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Abstract
Movement models predict positions of players (or objects in general) over time and 
are thus key to analyzing spatiotemporal data as it is often used in sports analyt-
ics. Existing movement models are either designed from physical principles or are 
entirely data-driven. However, the former suffers from oversimplifications to achieve 
feasible and interpretable models, while the latter relies on computationally costly, 
from a current point of view, nonparametric density estimations and require main-
taining multiple estimators, each responsible for different types of movements (e.g., 
such as different velocities). In this paper, we propose a unified contextual probabil-
istic movement model based on normalizing flows. Our approach learns the desired 
densities by directly optimizing the likelihood and maintains only a single contex-
tual model that can be conditioned on auxiliary variables. Training is simultane-
ously performed on all observed types of movements, resulting in an effective and 
efficient movement model. We empirically evaluate our approach on spatiotemporal 
data from professional soccer. Our findings show that our approach outperforms the 
state of the art while being orders of magnitude more efficient with respect to com-
putation time and memory requirements.
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1 Introduction

Movement models are key to spatiotemporal problems. They allow to study player 
coordination in team sports (Dick and Brefeld 2019) but also generalize to refu-
gee migration patterns (Hübl et al. 2017), collective animal movements (McDer-
mott et  al. 2017), and understanding dynamical systems with moving particles 
(Padberg-Gehle and Schneide 2017). The task of a movement model is to predict 
all possible movements of a player (or refugee, animal, particle, etc.) in a given 
situation within a certain amount of time.

Traditional movement (or motion) models focus on simplifications of physical 
laws (Taki et  al. 1996; Taki and Hasegawa 2000; Fujimura and Sugihara 2005) 
such as the ability to accelerate in every direction equally fast to compute the 
set of all reachable positions of an agent for a given time horizon. Besides, those 
models are non-probabilistic and do not account for the fact that positions may be 
attained with different likelihoods. A simple parametric probabilistic approach, 
on the other hand, may lead to suboptimal predictive accuracies due to inappro-
priate choices of the underlying distributions.

Seemingly, Brefeld et al. (2019) solved the problem by proposing nonparamet-
ric probabilistic movement models to quantify the desired likelihoods using ker-
nel density estimation (KDE). Although their solution is purely data-driven and 
renders assumptions on physics obsolete, they need to distinguish initial condi-
tions (e.g., bins of velocities and time horizon intervals). They address this by 
maintaining many, possibly differently parameterized, models. This turns the 
advantage of kernel density estimation into a drawback: being nonparametric by 
design, predictive performance does increase proportionally with data, but every 
new data point also increases the computation time for the prediction. The same 
holds true for memory requirements. This is rather impractical.

In this paper, we turn conditional normalizing flows into novel movement mod-
els that (i) consist of only a single contextualized probabilistic model, (ii) better 
adapt to different contexts, such as movement speed, and (iii) allow predictions 
whose computation time is independent of the amount of training data, allowing 
for real-time applications. Normalizing flows (Tabak and Vanden-Eijnden 2010; 
Tabak and Turner 2013; Rippel and Adams 2013; Dinh et al. 2015; Rezende and 
Mohamed 2015) provide a state-of-the-art framework for learning densities using 
invertible deep neural networks. A normalizing flow transforms complex data dis-
tributions into simpler ones by an invertible chain of transformations. This chain 
consists of parametrized bijective functions that transform the data into a repre-
sentation that follows a known base distribution, usually a Gaussian.

The class of conditional normalizing flows (Winkler et  al. 2019; Lu and 
Huang 2020) additionally offers to model a conditional distribution. We extend 
their approach in the remainder to incorporate context into flow-based movement 
models. Hence, our flow-based movement model is actually only a single model 
which can be conditioned on several kinds of contexts, particularly more com-
plex ones than just bins of velocities and time horizon intervals. Moreover, our 
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contribution is efficient and allows for (near) real-time predictions independently 
of the amount of data.

The remainder is organized as follows. Section 2 reviews related work and Sec-
tion 3 introduces preliminaries. Section 4 presents our contextual movement models 
based on normalizing flows. Section 5 reports on empirical results, and Section 6 
provides a discussion of the findings. Section 7 concludes.

2  Related work

Spatiotemporal analyses are often fundamental when processing data from weara-
bles like smartphones or dedicated GPS-based tracking devices (Zheng 2015; 
Mazimpaka and Timpf 2016). While there are straightforward descriptive spati-
otemporal tasks like the  identification of road defects (Byrne et  al. 2013; Mohan 
et al. 2008) or the discrimination of driving styles (Paefgen et al. 2011), many prob-
lems ground on accurate predictions of whereabouts of agents in the near future.

A great deal of these approaches has been published in the context of sports ana-
lytics and athlete motion. Often, the focus lies on identifying motion patterns over 
time for groups of agents (e.g., teams) (Laube et  al. 2005; Sprado and Gottfried 
2009; Gottfried 2008, 2011). Unfortunately, most of these contributions impose 
qualitative measures and lack generality. Computational approaches have been 
proposed by Knauf et  al. (2016) who study spatiotemporal convolution kernels or 
Janetzko et  al. (2014) who group attacking patterns on the example of soccer. A 
frequent pattern mining approach for trajectory data has been proposed in Haase and 
Brefeld (2014). Recently, neural networks have been applied to athlete trajectories 
to remedy the need for sufficient statistics and (possibly hand-crafted) feature repre-
sentations describing the situation on the track or pitch (Zheng et al. 2016; Le et al. 
2017).

One of the first movement models has been proposed by Taki and Hasegawa 
(2000). Their approach, however, simplifies physical laws and allows for unbounded 
velocities due to constant acceleration. Fujimura and Sugihara (2005) counterbal-
ance this limitation by adding a resistive force to prevent unbounded velocities. Nev-
ertheless, this is insufficient to achieve a realistic model physical model. Recently, 
Brefeld et  al. (2019) circumvent the difficulties in deriving a realistic model from 
physics by proposing a purely data-driven approach, although their probabilistic 
model suffers from expensive kernel density estimations in practice.

Naturally, sports analytics is not the only domain where movement models are 
prominently deployed. Besides the already mentioned areas, other applications 
include vehicle trajectory analysis (Besse et  al. 2018), pedestrian trajectory esti-
mation from videos (Zhong et  al. 2020), and real-time robot trajectory prediction 
(Gomez-Gonzalez et al. 2020).

Normalizing flows recently emerged as an attractive approach to learning densi-
ties. A significant advantage over other methods for learning densities using neural 
networks is that they allow the direct maximization of the log-likelihood. Alterna-
tives such as generative adversarial networks (GANs) (Goodfellow et al. 2014) and 
variational autoencoders (VAEs) (Kingma and Welling 2014; Rezende et al. 2014) 
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use instead surrogate learning objectives for this task, such as the GAN adversarial 
loss and the VAE evidence lower bound (ELBO). While this does not hamper their 
use as generative models, they are not suitable for estimating the likelihood of a 
given data point.

In the last few years, a number of different flow-based models were proposed. A 
particular family of models, derived from NICE (Dinh et al. 2015), is appealing due 
to their computationally efficient nature while being simple to implement. Improve-
ments such as RealNVP (Dinh et al. 2017) and Glow (Kingma and Dhariwal 2018) 
were proposed over the years, achieving state-of-the-art performance to model 
complex, high-dimensional distributions, while keeping the attractive properties of 
NICE. Similarly, autoregressive flow models such as NAF (Huang et al. 2018) and 
B-NAF (De Cao et al. 2019) have been proposed. Particularly interesting are con-
ditional normalizing flows (Lu and Huang 2020), a simple improvement over Glow 
which allows them to model distributions conditioned on continuous variables. For 
an in-depth analysis of these and their relation to other flow-based models, we refer 
the reader to Papamakarios et al. (2021).

3  Preliminaries

Let T = (�(t))t∈ℝ+ be the trajectory of positions �(t) ∈ ℝ
d at time t of an object. In the 

remainder, we deal with two-dimensional movements, i.e., �(t) = (x
(t)

1
, x

(t)

2
)⊤ , but the 

following definitions also hold for higher-dimensional movements. The positional 
data might come with additional information, the so-called context �(t) at time t. 
An example for context is the velocity vector �(t) ∈ ℝ

d , or its magnitude, which is 
known as speed v(t) = ‖�(t)‖2 , respectively. Our goal is to model the distribution of 
the position �(t+tΔ) , which is tΔ > 0 seconds in the future, given the current position 
�
(t) and context �(t).

To make the movement model location-invariant, we consider a local coordinate 
system centered at the object’s current position and along the last movement direc-
tion. Figure 1 shows an example. The object under consideration is currently at posi-
tion B and moves along the solid trajectory. The dashed lines show the local coor-
dinate system which is aligned using the last direction, estimated by a position A, 
which is in the past. In tΔ = 1 seconds, the position C is reached. The distribution of 
the next position, which is what we want to model, is depicted as a red contour plot.

3.1  Movement models based on kernel density estimates

Our movement model is based on concepts of Brefeld et al. (2019). They consider 
movement models for trajectories in soccer and employ a kernel density estimate for 
their model. The idea is as follows. Given a trajectory (or a set of many trajectories) 
one first extracts triplets as shown in Figure 1. Let (�A, �B, �C) be such a triplet of 
positions with timestamps tA , tB , and tC such that tA < tB < tC . We denote the time 
difference of tA and tB as t� = t

B
− t

A
 and the difference of tB and tC as t� = tC − tB . 

Here, �B describes the current position, �A is used to estimate the current direction in 
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which the object is moving and �C denotes the position in the future. Hence, the next 
position �C describes the ability to move within a given time horizon t� . Collect-
ing multiple next positions �C , represented in the local coordinate system as �local

C
 , 

allows for creating a movement model. Such a model is then able to quantify the 
likelihood of a possible next position relative to its current position.

To obtain the next position �local
C

 , the triplet is transformed into the local coordi-
nate system. The transformation realizing this first subtracts the current position �B 
from all points of the triplet. This way, the triplet is centered at the current position. 
Then, the triplet is rotated such that the last position, i.e., �A , is aligned with the 
x-axis of the local coordinate system. Let �(�A, �B, �C) = �

local
C

 be this transforma-
tion. Mathematically, this transformation can be expressed as

where r is a distance given by r = ‖��������⃗�B�C‖2 and � is a signed angle given by 
𝜃 = ∡( �������⃗�A�B, ��������⃗�B�C) . After processing multiple triplets along a trajectory for fixed 
time differences t� and t� and storing the corresponding next positions in the local 
coordinate system in a set �t�

 , a kernel density estimate is employed on �t�
.

Brefeld et al. (2019) construct several movement models for various time hori-
zons t� . As a context, they use the current speed of a player. To add this contextual 
information, they filter the triplets by current speed. This is done by first defining a 
binning of the range of possible speeds. Specifically, they use the following binning: 
[0, 1) (standing), [1, 7) (walking), [7, 14) (jogging), [14, 20) (running), and [20, 40] 
(sprinting), where all values are in kilometers per hour. Then, movement models are 

�
local
C

=

[
r ⋅ cos(�)

r ⋅ sin(�)

]
,

Fig. 1  Illustration of a movement model (purple contour lines). The solid black line depicts a trajectory. 
The last, current, and next position of an player are marked as A, B, and C, respectively. The movement 
model shown in purple models the distribution of the next position C (red dot) using the information of 
the past and present (A and B). The dashed lines denote a local coordinate system centered at the player 
and aligned in the current direction of movement
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constructed for multiple time horizons per speed range S, yielding �S
t�
 . An example 

is depicted in Fig. 2. The left shows the set �S
t�
 holding the next positions within the 

local coordinate system for a time horizon of t� = 1s . We apply the context of a 
speed range S = [14, 20) , where the values are again in kilometers per hour. The cor-
responding kernel density estimate is shown on the right. Following Brefeld et al. 
(2019), we deploy a Gaussian kernel and select the bandwidth using Scott’s rule 
(Scott 2015).

The time complexity of this approach is its biggest drawback. Computing the 
likelihood of a single d-dimensional data point with a kernel density estimate built 
on n triplets (�A, �B, �C) takes O(dn) time. Analogously, the approach has also a large 
memory footprint, as every known data point must be accessible during prediction. 
The space complexity also scales in O(dn).

3.2  Normalizing flows

Let X = {�1,… , �n} ⊂ ℝ
d be instances drawn from an unknown distribution px(�) . 

The goal is to estimate an accurate model of px(�) . This is done by expressing px(�) 
in terms of a simpler, known distribution pz(�) , and learning a bijective map between 
them. Formally, let � ∶ ℝ

d
→ ℝ

d be a bijective and differentiable function. Using the 
change of variable theorem and � = � (�) , we can express px(�) as

where J
�
(�) is the Jacobian matrix of the diffeomorphism � . The distribution pz(�) 

is often referred to as a base distribution (Papamakarios et al. 2021). We henceforth 
drop the subscript of the distribution p whenever it is clear from the context.

Figure 3 depicts a one-dimensional example. The left-hand side shows the data 
distribution, which is usually unknown. The goal is to map from this distribution to 
a known, base distribution, depicted on the right side. The usual choice is a standard 
Gaussian.

px(�) = pz(� (�))| det J� (�)|,
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Fig. 2  An example of the set �S

t�
 with a time horizon of t� = 1s and a speed range of 14-20 km/h and the 

corresponding kernel density estimate
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In practice, � is not just a fixed transformation, but rather a chain of parameterized 
transformations. Hence, we deal with � (�) , which is represented by a chain of bijec-
tive transformations � (�) = �

(�)

L
◦�

(�)

L−1
◦⋯◦�

(�)

1
 , where L is the total number of trans-

formations. This composition defines a normalizing flow between � = �0 and � = �L 
and is precisely what enables flows to be computationally and analytically tractable. 
Let �i = fi(�i−1) be the intermediate variable, where i = 1,… , L . Then, log p(�) can 
be expressed as the log-likelihood of the base distribution and the log-determinant 
of the Jacobians of each bijection

Thus, we can learn the transformation from the data X  to its base representation by 
optimizing the parameters � that minimize the negative log-likelihood

In the remainder, we further simplify the notation by dropping the superscript � 
from � . Note that the example in Fig. 3 described above shows that a normalizing 
flow defines a generative model. After learning the transformation � on data X  , we 
can sample from the base distribution and obtain new samples, distributed according 
to px , by using the inverse transformation �−1.

4  Learning movements with flow‑based models

The choice of transformations for building the flow � involves trade-offs between 
computational efficiency during learning or data generation and its ability to model 
px . In the last few years, several different approaches emerged. To turn a normal-
izing flow into a movement model, we focus on only a few characteristic properties. 
As movement data tends to be low-dimensional, it can often be sampled at a high 
frequency, resulting in millions of observations.

4.1  Flow‑based models without context

As an architecture for our flow model, we consider Glow (Kingma and Dhariwal 
2018), which is itself based on RealNVP (Dinh et al. 2017). Glow is built from 

log p(�) = log p(�) +

L∑

i=1

log
|||det J� (�)i

(�i−1)
|||.

min
�

−
∑

�∈X

log p(�).

z0

p(z0)

z1

p(z1) p(zi)

zL

p(zL)
f1(z0)

. . .
fi+1(zi)

Fig. 3  A simple normalizing flow on one-dimensional data. The plot to the left depicts the usually 
unknown data distribution, while the plot to the right shows the base distribution (standard Gaussian)
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three main transformations: activation normalization (actnorm), 1 × 1 invertible 
convolutions, and affine coupling. Those transformations are employed in a multi-
scale architecture, reshaping the image tensors to have fewer pixels with more 
channels, referred to as squeezing. The channels are then split and further opera-
tions are only performed on half of them. This squeezing and splitting scheme is 
performed several times for scalability. Squeezing, however, is not suitable for 
vectorial data including d-dimensional positions. Furthermore, the dimension-
ality of our setting curtails the computational performance gains from splitting, 
allowing us to use the entire vector in every transformation of the flow.

An overview of the non-contextualized architecture we use is depicted in 
Fig. 4 (non-grayed area). We detail the actnorm and affine coupling transforma-
tions next. For both of them, let �, � ∈ ℝ

d be d-dimensional vectors, where � is 
the input of the current transformation and � is its output, being directly fed into 
the next transformation in the chain.

Actnorm. Let � ∈ ℝ
d be a scaling vector and � ∈ ℝ

d an offset vector. The act-
norm transformation Kingma and Dhariwal (2018), its inverse, and log-determi-
nant of its Jacobian are given by

respectively, where ⊙ denotes the Hadamard product. Particularly, � and � are 
learned as part of the transformation and are initialized with the first batch of data. 
This initialization is such that the mean and standard deviation of � are zero and one, 
respectively.

� = � (�) = �⊙ � + �,

� = �
−1(�) = (� − �)∕�,

log | det J
�
(�)| =

d∑

i=1

log |ai|,

Fig. 4  Overview of the flow model: the composition of actnorm, permutation and coupling is repeated 
multiple times to build the flow. The contextual part is shaded in gray. � is the input to the flow, in our 
setting the local coordinates ( �local

C
 ); � is the output of the transformation into the base representation, 

which follows a predefined (base) distribution; in the conditional variant, � is the context vector, which 
can be used to characterize the movement being modeled, such as speed. CN

ca
 (conditional actnorm) and 

CN
cac

 (conditional affine coupling) augment the respective transformations with contextual information
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Affine coupling. This transformation (Dinh et al. 2017) is slightly more involved. 
The input � ∈ ℝ

d is initially split into two parts (�1, �2) , each of which is d′-dimen-
sional, where d� = d∕2 . Then, the second part is simply copied, �2 = �2 , while �1 is 
transformed based on information from �2 as follows:

where NNac ∶ ℝ
d�
→ ℝ

d is a nonlinear mapping, generally realized by a neural 
network. The output is then � = concat(�1, �2) . This inverse transformation can be 
computed by first splitting � into (�1, �2) , copying the second part as before, i.e., 
�2 = �2 , computing the log-scale and offset parameters using NNac(⋅) as in Eq. (1), 
and computing the inverse affine linear transformation via

Finally, the two parts are merged with � = concat(�1, �2) . The log-determinant of the 
Jacobian of this transformation is

Permutation. Not using squeezing and splitting entails a few additional consider-
ations that directly lead us to 1 × 1 convolutions that are particularly designed for 
these cases. Squeezing increases the number of channels and affect the way affine 
coupling layers perform. Hence, a permutation operation over the channels is usu-
ally performed before an affine coupling transformation. This allows the squeezing 
to affect a broader range of channels than it is designed to, lifting the flow to per-
form more sophisticated transformations. As such, having a permutation-like opera-
tion over the channels plays a significant role. Recall that this is not the case in our 
scenario as we cannot apply squeezing at all. Instead, we propose to employ a per-
mutation operation that simply reverses the dimensions of the input. This operation 
has an inverse transformation and its log-determinant is equal to zero.

A major benefit of this approach is the ability to compute predictions indepen-
dently of the data used for training. It only requires a number of computations 
proportional to the data dimensionality d and the number of transformations L 
employed. In other words, computing the likelihood of a data point takes O(dL) time. 
Additionally, only the model parameters have to be stored in memory, resulting in a 
significantly smaller memory footprint that the KDE-based movement model when 
dealing with large data sets.

4.2  Contextualized flow‑based movement models

In this setting, we are particularly interested in contextual information associated 
with movement data, such as speed. Therefore, the transformations employed 
in the flows should be able to take into account this additional information. A 

(1)
(log �, �) = NNac(�2),

�1 = exp(log �)⊙ �1 + �,

�1 =
(
�1 − �

)
∕ exp(log �).

log | det J
�
(�)| =

d�∑

i=1

log |ai|.
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conditional flow-based model that appropriately addresses those requirements is 
conditional Glow (c-Glow) (Lu and Huang 2020). As the name suggests, c-Glow 
is based on Glow (Kingma and Dhariwal 2018), which is itself based on Real-
NVP (Dinh et  al. 2017). Nevertheless, the goal is to derive a contextualized 
model that can be conditioned on arbitrary contexts. The most significant change 
is the addition of a conditioning network, denoted by CN(⋅) , which replaces the 
parameters of the actnorm and affine coupling layers with surrogates that are pre-
dicted from the context � ∈ ℝ

dc . Hence, a conditional probability density can be 
devised whose log-variant is given by

The parameters �(�) of the transformations �i are now dependent on the context � . 
Note that this does not change the computation of the log-determinant of the Jaco-
bian in both cases. The new transformations with the addition of the CN are detailed 
below.

Conditional actnorm. The scaling and offset vectors � and � are now computed by 
CNca ∶ ℝ

dc → ℝ
2d as

and the transformation is then carried out as before. The original initialization pro-
cedure for �, � is no longer needed.

Conditional affine coupling. This transformation already computes its scaling � 
and offset � parameters from NNcac ∶ ℝ

d�+d
→ ℝ

d . The change introduced by con-
ditioning on � is an additional input to NNcac(⋅) , computed by CNcac ∶ ℝ

dc → ℝ
d , 

as

followed by the same operations as before.
Figure 4 provides an overview of the complete normalizing flow model with 

and without the conditioning on � . As shown in Fig. 5, learning contextual flow-
based probabilistic movement models proceeds as follows: Given positional data, 
triplets (A, B, C) are extracted from the trajectories. The future position C in a 
time horizon t� of interest is then represented in a local coordinate system for 
spatial invariance. The positions which can be reached in time t� are then trans-
formed, using our normalizing flow model, into a representational space that fol-
lows a standard Gaussian.

The additional context taken into account by the model, while crucial to its 
flexibility in dealing with a variety of movements observed in the data, incurs lit-
tle additional computational cost. As in the non-contextual case, the time to com-
pute the likelihood of a data point is O(dL) and the amount of memory required is 
proportional to the number of parameters of the model.

log p(�|�) = log p(�) +

L∑

i=1

log
|||det J�̃ (𝜃(�))i

(�)
|||.

(�, �) = CNca(�),

(log �, �) = NNcac(�2, CNcac(�)),
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5  Experiments

We now evaluate our flow-based probabilistic movement models. First, we conduct 
an in-depth analysis of our proposed approach and compare its performance with 
several baselines. Second, we investigate whether using the positions of the remain-
ing players as additional contextual information improves our movement model. For 
all experiments, we use data from professional soccer.

5.1  Data

The tracking data from soccer consist of coordinates of each player and the ball, 
recorded with camera-based systems at 25Hz for five professional games from the 
German Bundesliga. Each game is encoded as a sequence of triplets (x(t)

1
, x

(t)

2
, v(t)) 

describing the x and y coordinates on the pitch and the current speed v(t) in km/h at 
time t for every player. Thus, every game consists of about 25 ⋅ 60 ⋅ 90 = 135, 000 
positions per player. The x and y positions are relative to the origin. Hence, the coor-
dinates are within [−52.5, 52.5] × [−34.0, 34.0] ⊂ ℝ

2 , since the dimensions of a 
standard soccer field are 105 × 68 meters. We use the first four games for training 
and the last game for testing.

5.2  Baselines

We compare our model against the following baselines. The first baseline, 
denoted as KDE, follows the idea of Brefeld et  al. (2019) and deploys kernel 
density estimates for the movement models. We use a Gaussian kernel and select 
the bandwidth using Scott’s rule (Scott 2015). A second, straightforward base-
line simply estimates a two-dimensional Gaussian (mean and covariance) on the 

Fig. 5  A summary of our approach. Left: Triplets are extracted from a trajectory using some current and 
previous position (black) as well as a future position (red) reached within the time horizon t� . Center: 
The future position is remapped using � into a local coordinate system. The coordinates are centered at 
the current position and aligned with the previous position. Right: Points reached in time t� are trans-
formed using a conditional normalizing flow � . The flow � is optimized to ensure that points under this 
transformation are distributed according to a Gaussian base distribution
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point cloud � as introduced in Sect. 3, see for instance Figure 2. We refer to this 
baseline as Gaussian. Third, we test a two-dimensional histogram, again on the 
point cloud mentioned above. The histogram uses an equally spaced grid over 
[−10, 30] × [−20, 20] with 1600 cells of size 1 × 1 meter. Note that this range cov-
ers a larger space than depicted in Figure 2 and is suitable for all velocity ranges. 
We refer to this baseline as Histogram.

Depending on the experiment we use different configurations. We experi-
ment with time horizons t� ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} , where every value is 
in seconds. The baselines use the same speed discretization as in Brefeld et  al. 
(2019) which is {[0, 1), [1, 7), [7, 14), [14, 20), [20, 40]} . Those values are in kilo-
meters per hour. Consequently, we train per baseline 7 ⋅ 5 = 35 different configu-
rations, one per time horizon and speed range. As for the t� , denoting the time 
difference for estimating the direction in which a player is moving, we again fol-
low Brefeld et  al. (2019) and use t� = 0.2 seconds. We show the influence of t� 
in "Appendix 1". The code for all baselines is written in Python using NumPy 
(Harris et  al. 2020) and SciPy (Virtanen et  al. 2020). All experiments run on a 
machine with an Intel Xeon CPU, 256GB of RAM, and an NVIDIA V100 GPU.

5.3  Evaluation metrics

When evaluating and comparing movement models, it is important to quantify 
how well a model explains the observed movements. In other words, a movement 
model should be capable of showing where the agent or object of interest will be 
in the near future. Consider a model that predicts a large area of future positions. 
Although this model explains all future positions by its sheer broadness, it is not 
concise. Hence, a good movement model needs to be concise and accurate and, to 
fulfill both, the model has to find an optimal trade-off between area and accuracy 
to estimate future positions in the smallest area possible.

A natural measure for this trade-off is the (log-)likelihood. Since densities are 
normalized by definition, larger areas possess lower point-wise likelihoods while 
compact densities capture only trivial movements and do not generalize well. 
As a consequence, a model achieving a good trade-off will also achieve higher 
likelihoods.

We additionally aim to measure the complexity of the different approaches. 
Section  3 shows that the complexity of predicting a likelihood either scales in 
the size of training data (KDE) or in the complexity of the neural networks (flow-
based models). We thus measure the average evaluation time and report its quan-
tity in seconds. Note that the prediction speed remains constant for both the His-
togram and the Gaussian baseline.

A similar argument holds for memory footprints of the different approaches. 
The predictive performance of KDE is not only expected to deteriorate for data at 
large scales, it is also expected to require an excessive amount of memory. Hence, 
we also analyze the memory requirements of all evaluated methods and provide 
the number of variables (i.e., floats or double precision) that need to be stored.
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5.4  Setup of the flow‑based movement models

For a thorough comparison of the unconditional and the conditional flow-based 
movement models, we experiment with several configurations of the proposed mod-
els. The unconditional Flow uses the same time horizons and speed discretizations 
as the baselines above. Hence, we consider as many different models as the baselines 
for obtaining a fair comparison. With Flow, we intend to show that movement mod-
els based on normalizing flows achieve the same or better predictive performance 
as the state of the art. We introduce contextual information, given by �(t) = (v(t), t�) , 
directly as a part of a single model in CFlow. Here, we use the current speed v(t) and 
the time horizon t� as context, just as for the baselines. Note that the baselines are 
implicitly conditioned on the time horizon as well due to maintaining different mod-
els for different intervals. Hence, the purpose of CFlow is to have a unified model 
instead of many different ones. We further evaluate a model called CFlow-extended 
which leverages the positions of other players as additional contextual information. 
This model uses as context �(t) = (v(t), t𝛥, x̄

(t)

rel
) , where x̄(t)

rel
∈ ℝ

1

2
dhidden is a permutation 

invariant representation of the relative positions of the remaining players. We pro-
vide details of how we compute this vector in "Appendix 2".

All models follow the architecture shown in Figure 4, repeating the three depicted 
transformations (actnorm, permutation, and coupling) L = 8 times in sequence. The 
same applies to their contextual alternatives. For unconditional and conditional flow-
based models, the architectures of the neural networks are outlined in Table 1. All 
networks use SELU (Klambauer et al. 2017) activations, d denotes the dimensional-
ity of the input � and dc is the dimensionality of the context which is for CFlow and 
CFlow-extended, dc = 2 and dc = 2 +

1

2
dhidden , respectively. The size of the hidden 

dimensionality is set to dhidden = 16 . Just as the authors of Glow (Kingma and Dha-
riwal 2018), we initialize the weights and biases of the last layer of each neural net-
work in Table 1 to zeros for stability. This implies the actnorm and affine coupling 
layers are initialized to identity transformations before training.

The code is written in Python using JAX (Bradbury et al. 2018). We employ the 
Adam optimizer (Kingma and Ba 2015) with a learning rate of 10−3 . For stability, 

Table 1  Neural network architectures detailed as a sequence of fully connected layers, where the con-
stants before and after arrows indicate the dimensionalities of input and outputs for that layer, respec-
tively, while SELU denotes the activation function Klambauer et al. (2017). The networks are part of the 
affine coupling NN

ac
(�

2
) that operates on the second part of the intermediate representation �

2
∈ ℝ

d∕2 , 
the conditional actnorm CN

ca
(�) which uses the context � ∈ ℝ

d
c , and the conditional affine coupling 

NN
cac
(�

2
, �̃) , where �̃ = CN

cac
(�) ∈ ℝ

d

Network Architecture and activation functions

NNac (d∕2)
SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ d

CNca d
c

SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ 2d

NNcac (d∕2 + d)
SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ d

CNcac d
c

SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ d
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we clip gradients (Pascanu et al. 2013) with norms larger than 20. The batch size is 
set to 1, 024 for all models except the conditional models which condition on time 
horizon, in which a larger batch size of 1, 024 ⋅ Nt�

 is used to accommodate for dif-
ferent time horizons, where Nt�

 denotes the number of different time horizons. All 
models are trained for 100 epochs with no early stopping.

5.5  Results

We first evaluate the predictive performance of the baseline movement models and 
compare them to the unconditional Flow. To have a fair comparison, we deal with 
35 different configurations per model. We proceed as follows. From the test game, 
we randomly sample a trajectory over three minutes for every player, leaving us with 
22 such trajectories. Then, for several time horizons ranging from 1s to 4s, we com-
pare the average log-likelihood per trajectory and model as well as the correspond-
ing computation time for the prediction.

Unsurprisingly, the average log-likelihoods decrease for larger time horizons t� , 
as the models become progressively more uncertain with increasing t� . Figure  6 
shows the relative improvement of each model compared to the KDE. It can be seen 
that the Flow model (green) performs on par with the KDE (dashed red) while the 
Gaussian approximation (brown) is almost consistently the worst. In addition, the 
performance gap of the Histogram (dotted purple) closes for larger time horizons, 
however, it underperforms compared to the KDE.

The relative improvement of CFlow (orange) and CFlow-extended (blue), each of 
which are single contextual models, shows that they clearly dominate all baselines 
by far. We credit this observation to conditioning. While the other models use a pre-
defined velocity discretization, both CFlow and CFlow-extended adapt specifically 
to any velocity without the need for binning intervals with identical model output. 
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Fig. 6  Average log-likelihood values (22 players) per model relative to the KDE baseline for various 
time horizons t� . The specific values of the KDE are stated in the upper x-axis
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If we additionally include the relative positions of the other players into the context 
and condition on it, the performance increases further.

The flexibility afforded by conditioning can also be seen in Fig. 7, which visual-
izes a trajectory of a soccer player drawn from the data. The bottom-right part of the 
figure depicts the current velocities of the player. In the remaining parts, the trajec-
tory is colored according to the log-likelihood values using the Gaussian, Flow, and 
CFlow models for a time horizon of t� = 1s . We also evaluate the average log-like-
lihood of this trajectory showing that CFlow has the highest log-likelihood, mean-
ing it predicts the movement best. Once again, the Gaussian model yields the worst 
log-likelihood. We credit this due to its implicit symmetry. While being symmetric 
for moving left or right might be acceptable in this use case, the symmetry in the 
orthogonal direction is clearly not present, as seen in Fig. 2. Visual inspection shows 
the effect of binning the velocities on the performance of the Gaussian and Flow; 
the coloring exhibits a block structure due to velocity transitions across bins. By 
contrast, the conditional CFlow distinguishes by a continuous coloring, indicating 
a much better adaptation to the trajectory at hand. CFlow and CFlow-extended can 
smoothly adjust to the current velocity at each point in time.

Table  2 compares the predictive performance of the competitors in terms of 
computation time (in seconds). The numbers are again averaged over 22 individual 
trajectories and are shown with their standard errors. The baselines Gaussian and 
Histogram take almost no time to compute the predicted movements. KDE is con-
sistently the slowest model by orders of magnitude. The result shows the limitations 

Fig. 7  A sample trajectory from soccer data. The bottom right plot shows speed along the trajectory. 
Other plots depict log-likelihood values along the trajectory for the Gaussian, Flow, and CFlow models 
for a time horizon of t� = 1s . Darker colors in these other plots indicate the model estimates that position 
as less likely. We also provide avg. log-likelihood values for each model in this trajectory. The red star 
denotes the start of the trajectory. Black lines indicate model transitions for the Gaussian and Flow mod-
els, which rely on speed binning. Black triangle markers indicate an example where models behave dis-
tinctively: at those points in the trajectory the player starts accelerating and then slows down and CFlow 
maintains a consistent quality of predictions, while the other two models do not



 S. G. Fadel et al.

1 3

of the KDE for (near) real-time applications and/or large data sets. Our proposed 
flow-based models are only marginally slower than the straightforward competitors 
and, as expected, enable predictions that can be computed very efficiently.

The KDE baseline is not only the slowest approach when comparing evaluation 
time, it has also the highest memory demand, as Table 3 shows. This is due to the 
nonparametric nature of the approach. The more training data is observed and inte-
grated, the better the model. Trivially, integrating more data into a KDE also means 
to store exactly these additional data. In comparison, the Histogram baseline has a 
fixed grid and velocity binning, and, hence, a fixed memory footprint. The Gauss-
ian exploits strong assumptions (e.g., unimodality, symmetry) and needs the least 
amount of memory, but is quite limited in expressiveness. Our proposed flow-based 
models have moderate memory requirements which neither grow with training data 
as the KDE, nor with a higher precision or finer-grained bins as the Histogram.

6  Discussion

Binning velocities are common trick in histogram-based movement models since 
continuous movements can be treated as discrete events that are instances of one or 
another bin. A major issue that is usually not addressed properly is how to find the 
optimal size of bins for a problem at hand. Often, optimal sizes are not equidistant 
but grow with the values of the variable of interest, such as speed. The bins also 
induce hard thresholds that may lead to treating similar values very differently, if 

Table 2  Evaluation time 
averaged over 22 players (incl. 
standard errors) in seconds

Model t� = 1.0s

KDE 774.3s ± 23.0

Histogram < 0.1s ± 0.0

Gaussian < 0.1s ± 0.0

Flow 0.5s ± 0.0

CFlow 0.1s ± 0.0

CFlow-extended 0.7s ± 0.0

Table 3  Memory footprint of 
the evaluated approaches. The 
memory demand is stated in 
terms of floating point numbers 
which need to be saved

Model No. of models Memory demand

Per model Total

KDE 35 variable 175,177,098
Histogram 35 1,600 56,000
Gaussian 35 6 210
Flow 35 2,360 82,600
CFlow 1 11,704 11,704
CFlow-extended 1 15,056 15,056
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they end up in two neighboring bins. The presented contextual models do not have 
these limitations as they work directly on the continuous signal.

In the case of movement models, binning leads to maintaining several models and 
renders the space and time complexity of the models highly inefficient. By contrast, 
the contextual models do not rely on binning and simply condition on all variables 
of interest such as current velocity, time horizon, and even the position of the other 
players. We thus end up with only a single model which is efficient and allows for 
(near) real-time processing. Our experiments show that both contextual models are 
moreover achieving superior performance in terms of log-likelihood and clearly out-
perform all other approaches.

As another (straightforward) baseline, we incorporated a Gaussian in the experi-
ments. Naturally, a Gaussian is trivial to estimate and turns out efficient in time and 
space. However, these advantages imply assumptions on the densities being uni-
modal and symmetric. While some scenarios may support these claims, others may 
suffer from this oversimplification, as shown in Fig. 8. It depicts the movements of 
a goal keeper and the point cloud has clearly two modes. Estimating the density of 
the points with a Gaussian introduces unnecessary errors by assigning a great deal 
of probability mass to unlikely events. Again, the proposed contextual models do not 
make any assumption on the nature of the densities and adapt to any multi-modal 
distribution of points.

A practical application for movement models is to compute so-called zones of 
control that describe the areas which are controlled by a player. The underlying idea 
is that the payer who controls the zone is expected to arrive first at every position 
within this area (Taki and Hasegawa 2000; Gudmundsson and Wolle 2014; Horton 
et al. 2015; Spearman et al. 2017; Brefeld et al. 2019). Figure 9 shows an example. 
Using any of the CFlow models to compute the zones of control removes the neces-
sity of binning velocities and time horizons; computation time and memory require-
ments are very low, even when training on massive amounts of data, compared to 
KDE-based approach in Brefeld et al. (2019). Our models thus allow for (near) real-
time processing of live data and may be used in live analysis and broadcasts to visu-
alize key situations.

Finally, while movement models, by definition, compute the area of possible (near-)
future positions, they do not allow for predicting positions. Our contextual movement 
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models, however, may overcome this issue by explicitly conditioning the models also 
on positions of other players (CFlow-extended) and the ball, ball possession indica-
tors, etc. In principle, any CFlow should adapt to the current positioning of players and 
ball on the pitch, hence, shifting the probability mass toward areas that better represent 
motions of professional athletes given the current situation. Although these assump-
tions need to be confirmed in additional (empirical) studies and are clearly out of scope 
for the present paper, the sheer possibility indicates the potential impact and impor-
tance of this line of work.

7  Conclusion

In this paper, we studied the problem of learning movement models in a purely data-
driven fashion, which we evaluated on data from professional soccer matches. We cir-
cumvented the limitations of previous approaches and cast the problem as a conditional 
density estimation task. We exploited characteristics of the low-dimensional problem 
formulation to devise conditional normalizing flows for modeling movements. In con-
trast to the state of the art, our contextual model consists of only a single model. Hav-
ing a conditional model proved important for the integration of contextual information, 
such as velocities of movements. In principle, any relevant information can be used as 
context. Moreover, they outperformed all competitors by far when it came to predictive 
performance and turned out very efficient. Their computation times were comparable 
to trivial baselines and orders of magnitude faster than the state of the art.

Fig. 9  Soccer pitch showing players and the controlled spaces per player derived from the individual 
movement models
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Appendix 1: Influence of tı

Figure 10 shows the log-likelihood values of CFlow for the same setting as Fig. 6, but 
now also varying t� . The figure shows there is little influence from varying t� when 
compared to t� . Although a choice of t� = 0.1s seems to be better, we follow previous 
work of Brefeld et al. (2019) and use t� = 0.2s.

Appendix 2: Details of CFlow‑extended

CFlow-extended uses contextual information given by �(t) = (v(t), t𝛥, x̄
(t)

rel
) , which 

extends the current speed of the player v(t) and the time horizon t� by the positions 
of the other players, relative to the player under consideration, i.e., x̄(t)

rel
 . For soc-

cer, there are 21 remaining players whose relative positions are summarized in the 
set X(t)

rel
= {�

(t)

1
,… , �

(t)

21
} . However, instead of simply stacking those positions into 

a vector, we leverage an aggregated representation �̄(t)
rel

∈ ℝ
1

2
dhidden to circumvent the 

problem of ordering those players. Here, dhidden is the dimensionality of the aggre-
gated representation �̄(t)

rel
 . The latter is obtained by employing a relation network San-

toro et al. (2017) and defined as

where nrel = |X(t)

rel
| and both �pair ∶ ℝ

2d
→ ℝ

dhidden , �global ∶ ℝ
dhidden → ℝ

1

2
dhidden are 

small feedforward neural networks with architectures outlined in Table 4. The out-
put of this aggregation step, x̄(t)

rel
 , is then used by the conditioning networks CNca(�) 

and CNcac(�) whose input dimensionalities increase by 1
2
dhidden . An example of the 

relation network is depicted in Fig. 11. The remainder of the flow is then carried out 
in the same way as CFlow.

�̄
(t)

rel
= �global

(
1

n2
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j=1
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Fig. 10  Log-likelihood values 
computed by CFlow in the same 
setting as Figure 6
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Table 4  Network architectures 
for CFlow-extended 

Network Architecture and activation functions

�pair 2d
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�global dhidden
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