enables complete decoupling of the physical
domain and the mesh triangulation.

CutFEM was first introduced in [Burman and Hansbo, 2012], where the
treatment was given based on the Poisson problem, discretised using continu-
ous Galerkin P1-elements. The Nitsche method for weakly imposed boundary
conditions was extended to a fictitious domain. The domain was represented by
a level set function defined on the background mesh. The first challenge when
dealing with an unfitted mesh is computing the stiffness matrix contributions
of cut elements. Since we only want to compute contributions over T ∩ Ω, new
quadrature rules are needed. The second challenge is reestablishing control of
the L2-norm of the gradient on the cut elements. This instability is especially
challenging on small cut elements, where |T ∩Ω| � |T |. In [Burman and Hansbo,
2012], it was proved that when the weak formulation was extended with a ghost
penalty [Burman, 2010,Burman et al., 2015], coercivity could be ensured over the
whole computational domain. In the paper, optimal a priori estimates for the
H1- and L2-norm was proved.

In [Gürkan and Massing, 2019], an abstract framework for a flexible design
of CutFEM stabilisations was developed for cut discontinuous Galerkin methods.
General assumptions were put on an abstract ghost penalty to prove optimal
convergence of the error and scaling of the condition number. This section will
give a short review of this paper in the context of continuous CutFEM for the
Poisson problem. A more thorough review was done in my project report [Holm,
2021].
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2.2.1 Challenges with a cut mesh
When the domain now is allowed to cut through the elements of the mesh, some
new notation is needed. Let Ω̃ ⊂ Rd be a background domain covering the
physical domain Ω, such that Ω ⊂ Ω̃. The background domain is partitioned into
a shape regular, quasi-uniform background mesh T̃h of quadrilateral/hexahedral
closed elements T . The physical domain is now represented by a level set function
φ : Ω̃→ R, defined on the background mesh as

Ω = {x ∈ Rd : φ(x) < 0}. (2.19)

The computational mesh, or the active mesh Th is defined as the smallest set of
elements in the background mesh covering the domain. This is given by

Th = {T ∈ T̃h : T ∩ Ω 6= ∅}, (2.20)

while the fictitious domain is the union of these elements,

Ω∗ =
⋃
T∈Th

T. (2.21)

This will also be referred to as the computational domain. The set of all cut
elements is given by

TΓ = {T ∈ Th : T ∩ Γ 6= ∅}. (2.22)

All interior faces of the active mesh is given by

Fh = {F = T+ ∩ T− : T+, T− ∈ Th}. (2.23)

For certain cut configurations, Nitsche’s method will converge optimally for
problems solved on an unfitted mesh. The problem arises on meshes with arbi-
trary cut elements, particularly when some elements have a so-called ‘bad’ cut.
This is a cut where the cell has an arbitrary small intersection with the domain,
i.e. |T ∩Ω| � |T |. See Figure 2.2 for a depiction of this situation. The condition
number of the stiffness matrix may then grow arbitrary large [Ludvigsson et al.,
2018,Gürkan and Massing, 2019].

CutFEM adds a stabilisation term to the weak form to aid with this instability.
This term is referred to as the ghost penalty gh and stabilises the faces of cut cells.
These faces are called ghost penalty faces, and are denoted by

Fgh = {F ∈ Fh : T+ ∩ Γ 6= ∅ ∨ T− ∩ Γ 6= ∅} (2.24)

When the weak formulation of the problem is extended with this ghost penalty, we
arrive at a stable and optimally converging method [Burman and Hansbo, 2012].
The stiffness matrix also has optimal scaling of the condition number [Gürkan
and Massing, 2019], and all these properties are fully independent of the cut
configuration.
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Figure 2.2: Two examples where the boundary Γ cuts the elements in a ‘bad’ manner.
On the left, the constant in the inverse estimate (2.30) becomes unbounded, ruining
the coercivity of the weak form. On the right, the bad cut leads to an almost singular
stiffness matrix, making it ill-conditioned. The figures were taken from [Gürkan and
Massing, 2019].

As in [Gürkan and Massing, 2019], the Poisson problem will be used as our
model problem. This is given by

−ν∆u = f in Ω (2.25a)
u = g on Γ. (2.25b)

Since the the domain now cuts the background mesh, the discretised function
space will need to be defined on the whole active mesh. We therefore let

Vh = Qcp(Th) = {v : v|T ∈ Qp(T ), T ∈ Th} ∩ C(Ω∗). (2.26)

Note that the test function space above is defined on the whole fictitious domain.
A weak formulation of (2.25) is derived using Nitsche’s method, as presented in
Section 2.1. This leads to the following variational problem. Find uh ∈ Vh such
that

ah(uh, v) = lh(v) ∀v ∈ Vh. (2.27)
The bilinear and linear forms above are still defined as in (2.15), but are restated
below,

ah(u, v) = ν(∇u,∇v)Ω − ν(∂nu, v)Γ − ν(u, ∂nv)Γ + µ(u, v)Γ,

lh(v) = (f, v)Ω − ν(g, ∂nv)Γ + µ(g, v)Γ.
(2.28)

As before, the Nitsche penalty parameter is set to

µ = νγ

h
, (2.29)

for some positive constant γ. The weak formulation in (2.27) is a Nitsche formu-
lation defined on the whole fictitious domain. However, without the stabilising
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ghost penalty, it is not stable on arbitrary cut configurations. The stabilised
CutFEM formulation is presented in the following section.

2.2.2 Stability and convergence of CutFEM
When the stability of the Nitsche formulation for the Poisson problem was proved
in [Hansbo, 2005], an essential ingredient was the following inverse estimate.

Proposition 2.1 (Inverse estimate)
There exists some positive constant CI such that for all v ∈ Vh

‖h1/2∂nv‖2Γ 6 CI‖∇v‖2Ω for all v ∈ Vh. (2.30)

where CI depends on the polynomial degree p of Vh, the spatial dimension d and
the chunkiness parameter cT .

This estimate was used to control the boundary flux terms of the bilinear
form by the L2-norm of the gradient over the domain. This allowed the author
to prove discrete coercivity for Nitsche’s method in a mesh dependent energy
norm. Optimal convergence was shown for the fitted mesh method.

When the active mesh now is extended past the domain boundary, this poses a
new challenge for the proof of stability through showing coercivity of the bilinear
form. Now we only have the following inverse estimate.

Proposition 2.2 (Cut mesh inverse estimate)
Let v ∈ Vh, then there exists some positive constant CΓ such that

‖h1/2∂nv‖2Γ 6 CΓ‖∇v‖2Th
. (2.31)

Note that this estimate only enables controlling the boundary flux terms by
the L2-norm of the gradient over the whole active mesh. Therefore, we will
now need a way of controlling the L2-norm of the gradient over the whole active
mesh. One possible remedy for this was introduced in [Burman, 2010,Burman and
Hansbo, 2012]. The main idea is to augment the bilinear form with a stabilisation
term referred to as the ghost penalty gh. Our revised stabilised cut finite element
formulation is now as follows. Find uh ∈ Vh such that

Ah(uh, v) := ah(uh, v) + gh(uh, v) = lh(v) ∀v ∈ Vh. (2.32)

Note that for Ah to be bilinear, the same must be required from gh. We will
also assume that gh is symmetric and positive semi-definite. However, we do not
require that gh is consistent with the problem.
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For the analysis, the following norms and semi-norms are defined for v ∈ Vh.

|v|2gh
:= gh(v, v)

‖v‖2ah
:= ν‖∇v‖2Ω + ν‖h−1/2v‖2Γ

‖v‖2Ah
:= ‖v‖2ah

+ |v|2gh
= ν‖∇v‖2Ω + ν‖h−1/2v‖2Γ + |v|2gh

.

(2.33)

For v ∈ H2(Th) + Vh we also define

‖v‖2ah,∗ := ‖v‖2ah
+ ‖h1/2∂nv‖2Γ. (2.34)

The first abstract assumption gh is required to fulfil is the following.

Assumption 1 (Ghost Penalty)
The ghost penalty is a symmetric, positive semi-definite bilinear form, and sat-
isfies

‖∇v‖2Th
6 Cg

(
‖∇v‖2Ω + |v|2gh

)
(2.35)

for some positive constant Cg for all v ∈ Vh.

This requirement enables controlling the problematic term ‖∇v‖Th
, as dis-

cussed above. When the bilinear form is extended with the ghost penalty, we are
able to control the gradient on the whole active mesh. One can therefor show
discrete coercivity of Ah over v ∈ Vh in the Ah-norm (2.33). Boundedness of Ah
over Vh also follows from Proposition 2.2 and Assumption 1. By Lax-Milgram’s
Theorem [Brenner and Scott, 2008, Ch. 2.7], the discrete coercivity and the
boundedness of Ah imply that the formulation yields a unique solution, which is
continuous in the data.

Usually, when proving a priori estimates for a finite element method, we
combine Cea’s Lemma or a Strang type Lemma with a projection or interpolation
estimate. Since we are now dealing with a mesh cut by the domain, defining a
projection operator is more technical.

Following the approach in [Burman and Hansbo, 2012], a projection operator
defined on the whole active mesh can be constructed by first making use of the
fact that there exists a bounded extension operator

(·)e : Hm(Ω)→ Hm(Rd), (2.36)

such that
‖ve‖m,Rd . ‖v‖m,Ω, for v ∈ Hm(Ω), (2.37)

see [Stein, 1971]. This extension operator can now be used to define a new
approximation operator πeh : L2(Ω)→ Vh by

πehv = πhv
e. (2.38)
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Here the approximation operator πh is some quasi interpolator, e.g. the Clément
operator (see e.g. [Larson and Bengzon, 2013, Ch. 7.2.1]).

From e.g. [Burman and Hansbo, 2014] we have the following error estimates
for the projection interpolant πeh. For v ∈ Hm+1(Ω) it holds that

‖ve − πehv‖r,Th
. hm+1−r‖v‖m+1,Ω for 0 6 r 6 m+ 1,

‖ve − πehv‖r,Fh
. hm−r+1/2‖v‖m+1,Ω for 0 6 r 6 m+ 1/2,

‖ve − πehv‖r,Γ . hm−r+1/2‖v‖m+1,Ω for 0 6 r 6 s− 1/2
(2.39)

These estimates are used to derive an estimate for the projection error in the
‖·‖ah,∗-norm.

As mentioned earlier in this section, the ghost penalty gh is not consistent
with the problem. This leads to the following weak Galerkin Orthogonality.

Lemma 2.3 (Weak Galerkin Orthogonality)
Let u ∈ H2(Ω) be the solution of (2.25), and let uh ∈ Vh be a solution to the
weak formulation (2.32), then

ah(u− uh, v) = gh(uh, v) ∀v ∈ Vh. (2.40)

When this weak Galerkin orthogonality is used in proving an a priori estimate,
we end up with some additional term |πehu|gh

. Therefore, the ghost penalty needs
to be restricted by another assumption.

Assumption 2 (Weak consistency estimate)
For v ∈ Hm+1(Ω) and s = min{m, k}, the semi-norm |·|gh

satisfies the estimate

|πehv|gh
. hs‖v‖s+1,Ω. (2.41)

Above, the notation a . b denotes that a 6 Cb, where C is some positive
constant independent of h and the position of Γ relative to the background mesh
T̃h. As shown in [Gürkan and Massing, 2019], this lead to the following a priori
error estimate for the CutFEM approximation.

Theorem 2.4 (A priori estimate in the ah∗-norm)
Let u ∈ Hm+1(Ω) for m > 1 be the solution of the Poisson problem (2.25), and
let uh ∈ Vh = Pcp(Th) be the solution to the weak formulation (2.32). Then for
s = min{m, p} we have the following estimate for the approximation error

‖u− uh‖ah∗ . hs‖u‖s+1,Ω. (2.42)

Remark. Note that the proofs in [Gürkan and Massing, 2019] was performed for
triangular polynomial elements defined by

Pcp(Th) = {v : v ∈ Pp(T ),∀T ∈ Th} ∩ C(Ω∗), (2.43)
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where Pp(T ) denotes the space polynomials of degree p on a triangular element
T . However, the results still hold for quadrilateral elements Qcp(Th).

As shown in [Gürkan and Massing, 2019], by applying the Aubin-Nitsche trick
(see, e.g. [Quarteroni, 2017, Ch. 4.5]), the above estimate can be used to derive
an a priori error estimate in the L2-norm.

Theorem 2.5 (A priori estimate in the L2-norm)
Let u ∈ Hm+1(Ω) for m > 1 be the solution of the Poisson problem (2.25),
and let uh ∈ Vh = Pcp(Th) be the solution to the weak formulation (2.32). Also
assume that the boundary Γ is C2. Then for s = min{m, p} we have the following
estimate for the approximation error

‖u− uh‖Ω . hs+1‖u‖s+1,Ω. (2.44)

The paper [Gürkan and Massing, 2019] proceeds to prove that the scaling of
the condition number of the stiffness matrix with respect to the mesh size h when
using CutFEM is identical to that of classical FEM [Quarteroni, 2017, Ch. 4.5].
The condition number estimate requires two additional assumptions on the ghost
penalty.

Assumption 3
The ghost penalty gh satisfies

‖v‖2Th
. ‖v‖2Ω + |v|2gh

∀v ∈ Vh. (2.45)

This assumption implies that adding ghost penalty gh to the bilinear form
enables controlling the L2-norm of a discrete function over the active mesh by
the L2-norm over the physical domain. The assumption is used to prove a discrete
Poincaré inequality, stating that for discrete functions v ∈ Vh, it holds that

‖v‖Th
. ‖v‖Ah

. (2.46)

Further, a final assumption is needed to prove an inverse estimate in the
Ah-norm.

Assumption 4
For v ∈ Vh the ghost penalty satisfies

|v|gh
. h−1‖v‖Th

. (2.47)

Finally, the condition number of the stiffness matrix resulting from the dis-
crete weak CutFEM formulation (2.32) is proved to satisfy

κ(A) . h−2, (2.48)

where the hidden constants are independent of the cut configuration. See [Gürkan
and Massing, 2019] for the proof.
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2.2.3 Ghost penalty realisations
The paper [Gürkan and Massing, 2019] proceeds to present possible realisations
of the abstract ghost penalty. The face-based ghost penalty is the stabilisation
used in the numerical experiments of this thesis.

Face-based ghost penalties

Recall from the earlier discussion that the problematic element cuts were those
leading to a tiny intersection T ∩Ω with the domain. The proof for the face-based
stabilisation in [Gürkan and Massing, 2019] is based on showing how the L2-norm
of a discrete function v ∈ Vh on an element T1 can be controlled by the norm on
a neighbouring element T2 when a certain sum is added to the weak formulation.

First, we need to introduce some notation for the normal derivative. Let
the multi index α = (α1, . . . , αd) be defined such that |α| =

∑
i αi, nα =

nα2
2 nα2

2 . . . nαd

d and α! = α1!α2! · · ·αd!. Then define

∂jnv =
∑
|α|=j

Dαv(x)nα

α! . (2.49)

The jump across an interior face F ∈ Fh, is denoted by

[w]|F = w+
F − w

−
F , (2.50)

where w(x)± = limt→0 w(x± tn) for some chosen unit normal on the face F .
In [Gürkan and Massing, 2019] the following lemma was proved.

Lemma 2.6
Let T1, T2 ∈ Th be two elements sharing a common face F . Then

‖v‖2T1
. ‖v‖2T2

+
∑

06j6p
h2j+1([∂jnv], [∂jnv])F ∀v ∈ Vh. (2.51)

The hidden constants only depends on the shape regularity of Th, the polynomial
order p and the dimension.

In Section 2.2.1, the ghost penalty faces were defined as

Fgh = {F ∈ Fh : T+ ∩ Γ 6= ∅ ∨ T− ∩ Γ 6= ∅}. (2.52)

These are the faces between adjacent elements cut by the boundary Γ, or between
two elements T+ ∈ Th and T− ∈ TΓ. We consider a cut through an element T
being ‘bad’ if |T ∩ Ω � |T |. These cuts might lead to an almost singular and
ill-conditioned stiffness matrix if no ghost penalty is added (see e.g. [Gürkan and
Massing, 2019] and a depiction in Figure 2.2). When the mesh is shape-regular,
and the boundary is C2, the following fat intersection property is fulfilled.
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Figure 2.3: Depiction of how the L2-norm of a discrete function on a barely intersected
element T1 can be controlled by adding a jump-penalty for each face until an element
satisfying the fat-intersection property is reached. The figure was taken from [Gürkan
and Massing, 2019].

Let a patch P around element T be defined as the union of all elements sharing
at least one vertex with T .

Definition 2.1 (Fat intersection property)
For T ∈ TΓ there is a patch P of diamP . h which contains T and an element
T ′ with a fat intersection satisfying

|T ′ ∩ Ω|d > cs|T ′|d (2.53)

for some mesh independent cs > 0.

The fat intersection property above can be combined with Lemma 2.6 to
show that the contribution of an element with a ‘bad’ cut can be controlled
by ‘walking’ across the faces until an element without a cut is found. This is
depicted in Figure 2.3. The fat intersection property implies that the number of
faces needed to cross is bounded. When Lemma 2.6 is applied to all the elements
in the active mesh, one can control the L2-norm of a function v ∈ Vh defined on
the active mesh, by its norm on the physical domain when the ghost penalty is
added. The results enabling controlling the norms on any ‘bad cut’ implies that
the method is stable for any cut configuration.

Finally, [Gürkan and Massing, 2019] provides a proof for that the following
ghost penalty satisfies Assumption 1-4,

gh(v, w) :=
p∑
j=0

∑
F∈Fg

h

γjh
2j−1
F ([∂jnv], [∂jnv])F , (2.54)

for v, w ∈ Vh, and positive parameters {γj}pj=0.
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Projection-based ghost penalties

Another form of ghost penalty introduced in [Burman, 2010] is the local projection-
based stabilisation. Let P be a patch of diam(P ) . h, and let πP : L2(P ) →
Pp(P ) be the L2-projection onto the space of polynomials of order p on the patch
P . The global ghost penalty is then defined as

gh(v, w) =
∑
P∈P

gP (v, w), gP (v, w) = h−2(v − πP v, w − πPw)P . (2.55)

Above, v, w ∈ Vh and P = {P} is a collection of patches.

2.2.4 A CutFEM formulation for the heat equation
In this section, we will present a CutFEM formulation of the heat equation (2.1)
on an unfitted mesh. In Section 2.1.3 the equation was discretised in both space
and time using the BDF-method, and the boundary conditions were applied
weakly by the use of Nitsche’s method. The section ended with a fully discrete
Nitsche formulation of the problem in (2.18). The CutFEM formulation extends
this Nitsche formulation with the ghost penalty. When implementing the heat
equation, we want to stabilise both the mass matrix and the stiffness matrix.
Therefore, we use the following implementation of the ghost penalty in the ex-
periments,

gh(u, v) =
∑
F∈Fg

h

p∑
k=0

1
2k + 1

h2k+1

(k!)2 ([∂knu], [∂knv])F . (2.56)

This stabilisation was implemented and used in [Ludvigsson et al., 2018].
Let Vh be a discrete function space defined on the whole fictitious domain as

in (2.26). Given ujh ∈ Vh for j = 0, 1, . . . , s− 1, find unh ∈ Vh such that
s∑

k=0
αk(un−k, v)Ω + ah(unh, v) + β · gh(unh, v) = lh(v) ∀v ∈ Vh, (2.57)

for n = s, s+ 1, . . . ,M . The constant β > 0 is a scaling parameter for the ghost
penalty, given by

β = β0(α0 + ντ/h2), (2.58)
where β0 is a positive scaling constant. The ghost penalty scales as an L2-norm.
The first term stabilises the mass matrix, while the second term stabilises the
stiffness matrix. Since the discrete formulation is multiplied with τ , the time-step
is also a factor of the second term.

The bilinear form ah and the linear form lh is defined as in (2.15). The
formulation is based on a BDF-method of stage s. The earlier steps can either
be provided by interpolating the initial steps or solved by first running one step
each of BDF-1, BDF-2 and so on up to BDF-(s− 1).



22 Chapter 2. CutFEM for parabolic problems on stationary domains

2.3 Numerical experiments
In this section, we conduct numerical experiments to corroborate the theoretical
results presented in Section 2.2.2. A CutFEM solver for the heat equation (2.1)
was implemented, assessing the convergence properties for the BDF-1 and BDF-2
time stepping schemes.

The examples were implemented1 using the open-source finite element library
deal.II [Arndt et al., 2020]. When the work on this thesis started, deal.II did
not have full support for CutFEM. Therefore, the codebase was written using
a development version of deal.II, developed by Simon Sticko, documented at
[Simon Sticko, 2021]. This version of the library included support for a cut mesh.
First and foremost, this includes a class for classifying the cut cells as either
‘inside’, ‘intersected’ or ‘outside’ with respect to the domain boundary. Secondly,
the development version of the library implemented the quadrature rules in [Saye,
2015], for integrating over cut cells.

2.3.1 Convergence tests
The convergence tests were performed using the method of manufactured solu-
tion. The problem is solved for a known solution multiple times on an increasingly
globally refined mesh. In each increased refinement level, the mesh size and time
step were both halfed. The error for a time-dependent numerical approximation
is computed in the L2L2- and the L2H1-norm, defined by

‖u− uh‖L2L2 =
∫ T

0
‖u− uh‖2Ω dt ≈ τ

M∑
n=0
‖u− unh‖2Ω,

‖u− uh‖L2H1 =
∫ T

0
‖u− uh‖21,Ω dt ≈ τ

M∑
n=0
‖u− unh‖21,Ω.

(2.59)

Let the numerical solution computed on a grid with refinement level k be denoted
by uh,k, and denote the error of this solution by

Ek = ‖u− uh,k‖L2ω, (2.60)

where ω is either L2 or H1. Let the size of a grid of refinement level k be denoted
by hk. The experimental order of convergence (EOC) is then computed by

EOCk = log(Ek/Ek−1)
log(hk/hk−1) . (2.61)

The discrete function spaces used was the quadrilateral elements Qcp(Th) for p =
1, 2. Recall that the finite element function space (2.26) is defined on the whole
active mesh.

1The code is openly available at https://github.com/sigmundholm/microbubble.

https://github.com/sigmundholm/microbubble
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Figure 2.4: Domain used for the convergence tests for the heat equation.

The a priori estimates stated in Theorem 2.4 and Theorem 2.5 showed that the
error of CutFEM approximation of a stationary problem is expected to converge
as hp in the H1-norm, and as hp+1 in the L2-norm. This is the same optimal
convergence estimates as in classical FEM (see e.g. [Quarteroni, 2017, Ch. 4]).
Furthermore, the BDF-method of stage s converges as τs when solving an ODE.
Therefore, measured in the norms defined above in (2.59), the best convergence
rates we can hope for is

‖u− uh‖L2L2 6 O(τs) +O(hp+1),
‖u− uh‖L2H1 6 O(τs) +O(hp).

(2.62)

The experiments were conducted in two dimensions with a square background
domain with side lengths l = 2. The physical domain Ω was set to be a sphere
of radius r = 3l/8, described by the level set function,

φ(x1, x2) =
√

(x1 − a)2 + (x2 − b)2 − r. (2.63)

The center of a sphere was set at the point (a, b) = (−0.9(l/2−r), 0). The domain
is depicted in Figure 2.4. At the start of the program, the level set function was
interpolated onto the discrete function space Vh, to get the discrete level set
φh ∈ Vh.

The analytical solution used was

u(x, t) = sin(πx1) sin(πx2)e−t. (2.64)

This is enforced by computing the corresponding right-hand side function f for
the heat equation (2.1), and using the known solution for setting Dirichlet bound-
ary conditions along the whole boundary Γ.

The equation parameter ν was set to a value of 2. The end time was set to
T = 1 to ensure h = τ for all convergence tests. The mesh consisted of uniform
quadrilaterals, and refinement level k produced a background mesh with N = 2k
elements along each side of the background domain. The tests where run from
refinement level k = 3 through k = 8.
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Figure 2.5: The result of the parameter search for the ghost penalty scaling constant
β0. For each data point, a convergence test for the heat equation using BDF-2 (with
BDF-1 as the initial step) was run.

The Nitsche penalty parameter was set to

µ = 20p(p+ 1)/h. (2.65)

As the convergence tests were run, it was observed that the ghost penalty scaling
constant β0 had a large impact on the EOC when running BDF-2 with BDF-1 for
the initial step. Therefore, a parameter search was performed. The results are
depicted in Figure 2.5. In the figure, we see that for p = 2, the parameter needs
to be set larger than 80 to achieve a second-order convergence in the L2L2-norm2.
With these results in mind, the parameter was set to

β0 = 8 · 10p−1, (2.66)

for further experiments. The reason for the factor 10p−1, is that this was set as
the p-dependency on this parameter in [Sticko et al., 2021], although that paper
used a constant of β0 = 1 · 10p−1.

In Figure 2.6 the convergence plot for the heat equation using BDF-1 is shown.
Due to the low order of the time-stepping method, one can not expect more than
first-order convergence in any norm. We thus see that optimal convergence is
attained.

In the case of BDF-2 with interpolated initial steps, we see from Figure 2.7
that full convergence is achieved. This is also the case for BDF-2 with BDF-1
run for the initial step u1

h, depicted in Figure 2.8.

2Note that in the implementation of the ghost penalty (2.56), every face F of each cell in TΓ
is iterated and stabilised given that F ∈ Fg

h
. In effect, every face is stabilised twice. Therefore,

in the implementation, the CutFEM stabilisation parameter β0 is set to half the value stated
here.
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Figure 2.6: Convergence plot for the heat equation, solved using BDF-1. The error is
plotted against the number of elements N along the sides of the square domain.
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Figure 2.7: Convergence plot for the heat equation, solved using BDF-2 with the first
two steps interpolated. The error is plotted against the number of elements N along
the sides of the square domain.
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Figure 2.8: Convergence plot for the heat equation, solved using BDF-2 with the initial
step solved with BDF-1. The error is plotted against the number of elements N along
the sides of the square domain.



Chapter 3

CutFEM for flow problems on
stationary domains

When modelling physical phenomena using PDEs, problems involving fluids adds
multiple complexities. The first challenge involves handling the coupling between
pressure and velocity. The theoretical results for the well-posedness of the weak
linear Stokes problem are markedly more involved than for elliptical equations.
As the Navier-Stokes equations introduce a non-linear convection term to the
Stokes problem, well-posedness is a famous open problem.

In the previous chapter, an introduction to CutFEM was given. Since Cut-
FEM allows the physical domain to be represented independently of the finite
element mesh, CutFEM can vastly improve computing time. These gains are
even more advantageous when solving time-dependent PDEs. Therefore, the fea-
tures of CutFEM are especially interesting for the simulation of fluid problems.

In this chapter, we review and present theoretical results for CutFEM applied
to fluid problems. Due to the new challenges introduced by the coupled problem,
Section 3.1 starts by giving a brief introduction to the stationary Stokes problem
and how a finite element formulation requires the function spaces to fulfil an
inf-sup condition to be stable. In Section 3.2, challenges with regards to the
finite element discretisation is discussed. The discrete inf-sup condition leading
to stable discrete function space pairs is presented. The variational problem
is then extended to a fully discrete Nitsche formulation for the time-dependent
Stokes problem. The section concludes with an introduction to CutFEM for
flow problems, and finally, we present a CutFEM formulation for the Stokes
problem. A discretisation of the Navier-Stokes problem is given in Section 3.4,
with the ghost penalty stabilisation required for an unfitted CutFEM formulation.
Finally, in Section 3.5 the implemented numerical experiments are presented.
The convergence tests corroborate the optimal convergence of CutFEM for flow
problems. Classic benchmarks problems for the stationary and time-dependent

27
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Navier-Stokes equations are also presented.

3.1 The Stokes equations
The time-dependent Stokes equations model a viscous, incompressible fluid. The
equations model laminar flow where the Reynolds number is low. That is, the
equations express the conservation of linear momentum, when the viscous forces
are assumed to dominate the inertial forces. Along with the conservation of mass
for an incompressible fluid, the vector equations governing viscous flow in an open
and bounded domain Ω ⊂ Rd with piecewise smooth boundary Γ = ∂Ω, is stated
as

ρut −∇ · σ = f in (0, T )× Ω (3.1a)
∇ · u = 0 in (0, T )× Ω (3.1b)

u = g on [0, T ]× Γ (3.1c)
u(0, ·) = u0 on Ω (3.1d)

Here, ρ > 0 denotes the constant density of the fluid, having velocity u : [0, T ]×
Ω→ Rd. The first term of (3.1a), ut = ∂tu = ∂u/∂t denotes the partial derivative
of u with respect to time t. The right hand side function f : [0, T ] × Ω → Rd is
some body force density, and σ : [0, T ] × Rd → Rd×d denotes the Cauchy stress
tensor (see e.g. [Eck et al., 2017, Ch. 5]). For a Newtonian, incompressible fluids,
the stress tensor is given by

σ = 2µD(u)− pI, (3.2)

where µ > 0 is the shear viscosity (dynamic viscosity), p : [0, T ] × Ω → R is
the fluid pressure and I denotes the identity matrix. The term ∇ · σ express
the friction forces between fluid layers. When friction between fluid layers are
present, a fast moving fluid particle can accelerate a neighbouring, slower moving
particle. This effect will therefore depend upon velocity differences between the
layers [Eck et al., 2017, Ch 5.6]. These differences are expressed by the term D(u)
which denotes the symmetric part of the velocity gradient ∇u.1 This symmetric
gradient is given by

D(u) = 1
2 (∇u+ (∇u)T ). (3.3)

Now take the divergence of the stress tensor in (3.2), and insert for the symmetric
gradient in (3.3). Then use that the velocity field is incompressible (3.1b), and
continuously differentiable. We then obtain

∇ · σ = µ∆u−∇p. (3.4)
1In this text, ∇u will denote the Jacobian of the vector valued function u, such that ∇u =

(∇u1∇u2∇u3)T , for d = 3.
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This can then be inserted into (3.1a) before dividing by ρ to get the time depen-
dent Stokes equations

ut − ν∆u+∇p = f in (0, T )× Ω (3.5a)
∇ · u = 0 in (0, T )× Ω (3.5b)

u = g on [0, T ]× Γ (3.5c)
u(·, 0) = u0 on Ω. (3.5d)

Here, the pressure p : Ω × [0, T ] → R and the body force f was redefined by
absorbing the reciprocal of the density, and the kinematic viscosity is defined
as ν = µ/ρ. Due to the incompressibility in the equations above, the Dirichlet
conditions are required to satisfy the following

0 =
∫

Ω
∇ · u dx =

∫
Γ
un dS =

∫
Γ
gn dS. (3.6)

Above, n denotes the unit normal vector pointing out of the domain.
Since only the gradient of the pressure is included in the equations (3.5), the

pressure variable is only unique up to a constant. The pressure variable can be
seen as the variable enforcing the velocity to be incompressible. This is explained
in the following section by deriving the Stokes equations to be the first-order
optimality condition of a constrained optimisation problem.

Note that in the system of equations (3.5), there are two unknowns, the
velocity u and the pressure p, depending on both space and time. Therefore,
the problem is said to be coupled, so we need to solve for (u, p) simultaneously.
When discretising the problem using FEM, this challenge requires the function
spaces to satisfy an inf-sup condition for the variational formulation to be stable.
This theory will be briefly presented in the sections to follow.

3.1.1 A saddle point problem
The minimisation of functionals over Banach spaces play an important role in
mathematical physics. One of the most famous ones is arguably,

min
u∈V

J(u) = 1
2‖∇u‖

2
Ω − (f, u)Ω. (3.7)

This optimisation problem is often referred to as Dirichlet’s principle [Borthwick,
2018, Ch. 11], and has it origins in calculus of variations [Evans, 2010, Ch. 8].
Since the functional J : V → R is Fréchet differentiable (see [Tröltzsch, 2010, Ch.
2.6]), one can show that a first order necessary optimality condition of (3.7) is

〈J ′(u), v〉V ′,V = 0 ∀v ∈ V. (3.8)

Above, the notation for a dual paring is used. Let V ′ denote the dual space of V ,
the space of bounded, linear functionals on V . The application of a functional
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F ∈ V ′ on an element v ∈ V is then denoted F (v) = 〈f, v〉V ′,V . The Fréchet
derivative of J in direction u is denoted J ′(u), such that, J ′ : V → V ′. By
computing this derivative, the optimality condition (3.8) is computed to be

(∇u,∇v)Ω = (f, v)Ω ∀v ∈ V. (3.9)

We recognise this as the weak formulation of the Poisson problem with Dirichlet
boundary conditions when searching for solutions u ∈ V = H1

0 (Ω). This example
is by no means unique. For many PDEs, we can find a functional J for which the
PDE serves as a necessary condition for the minimiser of J [Boffi et al., 2013, Ch.
1].

Optimal control is the study of minimisation problems as the one above but
subject to constraints in the form of PDEs. Now let u : Ω → Rd be a vector
function, and let V = [H1(Ω)]d be a Sobolev space with vector-valued functions.
Consider the constrained problem

min
u∈V

J(u) = 1
2‖∇u‖

2
Ω − (f, u)Ω (3.10)

subject to
∇ · u = 0. (3.11)

This constraint requires the minimiser of J to be divergence free, that is, incom-
pressible. The optimality conditions for this constrained problem can be found by
employing the formal Lagrange method [Tröltzsch, 2010, Ch. 4.7] (also see [Eck
et al., 2017, Ch. 6.1.5], [Larson and Bengzon, 2013, Ch. 12.2.3] or [Boffi et al.,
2013, 1.3.2] for the current problem). Let V and Q be Hilbert spaces, and p ∈ Q
a Lagrange multiplier. Define the Lagrange functional L : V ×Q→ R as

L(u, p) = J(u)− (∇ · u, p)Ω. (3.12)

Now we formulate the first order necessary conditions by finding the directional
derivatives of the Lagrange functional above,

〈Lu(u, p), v〉V ′,V = 0 ∀v ∈ V,
〈Lp(u, p), q〉Q′,Q = 0 ∀q ∈ Q.

(3.13)

These optimality conditions amounts to finding the saddle point (u, p) of the
unconstrained optimisation problem

min
v∈V

max
p∈Q
L(u, p). (3.14)

A pair (u, p) ∈ V ×Q is a saddle point of L if

∀q ∈ Q, L(u, q) 6 L(u, p) 6 L(v, p), ∀v ∈ V. (3.15)
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By Fréchet differentiating the Lagrange functional with respect to u and p re-
spectively, we can write the optimality conditions in (3.13) as

(∇u,∇v)Ω − (∇ · v, p)Ω = (f, v)Ω ∀v ∈ V
−(∇ · u, q)Ω = 0 ∀q ∈ Q.

(3.16)

As we will see in the next section, this set of optimality conditions is precisely
the weak form of the stationary Stokes problem, for the velocity u and pressure
p. The pressure arose as a Lagrange multiplier, enforcing the constraint that the
velocity should be divergence-free. In the next section we will also see that when
the function spaces V and Q, and the inner products in (3.16) satisfies certain
conditions, the necessary optimality conditions in (3.16), are indeed sufficient
for u to be a solution of the optimisation problem in (3.10)-(3.11) [Ern and
Guermond, 2021, Proposition 49.11] [John et al., 2016, Theorem 3.21].

3.1.2 The continuous inf-sup conditions
The coupling of velocity and pressure in the saddle point problem poses a new
challenge. Because of this coupling, the finite element function spaces must sat-
isfy certain conditions for the formulation to be stable. The Stokes problem
shares this challenge with the Oseen problem, which can be seen as a lineari-
sation of the time-discretised Navier-Stokes equations. In this section, we will
therefore give a short introduction to the stability analysis for the stationary
Stokes equations. This analysis leads to the discrete inf-sup condition that the
approximating function spaces must satisfy.

The presentation below is mainly based on [Brenner and Scott, 2008, Ch. 12]
and [Larson and Bengzon, 2013, Ch. 12.2]. Further details, and more general
treatments can also be found in e.g. [John et al., 2016, Ch. 3], [Boffi et al.,
2013, Ch. 4] or [Ern and Guermond, 2021, Ch. 49].

Consider the stationary, incompressible Stokes equations, given by

−ν∆u+∇p = f in Ω, (3.17a)
∇ · u = 0 in Ω, (3.17b)

u = 0 on Γ. (3.17c)

Note that when only Dirichlet boundary conditions are applied, and only the pres-
sure gradient is involved, the pressure is unique only up to a constant. Therefore,
we let the function space for the pressure have zero-mean to allow for a unique
pressure solution.

Let V and Q be Hilbert spaces. In the search for a solution (u, p) to the
coupled problem above, we first reformulate the strong form of the system into a
weak formulation. This is done by multiplying (3.17a) by a test function v ∈ V ,
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and multiplying (3.17b) by some q ∈ Q. After integrating by parts we get

ν(∇u,∇v)Ω − (∇ · v, p)Ω = (f, v)Ω,

(∇ · u, q)Ω = 0.
(3.18)

Let V = [H1
0 (Ω)]d, and Q = L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω p dx = 0} 2. Further, we
introduce the two bilinear forms a : V × V → R and b : V ×Q→ R defined by

a(u, v) := ν(∇u,∇v)Ω, b(u, q) := (∇ · u, q)Ω. (3.19)

If we now take F ∈ V ′ defined by F (v) = 〈f, v〉V ′,V , we can write the problem
on the form of a general saddle point problem. Find (u, p) ∈ V ×Q such that

a(u, v) + b(v, p) = F (v) ∀v ∈ V,
b(u, q) = 0 ∀q ∈ Q.

(3.20)

The bilinear form b above can be defined by a linear operator B : V → Q′, such
that

b(u, q) = 〈Bu, q〉Q′,Q. (3.21)
If we now for a moment instead search for a solution u ∈ kerB = {v ∈ V :
b(v, q) = 0 ∀q ∈ Q}, the problem (3.20) reduces to

a(u, v) = F (v) ∀v ∈ kerB. (3.22)

By Lax-Milgrams Lemma [Brenner and Scott, 2008, Ch. 2.7], this problem is
well-posed given that a is coercive on kerB, that is, there exists some α > 0 such
that

α‖v‖V 6 a(v, v) ∀v ∈ kerB. (3.23)
Since the pressure vanishes from the equations, this is coherent with what we saw
in the previous section. That is, the pressure enforces incompressibility constraint
on the velocity u.

With u well defined by (3.22), p can be found such that

b(v, p) = F (v)− a(u, v) ∀v ∈ V. (3.24)

For this problem to be well posed, a new coercivity condition is required of b.
This condition requires the existence of a constant β > 0 such that

β‖p‖Q 6 sup
w∈V

b(w, p)
‖w‖V

∀v ∈ V. (3.25)

It is proved in [Brenner and Scott, 2008, Lemma 12.2.12], that if a and b are
continuous and b satisfies (3.25), then (3.20) has a unique solution.

2The function space V holds vector valued functions, so for dimension d = 2, this would
mean [H1

0 (Ω)]2 = H1
0 (Ω)×H1

0 (Ω).
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The condition (3.25) can also be written as

β 6 inf
p∈Q

sup
w∈V

|b(w, p)|
‖w‖V ‖p‖Q

∀v ∈ V, (3.26)

and is hence known as the continuous inf-sup condition.

3.2 Discretisation
In the previous section, we saw that the inf-sup condition was needed for the
saddle point problem (3.20) to have a unique solution. In this section, the weak
formulation will be discretised. This leads to the need for a discrete version of the
inf-sup condition. The discrete function spaces will need to satisfy this condition
for the formulation to be stable.

3.2.1 Classical method
The discrete inf-sup condition

When discretising the problem (3.20) above, we first partition the domain Ω into a
finite element mesh Th of quadrilateral/hexahedral closed elements T . The mesh
is shape regular and fitted to the domain, such that Ω = ∪T∈Th

T . On this mesh,
define two finite element function spaces Vh and Qh of piecewise polynomials
approximating V and Q. Now, we want to find a discrete solution to the problem
(uh, ph) ∈ Vh ×Qh such that

a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh,
b(uh, q) = 0 ∀q ∈ Qh.

(3.27)

In this coupled finite element problem, the two different variables are approxi-
mated using two function spaces. This is referred to as a mixed method.

Recall that the well-posedness of the problem formulation (3.20) was depen-
dent on a being coercive (3.23) on kerB. Now denote the discrete counterpart
by

kerBh = {v ∈ Vh : b(v, q) = 0 ∀q ∈ Qh}. (3.28)

However, if uh ∈ kerBh it only means that it is discretely divergence free, that
is,

b(uh, q) =
∫

Ω
∇ · uhq dx = 0 ∀q ∈ Qh. (3.29)

This does not necessary imply that ∇·uh(x) = 0 for all x ∈ Ω. In general, kerBh
is hence not a subspace of kerB. This is also the case for the inf-sup condition
(3.25), as it need not hold for Vh and Qh, even when Vh ⊂ V and Qh ⊂ Q [Larson
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and Bengzon, 2013, Ch. 12.2.6], [John et al., 2016, Ch. 3.3]. In the literature,
this is known as a variational crime [Brenner and Scott, 2008, Ch. 11].

For the discrete weak formulation (3.27) to be well-posed, the function spaces
are required to satisfy a discrete version of the inf-sup condition. That is, there
must exists a constant βh > 0 such that

βh‖p‖Q 6 sup
w∈Vh

b(w, p)
‖w‖V

∀v ∈ Vh. (3.30)

This condition is also known as the Ladyzhenskaya-Babuska-Brezzi (LBB) condi-
tion. The inequality asserts that the velocity function space Vh does not have too
many degrees of freedom in comparison to the pressure space Qh (also see [John
et al., 2016, Remark 3.52]). When the discrete inf-sup condition hold, the discrete
pressure ph exists and is unique [Brenner and Scott, 2008, Ch. 12.3].

Stable function spaces

The Taylor-Hood finite elements are widely used approximation spaces for solving
incompressible flow problems. For polynomial degree p > 2 and quadrilateral
elements T , these are denoted [Qp]d ×Qp−1, and given by

Vh = {v ∈ [C(Ω)]d : v|T ∈ [Qp(T )]d, T ∈ Th} ∩ [H1(Ω)]d

Qh = {q ∈ C(Ω) : v|T ∈ Qp−1(T ), T ∈ Th} ∩ L2
0(Ω)

(3.31)

Here, Qp(T ) denotes a finite element of polynomial degree p on a quadrilateral or
hexahedral T (see [Brenner and Scott, 2008, Ch. 3]). The exponent d in [Qp(T )]d
signifies the dimension of the vector valued function element. See [Brenner and
Scott, 2008, 12.6] for a proof that this pair of function spaces satisfy the discrete
inf-sup condition (3.30) for p = 2. A proof for the case p = 3, was given in [Brezzi
and Falk, 1991], along with the claim that their method could also be used to
show the stability for Taylor-Hood elements of arbitrary polynomial degree p for
velocities and p− 1 for the pressure.

Other stable function space pairs exist, e.g. the MINI element [John et al.,
2016, Ch. 3.6]. However, for all experiments of this thesis regarding flow prob-
lems, the Taylor-Hood elements will be used.

Another alternative is using a stabilised weak formulation. Then an ‘unstable’
function space pair can be stabilised by extending the weak form. The continuous
interior penalty (CIP) method [Douglas and Dupont, 1976] is a method where
equal order interpolation spaces are used for the velocity and pressure function
spaces. A face penalty stabilisation term is added to the bilinear form to control
the instabilities.
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3.2.2 Nitsche’s method for the Stokes equations
As in Section 2.1, we want to enforce the Dirichlet boundary conditions weakly
by using Nitsche’s method. First, we derive a weak formulation for the Stokes
problem (3.17). We multiply (3.17a) with a test function v ∈ V = [H1(Ω)]d, and
multiply (3.17b) by a test function q ∈ Q = L2

0(Ω). After integrating by parts
over the domain we get

ν(∇u,∇v)Ω − ν(∂nu, v)Γ − (∇ · v, p)Ω + (v · n, p)Γ = (f, v)Ω, (3.32a)
(∇ · u, q)Ω = 0. (3.32b)

In the expression above, ∂nu = ∇u · n denotes the directional derivative of u in
direction n. If we now subtract the latter equation above from the former, we
obtain
ν(∇u,∇v)Ω− ν(∂nu, v)Γ− (∇ · v, p)Ω + (v · n, p)Γ− (∇ · u, q)Ω = (f, v)Ω. (3.33)

For the system above, the boundary conditions are not enforced. As was done for
the heat equation in Section 2.1, the following boundary penalty term µ(u−g, v)Γ
is added to the equation, where µ is a mesh dependent penalty parameter. When
u satisfies the boundary values g on the boundary Γ, this term vanishes, and is
thus consistent with the problem. This results in the following weak form,

ν(∇u,∇v)Ω − ν(∂nu, v)Γ − (∇ · v, p)Ω + (v · n, p)Γ

− (∇ · u, q)Ω + µ(u, v)Γ = (f, v)Ω + µ(g, v)Γ.
(3.34)

The bilinear form defined by the left-hand side in the equation above is not
symmetric. To symmetrize the bilinear form, the following terms are added

− ν(u− g, ∂nv)Γ + ((u− g) · n, q)Γ. (3.35)
These terms symmetrizes the second and fourth term in (3.34) respectively. Using
the Taylor-Hood finite elements [Qp]d × Qp−1 as defined in (3.31), the discrete
weak Nitsche formulation of the stationary Stokes problem (3.17) is then: find
(uh, ph) ∈ Vh ×Qh such that

ah(u, v) + bh(v, p) + bh(u, q) = lh(v, q), ∀(v, q) ∈ Vh ×Qh. (3.36)
Here we have defined the bilinear forms ah : V × V → R and bh : V ×Q→ R by

ah(u, v) := ν(∇u,∇v)Ω − ν(∂nu, v)Γ − ν(u, ∂nv)Γ + µ(u, v)Γ,

bh(v, p) := −(∇ · v, p)Ω + (v · n, p)Γ,
(3.37)

while the linear form lh : Vh ×Qh → R, is given by
lh(v, q) = (f, v)Ω + µ(g, v)Γ − ν(g, ∂nv)Γ + (g · n, q)Γ. (3.38)

The Nitsche penalty parameter is still

µ = νγ

h
, (3.39)

for some scaling constant γ > 0.
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3.2.3 Time discretisation
Now we return to the time dependent Stokes equations from (3.5). This prob-
lem only differs from the stationary problem discussed above by the added time
derivative ut. When this term is included in the Nitsche formulation derived
above in (3.36), we get the following semidiscrete weak formulation of (3.5).
Find (uh, ph) ∈ Vh ×Qh such that

(ut,h, v)Ω + ah(uh, v) + bh(v, ph) + bh(uh, q)
= lh(v, q) ∀(v, q) ∈ Vh ×Qh, t ∈ [0, T ].

(3.40)

This is a semi-discrete formulation of the problem, (see e.g. [Thomée, 2007, Ch.
1]). Similar to the approach for the heat equation in Chapter 2, we look for a
weak solution to (3.40) such that

uh ∈ L2(0, T ;Vh) with ut,h ∈ L2(0, T, V ′h),
ph ∈ L2(0, T ;Qh)

(3.41)

However, in this case, we let Vh and Qh be subspaces of

V = [H1(Ω)]d and Q = L2
0(Ω). (3.42)

As was done for the time discretisation for the heat equation, the term (ut, v)Ω
will be discretised using the BDF-method. This is done by discretising the time
t into discrete time steps tn = τn, for some constant step length τ . The time
derivative of the velocity is then approximated by the solutions in the previous
time steps. We thus have the following approximation

(ut(tn), v)Ω ≈
1
τ

s∑
k=0

αk(un−k, v)Ω, (3.43)

for an s-stage BDF method, referred to as BDF-s. Here, we let un = u be the
next solution step we want to solve the system for. The coefficients for BDF-s,
are denoted by αk for k = 0, 1, . . . , s. When (3.43) is inserted into (3.40), we get
a fully discrete weak formulation of the time dependent Stokes problem. Given
ujh ∈ Vh for j = 0, 1, . . . , s− 1, find (unh, pnh) ∈ Vh ×Qh such that

1
τ

s∑
k=0

αk(un−kh , v)Ω + ah(unh, v) + bh(v, pnh) + bh(unh, q)

= lh(v, q) ∀(v, q) ∈ Vh ×Qh,
(3.44)

for n = s, s + 1, . . . ,M , where M = T/τ is the final time step. To acquire the
initial start-up steps for BDF-s, s > 2, we run one step each of BDF-1, BDF-2
up to BDF-(s− 1), before BDF-s can be run. If the analytical solution is known,
these steps can be interpolated.
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3.3 CutFEM for the Stokes problem
In the previous sections, the Stokes problem was discretised on a fitted mesh. As
in the previous chapter, we now want to extend this formulation to an unfitted
mesh. Let the background domain Ω̃ cover the domain Ω, and let the background
mesh T̃h be a quasi-uniform tesselation of Ω̃. Now, we allow the boundary Γ of
the physical domain Ω to cut the background mesh arbitrarily. First and fore-
most, this requires the definition of the active mesh Th as the set of all elements
intersecting the physical domain, that is

Th = {T ∈ T̃h : T ∩ Ω 6= ∅}. (3.45)

The union of the elements in this set make up the computational domain, that is,
the fictitious domain, Ω∗ = ∪T∈Th

T . Due to the arbitrary cut configuration of the
background mesh, one might find that some of the elements in the active mesh are
cut small (also referred to as ‘bad’ cut elements), which means, |T ∩ Ω| � |T |.
These small cut elements lead to unstable and non-optimal a priori error and
condition number estimates. Just as in Section 2.2, the bilinear form is augmented
with ghost penalty stabilisations. These ghost stabilisations have the effect of
extending the stability properties to the whole fictitious domain Ω∗. However,
for this coupled problem, we need to add ghost penalties to stabilise both the
velocity and the pressure.

As in Section 2.2, the face-wise ghost penalty stabilisation is used, and the
set of ghost penalty faces is defined as

Fgh = {F = T+ ∩ T− : T+ ∈ Th, T− ∈ TΓ, T
+ 6= T−}. (3.46)

Recall that TΓ denotes the set of elements that does not lie completely in Ω:

TΓ = {T ∈ Th : T 6⊂ Ω}. (3.47)

For the discretisation of the function spaces, we still use the inf-sup stable Taylor-
Hood finite elements, but the function spaces will need to be redefined for this
unfitted method. Now we let

Vh = {v ∈ [C(Ω∗)]d : v|T ∈ [Qp(T )]d, T ∈ Th} ∩ [H1(Ω∗)]d

Qh = {q ∈ C(Ω∗) : v|T ∈ Qp−1(T ), T ∈ Th} ∩ L2
0(Ω∗).

(3.48)

Note that the function spaces now include functions defined on the whole fictitious
domain Ω∗. The ghost penalties are defined and implemented as

gu(u, v) =
∑
F∈Fg

h

p∑
k=0

1
2k + 1

h2k+1

(k!)2 ([∂knu], [∂knv])F ,

gp(p, q) =
∑
F∈Fg

h

p−1∑
k=0

1
2k + 1

h2k+1

(k!)2 ([∂knp], [∂knq])F .

(3.49)
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The Nitsche weak formulation developed in Section 3.2.2 is extended with the
ghost penalties above. The resulting formulation will then be stable and optimally
convergent for flow problems posed on unfitted meshes.

In [Burman and Hansbo, 2014] the Stokes problem was solved on an unfitted
domain using CutFEM. Both inf-sup stable and CIP stabilised velocity and pres-
sure function space pairs were considered. A ghost penalty was used to ensure
stability on the cut cells. The paper proved that the inf-sup condition holds for
the proposed method over the whole fictitious domain. Optimal a priori error
estimates were also proved for an energy norm and the L2-norm.

The Stokes problem was also studied on an unfitted domain in [Massing et al.,
2014]. This was the first contribution where the problem was implemented in
three spatial dimensions using CutFEM. However, since low order finite elements
were used, the resulting method needed stabilisations to be inf-sub stable. A
face-based ghost penalty was used for stability on the whole fictitious domain.
Inf-sup stability and an a priori estimate for the fictitious method was proved.

In [Guzmán and Olshanskii, 2018] inf-sup stability for Taylor-Hood elements
[Qp]d×Qp−1, p > 1, was proved for an unfitted finite element discretisation of the
Stokes problem. The analysis can also be applied to a Stokes interface problem,
i.e. a two-phase flow problem. Nitsche’s method is applied to enforce the Dirichlet
boundary conditions, and a face-based ghost penalty is used to attain stability
of the pressure over the cut triangles. The paper proves the inf-sup stability over
the fictitious domain and optimal convergence for several known stable function
space pairs.

The Oseen problem adds a source term and a convection term to the Stokes
problem. This is precisely the problem that needs to be solved in each time step
of a linearised Navier-Stokes solver, based on a finite difference approximation
for the time derivative. In [Massing et al., 2018], CutFEM was applied to this
equation. The paper included proofs for in-sup stability and a priori error esti-
mates for the stabilised unfitted finite element method. Since their method used
equal order interpolation spaces for the velocity and the pressure, it depended
on the continuous interior penalty (CIP) method for stabilising the method. In
addition, the method used convection stabilisations as a remedy to deal with con-
vection dominated problems. The paper proved that the facet jump based ghost
penalties and the CIP stabilisations could be combined in a single stabilisation
for a method more convenient for implementation. However, as mentioned in ear-
lier sections, the implementations for the flow problems in the current thesis will
utilise Taylor-Hood finite elements only. Therefore, the technique based on CIP
will not be relevant here. Also, since we aim to simulate viscous flow, stabilising
high convection is neither relevant.

The CutFEM formulation for the stationary Stokes naturally uses Nitsche’s
method, introduced in Section 3.2.2. The discrete weak Nitsche formulation was
given in (3.36). This formulation will now be extended with the ghost penalties
defined in (3.49). The CutFEM formulation is now as follows: find (uh, ph) ∈
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Vh ×Qh such that

ah(uh, v) + bh(ph, v) + bh(q, uh) + βu · gu(uh, v)
+ βp · gp(ph, q) = lh(v, q), ∀(v, q) ∈ Vh ×Qh.

(3.50)

Above, the bilinar forms ah and bh are defined as in (3.37), while the linear form
lh is defined in (3.38). For the stationary Stokes problem, the ghost penalty
stabilisations are scaled with the following constants,

βu = βu,0
ν

h2

βp = βp,0
h
.

(3.51)

We now want to develop this formulation of the unfitted stationary Stokes
problem into a method for solving the unfitted time-dependent Stokes problem.
As seen in the previous Section 3.2.3, when the BDF-method is used to discretise
the time derivative, a generalised Stokes problem needs to be solved in every time
step. The generalized Stokes problem adds a source term scaled by a constant to
the left hand side of the stationary Stokes problem, and is thus given by

σu−∆u+∇ · p = f in Ω
∇ · u = 0 in Ω

u = 0 on Γ.
(3.52)

When solved in each time step of a time dependent Stokes problem, the constant
σ > 0 will equal α0/τ , while the right hand side source function f : Ω → Rd
contains the BDF-terms dependent on the previous time steps. Due to the added
reaction term, the scaling constants βu will have to be altered as a remedy of
dealing with the emerging mass matrix in this finite element setting. Other
than that, the CutFEM formulation for the time dependent formulation is as
given in (3.44) extended with the two ghost penalties as presented above in
(3.49). Therefore, with the bilinear and linear forms ah, bh and lh unchanged,
the discrete weak CutFEM formulation for the time-dependent Stokes problems
is the following. Given ujh ∈ Vh for j = 0, . . . , s− 1, find (unh, pnh) ∈ Vh ×Qh such
that

1
τ

s∑
k=0

αk(un−kh , v)Ω + ah(unh, v) + bh(v, pnh) + bh(unh, q)

+βu · gu(unh, v) + βp · gp(pnh, q) = lh(v, q), ∀(v, q) ∈ Vh ×Qh,
(3.53)

for n = s, s+ 1, . . . ,M . When implemented for the later numerical experiments,
the formulation above is multiplied with the time step τ . Additionally, the inner
products including the previous time steps, are naturally included in the right
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hand side linear form lh. The ghost penalty scaling constants will now be set to
the values proposed in [Massing et al., 2018, Sec. 3.2], where the Oseen problem
was studied. We therefore set,

βu = βu,0

(
1 + τν

h2

)
,

βp = βp,0
τ

ν + h2/τ
.

(3.54)

Note that due to the different implementations of the ghost penalty, the scaling
constants above differ with a factor of 1/h2 when compared to the scalings pro-
posed in [Massing et al., 2018, Sec. 3.2]. Additionally, since we are currently
solving the Stokes problem and not the Oseen problem, we omit the convection
field weight used for the Oseen problem in the aforementioned paper.

3.4 Navier-Stokes equations
The Navier-Stokes equations express the conservation of linear momentum and
the conservation of mass for Newtonian fluids. When compared to the time-
dependent Stokes equations, the Navier-Stokes equations adds a non-linear con-
vection term to the system of PDEs. This term accounts for the inertial forces
in the fluid. The system of equations are given in the strong form by

∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T )× Ω
∇ · u = 0 in (0, T )× Ω

u = g on [0, T ]× Γ
u(0, x) = u0 in Ω,

(3.55)

where Ω ⊂ Rd, for d ∈ {2, 3} is an open and bounded domain, with piecewise
smooth boundary Γ = ∂Ω. The non-linearity of the equations adds a significant
challenge to the problem. There are no proofs that a strong solution to the
Navier-Stokes equations exists in three dimensions [Fefferman, 2000]. However,
the existence of a weak solution to the Navier-Stokes equations has been proved.
The uniqueness of weak solutions to the problem is not known.

Above, the system of equations is stated with Dirichlet boundary conditions
along the whole boundary. This is used when enforcing no-slip boundary con-
ditions or when deciding the exact inflow at some part of the boundary. In
the numerical experiments, we will also apply the so-called do-nothing boundary
condition at parts of the boundary ΓN . These are given by

(ν∇u− pI)n = 0 on (0, T )× ΓN . (3.56)

This condition is also referred to as natural boundary conditions and is usually
used for the outflow part of the domain boundary. When considering the weak
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formulation of the problem, this condition cancels the terms on the part of the
boundary ΓN . Therefore, no boundary terms need to be assembled along that
part of the boundary. Moreover, when the problem is posed using natural bound-
ary conditions, the pressure will be uniquely defined when using the finite element
method.

3.4.1 Linearisation of the convection term
For the numerical solution of the Navier-Stokes equations, the challenge of the
non-linear convection term will in this presentation be restricted to the choice
of discretisation technique. When not using some projection method [Guermond
et al., 2006], we mainly have three options for linearising the system of equations.

The first method is using a semi-implicit discretisation of the convection term.
In this case the term (un · ∇)un is replaced by (ũn · ∇)un, where ũn is a k-th
order extrapolation of un in time, such that

un − ũn = o(τk) (3.57)

The extrapolation formulas up to order k = 3 are listed in the table below, and
can be found by Taylor-expanding around t = 0.

k ũn

1 un−1

2 2un−1 − un−2

3 3un−1 − 3un−2 + un−3

To attain the correct order of convergence, the extrapolation order used must be
combined with a BDF-method of the same order. To ease the implementation,
note that the convective term can be rewritten using that

(u · ∇)v = (∇v)u = ∇vu, (3.58)

where∇v denotes the Jacobian of the vector-valued function v. The semi-implicit
convection term will be the linearisation method of choice for the numerical im-
plementations in this thesis.

The second option is to handle the term as a full explicit term and include it
on the right-hand side. In this case we use the extrapolation method from above,
but now we replace the term (un · ∇)un with (ũn · ∇)ũn. Therefore, this whole
term can be moved over to the right-hand side of the equation and assembled in
the right-hand side vector when using FEM.

A fully implicit method is a third alternative for handling the convection
term. In this case, an iteration scheme is applied in each time step. First-order
convergence is achieved by employing fixed-point iteration [Quarteroni et al.,
2010, Ch. 6.3], while Newton-iteration [Tröltzsch, 2010, Ch. 4.11] results in
a second-order method. Fixed-point iteration will be applied for solving the
stationary Navier-Stokes equations and will be described in the next section.
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3.4.2 CutFEM for Navier-Stokes
CutFEM for Stationary Navier-Stokes

The stationary Navier-Stokes equations are given by

(u · ∇)u− ν∆u+∇p = f in Ω
∇ · u = 0 in Ω

u = g on Γ.
(3.59)

Note that do-nothing boundary conditions can optionally be applied for this
problem as well. As usual, the weak formulation is found by multiplying the first
equation by v ∈ Vh, and the second with q ∈ Qh. Then subtracting the latter
from the former and integrating by parts.

This stationary problem will be solved using fixed-point iteration. In this
approach, the solution of the previous iteration uk−1

h is inserted as the convection
field when solving for the next approximation (ukh, pkh). The iteration is stopped
when the difference between two subsequent approximations measured in the L2-
norm is less than some desired tolerance level. The iteration is started with some
initial approximation u0

h. When setting u0
h = 0, the first iteration approximation

(ukh, pkh) will be the solution to the stationary Stokes problem. The iteration goes
as follows. As long as

‖ukh − uk−1
h ‖Ω < δ, (3.60)

solve the coupled linear variational problem

F (uh, ph;uk−1
h ) = f, (3.61)

for (ukh, pkh) := (uh, ph), and increase the iteration index k by one.
For CutFEM, we again use the Taylor-Hood discrete function spaces Vh and

Qh defined on the whole fictitious domain, given in (3.48). The variational for-
mulation is the following. Given the previous iteration step uk−1

h ∈ Vh, find
(uh, ph) ∈ Vh ×Qh such that

(∇uh · uk−1
h , v)Ω + ah(uh, v) + bh(ph, v) + bh(q, uh)

+ gu(uh, v) + gp(ph, q) = lh(v, q), ∀(v, q) ∈ Vh ×Qh.
(3.62)

This formulation uses the bilinear- and linear forms as defined in (3.37) and
(3.38). The ghost penalties are as defined in (3.49), with the ghost penalty
scaling constants as in (3.51), identical to the values set for the stationary Stokes
problem.

CutFEM for time-dependent Navier-Stokes

The CutFEM formulation of the time-dependent Navier-Stokes equations will
naturally only differ from the time-dependent Stokes problem formulation by the
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Figure 3.1: The domain used for the convergence tests for the Stokes equation and the
Navier-Stokes equation.

convection term. As explained in Section 3.4.1, this term will be linearised using
the semi-implicit extrapolation approximation.

Given ujh ∈ Vh for j = 0, . . . , s− 1, find (unh, pnh) ∈ Vh ×Qh such that

1
τ

s∑
k=0

αk(un−kh , v)Ω + (∇unh · ũnh, v)Ω + ah(unh, v) + bh(v, pnh) + bh(unh, q)

+gu(unh, v) + gp(pnh, q) = lh(v, q), ∀(v, q) ∈ Vh ×Qh,
(3.63)

for each time step n = s, s + 1, . . . ,M . The bilinear and linear forms above are
still defined as in (3.37) and (3.38). The ghost penalties is unchanged from (3.49),
and the ghost penalty scaling constants are now identical to the time dependent
Stokes problem, given in (3.54).

3.5 Numerical experiments

In this section, we will investigate the convergence properties of the numerical
methods presented in this chapter. This is done by using the method of manufac-
tured solution, with a known non-polynomial analytical solution to the equations.
The implementation is also tested by running two classic benchmark examples.
The benchmark problems test physical convective flow around a cylinder. The
first example is stationary, while the second one is time-dependent. These bench-
mark tests were first performed by [Schäfer et al., 1996] and have since become
a standard way of assessing the numerical implementation of fluid solvers.

As elaborated in Section 2.3, all implementation was done using a CutFEM
development branch [Simon Sticko, 2021] of the FEM library deal.II [Arndt
et al., 2020].
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3.5.1 Convergence tests
For the convergence tests the following analytical solution will be used,

u(x, t) =
(
− cos(πx1) sin(πx2)e−2π2νt, sin(πx1) cos(πx2)e−2π2νt

)
p(x, t) = −1

4(cos(2πx1) + cos(2πx2))e−4π2νt.
(3.64)

The above expression solves the Navier-Stokes equations in two dimensions for
f = 0 [Ethier and Steinman, 1994]. The solution can thus be used as an analytical
solution for the Stokes problem if we let f = −(u · ∇)u. Similarly, when used as
an analytical solution to the stationary Navier-Stokes equations, we calculate the
right-hand side as f = −∂tu. Note that the exponential term in the expressions
causes a rapid decrease in the solution value as time increases. Therefore, to
avoid the solution values vanishing during the convergence tests, the end time
will be set to T = 0.05. The side of the two-dimensional domain is set, so we get
h = τ for all tests.

The approximation error will be measured in the L2L2-norm and the L2H1-
norms. These norms are defined as in (2.59) of Section 2.3.

The Taylor-Hood finite elements [Qp]d×Qp−1 for p = 2 are used throughout.
Therefore, for a stationary problem one would expect the error converging as
hp+1 for the L2-norm of the velocity, and as hp for the L2-norm of the pressure
and the H1-norm of the velocity. This is the optimal order of convergence for
the spatial discretisation. Moreover, a time dependent problem discretised with
BDF-s, converges as τs. Thus, measured in the L2L2-norm and the L2H1-norm,
we expect the error of the method to converge as

‖u− uh‖L2L2 6 O(τs) +O(hp+1),
‖u− uh‖L2H1 6 O(τs) +O(hp),
‖p− ph‖L2L2 6 O(τs) +O(hp).

(3.65)

As explained in Section 2.3, the convergence tests are performed by solving the
problem of interest several times on a globally refined mesh. When using the
analytical solution, the error is computed using the norms above, which again is
used to compute the EOC.

The fluid domain for the convergence tests is depicted in Figure 3.1. The
background domain is a square with sides of length l, and the tesselation of this
domain into a background mesh T̃h will consist of uniform rectangles. A sphere
defined by a level set function floats on top of the background domain with center
in

r(t) = (−0.9(l/2− rs),−0.9(l/2− rs)), (3.66)
near the lower left corner. The sphere radius was set to rs = 3l/8. The analytical
solution (3.64) will be used for applying Dirichlet boundary conditions along the
whole boundary ∂Ω = Γ = Γ1 ∪ Γ2.
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Table 3.1: EOC for the BDF-2 method (with BDF-1 for the initial step), when the
equation was solved for the given values of β0. Taylor-Hood elements [Q2]2 ×Q1.

Norm \βp 1.0 2.0 6.0 10.0 20.0 30.0 60.0 100.0
‖u‖L2L2 2.92 3.1 3.41 3.52 3.62 3.69 3.79 3.85
‖u‖L2H1 2.72 2.72 2.76 2.78 2.79 2.78 2.72 2.65
‖p‖L2L2 1.9 2.07 2.17 2.23 2.73 3.08 3.4 3.34
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Figure 3.2: Convergence plot for the Stokes equation, solved using BDF-1. The [Q2]2×
Q1 Taylor-Hood finite elements were used. The triangles has a slope corresponding to
a convergence order of 1.

Time-dependent Stokes

All convergence tests were run with a relative high viscosity of ν = 0.1. Also, the
Nitsche penalty parameter was set to

µ = 5νp(p+ 1)/h. (3.67)

As was observed in the numerical experiments for the heat equation in Section 2.3,
the EOC for BDF-2 with BDF-1 for the initial step was highly influenced by the
ghost penalty scaling constants. This was especially the case for the error of the
pressure measured in the L2L2-norm. The first scaling constant was therefore set
to the value used for the parabolic problems,

βu,0 = 8 · 10p−1. (3.68)

Then, a parameter search was performed for βp,0, for [Q2]2×Q1 elements. The re-
sults are listed in Table 3.1. The expected second order convergence was achieved
in ‖p− ph‖L2L2 for values of βp,0 > 2.

The time-dependent Stokes problem was run with the discrete weak formula-
tion given in (3.53). BDF-1 and BDF-2 with interpolated initial steps are shown
in Figure 3.2 and Figure 3.3 respectively. Both methods achieve optimal conver-
gence. BDF-2 was also run with BDF-1 for the initial start-up step depicted in
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Figure 3.3: Convergence plot for the Stokes equation, solved using BDF-2 with interpo-
lated initial steps. The [Q2]2×Q1 Taylor-Hood finite elements were used. The triangles
has a slope corresponding to a convergence order of 2.
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Figure 3.4: Convergence plot for the Stokes equation, solved using BDF-2 with BDF-1
for the initial step. The [Q2]2×Q1 Taylor-Hood finite elements were used. The triangles
has a slope corresponding to a convergence order of 2.

Figure 3.4. We see that the optimal second order convergence is achieved in this
example also.

Stationary Navier-Stokes

As described in Section 3.4.2, the stationary Navier-Stokes equations was solved
using fixed-point iteration. For these experiments, the iteration error tolerance
was set to δ = 10−11. The problem was solved using [Q2]2 × Q1 Taylor-Hood
finite elements. The solution of the problem on a grid with N = 32 cells along
each side, is depicted in Figure 3.5. The error is plotted in Figure 3.6, and we
see that optimal convergence is obtained in all norms.

Time-dependent Naiver-Stokes

The time-dependent Navier-Stokes examples were run by using the discrete weak
formulation in (3.63). The values for the Nitsche penalty constant µ and the ghost
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(a) Velocity magnitude. (b) Pressure.

Figure 3.5: Solution of the stationary Navier-Stokes equations.
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Figure 3.6: Convergence plot for the stationary Navier-Stokes equation, solved using
fixed point iteration. Taylor-Hood finite elements [Q2]2 ×Q1 was used.
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Figure 3.7: Convergence plot for the Navier-Stokes equation, solved using BDF-1. The
[Q2]2×Q1 Taylor-Hood finite elements were used. The triangles has a slope correspond-
ing to a convergence order of 1.
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Figure 3.8: Convergence plot for the Navier-Stokes equation, solved using BDF-2 with
interpolated initial steps. The [Q2]2 ×Q1 Taylor-Hood finite elements were used. The
triangles has a slope corresponding to a convergence order of 2.

penalty scaling parameters βu and βp was set to the same as for Stokes. BDF-1
and BDF-2 with interpolated initial conditions achieved optimal convergence and
is shown in Figure 3.7 and Figure 3.8, respectively. Full second order convergence
was also attained for BDF-2 with BDF-1 for the initial step, see Figure 3.9.

3.5.2 Fluid-rigid body benchmarks
Often it has been seen that numerical implementations of the same physical fluid
problems do not produce the exact same results. Therefore, [Schäfer et al., 1996]
presented some benchmark fluid problems that could be used for assessing the
correctness of an implementation. Since these are problems without analytical
solutions, values for the pressure drop and viscous forces are computed at certain
points to compare different implementations. In this section, the benchmark
tests ‘2D-1’ and ‘2D-3’ of [Schäfer et al., 1996] will be run. Both examples model
‘fluid flow around a cylinder’ in a rectangular channel. The first example uses
the stationary Navier-Stokes equation as the model, while the second example is
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Figure 3.9: Convergence plot for the Navier-Stokes equation, solved using BDF-2 with
BDF-1 for the initial step. The [Q2]2×Q1 Taylor-Hood finite elements were used. The
triangles has a slope corresponding to a convergence order of 2.

time-dependent.

Benchmark test 2D-1

In this example, we will again solve the stationary Navier-Stokes equations, but
this time for a more physical simulation case. Now, the domain will be a 2D
rectangular channel with parabolic inflow and natural outflow. Near the channel
entrance, a sphere with radius rB is placed as an obstacle to the flow. The domain
is depicted in Figure 3.10. In this section, the flow problem will be solved on the
given domain, and then the pressure drop, lift and drag coefficients over the
sphere is computed. This computed data is compared to the benchmark data for
this problem available at [Turek et al., 1996a].

The strong form of the equation is the following

−ν∆u+ (u · ∇)u+∇p = 0 in Ω \B
∇ · u = 0 in Ω \B

u = 0 on (Γ0 ∪ ∂B)
u = g on ΓI

(ν∇u− pI)n = 0 on ΓN .

(3.69)

The kinematic viscosity used was ν = 0.001, and the inflow function was defined
as

g(y) =
(
û
(

1− (y/r)2
)
, 0
)
, û = 0.3, (3.70)

where û is the maximum speed of the inflow. For the implementation, the origin
was placed in the center of the rectangular channel. The average inflow speed is

ū = 2
3 û = 0.2. (3.71)
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Figure 3.10: Domain for the two benchmarks tests for flow around a cylinder. Note,
that the sphere is placed slightly off center along the cross section of the channel.

The Reynolds number for this problem is then

Re = ūL

ν
= ū · 2rs

ν
= 0.2 · 2 · 0.05

0.001 = 20, (3.72)

where L is the characteristic length of the flow configuration. The Reynolds
number for this example is quite low, and hence the flow will be laminar.

The viscous forces over the sphere are decomposed into the drag force FD,
acting in the fluid flow direction, and lift FL, acting perpendicular to the flow
direction. These forces are computed by the following surface integral,

(FD, FL) =
∫
∂B

σhndS =
∫
∂B

(ν∇uh − phI)ndS, (3.73)

where n is the unit normal vector on the circle B pointing into the fluid domain.
The drag and lift coefficients are then computed by

CD = 2
ū2L

FD, CD = 2
ū2L

FL. (3.74)

The third flow parameter we compute, is the pressure drop over the sphere

∆p = ph(−l + 0.2− rB ,−0.005)− ph(−l + 0.2 + rB ,−0.005). (3.75)

That is, the numerical pressure field solution is evaluated at the point exactly in
front of the sphere, and the point exactly behind it.

As described in Section 3.4.2, the non-linear equations was solved using fixed-
point iteration. The stopping criteria used was that the difference in the L2-errors
of two subsequent solutions in the iteration was less than δ = 10−12. For the
simulations, a globally refined, uniform mesh was used. The number of elements
along the short side of the rectangle is denoted by N , leading to an element size
of h = 2r/N = 0.41/N . In the horizontal length direction of the channel, we
have 4N cells. This results in the triangulation having 4N2 elements in total.
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Table 3.2: The data for benchmark example 2D-1.

N CD CL ∆p
24 4.87689 0.180442 0.108485
25 5.38414 -0.0422371 0.120003
26 5.43033 -0.00173627 0.115903
27 5.55229 0.00990802 0.116985
28 5.57303 0.0106727 0.11737

Benchmark 5.57953523384 0.010618948146 0.11752016697

(a) Velocity magnitude.

(b) Pressure field.

Figure 3.11: Solution of the stationary Navier-Stokes equations for benchmark test 2D-1,
using [Q2]2 ×Q1 Taylor-Hood elements.

The problem was solved at five refinement levels, where for the finest, a grid
with N = 28 elements on the short side of the domain was used. Taylor-Hood
elements [Q2]2 × Q1 were used. The Nitsche penalty parameter was set to µ =
5p(p + 1)/h and the ghost penalty parameter scaling constants used was βu,0 =
βp,0 = 1.

The solution of the problem computed on a grid with N = 28, is depicted in
Figure 3.11. The computed pressure drop and the lift and drag coefficients are
listed in Table 3.2. From the data in the table, we observe that the computed
values approach the benchmark data. Note that the computations have the wrong
sign for the lift coefficients at refinement levels 5 and 6. Therefore, if we were
to implement a two-way coupled fluid problem dependent on the lift coefficients,
one would need a highly refined grid.

Compared to other finite element implementations listed in [Schäfer et al.,
1996], this implementation needed a lot more elements for the similar approxi-
mations of the benchmark values in the table. One drawback with the current
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implementation is the use of a uniform grid, which causes the same refinement
level around the sphere as at the end of the channel. Most of the other examples
utilise grids better fit for the example, where most of the refinement is focused
around the sphere and near the channel’s entrance. However, since the current
implementation was done using a development version of deal.II [Arndt et al.,
2020], supporting neither general Q1-mappings nor hanging nodes for the Cut-
FEM stabilisations, a grid with more focused refinement could not be employed.

Benchmark tests 2D-3

This benchmark example is very similar to the previous one, but this example is
time-dependent. Here, we implement the Navier-Stokes equations for simulating
the flow around a cylinder in a rectangular channel. This is the benchmark tests
‘2D-3’ from [Schäfer et al., 1996]. This benchmark example was also performed
for a multimesh based projection method in [Dokken et al., 2020].

The domain is unchanged from the previous tests, depicted in Figure 3.10.
Now the velocity u : [0, T ]×Ω \B → R2 and the pressure p : [0, T ]×Ω \B → R
are time-dependent, and the strong form of the problems is

∂tu− ν∆u+ (u · ∇)u+∇p = 0 in (0, T )× Ω \B
∇ · u = 0 in (0, T )× Ω \B

u = 0 on [0, T ]× (Γ0 ∪ ∂B)
u = g on [0, T ]× ΓI

(ν∇u− pI)n = 0 on (0, T )× ΓN
u(0, x) = u0 in Ω,

(3.76)

with ν = 0.001.
The inflow profile is now defined as

g(t, x, y) =
(
û
(

1− (y/r)2
)
, 0
)
, û = 1.5 sin(πt/8). (3.77)

The inflow will build up to its maximum at t = 4, before it fades out at T = 8.
At t = 0, we use u0 = (0, 0) as an initial condition. The increased maximum
speed leads to an average speed of

ū = 2
3 û = 1. (3.78)

In turn, this increases the Reynolds number for this problem to

Re = ūL

ν
= ū · 2rs

ν
= 1 · 2 · 0.05

0.001 = 100. (3.79)

The CutFEM simulation was run on a uniform grid with N = 128 elements
along the vertical side of the domain and with a time step of τ = 1/200. The
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Figure 3.12: Computed values of the pressure difference ∆p (dotted line) compared to
the benchmark data. The computed values fit the benchmark data well according to
the error plot on the right.

BDF-2 method and Taylor-Hood [Q2]2 × Q1 finite elements were used. The
Nitsche penalty parameter µ and the ghost penalty scaling parameters βu,0 and
βp,0 was set to the same values as in the example ‘2D-1’ above.

The lift- and drag-coefficients were computed as in (3.74), and the pressure
difference was computed as in (3.75). The benchmark data was downloaded
from [Turek et al., 1996b], where a time-step of τ = 1/1600 was used. Some
snapshots from the numerical solution are shown in Figure 3.13.

The values for the pressure difference is shown in Figure 3.12. There we see
that the computed values fit the benchmark data well. The drag- and lift co-
efficients could not be reproduced with respect to the benchmark data. This
is most likely due to a bug in the drag- and lift computations since all conver-
gence results gave correct convergence rates. The benchmark example was run
successfully using CutFEM in both [Schott, 2016] and [von Wahl, 2021].
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(a) t = 0

(b) t = 1

(c) t = 2

(d) t = 3

(e) t = 4

(f) t = 5

(g) t = 6

(h) t = 7

(i) t = 8

Figure 3.13: Results from the ‘2D-3’ benchmark example. The velocity magnitude is
plotted in the column to the left, and pressure field in right column.



Chapter 4

CutFEM for parabolic
problems on moving domains

Even though there is a vast number of parabolic problems on stationary domains
of interest, the possibility to solve time-dependent PDEs on moving domains
unlocks a whole new branch of possible problems.

One application with moving interfaces is in two-phase flow problems [Barrett
et al., 2020, Sec. 8], [Bänsch and Schmidt, 2020, Sec. 3]. In these problems, two
fluids are separated by an interface, which evolves in time with the same velocity
as the fluids. To avoid the complexities introduced if we were to move the mesh
itself around with the same fluid velocity, an unfitted mesh method as CutFEM
is an attractive alternative. A related application is found in biomechanics when
modelling biomembranes [Barrett et al., 2020, Sec. 10]. In these problems, the
evolving membrane interacts with surrounding fluids with possibly different prop-
erties. In many such models, the evolution of the interface is curvature driven,
which mean curvature flow [Barrett et al., 2020, Sec. 4] is an example of. These
coupled problems occur in a multitude of biological systems and are of great
interest in the life sciences.

The phase-field method [Du and Feng, 2020] initially occurred as a method
for describing an evolving interface between materials during some phase transi-
tion. Since an auxiliary phase function is used to describe the phases, and hence
their separating interface, the method is closely related to other level set meth-
ods [Saye and Sethian, 2020]. However, in the phase method, a diffusive layer is
introduced to smoothen the sharp interface of a pure level set method. The dif-
fusive nature of the interface is modelled by either minimising interface energies,
surface tensions or the curvature of the interface. The method can be applied to
various applications, one of which is naturally multiphase fluid problems. The
phase-field method has also been the subject of optimal control [Hintermüller and
Keil, 2021], broadening the possible application problems even more.

55
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Shape optimisation amounts to finding the optimal shape of some domain
subject to PDE state equations as constraints and an objective function [Allaire,
2001]. The level-set methods have proved especially useful when tracking and
controlling the motion of an evolving boundary [Allaire et al., 2021, Sec. 7]. The
domain boundary at time t is represented by the zero contours of a level set
function, that is, φ(t, x) = 0. When this equation is differentiated with respect
to time, a transport equation is obtained,

φt + b · ∇φ = 0, (4.1)

where b is a convection field controlling the movement of the level set. This
convection field is the control of the optimisation problem and is updated in
every iteration through differentiation of the objective function with respect to the
domain boundary. This is precisely the approach used when shape optimisation
was studied using CutFEM in [Burman et al., 2018].

When using an unfitted method, a fully Eulerian description will be used for
both the PDE and the domain. When the domain is moving from one step to
the next, the function spaces will depend on the time-step and will therefore not
be equal. This leads to a new challenge when solving parabolic problems. When
using Rothe’s method [Rothe, 1930] of discretising the equation first in time,
then in space, subsequent solution steps unh are used for the finite differences ap-
proximations of the time derivative. When the function spaces of two subsequent
solution steps differ, this approximation is not well defined. See Figure 4.1a for
a depiction of this challenge.

Several papers have presented approaches to deal with this issue. In [Hansbo
et al., 2016], as space-time formulation using CutFEM was used in the discretisa-
tion of coupled bulk-surface problems on a time-dependent domain. To solve fluid
problems on moving domain, [Schott, 2016] introduced a projection operator to
extend a solution from the function space of time step tn−1 to the function space
of the next step tn, before approximating the time derivative. In the contribu-
tion of [Lehrenfeld and Olshanskii, 2019], this extension operator was effectively
built into the weak formulation. There, the active mesh was extended sufficiently
far past the physical boundary to make sure the finite difference approximations
of the time derivative was well defined. This method will be presented in the
following and was implemented for the numerical examples of this chapter.

In this chapter, we will start by defining what it means for a domain to be
moving. As in Chapter 2, the heat equation will be used as the model problem.
In Section 4.2 the challenges related to moving domains are discussed. The key
takeaways of the CutFEM approach implemented by [Schott, 2016] is briefly
explained before the method of [Lehrenfeld and Olshanskii, 2019] is presented in
Section 4.3. This section also presents the discrete weak formulation of the heat
equation on a moving domain. In the final Section 4.5, we present convergence
tests for the implemented model problem, employing a BDF-method of stages
s = 1, 2. The tests achieve the optimal order of convergence. Finally, a test
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example shows the heat equation’s solution on a moving domain, illustrating
how the active mesh is extended past the physical boundary.

4.1 Moving domain
Let Ω(t) ⊂ Rd be an open bounded domain, with smooth boundary Γ(t). The
time variable t indicates that the domain evolves with time. Let a material point
in the domain be described by its positionX in the reference domain Ω0 = Ω(0) ⊂
Rd at the initial time (see e.g. [Eck et al., 2017, Ch. 5.4]). The movement of a
material point is then described by the sufficiently smooth mapping

Φ(t, ·) : Ω0 → Ω(t) such that Φ(t,X) = x(t,X). (4.2)

Let the vector field b : Ω(t)→ Rd define the material velocity of the particles in
Ω(t). The mapping then satisfies the following ODE,

∂

∂t
Φ(t,X) = b(t,Φ(t,X))

Φ(0, X) = X,
(4.3)

for t ∈ (0, T ). We assume that b is sufficiently smooth such that the mapping Φ
is a diffeomorphism. The deformation of the domain at time t is then given as

Ω(t) = {Φ(t,X) : X ∈ Ω0}. (4.4)

The geometry of the domain is now defined by a level set function φ : [0, T ]×
Rd → R depending on time, such that

Ω(t) = {x ∈ Rd : φ(t, x) < 0},
Γ(t) = {x ∈ Rd : φ(t, x) = 0}.

(4.5)

The heat equation defined on the moving domain Ω(t), has the strong form

∂tu− ν∆u = f in Ω(t),
u = g on Γ(t),

u(0, x) = u0 on Ω(0),
(4.6)

for t ∈ (0, T ). The function u will be scalar valued, such that u : Ω→ R, and the
diffusion coefficient ν > 0 is a constant.

4.2 Computational domains
As in the previous chapters, we denote the background domain by Ω̃ ⊂ Rd, but
now it has to be sufficiently large to cover the physical domain Ω over the whole
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time interval, i.e. Ω(t) ⊂ Ω̃ for all t ∈ [0, T ]. On this background domain, a
quasi-uniform background mesh T̃h is defined. This background mesh consists of
shape-regular and closed quadrilaterals/hexahedral covering Ω̃. The time interval
[0, T ] is divided in discrete steps of length τ , such that we have [t0, t1, . . . , tM ],
where tn = nτ , and the end time T = Mτ . Since the domain evolves with time,
denote the domain at time tn as Ωn = Ω(tn), and also let Γn = Γ(tn).

In the previous chapters describing CutFEM for stationary domains, the ac-
tive mesh Th was defined as all elements T in the background mesh intersecting
the interior of the physical domain Ω. Since the domain is now moving, so will
the active mesh. Therefore, we denote the active mesh at time tn by T nh . In the
case of stationary domains, the active mesh was defined as the set of all elements
intersecting the interior of the domain. If we now continue as before, we thus get

T nh = {T ∈ Th : T ∩ Ωn 6= ∅}. (4.7)

As the union of these elements, the computational domain at time tn is defined
as

Ωn,∗ =
⋃

T∈T n
h

T . (4.8)

The set of elements in the active mesh cut by the boundary Γ is denoted by

T nΓ = {T ∈ T nh : T ∩ Γ 6= ∅}, (4.9)

We define the set of elements that does not lie completely in Ωn as

T nΓ = {T ∈ T nh : T 6⊂ Ωn}, (4.10)

while the set of uncut elements is

T nu = T nh \ T nΓ . (4.11)

We define the set of ghost penalty faces as,

Fg,nh = {F = T+ ∩ T− : T+ ∈ T nh , T− ∈ T nΓ , T+ 6= T−}. (4.12)

The finite element function space is then defined on the whole fictitious do-
main Ωn,∗h ,

V nh = {v ∈ C(Ωn,∗) : v|T ∈ Qp(T ), T ∈ T nh } ∩H1(Ωn,∗), (4.13)

where Qp(T ) denotes a finite element of polynomial degree p on a quadrilateral
(see [Brenner and Scott, 2008, Ch. 3]). Note, that because the domain is time
dependent, expressed with the discrete index n, so is also the active mesh and
fictitious domain, and thus also the finite element function space.

The above definition of the active mesh will lead to subsequent solutions unh ∈
V nh and un−1

h ∈ V n−1
h being defined on different meshes, and thus live in different
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Ωn−1

Ωn

(a) Ωn 6⊂ Ω∗,n−1

Ωn−1

Ωn

(b) Ωn ⊂ Ω∗,n−1

Figure 4.1: The gray area marks the active mesh T n−1
h , i.e. the fictitious domain

Ω∗,n−1 = ∪
T∈T n−1

h
T . On the left this active mesh is insufficient, since it does not cover

the physical domain Ωn in the next time step. This is not the case on the right, where
the extended active mesh is sufficiently large for the BDF-terms in the discrete weak
formulation to be well defined.

functions spaces V nh and V n−1
h when the domain moves. Now, recall that when

constructing a fully discretised weak formulation using the BDF-method, we will
need to compute the difference unh − u

n−1
h for the first-order time discretisation.

In general, this difference will neither lie in V nh nor V n−1
h . In particular, since

the domain is moving, the point x might be inside the fluid domain at time tn−1,
but on the outside at the next time step tn. In such cases, the difference at this
point unh(x)− un−1

h (x) might not be defined at all (see [Richter, 2017, Ch. 2.5]).
When sticking to the fully Eulerian description, it is clear from the above

challenges that another definition of the active mesh is needed. A remedy to these
challenges was presented in [Schott, 2016, Ch. 3.6.3]. To be able to compute the
time derivative approximations, a projection was defined as

Pn : V n−1
h → V nh such that ũn−1

h = Pnun−1
h . (4.14)

This projection was used to define an extension. After solving for solution un−1
h

at a time-step, the solution was extended into the function space of the next
time-step. The projection Pn was defined as

(Pnun−1
h , v)T n−1

Γ
+ sn−1

Γ,h (Pnun−1
h , v) = (un−1

h , v)T n−1
Γ

∀v ∈ V n−1
h , (4.15)

where snΓ,h here is a face jump stabilisation acting on the elements in T nΓ . The
projection then defines the function extension as

Enun−1
h |T =

{
un−1
h T ∈ T n−1

u ,

Pnun−1
h T ∈ T n−1

h \ T n−1
u .

(4.16)

To make sure the above projection problem is well defined, [Schott, 2016] imposes
a CFL-condition (Courant-Friedrichs-Lewy condition) such that bτ 6 h. This
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condition assures the two sets of successive boundary elements are connected,
such that the extension Eun−1

h ends up being defined in all needed points. The
method was successfully implemented for fluid problems but not analysed theo-
retically.

The method we will consider in this presentation was introduced in the paper
by [Lehrenfeld and Olshanskii, 2019]. There, the time-dependent convection-
diffusion equation was solved on a moving domain, using a completely Eulerian
description. In that paper, the authors proved stability and a priori error esti-
mates for the method based on the existence of continuous extension operators
in Sobolev spaces. By extending the solution at a time step outside the do-
main boundary, finite difference approximations to the time derivative could be
defined properly, see Figure 4.1. The extension to the solution could be approx-
imated numerically by simply stabilising the unfitted weak formulation of the
problem on an enlarged active mesh. This stabilisation was based on the ghost
penalty [Burman, 2010], presented in Chapter 2.

4.3 Discretisation
Following the approach by [Lehrenfeld and Olshanskii, 2019] outlined above, we
now extend the active mesh further outside the domain boundary. On this ex-
tended active mesh defining the computational domain, the numerical approxi-
mation of the solution extension will be defined when solving the fully discrete
problem. Using the level set function φ, and the same approach as in [Sticko
et al., 2021], we now define the active mesh at time tn by

T nh = {T ∈ Th : φh(tn, xcT ) < δ}. (4.17)

With this extended active mesh (4.17), the corresponding fictitious domain Ωn,∗
will also be enlarged, still defined as the union of all elements in the active mesh.
The other sets introduced in the previous section in equation (4.8) to (4.12), still
apply, but with the new definition of the active mesh defined above in (4.17).

Here, xcT denotes the centre of triangle T , and δ > 0 is a constant defining
how far outside the domain boundary the level set is extended. See a depiction of
the extended active mesh and the ghost penalty faces in Figure 4.2. We assume
the level set is close to a signed distance function, i.e. ‖∇φ‖2 ≈ 1. To make sure
the active mesh includes at least all elements intersecting the physical domain
Ω(tn), we require that δ > cδh =

√
dh/2.

The need to extend the active mesh originated from the challenges of comput-
ing the BDF-terms for the time discretisation. Therefore, the active mesh should
be extended so that these BDF-expressions are well defined when assembling the
system matrix over the cells of the domain. Thus, the constant δ should also
depend upon the stage s of the BDF-method, in addition to the maximum speed
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Ωn

δ

Figure 4.2: The extended active mesh, i.e. the fictitious domain Ωn,∗ is the gray cells.
The ghost penalty faces Fg,n

h are depicted in purple.

‖b‖∞ of the domain. Therefore, let

δ = cδh+ s‖b‖∞τ. (4.18)

Remark. Note that this definition will extend the active mesh by the same amount
along the whole boundary Γ. As an alternative, the constant δ could also depend
on the speed of the domain at the point xcT . Also, if the domain boundary is
moving with some speed to the right, there is no need to extend the mesh to the
left, as long as the physical domain is sufficiently large concerning its speed and
time step, i.e. that s‖b‖∞τ < diam Ω.

The discrete function space will now include elements fully outside the phys-
ical domain, where the solution extension will be defined. The enlarged active
mesh must satisfy the requirement that Ωn ⊂ Ω∗,n−j for j = 0, . . . , s, to guaran-
tee that the BDF-terms can be computed. This is depicted in Figure 4.1. The
finite element function space is then defined on the whole fictious domain Ωn,∗h ,
as

V nh = {v ∈ C(Ωn,∗) : v|T ∈ Qp(T ), T ∈ T nh } ∩H1(Ωn,∗). (4.19)

4.3.1 Discrete weak formulation
The heat equation (4.6) is discretised in the same way as in Chapter 2. The
Dirichlet boundary conditions are enforced using Nitsche’s method, and the
time derivative is discretised using a BDF-method of stage s. The unfitted
fully discrete formulation of the problem is the following. Given ujh ∈ V jh for
j = 0, . . . , s− 1. Find unh ∈ V nh such that

1
τ

s∑
j=0

αj(un−jh , v)Ωn + ah(unh, v) + β · gnh(unh, v) = lh(v) ∀v ∈ V nh , (4.20)
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for each time step n = s, s + 1, . . . ,M . In the formulation above, the bilinear
form ah : Vh × Vh → R and the linear form lh : V nh → R are defined as

ah(unh, v) := ν(∇unh,∇v)Ωn − ν(∂nunh, v)Γn − ν(unh, ∂nv)Γn + µ(unh, v)Γn

lh(v) := (f, v)Ωn − ν(g, ∂nv)Γn + µ(g, v)Γn

(4.21)

The Nitsche penalty parameter is still µ = γ0ν/h, and β is the ghost penalty
scaling parameter. Note that the inner products above are still evaluated over
the physical domain Ωn only, i.e. Ωn ∩ T nh . The stabilisation gnh (scaled with the
parameter β > 0) however, is evaluated on bands around Ωn, that is, on the faces
in Fg,nh . Because the active mesh is enlarged, the solution at a time step un−jh

is extended past its physical domain Ωn−j , and hence the inner products in the
first term of (4.20) are well defined.

As in Chapter 2, the stabilisation bilinear form is here referred to as the ghost
penalty. And just as in the previous chapters, the stabilisation gnh assures that the
spatial discretisation of the variational problem (4.20) solved at each time step
tn is stable and optimally convergent when compared to classical FEM. Also,
the condition number of the stiffness matrix scales with h−2, again the same as
classical FEM. In the setting of time-dependent domains, this stabilisation also
enables the discrete weak formulation (4.20) to define a numerical realisation of
the extension to the solution at the given time step [Lehrenfeld and Olshanskii,
2019].

As in Chapter 2, we will use the form of the ghost penalty penalising the
jumps in the derivatives over facets, as used in [Burman et al., 2015,Burman and
Hansbo, 2014]. We will here use the form of the ghost penalty presented and
implemented in [Sticko et al., 2021], defined as

gnh(u, v) =
∑

F∈Fg,n
h

p∑
k=1

1
2k + 1

h2k+1

k!2 ([∂knu], [∂knv])F . (4.22)

In the case of the heat equation, the ghost penalty scaling constant β is set
to

β = β0
(
α0 + ντ/h2) . (4.23)

This corresponds to the parameter value used in [Lehrenfeld and Olshanskii,
2019], where the model problem also included a transport term.

The ghost penalty gnh scales as an L2-norm. The first term in (4.23) stabilises
the mass matrix, while the second term stabilises the stiffness matrix. The de-
pendence on τ aries from that the discrete weak formulation (4.20) is multiplied
with τ .
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4.4 Theoretical results
As described in the above sections, the paper [Lehrenfeld and Olshanskii, 2019]
introduced the ghost penalty stabilisation both for controlling the norms over the
cut elements and for defining an implicit extension operator for the computed
numerical solution. The analysis was based on the backward Euler (BDF-1)
for time-stepping, but the changes needed to adapt the proofs for BDF-2 was
outlined. The proofs also accounted for the geometrical error when interpolating
the level set function onto a finite element function space. Stability for both
the semidiscrete and the fully discrete method was proved. Also, in the a priori
estimates in the energy norm, the optimal order of convergence was obtained. In
the numerical experiments, a higher convergence rate was observed.

4.5 Numerical experiments
In this section, some numerical examples where the heat equation (4.6) is solved
will be presented. For optimal order of convergence, we expect O(hp+1 + τs) in
the L2L2-norm, and O(hp + τs) in the L2H1-norm [Lehrenfeld and Olshanskii,
2019].

4.5.1 Convergence tests
To assess the convergence properties of the model problem (4.6), we perform
convergence tests for BDF-1 and BDF-2 methods. We set ν = 2 and employ the
method of manufactured solutions, with

u(t, x1, x2) = sin(πx1) sin(πx2)e−t. (4.24)

The background domain is a square with sides l = 2, and the physical domain
Ω(t) is a sphere with radius rs = 0.75 (see Figure 4.3). The sphere moves across
the domain, with the sphere centre following the linear path,

rc(t) = (0.9(l/2− rs)(2t− 1), 0). (4.25)

The level set function describing the domain is given by

φ(t, x) = ‖x− rc(t)‖2 − rs. (4.26)

Dirichlet boundary conditions are applied along the whole domain boundary Γ(t).
The end time was set to T = 1, and the regular grid was globally refined so that
in each solution step, we have h = τ .

The discrete weak problem in (4.20) was solved multiple times on an increas-
ingly refined grid. For each convergence test, refinement levels from r = 3 to
r = 8 was used, where the number of elements along one side was N = 2r−1. The
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A

Γ(t)

Ω(t)

Ω̃ \ Ω(t)

l

l

Figure 4.3: The domain used for the heat equation convergence tests.

error was computed in the L2L2- and L2H1-norms as defined in (2.59), while
EOC was computed as in (2.61).

When performing initial convergence tests of the problem, it was observed
that the ghost penalty scaling parameter β0 in (4.23) had a significant effect on
the EOC. This was especially the case for BDF-2 with BDF-1 for the initial time
step. Therefore, to set this parameter to a reasonable value, the convergence test
was performed for a range of values of β0. The results of this study is depicted
in Figure 4.4, with the corresponding data points listed in Table 4.1.

By investigating the plotted results, we observe that optimal convergence is
approximately achieved for a value of β0 set at e.g. 1.0 for Q1-elements, and
a value of 15 for Q2-elements. These values are reasonable when compared to
[Sticko et al., 2021], where a value of β0 = 10p−1 was used for the experiments.
In the further experiments the ghost penalty scaling parameter will therefore be
set to

β0 = 1.5 · 10p−1. (4.27)

The Nitsche penalty parameter used was

γ = 20p(p+ 1). (4.28)

The convergence plot for the BDF-1 method is shown in Figure 4.5. We
observe that the method converges as expected for Q1- and Q2-elements. Recall
that since BDF-1 is a first-order method, one can not expect that the EOC is
larger than 1 in any of the norms.

In Figure 4.6 the convergence plot for BDF-2 with interpolated initial steps
is shown. This method achieves optimal convergence in all norms. Because the
first step is interpolated, and the interpolation operator has the same convergence
rate as the CutFEM approximation, second-order convergence is also achieved in
the l∞L2-norm. This is not the case for BDF-2 when the initial step is solved
using BDF-1 (see Figure 4.7). Because of the initial first order BDF-1 step, only
first-order convergence is expected in the l∞-norms. Optimal convergence is also
attained for this method.
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Figure 4.4: EOC plotted as a function of the ghost penalty scaling constants β0. BDF-2
with BDF-1 for the initial step was used in this case.

Table 4.1: EOC for the BDF-2 method (with BDF-1 for the initial step), when the
equation was solved for the given values of β0.

(a) Q1-elements.

Norm \β0 0.5 1.0 3.0 5.0 10.0 15.0 20.0 30.0 50.0
‖u− uh‖L2L2 2.24 2.32 2.42 2.42 2.36 2.31 2.26 2.18 2.06
‖u− uh‖L2H1 1.04 1.06 1.11 1.15 1.24 1.31 1.35 1.4 1.41
‖u− uh‖l∞L2 2.0 2.05 2.34 2.35 2.33 2.3 2.27 2.2 2.11

(b) Q2-elements.

Norm \β0 0.5 1.0 3.0 5.0 10.0 15.0 20.0 30.0 50.0
‖u− uh‖L2L2 1.74 1.74 1.77 1.82 1.96 2.11 2.26 2.51 2.87
‖u− uh‖L2H1 2.07 2.12 2.32 2.49 2.73 2.84 2.9 2.96 2.99
‖u− uh‖l∞L2 1.54 1.54 1.54 1.55 1.56 1.59 1.62 1.69 1.83
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Figure 4.5: Heat equation on a moving domain solved using BDF-1.
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Figure 4.6: Heat equation on a moving domain solved using BDF-2 with interpolated
initial steps.
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Figure 4.7: Heat equation on a moving domain solved using BDF-2 with BDF-1 for the
initial step.

4.5.2 Moving domain example
In this example, the heat equation (4.6) is solved on a moving, flower-shaped
domain.

The background domain now has length 2 and height 1, and the physical
domain is in the shape of a flower, described by the level set function

φ(t, x1, x2) = ‖x− rc(t)‖2− r+ r

r0
cos(5 atan2(x2− rc,2(t), x1− rc,1(t))). (4.29)

We let the center of the flower follow the path

rc(t) = (rc,1, rc,2) = (− cos(πt/2), 0), (4.30)

where the parameters are set to r = 0.6 and r0 = 3.5. The former parameter
describes the size of the flower, while the latter decides the curvature.

Here, the same fictional solution as in the convergence tests is used,

u(t, x1, x2) = sin(πx1) sin(πx2)e−t. (4.31)

Dirichlet boundary conditions are set along the whole domain boundary.
The problem was solved with BDF-2 (BDF-1 for the initial step) at refinement

level 6, with T = 6, τ = 1/50 and for ν = 2. Some snapshots of the solution is
shown in Figure 4.8. Note that since the speed of the domain centre now depends
on the sin-function, the active mesh will vary in size, depending on the speed at
each point. This is because the extended active mesh is defined based on the
definition of δ given in (4.18). Also, recall that outside the physical domain, only
the face stabilisations are added when assembling the stiffness matrix. This is
because the problem (4.6) is only defined inside the domain Ω(t), and hence, we do
not know the solution outside the level set zero contours. Therefore, the solution
values outside this white line in the solution snapshots are only an extension.
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(a) t = 0 (b) t = 1

(c) t = 2 (d) t = 3

Figure 4.8: Solution of the heat equation on a moving domain. The physical domain is
marked by the zero contour level set line in white.



Chapter 5

CutFEM for flow problems on
moving domains

Flow problems with moving interfaces have near unlimited applicability in science
and engineering. Modelling such problems is essential for technological advances
and for expanding our general understanding of the world. Fluid-structure in-
teraction (FSI) [Richter, 2017, Bungartz et al., 2010] is the modelling of multi-
physics problems studying how fluids interact with different materials or other
fluids. Modelling the interplay of two fluids (two phase-flow) is the core of ge-
ometric free boundary problems [Bänsch and Schmidt, 2020]. When modelling
the interface between fluids, surface tension effects can be a dominant force. An
effective and flexible technique for representing geometry is therefore critical for
such applications. FSI problems arise in many applications. One such application
is the usage of mathematical modelling in the research of different cardiovascular
diseases [Formaggia et al., 2009]. Blood interacts mechanically with the vessel
walls and tissue and gives rise to many complex FSI multiphysics problems. Us-
ing CutFEM for solving such problems is a vast simplification because of the
technique of representing the interface between fluid and structure using a level
set function, floating freely atop the mesh.

In this chapter, we extend the approach presented for parabolic problems on
moving domains in Chapter 4 to flow problems. This will enable us to solve flow
problems on moving domains. As presented in the previous chapter, the main
idea is to extend the active mesh further outside the physical domain. This is
to enable assembling the time discretisation contributions in the stiffness matrix,
even though solutions in subsequent time steps might live in different functions
spaces. This method was first studied for the unfitted time-dependent Stokes
problem on a moving domain in [Burman et al., 2022] and later in [von Wahl
et al., 2021,von Wahl, 2021], where the geometrical error was also included in the
analysis. These works are based on [Lehrenfeld and Olshanskii, 2019], where this
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method was introduced for the scalar convection-diffusion problem on a moving
domain.

In Section 5.1 we present the model problems used for the convergence test
and the example problem. In the example, a purely Eulerian approach is used
to model the fluid-rigid body movement by applying the kinematic coupling con-
dition (see [Richter, 2017, Ch. 3.1]) along the boundary of a body with some
prescribed motion. The fully discrete formulations of the Stokes problem and the
Navier-Stokes equations on moving domains are presented in Section 5.2. Solvers
for these problems were implemented, for which the convergence will be assessed
for inf-sup stable [Q2]d × Q1 Taylor-Hood finite elements in Section 5.3. In the
final example, the Navier-Stokes solver was used for simulating the flow around
a moving sphere with known motion.

5.1 Model problems
In these examples, the flow around rigid sphere B(t) with prescribed motion is
modelled. The centre of the sphere follows some path rB(t) as it moves across a
rectangle background domain Ω̃.

5.1.1 Convergence tests
The first model problem will be the time dependent Stokes problem, with the
strong form

∂tu− ν∆u+∇p = f in (0, T )× (Ω̃ \B(t)),

∇ · u = 0 in (0, T )× (Ω̃ \B(t)),
u(t, x) = g on [0, T ]× Γ(t),
u(0, x) = u0 in Ω(0).

(5.1)

The fluid domain boundary is denoted by Γ(t) = ∂B(t) ∪ ∂Ω̃.
The second model problem only differs from the first by the addition of a non-

linear convection term, resulting in the incompressible Navier-Stokes equations

∂tu+ (u · ∇)u− ν∆u+∇p = f in (0, T )× (Ω̃ \B(t)),

∇ · u = 0 in (0, T )× (Ω̃ \B(t)),
u(t, x) = g on [0, T ]× Γ(t),
u(0, x) = u0 in Ω(0).

(5.2)

The kinematic viscosity ν is a constant, while the velocity u : [0, T ] × Ω(t) →
Rd and the pressure p : [0, T ] × Ω(t) → R are both time-dependent. For the
convergence tests, an artificial flow analytical solution will be used, with Dirichlet
boundary conditions applied on every part of the fluid boundary Γ(t).
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Figure 5.1: Domain used for the convergence tests for both the Stokes equation and the
Navier-Stokes equation on a moving domain. The rigid circle B(t) starts near the lower
left corner at t = 0, and moves diagonally across the square with constant speed.

The problems are solved on identical domains, shown in Figure 5.1. The
background mesh Ω̃ is a square with side lengths l. The sphere B(t) has radius
rs, and moves diagonally across the background domain with a constant velocity.
The fluid domain is then denoted by Ω(t) = Ω̃ \ B(t). The sphere follows the
linear path

rB(t) = (0.9(l/2− rs)(2t/T − 1), 0.9(l/2− rs)(2t/T − 1)). (5.3)

5.1.2 Moving rigid sphere

In this final example, we want to run a one-way coupled fluid problem using
the implemented Navier-Stokes solver. Here, we will simulate the 2D fluid flow
surrounding a moving rigid sphere in a channel (see Figure 5.2). The sphere
moves along a known path. The problem has the strong form given by

∂tu+ (u · ∇)u− ν∆u+∇p = 0 in (0, T )× (Ω̃ \B(t)),

∇ · u = 0 in (0, T )× (Ω̃ \B(t)),
u(t, x) = 0 on [0, T ]× Γ0,

u(t, x) = vB on [0, T ]× ∂B(t),
(ν∇u− pI)n = 0 on (0, T )× ΓN ,

u(0, x) = 0 in Ω̃ \B(0).

(5.4)

The sphere is initially placed on the left side of the channel, with no-slip boundary
conditions everywhere for the fluid. Therefore, the boundary conditions is set to
0 along the walls of the domain, and equal to the speed of the sphere vB(t)
along the boundary of the sphere B(t). On the right side of the channel, natural
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Γ0

∂B(t)
B(t)

Ω̃ \B(t)

vB(t)

2l

2r

ΓN

Figure 5.2: Domain used for the example where a rigid sphere moves through a channel.

boundary conditions is applied. The center of the sphere is set to follow the path

rB(t) =
(
−0.9(l − rs) cos

(
πt

8

)
,
r

5

)
,

vB(t) = d

dt
rB(t) =

(
0.9π

8 (l − rs) sin(πt/8), 0
)
.

(5.5)

5.2 Methology
As described in the previous Chapter 4, the moving domain poses some new
challenges with regards to how the discretisation of the domain. We define a
background domain Ω̃ in such a way that Ω(t) ⊂ Ω̃ for every t ∈ [0, T ]. This
background domain is discretised into a background mesh T̃h. Here, we use
quadrilateral elements for the triangulation. The time interval is discretised in
steps of constant length τ , such that tn = nτ , and the final time step isM = T/τ .
The domain at time tn is denoted by Ω(tn) = Ωn.

Our computational domain, the extended active mesh T nh at time tn, is defined
sufficiently large to assure the BDF-terms can be computed as the domains moves.
The union of all elements T in the active mesh make up the fictitious domain
Ω∗,n at the corresponding time step, defined as

Ω∗,n =
⋃

T∈T n
h

T̄ . (5.6)

The active mesh is defined by the level set function φ : [0, T ]× Rd as

T nh = {T ∈ T̃h : φ(tn, xcT ) < δ}, (5.7)

where xcT is the center of element T . The constant δ > 0 describes how far the
solution is extended outside the physical domain. Here, δ is chosen as

δ = cδ(svφτ + h). (5.8)
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As in [Sticko et al., 2021], we set the constant cδ = 1.5. This is to ensure we
include all intersected elements when the domain is stationary. In all examples,
the domain moves with constant speed vφ by letting the centre of the level set
follow some path rφ. Also, recall that s denotes the stage of the BDF-method,
and τ is the time step length.

As we saw in Section 3.1.2 when solving fluid problems, the function space
pairing needs to fulfil the inf-sup condition to be stable. Therefore, the inf-sup
stable function pair of Taylor-Hood elements was introduced (see [John et al.,
2016, Ch. 3.6]). In the case of stationary domains, the same active mesh was used
through all time steps. Therefore, at time step tn, we searched for a numerical
solution (unh, pnh) ∈ Vh × Qh, where the discrete function spaces used, was the
Taylor-Hood elements [Qp]d ×Qp−1,

Vh = {v ∈ [C(Ω∗)]d : v|T ∈ [Qp(T )]d, T ∈ Th} ∩ [H1(Ω∗)]d

Qh = {q ∈ C(Ω∗) : q|T ∈ Qp−1(T ), T ∈ Th} ∩ L2
0(Ω∗).

(5.9)

As before, Qp(T ) denotes a finite element of polynomial degree p on a quadrilat-
eral T (see [Brenner and Scott, 2008, Ch. 3]), and the exponent d in [Qp(T )]d
denotes the same, but for a vector function on Rd. Note that the function spaces
are the same for every time step.

For moving domain problems, the active mesh T nh depends on the time step
tn, which implies that we need separate function spaces for every time step. The
function spaces used at time step tn are now defined on the fictitious domain
Ω∗,n at that time step. Therefore, define

V nh = {v ∈ [C(Ω∗,n)]d : v|T ∈ [Qp(T )]d, T ∈ T nh } ∩ [H1(Ω∗,n)]d

Qnh = {q ∈ C(Ω∗,n) : q|T ∈ Qp−1(T ), T ∈ T nh } ∩ L2
0(Ω∗,n).

(5.10)

The difference from (5.9) is that the active mesh and fictitious domain the func-
tion spaces are defined on, now depends on the time step tn.

As described in Section 2.1.3, the BDF-method is used for the time-discretisation.
Also, the Nitsche-terms and the ghost penalties added to the weak forms in Chap-
ter 3 on time-dependent flow problems on stationary domains will be identical in
this chapter. We can now define the discrete weak CutFEM formulation of the
Stokes equations (5.1) and the Navier-Stokes equations (5.2).

5.2.1 The Stokes problem

To solve the Stokes equations (5.1) on a moving domain, the CutFEM discretisa-
tion with a BDF method of order s is stated as follows. Given previous solutions
(un−jh , pn−jh ) ∈ V n−jh × Qn−jh for j = 1, . . . , s − 1, find (unh, pnh) ∈ V nh × Qnh such
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that

1
τ

s∑
j=0

αj(un−jh , v)Ωn + ah(unh, v) + bh(v, ph) + bh(unh, q)

+ βu · gnu(unh, v) + βp · gnp (pnh, q) = lh(v, q) ∀(v, q) ∈ V nh ×Qnh.
(5.11)

for n = s, . . . ,M . The last time step is M = T/τ . The bilinear forms ah :
V ×Q→ R and bh : V × V → R are defined as

ah(unh, v) := ν(∇u,∇v)Ωn − ν(∂nu, v)Γn − ν(u, ∂nv)Γn + µ(u, v)Γn

bh(v, pnh) := −(∇ · v, p)Ωn + (v · n, p)Γn .
(5.12)

The corresponding linear form lh : V ×Q→ R is

lh(v, q) = (f, v)Ωn + µ(g, v)Γn − ν(g, ∂nv)Γn + (g · n, q)Γn . (5.13)

As in earlier chapters, the Nitsche penalty term depends on the mesh size h as

µ = νγ0

h
. (5.14)

The ghost penalties used here is the face wise jumpy penalty as defined in Chap-
ter 3 in (3.49), and the same scaling parameters as in (3.54) for time-dependent
Stokes on a stationary domain,

βu = βu,0

(
1 + ντ

h2

)
,

βp = −βp,0
τ

ν + h2/τ
.

(5.15)

5.2.2 The Navier-Stokes equations
For solving the Navier-Stokes equations (5.2) on a moving domain, using a BDF-
method of stage s, the cut finite element discretisation is given as: Given previous
solutions (un−jh , pn−jh ) ∈ V n−jh ×Qn−jh for j = 1, . . . , s−1, find (unh, pnh) ∈ V nh ×Qnh
such that

1
τ

s∑
j=0

αj(un−jh , v)Ωn + ah(unh, v) + ch(uh, v; ũh) + bh(v, p) + bh(unh, q)

+ βu · gnu(unh, v) + βp · gnu(pnh, q) = lh(v, q) ∀(v, q) ∈ V nh ×Qnh.

(5.16)

for n = s, . . . ,M . In the above expression, the bilinear form ch is the semi-implicit
linearisation of the convective term, and is defined as

ch(unh, v; ũnh) = (∇unhũnh, v)Ωn . (5.17)
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Recall from Section 3.4.1, that ũnh is the extrapolation of order s based on the
previous solutions. The bilinear forms ah and bh, and the linear form lh is the
same as for the Stokes problem above, defined in (5.12) and (5.13). However, the
ghost penalty scaling parameters differs from the Stokes problem, and are the
same as for Navier-Stokes on a stationary domain in Section 3.4.2:

βu = βu,0

(
1 + τ/h+ ντ

h2

)
,

βp = −βp,0
τ

ν + h+ h2/τ
.

(5.18)

5.3 Numerical experiments
In the first examples, we will numerically assess the convergence properties of
CutFEM for time-dependent flow problems on moving domains by solving the
Stokes problem and the Navier-Stokes equations. This is done by solving the
equations for some known artificial solution, and measuring the error in the L2L2-
and L2H1-norms (2.59) and then computing the EOC (2.61).

For the final example, the Navier-Stokes solver will be used to simulate the
fluid flow around a moving sphere in a channel in two dimensions. In this example,
no-slip boundary conditions will be applied along the sphere boundary and solid
walls to achieve a physical fluid simulation.

5.3.1 Convergence tests
The convergence test for the Stokes problem (5.1) and for Navier-Stokes equation
(5.2), was run with the domain as depicted in Figure 5.1. This is a sphere moving
across a square background domain in two dimensions, with the path as given
in (5.3). The kinematic viscosity used was ν = 0.1, and the end time is set to
T = 0.05. This is to avoid that the known solution decreases too much, due to the
negative exponential time dependence. The side lengths of the square domain is
set to 0.1, and for each iteration of the convergence step, the time-step and grid
size is refined to be equal, such that h = τ . The level set describing the physical
domain is set to

φ(t, x) = −‖x− rc(t)‖2 + rs. (5.19)

The discrete weak formulation of the time-dependent Stokes problem and the
Navier-Stokes equations, were presented in Section 5.2.1 and Section 5.2.2, re-
spectively. In both solvers, the CutFEM stabilisation parameters were set to
βu,0 = βp,0 = 1 were set, while the Nitsche penalty parameter was set to
µ = 5νp(p+ 1)/h.

For each convergence test, the method of manufactured solutions is applied
with the same analytical solution as given in Section 3.5 in equation (3.64). This
artificial solution is used to apply Dirichlet boundary conditions along the whole
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Figure 5.3: Convergence plot for the Stokes equation, solved using BDF-1 for the time
discretisation. The Taylor-Hood finite elements [Q2]2 ×Q1 were used.
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Figure 5.4: Convergence plot for the Stokes equation, solved using BDF-2 interpolated
initial steps. The [Q2]2 ×Q1 Taylor-Hood finite elements were used.

boundary Γ(t). The problem is then solved several times on an increasingly
globally refined regular grid. Here, we use refinement levels r = 3 through r = 7,
while the number of elements along one side of the domain is N = 2r−1. Due
to some unresolved convergence problems when the code was run with [Q3]2 ×
Q2 Taylor-Hood finite elements, only the results with [Q2]2 × Q1 elements are
included.

For the Stokes problem, the convergence plot for the BDF-1 method is shown
in Figure 5.3, where we see optimal convergence is attained. Optimal convergence
is also achieved when using BDF-2 with interpolated initial steps. However,
for BDF-2 with BDF-1 for the first step, a small drop in the EOC is observed
in the L2L2-norm of the pressure. Investigations showed that the BDF-1 step
resulted in a spike in error. When these initial steps were dropped from the error
computations, we see from Figure 5.6a that optimal convergence is achieved in
all norms. The aim of the implemented solvers is to solve problems of a certain
time horizon T . Therefore, a lower convergence order in the initial steps can be
accepted.

For the solutions to the Navier-Stokes equations, the observations are similar
to the Stokes problem above. Optimal convergence of the BDF-1 method can be
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Figure 5.5: Convergence plot for the Stokes equation, solved using BDF-2 with BDF-1
for the initial step. The [Q2]2 ×Q1 Taylor-Hood finite elements were used.
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Figure 5.6: The figures show the computed EOC for the BDF-2 method with BDF-1
for the initial step with [Q2]2 ×Q1 elements. The error is summed over the time steps
t > T/4 only. When the intial error spike is cut away, optimal convergence is regained.
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Figure 5.7: Convergence plot for the Navier-Stokes equation, solved using BDF-1. The
[Q2]2 ×Q1 Taylor-Hood finite elements were used.
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Figure 5.8: Convergence plot for the Navier-Stokes equation, solved using BDF-2, with
interpolated initial steps. The [Q2]2 ×Q1 Taylor-Hood finite elements were used.
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Figure 5.9: Convergence plot for the Navier-Stokes equation, solved using BDF-2, with
BDF-1 as the first step. The [Q2]2 ×Q1 Taylor-Hood finite elements were used.
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seen in Figure 5.7 and in Figure 5.8 for BDF-2 with interpolated initial steps.
Similar to the BDF-2 solver for the Stokes problem, we observe from Figure 5.9 a
small drop in EOC of the L2L2-norm of the pressure. When the initial steps are
disregarded from the error computations, Figure 5.6b show optimal convergence
in all norms.

5.3.2 Moving sphere example
In this example, the goal was to simulate a realistic flow around a moving sphere
in a channel. The model was presented earlier in Section 5.1.2, depicted in
Figure 5.2.

The background domain is a rectangular channel with half-length l = 2 and
radius r = 1. The end time was set at T = 16, and τ = 1/30. Refinement level 7
was used for the simulation, resulting in a regular grid with N = 27−1 cells along
the short side of the domain. Taylor-Hood [Q2]2 ×Q1-elements was used.

The rigid sphere B(t) has radius rs = 0.5, and the sphere center follows the
path rB(t), with velocity vB(t) both given in (5.5). The level set function defining
the domain was thus given by

φ(t, x) = −‖x− rB(t)‖2 + rs (5.20)

The maxium speed of the sphere, and hence the fluid was

v̂B = 0.9π
8 (l − rs) = 0.53. (5.21)

The kinematic viscosity of the fluid was set to ν = 0.001, leading to a Reynolds
number of

Re = v̂BL

ν
= 0.53 · 2rs

ν
= 530. (5.22)

This high Reynolds number will lead to turbulent flows behind the sphere as it
stirs the fluid.

For the time discretisation, the BDF-2 method was used, and hence, the
procedure first ran one step of BDF-1 to start the multistage BDF-2 method.
The discrete weak formulation of the problem was presented in Section 5.2.2. The
CutFEM stability parameters were set to βu,0 = βp,0 = 0.5, while the Nitsche
penalty parameter was kept at µ = 5νp(p+ 1)/h.

Some snapshots of the velocity and pressure solution at specific time steps
are shown in Figure 5.10 and Figure 5.11. In the figure, we observe that the
low kinematic viscosity of the fluid causes vortex streaming around the sphere.
The sphere and the fluid has a velocity of zero initially, but the no-slip boundary
conditions along the sphere boundary cause the fluid to start flowing in the
channel as the sphere accelerates. Also, note how far the active mesh extends
past the sphere boundary varies as the sphere moves. This is due to the varying
horizontal velocity of the sphere.
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(a) t = 0

(b) t = 4

(c) t = 6

(d) t = 8

Figure 5.10: Navier-Stokes flow around a moving sphere in a channel. The velocity
magnitude is plotted in the left column, while the pressure is plotted to the right. No-
slip boundary conditions for the fluid along the sphere boundary, causes vortex streams
in the channel as the sphere stirs the fluid.



5.3. Numerical experiments 81

(a) t = 10

(b) t = 12

(c) t = 14

(d) t = 16

Figure 5.11: Navier-Stokes flow around a moving sphere in a channel. The velocity
magnitude is plotted in the left column, while the pressure is plotted to the right. No-
slip boundary conditions for the fluid along the sphere boundary, causes vortex streams
in the channel as the sphere stirs the fluid.
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Chapter 6

Conclusion and outlook

Conclusion. In this thesis, we show through numerical experiments that CutFEM
is a robust and accurate method for both parabolic problems and flow problems
undergoing large deformations. The method achieves optimal order of conver-
gence in both space and time for problems with an analytical solution. In clas-
sic benchmark examples for Navier-Stokes on a stationary domain, the pressure
matches the benchmark data. However, the lift and drag computations did not
match the data. Since the convergence tests showed optimal convergence, and the
drag and lift values were successfully computed when using CutFEM in [Schott,
2016], this deviation is likely due to an unresolved bug in the surface force com-
putations. These calculations need to be corrected before fully two-way coupled
problems can be implemented.

Outlook. This thesis resulted in an implementation of the Navier-Stokes equa-
tions on a domain moving with prescribed motion. This can already be used
to solve a whole range of interesting problems in science and engineering. A
biological application is the simulation of flow in the heart when the movement
is known from imaging measurements [Chnafa et al., 2015]. However, for simu-
lating larger problems, full parallelisation of the solvers would be needed. As a
further improvement, the solvers could be extended to solve fully-coupled fluid-
rigid body problems. This naturally requires correct computations of the viscous
forces over the surface of the submerged body to calculate the body’s movement
accurately. This would widen the range of application problems even more. One
such application is to simulate how a microbubble moves in a capillary blood
vein when being influenced by an external ultrasound source. This treatment
method is an active field of medical research [Lin et al., 2012, van Wamel et al.,
2016,Dimcevski et al., 2016,Arango-Restrepo et al., 2021]. At these small scales,
medical imaging is not possible. Therefore, developing software to simulate this
situation with the help of mathematical modelling could help make or break hy-
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potheses on how a vibrating microbubble impacts the vessel wall and surrounding
tissue. To achieve this, a possible approach is to use the Rayleigh-Plesset equa-
tion [Prosperetti, 1982] for modelling an elastic vibrating bubble in a channel,
using a two-way coupling to the implemented Navier-Stokes solver. As blood is
a fluid consisting of blood cells and plasma, a Newtonian fluid model is not a
good approximation in smaller vessels [Formaggia et al., 2009]. Therefore, using
a non-Newtonian fluid model [Irgens, 2014,Pacheco et al., 2021] could also be an
interesting extension for such a model problem.

If we want to look for applications beyond solving PDEs on moving domains,
shape optimisation [Allaire et al., 2021] is a branch where CutFEM has proved
to be a useful tool. In shape optimisation, the aim is to optimise some objective
functional with respect to the shape of the domain and PDE constraints. Level
set methods [Saye and Sethian, 2020] was studied for shape optimisation problems
in [Allaire et al., 2002, Allaire et al., 2014]. In [Burman et al., 2018] CutFEM
was applied to a shape optimisation problem for linear elasticity and for Navier-
Stokes equations in [Villanueva and Maute, 2017]. In CutFEM, the level set is
represented as a finite element function on the background domain. Therefore,
the level set can conveniently be constrained by the transport equation, where the
convection field constitutes the control of the optimisation problem. This control
is then updated through the computation of the shape derivative, minimising
the objective functional with respect to the shape of the physical domain. With
a Navier-Stokes solver already implemented using CutFEM, delving into shape
optimisation could make solving an entirely new form of application problems
possible.
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