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Problem description

In this project, we will look at not only in-compressible flows, like we did on
the fall project, but also do a literature search for compressible flows. This can
be used to model snow that compacts. Assuming the task is reasonable, we will
select one or more features/techniques such as adding “particle based” 3D models
interacting with the fluid and/or adding adhesion to surfaces and models.

Should it prove to challenging, the Non-Newtonian fluids. Our implementa-
tion may also look into how CUDA can access the graphics memory directly in
OpenGL, as well as exploring new CUDA features for our newer CUDA cards such
as our new GTX 3090 cards and/or looking into multi-GPU acceleration.
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Abstract

With access to more powerful computers, it is becoming more and more feasi-
ble to be able to simulate snow and snow-based avalanches more accurately and
quickly. Snow is, however, a complex material to simulate because of the complex
structure and changing flow characteristics. Depending on, among other factors
the temperature, there are different categories of snow with different density lev-
els and bindings that are hard to model.

In this thesis we use the numerical method called Smoothed Particle Hydro-
dynamics (SPH) to solve the Naiver-Stokes equations. We simulate Newtonian
and non-Newtonian fluids using a similar SPH method as in Ø. E. Krog [1] work
on snow avalanches. We apply the Newtonian model which can simulate fluids
such as water, and we use the non-Newtonian model to simulate snow with the
Bingham rheological model.

In particular, the parallel capabilities of modern Nvidia Graphics Processing
Units (GPU’s) are exploited to speed up our simulation. The SPH algorithm is
has a high computational requirement, but is parallel in nature. This makes the
GPU an ideal processor for solving this problem. Aided by GPU- and algorithm
optimizations we achieve real-time performance at particle counts up to four and
two million on our most powerful testing system using the Newtonian model and
non-Newtonian model, respectively.

Our implementation is also integrated into the NTNU HPC-Lab snow simula-
tor. This is a program suite that is developed and maintained by HPC-Lab students.
The SPH algorithm is available as a stand alone component in the simulator. We
have also added some unique features to our implementation such as simulation
scaling and user defined terrain resolution. We also added a user interface to the
simulation using ImgGUI framework that Roger Holten implemented in the HPC-
Lab snow simulator. Using the GUI one can change physics parameters and change
various options for the simulation during run-time. We also create OpenGL buffers
for particle positions and intensity values and map and un-map OpenGL buffers
to a device pointers for use in device code, both which should reduce memory
copies.

Many of our findings are visual in nature. We therefore also include as part
of our results, a series of images captured from the NTNU HPC-Lab snow simu-
lator. This includes pictures of snow avalanches and water simulations. Various
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functionalities of the user interface, and scenarios that can be initiated with pre-
defined settings, are also added. Our benchmark results in the form of graphs and
tables are also included. Several interesting screen shots from the HPC-Lab snow
simulator during an avalanche that was flowing in a Newtonian manner when
the yield shear stress was exceeded, are also shown. Finally, we also add some
suggestions for future work.



Sammendrag

Med tilgang til raskere datamaskiner blir det mer og mer realistisk å simulere snø
og snøras mer nøyaktig og raskere. Men snø er et komplisert matriale å simulere
på grunn av den komplekse strukturen til snø og dens dynamiske flytegenskaper.
Egenskapene til snø bestemmes av flere faktorer som for eksempel temperatur.
Det er flere kategorier snø kan defineres i avhengig av for eksempel massetetthet
og bindingen mellom snøpartikler. Dette gjør det utfordrende å modellere snø.

I denne masteroppgaven burker vi en nummerisk metode som heter Smoothed
Particle Hydrodynamics (SPH) for å løse Naiver-Stokes likningene. Vi simmulerer
en Newtonsk og en ikke-Newtonsk veske der vi bruker en liknende metode som Ø.
E. Krog [1] brukte i sin masteroppgave som omhandlet simulering av snøskred. Vi
bruker den Newtonske modellen til å simulere vesker som for eksempel vann og
vi bruker den ikke-Newtonske modellen til å simulate snø med Bingham reologi.

Vi bruker de parallelle egenskapene til et moderne Nvidia skjermkort (GPU)
for å gjøre simuleringen vår raskere. SPH algoritmen krever mange utregninger
men er parallell i sin natur. Dette gjør at et skjermkort er godt egnet prosessor for
å løse dette problemet. Ved hjelp av GPU og algoritme optimaliseringer så klarer
vi å kjøre vår simulering i sanntid med opptil fire millioner partikler med den
Newtonske modellen og to millioner partikler med ikke-Newtonske modellen på
vårt beste skjermkort.

Implementasjonen vår er også integrert med NTNU HPC-Lab snøimulatoren.
Dette er en programsuite som ble utviklet og er vedlikeholdt av HPC-Lab studen-
tere. SPH-algoritmen er tilgjengelig som en frittstående komponent i simulatoren.
Vi har også lagt til noen unike funksjoner til vår implementasjon, slik som skaler-
ing av simulasjonene (via parametre) og bruker-definert terrengoppløsning.

Vi la også til et brukergrensesnitt til simuleringen ved bruk av IngGUI som
Roger Holten implementerte i HPC-Lab snøsimulatorenm ved å bruke denne GUIen
kan en endre de fysiske parameterene og endre diverse valg av andre parametre
under kjøring

Vi lagde også en OpenGL buffer for partikkel-posisjoner og intensitetverdier
og mappet og av-mappet OpenGL buffere til en enhetspeker ("device pointer") for
bruk i GPU koden (device code), som begge burde redusere minnekopieringer.

Mange av våre funn er visuelle av natur. Vi har derfor også tatt med mange
bilder av snøskred og vannsimuleringer fra HPC-Lab snøsimulatoren som deler
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av resultatene våre. Diverse funksjoner fra det grafiske grensesnittet vi la til, og
flere av tilfellene som kan initieres fra forhåndsdefinerte innstillinger, er også tatt
med. Vi viser også flere skjermbilder fra HPC-Lab snøsimulatorer under snøskred
og flyt av vann. Til slutt tar vi med noen forslag til fremtidige arbeider.
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Chapter 1

Introduction

Snow is an material formed by ice crystals in the clouds in the atmosphere. Snow
has some interesting physical properties. It can act as both a fluid and a solid de-
pending on the configuration, binding of the crystals and these can change with
stress. Snow can also support a wide range of density values, from light snow to
solid ice. In order to simulate the behaviour of snow in different conditions, one
needs to take into account these properties. There have been several projects re-
lated to snow simulation in recent years at the NTNU Heterogeneous and Parallel
Computing Laboratory HPC-Lab). It started in 2006 when I. Saltvik [2] laid the
ground work for the HPC-Lab snow simulator. Several projects have been imple-
mented in the HPC-Lab snow simulator since then, including Robin Eidissen´s
master thesis work with Prof. Elster simulating 2 million particles on a GPU back
in 2008 [3]. A video of Eidissens simulation can also be found on Youtube video
produced by NVIDIA [4]. A important note about the snow simulator is that the
main focus has always been to speed up simulation using parallel computing tech-
niques. Since GPU-processing power has outpaced the performance of CPU’s, the
focus has since Eidissen´s work shifted towards GPU programming. In this work,
we will extend the capabilities of the HPC-Lab snow simulator to simulate snow
avalanches and fluid flow using a method called smoothed particle hydrody-
namics (SPH) implemented on the GPU.

1.1 Motivation

In recent years, fluid simulation has gained popularity in mathematics, engineer-
ing and computer graphics applications. Over time parts of these fields have merged
into a common field called computational fluid dynamics (CFD). There are several
approaches for doing computational fluid dynamics, but a few common denomi-
nators that usually apply to CFD: A mathematical sound method for the simula-
tion, a practical solution to the mathematical method (engineering aspect), and a
graphical visualization of the solution (computer graphics).

1
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In this thesis work we will discuss a way of using CFD to simulate a solid such
as snow and fluids in real-time. We will be using a CFD method called smoothed
particle hydrodynamics. To aid our goal of a real-time simulation, we will be using
a modern graphics processing unit (GPU) to accelerate our simulation.

1.2 Contribution

The original goal of the project was to simulate snow as a fully compressible ma-
terial, however this proved to be too challenging given the scope and time frame
of the project. We instead opted to build upon Ø. E. Krog [1, 5] model for SPH
snow simulation. His simulations was not integrated with the HPC-Lab snow sim-
ulator, and ran our implementation on newer GPUs such as the RTX 2080Ti and
RTX3090, which have emerged since his work back in 2010.
The main contributions of this thesis are thus:

• Extending the functionality of the HPC-Lab snow simulator with two high-
performance GPU-based SPH solvers.

◦ A weakly compressible Newtonian solver based on Muller [6], on which
Ø. Krog [5] also did an implementation on GPUs back in 2010.

◦ A weakly compressible non-Newtonian solver based on M. Hossein´s
[7] work. Ø. Krog also did an implementation of this solver [5].

Before this contribution the snow simulator had a limited capability to simulate
snow and fluid behaviour. The intention of this project was also to enable users of
the HPC-Lab snow simulator without deep knowledge about fluid mechanics to
be able to simulate various phenomena such as a avalanches and fluid flow.

In addition, another HPC-lab master student, Roger Holten, was working on up-
dating the Graphical User Interface (GUI) for the HPC-Lab simulator by setting up
a new library based on IMGUI [8] along with this work. We therefore collaborated
to also integrate this work into the snow simulator summarized as the following
contribution:

• Adding a user interface to the HPC-Lab snow simulator where the physics
parameters, including boundary settings, can easily be tuned to do various
simulations.

We also made the following main contribution:

• Integrating into the HPC-Lab snow-simulator a state-of-the-art CUDA grid-
based nearest neighbour search algorithm developed by R. Hoetzlein [9] to
enable our SPH solvers to scale with the newer GPU hardware developed
over the last several years.

• Performing profiling and benchmarking with some of the new tools devel-
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oped such as Nvidia Nsight Compute and our own benchmarking utility.
• Optimizing out implementation including simplifying the code (e.g. mov-

ing constants out of sum formulas and reducing memory load operations),
using constant memory and changing L1 cache size configuration for the
newest consumer GPU’s currently available.

1.3 Outline

The rest of this thesis is outlined as follows: Chapter 2: The first Section 2.1
covers some of the differences between a graphics processing unit (GPU) and a
central processing unit (CPU). We also explore some of the building blocks in the
GPU core design and the Nvidia CUDA architecture. In the next Section 2.2 we
explain and examine earlier projects related to the HPC-Lab snow simulator and
the NTNU HPC-Lab. Proceeding this we explain some of the properties of snow
in Section 2.3. The last Section 2.4 explains some of the forces present in a fluid
system and rheological models for non-Newtonain fluids.

Chapter 3: In Chapter 3 we examine how we can use SPH to solve CFD problems.
This chapter includes the author´s fall report on smoothed particle hydrodynam-
ics for the readers convenience. In the first Section 3.1 we cover the foundation of
computational fluid dynamics and the Naiver-Stokes equation for in-compressible
fluid. We also examine the Navier-Stokes equation for a non-Newtonian fluid. In
the next Section 3.2 we explore how we can use smoothed particle hydrodynam-
ics (SPH) to solve the Naiver-Stokes equation numerically. In the final Section ??
we have included a some research done in the fall report where we compare two
different fast neighbour search algorithms on the GPU and CPU.

Chapter 4: This chapter is about the implementation of the SPH algorithm in the
HPC-Lab snow simulator. In the first Section 4.1 we briefly explain how CUDA ker-
nels are invoked. In Section 4.2 we describe the Newtonian and non-Newtonian
SPH algorithms we use. We also give a breif overview of the neighbour search al-
gorithm we use and data structures. In the third Section 4.3 we describe the simu-
lation scaling system we use to run simulations in of different physical dimensions
on the same rendering area. In Section 4.4 we explain how our simulation inte-
grates with the terrain in the HPC-Lab snow simulator. In the final Section 4.5 we
describe how we integrated our solvers into the snow simulator, the simulation
parameters and user interface.

Chapter 5: Chapter 5 is about testing and optimization of the SPH algorithms
on modern hardware. The the first Section 5.1 describes our test systems and
specifications. The following Section 5.2 we feature the optimization tools that
we use for determining bottlenecks. In the next Section 5.3 we apply various opti-
mizations to improve performance. In Section 4.4 we benchmark the application
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with different particle counts and record the performance numbers. The last Sec-
tion 4.5 show a collection of images of the finished implementation.

Chapter 6: In chapter 6 we present the conclusions from our work and present
some ideas for future work.



Chapter 2

Background

In this chapter we will cover some of the background material on GPU comput-
ing, the HPC-Lab Snow simulator, snow, forces in a fluid system and fluid rheology.
Section 2.1 describes the architecture of a modern general purpose graphics pro-
cessing unit (GP-GPU). Section 2.2 introduces the HPC-Lab snow simulator and
the HPC-Lab. In Section 2.3 we examine the physical properties of snow. In Sec-
tion 2.4 we explain the forces we need to consider in a fluid system and fluid
rheology.

2.1 SIMD architecture and GPU programming

In the field of high performance computing and science GPU programming has
gained popularity in recent years. While traditional central processing units (CPU’s)
have seen a modest performance gain, GPU performance has increased more or
less exponentially Brodtkorb et al. [10]. An other contributor to the increasing
GPU popularity is the ease of use with the introduction of GPU programming
frameworks such as Compute Unified Device Architecture (CUDA) and OpenCL
in 2007 and 2009 respectively. Prior to this GPU’s where almost exclusively used
for graphics processing. To use GPU’s for compute at this time one had to exploit
the graphics pipeline to do compute, requiring expert knowledge[10].

2.1.1 CPU and GPU comparison

In order to understand why GPU’s and CPU’s have different applications and per-
formance characteristics we have to investigate the underlying architecture of
these systems. In 1966 M. J. Flynn [11] coined four terms covering how different
architectures execute instructions on data, often referred to as Flynn’s taxonomy
[10]. These therms only cover the high level parallelism of a computer architec-
ture. The first distinction is the number of instructions the processor can execute at
a time and the other distinction is the number of data elements the instructions(s)
are executed upon. Flynn’s taxonomy covers these architectures:

5
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• Single instrucion single data stream (SISD): This characterizes the typical
serial processor that executes a single instruction on a single data element.
This is the processor architecture used in normal desktop computers and
laptops. Parallelism on this architecture can be achieved by having multiple
"cores" (processors working in parallel) that operate independently on the
same die (MIMD in a sense).

• Single instruction multiple data streams (SIMD): This is the parallel ar-
chitecture used in modern GPU’s. These processors can execute a single in-
struction on multiple data elements. Parallelism is possible during execution
since we can execute a instruction on multiple data elements. We can also
get MIMD parallelism by having multiple independent "cores" working in-
dependently with different instructions on the same chip.

• Multiple instruction single data stream (MISD): This is more of a the-
oretical architecture where multiple instructions are executed on a single
data element and is often considered as an impractical architecture[10].

• Multiple instructions multiple data streams (MIMD): This is a parallel
architecture that can execute multiple instructions on multiple data streams.
Since Flynn’s taxonomy is very crude, one could argue that a supercomputer
with multiple nodes or a multi-core processor is a MIMD system.

When we look at modern CPU’s and GPU’s, the distinction is not as clear as above.
For example some modern CPU’s can execute certain instructions in a SIMD fash-
ion, for example Advanced Vector Extentions (AVX). However there are some clear
differences between modern CPU’s and GPU’s making them excel at different ap-
plications. CPU’s are designed to execute a multitude of different instructions at a
hardware level in a fast manner, giving a performance advantage in complex logic
where the data elements are few and instruction variety is big Lee et al. [12]. The
CPU also utilizes techniques such as branch prediction, pipe-lining, out-of-order
execution and has higher clock frequencies. This results in a complex core design
making the core physically bigger and and increasing power consumption[12].
This makes the CPU ideal for more sparse workloads where single threaded per-
formance and latency is of importance.

GPU’s on the other hand features a much simpler core design and excels in ap-
plications where data parallelism is present Kirk and Hwu [13]. As mentioned
earlier the GPU was originally intended to process graphics workloads. In these
workloads latency was not a primary focus, instead parallel floating point calcula-
tions were important. An example of this is shader performance where the colors
and positions of objects on the screen was calculated. Since the core structure is
simpler without the advanced features of the traditional CPU such as out-of-order
execution and large cache (per core), the core count can be higher on the same
area compared to a CPU. While a GPU might have a huge performance advantage
on paper, its important to note that a GPU is dependent on a workload where
massive parallelism is possible. In many cases a CPU will be faster completing a
task if the workload is not fit for a GPU [12].



Chapter 2: Background 7

2.1.2 Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing architecture and programming interface (API) that
was released by Nvidia in 2007 together with the graphics chip G80 (Geforce
8000 series)[13]. Prior to this GPU programming was restricted to grapics API’s
such as OpenGL and Direct3D[13]. GPU programs had to be written as shader
programs using these API’s. The CUDA programming interface made it possible for
developers to write custom GPU programs called CUDA kernels. These programs
are written in a C/C++ syntax with additional GPU syntax. The kernels in the
program are then compiled to PTX (Nvidia GPU instruction set) using the Nvidia
CUDA Compiler (NVCC)[13]. Since 2007 all subsequent Nvidia desktop GPU’s
have supported the CUDA framework. This has lowered the entry point, making
GPU programming widely available on consumer grade hardware.

CUDA programming model

Making CUDA programs differs from traditional programs. In a normal C program
the programmer would write a main() method that takes an argument(s) from
the user and returns a result and then be done. In CUDA however the graphics
card is running the program (kernel) and therefore the data needs to be trans-
ferred to the GPU’s random access memory (RAM) before the kernel is invoked.
The GPU then runs the program with the data in its memory and stores the result.
When the GPU is finished the CPU portion of the program then needs to copy the
result from the GPU RAM into its local RAM and then return the result to the user.

To avoid confusion between CPU and GPU execution and RAM two scopes are
used to distinguish them.

• HOST: This term is used to specify CPU program/serial code and main sys-
tem memory.

• DEVICE: This term is used to specify the GPU scope including parallel kernel
code and GPU memory.

2.1.3 Nvidia GPU design

In order to use a GPU efficiently its important with a understanding of the un-
derlying architecture. There are often changes to the GPU architecture between
generations of Nvidia products. In this work we will be considering the newest
Nvidia architecture called Ampere (Nvidia [14]). At the top level of the GPU we
have the GigaThread Engine, Memory controllers, L2 cache and the PCI-Express
interface as seen in Figure 2.1. The GigaThread Engine’s role is to distribute thread
blocks to the streaming multiprocessors (SM) in the GPU. The memory controllers
gives the GPU access to the device memory (also called global memory). The L2
cache is shared for all SM units and is used to cache reads and writes to the device
memory. The PCI-express interface is used to communicate with the host system
(CPU) and other devices connected to the bus (for example another GPU).
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Figure 2.1: A top level image of the Nvidia ampere GPU. With permission from
Nvidia.

On Figure 5.2 we see that there are seven groups called Graphics Processing Clus-
ters (GPC). These are separated on chip and contains some shared graphics re-
lated units and a number of streaming multiprocessors each. In our application
we are interested in the SM units (where we do our processing). The SM’s in the
Amphere architecture is shown in Figure 2.2, each of the SM’s contain four pro-
cessing blocks and a shared L1 cache that is shared between them. Each of the
processing blocks have their own register file for the warps that are assigned to
the SM, load/store units, special function units, int pipelines and 32 bit precision
pipelines (CUDA cores). Further details on CUDA can be found in Appendix A,
Chapter 5 in Krog’s theis[1] as well as the CUDA C++ Programming Guide [15].

2.2 The NTNU HPC-lab snow simulator

The NTNU HPC-Lab snow simulator as shown in Figure 2.3 is a collection of con-
tributions made by former graduate students at the NTNU HPC-Lab. The snow
simulator is a high performance software package aimed at utilizing modern par-
allel hardware to make realistic snow simulations and visual effects. The project
started with Ingar Saltvik’s masters thesis on CPU parallel snow simulation in
2006 [2]. Since then the snow simulator software package has capable of sim-
ulating various phenomena such as snow accumulation Eidissen [3] and wind
simulation Schmid [16]. In this context of the HPC-Lab snow simulator, it should
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be mentioned that the NTNU HPC-lab is a research group led and founded by Dr.
Anne C. Elster in 2008 [17] consisting of her Masters and PhD students. The focus
of this group is primarily on high performance computing.

Figure 2.2: A image of a single SM unit of the Ampere architecture. With permis-
sion from Nvidia.

Figure 2.3: A screenshot of the current NTNU HPC-Lab snow simulator.
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2.2.1 Saltvik, Ingar: Parallel Methods for Real-Time Visualization of
Snow (2006)

This was one of the earlier projects making the foundation for subsequent projects
relating to high performance snow simulation at the HPC-lab [2]. Saltvik imple-
mented a parallel algorithm to simulating snow fall and accumulation on the
ground. He also implemented a grid based wind solver to simulate the effects
of wind on the snow while falling. The algorithm used the CPU for the physics
simulation and OpenGL for rendering.

2.2.2 Eidissen, Robin: Utilizing GPUs for Real-Time Visualization of
Snow (2009)

Eidissen’s masters thesis [3] built upon Saltvik’s implementation. In this work
the wind and snow simulation part of the snow simulator was implemented on
the GPU. It should be mentioned that in both Saltvik and Eidissen’s work a in-
compressible CFD wind solver was used to make a grid based wind field (simu-
lation domain divided into a grid of wind velocities affecting the snow particles
with a customizable "resolution/grid block sizes"). Eidissen also implemented a
better snow accumulation algorithm to distribute snow on the ground more evenly
depending on wind conditions. Another contribution of this project was the imple-
mentation of a height map loader that enables modeling of realistic terrain such
as mountains.

2.2.3 Vestre, Frederik M. J.: Enhancing and Porting the HPC-Lab Snow
Simulator to OpenCL on Mobile Platforms (2012)

Vestre’s masters thesis Vestre [18] main focus was to translate the CUDA code
in snow simulator to OpenCL and make the simulator run on mobile devices.
In the later versions of the snow simulator CUDA is still used as the main GPU
framework. The project contributed with some newer visualizations that work in
the newer versions such as as pressure field and wind field visualization.

2.2.4 Nordahl, Andreas (2013): Enhancing the HPC-Lab Snow Sim-
ulator with More Realistic Terrains and Other Interactive Fea-
tures

Nordal’s masters thesis [19] worked on the visual appearance of the snow simu-
lator implementing visual features such as improved terrain and snow textures,
distance fog, shadow mapping and more. The result of these visual improvements
can be seen above in the screenshot of the current snow simulator.
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2.2.5 Schmid Thomas M.: Real-Time Snow Simulation - Integrating
Weather Data and Cloud Rendering (2016)

Schmid’s masters thesis [16] is the latest contribution to the snow simulator. Im-
provements were made to to the snowflake and wind field simulations to make
them more realistic. Support for virtual weather stations outside the simulation
domain was added and interpolation between those to determine wind and pre-
cipitation inside the simulation domain.

2.3 Snow

Snow is raindrops that have been formed as small ice crystals in the atmosphere.
When the temperature in the atmosphere falls below the freezing temperature,
the snow crystals will be formed. Snowflakes can be created when the crystals
are partially melted and binds together, usually at a lower altitude. Snow is very
complex to model because it can undergo many changes over time changing its
physical properties Arenson et al. [20]. External factors that can determine the
structure and density are the temperature, wind and pressure.

2.3.1 Physical properties

After snow has accumulated on the ground it can undergo many changes, depend-
ing on the temperature, wind and pressure conditions in the area. Wind forces
breaks up the grain structure of the snow making the snowflakes more round
and smooth[20]. This allows the snow to sinter forming strong bonds. Tempera-
ture changes influences the strengthening of these bonds making the snow harder.
This happens on the surface layer of the snow since its exposed to wind and rapid
temperature changes[20].

In order to model snow the density aspect is important. Experiments show that
the density of snow changes under its own weight over time[20]. Density is given
as kg/m3. When the temperature is around melting point the density changes
rapidly. The density gradient with respect to time is lower for lower tempera-
tures, but note that the density also increases in lower temperatures. The density
of snow/ice can range from 10 to 917 kg/m3. Some typical densities of snow are
Paterson [21]:

• New snow 50− 70kg/m3. This is snow that just have accumulated on the
ground.

• Damp new snow 100−200kg/m3. Relatively new snow, that has weak bonds
and is "fluffy".

• Settled snow 200−300kg/m3. This is typical old snow, that have been meta-
morphosed and compacted over time.

• Wind packed snow 350 − 400kg/m3. Snow that has been compressed by
wind forces, compact.
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• Firn 400−830kg/m3. This is multi-seasonal snow that has not melted dur-
ing summer, very compact.

• Ice 830− 917kg/m3.

The strength of snow is closely related to the density, but also to the underlying
micro-structure of the snow particles [20]. The mechanical properties of snow is
similar to ice, its response to stress and rate of stress is similar to a visco-elastic
material [20]. This means that snow has a viscous and elastic property. A viscous
material will deform when a strain is applied. Elastic materials will return to their
original state after a strain has been applied. Visco-elastic materials exposed to
strain will in some cases return to their original form depending on the stress and
the stress duration, but can also deform. Brittle failures happens often in snow,
this happens when the strain rate (deformation/time), exceeds a certain level.
Under this level the snow/ice will behave close to linear-elastically, meaning that
it will return close to its original configuration [20].



Chapter 2: Background 13

2.4 Forces in a fluid system

In fluid simulations we want to investigate how a fluid volume evolves over time.
The movement of a fluid occurs when the substance is affected by forces affecting
acceleration of the fluid to change. To limit the complexity and computational
requirement of a simulation we simplify the forces we want to model down to
a few major forces. We categorize these into internal and external forces. The
internal forces we model are pressure and viscosity. External forces that we model
are friction, boundary collision and gravity.

2.4.1 Pressure

Pressure is defined as the perpendicular force per unit area, or the stress at a point
within a confined fluid Britannica [22]. In a fluid system we usually determine the
pressure as the current level of compression in the fluid with an equation of state
relating to the rest density of the fluid (which can vary depending on the fluid and
temperature). It should be noted that pressure is a scalar quantity.

P =
F
A

(2.1)

The usual cause of pressure in a fluid system is gravity causing fluid to gather at
low points resulting in the fluid resisting compression (exerting pressure force) or
constrained space in the simulation. Temperature changes can also result in the
fluid phase changing taking up more or less space (rest density changing).

2.4.2 Viscosity

Viscosity is a measure of how a fluid resists flow Krishnan et al. [23]. A fluid with
higher viscosity will have more resistance to move than a fluid with lower viscosity.
There are two categories of viscous fluids: Newtonian fluids and non-Newtonian
fluids. Newtonian fluids have a constant viscosity while non-Newtonian fluids can
have dynamic viscosity values depending on various factors such as rate of defor-
mation and applied stress. The viscosity in a fluid simulation can be described as
the friction between fluid particles causing a reduction in velocity of the fluid.

To show the effect of viscosity a illustration like 2.4 is often used[23]. The figure
shows a fluid between one stationary and one moving surface A in contact with
the fluid. F is the force applied to move the surface A. The displacement (shear) S
is how much the top plate moves when F is applied. We assume non-slip condition
on the surfaces where the velocity of the fluid closest to the surface move at the
same velocity as the surface. H is the distance between the plates (height of the
fluid in the illustration). From this we can express the viscosity as follows:

F
A
S
H

= µ (2.2)
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We can define F/A as τ which is the shear stress (force per unit area). S
H is the

velocity derivative in the moving direction (assuming y-direction). We can also
define strain as ε and strain rate as ε̇:

τ

ε̇
= µ (2.3)

Figure 2.4: Illustration of viscous forces on fluid between two plates, inspired
by[23].

2.4.3 Viscosity Newtonian fluids

A Newtonian fluid is a fluid that obey Newton’s law of viscosity. It states that: The
rate of deformation of a volume element of the fluid is proportional to the applied
stress[23]. This means that the relationship between shear stress and deformation
is constant. Newton’s law of viscosity defines viscosity as Equation 2.4:

µ=
τ

ε̇
(2.4)

Where τ is the shear stress, ε̇ is the strain rate. Newton’s viscosity law implies
that the viscosity of a fluid is the same for any shear rate. The fluids that follow
Newton’s viscosity law are referred to as Newtonian fluids [23]. Example of an
Newtonian fluid is water.

2.4.4 Viscosity non-Newtonian fluids

The fluids that does not obey Newton’s viscosity law are called non-Newtonian
fluids. Factors such as pressure, temperature and duration of applied stress can
change the flow properties of non-Newtonian fluids[23]. Figure 2.5 shows the rhe-
ological models presented below with the relationship between stress and shear-
ing rate. We can use some models Some common non-Newtonian fluid models
are[23]:
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The power-law model

This model is used for fluids that are shear thinning or thickening where the vis-
cosity is decreasing or increasing with shear rate. It can also be combined with the
Herschel–Bulkley model, to have a yield stress before flowing. K is the consistency
index, m is a measure of the consistency of the substance[23]. When n < 1 the
effective viscosity µ will decrease as the shear rate increases and when n > 1 the
viscosity will increase with shear rate. The power-law model is defined in Equation
2.5

τ= m · ε̇n

µ= m(ε̇)n−1 (2.5)

Visco-Plastic: Bingham model

The Bingham model is a model used for fluids that have a yield stress τyield , the
fluid will only flow if a stress τi is applied that exceeds the yield stress thresh-
old[23]. When the yield stress is exceeded the fluid will behave in a Newtonian
manner. In Equation 2.6 we can see that once the stress level is above the thresh-
old τyield the fluid is flowing as a Newtonian fluid. When the applied stress is not
greater than the yield stress the rate of deformation is zero (solid).

τi = τyield +µ · ε̇ if |τi|> |τyield |
ε̇= 0 if |τi| ≤ |τyield | (2.6)

Visco-plastic: Herschel–Bulkley model

The visco-plastic model is similar to the Bingham model with one exception. After
the stress threshold is exceeded the fluid behaves as a shear thinning fluid, when
n< 1[23]. m is known as the consistency index[23]. The Herschel–Bulkley model
is defined as in Equation 2.7

τi = τyield +m · ε̇n if |τi|> |τyield |
ε̇= 0 if |τi| ≤ |τyield | (2.7)

2.4.5 External forces

The external forces we will employ in the simulation is gravity and simulation
boundaries. This will be discussed in the implementation chapter.
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Figure 2.5: Rheological models viscosity illustrated at different stress and shear-
ing rates. Inspired by[23].



Chapter 3

Computational Fluid Dynamics
(CFD) and Smoothed Particle
Hydrodynamics (SPH)

This chapter describes the basics of Computational Fluid Dynamics (CFD) in Sec-
tion 3.1. It includes the background chapter based on the author´s fall report on
Smoothed Particle Hydrodynamics (SPH) in Section 3.2. Since we will be using
SPH in our implementation this material is included for the readers convenience.
This chapter will give an brief introduction to computational fluid mechanics and
how we can apply a smoothed particle hydrodynamics to find a numerical solu-
tion to the Navier-Stokes equations. It also includes a comparison on grid based
neighbour search and verlet list neighbour search in Section ??.

3.1 Computational fluid dynamics

Computational fluid dynamics (CFD) is a branch of fluid dynamics where the goal
is to numerically simulate fluid flow using computers. The field integrates typical
engineering fluid dynamics with mathematics and computer science. The motion
of the fluid can be described using mathematical equations, most commonly in
partial differential form.

3.1.1 The governing equations of CFD

Computational fluid dynamics is based on the on the following physical laws Tu
[24].

• Mass conservation of the fluid
• Newton’s second law. The rate of change of momentum equals the sum of

forces acting on the fluid
• The first law of thermodynamics. The rate of change of energy equals the

sum rate of heat addition to and the rate of work done on the fluid. Note,

17



18 2021: SPH-based Avalanche Simulations on GPU

due to the scope of this work we are not including this section.

3.1.2 The continuity equation

The mass conservation law stats that matter can neither be created of destroyed.
In more general terms this means that given a control volume, mass cannot be
created or destroyed inside the volume. If we imagine a fluid passing trough this
volume with a constant density ρ. The in flow rate will be given in m3/s. So the
total mass change in the control volume will only be affected by the difference
between in and out flow rate given during an given time span. Equation 3.1 is the
continuity equation[24]. If we look at the derivative of ρ with respect to time we
can see that for a in-compressible fluid the density change will always be zero.
The density of the fluid therefore is constant Equation 3.2.

dρ
d t
+∇ · (ρV) = 0 (3.1)

dρ
d t
= 0 (3.2)

This implies that the divergence of the velocity field of the in-compressible fluid
is zero Equation 3.3.

∇ ·ρV= 0 (3.3)

3.1.3 The momentum equation

The momentum equation is based on Newton’s second law of motion which states
that the sum of forces acting on a body is F equals mass times acceleration. In
fluid mechanics we can write the equation in terms of the directional forces[24],
example for x direction is shown in Equation 3.4:

∑

Fx = max (3.4)

The acceleration component can we written as Equation 3.5:

ax =
Du
Dt

(3.5)

With u being the velocity vector in the x direction, it is important to note that
D means the substantial derivative. The substantial derivative is used when we
consider a general variable property per unit of mass φ with respect to time [24].
The substantial derivative can be written as Equation 3.6:

Dφ
Dt
=
∂ φ

∂ t
+ u

∂ φ

∂ x
+ v
∂ φ

∂ y
+ w

∂ φ

∂ z
(3.6)

To define the mass in Equation 3.4 we can use the mass density formulation m=
ρ(∆x∆y∆z). We end up with the expression for momentum (in x direction) in
Equation 3.7.

ρ
Du
Dt
∆x∆y∆z (3.7)



Chapter 3: Computational Fluid Dynamics (CFD) and Smoothed Particle Hydrodynamics (SPH)19

Our fluid element experiences two different forces that together make the force Fx .
The two forces are body forces and surface forces[24]. The body forces that influ-
ences the acceleration are gravity, centrifugal forces, Coriolis and electromagnetic
forces. The body forces are added as external forces usually. The surface forces are
inflicted by normal stress σx x and tangential stresses τy x and τzx that are acting
on the surface of the fluid[24]. The normal stress σx x is a force that is applied on
to the fluid surface an example of this is pressure p. The tangential stresses τy x
and τzx are stress that acts alongside the fluid surface, example of this is shear
stresses caused by the fluid’s viscosity[24]. We end up with the following Equation
3.8 for the x-momentum:

ρ
Du
Dt
=
∂ σx x

∂ x
+
∂ τy x

∂ y
+
∂ τz x

∂ z
+
∑

F bod y f orces
x (3.8)

From this we can derive the Navier-Stokes Equation for a Newtonian in-compressible
fluid in Equation 3.9. Referring to [24] for more information.

ρ
∂ v
∂ t
= −∇p+µ∇2u +ρg (3.9)

We can simplify by multiplying the equation with 1/ρ:

∂ v
∂ t
= −

1
ρ
∇p+

µ

ρ
∇2u + g (3.10)

On the left side is the derivative of v (velocity vector) with respect to time t giving
us the acceleration vector. The expressions on the right side are as follows: ∇p is
the pressure gradient, ρ is the density, µ is the viscosity constant, ∇2u is the
Laplacian of flow velocity and g is external acceleration.

3.1.4 Navier stokes equation non-Newtonian fluid

For a non-Newtonian fluid, the viscosity can vary depending on shear stress and
shear rate. We need to define the Navier-Stokes equation with the shear stress ten-
sor. Equation 3.11 show the Navier-Stokes equation with the shear stress tensor:

∂ v
∂ t
= −

1
ρ
∇p+

1
ρ
∇ ·τ+ g (3.11)

Hosseini et al. [7] defines the shear stress tensor as Equation 3.12:

τ= µ(|ε̇|)ε̇ (3.12)

Where ε̇ is strain rate tensor and µ(|ε̇|) is the viscosity function. To find the strain
rate tensor we first need to take the gradient of the fluid velocity to find the strain
tensor. In three dimensions the fluid velocity has three components. That gives us
Equation 3.13:

ε=∇v=







∂ vx
∂ x

∂ vx
∂ y

∂ vx
∂ z

∂ vy

∂ x
∂ vy

∂ y
∂ vy

∂ z
∂ vz
∂ x

∂ vz
∂ y

∂ vz
∂ z






(3.13)
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According to [7] strain rate tensor ε̇ can then be found by Equation 3.14.

ε̇=
1
2
(∇v+∇vT ) (3.14)

We can find the magnitude of the strain rate tensor |ε̇| by:

|ε̇|=
Æ

t race(ε̇)2 (3.15)

The trace operation is to sum the elements in the diagonal from the top left of the
tensor to the bottom right of the tensor.

3.2 Smoothed Particle hydrodynamics

Smoothed particle hydrodynamics is a simulation method used to simulate solid
mechanics and fluid flow. The method was developed by Gingold and Monaghan
and presented in the paper "Smoothed particle hydrodynamics: theory and appli-
cation to non-spherical stars"[25] in 1977. SPH is a meshfree Lagrangian method
meaning that the bodies in the simulation are not connected, but instead are indi-
vidual with their own positions and velocities. The Lagrangian approach makes it
easy to obtain approximate solutions fluid dynamics problems. In the case of fluid
dynamics the fluid is represented as groups of particles acting together as a fluid.
The particle approach also makes it easy to represent different materials in the
same simulation Monaghan [26]. An advantage of SPH is that the computation
is only done for where the matter is in the simulation compared to grid based
Eulerian methods.

SPH is based on interpolation theory, this means that values we find such as pres-
sure forces, density and viscous forces at any location approximated by nearby
particles in the simulation space. The kernel (or smoothing function) function is
the basis of the SPH method determining weight of the contribution from sur-
rounding particles. The interpolation function is described as Equation 3.16 in
Monaghan [26] in a integral form.

Ah(r ) =

∫

V
A(r ′)W (r − r ′, h)dr ′ (3.16)

For practical applications a numerical approximation of this integral is made Equa-
tion 3.17.

Ai(r ) =
N
∑

j=1

m j

ρ j
A jW (ri − r j , h) (3.17)

In order to separate the current interpolation point and surrounding known neigh-
bour points, values for the neighbour points are referred to with j and values for
the interpolation point is referred to with i . m means the mass and ρ is density.
W (ri − r j , h) is the kernel function used, r is a coordinate in space and h is the
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smoothing radius (defining a spherical or circle radius in 3D and 2D respectively).
Ai and A j is scalar quantities that we substitute in order to find a approximate
value. An example of this is if we want to find the density at the position ri . We
set Ai = ρi and A j = ρ j resulting in the summation in Equations (3.18) and (3.19),
giving us an approximation for calculating the density at position ri .

ρi(r ) =
N
∑

j=1

m j

ρ j
ρ jW (ri − r j , h) (3.18)

ρi(r ) =
N
∑

j=1

m jW (ri − r j , h) (3.19)

In this context its important to mention the relation between volume, mass and
density in Equation 3.20:

V =
m
ρ

(3.20)

Mass is given in kg, volume m3 and density kg
m3 .

3.2.1 Smoothing values

In addition to approximating field values such as density SPH can also be used
to find the gradient and Laplacian of the scalar quantity Ai [27]. When approxi-
mating the Naiver-stokes equations we need to be able to find the gradient and
Laplacian of the scalar quantity. An example of this is approximating the pressure
gradient. In order to find the value of a scalar field we use the following Equation
3.21.

Ai(r ) =
N
∑

j=1

m j

ρ j
A jW (ri − r j , h) (3.21)

When we want to approximate the gradient at a point r we use the following
Equation 3.22 [27]:

∇Ai(r ) =
N
∑

j=1

m j

ρ j
A j∇W (ri − r j , h) (3.22)

We see that the gradient only affects our kernel since our variable in this function
is r (note that the gradient of r can have multiple components). This attribute
makes the SPH equations easy derive from the Naiver-Stokes equations, we simply
substitute A for the value we want to approximate. The Laplacian approximation
is as shown in Equation 3.23 [27]:

∇2Ai(r ) =
N
∑

j=1

m j

ρ j
A j∇2W (ri − r j , h) (3.23)

These equations are the basis for SPH simulations, but it poses an challenge. We
need to make sure that the gradient and Laplacian of the smoothing kernel is
suitable. We will discuss smoothing kernels and requirements in the next section.
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3.2.2 Smoothing function

The smoothing function or kernel function is a function that weights the con-
tributions from surrounding sample points based on distance. The input for a
kernel function is ri − r j the distance between our interpolation point and neigh-
bour point. The second input is the smoothing radius h, the smoothing radius de-
termines the maximum distance between the interpolation point and neighbour
point. A smoothing kernel needs to satisfy the following condition in Equation3.24
[27]. Ideally it should also satisfy the conditions in Equations 3.25 suggested by
Kelager [28].

∫

V
W (ri j , h)dr = 1 (Normalized) (3.24)

W (ri j , h)≥ 0 (positive) (3.25)

W (ri j, h) =W (−ri j , h) (even)

There are several kernel functions developed for SPH. Different kernels are used
when evaluating gradients and lapclacian. The kernel needs to be normalized,
meaning that the volume V of the function is exactly 1, Monaghan [27] for further
explanation. Its also important that the kernel has compact support meaning if
|ri j| ≥ h =⇒ W (ri j , h) = 0. Its important to choose kernels that are suitable
for the force we are calculating. In some situations we need to use the gradient
and Laplacian of the kernel function, we will discuss the kernel functions used by
Müller [6].

Wpol y6 Kernel

This kernel is recommended by Müller when approximating density where we
don’t need the gradient or Laplacian[6]. We can see that the gradient and Lapla-
cian turns negative in certain parts of the range −2 ≤ ri j ≤ 2. The gradient and
Laplacian of this function is not useful for our experiments. The Wpol y6 function
can we written as Equation 3.26. The plot in Figure 3.1 function with the gradient
and Laplacian.

Wpol y6(r, h) =
315

64πh9

¨

(h2 − r2)3, if 0≤ r ≤ h

0, otherwise
(3.26)

Wspik y Kernel

This kernel is used by Müller when calculating pressure forces between parti-
cles[6]. We use the gradient of the kernel function for this. When inspecting the
gradient we see that its always positive in the range −h≤ ri j ≤ h and the gradient
is increasing exponentially as ri j approaches 0. This correlates with our goal for
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Figure 3.1: Wpol y6 kernel. The green solid line shows the kernel, the red striped
line shows the gradient and the blue dotted line shows the Laplacian. The smooth-
ing radius h is the constant 2.

pressure forces, that the pressure increases when particles get closer to one and
another. This avoids a common problem in SPH simulations where particles clus-
ter together when they get too close if the derivative of the kernel function does
not grow as ri j approaches 0. The kernel is shown in Equation 3.27. The plot of
the Laplacian, gradient and kernel is shown in Figure 3.2.

Wspik y(r, h) =
15
πh6

¨

(h− |r|)3, if 0≤ r ≤ h

0, otherwise
(3.27)

Figure 3.2: Wspik y kernel. The red striped line shows the kernel, the green solid
line shows the gradient and the blue dotted line shows the Laplacian. The smooth-
ing radius h is the constant 2.
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Wviscosi t y Kernel

This kernel is Müller when calculating viscous forces[6]. We use the Laplacian of
this function, the kernel is designed to be positive for all values of ri j inside the
smoothing radius. The kernel function is shown in 3.28. The plot of the function
with gradient and Laplacian is plotted in figure 3.3.

Wviscosi t y(r, h) =
15

2πh3

¨

− r3

2h3 +
r2

h2 +
h
2r , if 0≤ r ≤ h

0, otherwise
(3.28)

Figure 3.3: Wviscosi t y kernel. The green solid line shows the kernel, the red striped
line shows the gradient and the blue dotted line shows the Laplacian. The smooth-
ing radius h is the constant 2.

3.2.3 Density

Monaghan suggests that densisty can be found as state in Equation 3.29 [27].

ρi = ρi(r ) =
N
∑

j=1

m jW (ri − r j , h) (3.29)

(ri − r j is the distance between particle i and j).
Note that we also iterate over particle i in this summation, otherwise we could
potentially get a zero-division later on. Most literature on SPH recommends a
kernel similar to a Gaussian distribution when approximating the density value[1,
7]. An illustration on the influence for particle i is shown in Figure 3.4.

SPH viscosity weakly compressible fluid

The Navier-Stokes equation is given as follows for an in-compressible Newtonian
fluid 3.30:

∂ v
∂ t
= −

1
ρ
∇p+

µ

ρ
∇2u + g (3.30)
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Figure 3.4: Mass density approximation for par t iclei . The red striped circle is
the smoothing radius. The particles inside the radius will contribute to the mass
density of par t iclei based on the distance between them and par t iclei .

We want to find the divergence of the velocity field gradient∇2p, µ is the viscosity
constant of the fluid. We can expand the expression as In Equation 3.31:

µ

ρ
(∇ ·∇u) (3.31)

In SPH notation viscosity force can be calculated in the following way using the
specialized Wviscosi t y kernel [6] (note that vi , v j is the current velocity of particle
i and j respectively):

µ

ρ
∇2u(r ) =

µ

ρ

N
∑

j=1,i 6= j

m j
v j − vi

2ρ j
∇2Wviscosi t y(ri − r j , h) (3.32)

(ri − r j is the distance between particle i and j).

3.2.4 Pressure

The Navier-Stokes equation for an in-compressible Newtonian fluid is given as
follows 3.33.

ρ
∂ v
∂ t
= −∇p+µ∇2u +ρg (3.33)

We want to find the pressure gradient −∇p, in SPH notation the pressure gradient
can be described as Equation 3.34 [6].

−∇pi(r ) = −
N
∑

j=1,i 6= j

m j
p j

ρ j
∇W (ri − r j , h) (3.34)

(ri − r j is the distance between particle i and j).
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We don’t need to sum the forces for particle i for itself i 6= j. A problem with this
Equation 3.34 is that the forces are not always symmetric when any two particles
interact. In order to fix this issue the average of pi and p j can be calculated.
Two different approaches are proposed in the literature[6, 27] Equations (3.35)
and (3.36).

Müller 2003:−∇pi(r ) = −
N
∑

j=1,i 6= j

m j
p j + pi

2ρ j
∇W (ri − r j , h) (3.35)

Monaghan 1992:−∇pi(r ) = −
N
∑

j=1,i 6= j

m j(
pi

ρ2
i

+
p j

ρ2
j

)∇W (ri − r j , h) (3.36)

Figure 3.5: A crude illustration of pressure forces, on the left side particles are
compressed (red) causing a repulsive force between them. In the center there is
negative pressure meaning that the particles attract each other (green). To the
right the pressure forces are balanced. The vectors give a indication of accelera-
tion direction caused by pressure force.

Equation of state

In order to find the unknown pressure force p, we can use an equation of state to
restore the intended mass density. We can simulate a weakly compressible fluid
using this. The equation of state will scale the pressure to preserve a certain mass
density. In order to simulate of snow/ice a more complex model is needed, since
snow is highly compressible with a wide density range [20]. This is not included
in this work, instead we focus on a weakly/in-compressible pressure solver. There
are several formulations for an equation of state, (Müller, 2003)[6] suggests de-
riving a equation of state from the ideal gas state Equation 3.37.

p = kρ (3.37)

k is a gas constant that depends on the temperature, an modified version of this
expressed as Equation 3.38.

p = k(ρ −ρ0) (3.38)

Where k is the gas constant, used for scaling the force, ρ is the current mass den-
sity and ρ0 is the rest density. The equation will try to restore the the rest density
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ρ0. A problem with this equation is that we can get a negative pressure resulting
in strong attraction forces where the density is low (see figure 1.5). We can avoid
this by adding the condition that (ρ −ρ0) = max(ρ −ρ0, 0).

3.2.5 Enforcing boundaries in SPH

In particle simulations it is important to enforce boundaries for the particles. Oth-
erwise the particles can escape our simulation domain or not collide with other
objects in the simulation. This is one of the big challenges in SPH simulations[27].
The reason why this is a challenge lies in the of the smoothing radius which SPH
calculations are based on. When a particle is near a boundary some parts of the
smoothing radius might be covering the boundary or exceeding the boundary. This
can cause rapid density/pressure fluctuations for particles at the boundary caus-
ing instability. An illustration of this is shown in Figure 3.6. To combat the first

Figure 3.6: The left image illustrates the the cause of fluctuations at the boundary
(very simplified illustration with 3 particles). The center particle here has a higher
density than the boundary particles since their smoothing radius covers parts of
the area outside the boundary wall. The right image shows that a particle inside
the boundary can be influenced by particles outside the boundary.

problem with varying density, pressure at the boundary, we can place "dummy par-
ticles" at the boundary that contributes to the density and repels particles from
going trough the boundary, these particles are stationary (does not move, only
acts as a boundary). In order to avoid influence from particles outside a border
we need to increase the resolution of the simulation. We can do this by reducing
the smoothing radius and adding more particles (adjustment to particle mass is
possible as well, but does not increase resolution).

3.2.6 Nearest neighbour search

We have written about neighbour search in SPH previous work, reffering to Ap-
pendix A.





Chapter 4

Implementing SPH in the
HPC-lab Snow Simulator

In this chapter we describe the core of the master thesis work, which is how our
SPH solvers were implemented and the features we added to the program such
as the user interface and terrain modeling. The SPH solvers are integrated as a
standalone component in the HPC-Lab snow simulator.

4.1 Parallel execution CUDA

The implementation of SPH uses CUDA kernels that are launched on the GPU
(device) with one thread for each data element running in parallel. To launch
the correct number of CUDA threads we use the following basic formula given a
number of threads per block as shown in Code Listing 4.1:

Code listing 4.1: Finding kernel launch thread and block count in 1 dimension

uint particleCount = 4000; // Example particle count
uint threadsPerBlock = 1024; // Common blocksize
uint blockCount = floor(particleCount / threadsPerBlock)+1; // = 4
// Total threads: threadsPerBlock*blockCount = 4096

This is an example of a function call that will be executed on the GPU (device).
When we call a device function we tell the GPU how many threads to execute
by supplying a block count and threads per block. Note that blocks and threads
per block can be supplied in 3 dimensions (x,y,z). In these examples we use 1
dimension, referring to CUDA developer guide for more information [29] on this.
Code for executing an kernel is shown in Code Listing 4.2.

Code listing 4.2: Launching a CUDA kernel from host

// Total threads running in parallel in this call: blockCount*threadsPerBlock
CudaKernel<<<blockCount,threadsPerBlock>>>(particleCount);

We can see from this that usually we get more threads than data elements. To
avoid this we add a if-statement at the beginning of our CUDA kernels to stop

29
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execution if the thread index exceeds the number of data elements as shown in
Code listing 4.3:

Code listing 4.3: Finding kernel launch thread and block count in 1 dimension

__global__ void CudaKernel(uint particleCount, float* exampleData) {
uint index = blockIdx.x*blockDim.x+threadIdx.x; // unique index for each thread
if (i <= particleCount) {

return; //Index exceeds particle count
}
// Access example data
float value = exampleData[index];
... // Continue execution
}

4.2 SPH implementation

The SPH implementation is done in three parts. A Newtonian weakly compress-
ible solver is the basic one, this version is based on Müller et al. [6]. This SPH
algorithm is best suited to simulate water and other Newtonian fluids, but it can
yield interesting performance numbers and visuals.

The second algorithm implementation is based Hosseini [7] and Krog 2010[5]
implementations of a non-Newtonian SPH solver with different rhetorical models
for viscous force. This model gave some realistic visuals and behaviour of snow
avalanches.

4.2.1 Particle creation

When the program starts it will create a specified number of particles multiple ar-
rays on host system. The particles contains a set of properties each that represent
its state in the system. The initialization step allows for multiple initial configura-
tions of particles. The particle properties for the Newtonian and non-Newtonian
model is presented in Tables 4.1 and 4.2. The float3 and float4 are groups of 3 and
4 floats respectively representing vectors with x, y, z, w components. The matrix3
datatype is a set of three float3 representing a matrix.

The particles are allocated in different arrays where every particle has a unique
index in the arrays. For example there is one array for storing positions for all
particles and another array for velocities. In order to access all the properties for
a given particle i we use the same index for every array as illustration in Figure
4.1.
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Table 4.1: Particle properties used in the Newtonian model.

Property Type Byte size Note
Position float3 12
Velocity float3 12

Last velocity float3 12 For leap-frog time integration
Acceleration (force) float3 12 Storage for pressure and viscous force

Density float 4
Pressure float 4

Intensity value float 4 For coloring of forces
Particle cell uint 4 Used to store current grid cell

Particle cell offset uint 4 Used to store position offset in grid cell
Sum bytes 68 Memory requirement for each particle

Table 4.2: Particle properties used in the non-Newtonian model.

Property Type Byte size Note
Position float3 12
Velocity float3 12

Last velocity float3 12 For leap-frog time integration
Acceleration (force) float3 12 Storage for pressure and viscous force

Stress tensor matrix3 36 Storage for stress tensor
XSPH float3 12 Storage for XSPH corrected velocity

Density float 4
Pressure float 4

Intensity value float 4 For coloring of forces
Particle cell uint 4 Used to store current grid cell

Particle cell offset uint 4 Used to store position offset in grid cell
Sum bytes 116 Memory requirement for each particle

4.2.2 GPU Allocation of particles

When the particles have been created with initial values on the host system they
need to be transferred to the GPU memory. In order to do this we need to allocate
the same amount of memory on the GPU and then transfer the particle data to this
memory. When memory is allocated on the GPU (using cudaMalloc()) we get a
pointer to the beginning of memory area we are given on the GPU. Then we use the
cudaMemcopy() command to copy the data to the GPU. This is done repeatably
for all the particle property arrays. In order to have access to the arrays inside a
GPU kernel we need to pass pointers to the arrays at run time. When dealing with
multiple arrays, we use a custom struct bind the arrays together so that they can
be passed as one element to the GPU. We store the pointers to the GPU memory
in the struct GPUBuff (Figure 4.2). There are also some functions in the struct to
retrieve the pointer for a given particle property array.
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Figure 4.1: Accessing particle properties with index across multiple arrays.

Figure 4.2: GPUBuff struct containing GPU memory pointers to particle property
buffers.

4.2.3 Fast neighbour grid search

A SPH implementation is dependent on fast neighbour search in order to find par-
ticles that can are within the smoothing radius. In this implementation we employ
a grid that spans the simulation space. The grid has a minimum and maximum
point in 3D space describing the size of the structure. The grid is then divided into
equal sized cells (or cubes) which covers volumes (in 3D) or area (in 2D).

Fast neighbor search in CUDA

In this work we are using a counting sort based neighbour search algorithm. The
algorithm is a part of a SPH fluid simulation program called fluids v.3[9] devel-
oped by Hoetzlein. Fluids v.3 has later been implemented as a sample program in
the Nvidia GVDB software package[30].

The algorithm divides the simulation domain into grid cells in three dimensions.
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Each grid cell acts as a bin for particles. When the position of a particle is deter-
mined to be in a bin it is indirectly assigned to the bin in memory. When a particle
later on is looking for neighbours it can iterate over the particles in the nearby
cells. The size of each grid cell is determined by the smoothing radius h used in
the simulation. To make the relationship between the smoothing radius and cell
size easier we use the diameter of the particles influence sphere instead of smooth-
ing radius, the diameter is d = 2 · h. On Figure 4.3 we can see which cells and
how many cells we need to search to find particles that could influence a given
particle in a given cell in 2D. We can see that Cellsize = d/1 and Cellsize = d/2
both has 9 cells to check and that Cellsize = d/3 and Cellsize = d/4 has 25 cells
to check.

Figure 4.3: Figure of several 2D grid cell sizes with a constant particle influence
diameter.
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The CUDA counting sort algorithm

The algorithms goal is to place particles in the correct cell and at the same time
store particles belonging to the same cell beside each other in memory. However
the algorithm requires a separate copy of the particle properties (see Figure ??)
causing the memory usage by the particles to double. The algorithm is divided
into three separate steps:

• Insert particles
• Prefix sum
• Counting sort

The first part finds which cell in the grid the particles belongs to. For each particle
the index of the cell it belongs to is stored. The particle finds its cell using its po-
sition in the simulation domain. Each grid cell has a counter to keep track of how
many particles is present inside. This counter is incremented every time a particle
is assigned to the grid cell. Each particle also know what index it belongs to in its
grid cell. If for example two particles have the same grid cell, then the first one
stores the index 0 and the last one stores the index 1.

After the particles have a assigned position in the grid the prefix sum of the grid
cell counts is calculated and stored for each grid cell. This is essentially done so
that each particle later on know know where in memory the grid cell starts. An
excellent illustration of this can be found in [30].

The last step of the algorithm is the counting sort. At this point every particle
knows which cell it belongs to. And every grid cell knows how many particles
should be stored before it. The particles copies its data to the memory location
with the offset from the grid (prefix sum) plus its index in the grid cell. This sorts
the particles by grid cell in memory.

4.2.4 Newtionan fluid implementation

Our Newtonian fluid implementation is based on Müller et al. [6]. The algorithm
describes a weakly-compressible Newtonian fluid. We do not include surface ten-
sion in our model. We describe the calculations used to find the acceleration for
each particle in the next equations.

ρi(r ) =
N
∑

j=1

m jWpol y6(ri j , h) (4.1)

pi =min(c ·(ρi −ρrest), 0 ) (4.2)
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After this step we make sure to synchronize the program by allowing all threads
to finish the calculations above before continuing.

− f pressure
i = −

1
ρi

N
∑

j=1,i 6= j

m j
p j + pi

2ρ j
∇Wspik y(ri j , h) (4.3)

f viscosi t y
i =

µ

ρi

N
∑

j=1,i 6= j

m j
v j − vi

2ρ j
∇2Wviscosi t y(ri j , h) (4.4)

After this step we synchronize all threads.

f ex ternal
i = g + fboundar y f orces (4.5)

Accelerat ioni = (− f pressure
i + f viscosi t y

i + f ex ternal
i ) (4.6)

The first step is to find the density of each particle as in Equation 4.1. From the
density we calculate the pressure for particle i using the equation of state in Equa-
tion 4.2 based on the gas constant c and rest density ρrest . Then we find force
contribution from pressure and viscosity in Equation 4.3 and 4.4. We then add
gravity g and fboundar y f orces in Equation 4.5. Boundary forces include repulsive
force from the borders and friction. Then the final acceleration is calculated by
multiplying the force contributions with the time step in Equation 4.6.

4.2.5 Non-Newtonian fluid implementation

The non-Newtonian implementation is based on the algorithm presented in Ø.
Krog [1] and M. Hosseini et al. [7]. The rheological models in described in Sec-
tion 2.4.4 can be used to simulate non-Newtonian fluids. The algorithm is more
demanding because of the extra computation required to calculate the stress ten-
sor and applying the rheological model.

ρi(r ) =
N
∑

j=1

m jWpol y6(ri j , h) (4.7)

pi =min(c ·(ρi −ρrest), 0 ) (4.8)

After this step we make sure to synchronize the program by allowing all threads
to finish the calculations above before continuing.

∇vi =
N
∑

j=1,i 6= j

m j

ρ j
(v j − vi)⊗∇Wspik y (4.9)

τi = rheological model (4.10)

v x s ph
i

= vi +ϕ
N
∑

j=1,i 6= j

2m j
(v j − vi)

ρi +ρ j
Wpol y6 (4.11)



36 2021: SPH-based Avalanche Simulations on GPU

After this step we synchronize all threads.

− f pressure
i = −

1
ρi

N
∑

j=1,i 6= j

m j
p j + pi

2ρ j
∇Wspik y(ri j , h) (4.12)

f st ress
i =

1
ρi
∇ ·τi =

1
ρi

N
∑

j=1,i 6= j

m j
τi + τ j

ρ j
∇Wspik y (4.13)

After this step we synchronize all threads.

f ex ternal
i = g + fboundar y f orces (4.14)

Accelerat ioni = (− f pressure
i + f st ress

i + f ex ternal
i ) (4.15)

We calculate density and pressure in the same manner as the Newtonian imple-
mentation (Equations 4.7, 4.8). In Equation 4.9 find the gradient of the velocity
vector. This gives us the the 3x3 strain tensor, then we calculate the strain rate
tensor and finally the strain rate (see Subsection 3.1.4). We then use the strain
rate and rheological model to find the stress tensor τi . Then we use the XSPH
method in Equation 4.11 to average the velocity for particles within the smooth-
ing radius. The velocity calculated here is used in the time integration step later
on. In Equation 4.12 the particle pressure is calculated. We use the pressure same
pressure gradient calculation in [6]. The divergence of the stress tensor is found in
Equation 4.10, this is the f st ress

i force. After this the external forces are calculated
in Equation 4.14 and finally the acceleration is found in Equation 4.15.

4.2.6 Calculating stress tensor

When we are using the Bingham model and the Herschel-Bulkey model it is nec-
essary to determine if the stress is less than the yield threshold τyield . M. Hosseini
et al. [7] suggests that the stress magnitude for a given particle i can be found
by Equation 4.16 where α is a scaling constant and µ is the viscosity and |D| is
the magnitude of the strain-rate tensor. α is set to a high number to simulate a
"solid" with high viscosity. In our implementation we replace αµ with a "solid"
viscosity µs with a high value that can be configured (example µs = 500). We use
the formulas presented in [7].

|τi|= 2αµ|Di | (4.16)

Bingham model

In the Bingham model we use the following Equation 4.17 to find the stress tensor
τi . In the if the first condition is true the particle is below the yield stress value and
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then get a high viscosity. If the particle exceeds the threshold value the Newtonian
viscosity constant µ is used.

τi =

¨

2µsDi , if: 2µs|Di | ≤ τyield

(
τyield

|D| + 2µ)D, otherwise
(4.17)

Herschel-Bulkey model

The Herschel-Bulkey model has the same solid behaviour as the Bingham model,
but when the yield threshold is passed the fluid then acts as a shear thinning or
thickening fluid in the same manner as the power-law model. The formula for the
stress tensor for the Herschel-Bulkey is shown in Equation 4.18. When the variable
N < 1 the fluid acts as a shear thinning fluid, when N > 1 the fluid behaves in a
shear thickening manner.

τi =

¨

2µsDi , if: 2µs|Di | ≤ τyield

(
τyield

|D| + 2µ|D|N−1)D, otherwise
(4.18)

Power-law model

The power-law model enables us to simulate a dilatant (shear tickening) and shear
thinning fluid. We use the formula in Equation 4.19 to find the stress tensor for
this model. When the variable N < 1 the fluid acts as a shear thinning fluid, when
N > 1 the fluid behaves in a shear thickening manner.

τi = 2µ|Di |N−N Di (4.19)

Newtonian fluid

For a Newtonian fluid we use the formula in Equation 4.20 to find the stress tensor.

τi = 2µD (4.20)

4.2.7 Time integration

In the previous Subsections (4.2.4 and 4.2.5) we described how the acceleration
of a particle is determined. In order to advance the simulation we need to calculate
the new positions and velocities of the particles based on the acceleration.

Leapfrog integration

In this work we are using the leapfrog time integration scheme. With this method
we update position at every full step and velocity at every half as shown in Figure
4.4. The leapfrog method can be written in the following way[31] in Equation
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4.21:

ai = accelerat ioni

vi+1/2 = vi−1/2 + ai∆t

x i+1 = x i + vi+1/2∆t (4.21)

For our SPH implementation we also need to know the velocity at every full step.
We approximate the velocity vi+1 as shown in Equation 4.22

vi+1 ≈
vi−1/2 + vi+1/2

2
(4.22)

Note that in our non-Newtonian model we use the XSPH corrected velocty when
calculating vi + 1/2 shown in Equation 4.23.

vi+1/2 = vxsph + ai∆t (4.23)

Figure 4.4: Leapfrog time integration. Velocity calculated at every half step and
position is updated at every full step

Time step

We have implemented a static time step ∆ that is that is configurable by the user.
The simulation stability with a given time step can vary greatly depending on
the initial simulation parameters and particle configuration. During testing we
saw that the parameters that caused most instability at a fixed time step were:
high viscosity coefficient µ, high particle velocity and higher gas constant c in the
equation of state. A formula to set a time step based on max velocity and viscosity
is described in [7].

4.2.8 Enforcing boundaries

To make sure particles stay inside the simulation domain we need to enforce
boundaries. We do this by repelling particles that are about to pass the bound-
aries. Our boundary force implementation is based on T. Amada’s [32] Equation
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4.24:

f boundar y = Ks · d · n + Kd · (v · n) · n if: Particle past boundary

f boundar y = 0 if: Particle inside boundary (4.24)

This implementation creates a mirror like particle reflection. Ks is the spring con-
stant that scales the normal force exerted on the particle. The spring constant is
multiplied with d which is how far the particle is past the boundary and n is the
surface normal. Kd is the dampening constant and v is the velocity vector of the
particle. The parameters Ks and Kd needs to be adjusted to achieve the desired
boundary behaviour. It should be noted that d scales the first term in the equation
with the distance the particle is past the boundary.

Boundary friction

We also found it useful to implement boundary friction as described in [1]. This
reduces the velocity of particles by adding a opposing force based on the velocity of
the particle and velocity direction compared to the surface normal of the boundary.
There is also a threshold d that determine if the particle is close enough to the
surface to be affected by this force. Friction force is shown in Equation 4.25

f f r ic t ion = −K f r ic t ion(v − v(v · n)) if: d <= threshold f r ic t ion

f f r ic t ion = 0 if: d > threshold f r ic t ion (4.25)

4.3 Simulation scaling

The snow simulator uses a coordinate system for rendering the environment. The
minimum and maximum coordinates are the same at all times. In order to run
simulations with custom sizes we want to use our own coordinate system and
transform the coordinates of the particles to the rendering coordinate system. Our
simulation scaling system has two parts. The first part selects a volume (cube) as
a fraction of the rendering coordinate system. An example of this in 2D is shown
in Figure 4.5 where we select a fraction from 30% to 70%. This is useful when we
want to run our simulation in a more interesting region like a mountain.
When the simulation domain has been selected we can specify the physical size of
the simulation domain in meters. This gives us a opportunity to run simulations
at different resolutions in the rendering domain. The simulation domain in Figure
4.5 could be set to different sizes such as 100 meters x 100 meters or 1000 meters
x 1000 meters. The physical size can be used to reduce or increase the resolution
of the simulation and possibly simulate a region as the same physical size as it is
in real life.
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Figure 4.5: Simulation domain as a fraction of rendering domain in 2D.

4.3.1 Smoothing radius and simulation scaling

Since we run the simulation with meters as unit of measure there have been some
challenges with the kernel functions. Often we want the smoothing radius h to be
less than 1 meter, but this causes the kernel function to give unreasonable high
numbers. We can see that h is below the fraction line to the power of 9 in the
Wpol y6 kernel for example in Equation 4.3.1.

Wpol y6(r, h) =
315

64πh9

¨

(h2 − r2)3, if 0≤ r ≤ h

0, otherwise

To avoid h being lower than 1 in the simulation we set a custom smoothing ra-
dius that is used when calculating the kernel function value as shown in the Code
listing 4.4. The custom smoothing radius is used as the h argument to the kernel
function and the distance between particles r is multiplied with scaleDistance
to scale the distance to the custom smoothing radius. The drawback of using this
method is that it requires an extra multiplication at each smoothing function cal-
culation.
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Code listing 4.4: Custom smoothing radius and distance scaling

// Actual smoothing radius in meters
float smoothingRadius = 0.2;

// Smoothing radius used in kernel function
float customSmoothingRadius = 2;

// Scale distance to new smoothing radius
float scaleDistance = (1 / smoothingRadius) * customSmoothingRadius;

4.4 Modeling terrain

The snow simulator creates its terrain and mountains from a height map. A height
map describes the height of the terrain at different points and is usually stored as
a gray scale image (0 = black, max = white) where 0 is the lowest point. We use
the same height map as the simulator to model the terrain at different positions
on the XZ-plane (ground plane). The terrain heights used to create boundaries
(collision with terrain) in the y-dimension and to construct surface normal’s. The
surface normal’s are used to make collisions with the terrain smoother (see bound-
ary forces section).

Since we know the height of the terrain at any point in the XZ-plane we just
need to find the surface normal’s. We start by dividing the XZ-plane of the simu-
lation domain into a grid of tiles. The size of each tile in X and Z direction can be
configured. We proceed by finding a average height for each tile (average height
from corners of the tile) this will be the height we use for collision testing. We
then create the surface normal’s by finding the numerical derivative of the height
in X and Z direction. Assuming that we are at the position x i and zi and that we
have a function that returns a height at a X,Z coordinate H(x , z). We then create
the following vector in Equation 4.26 in each tile, where we determine the height
derivative when moving in x and z direction separately:

vec = [
H(x i +∆, zi)−H(x i, zi)

2 ∗∆
,−1,

H(x i, zi +∆)−H(x i, zi)
2 ∗∆

] (4.26)

The ∆ is the step size, in other words how far we move in x and z direction
before checking the height. We need to make sure that the ∆ reaches far enough
that it reaches the next height in the height map. After vec has been calculated
we normalize the vector and make sure the normal found points upwards. The
normal vectors and heights are then stored in an array and transferred to the GPU
memory.

In Figures 4.6 and 4.7 we can see how the simulated particles behaves at different
tile sizes. We can see that with larger tiles the particles creates a visible pattern
around the edges of the tiles compared to the smooth distribution in the small tile
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Figure 4.6: Particles on the ground
(slight slope) with a small tile size.

Figure 4.7: Particles on the ground
(slight slope) with a larger tile size.

Figure 4.8: Particles sliding down a
hill with a small tile size.

Figure 4.9: Particles sliding down a
hill with a larger tile size.
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size example. In Figures 4.8 and 4.9 we observe that a larger tile size creates a
stairwell pattern when particles slide down the hill. This is even more noticeable
in steep hills. The drawback of using smaller tiles is the increased memory usage
and possibly more un-coalesced memory access. This will be discussed in the next
chapter.

4.5 Implementing SPH in the snow simulator

A main focus of this project is to integrate the SPH solver into the snow simulator
and make it accessible to the users of the HPC-Lab snow simulator. When the
project started the source code for the snow simulator was outdated and hard to
work with. I would like to acknowledge Roger R. Holten for his work on the snow
simulator in his fall project, making it easier for us to integrate our solver into the
program and setting up a user interface framework for us to use.

4.5.1 Program structure

The snow simulator has a component structure, where each addition to the pro-
gram has separate files and classes. This is done so that different students can
write code that is encapsulated from the other parts of the program at the same
time. There is one exception to this, that is the terrain module that loads and
imports a height map and makes it accessible to other components. Every compo-
nent should expose some general functions to the program that can be invoked
from the main program such as a initialization, physics, restart, delete and ren-
dering. The snow simulator uses two compilers as well, it uses gcc at the top level
and nvcc (Nvidia compiler) for CUDA code. The snow simulator uses OpenGL for
rendering. We have built our program with one top level component that is called
from the snow simulator. This component has a child component that is the CUDA
part of the program that handles the physics, parameters and device memory. A
illustration of the structure is shown in Figure 4.10.

Source code access

To request access to the full source code for the snow simulator Dr. Anne C. Elster
can be contacted. The scource code is available on a private GitHub repository.

4.5.2 Simulation parameters

The simulator has quite a lot of parameters that can be set by the end user. The
parameters we have included in the simulation is shown in Table 4.3
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Table 4.3: Parameters that we use in the SPH implementation. Some less relevant
can be seen in the source code and GUI.

Parameter Unit Variable(s) in program Note
Simulation volume m xDim, yDim, zDim Simulation size in

x, y, z directions
Particle count None particleCount Number of parti-

cles
Smoothing radius m smoothingRadius

Particle mass kg particleMass Particle weight

Rest density kg
m3 restDensity Intended fluid

density
Gas constant None gasConstant Scales pressure to

restore rest den-
sity

Viscosity N ·s
m2 viscosity Viscosity constant

Solid Viscosity N ·s
m2 solidViscosity Viscosity value to

simulate a "solid"
Yield stress Pa yieldStress Stress threshold

for "solid", scalar.
Power-law constant None powerLawConstant Controls shear

thinning/thicken-
ing

Timestep s timeStep Timestep for each
iteration.

Gravity acceleration m
s2 gravityAcceleration

Maximum velocity m
s maxVelocity Maximum particle

speed
Maximum acceleration m

s2 maxAcceleration Maximum particle
acceleration

XSPH constant None XSPHConst For averaging ve-
locity around par-
ticle

Boundary friction None boundaryFriction Friction con-
stant on ground
boundary

Boundary friction height m boundaryFrictionHeight How far above ter-
rain friction affects
particles
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Figure 4.10: Diagram that shows how the SPH component is integrated in the
HPC-lab snow simulator. Source code is included in the appendices.

4.6 User interface

The user interface in the HPC-lab snow simulatior is called ImGui O. Cornut [8].
This is a GUI framework for C++ applications. The framework handles rendering
and has a lot of controls such as sliders, check boxes and buttons. Using ImGui we
created a user interface for the SPH component of the snow simulator as shown
in Figures 4.11 and 4.12. We have also added different scenarios in the presets
selection that the user can choose from. These presets include parameters and
initial particle positions. The user can then edit settings while the simulation is
running or restart the simulation with different initial settings. The user can also
benchmark the application. The benchmark system is the same as we used for
testing in Chapter 5.
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Figure 4.11: Image of the SPH user interface. Main view of physics settings.
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Figure 4.12: Image of the SPH user interface – Boundary settings.





Chapter 5

Profiling and optimizing Our
SPH Implementation

In this chapter we will examine our results and describe optimizations we have
added to make the simulation run faster. In Section 5.1 we will list the specifica-
tions of the hardware and software used. In the following Section 5.2 we will show
the tools and methods we use for optimization and then explain the optimization
strategy. In the next Section 5.3 we will identity bottlenecks in the program and
try to apply changes based on this to improve performance.

5.1 Test systems

For our testing setup we are using two identical systems with the same processor
and memory configuration as shown in Table 5.1. Using the same system config-
uration allows us to compare the GPU performance on an even ground.

Table 5.1: Specifications of the benchmark computers.

CPU Base
clock

Cores Memory
capacity

Memory
speed

Storage

AMD Ryzen 7 5800X 3.6GHz 8 32GB 3200MHz 500GB m.2

The GPU’s we use is shown in Table 5.2, at the time of writing the Nvidia RTX
3090 is the most powerful consumer GPU available from Nvidia. The Nvidia RTX
2080 TI was the most powerful consumer GPU from Nvidia in the previous gen-
eration (not accounting for the RTX titan).

In Table 5.2 we see that the RTX 3090 GPU has more than double the amount
of CUDA cores compared to the RTX 2080 TI. Nvidia uses the term CUDA cores to
describe how many 32bit floating point (FP32) units that are capable of executing
FP32 instructions[14]. In the previous architecture called Turing (RTX 2080 TI)
each streaming multiprocessor (SM) had 64 FP32 compute execution units and

49
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Table 5.2: GPU’s used for benchmarking.

GPU CUDA
core
count

Base clock Memory
capacity

Memory
Band-
width

FP32
performance

Nvidia RTX
2080 TI

4352 1350MHz 12GB 616GB/s 13.45
TFLOPS

Nvidia RTX
3090

10496 1395MHz 24GB 936GB/s 35.58
TFLOPS

OS Nvidia
driver
ver-
sion

CUDA Version Memory
capacity

Memory
Band-
width

FP32
performance

Nvidia RTX
2080 TI

4352 1350MHz 12GB 616GB/s 13.45
TFLOPS

Nvidia RTX
3090

10496 1395MHz 24GB 936GB/s 35.58
TFLOPS

64 INT32 (32 bit integer) units that could execute simultaneously. In the Ampere
architecture the INT32 execution units where changed making them capable of ei-
ther performing FP32 or INT32 operations. The difference in SM design in shown
in Figures 5.1 and 5.2. The changes to the SM gives the RTX 3090 much higher
theoretical FP32 performance compared to 2080 TI.

5.2 Tools used and optimization strategy

When doing fluid simulations we want the simulation to run as fast as possible.
We want to enable the users of the snow simulator to be able to do large scale
simulations with high particle counts at a reasonable frame rate. With our op-
timization efforts we don’t want to sacrifice usability of the software since the
simulation package will be a component in the NTNU HPC-lab snow simulator.
For example we want the users to be able to change parameters through the user
interface without having to change the source code/recompile the program.

5.2.1 Analyzing kernel performance using timers

In the first phase of optimization we want to identify where the program spends
most of the time. For the Newtonian implementation we have three different ker-
nels that are called from the host code (not accounting for Counting sort algo-
rithm). In the non-Newtonian implementation we have four kernels that are called
from the host code. We utilize CUDA Events to estimate time spent executing each
kernel. An example of a CUDA event based timer is shown below in Code listing
5.1. The CUDA event timer has a accuracy of one half microsecond.
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Figure 5.1: Turing architecture SM design. Used with permission from Nvidia.

Figure 5.2: Ampere architecture SM design. Used with permission from Nvidia.
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Code listing 5.1: Timing a kernel using CUDA events

cudaEvent_t startTime, stopTime; // Initialize structs that CUDA event uses
float timeUsed = 0.0f;

// Create CUDA event for both variables
cudaEventCreate(&startTime);
cudaEventCreate(&stopTime);

cudaEventRecord(startTime); // Start timer
ExampleKernel<<<blockCount,threadsPerBlock>>>(); // Run kernel
cudaEventRecord(stopTime); // Stop timer

// Stop CPU here until "cudaEventRecord(stopTime)" is finished
cudaEventSynchronize(stopTime);
// Store time in milliseconds in variable timeUsed
cudaEventElapsedTime(&timeUsed, startTime, stopTime);

Using CUDA timers as shown in Code listing 5.1 we have created a benchmark
that allows us to run multiple iterations of the simulation in succession. We dis-
able rendering while the benchmark is running. The benchmark collects the kernel
execution time for all kernels and the total run time for each iteration. When the
benchmark is finished it calculates the average run time of each kernel. In this
way we can identify where the program is spending the most time and compare
the total run time between multiple systems. The result from the benchmarking
tool is shown in Figure 5.3

Figure 5.3: Output from the benchmarking tool with 100 iterations on the New-
tonian model. All time values are given in milliseconds.

5.2.2 Nvidia Nsight Compute

In Subsection 5.2.1 we described the way we time our CUDA kernels. When we
have identified kernels we want to optimize we use a tool called Nvidia Nsight
Compute[33]. This tool allows us to profile specific CUDA kernels and examine
the run of the kernels in detail. During profiling the tool may run the same kernel
several times to collect all the metrics it needs. After a kernel have been profiled
with the tool we get a visual report with different sections and hints for potential
improvements we can make to the kernel code in order to get more performance.
The report generated from Nsight Compute is divided into several sections that
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we are interested in:

GPU speed of light

This section of the report (Figure 5.4) shows how our kernel performance is rel-
ative to the theoretical maximum performance of the GPU. It includes several
metrics that illustrate this including SM performance, memory performance and
cache. Ideally we want our SM performance (computation) to be as high as pos-
sible. This section provides a very high level overview of the kernel performance,
but it can give a indication of what could be improved. An example of this is a high
memory utilization and a low SM performance, that could indicate that the com-
pute pipeline is stalling while waiting for memory transfers. It should be noted
that a knowledge of the kernel code is important before making judgement based
on this data. For example a kernel could be doing a limited amount of compute
and many memory transfers and/or copies that would not require a high compute
performance.

Figure 5.4: Speed of light section of the Nvidia Nsight Compute report.

Memory Workload Analysis

This section of the report shows the memory utilization of the kernel including the
L1, L2 caches and device memory. We can see in detail the how often the L1 and
L2 cache is hit (hit rate) and how often the global memory is accessed. We also see
how much data that was transferred between the memory layers. Global memory
reads are orders of magnitude slower than cache reads so ideally we want the
global memory reads to be used as little as possible and avoid unnecessary writes
to the global memory. A screenshot of this section is provided in Figure 5.5.

Scheduler Statistics and Warp State Statistics

In the Pascal and Ampere architecture Figures 5.1 and 5.2 each streaming mul-
tiprocessor (SM) consists of four processing blocks. Each of these blocks has its
own warp scheduler (warp is a group of 32 threads), this scheduler can keep a
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Figure 5.5: Memory Workload Analysis section of the Nvidia Nsight Compute
report.

few warps on hold and issue an instruction for the one of these warps at every
clock cycle. However if none of the warps that the warp scheduler has on hold
is ready no instruction is executed in that processing block at that time (wasted
compute cycle for that processing block). A warp is ready for a instruction when
the data necessary for that instruction has been fetched from memory/cache. The
scheduler statistics Figure 5.6 show how often the scheduler is able to issue an
instruction (total instructions issued / total clock cycles) and how many warps on
average that are ready to to execute an instruction (eligible warp). If the sched-
uler has a low ratio of (issued instructions / clock cycles) it could indicate memory
bottleneck for example.

Figure 5.6: Scheduler Statistics section of the Nvidia Nsight Compute report.

The Warp State Statistics section show what state the warps are in most of the
times. The state of a warp indicates if the warp is ready to execute an instruction.
Warps have two states: A unused state (the slot for the warp in the warp sched-
uler is not filled), and a active state which has three different sub states: Stalled
state (not ready to execute), eligible state (ready for instruction execution) and
a selected state (the warp scheduler issue an instruction for this warp in the next
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cycle). The most useful feature of this section is to find out why warps are in the
stall states (not ready to run a instruction). There are several sub-states of a stall
state. The simplified section of the Warp State Statistics is shown in Figure 5.7.

Figure 5.7: Warp State Statistics section of the Nvidia Nsight Compute report.

5.3 Identify bottlenecks and optimization

In this section we will look for potential optimizations for our program. The first
step is to identify where the potential for improvement to the total run time lies.

5.3.1 Benchmarking the base application

We run our benchmark on both of our test systems with the GPU’s in Table 5.2
to gather the base performance of the un-optimized version of the program. We
use a configuration with 1 million particles over 500 iterations to find the average
runtime of each kernel. We test both the Newtonian and non-Newtonian imple-
mentations.

Table 5.3: Average time spent on kernels in the Newtonian implementation. And
3090 average time relative to 2080 TI.

Kernel name 3090 avg.
kernel time

2080TI avg.
kernel time

InsertParticlesCUDA 0.100ms 0.130ms
PrefixSumsCUDA 0.161ms 0.272ms

CountingSortFullCUDA 0.263ms 0.394ms
IterateParticlesDensity 15.425ms 21.474ms

IterateParticleForcesNewtonian 15.859ms 21.585ms
IntegrateTime 0.120ms 0.191ms

In the Newtonian implementation in Table 5.3 we can see that the program spends
most time on the kernels "IterateParticlesDensity" and "IterateParticleForcesNew-
tonian". As expected we can see that the 3090 performs better. The 3090 fin-
ished the benchmark in 15.80 seconds and the 2080 TI was finished after 27.484
seconds. We continue on in Table 5.4 inspecting the kernel performance of the
non-Newtonian implementation: The non-Newtonian implementation was bench-
marked in Table 5.4. The 3090 finished its 500 iterations in 27.48 seconds while
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Table 5.4: Average time spent on kernels in the non-Newtonian implementation.
And 3090 average time relative to 2080 TI.

Kernel name 3090 avg.
kernel time

2080TI avg.
kernel time

InsertParticlesCUDA 0.0997ms 0.129ms
PrefixSumsCUDA 0.163ms 0.272ms

CountingSortFullCUDA 0.263ms 0.393ms
IterateParticlesDensity 15.099ms 20.699ms
CalculateStressTensor 21.917ms 29.774ms

IterateParticleForcesNonNewtonian 17.290ms 22.653ms
IntegrateTime 0.133ms 0.224ms

the 2080 TI finished in 37.84 seconds. We observe that the kernels "IteratePar-
ticlesDensity", "CalculateStressTensor", "IterateParticleForcesNonNewtonian" and
"IterateParticleForcesNewtonian", and this is where we should focus on making
improvements.

5.3.2 Simplifying sum formulas

We have now identified the kernels that are most time consuming. These kernels
share the same processing structure. The kernels start by finding its grid cell and
then iterate over particles in its cell and neighbouring cells. While iterating over
the particles in a given cell they add the the contribution from these particles to
its sum (for the calculated force/density/XSPH/velocity tensor). An example of
this is the "IterateParticleForcesNewtonian" shown in Code listing 5.2:
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Code listing 5.2: Pseudocode for the Newtonian forces calculation. Note this is
simplified "code" is run in parallel for each particle

void IterateParticleForcesNewtonian {
// Each thread gets its own index
// (each thread is responsible for different particle)
uint i = particleIndex;

// Get gridcell for particle
uint currentGridCell = getCurrentGridCell( i );

//Get particle properties for current particle
vec3 pos_i = GetPos(ix);
vec3 vel_i = GetVelocity(i);
float pressure_i = GetPressure(i);

// Pressure and viscous forces sums
vec3 pressureSum = [0,0,0];
vec3 viscousSum = [0,0,0];

// For each neighbouring cell (usually 27 including own cell)
Foreach(cell = GetNeighbouringCell(i)) {

Foreach(j = ParticleInCell(cell)) {
vec3 pos_j = getPos(j);
vec_i_j = pos_i - pos_j;
float dist = distance(pos_i, pos_j);
// If particle i and j is close enough to influence
// Note squared smoothingRadius and dot product is actually used here
if(dist <= smoothingRadius && i != j) {

mass_j = GetMass(j);
pressure_j = GetPressure(j);
density_j = GetDensity(j);
vel_j = GetVel(j);
// Add pressure contribution
pressureSum += mass_j*(pressure_i + pressure_j) / (2 * density_j) *
W_Spiky_grad(dist, vec_i_j, smoothingRadius);
// Add viscous contribution
viscousSum += mass_j*(vel_j - vel_i) / (density_j) *
W_Viscosity_lap(dist, smoothingRadius);

}
}

}
particleForces(i) = (-pressureSum + viscousSum * viscosityConst) / getDensity(i);
}

We see that for there is a possibility to move the mass term outside the loop as-
suming the mass is constant for all particles. This was not done before since we
were originally planning to have particle based borders in the simulation, that
would most likely require the mass to be different for border particles. However
in the current implementation the mass is the same for all particles. In practice
to do this optimization we just move mass j in in Code listing 5.2 and multiply it
to the sum after we have collected the contributions. For all kernel functions we
move constants that are separate from variables in the summation and multiply
them with the sum instead.

In Code listing 5.2 we use two smoothing functions called "W_Viscosity_lap" and
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"W_Spiky_grad" inside the "for each particle in cell". We use three smoothing func-
tions in total in our simulation. The pseudocode for these can be seen in Code list-
ing 5.3. These functions are called often and contain many multiplications, how-
ever since the smoothing radius is constant during a iteration we could calculate
the constant part of the smoothing function in advance. When doing this we can
extract this part from the loop in the same way as the mass and instead multiply
the constant part with the sum after the summation is done. We can also compute
the the smoothing radius to the power of two h2 in advance of the "W_poly6" cal-
culation. We also remove the if condition since we check the distance between the
particles before calling the methods.

Code listing 5.3: Pseudocode for the unoptimized smoothing functions used.

/*
Function parameters:
float r = The distance between particle i and j
float h = The smoothing radius
vec3 r_i_j = pos_j - pos_i (position vectors)
*/
float W_Poly6(float r, float h) {

if(r <= h) {
// Constant part independent on r: (315 / (64 * PI * pow(h, 9)))

float res = (315 / (64 * PI * pow(h, 9))) * pow(pow(h, 2) - pow(r, 2), 3);
return res;

} else {
return 0;

}
}

vec3 W_Spiky_grad(float r, vec3 r_i_j, float h) {
if(r <= h) {

// Constant part independent on r: ((-45.0f) / (PI * pow(h, 6)))
float res = ((-45.0f) / (PI * pow(h, 6))) * pow(h - r, 2);
return res * r_i_j / length(r_i_j);

} else {
return [0,0,0]

}
}

float W_Viscosity_lap(float r, float h) {
if(r <= h) {

// Constant part independent on r: (45 / (PI * pow(h, 6)))
return (45 / (PI * pow(h, 6))) * (h - r);

} else {
return 0;

}
}

Results

After applying the optimizations we benchmarked the program again and the re-
sults are in Tables 5.5 and 5.6. In the Newtonian implementation the 3090 was
2.11 times faster than previously, and 2080 TI was 2.05 times faster. In the non-
Newtonian implementation the 3090 performance was improved by 1.81 times
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and the 2080 TI had an performance gain of 1.79.

Table 5.5: Average time spent on kernels in the Newtonian implementation after
optimizing the smoothing functions and kernels. Also shows performance gain
compared to reference benchmark.

Kernel name 3090 avg.
kernel time

2080TI avg.
kernel time

3090
gain

2080TI
gain

IterateParticlesDensity 5.557ms 7.960ms 2.77 2.69
IterateParticleForces-

Newtonian
8.942ms 12.460ms 1.77 1.73

Table 5.6: Average time spent on kernels in the non-Newtonian implementation
after optimizing the smoothing functions and kernels. Also shows performance
gain compared to reference benchmark.

Kernel name 3090 avg.
kernel time

2080TI avg.
kernel time

3090
gain

2080TI
gain

IterateParticlesDensity 5.876ms 8.275ms 2.57 2.50
CalculateStressTensor 11.826ms 16.423ms 1.85 1.81
IterateParticleForces-

NonNewtonian
12.017ms 15.742ms 1.44 1.43

We can see that the biggest performance gain was in the "IterateParticlesDen-
sity" kernel, this is as expected since this is the simplest kernel. The kernel "It-
erateParticleForcesNonNewtonain" had the smallest performance gain. This ker-
nel calculates the stress and pressure forces. The stress force calculation is has a
significantly higher data number operations compared to the other summations.
However using the Nsight Compute profiler we see that the GPU spends most
of its time at the step where it fetches its neightbour position to determine the
distance between particles and the vector between particles (for pressure force
calculation). The Nsight Compute profiler records samples during execution to
determine the progress of warps in the kernel. When a sample is collected the
warp state is also recorded and color coded as shown in Figure 5.10. Slight brown
color indicates the warp state "Long scoreboard" which means that the warp is
waiting for a global memory read. We see that this is where our kernels spends
the majority of the time (those listed in Tables 5.5 and 5.6) on global memory
reads. After we implemented the change we ran Nvidia Nshight Compute to pro-
file one kernel before after the change Figures 5.8 and 5.9 to compare the results.
The optimized kernel statistics is shown in blue and the old kernel is shown in
green.
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Figure 5.8: Speed of light section the IterateParticleForcesNonNewtonian kernel
showing GPU utilization. Here one sees one gets a more even memory/compute
ultilization ratio, indicating a smaller compute bottleneck.

Figure 5.9: Instruction statistics for the IterateParticleForcesNonNewtonian ker-
nel. Here one can see that the changes drastically reduced the overall instruction
count.

5.3.3 Utilizing constant memory

Constant memory is a section of the global memory that has a cache in each SM
(among four compute blocks). The constant memory is read only when accessed in
device functions and can be set in host code. The memory features a broadcasting
ability when threads in a warp access the same data location and has the same read
time as a register (1 clock cycle) when the memory is hit. However when threads
in a warp access a different location in shared memory the access is serialized.
An example of this is if 32 threads in a warp access a different location effective
read speed would be 1/32 compared to a read on the same location. This makes
the shared memory ideal for memory addressed that are accessed simultaneously
by threads. There is limited information about how the cache is implemented in
the SM. But some information is available in the CUDA programming guide [15].
The constant memory has a size of 64KB and each SM has a 8KB cache reserved
for constant memory. The constant data we have is our fluid parameters that are
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Figure 5.10: Output from Nvidia Insight showing source code on the left and
number of samples at the right. The samples also records the warp state.

contained in a struct. We copied the struct to the constant varable defined in the
source file as shown in Code listing 5.4:

Code listing 5.4: Copying the fluid parameters struct to a constant variable.

// Constant memory varible that we write to
__device__ __constant__ SPHParameters params;

// Kernel access example (viscosityConstant in this case): params.viscosityConstant

// Function invoked from host code before kernel run
void WriteParametersToConstant(SPHParameters* sphParameters) {

CUDA_SAFE_CALL(cudaMemcpyToSymbol(params,sphParameters,
sizeof(SPHParameters),0,cudaMemcpyHostToDevice));

// The SPHParameters struct has a size of 1100 bytes (1.07KB)
}

The use of constant memory did not affect the performance noticeably. Over sev-
eral benchmark runs we don’t see any performance gain or degradation.

5.3.4 Changing position datatype

When we were making the initial implementation we wanted to use an extra com-
ponent in the position vector to store a color to represent the intensity of values for
that particle. A particle position was represented as a vector with 4 components
[x , y, z, intensi t y]. The "intensity" value was supposed to be used by the fragment
shader to color the individual particle based on the value. However we that our
kernels spend a lot of time fetching the position of nearby particles. When a warp
accesses memory its done in blocks of sizes 32, 64, or 128 bytes called a mem-
ory transaction Harris. M [34]. A position vector consists of four float numbers
(32bit float) that adds up to 16 bytes for each particle. If 32 threads (warp) need
to access different positions, the warp would need to fetch 16 ∗ 32 = 512bytes
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from memory, resulting in 512/128 = transactions. If we instead used a 3 com-
ponent vector for positions (without intensity) the warps would need to fetch
12 ∗ 32= 384bytes, giving 384/128= 3transactions. It is however likely that the
threads in the warp are accessing similar locations when iterating over particles in
cells since the threads/particles are sorted by grid cell. But nevertheless it does not
hurt to reduce the memory footprint. The results from the benchmark is shown in
Tables 5.7 and 5.8.

Table 5.7: Average time spent on kernels in the Newtonian implementation with
constant memory use and change to position data. Also shows performance gain
compared to previous optimization.

Kernel name 3090 avg.
kernel time

2080TI avg.
kernel time

3090
gain

2080TI
gain

IterateParticlesDensity 5.412ms 7.475ms 1.03 1.06
IterateParticleForces-

Newtonian
8.592ms 11.763ms 1.04 1.06

Table 5.8: Average time spent on kernels in the non-Newtonian implementation
with constant memory use and change to position data. Also shows performance
gain compared to previous optimization.

Kernel name 3090 avg.
kernel time

2080TI avg.
kernel time

3090
gain

2080TI
gain

IterateParticlesDensity 5.730ms 8.275ms 1.02 1.05
CalculateStressTensor 11.826ms 15.675ms 1.02 1.04
IterateParticleForces-

NonNewtonian
12.017ms 15.062ms 1.04 1.05

5.3.5 Changing L1 data cache size

In the Turing and Ampere architecture there is support for changing the L1 data
cache size[13]. The L1 cache is shared between the processing blocks inside the
SM as shown in Figures 5.1 and 5.2. The cache is divided into two parts: L1 data
cache and shared memory. The L1 cache is used by the processing blocks inside
the SM as a cache for read/writes and texture memory while the shared memory
section can be used inside thread-blocks for threads to exchange data. We are not
using the latter part in our implementation so we want to dedicate the biggest por-
tion to L1 data cache. The ratio between shared memory and L1 data cache can be
set for each kernel. The procedure for setting the ratio is shown in Code listing 5.5:
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Code listing 5.5: Changing the L1 data cache size with cudaFuncSetAttribute for
a kernel.

/* Parameters:
- Kernel name
- Attribute name (allways the same)
- Carve-out preference:
cudaSharedmemCarveoutMaxL1
cudaSharedmemCarveoutDefault
cudaSharedmemCarveoutMaxShared

*/
cudaFuncSetAttribute(IterateParticlesDensity,

cudaFuncAttributePreferredSharedMemoryCarveout,
cudaSharedmemCarveoutMaxL1);

We did not see any performance impact from changing the L1 data cache size. It
is possible that CUDA automatically forces the "cudaSharedmemCarveoutMaxL1"
policy, when the kernel is not using shared memory. However we cannot confirm
this.

5.3.6 Maximizing occupancy

In a Nvidia GPU each SM has a finite amount of registers, since compute capabil-
ity 5.0 each SM has 65536 registers shared between the processing blocks in the
SM [15]. The register usage of a given kernel is determined at compile time, the
compiler attempts to limit the register usage as much as possible while avoiding
performance loss. If the register count is too low (depending on amount of read-
s/writes/temporary storage within kernel) in a kernel then each thread can be
forced to store data in global memory causing a potentially massive performance
penalty. The register usage of a kernel is given by how many registers each thread
need. The register and shared memory usage for a kernel determines how many
thread blocks that can be assigned to each SM. Each SM has a maximum thread
limit and block limit in addition to this, for us the thread limit is most impor-
tant. The RTX 2080TI can have 1024 threads assigned to its SM at a given time
while the RTX 3090 can handle 1536 threads. Given that the warp size is 32 (32
threads), each processing block in the RTX 2080TI can handle (1024/32)/4 = 8
warps while the RTX 3090 can handle (1536/32)/4= 12 warps [15].

The measure of occupancy is the ratio of active warps to the maximum supported
warp count. The warp scheduler of each processing block can issue a instruction
at every clock for any of its warps. The warp scheduler plays a key role in hiding
latency. If a warp is waiting for a memory read for example the scheduler could
pick other warps that are assigned to the processing block to execute instructions
while waiting for stalled warps. However if the register usage of a kernel is too
high each SM could be assigned fewer than the maximum amount of supported
threads, resulting in the warp schedulers having fewer warps to choose from and
therefore potentially not being able to issue instructions as often. It should also be
noted that higher occupancy does not always increase performance. It depends on
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where the bottleneck is. If the warp scheduler with fewer warps is able to execute
instructions as often as if it had more warps the performance would be similar.
However a lower occupancy means that we are not utilizing the latency hiding
mechanism of the GPU that well.

Since we are using both the RTX 3090 and 2080TI with different architectures
we are instead telling the compiler how many threads per block we want to use
and let it determine how many registers to use for the kernels.

Code listing 5.6: Using launch_bounds to tell compiler intended block size. label

// Here we are using __launch_bounds__(512) to tell the block size we use (512)
__global__ __launch_bounds__(512) KernelExample() {

code...
}
// Number of blocks can also be specified: __launch_bounds__(512,<blocksPerSM>)

/* At compile time you can also specify a maximum register count with the flag:
(Affects all kernels)
--maxrregcount <number>
*/

5.4 CUDA OpenGL Interoperability

When we render the particles in the simulation we need to place the position array
and intensity values in OpenGL buffers in order for our shaders to process the data
for every frame. Normally this data would be copied from the device memory to
host memory and then to the OpenGL buffer (that resides in device memory). This
is a unnecessary operation since our data already is present in device memory.
When we allocate memory for our particles we allocate our particle position data
and intensity values as a OpenGL buffers instead of "cudaMalloc(..)". Code listing
5.7 shows how we create our OpenGL buffers and Code listing 5.8 shows how we
mapped the buffers to a device pointers.
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Code listing 5.7: Creating OpenGL buffers for particle positions and intensity
values

// Allocate opengl vbo
// Create particle buffer (particle positions):
glGenBuffers(1, &snowVBO);
glBindBuffer(GL_ARRAY_BUFFER, snowVBO);
glBufferData(GL_ARRAY_BUFFER, conf.particleCount * sizeof(float) * 3, NULL,

,→ GL_DYNAMIC_DRAW);

// Create intensity buffer for coloring particles
glGenBuffers(1, &colorVBO);
glBindBuffer(GL_ARRAY_BUFFER, colorVBO);
glBufferData(GL_ARRAY_BUFFER, conf.particleCount * sizeof(float), NULL,

,→ GL_DYNAMIC_DRAW);

// Create and bind vertex array
glGenVertexArrays(1, &snowVAO);
glBindVertexArray(snowVAO);

// Bind particle buffer to VAO
glBindBuffer(GL_ARRAY_BUFFER, snowVBO);
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(float) * 3, 0);
glEnableVertexAttribArray(0);

// Bind intensity buffer to VAO
glBindBuffer(GL_ARRAY_BUFFER, colorVBO);
glVertexAttribPointer(1, 1, GL_FLOAT, GL_FALSE, sizeof(float), 0);
glEnableVertexAttribArray(1);

glBindTexture(GL_TEXTURE_2D, 0);
glBindBuffer(GL_ARRAY_BUFFER, 0);

// Unbind VAO
glBindVertexArray(0);
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Code listing 5.8: Mapping and un-mapping a OpenGL buffer to a device pointer
for use in device code.

// Map OpenGL buffer to device pointer
void SPHSnowSystem::RegisterCUDAOpenGLResource(cudaGraphicsResource_t& resource,

,→ GLuint vboId,void*& opengl,size_t& size){
/*
First command: cudaGraphicsGLRegisterBuffer to bind the VBO ID from OpenGl

,→ buffer to a cudaGraphicsResource
*/
CUDA_SAFE_CALL(cudaGraphicsGLRegisterBuffer(&resource, vboId,

,→ cudaGraphicsRegisterFlagsNone));
/*
Second command: Maps the resource for use:
*/
CUDA_SAFE_CALL(cudaGraphicsMapResources(1,(cudaGraphicsResource_t*)&resource));
/*
Third command: Get pointer and size of the OpenGL buffer that resides in device

,→ memory
*/
CUDA_SAFE_CALL(cudaGraphicsResourceGetMappedPointer(&opengl, &size, resource));

};

void SPHSnowSystem::UnRegisterCUDAOpenGLResource(cudaGraphicsResource_t& resource){
// When we are finished using the resource we unmap it. (typically when

,→ destructor is called on our class)
CUDA_SAFE_CALL(cudaGraphicsUnmapResources(1, &this->cudaOpenGLResource1, 0));

};



Chapter 6

Benchmarks and Visual Results

In this chapter we present several of the benchmarks performed on our imple-
mentations as well as some of the visual results from the HPC-Lab snow simu-
lator integration. The following section includes some test scenarios to examine
the performance of the optimized version of the program and show the results.
Images of snow and water simulation using the non-Newtonian and Newtonian
implementation, respectively, follow in Section 6.6.

6.1 Benchmarks method and results

We decided to use two different benchmarks for our implementations. We want
to see mainly how our solution scales with a increasing number of particles. How-
ever as we have discussed in the previous chapter, Section 5.3 our main bottleneck
is the neighbour search so at different particle counts we want to ensure that the
particles have approximately the same number of neighbours. We also want to use
the same smoothing radius to ensure that our grid configuration is not changed
between the runs. With this in mind we have prepared two different benchmarks,
one that we call "the pool" which is a simple cube volume with particles and one
called "avalanche" that simulates a avalanche descending from a hillside.

In the pool benchmark particles have a high mass value to ensure that they al-
most achieve their rest state without density contributions from nearby particles.
This will ensure a stable neighbour count as particle count increases. Particles are
also placed with approximately a smoothing radius delta between them in all di-
mensions at the beginning. Figure 6.2 show an example of the pool benchmark.

The avalanche benchmark is a benchmark where we simulate a avalanche in a
smaller region. The simulation domain is 150x150x75 (x,z,y) meters, but we only
utilize some of the space (approximately a region of 30x50x35 meters). In this
benchmark we will be reducing the particle mass when we increase the particle
count while keeping the smoothing radius fixed. This will not be the total mass
will not be exactly the same but we will make sure the result at different particle

67
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counts remains as similar as possible. In this benchmark the number of neigh-
bours (for each particle) will increase as we add more particles and we expect a
bigger slowdown at higher particle counts. Figure 6.1 show the initial position of
the snow before the benchmark starts.

Figure 6.1: The initial snow distribution in the avalanche benchmark with 1 mil-
lion particles.

We will run the two benchmarks with 1000 iterations 5 times in succession then we
take the average. We will be using the Newtonian model and the non-Newtonian
model with Binghan fluid rheology since we find this most interesting for a snow
avalanche. Figure 6.3 shows the avalanche benchmark after 1000 iterations.

6.2 Benchmark test systems

We ran our benchmarks on the two test systems using the Nvidia RTX 3090 and
Nvidia RTX 2080 TI. The benchmark performance was measured in "Iterations per
second", meaning how many iterations were completed per second. We divide the
total time (in seconds) used, by the iteration count (1000) to find this number.
We disabled the rendering while benchmarks were run.
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Figure 6.2: Blue pool benchmark on a 150x150x75 (x,z,y) meter pool. Smoothing
radius 0.6 meter with 1 million particles.

6.3 The pool benchmark

We ran the pool benchmark for the following particle counts: "256000 (256k),
512000 (512k), 1024000 (1024k), 2048000 (2048k) and 4096000 (4096k)". In
Table 6.1 we show the memory usage of the benchmark at various particle counts.

Table 6.1: Pool benchmark GPU memory usage (approximately) at different par-
ticle counts with smoothing radius 0.6 meter. Non-Newtonian=NON, Newton-
ain=NEW

Particle
count

Particle
data
NEW

Particle
data
NON

Grid
data

Terrain
data

Sum
data
NEW

Sum
data
NON

256k 22MB 33MB 1MB 2MB 25MB 36MB
512k 46MB 69MB 2MB 2MB 50MB 73MB
1024k 92MB 138MB 4MB 2MB 98MB 144MB
2048k 186MB 279MB 8MB 2MB 196MB 289MB
4096k 374MB 561MB 16MB 2MB 392MB 579MB

The results of the benchmark is presented in Figure 6.4. At lower particle counts
we get over 500 iterations per second with the RTX 3090 GPU. As the particle
count increases the performance decreases rapidly on both test systems. The per-
formance numbers are also shown in Table 6.2. We see that the RTX 2080 TI
performs on average 72.1% of the RTX 3090 when the Newtonian model is used.
The performance difference is approximately the same with the non-Newtonian
model. In a real-time context the RTX 3090 and RTX 2080TI could provide accept-
able frame rates (around 30) with a particle count up to 2048k with the Newto-
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Figure 6.3: Avalanche benchmark with 1 million particles after 1000 iterations
with the non-Newtonian model using the Bingham model.

nian model. A particle count around 1024k with the non-Newtonian model could
also work.

6.4 The avalanche benchmark

We ran the avalanche benchmark for the following particle counts: "256000 (256k),
512000 (512k), 1024000 (1024k) and 2048000 (2048k)". During testing we found
out that at higher than 2048k particle counts the benchmark was unbearably slow
so we decided to leave that out. In Table 6.3 we show the memory usage of the
benchmark at various particle counts.

The result from the avalanche benchmark is presented in Figure 6.5. We see that
the performance degrades quicker when particle count is increased compared
to the pool benchmark. For comparing the RTX 3090 Newtonian performance
at 256k particles to 512k particles the performance at 512k particles is 0.30 of
the performance at 256k. Looking for acceptable real-time performance for this
benchmark the RTX 3090 can deliver acceptable interaions per second in between
512k and 1024k particles, and the RTX 2080 TI can deliver acceptable perfor-
mance around 512k for the Newtonian model. The exact performance numbers
can be seen in Table 6.4. The RTX 2080 TI had on average 70% of the RTX 3090
performance in the Newtonian model and 72% of RTX 3090 performance in the
non-Newtonian model.
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Table 6.2: Pool benchmark performance numbers. Same as Figure 6.4. Given in
iterations per second.

Particle
count

3090
NEW

2080TI
NEW

3090
NON

2080TI
NON

256k 646.37 455.51 351.17 258.86
512k 238.77 169.95 132.45 96.56
1024k 93.36 65.55 51.42 37.08
2048k 33.40 26.64 19.36 13.92
4096k 12.64 8.71 7.61 5.44

Figure 6.4: Pool benchmark results at various particle counts, measured in it-
erations per second. The same benchmark is run with the Newtonian and Non-
Newtonian model on our testing systems.

Table 6.3: Avalanche benchmark GPU memory usage (approximately) at different
particle counts with smoothing radius 0.2 meter. Non-Newtonian=NON, Newto-
nian=NEW

Particle
count

Particle
data
NEW

Particle
data
NON

Grid
data

Terrain
data

Sum
data
NEW

Sum
data
NON

256k 22MB 33MB 26MB 19MB 67MB 78MB
512k 46MB 69MB 27MB 19MB 92MB 115MB
1024k 92MB 138MB 29MB 19MB 140MB 186MB
2048k 186MB 279MB 33MB 19MB 238MB 331MB
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Table 6.4: Avalanche benchmark performance numbers. Same as Figure 6.5.
Given in iterations per second. Non-Newtonian=NON, Newtonain=NEW.

Particle
count

3090
NEW

2080TI
NEW

3090
NON

2080TI
NON

256k 213.52 157.38 108.55 80.50
512k 64.53 45.09 31.22 22.57
1024k 17.34 12.14 8.46 6.10
2048k 4.73 3.29 2.33 1.69

Figure 6.5: Avalanche benchmark results at various particle counts, measured
in iterations per second. The same benchmark is run with the Newtonian and
Non-Newtonian model on our testing systems.

6.5 Ideal performance vs. actual performance

In our results from the benchmarks we also want to look at how performance
scales when particle count is increased. When we double the problem size (exam-
ple from 256k to 512k particles) the ideal scenario would be that our performance
was halved. We set a reference performance at our lowest particle count (256k)
and for each doubling of problem size we divide our reference performance by
two, then we compare this number to the actual performance at that problem
size. For the pool benchmark the ideal vs. actual performance is shown in Table
6.5. The same data for the avalanche benchmark is shown in Table 6.6. From
the tables we can see that the performance falls off more quick in the avalanche
benchmark. This is expected since the particles are distributed in the same con-
strained area with a very low mass (low repulsive force between particles). This
keeps the neighbour particle count high resulting in many distance searches for
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nearby particles and contributions. Ideal performance vs. actual performance can
be shown in a graph Figures 6.6 and 6.7.

Table 6.5: Actual performance relative to ideal performance at different particle
counts for the pool benchmark. Closer to one is better. Non-Newtonian=NON,
Newtonain=NEW.

Particle
count

3090
NEW

2080TI
NEW

3090
NON

2080TI
NON

256k 1 1 1 1
512k 0.739 0.746 0.754 0.746
1024k 0.578 0.576 0.586 0.573
2048k 0.413 0.468 0.441 0.430
4096k 0.313 0.306 0.347 0.337

Figure 6.6: Ideal performance vs. actual performance in the pool benchmark
using Newtonian model with RTX 3090.
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Figure 6.7: Ideal performance vs. actual performance in the pool benchmark
using Newtonian model with RTX 2080 TI.

Table 6.6: Actual performance relative to ideal performance at different par-
ticle counts for the avalanche benchmark. Closer to one is better. Non-
Newtonian=NON, Newtonain=NEW.

Particle
count

3090
NEW

2080TI
NEW

3090
NON

2080TI
NON

256k 1 1 1 1
512k 0.604 0.573 0.575 0.561
1024k 0.325 0.309 0.312 0.303
2048k 0.177 0.168 0.172 0.168

6.6 Additional visual results

Our implementation can also generate graphics that illustrate using color-coded
particles which of the particles are above the yield stress threshold using the Bing-
ham model. As shown in Figure 6.8, yellow particles are flowing with reduced
viscous stress while the white particles have a high viscosity.
The Figure 6.9 shows the flow of a Newtonian fluid traveling from the valley on
the left to the end of the simulation domain.
The Figure 6.10 shows a issue that occurs when particles are push towards a
skewed wall such as a hillside. The boundary force is then applied and the particles
are pushed upwards.
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Figure 6.8: Color-coded particles that are above the yield stress threshold using
the Bingham model. Yellow particles are flowing with reduced viscous stress while
the white particles have a high viscosity.

The Figure 6.11 show the initial snow distribution in the Avalanche preset.

The Figure 6.12 show the avalanche after a period of time.
The Figure 6.13 shows the final snow distribution when the avalanche have reached
the ground.
The Figure 6.14 shows the places with high pressure (yellow) during the avalanche.
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Figure 6.9: River of blue particles that started in the valley on the left.

Figure 6.10: Particles climbing up a wall when the terrain normal is not perfectly
perpendicular to the ground.
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Figure 6.11: Initial snow distribution in the avalanche preset.

Figure 6.12: The avalanche in progress the colors indicate the particles that are
flowing in a Newtonian manner.
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Figure 6.13: Shows when the avalanche has almost reached the ground.

Figure 6.14: Figure shows points of high pressure during the avalanche.



Chapter 7

Conclusions and Future Work

With more extreme weather and weather-related events on the horizon it will
become more and more important to be able to simulation snow and snow-based
avalanches accurately and quickly.
Our original intention was to use a fully compressible simulations based on Smoothed
Particle Hydrodynamics (SPH). However, we had to make a choice during our
project to drop implementing the fully compressible version which proved to be
too challenging given the 20-week time-constraints imposed by NTNU for masters
theses, we instead opted to use the methods that were similar to what Ø. E. Krog
used in his 2010 masters thesis [1]. We thus developed a novel particle simula-
tion implementation using both a weakly compressible non-Newtonian methods
and a Newtonian fluid method. We then integrated these implementation into the
HPC-Lab snow simulator.

We also integrated a high-performance neighbour search framework[9] into the
HPC-Lab snow simulator.

Other goals accomplished include making the simulator user friendly with a GUI
and support for changing parameters and creating different presets for the simu-
lation using the new ImgGUI-based interface provided by Roger Holten. We also
created OpenGL buffers for particle positions and intensity values and mapped
and un-mapped OpenGL buffers to a device pointers for use in device code, both
which should reduce memory copies. We were also able to implement a simula-
tion scaling system and a terrain modeling with adjustable resolution based on
height maps that the HPC-Lab snow simulator uses. The result is a user friendly
SPH component in the HPC-Lab snow simulator.

We also utilized new tools such as Nvidia Nsight and our own performance bench-
marks to find bottlenecks and optimize our code. Tests results of our implementa-
tions on the newer consumer GPU’s from Nvidia such as the RTX 2080Ti and RTX
3090 including associated benchmark results were also included achieving 33 it-
erations per second with 2 million particles on the RTX 3090 and 26 iterations

79
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per second on the RTX 2080TI in the pool benchmark with the Newtonian solver.

Finally, we also included several visual results illustrating the GUI and snow dy-
namics we can now simulate avalanches and fluid flow in interesting ways.

7.1 Future work

There are several directions that can be taken to build on our work. Here are some
of our main ideas:

7.1.1 Optimization

There is definitely potential to optimize the algorithm further. Here are some
ideas:

• We saw that our main bottleneck was when conducting distance calculations
to neighbours in the physics and density kernels.

• In the non-Newtonian implementation there is also the additional calcula-
tions and memory usage with the calculation of the stress tensor and sum-
mation of stress forces.

• One could possibly find a way to use for example shared memory or texture
memory to make the memory reads quicker (for position data), however
one might also reach a point where the compute is the limiting factor. We
think this is something that should be investigated further.

• On newer hardware such as the RTX 3090 (in compute capability 8.6 and
8.0) there exists a feature called "L2 Persisting Accesses" (Section 3.2.3 in
the CUDA programming guide)[15] where frequently used data can be per-
manently stored in L2.

• On the professional Nvidia cards such as A100 L2 cache is 40MB (compute
capability 8.0) one could possibly store particle positions here to make the
distance calculation faster.

7.1.2 Rendering and visuals

In our work we used some existing snow shaders already present the HPC-Lab
snow simualtor. We have modified these slightly to fit with our data and scaling
system. However we think that the visuals could be improved by rendering them
more like a fluid volume instead of rendering them as individual particles.

7.1.3 Features

We were intentionally planning to make a recording system for the SPH simulation
that could record particle positions in a file and then "play back" the simulation.
This could be a interesting feature to use for recording demanding simulations and
then play them back in real time when its finished. Other features that could be



Chapter 7: Conclusions and Future Work 81

interesting is particle based borders and particle based objects (from 3D models)
in the simulation.
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Abstract— When implementing complex spacial numerical
algorithms on a graphics processing unit (GPU), there are
many challenges mainly branching and locality of data. The
implementation needs to utilize the GPU resources in a effi-
cient manner to avoid stalling. In particle based simulation
algorithms such as SPH there is also a need for fast neighbour
search to simulate interactions between bodies.

I. INTRODUCTION

With the evolution of high performance general purpose
graphics processors in recent years new applications for this
hardware has emerged[6]. The GPU is a massively parallel
processor that can run thousands of threads simultaneously
compared to the limited amount of parallelism in a CPU.
The difference is clear in the execution method. A typical
CPU can execute for example only a set number of
instructions per clock depending on the number of cores
available. A GPU on the other hand can execute thousands
of instructions per clock cycle. The drawback for GPU’s
is that groups of ALU’s (arithmetic logic unit) and FPU
(floating point unit) that can only execute same instruction
at a given time, the GPU is a SIMD processor (single
instruction multiple data). This poses some challenges when
implementing neighbour search and SPH as we will discuss
later.

Why do we need fast neighbour search in particle based
simulations? In a simulation domain you want to simulate
the interaction between bodies. Examples of this are pressure
and collision interactions. In order to do this you need
to know the distance between particles in the simulation.
An naive approach to this is to calculate the distance
between all particles and then determine which bodies
affect each other based on the distance. An simple approach
is to find the euclidean distance between all bodies. The
problem with this approach is that the time complexity
is O(n2) for n particles. For large scale simulations this
will be too inefficient. There exist algorithms to limit
the number amount of distance computations such as the
verlet list and linked-cell algorithms[3]. These algorithms
are aimed at limiting the search scope around a given
particle. In practice this means to avoiding to check the
distance between particles that are far apart without knowing
the exact distance. These algorithms use supporting data
structures that needs to be updated regularly depending on

the implementation.

Smoothed particle hydrodynamics is an particle based sim-
ulation method that is frequently used for computational fluid
dynamics. The SPH method is a discrete method for sim-
ulating fluid flow according to the Newtonian equations[5].
SPH makes heavy use of weighted summation of surrounding
particles to determine density and forces acting on a given
particle. In order to find weighted sums a kernel function is
used. This is often referred to as a smoothing kernel W (r, h)
where r is the distance between two particles and h is the
cut-off distance[5]. Particles with a distance greater than the
cut-off distance are not considered in the weighted sums.
Because of the nature of the SPH method cut-off distance
we can exploit algorithms which lowers the search scope for
surrounding particles.

II. GRAPHICS PROCESSING UNIT (GPU) PROGRAMMING
STRATEGIES AND TRENDS IN GPU COMPUTING

In recent times the GPU’s have taken the performance
crown over traditional CPU’s. Graphics processing units
today are often referred to as general purpose graphics
processing units (GP-GPU). However in the early 2000’s
GPU’s where more restricted. Back then the GPU had a
limited set of fixed operations that were purely meant for
graphics processing[6]. As a result of this the hardware was
difficult to use for other applications such as compute. Some
third-party languages where developed to make the hardware
work for compute workloads, but soon abandoned after the
introduction of CUDA and OpenCL. These languages in
combination with GPU hardware innovations made it easier
to compile compute programs for GPU’s. However graphics
processing units were not always faster than traditional
CPU’s. Around 2002-2004 the GPU caught up with CPU per-
formance in floating point operations and available memory
bandwidth and has been outgrowing the CPU performance
ever since[6]. The challenge today is to utilize the GPU in
a efficient manner.

A. GPU computation

There are two major GPU manufactures today in the
PC-market. Advanced micro devices (AMD) and Nvidia,
in this paper we will focus on Nvidia hardware. A GPU
consists of a core type called streaming multiprocessor (SM),
Nvidia refers to this as a group of CUDA cores. A GPU



has a number of these CUDA cores. Each of them can
execute one or two instructions (3000-series) at a given time
on multiple data. For example the Nvidia GA10x (3000-
series) GPU can execute 32FP32 instructions or 16FP32
and 16INT32 operations in one clock cycle for example[8].
The execution model on the GPU is based on a compute
grid, blocks and warps. A grid is an overarching structure
that encapsulates blocks in 3 dimensions. The blocks are
3 dimensional containers that encapsulates the warps. The
warps inside the same block have access to shared memory
between each other. The warps are groups of threads that are
executed together on a CUDA core.

B. Nvidia GPU scheduling

In order to keep the GPU occupancy on a hardware
level as high as possible Nvidia has implemented advanced
scheduling on different levels[7]. The scheduler hierarchy
consists of the application, stream, thread block, and the
warp-scheduler. In this context the application scheduler is
not relevant.

1) The stream scheduler: The stream scheduler enables
the execution on multiple CUDA kernels concurrently in the
same application. This feature was introduced in the Maxwell
architecture (2014). Streams can have two priority levels
(high and low). In example if two low priority kernels are
running, and a high priority stream is added the execution
of the low priority kernels may stall. In order to use streams
efficiently memory transfers between host and device, and
kernel launch should be invoked asynchronously.

2) Thread block scheduler: The thread block scheduler is
responsible for mapping blocks to SM (streaming multipro-
cessor). The thread block scheduler checks the occupancy
level of the SM’s before assigning a block. The scheduler
uses the following information about the kernel in order to
determine the SM that will be assigned to that block.[7]:

• The number of threads/warps per thread block
• Shared memory per thread block
• Number of registers per warp

The main goal of the scheduler is to keep the utilization of
each SM as high as possible, meaning that an instruction can
be executed for every clock cycle on the CUDA cores inside
that SM.

3) The warp scheduler: Each SM in in the Nvidia GPU
contains a set number of warp schedulers. The warp sched-
ulers task is to to assign warps of threads to the individual
CUDA cores inside the SM. Warps can be in two different
states, ready and not ready to execute depending on if the
data for that warp is ready. The warp scheduler can stall
warps that are not ready and continue to execute ready warps.
If the SM has enough ready warps at a given time it can
effectively hide memory access stalls while waiting for other
warps to get ready. A notable improvement with the Volta
architecture is that each CUDA core has two pipelines that
can execute two warps at the same time given one is FP32
and the other one executing INT32 operations. In the Ampere
architecture the INT32 pipeline is also capable of FP32[8].

C. Programming strategies

As mentioned in the previous section the warp scheduler
is dependent on having many available thread groups queued
for execution. A GPU can execute a given number of threads
on every clock cycle. The ratio between current thread
execution number and the maximum supported threads is
referred to as occupancy. A 100 percent occupancy means
that the warp schedulers in all the SM are able to queue
instructions every clock on the CUDA cores.

1) Branching: Branching can affect performance signif-
icantly since all the threads in the warp executes the same
instruction at a given time. An example of this is if a thread
goes on a different branch than the others. The CUDA core
then has to execute both of the branches, resulting in a huge
slow down in that section (example 32 times slower for a
32-thread warp)[6]. One way to avoid branching is to build
the warps in such a way that you execute the same branch
on each warp. You can also use the CPU to perform the
branching before and then select the correct kernel according
to the branch, but this is most applicable when there are many
parameters in the if condition.

2) GPU memory optimization: Nvidia GPU’s have several
different memory types. To achieve the best performance
a programmer should be aware of the memory structure
and utilize the functionality that the different memory types
offer[9].

• Global memory (R/W), the global memory is the RAM
of the GPU. This memory is large and but slow com-
pared to the caches.

• Shared memory (R/W), this is a memory pool shared
between all executing thread blocks. This memory is
very fast approximately 100 times faster than global
memory. Each SM gets a portion of this memory.

• Constant memory (R), this is a read-only memory stored
in global memory, but parts of this memory can be
stored in a separate cache in the SM.

• Texture memory (R) is primarily meant for textures, but
in some advanced scenarios it can be utilized as constant
memory. This memory is stored in the global memory,
but it has a cache available that can potentially make
access faster than global memory.

• Registers (R/W) is fastest cache in the GPU, its man-
aged by the compiler and stores kernel variables for the
different threads.



III. FAST NEIGHTBOUR SEARCH: VERLET LIST AND
LINKED-CELL ALGORITHMS

In most SPH simulations we operate with a fixed smooth-
ing radius h. The smoothing radius determines which par-
ticles in the simulation domain that can affect the current
particle i. The fixed radius opens opportunities to utilize
verlet list and linked-cell algorithms to find neighbours inside
the smoothing radius.

Fig. 1. Illustration: SPH Gaussian kernel, Wikipedia 2020

A. Verlet list algorithm

The verlet list algorithm is a method for reducing the
amount of neighbour searches. In this method each particle
i stores two or one list of nearby neighbouring particles j.
There are two cut-off distances used. The first one Rh which
is equal to the smoothing radius of the SPH kernel. The
second distance Rp is larger than Rh by a certain number
of units. The idea of the algorithm is to use the radius Rp

as a buffer for particles that might move into the cut-off
distance Rh after time integration in the simulation. Each

Fig. 2. Verlet list search radiuses illustrated. The red dotted circle represents
the buffer radius Rp and the solid blue circle Rh represent the smoothing
radius. The center of the circles is the particle i. There are also some
surrounding particles jx in different areas.

particle in the simulation will store lists of the other particles
that are encapsulated by the circles. This structure can allow
the simulation to continue for several time steps until any
particle (such as j3) outside Rp could potentially reach the
inner radius Rh[10]. When this happens the verlet list needs

to be updated. In the update or the construction of the verlet
lists for all particles a O(n2) distance search needs to be
executed. In order to avoid updating the list too often the
Rp radius can be increased, but this increases the number of
particles in the list.

B. Linked cell algorithm

In the linked cell algorithm the simulation domain is par-
titioned into cells with a uniform length, height, depth[10].
The size of the cell in n-dimensions is set to the smoothing
radius of the SPH simulation. The idea is that around a given
particle you only have to check direct neighbouring cells and
the current cell for possible influence on particle Ji. From

Fig. 3. The grid cell structure illustrated in 2D. The point Ji represents
the current particle. The blue circle represents the smoothing radius. Jx
illustrates other particles in the system.

the figure we see that a given particle will have a maximum
of 8 neighbouring cells. This limits the search scope. In 3D
the number of neighbouring cells is 26. For each time step
in the simulation particles need to be moved to the correct
cell based on their position in the simulation domain[3].

C. Comparison on CPU

In the publication[3] the performance of the two
algorithms are evaluated. There are several benchmarks
used to evaluate the algorithms. The first comparison is with
different number of particles in the system. The performance
is within margin of error when the particle count is low.
When the particle count exceeds 2000 in the simulation
the verlet list performs worse than the cell list algorithm.
We can reasonably assume that this is due to the huge
memory consumption and utilization when storing the lists
of neighbouring particles for each particle.

Another test conducted in[3] is to increase the smoothing
radius in the simulation. For the grid cell algorithm this
means that the cell size is bigger and fewer cells in the
simulation domain. In the verlet list algorithm this means
that the buffer radius and smoothing radius is increased.
Increased radius resulted in much worse performance
for the grid cell algorithm compared to the verlet list
implementation. This is expected since when the grid
expands it covers more of the simulation domain and in



worst case it results in a O(n2) brute force search plus the
overhead of the data structure. The verlet list algorithm does
not suffer in the same degree when increasing the radius.
The conclusion from[3] is that the grid cell algorithm
performance degrades in a slower manner as the particle
count increases and is therefore a better choice for SPH
simulation on the CPU.

D. Comparison on GPU

In publication[1] the performance of the two algorithms
is evaluated running a SPH simulation on the GPU. In
the linked cell implementation an optimization has been
done in the way particles in a given cell are stored. The
particles have a reference to the next particle, and each
cell stores the reference to the first particle in that cell and
the last particle in that cell. However the particles must
be mapped in the correct order according to their cell for
this to work. This requires a sorting of the particles for
each time integration. This is a similar approach as in[2].
The verlet list implementation is the same as in the CPU
implementation. However the article[1] mentions that there
is a possibility to dynamically adjust the search radius
(Fig.2) based on the maximum possible displacement of
particles to get a even time interval between verlet list
updates.

The article[1] suggest that the verlet list implementation is
faster on the GPU than linked cell when the particle count
is lower than 105. The memory consumption is about 18
times higher for the verlet list compared to linked cell.
Both solutions suffer in when accessing the global memory.
The verlet list implementations suffers a lot because of the
non-coalesced memory access, since the threads in the warp
might have different neighbors. The same goes for the linked
cell, in 3D simulations each grid cell might have more than
32 threads in that cell, this can result in warps that partly
belong to different cells, resulting in non-coalesced memory
access when checking neighbouring cells. The conclusion is
that the best approach for neighbouring search is the linked
cell algorithm for SPH simulations on GPU[1].
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