
Vol.:(0123456789)

AStA Advances in Statistical Analysis
https://doi.org/10.1007/s10182-021-00412-w

1 3

ORIGINAL PAPER

Contextual movement models based on normalizing flows

Samuel G. Fadel1 · Sebastian Mair2 · Ricardo da Silva Torres3 · Ulf Brefeld2

Received: 3 November 2020 / Accepted: 23 June 2021
© The Author(s) 2021

Abstract
Movement models predict positions of players (or objects in general) over time and
are thus key to analyzing spatiotemporal data as it is often used in sports analyt-
ics. Existing movement models are either designed from physical principles or are
entirely data-driven. However, the former suffers from oversimplifications to achieve
feasible and interpretable models, while the latter relies on computationally costly,
from a current point of view, nonparametric density estimations and require main-
taining multiple estimators, each responsible for different types of movements (e.g.,
such as different velocities). In this paper, we propose a unified contextual probabil-
istic movement model based on normalizing flows. Our approach learns the desired
densities by directly optimizing the likelihood and maintains only a single contex-
tual model that can be conditioned on auxiliary variables. Training is simultane-
ously performed on all observed types of movements, resulting in an effective and
efficient movement model. We empirically evaluate our approach on spatiotemporal
data from professional soccer. Our findings show that our approach outperforms the
state of the art while being orders of magnitude more efficient with respect to com-
putation time and memory requirements.

Keywords Density estimation · Movement models · Normalizing flows · Soccer
data · Spatiotemporal data · Sports analytics

Samuel G. Fadel and Sebastian Mair have contributed equally to this paper.

 * Sebastian Mair
 mair@leuphana.de

 Samuel G. Fadel
 samuel.fadel@ic.unicamp.br

 Ricardo da Silva Torres
 ricardo.torres@ntnu.no

 Ulf Brefeld
 brefeld@leuphana.de

1 University of Campinas, Campinas, Brazil
2 Leuphana University of Lüneburg, Lüneburg, Germany
3 Norwegian University of Science and Technology, Ålesund, Norway

http://orcid.org/0000-0002-4459-4336
http://orcid.org/0000-0001-9772-263X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10182-021-00412-w&domain=pdf

 S. G. Fadel et al.

1 3

1 Introduction

Movement models are key to spatiotemporal problems. They allow to study player
coordination in team sports (Dick and Brefeld 2019) but also generalize to refu-
gee migration patterns (Hübl et al. 2017), collective animal movements (McDer-
mott et al. 2017), and understanding dynamical systems with moving particles
(Padberg-Gehle and Schneide 2017). The task of a movement model is to predict
all possible movements of a player (or refugee, animal, particle, etc.) in a given
situation within a certain amount of time.

Traditional movement (or motion) models focus on simplifications of physical
laws (Taki et al. 1996; Taki and Hasegawa 2000; Fujimura and Sugihara 2005)
such as the ability to accelerate in every direction equally fast to compute the
set of all reachable positions of an agent for a given time horizon. Besides, those
models are non-probabilistic and do not account for the fact that positions may be
attained with different likelihoods. A simple parametric probabilistic approach,
on the other hand, may lead to suboptimal predictive accuracies due to inappro-
priate choices of the underlying distributions.

Seemingly, Brefeld et al. (2019) solved the problem by proposing nonparamet-
ric probabilistic movement models to quantify the desired likelihoods using ker-
nel density estimation (KDE). Although their solution is purely data-driven and
renders assumptions on physics obsolete, they need to distinguish initial condi-
tions (e.g., bins of velocities and time horizon intervals). They address this by
maintaining many, possibly differently parameterized, models. This turns the
advantage of kernel density estimation into a drawback: being nonparametric by
design, predictive performance does increase proportionally with data, but every
new data point also increases the computation time for the prediction. The same
holds true for memory requirements. This is rather impractical.

In this paper, we turn conditional normalizing flows into novel movement mod-
els that (i) consist of only a single contextualized probabilistic model, (ii) better
adapt to different contexts, such as movement speed, and (iii) allow predictions
whose computation time is independent of the amount of training data, allowing
for real-time applications. Normalizing flows (Tabak and Vanden-Eijnden 2010;
Tabak and Turner 2013; Rippel and Adams 2013; Dinh et al. 2015; Rezende and
Mohamed 2015) provide a state-of-the-art framework for learning densities using
invertible deep neural networks. A normalizing flow transforms complex data dis-
tributions into simpler ones by an invertible chain of transformations. This chain
consists of parametrized bijective functions that transform the data into a repre-
sentation that follows a known base distribution, usually a Gaussian.

The class of conditional normalizing flows (Winkler et al. 2019; Lu and
Huang 2020) additionally offers to model a conditional distribution. We extend
their approach in the remainder to incorporate context into flow-based movement
models. Hence, our flow-based movement model is actually only a single model
which can be conditioned on several kinds of contexts, particularly more com-
plex ones than just bins of velocities and time horizon intervals. Moreover, our

1 3

Contextual movement models based on normalizing flows

contribution is efficient and allows for (near) real-time predictions independently
of the amount of data.

The remainder is organized as follows. Section 2 reviews related work and Sec-
tion 3 introduces preliminaries. Section 4 presents our contextual movement models
based on normalizing flows. Section 5 reports on empirical results, and Section 6
provides a discussion of the findings. Section 7 concludes.

2 Related work

Spatiotemporal analyses are often fundamental when processing data from weara-
bles like smartphones or dedicated GPS-based tracking devices (Zheng 2015;
Mazimpaka and Timpf 2016). While there are straightforward descriptive spati-
otemporal tasks like the identification of road defects (Byrne et al. 2013; Mohan
et al. 2008) or the discrimination of driving styles (Paefgen et al. 2011), many prob-
lems ground on accurate predictions of whereabouts of agents in the near future.

A great deal of these approaches has been published in the context of sports ana-
lytics and athlete motion. Often, the focus lies on identifying motion patterns over
time for groups of agents (e.g., teams) (Laube et al. 2005; Sprado and Gottfried
2009; Gottfried 2008, 2011). Unfortunately, most of these contributions impose
qualitative measures and lack generality. Computational approaches have been
proposed by Knauf et al. (2016) who study spatiotemporal convolution kernels or
Janetzko et al. (2014) who group attacking patterns on the example of soccer. A
frequent pattern mining approach for trajectory data has been proposed in Haase and
Brefeld (2014). Recently, neural networks have been applied to athlete trajectories
to remedy the need for sufficient statistics and (possibly hand-crafted) feature repre-
sentations describing the situation on the track or pitch (Zheng et al. 2016; Le et al.
2017).

One of the first movement models has been proposed by Taki and Hasegawa
(2000). Their approach, however, simplifies physical laws and allows for unbounded
velocities due to constant acceleration. Fujimura and Sugihara (2005) counterbal-
ance this limitation by adding a resistive force to prevent unbounded velocities. Nev-
ertheless, this is insufficient to achieve a realistic model physical model. Recently,
Brefeld et al. (2019) circumvent the difficulties in deriving a realistic model from
physics by proposing a purely data-driven approach, although their probabilistic
model suffers from expensive kernel density estimations in practice.

Naturally, sports analytics is not the only domain where movement models are
prominently deployed. Besides the already mentioned areas, other applications
include vehicle trajectory analysis (Besse et al. 2018), pedestrian trajectory esti-
mation from videos (Zhong et al. 2020), and real-time robot trajectory prediction
(Gomez-Gonzalez et al. 2020).

Normalizing flows recently emerged as an attractive approach to learning densi-
ties. A significant advantage over other methods for learning densities using neural
networks is that they allow the direct maximization of the log-likelihood. Alterna-
tives such as generative adversarial networks (GANs) (Goodfellow et al. 2014) and
variational autoencoders (VAEs) (Kingma and Welling 2014; Rezende et al. 2014)

 S. G. Fadel et al.

1 3

use instead surrogate learning objectives for this task, such as the GAN adversarial
loss and the VAE evidence lower bound (ELBO). While this does not hamper their
use as generative models, they are not suitable for estimating the likelihood of a
given data point.

In the last few years, a number of different flow-based models were proposed. A
particular family of models, derived from NICE (Dinh et al. 2015), is appealing due
to their computationally efficient nature while being simple to implement. Improve-
ments such as RealNVP (Dinh et al. 2017) and Glow (Kingma and Dhariwal 2018)
were proposed over the years, achieving state-of-the-art performance to model
complex, high-dimensional distributions, while keeping the attractive properties of
NICE. Similarly, autoregressive flow models such as NAF (Huang et al. 2018) and
B-NAF (De Cao et al. 2019) have been proposed. Particularly interesting are con-
ditional normalizing flows (Lu and Huang 2020), a simple improvement over Glow
which allows them to model distributions conditioned on continuous variables. For
an in-depth analysis of these and their relation to other flow-based models, we refer
the reader to Papamakarios et al. (2021).

3 Preliminaries

Let T = (�(t))t∈ℝ+ be the trajectory of positions �(t) ∈ ℝ
d at time t of an object. In the

remainder, we deal with two-dimensional movements, i.e., �(t) = (x
(t)

1
, x

(t)

2
)⊤ , but the

following definitions also hold for higher-dimensional movements. The positional
data might come with additional information, the so-called context �(t) at time t.
An example for context is the velocity vector �(t) ∈ ℝ

d , or its magnitude, which is
known as speed v(t) = ‖�(t)‖2 , respectively. Our goal is to model the distribution of
the position �(t+tΔ) , which is tΔ > 0 seconds in the future, given the current position
�
(t) and context �(t).

To make the movement model location-invariant, we consider a local coordinate
system centered at the object’s current position and along the last movement direc-
tion. Figure 1 shows an example. The object under consideration is currently at posi-
tion B and moves along the solid trajectory. The dashed lines show the local coor-
dinate system which is aligned using the last direction, estimated by a position A,
which is in the past. In tΔ = 1 seconds, the position C is reached. The distribution of
the next position, which is what we want to model, is depicted as a red contour plot.

3.1 Movement models based on kernel density estimates

Our movement model is based on concepts of Brefeld et al. (2019). They consider
movement models for trajectories in soccer and employ a kernel density estimate for
their model. The idea is as follows. Given a trajectory (or a set of many trajectories)
one first extracts triplets as shown in Figure 1. Let (�A, �B, �C) be such a triplet of
positions with timestamps tA , tB , and tC such that tA < tB < tC . We denote the time
difference of tA and tB as t� = t

B
− t

A
 and the difference of tB and tC as t� = tC − tB .

Here, �B describes the current position, �A is used to estimate the current direction in

1 3

Contextual movement models based on normalizing flows

which the object is moving and �C denotes the position in the future. Hence, the next
position �C describes the ability to move within a given time horizon t� . Collect-
ing multiple next positions �C , represented in the local coordinate system as �local

C
 ,

allows for creating a movement model. Such a model is then able to quantify the
likelihood of a possible next position relative to its current position.

To obtain the next position �local
C

 , the triplet is transformed into the local coordi-
nate system. The transformation realizing this first subtracts the current position �B
from all points of the triplet. This way, the triplet is centered at the current position.
Then, the triplet is rotated such that the last position, i.e., �A , is aligned with the
x-axis of the local coordinate system. Let �(�A, �B, �C) = �

local
C

 be this transforma-
tion. Mathematically, this transformation can be expressed as

where r is a distance given by r = ‖��������⃗�B�C‖2 and � is a signed angle given by
𝜃 = ∡(�������⃗�A�B, ��������⃗�B�C) . After processing multiple triplets along a trajectory for fixed
time differences t� and t� and storing the corresponding next positions in the local
coordinate system in a set �t�

 , a kernel density estimate is employed on �t�
.

Brefeld et al. (2019) construct several movement models for various time hori-
zons t� . As a context, they use the current speed of a player. To add this contextual
information, they filter the triplets by current speed. This is done by first defining a
binning of the range of possible speeds. Specifically, they use the following binning:
[0, 1) (standing), [1, 7) (walking), [7, 14) (jogging), [14, 20) (running), and [20, 40]
(sprinting), where all values are in kilometers per hour. Then, movement models are

�
local
C

=

[
r ⋅ cos(�)

r ⋅ sin(�)

]
,

Fig. 1 Illustration of a movement model (purple contour lines). The solid black line depicts a trajectory.
The last, current, and next position of an player are marked as A, B, and C, respectively. The movement
model shown in purple models the distribution of the next position C (red dot) using the information of
the past and present (A and B). The dashed lines denote a local coordinate system centered at the player
and aligned in the current direction of movement

 S. G. Fadel et al.

1 3

constructed for multiple time horizons per speed range S, yielding �S
t�
 . An example

is depicted in Fig. 2. The left shows the set �S
t�
 holding the next positions within the

local coordinate system for a time horizon of t� = 1s . We apply the context of a
speed range S = [14, 20) , where the values are again in kilometers per hour. The cor-
responding kernel density estimate is shown on the right. Following Brefeld et al.
(2019), we deploy a Gaussian kernel and select the bandwidth using Scott’s rule
(Scott 2015).

The time complexity of this approach is its biggest drawback. Computing the
likelihood of a single d-dimensional data point with a kernel density estimate built
on n triplets (�A, �B, �C) takes O(dn) time. Analogously, the approach has also a large
memory footprint, as every known data point must be accessible during prediction.
The space complexity also scales in O(dn).

3.2 Normalizing flows

Let X = {�1,… , �n} ⊂ ℝ
d be instances drawn from an unknown distribution px(�) .

The goal is to estimate an accurate model of px(�) . This is done by expressing px(�)
in terms of a simpler, known distribution pz(�) , and learning a bijective map between
them. Formally, let � ∶ ℝ

d
→ ℝ

d be a bijective and differentiable function. Using the
change of variable theorem and � = � (�) , we can express px(�) as

where J
�
(�) is the Jacobian matrix of the diffeomorphism � . The distribution pz(�)

is often referred to as a base distribution (Papamakarios et al. 2021). We henceforth
drop the subscript of the distribution p whenever it is clear from the context.

Figure 3 depicts a one-dimensional example. The left-hand side shows the data
distribution, which is usually unknown. The goal is to map from this distribution to
a known, base distribution, depicted on the right side. The usual choice is a standard
Gaussian.

px(�) = pz(� (�))| det J� (�)|,

0 2 4 6
xlocal1 (meters)

−3

−2

−1

0

1

2

3

x
lo
ca
l

2
(m

et
er
s)

SSt∆

0 2 4 6
xlocal1 (meters)

−3

−2

−1

0

1

2

3

x
lo
ca
l

2
(m

et
er
s)

KDE of SSt∆

Fig. 2 An example of the set �S

t�
 with a time horizon of t� = 1s and a speed range of 14-20 km/h and the

corresponding kernel density estimate

1 3

Contextual movement models based on normalizing flows

In practice, � is not just a fixed transformation, but rather a chain of parameterized
transformations. Hence, we deal with � (�) , which is represented by a chain of bijec-
tive transformations � (�) = �

(�)

L
◦�

(�)

L−1
◦⋯◦�

(�)

1
 , where L is the total number of trans-

formations. This composition defines a normalizing flow between � = �0 and � = �L
and is precisely what enables flows to be computationally and analytically tractable.
Let �i = fi(�i−1) be the intermediate variable, where i = 1,… , L . Then, log p(�) can
be expressed as the log-likelihood of the base distribution and the log-determinant
of the Jacobians of each bijection

Thus, we can learn the transformation from the data X to its base representation by
optimizing the parameters � that minimize the negative log-likelihood

In the remainder, we further simplify the notation by dropping the superscript �
from � . Note that the example in Fig. 3 described above shows that a normalizing
flow defines a generative model. After learning the transformation � on data X , we
can sample from the base distribution and obtain new samples, distributed according
to px , by using the inverse transformation �−1.

4 Learning movements with flow‑based models

The choice of transformations for building the flow � involves trade-offs between
computational efficiency during learning or data generation and its ability to model
px . In the last few years, several different approaches emerged. To turn a normal-
izing flow into a movement model, we focus on only a few characteristic properties.
As movement data tends to be low-dimensional, it can often be sampled at a high
frequency, resulting in millions of observations.

4.1 Flow‑based models without context

As an architecture for our flow model, we consider Glow (Kingma and Dhariwal
2018), which is itself based on RealNVP (Dinh et al. 2017). Glow is built from

log p(�) = log p(�) +

L∑

i=1

log
|||det J� (�)i

(�i−1)
|||.

min
�

−
∑

�∈X

log p(�).

z0

p(z0)

z1

p(z1) p(zi)

zL

p(zL)
f1(z0)

. . .
fi+1(zi)

Fig. 3 A simple normalizing flow on one-dimensional data. The plot to the left depicts the usually
unknown data distribution, while the plot to the right shows the base distribution (standard Gaussian)

 S. G. Fadel et al.

1 3

three main transformations: activation normalization (actnorm), 1 × 1 invertible
convolutions, and affine coupling. Those transformations are employed in a multi-
scale architecture, reshaping the image tensors to have fewer pixels with more
channels, referred to as squeezing. The channels are then split and further opera-
tions are only performed on half of them. This squeezing and splitting scheme is
performed several times for scalability. Squeezing, however, is not suitable for
vectorial data including d-dimensional positions. Furthermore, the dimension-
ality of our setting curtails the computational performance gains from splitting,
allowing us to use the entire vector in every transformation of the flow.

An overview of the non-contextualized architecture we use is depicted in
Fig. 4 (non-grayed area). We detail the actnorm and affine coupling transforma-
tions next. For both of them, let �, � ∈ ℝ

d be d-dimensional vectors, where � is
the input of the current transformation and � is its output, being directly fed into
the next transformation in the chain.

Actnorm. Let � ∈ ℝ
d be a scaling vector and � ∈ ℝ

d an offset vector. The act-
norm transformation Kingma and Dhariwal (2018), its inverse, and log-determi-
nant of its Jacobian are given by

respectively, where ⊙ denotes the Hadamard product. Particularly, � and � are
learned as part of the transformation and are initialized with the first batch of data.
This initialization is such that the mean and standard deviation of � are zero and one,
respectively.

� = � (�) = �⊙ � + �,

� = �
−1(�) = (� − �)∕�,

log | det J
�
(�)| =

d∑

i=1

log |ai|,

Fig. 4 Overview of the flow model: the composition of actnorm, permutation and coupling is repeated
multiple times to build the flow. The contextual part is shaded in gray. � is the input to the flow, in our
setting the local coordinates (�local

C
); � is the output of the transformation into the base representation,

which follows a predefined (base) distribution; in the conditional variant, � is the context vector, which
can be used to characterize the movement being modeled, such as speed. CN

ca
 (conditional actnorm) and

CN
cac

 (conditional affine coupling) augment the respective transformations with contextual information

1 3

Contextual movement models based on normalizing flows

Affine coupling. This transformation (Dinh et al. 2017) is slightly more involved.
The input � ∈ ℝ

d is initially split into two parts (�1, �2) , each of which is d′-dimen-
sional, where d� = d∕2 . Then, the second part is simply copied, �2 = �2 , while �1 is
transformed based on information from �2 as follows:

where NNac ∶ ℝ
d�
→ ℝ

d is a nonlinear mapping, generally realized by a neural
network. The output is then � = concat(�1, �2) . This inverse transformation can be
computed by first splitting � into (�1, �2) , copying the second part as before, i.e.,
�2 = �2 , computing the log-scale and offset parameters using NNac(⋅) as in Eq. (1),
and computing the inverse affine linear transformation via

Finally, the two parts are merged with � = concat(�1, �2) . The log-determinant of the
Jacobian of this transformation is

Permutation. Not using squeezing and splitting entails a few additional consider-
ations that directly lead us to 1 × 1 convolutions that are particularly designed for
these cases. Squeezing increases the number of channels and affect the way affine
coupling layers perform. Hence, a permutation operation over the channels is usu-
ally performed before an affine coupling transformation. This allows the squeezing
to affect a broader range of channels than it is designed to, lifting the flow to per-
form more sophisticated transformations. As such, having a permutation-like opera-
tion over the channels plays a significant role. Recall that this is not the case in our
scenario as we cannot apply squeezing at all. Instead, we propose to employ a per-
mutation operation that simply reverses the dimensions of the input. This operation
has an inverse transformation and its log-determinant is equal to zero.

A major benefit of this approach is the ability to compute predictions indepen-
dently of the data used for training. It only requires a number of computations
proportional to the data dimensionality d and the number of transformations L
employed. In other words, computing the likelihood of a data point takes O(dL) time.
Additionally, only the model parameters have to be stored in memory, resulting in a
significantly smaller memory footprint that the KDE-based movement model when
dealing with large data sets.

4.2 Contextualized flow‑based movement models

In this setting, we are particularly interested in contextual information associated
with movement data, such as speed. Therefore, the transformations employed
in the flows should be able to take into account this additional information. A

(1)
(log �, �) = NNac(�2),

�1 = exp(log �)⊙ �1 + �,

�1 =
(
�1 − �

)
∕ exp(log �).

log | det J
�
(�)| =

d�∑

i=1

log |ai|.

 S. G. Fadel et al.

1 3

conditional flow-based model that appropriately addresses those requirements is
conditional Glow (c-Glow) (Lu and Huang 2020). As the name suggests, c-Glow
is based on Glow (Kingma and Dhariwal 2018), which is itself based on Real-
NVP (Dinh et al. 2017). Nevertheless, the goal is to derive a contextualized
model that can be conditioned on arbitrary contexts. The most significant change
is the addition of a conditioning network, denoted by CN(⋅) , which replaces the
parameters of the actnorm and affine coupling layers with surrogates that are pre-
dicted from the context � ∈ ℝ

dc . Hence, a conditional probability density can be
devised whose log-variant is given by

The parameters �(�) of the transformations �i are now dependent on the context � .
Note that this does not change the computation of the log-determinant of the Jaco-
bian in both cases. The new transformations with the addition of the CN are detailed
below.

Conditional actnorm. The scaling and offset vectors � and � are now computed by
CNca ∶ ℝ

dc → ℝ
2d as

and the transformation is then carried out as before. The original initialization pro-
cedure for �, � is no longer needed.

Conditional affine coupling. This transformation already computes its scaling �
and offset � parameters from NNcac ∶ ℝ

d�+d
→ ℝ

d . The change introduced by con-
ditioning on � is an additional input to NNcac(⋅) , computed by CNcac ∶ ℝ

dc → ℝ
d ,

as

followed by the same operations as before.
Figure 4 provides an overview of the complete normalizing flow model with

and without the conditioning on � . As shown in Fig. 5, learning contextual flow-
based probabilistic movement models proceeds as follows: Given positional data,
triplets (A, B, C) are extracted from the trajectories. The future position C in a
time horizon t� of interest is then represented in a local coordinate system for
spatial invariance. The positions which can be reached in time t� are then trans-
formed, using our normalizing flow model, into a representational space that fol-
lows a standard Gaussian.

The additional context taken into account by the model, while crucial to its
flexibility in dealing with a variety of movements observed in the data, incurs lit-
tle additional computational cost. As in the non-contextual case, the time to com-
pute the likelihood of a data point is O(dL) and the amount of memory required is
proportional to the number of parameters of the model.

log p(�|�) = log p(�) +

L∑

i=1

log
|||det J�̃ (𝜃(�))i

(�)
|||.

(�, �) = CNca(�),

(log �, �) = NNcac(�2, CNcac(�)),

1 3

Contextual movement models based on normalizing flows

5 Experiments

We now evaluate our flow-based probabilistic movement models. First, we conduct
an in-depth analysis of our proposed approach and compare its performance with
several baselines. Second, we investigate whether using the positions of the remain-
ing players as additional contextual information improves our movement model. For
all experiments, we use data from professional soccer.

5.1 Data

The tracking data from soccer consist of coordinates of each player and the ball,
recorded with camera-based systems at 25Hz for five professional games from the
German Bundesliga. Each game is encoded as a sequence of triplets (x(t)

1
, x

(t)

2
, v(t))

describing the x and y coordinates on the pitch and the current speed v(t) in km/h at
time t for every player. Thus, every game consists of about 25 ⋅ 60 ⋅ 90 = 135, 000
positions per player. The x and y positions are relative to the origin. Hence, the coor-
dinates are within [−52.5, 52.5] × [−34.0, 34.0] ⊂ ℝ

2 , since the dimensions of a
standard soccer field are 105 × 68 meters. We use the first four games for training
and the last game for testing.

5.2 Baselines

We compare our model against the following baselines. The first baseline,
denoted as KDE, follows the idea of Brefeld et al. (2019) and deploys kernel
density estimates for the movement models. We use a Gaussian kernel and select
the bandwidth using Scott’s rule (Scott 2015). A second, straightforward base-
line simply estimates a two-dimensional Gaussian (mean and covariance) on the

Fig. 5 A summary of our approach. Left: Triplets are extracted from a trajectory using some current and
previous position (black) as well as a future position (red) reached within the time horizon t� . Center:
The future position is remapped using � into a local coordinate system. The coordinates are centered at
the current position and aligned with the previous position. Right: Points reached in time t� are trans-
formed using a conditional normalizing flow � . The flow � is optimized to ensure that points under this
transformation are distributed according to a Gaussian base distribution

 S. G. Fadel et al.

1 3

point cloud � as introduced in Sect. 3, see for instance Figure 2. We refer to this
baseline as Gaussian. Third, we test a two-dimensional histogram, again on the
point cloud mentioned above. The histogram uses an equally spaced grid over
[−10, 30] × [−20, 20] with 1600 cells of size 1 × 1 meter. Note that this range cov-
ers a larger space than depicted in Figure 2 and is suitable for all velocity ranges.
We refer to this baseline as Histogram.

Depending on the experiment we use different configurations. We experi-
ment with time horizons t� ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0} , where every value is
in seconds. The baselines use the same speed discretization as in Brefeld et al.
(2019) which is {[0, 1), [1, 7), [7, 14), [14, 20), [20, 40]} . Those values are in kilo-
meters per hour. Consequently, we train per baseline 7 ⋅ 5 = 35 different configu-
rations, one per time horizon and speed range. As for the t� , denoting the time
difference for estimating the direction in which a player is moving, we again fol-
low Brefeld et al. (2019) and use t� = 0.2 seconds. We show the influence of t�
in "Appendix 1". The code for all baselines is written in Python using NumPy
(Harris et al. 2020) and SciPy (Virtanen et al. 2020). All experiments run on a
machine with an Intel Xeon CPU, 256GB of RAM, and an NVIDIA V100 GPU.

5.3 Evaluation metrics

When evaluating and comparing movement models, it is important to quantify
how well a model explains the observed movements. In other words, a movement
model should be capable of showing where the agent or object of interest will be
in the near future. Consider a model that predicts a large area of future positions.
Although this model explains all future positions by its sheer broadness, it is not
concise. Hence, a good movement model needs to be concise and accurate and, to
fulfill both, the model has to find an optimal trade-off between area and accuracy
to estimate future positions in the smallest area possible.

A natural measure for this trade-off is the (log-)likelihood. Since densities are
normalized by definition, larger areas possess lower point-wise likelihoods while
compact densities capture only trivial movements and do not generalize well.
As a consequence, a model achieving a good trade-off will also achieve higher
likelihoods.

We additionally aim to measure the complexity of the different approaches.
Section 3 shows that the complexity of predicting a likelihood either scales in
the size of training data (KDE) or in the complexity of the neural networks (flow-
based models). We thus measure the average evaluation time and report its quan-
tity in seconds. Note that the prediction speed remains constant for both the His-
togram and the Gaussian baseline.

A similar argument holds for memory footprints of the different approaches.
The predictive performance of KDE is not only expected to deteriorate for data at
large scales, it is also expected to require an excessive amount of memory. Hence,
we also analyze the memory requirements of all evaluated methods and provide
the number of variables (i.e., floats or double precision) that need to be stored.

1 3

Contextual movement models based on normalizing flows

5.4 Setup of the flow‑based movement models

For a thorough comparison of the unconditional and the conditional flow-based
movement models, we experiment with several configurations of the proposed mod-
els. The unconditional Flow uses the same time horizons and speed discretizations
as the baselines above. Hence, we consider as many different models as the baselines
for obtaining a fair comparison. With Flow, we intend to show that movement mod-
els based on normalizing flows achieve the same or better predictive performance
as the state of the art. We introduce contextual information, given by �(t) = (v(t), t�) ,
directly as a part of a single model in CFlow. Here, we use the current speed v(t) and
the time horizon t� as context, just as for the baselines. Note that the baselines are
implicitly conditioned on the time horizon as well due to maintaining different mod-
els for different intervals. Hence, the purpose of CFlow is to have a unified model
instead of many different ones. We further evaluate a model called CFlow-extended
which leverages the positions of other players as additional contextual information.
This model uses as context �(t) = (v(t), t𝛥, x̄

(t)

rel
) , where x̄(t)

rel
∈ ℝ

1

2
dhidden is a permutation

invariant representation of the relative positions of the remaining players. We pro-
vide details of how we compute this vector in "Appendix 2".

All models follow the architecture shown in Figure 4, repeating the three depicted
transformations (actnorm, permutation, and coupling) L = 8 times in sequence. The
same applies to their contextual alternatives. For unconditional and conditional flow-
based models, the architectures of the neural networks are outlined in Table 1. All
networks use SELU (Klambauer et al. 2017) activations, d denotes the dimensional-
ity of the input � and dc is the dimensionality of the context which is for CFlow and
CFlow-extended, dc = 2 and dc = 2 +

1

2
dhidden , respectively. The size of the hidden

dimensionality is set to dhidden = 16 . Just as the authors of Glow (Kingma and Dha-
riwal 2018), we initialize the weights and biases of the last layer of each neural net-
work in Table 1 to zeros for stability. This implies the actnorm and affine coupling
layers are initialized to identity transformations before training.

The code is written in Python using JAX (Bradbury et al. 2018). We employ the
Adam optimizer (Kingma and Ba 2015) with a learning rate of 10−3 . For stability,

Table 1 Neural network architectures detailed as a sequence of fully connected layers, where the con-
stants before and after arrows indicate the dimensionalities of input and outputs for that layer, respec-
tively, while SELU denotes the activation function Klambauer et al. (2017). The networks are part of the
affine coupling NN

ac
(�

2
) that operates on the second part of the intermediate representation �

2
∈ ℝ

d∕2 ,
the conditional actnorm CN

ca
(�) which uses the context � ∈ ℝ

d
c , and the conditional affine coupling

NN
cac
(�

2
, �̃) , where �̃ = CN

cac
(�) ∈ ℝ

d

Network Architecture and activation functions

NNac (d∕2)
SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ d

CNca d
c

SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ 2d

NNcac (d∕2 + d)
SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ d

CNcac d
c

SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ d

 S. G. Fadel et al.

1 3

we clip gradients (Pascanu et al. 2013) with norms larger than 20. The batch size is
set to 1, 024 for all models except the conditional models which condition on time
horizon, in which a larger batch size of 1, 024 ⋅ Nt�

 is used to accommodate for dif-
ferent time horizons, where Nt�

 denotes the number of different time horizons. All
models are trained for 100 epochs with no early stopping.

5.5 Results

We first evaluate the predictive performance of the baseline movement models and
compare them to the unconditional Flow. To have a fair comparison, we deal with
35 different configurations per model. We proceed as follows. From the test game,
we randomly sample a trajectory over three minutes for every player, leaving us with
22 such trajectories. Then, for several time horizons ranging from 1s to 4s, we com-
pare the average log-likelihood per trajectory and model as well as the correspond-
ing computation time for the prediction.

Unsurprisingly, the average log-likelihoods decrease for larger time horizons t� ,
as the models become progressively more uncertain with increasing t� . Figure 6
shows the relative improvement of each model compared to the KDE. It can be seen
that the Flow model (green) performs on par with the KDE (dashed red) while the
Gaussian approximation (brown) is almost consistently the worst. In addition, the
performance gap of the Histogram (dotted purple) closes for larger time horizons,
however, it underperforms compared to the KDE.

The relative improvement of CFlow (orange) and CFlow-extended (blue), each of
which are single contextual models, shows that they clearly dominate all baselines
by far. We credit this observation to conditioning. While the other models use a pre-
defined velocity discretization, both CFlow and CFlow-extended adapt specifically
to any velocity without the need for binning intervals with identical model output.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
time horizon t∆ (seconds)

-20.0%

-15.0%

-10.0%

-5.0%

0.0%

5.0%

10.0%

15.0%

ch
an

ge
re
la
ti
ve

to
K
D
E

−1.99 −3.23 −4.02 −4.66 −5.12 −5.54 −5.85
Average log-likelihood of KDE per t∆

CFlow-extended
CFlow
Flow
KDE
Histogram
Gaussian

Fig. 6 Average log-likelihood values (22 players) per model relative to the KDE baseline for various
time horizons t� . The specific values of the KDE are stated in the upper x-axis

1 3

Contextual movement models based on normalizing flows

If we additionally include the relative positions of the other players into the context
and condition on it, the performance increases further.

The flexibility afforded by conditioning can also be seen in Fig. 7, which visual-
izes a trajectory of a soccer player drawn from the data. The bottom-right part of the
figure depicts the current velocities of the player. In the remaining parts, the trajec-
tory is colored according to the log-likelihood values using the Gaussian, Flow, and
CFlow models for a time horizon of t� = 1s . We also evaluate the average log-like-
lihood of this trajectory showing that CFlow has the highest log-likelihood, mean-
ing it predicts the movement best. Once again, the Gaussian model yields the worst
log-likelihood. We credit this due to its implicit symmetry. While being symmetric
for moving left or right might be acceptable in this use case, the symmetry in the
orthogonal direction is clearly not present, as seen in Fig. 2. Visual inspection shows
the effect of binning the velocities on the performance of the Gaussian and Flow;
the coloring exhibits a block structure due to velocity transitions across bins. By
contrast, the conditional CFlow distinguishes by a continuous coloring, indicating
a much better adaptation to the trajectory at hand. CFlow and CFlow-extended can
smoothly adjust to the current velocity at each point in time.

Table 2 compares the predictive performance of the competitors in terms of
computation time (in seconds). The numbers are again averaged over 22 individual
trajectories and are shown with their standard errors. The baselines Gaussian and
Histogram take almost no time to compute the predicted movements. KDE is con-
sistently the slowest model by orders of magnitude. The result shows the limitations

Fig. 7 A sample trajectory from soccer data. The bottom right plot shows speed along the trajectory.
Other plots depict log-likelihood values along the trajectory for the Gaussian, Flow, and CFlow models
for a time horizon of t� = 1s . Darker colors in these other plots indicate the model estimates that position
as less likely. We also provide avg. log-likelihood values for each model in this trajectory. The red star
denotes the start of the trajectory. Black lines indicate model transitions for the Gaussian and Flow mod-
els, which rely on speed binning. Black triangle markers indicate an example where models behave dis-
tinctively: at those points in the trajectory the player starts accelerating and then slows down and CFlow
maintains a consistent quality of predictions, while the other two models do not

 S. G. Fadel et al.

1 3

of the KDE for (near) real-time applications and/or large data sets. Our proposed
flow-based models are only marginally slower than the straightforward competitors
and, as expected, enable predictions that can be computed very efficiently.

The KDE baseline is not only the slowest approach when comparing evaluation
time, it has also the highest memory demand, as Table 3 shows. This is due to the
nonparametric nature of the approach. The more training data is observed and inte-
grated, the better the model. Trivially, integrating more data into a KDE also means
to store exactly these additional data. In comparison, the Histogram baseline has a
fixed grid and velocity binning, and, hence, a fixed memory footprint. The Gauss-
ian exploits strong assumptions (e.g., unimodality, symmetry) and needs the least
amount of memory, but is quite limited in expressiveness. Our proposed flow-based
models have moderate memory requirements which neither grow with training data
as the KDE, nor with a higher precision or finer-grained bins as the Histogram.

6 Discussion

Binning velocities are common trick in histogram-based movement models since
continuous movements can be treated as discrete events that are instances of one or
another bin. A major issue that is usually not addressed properly is how to find the
optimal size of bins for a problem at hand. Often, optimal sizes are not equidistant
but grow with the values of the variable of interest, such as speed. The bins also
induce hard thresholds that may lead to treating similar values very differently, if

Table 2 Evaluation time
averaged over 22 players (incl.
standard errors) in seconds

Model t� = 1.0s

KDE 774.3s ± 23.0

Histogram < 0.1s ± 0.0

Gaussian < 0.1s ± 0.0

Flow 0.5s ± 0.0

CFlow 0.1s ± 0.0

CFlow-extended 0.7s ± 0.0

Table 3 Memory footprint of
the evaluated approaches. The
memory demand is stated in
terms of floating point numbers
which need to be saved

Model No. of models Memory demand

Per model Total

KDE 35 variable 175,177,098
Histogram 35 1,600 56,000
Gaussian 35 6 210
Flow 35 2,360 82,600
CFlow 1 11,704 11,704
CFlow-extended 1 15,056 15,056

1 3

Contextual movement models based on normalizing flows

they end up in two neighboring bins. The presented contextual models do not have
these limitations as they work directly on the continuous signal.

In the case of movement models, binning leads to maintaining several models and
renders the space and time complexity of the models highly inefficient. By contrast,
the contextual models do not rely on binning and simply condition on all variables
of interest such as current velocity, time horizon, and even the position of the other
players. We thus end up with only a single model which is efficient and allows for
(near) real-time processing. Our experiments show that both contextual models are
moreover achieving superior performance in terms of log-likelihood and clearly out-
perform all other approaches.

As another (straightforward) baseline, we incorporated a Gaussian in the experi-
ments. Naturally, a Gaussian is trivial to estimate and turns out efficient in time and
space. However, these advantages imply assumptions on the densities being uni-
modal and symmetric. While some scenarios may support these claims, others may
suffer from this oversimplification, as shown in Fig. 8. It depicts the movements of
a goal keeper and the point cloud has clearly two modes. Estimating the density of
the points with a Gaussian introduces unnecessary errors by assigning a great deal
of probability mass to unlikely events. Again, the proposed contextual models do not
make any assumption on the nature of the densities and adapt to any multi-modal
distribution of points.

A practical application for movement models is to compute so-called zones of
control that describe the areas which are controlled by a player. The underlying idea
is that the payer who controls the zone is expected to arrive first at every position
within this area (Taki and Hasegawa 2000; Gudmundsson and Wolle 2014; Horton
et al. 2015; Spearman et al. 2017; Brefeld et al. 2019). Figure 9 shows an example.
Using any of the CFlow models to compute the zones of control removes the neces-
sity of binning velocities and time horizons; computation time and memory require-
ments are very low, even when training on massive amounts of data, compared to
KDE-based approach in Brefeld et al. (2019). Our models thus allow for (near) real-
time processing of live data and may be used in live analysis and broadcasts to visu-
alize key situations.

Finally, while movement models, by definition, compute the area of possible (near-)
future positions, they do not allow for predicting positions. Our contextual movement

−1 0 1 2
xlocal1 (meters)

−1.0

−0.5

0.0

0.5

1.0

x
lo
ca
l

2
(m

et
er
s)

SSt∆

−1 0 1 2
xlocal1 (meters)

−1.0

−0.5

0.0

0.5

1.0

x
lo
ca
l

2
(m

et
er
s)

KDE of SSt∆

Fig. 8 An example of the set �S

t�
 (left) and corresponding kernel density estimate (right) for a goal keeper

 S. G. Fadel et al.

1 3

models, however, may overcome this issue by explicitly conditioning the models also
on positions of other players (CFlow-extended) and the ball, ball possession indica-
tors, etc. In principle, any CFlow should adapt to the current positioning of players and
ball on the pitch, hence, shifting the probability mass toward areas that better represent
motions of professional athletes given the current situation. Although these assump-
tions need to be confirmed in additional (empirical) studies and are clearly out of scope
for the present paper, the sheer possibility indicates the potential impact and impor-
tance of this line of work.

7 Conclusion

In this paper, we studied the problem of learning movement models in a purely data-
driven fashion, which we evaluated on data from professional soccer matches. We cir-
cumvented the limitations of previous approaches and cast the problem as a conditional
density estimation task. We exploited characteristics of the low-dimensional problem
formulation to devise conditional normalizing flows for modeling movements. In con-
trast to the state of the art, our contextual model consists of only a single model. Hav-
ing a conditional model proved important for the integration of contextual information,
such as velocities of movements. In principle, any relevant information can be used as
context. Moreover, they outperformed all competitors by far when it came to predictive
performance and turned out very efficient. Their computation times were comparable
to trivial baselines and orders of magnitude faster than the state of the art.

Fig. 9 Soccer pitch showing players and the controlled spaces per player derived from the individual
movement models

1 3

Contextual movement models based on normalizing flows

Appendix 1: Influence of tı

Figure 10 shows the log-likelihood values of CFlow for the same setting as Fig. 6, but
now also varying t� . The figure shows there is little influence from varying t� when
compared to t� . Although a choice of t� = 0.1s seems to be better, we follow previous
work of Brefeld et al. (2019) and use t� = 0.2s.

Appendix 2: Details of CFlow‑extended

CFlow-extended uses contextual information given by �(t) = (v(t), t𝛥, x̄
(t)

rel
) , which

extends the current speed of the player v(t) and the time horizon t� by the positions
of the other players, relative to the player under consideration, i.e., x̄(t)

rel
 . For soc-

cer, there are 21 remaining players whose relative positions are summarized in the
set X(t)

rel
= {�

(t)

1
,… , �

(t)

21
} . However, instead of simply stacking those positions into

a vector, we leverage an aggregated representation �̄(t)
rel

∈ ℝ
1

2
dhidden to circumvent the

problem of ordering those players. Here, dhidden is the dimensionality of the aggre-
gated representation �̄(t)

rel
 . The latter is obtained by employing a relation network San-

toro et al. (2017) and defined as

where nrel = |X(t)

rel
| and both �pair ∶ ℝ

2d
→ ℝ

dhidden , �global ∶ ℝ
dhidden → ℝ

1

2
dhidden are

small feedforward neural networks with architectures outlined in Table 4. The out-
put of this aggregation step, x̄(t)

rel
 , is then used by the conditioning networks CNca(�)

and CNcac(�) whose input dimensionalities increase by 1
2
dhidden . An example of the

relation network is depicted in Fig. 11. The remainder of the flow is then carried out
in the same way as CFlow.

�̄
(t)

rel
= �global

(
1

n2
rel

nrel∑

i=1

nrel∑

j=1

�pair

(
�
(t)

i
, �

(t)

j

))
,

Fig. 10 Log-likelihood values
computed by CFlow in the same
setting as Figure 6

1.0 1.5 2.0 2.5 3.0 3.5 4.0
t∆ (seconds)

0.1

0.2

0.4

0.6

1.0

t δ
(s
ec
on

ds
)

−1.68 −3.01 −3.85 −4.52 −5.01 −5.44 −5.77

−1.76 −3.06 −3.89 −4.55 −5.04 −5.46 −5.79

−1.89 −3.15 −3.95 −4.61 −5.08 −5.50 −5.82

−2.02 −3.24 −4.02 −4.66 −5.13 −5.54 −5.86

−2.21 −3.38 −4.13 −4.75 −5.20 −5.60 −5.91 −5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g-
lik

el
ih
oo

d

Table 4 Network architectures
for CFlow-extended

Network Architecture and activation functions

�pair 2d
SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

�global dhidden

SELU
��������������������→ dhidden

SELU
��������������������→ dhidden

SELU
��������������������→

1

2
dhidden

 S. G. Fadel et al.

1 3

Acknowledgements The authors would like to thank Hendrik Weber, Deutsche Fußball Liga (DFL),
and Sportcast GmbH for providing positional data. This research was funded in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Brazil, Finance Code 001 and by FAPESP
(grants #2018/19350-5, #2017/20945-0, #2016/50250-1, #2017/24005-2, #2019/17729-0, #2015/24494-
8). This research was partially funded by the RFF PastOPol project.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Besse, P.C., Guillouet, B., Loubes, J., Royer, F.: Destination prediction by trajectory distribution-based
model. IEEE Trans. Intell. Transp. Syst. 19(8), 2470–2481 (2018)

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M.J., Leary, C., Maclaurin, D., Wanderman-Milne, S.:
JAX: composable transformations of Python+NumPy programs. http:// github. com/ google/ jax
(2018)

Brefeld, U., Lasek, J., Mair, S.: Probabilistic movement models and zones of control. Mach. Learn.
108(1), 127–147 (2019)

Byrne, M., Parry, T., Isola, R., Dawson, A.: Identifying road defect information from smartphones. Road
Trans. Res. 22(1), 39–50 (2013)

De Cao, N., Titov, I., Aziz, W.: Block neural autoregressive flow. In: 35th Conference on Uncertainty in
Artificial Intelligence (UAI19) (2019)

Dick, U., Brefeld, U.: Learning to rate player positioning in soccer. Big data 7(1), 71–82 (2019)
Dinh, L., Krueger, D., Bengio, Y.: NICE: non-linear independent components estimation. In: 2015 3rd

International Conference on Learning Representations (ICLR), San Diego, CA, USA, May 7-9,
2015, Workshop Track Proceedings (2015)

Dinh, L., Shol-Dickstein, J., Bengio, S.: Density estimation using Real NVP. In: International Conference
on Learning Representations (2017)

Fujimura, A., Sugihara, K.: Geometric analysis and quantitative evaluation of sport teamwork. Syst.
Comput. Japan 36(6), 49–58 (2005)

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.: Real time trajectory prediction using deep
conditional generative models. IEEE Robot. Autom. Lett. 5(2), 970–976 (2020)

Fig. 11 An example of the relation network with only four objects �(t)
i

 for simplicity. The colored nodes
represent the objects �(t)

i

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://github.com/google/jax

1 3

Contextual movement models based on normalizing flows

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio,
Y.: Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014)

Gottfried, B.: Representing short-term observations of moving objects by a simple visual language. J.
Vis. Lang. Comput. 19(3), 321–342 (2008)

Gottfried, B.: Interpreting motion events of pairs of moving objects. GeoInformatica 15(2), 247–271
(2011)

Gudmundsson, J., Wolle, T.: Football analysis using spatio-temporal tools. Comput., Environ. Urban
Syst. 47, 16–27 (2014)

Haase, J., Brefeld, U.: Mining positional data streams. In: International Workshop on New Frontiers in
Mining Complex Patterns, pp. 102–116. Springer, Cham (2014)

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,
Taylor, J., Berg, S., Smith, N.J., et al.: Array programming with NumPy. Nature 585(7825), 357–
362 (2020)

Horton, M., Gudmundsson, J., Chawla, S., Estephan, J.: Automated classification of passing in football.
In: Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 319–330. Springer,
Cham (2015)

Huang, C.W., Krueger, D., Lacoste, A., Courville, A.: Neural autoregressive flows. In: International Con-
ference on Machine Learning, pp. 2078–2087 (2018)

Hübl, F., Cvetojevic, S., Hochmair, H., Paulus, G.: Analyzing refugee migration patterns using geo-
tagged tweets. ISPRS Int. J. Geo-Inf. 6(10), 302 (2017)

Janetzko, H., Sacha, D., Stein, M., Schreck, T., Keim, D.A., Deussen, O.: Feature-driven visual analytics
of soccer data. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp.
13–22 (2014)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 2015 3rd International Confer-
ence on Learning Representations (ICLR), San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings (2015)

Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. In: Advances in Neu-
ral Information Processing Systems, pp. 10215–10224 (2018)

Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In:2014 2nd International Conference on
Learning Representations (ICLR), Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings (2014)

Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. Adv. Neural
Inf. Process. Syst. 30, 971–980 (2017)

Knauf, K., Memmert, D., Brefeld, U.: Spatio-temporal convolution Kernels. Mach. Learn. 102(2), 247–
273 (2016)

Laube, P., Imfeld, S., Weibel, R.: Discovering relative motion patterns in groups of moving point objects.
Int. J. Geogr. Inf. Sci. 19(6), 639–668 (2005)

Le, H.M., Carr, P., Yue, Y., Lucey, P.: Data-driven ghosting using deep imitation learning. In: MIT Sloan
Sports Analytics Conference (2017)

Lu, Y., Huang, B.: Structured output learning with conditional generative flows. In: Thirty-Fourth AAAI
Conference on Artificial Intelligence (2020)

Mazimpaka, J.D., Timpf, S.: (2016) Trajectory data mining: a review of methods and applications. J.
Spat. Inf. Sci. 13, 61–99 (2016)

McDermott, P.L., Wikle, C.K., Millspaugh, J.: Hierarchical nonlinear spatio-temporal agent-based mod-
els for collective animal movement. J. Agric. Biol., Environ. Stat. 6(3), 294–312 (2017)

Mohan, P., Padmanabhan, V.N., Ramjee, R.: Nericell: Rich monitoring of road and traffic conditions
using mobile smartphones. In: Proceedings of the 6th ACM Conference on Embedded Network Sen-
sor Systems, SenSys ’08, pp. 323–336 (2008)

Padberg-Gehle, K., Schneide, C.: Trajectory-based computational study of coherent behavior in flows.
PAMM 17(1), 11–14 (2017)

Paefgen, J., Michahelles, F., Staake, T.: GPS trajectory feature extraction for driver risk profiling. In: Pro-
ceedings of the 2011 International Workshop on Trajectory Data Mining and Analysis, ACM, New
York, NY, USA, TDMA ’11, pp. 53–56 (2011)

Papamakarios, G., Nalisnick, E., Rezende, D.J., Mohamed, S., Lakshminarayanan, B.: Normalizing flows
for probabilistic modeling and inference. J. Mach. Learn. Res. 22(57), 1–64 (2021)

Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: Interna-
tional Conference on Machine Learning, pp. 1310–1318 (2013)

 S. G. Fadel et al.

1 3

Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference
on Machine Learning, PMLR, pp. 1530–1538 (2015)

Rezende DJ, Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep
generative models. In: International Conference on Machine Learning, pp. 1278–1286 (2014)

Rippel, O., Adams, R.P.: High-dimensional probability estimation with deep density models. arXiv pre-
print arXiv: 13025 125 (2013)

Santoro, A., Raposo, D., Barrett, D.G., Malinowski, M., Pascanu, R., Battaglia, P., Lillicrap, T.: A simple
neural network module for relational reasoning. In: Advances in neural information processing sys-
tems, pp. 4967–4976 (2017)

Scott, D.W.: Multivariate Density Estimation: Theory, Practice, and Visualization. John Wiley & Sons,
New York (2015)

Spearman, W., Pop, P., Basye, A., Hotovy, R., Dick, G.: Physics-based modeling of pass probabilities in
soccer. In: Proceedings of the 11th MIT Sloan Sports Analytics Conference, pp. 1–14 (2017)

Sprado, J. and Gottfried, B., 2008, July. What motion patterns tell us about soccer teams. In: Robot Soc-
cer World Cup, pp. 614-625. Springer, Berlin, Heidelberg

Tabak, E.G., Turner, C.V.: A family of nonparametric density estimation algorithms. Commun. Pure
Appl. Math. 66(2), 145–164 (2013)

Tabak, E.G., Vanden-Eijnden, E.: Density estimation by dual ascent of the log-likelihood. Commun.
Math. Sci. 8(1), 217–233 (2010)

Taki, T., Hasegawa, Ji.: Visualization of dominant region in team games and its application to teamwork
analysis. In: Proceedings computer graphics international, IEEE pp. 227–235 (2000)

Taki, T., Hasegawa, J., Fukumura, T.: Development of motion analysis system for quantitative evaluation
of teamwork in soccer games. In Proceedings of 3rd IEEE International conference on image pro-
cessing 3, 815–818 (1996)

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0: fundamental algorithms for scientific com-
puting in python. Nat. methods 17(3), 261–272 (2020)

Winkler, C., Worrall, D., Hoogeboom, E., Welling, M.: Learning likelihoods with conditional normal-
izing flows. arXiv preprint arXiv: 19120 0042 (2019)

Zheng, S., Yue, Y., Hobbs, J.: Generating long-term trajectories using deep hierarchical networks. Adv.
Neur. Inf. Process. Syst. 29, 1543–1551 (2016)

Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. 6(3), 1–41 (2015)
Zhong, J., Sun, H., Cao, W., He, Z.: Pedestrian motion trajectory prediction with stereo-based 3d deep

pose estimation and trajectory learning. IEEE Access 8, 23480–23486 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/13025125
http://arxiv.org/abs/191200042

	Contextual movement models based on normalizing flows
	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Movement models based on kernel density estimates
	3.2 Normalizing flows

	4 Learning movements with flow-based models
	4.1 Flow-based models without context
	4.2 Contextualized flow-based movement models

	5 Experiments
	5.1 Data
	5.2 Baselines
	5.3 Evaluation metrics
	5.4 Setup of the flow-based movement models
	5.5 Results

	6 Discussion
	7 Conclusion
	Acknowledgements
	References

