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Abstract  . 
A high demand for marine ecosystem services and competition for ocean space are pressing 
marine ecosystems to the limit. Efficient methods for identification, mapping and monitoring 
are needed to understand the dynamic processes of the marine environment and create a 
baseline for good management decisions. The aim of this study was to explore the potential of 
a 360 camera mounted to a small remotely operated vehicle (ROV) to identify, map and monitor 
the spatial distribution of brittle stars in shallow coastal areas. Transect lines were conducted to 
investigate three areas in three consecutive seasons. Images from the 360 camera were analyzed 
for the number of brittle stars, as well as variables related to the substrate and possible indicators 
of food availability. A multivariate statistical analysis was used to investigate connections 
between the different variables in the data set. Additionally, annotated images were used to 
train an algorithm for automatic identification of the species Ophiocomina nigra in images by 
machine learning.  
 
Ophiocomina nigra was easily identified in images. A brittle star bed of this species was found 
on coarse sediment in one of the studied areas. The analysis indicated that the occurrence of 
other visible epifauna was low in this area. In the other areas O. nigra was observed to prefer 
hard elevated surfaces or patches of loose macroalgae. The patterns in spatial distribution can 
be connected to the flexibility in feeding methods exhibited by this species. Brittle stars in the 
genus Ophiura were not possible to identify to species level with this method. The spatial 
distribution of Ophiura sp. was correlated with fine sediments, which can be connected to their 
feeding on epifauna and infauna. The results showed that depth, season, and temperature was 
not determining factors for the distribution of brittle stars in this study.  
 
Many factors influence the image quality and identification success of objects of interest (OOI), 
and trade-offs have to be considered in relation to the scope of the study. MiniROVs have the 
potential to allow for efficient data collection in marine environments, even by citizens. A 360 
camera can substantially increase the information gained with little extra time use and expenses. 
Limitations was met in this study related to the lack of geopositioning and options for automatic 
speed and altitude of the miniROV. This is expected to be solved in newer models of the 
miniROV. The performance of the algorithm used for automatic identification of O. nigra with 
machine learning was an accuracy of 86.7% based on numbers identified by the algorithm 
compared to the numbers annotated manually. Automatic identification with machine learning 
can decrease time needed for image analysis substantially, which is necessary to transform large 
amounts of data into information that can be used for marine conservation and management. 
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Sammendrag 
Stor etterspørsel etter marine økosystemtjenester og konkurranse om havrom presser marine 
økosystemer til det ytterste. Det er et behov for effektive metoder for identifisering, kartlegging 
og overvåking for å forstå dynamiske prosesser i det marine miljøet, og for å skaffe et 
informasjonsgrunnlag for gode forvaltningsavgjørelser. Målet med denne studien var å utforske 
potensialet til et 360-kamera montert på en liten fjernstyrt undervannsfarkost (ROV) for å 
identifisere, kartlegge og overvåke romlig utbredelse av slangestjerner i grunne kystområder. 
Transektlinjer ble utført for å undersøke tre områder over tre sesonger. Bilder fra 360-kameraet 
ble analysert for antall slangestjerner i tillegg til variabler knyttet til substrat og mulige 
indikatorer på mattilgang. En multivariat statistisk analyse ble brukt for å undersøke 
sammenhenger mellom de ulike variablene i datasettet. I tillegg ble annoterte bilder brukt til 
opptrening av en algoritme for automatisk identifisering av arten Ophiocomina nigra i bilder 
ved hjelp av maskinlæring.  
 
Ophiocomina nigra var enkel å identifisere i bilder. En slangestjerneeng med denne arten ble 
oppdaget på grovt sediment i et av de studerte områdene. Analysen indikerte at det var lav 
forekomst av annen synlig epifauna i dette området. I de to andre studieområdene ble det 
observert at O. nigra foretrakk hardt og forhøyet substrat eller ansamlinger av løse biter av 
makroalger. Den romlige fordelingen av arten kan være knyttet til dens fleksibilitet til å benytte 
ulike fôringsstrategier. Slangestjerner i slekten Ophiura var ikke mulig å identifisere til art med 
metoden. Den romlige fordelingen av Ophiura sp. var korrelert med forekomst av fint sediment, 
noe som kan være knyttet til at disse artene spiser bunndyr i og på sedimentet. Resultatene viste 
at dybde, sesong og temperatur ikke var avgjørende faktorer for utbredelsen av slangestjerner i 
dette studiet.  
 
Det er mange faktorer som påvirker bildekvaliteten og identifiseringssuksess av organismer av 
interesse (OOI) og ulike avveininger må gjøres ut ifra omfanget til studien som skal utføres. 
MiniROV’er har potensialet til å muliggjøre effektiv innsamling av data i marine miljøer, til og 
med av borgere. Et 360-kamera kan øke mengden innhentet informasjon betraktelig uten særlig 
økning i tidsforbruk og kostnader. Begrensninger med metoden ble oppdaget i denne studien 
knyttet til mangel på geoposisjonering og innstillinger for automatisk hastighet og høyde over 
havbunnen for miniROV’en. Det er forventet at disse utfordringene er løst i nyere modeller av 
miniROV’en. Algoritmen som ble brukt til automatisk identifisering av O. nigra med 
maskinlæring hadde en nøyaktighet på 86.7% basert på antall identifisert av algoritmen 
sammenlignet med antall som var annotert manuelt. Automatisk identifisering med 
maskinlæring kan redusere tidsbruk på bildeanalyser betraktelig, noe som vil være nødvendig 
for å kunne konvertere store mengder innsamlet data til informasjon som kan brukes til 
konservering og forvaltning.  
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Abbreviations 
 
AI Automatic identification 

cDOM Colored dissolved organic matter 

Chl a Chlorophyll a 

CMOS Complementary metal-oxide-semiconductor  

EUNIS European nature information system 

FHD Full high definition 

FOV Field of view 

fps Frames per second 

HD High definition 

IOPs Inherent optical properties 

LED Light emitting diode 

Mbps Megabits per second 

MCA Multiple correspondence analysis 

MP Megapixels 

OOI Object(s) of interest 

RGB Red, green, blue 

ROV Remotely operated vehicle 

TSM Total suspended matter 
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1 Introduction 
The ocean is the largest ecosystem on the planet. The marine environment provides humanity 

with a range of ecosystem services, such as food, energy, carbon sequestration and coastal 

protection (Barbier, 2017; DNV, 2021). In turn, anthropogenic activity puts great pressure on 

marine ecosystems. Climate change, overfishing, habitat destruction and marine littering are 

only a few of the human-induced pressures that lead to loss of species and habitat diversity, 

which in turn reduces the resilience of marine ecosystems (Halpern et al., 2008; DNV, 2021). 

There is a high demand for ocean space and this is predicted to keep accelerating (DNV, 2021). 

Information on the distribution of species and habitats and an understanding of the marine 

dynamic processes is essential to make informed management and conservation decisions 

(Palumbi and Hedgecock, 2005; Shumchenia and King, 2010; Buhl-Mortensen, Hodnesdal and 

Thorsnes, 2015). 

 

The accessibility of benthic habitats has made them a challenge to study and understand. 

Traditionally, the understanding of the benthic environment has been based on destructive 

sampling techniques (e.g., cores, grabs, dredges). These methods do not give information on 

context, behavior, and interactions between the benthic species and between the benthic species 

and their habitat. Optical and acoustic sensors mounted on sensor carrying platform have 

provided non-destructive alternatives with a larger spatial extent and possibilities to investigate 

areas that previously were inaccessible (Solan et al., 2003; Mogstad, 2021). Underwater 

imaging has provided a new understanding of benthic communities by giving a visual view 

over the environment and temporal variation in local processes (Parry et al., 2003; Solan et al., 
2003).  

 

The choice of sensor carrying platform and sensor must be adapted to the scope of the study 

(Mogstad, 2021). It is essential that the sensor can detect the target and that the scale is 

appropriate for the process under investigation (Davies et al., 2001). Consequently, it is 

important to know the possibilities and the limitations of different methods. In addition, more 

efficient methods lead to large amounts of data, which needs to be processed, stored, analyzed, 

and visualized (Solan et al., 2003). 

1.1 Brittle stars - ophiuroids 
Ophiuroidea is the largest class in the phylum Echinodermata with 2123 extant species (Stöhr, 

O’Hara and Thuy, 2022). The class has two orders: Euryalida (basket stars and snake stars) and 

Ophiurida (brittle stars) (Stöhr, O'Hara and Thuy, 2012; Hansson, Cedhagen and Strand, 2013). 

The information is limited on the global diversity of ophiuroids. Many species have been 

assigned to new taxonomic positions, and many species have not been reported since their initial 

description (Stöhr, O'Hara and Thuy, 2012). There is a large variation in lifestyles between 

species and they inhabit benthic habitats in all oceans, from shallow waters to great depths 

(Stöhr, O'Hara and Thuy, 2012). They play an important role in benthic-pelagic coupling, and 
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affect the distribution of benthic species due to high densities in some places (Piepenburg, 

2000). 

 

Ophiuroids deploy a range of feeding methods: deposit-feeding, suspension-feeding, 

scavenging and predation. Many species can alternate between different feeding methods 

(Warner, 1982; Stöhr, O'Hara and Thuy, 2012). Known predators of ophiuroids are crabs (e.g., 

Necora puber (Linnaeus, 1767)), fish (e.g., Labrus bergylta Ascanius, 1767, Pleuronectes 
platessa Linnaeus, 1758), and sea stars (e.g., Asterias rubens Linnaeus, 1758, Marthasterias 
glacialis (Linnaeus, 1758), Luidia sarsii Düben & Koren in Düben, 1844) (Aronson, 1989; 

Hughes, 1998; Guillou, Blanchet-Aurigny and Le Goaster, 2013).  
 

The majority of species are unisexual, but some are hermaphrodites. Most species exhibit sexual 

monomorphism (Stöhr, O'Hara and Thuy, 2012). Reproduction is usually sexual with release 

of eggs and sperm into the water. Fertilized eggs develop into planktotrophic pluteus larvae. 

The larvae go through a metamorphosis and juvenile sink to the seafloor where they continue 

their life as benthos. Asexual reproduction is less common, by internal fertilization with 

brooding of eggs, larvae and juveniles in the gonads or bursae (gonadal chambers), or by 

fissiparity; division of the central disc and regeneration of both halves (Stöhr, O'Hara and Thuy, 

2012; Hansson, Cedhagen and Strand, 2013). 

1.1.1.1 Anatomy 

Echinoderms are characterized by radial symmetry, usually with five rays, a calcium carbonate 

skeleton with plates or spicules, and tube feet connected to an internal water vascular system 

(ambulacra) (Southward and Campbell, 2006). Ophiuroids have a flat central disc with five 

(less commonly four or six and up to ten) slender arms that are clearly demarcated from the 

disc (Mortensen, 1924; Stöhr, O'Hara and Thuy, 2012). Arms are easily fragmented or shed 

during stress but are quickly regenerated. The mouth is located on the underside (ventral side) 

of the disc, closed by as many jaws with teeth or tooth papillae as there are arms (Stöhr, O'Hara 

and Thuy, 2012). The stomach is a simple sac. Intestine and anus are absent. The arms are 

flexible and are used for feeding, burrowing and movement, making ophiuroids the most mobile 

of the echinoderms. Tube feet (also called tentacles or podia) are located in two rows along the 

arms on the ventral side. Both arms and central disc are covered with plates that are central in 

identification. Two larger radial shields are found on the upper (dorsal) side of the central disc 

by the base of every arm. There are often several larger plates in the center of the disc, with one 

central plate in the middle, surrounded by five primary plates. There are four arm plates per 

joint: two lateral, one dorsal and one ventral. Every lateral arm plate has a row of arm spines 

on the outer edge (Figure 1) (Mortensen, 1924; Southward and Campbell, 2006).  
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Figure 1: Central disc of an Ophiuroid. A – dorsal side, B – ventral side, ac – arm comb, c – central 
primary plate, d – dorsal arm plates, j – jaws, pp – primary plates, r – radial shield, t – teeth, tf – tube 
feet, v – ventral arm plates. Modified from Mortensen (1924). 
 

1.1.1.2 Brittle star beds 

Some species of brittle stars can often be found in large numbers, which can be a conspicuous 

component on the sea floor and be defining for the ecology of the habitat. In the European 

Nature Information System (EUNIS) for species and habitat types, there are several habitat 

types that include brittle stars. Brittle star beds of Ophiothrix fragilis (Abildgaard in O. F. 

Müller, 1789) and/or Ophiocomina nigra (Abildgaard in O. F. Müller, 1789) are described in 

habitat type A5.445 (European Environment Agency, 2019). Brittle star beds can cover large 

areas on the seafloor and contain millions of individuals. The two main bedforming species in 

this habitat type are O. fragilis and O. nigra. Brittle star beds of Ophiopholis aculeata 

(Linnaeus, 1767) occur on rare occasions. Species within the genus Ophiura Lamarck, 1840 

can occur in large numbers on soft sediments, but usually not in densities comparable with the 

main bedforming species. Brittle star beds may be formed by one or a combination of the 

bedforming species. The phenomenon occurs on different types of substrates, ranging from hard 

to soft substrate. Gravel, cobbles and mixed coarse sediments are suggested to be the most 

frequent substrates (Hughes, 1998; De-Bastos and Hill, 2016). Several explanations have been 

proposed to explain the cause of brittle star aggregations; that it is connected to predation 

pressure (Aronson and Harms, 1985), primary production (Piepenburg, 2000), or organic 

enrichment (Blanchet-Aurigny et al., 2012; Guillou, Blanchet-Aurigny and Le Goaster, 2013).  
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1.1.2 Ophiocomina nigra 
Ophiocomina nigra is the only species in the Ophiocomina genus in Norway (Artsdatabanken, 

2022). The species has a characteristic look with its dark brown to black color (Hansson, 

Cedhagen and Strand, 2013), sometimes with arm spines of a lighter color. The dorsal side of 

the central disc is covered in small granules, the radial shields are not visible and arm combs 

are absent (Mortensen, 1924). The disc diameter is up to 25 mm and arms up to 120 mm long. 

The species occurs down to 100 m depth on both hard substrate and coarse sand and gravel 

(Southward and Campbell, 2006; Hansson, Cedhagen and Strand, 2013). In Norway the species 

has been observed along most of the Norwegian coast, up to Harstad in the north 

(Artsdatabanken, 2022). The species is distributed to the Mediterranean and the Azores in the 

south. Ophiocomina nigra is usually found in sheltered to moderately exposed areas and can 

occur in high densities on the seafloor, sometimes mixed with O. fragilis (Hughes, 1998). It is 

a slow-growing and long-lived species which starts to reproduce at 3-4 years old and live up to 

14 years (Hansson, Cedhagen and Strand, 2013). 

1.1.2.1 Feeding mechanisms 

Ophiocomina nigra is an opportunistic feeder that can exploit a variety of food sources and it 

uses a range of feeding mechanisms (Fontaine, 1965; Moen and Svensen, 2020). Microphagous 

mechanisms comprise mucus net and surface film feeding. Macrophagous mechanisms are arm-

loop capture, browsing and tube-foot capture.  

 

Mucus net feeding: A type of suspension feeding. When exposed to a current, O. nigra will 

position itself into a “feeding position”: arms spread and extended upwards, curling at the tips, 

and the central disc slightly raised from the surface (Figure 2). The body is covered in a mucus 

secretion and mucus strands are extended between adjacent spines or spines and other parts of 

the body. One or several arms may be swept from side to side. Ophiocomina nigra will keep 

this position for a long time (6-8 hours, or longer) and use the mucus net to capture suspended 

particles (plankton, detritus) passing by with the current (Fontaine, 1965).  

 

Browsing: Ophiocomina nigra has been observed to browse on laminarians and the fauna on 

them, and on carrion. It uses its teeth or oral tube feet to crush or tear food particles from the 

food source (Mortensen, 1924; Fontaine, 1965). 

 

Arm-loop capture: A food particle is grasped by the tube feet (smaller particles), or the arm is 

flexed around the particle (larger particles) and brings it to the mouth.  

 

Tube-foot capture: The tube feet transfer particles to the mouth. This method is used for 

particles too small for feeding by arm-loop capture.  

 

Surface film feeding: A mechanism for grazing on detritus in the surface film of the water. 

Arms are moved parallel to the water surface. This method has mostly been observed in 

aquariums and is thought to be little used under natural conditions since the species lives in 

subtidal areas (Fontaine, 1965).  
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Figure 2: “Feeding position” of Ophiocomina nigra as described by Fontaine (1965) for mucus net 
feeding. When exposed to currents, O. nigra will take this position and its body will be covered in a 
mucus secretion, enhancing the capture of suspended particles in the water. Image from: Fontaine 
(1965). 

 

1.1.2.2 Food 

By examining gut contents, it has been found that O. nigra feeds on phytoplankton (diatoms, 

dinoflagellates), zooplankton (copepods, medusae), benthic invertebrates (small crustaceans, 

polychaetas, echinoderms), and sessile algae. Phytoplankton is an important food source year-

round but due to spring blooms it is most important during this time of the year. Likewise, 

zooplankton is a dominating food source in late spring and early summer due to zooplankton 

blooms. During winter benthic invertebrates are a more important part of the diet. Sessile algae 

are considered to be a minor part of the food and restricted to those living in inshore areas 

(Taylor, 1958, as discussed by Fontaine, 1965). The species has also been observed to eat on 

carcasses of e.g. fish (Mortensen, 1924).  

1.1.3 Ophiura sp. 
Species of Ophiura have thin stiff arms that are short compared with other brittle stars. The arm 

spines are inconspicuous and are laying close to the arm in most species. The arms look like 

they are coming out from the dorsal side of the central disc, and arm combs are present 

(Mortensen, 1924; Southward and Campbell, 2006). There is no visible border between the 

dorsal and ventral side of the central disc (Hansson, Cedhagen and Strand, 2013). They have 

radial shields that often have a conspicuous color. It is easy to confuse different species within 

Ophiura (Moen and Svensen, 2020). 

 

Species within Ophiura are predators on benthic prey (both epifauna and infauna), e.g., 

polychaetas, bivalves and crustaceans. They lay down on top of the prey or capture the prey by 

arm-loop (as described for O. nigra above). They also deposit feed on food particles associated 

with the sediment and scavenge carrion (Mortensen, 1924; Warner, 1982; Stöhr, O'Hara and 

Thuy, 2012). They are found on silt-covered rock surfaces or on substrates of gravel, sand or 

muddy sand (Hughes, 1998). 

 



 6 

Five species from the genus are registered in Norway: Ophiura carnea Lütken, 1858, Ophiura 
albida Forbes, 1839, Ophiura sarsii Lütken, 1855, Ophiura ophiura (Linnaeus, 1758) and 

Ophiura robusta (Ayres, 1852). In Hopavågen two species are registered: O. albida and O. 
ophiura (Artsdatabanken, 2022). Ophiura ophiura is a large species with disc diameter up to 

35 mm and arm length up to 120 mm. Ophiura albida is a smaller species with disc diameter 

up to 15 mm and arm length up to 60 mm (Southward and Campbell, 2006). Both species occur 

mainly on fine-grained sand and silt (Hansson, Cedhagen and Strand, 2013).  

1.2 Remotely operated vehicle (ROV) 
A Remotely operated vehicle (ROV) is an underwater platform that can carry optical and 

acoustic sensors and sampling devices (Ludvigsen, 2010). It is connected to the surface by an 

umbilical for two-way communication and power supply. ROVs have a range of applications 

related to scientific use, e.g., within biological, archeological, and geological studies. They 

make it possible to assess areas that are too deep for SCUBA diving, and vulnerable habitats 

(Ludvigsen, 2010). ROVs can provide valuable ground truthing for remotely sensed data from 

surface and aerial vehicles and satellites (Johnsen et al., 2013; Mogstad, 2021), and a context 

to point samples (Ludvigsen, 2010). The umbilical connection to the surface gives power supply 

to orientation and environmental sensors, which extend the possible work time, and enables 

live video and control (Johnsen et al., 2013). Disadvantages with ROVs are that they rely on 

power and communication through the umbilical, which limit the spatial range. They are also 

dependent on an operational vessel and specialists which leads to high operational costs 

(Johnsen et al., 2013; Mogstad, 2021). 

 

MiniROVs are small ROVs that are mainly intended for observational purposes. They are 

usually equipped with a camera, with limited options for adding additional sensors. As they are 

more transportable and can be deployed and recovered from shore or a small boat (Mitchell and 

Coggan, 2007), they offer a cost- and time efficient option for applications as video-based 

inspections of underwater structures and habitats (Mogstad, 2021). They can access shallower 

areas than the larger ROVs but are limited by size and power (Strømsholm, 2018). 

1.3 Underwater photography 

1.3.1 Digital photography 
Digital cameras have a photosensor (hereafter: sensor) that records the light that enters the 

camera through the lens. The sensor transforms the light into an electrical signal (i.e., photons 

into photoelectrons). The processor converts this signal into a digital value which is stored in 

the memory card. A larger sensor can collect more light. The sensor has many pixels (also 

called photosensors, photosites, or photodiodes) which each convert light to a signal. For RGB 

(red, green, blue) cameras each pixel has a filter that allows it to register light from either the 

red, green, or blue part of the electromagnetic spectrum. The accurate RGB color for each pixel 

is then interpolated by algorithms in the camera. Each pixel on the sensor is connected to a pixel 

in the resulting image (Gietler, 2018). A high number of pixels on a sensor gives a high level 
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of detail. Fewer, but larger pixels on the same sized sensor can detect more light per pixel and 

increase the sensitivity of the sensor at the expense of spatial resolution. 

1.3.2 Resolution 
Four categories of resolution are relevant for optical sensors regarding their ability to detect a 

specific process or an object of interest (OOI). These are spatial, spectral, radiometric and 

temporal resolution (Johnsen et al., 2013). The spatial resolution of a sensor is the size of the 

smallest feature that can be detected with the sensor. This is the size of the area on the ground 

represented by one pixel for digital images (Davies et al., 2001). The spatial resolution is 

affected by the distance between the sensor and the OOI and the signal-to-noise ratio of the 

sensor (Johnsen et al., 2013). Spectral resolution is the ability of a sensor to distinguish between 

different intervals of wavelengths (Canada Centre for Mapping and Earth Observation, 2019). 

For instance, a RGB sensor is sensitive to wavelengths in the red (650 nm), green (550 nm) and 

blue (450 nm) parts of the electromagnetic spectrum (Johnsen et al., 2013; Canada Centre for 

Mapping and Earth Observation, 2019). Radiometric resolution is the ability of the sensor to 

detect different light intensities (i.e., the dynamic range of the sensor). A high radiometric 

resolution enhances the sensor’s ability to depict a range from very bright to dark areas. 

Temporal resolution is the revisit-time. This is a highly relevant concept for studying and 

understanding biological processes. To be able to assess changes between visits, geocalization 

of high accuracy is important (Johnsen et al., 2013).  

1.3.3 Geometric distortion 
An image is representing the Earth’s three-dimensional surface in two dimensions and will have 

geometric distortions. The distortion is dependent on several factors, e.g., the altitude, attitude 

and velocity of the sensor carrying platform, the terrain, the curvature of the earth, and the 

perspective of the sensor (Canada Centre for Mapping and Earth Observation, 2019). Fisheye 

and wide-angle camera lenses give geometrically distorted images due to a larger image field 

of view (FOV) than the camera sensor. This leads to barrel distortion, where image points away 

from the center are displaced outwards from the ideal position (Park, Byun and Lee, 2009). 

When an optical sensor is photographing an OOI vertically from above (zenith view), objects 

to the side of the nadir (directly under the sensor) will appear to be leaning away from the nadir, 

and the top and side of the objects will be visible in the image (Figure 3) (Canada Centre for 

Mapping and Earth Observation, 2019). 
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Figure 3: Example of geometric distortion from a fisheye camera lens. Objects diretly under the sensor 
(i.e., at the nadir) are viewed from above. Objects to the side of the nadir are imaged both from above 
and the side. Photo: Camilla Mult Marnor. 

 

1.3.4 Optical properties of seawater 
Light behaves differently in water than in air, and this is important to account for when working 

with optical methods in marine environments (Funk, Bryant and Heckman Jr, 1972; Johnsen et 
al., 2020). The quantity and spectral quality of light decreases rapidly as it moves through the 

water column due to absorption and scattering of photons. How far the light can penetrate 

depends on suspended particles in the water. Light penetrates shorter in coastal waters than in 

the open sea, usually up to 50 m depth (Kaiser et al., 2011). Light attenuation is the sum of 

absorption and scattering. Light is attenuated in seawater due to the inherent optical properties 

(IOPs) of the seawater: the water itself absorbs and scatters light, phytoplankton absorbs and 

scatters light, colored dissolved organic matter (cDOM) absorbs light, and total suspended 

matter (TSM) scatters light. Water where attenuation is mainly caused by phytoplankton and 

the water itself gets a green to blue hue in images because seawater attenuate red light and 

phytoplankton (Chl a) has absorption peaks in blue and red wavelengths. cDOM absorbs light 

with blue to green wavelengths and water dominated by cDOM will get a yellow hue. TSM 

comprise particles suspended in the water that scatter light and affects the contrast and 

sharpness in images (Ludvigsen, 2010; Kjerstad, 2014).  

1.4  Experimental aims 
The aim of this study was to explore the potential of a 360 camera mounted on a miniROV to 

identify, map and monitor the spatial distribution of brittle stars in shallow coastal areas. The 

miniROV was used to drive transect lines that were visited in three consecutive seasons. Images 

from the 360 camera were analyzed for the number and species of brittle stars, as well as other 
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biotic and abiotic variables. A multivariate statistical analysis was performed to identify 

correlations between the registered variables. In addition, automatic identification of one brittle 

star species by machine learning was tested. The results of the study were used to discuss (1) 

whether the observed brittle star species expressed distribution patterns that could be connected 

to the abiotic and biotic variables that were registered; (2) factors influencing the quality of data 

obtained with the method; (3) the potential of automatic identification by machine learning for 

efficient image analysis; and (4) the potential of the method for mapping and monitoring 

benthic habitats in the future. 

 

 

 

 

  



 10 

2 Materials and methods 

2.1 Study area 

The study was conducted in Hopavågen, Agdenes, Trøndelag (63°35'37.8"N 9°32'44.5"E) in 

May, September, and November 2021.  

 

Hopavågen is a small bay connected to Kråkvågfjorden by a narrow and shallow channel in the 

west (hereafter called “Straumen”). The area of Hopavågen is 370 000 m2, maximum depth is 

31 m and average depth 18 m. The shallow sill leads to delayed tidal movements and a smaller 

tidal range inside the bay compared to the fjord. There is a variation between neap and spring 

tides in the delay and the time between high/low tide.  Marion (1996) observed a tidal range of 

0.32-0.70 m which corresponds to an exchange of water per tidal cycle of 118 400-259 000 m3 

out of the total volume of 6 660 000 m3. The reduced renewal of the water in the bay has led to 

stagnant deep water and a dead zone in the deepest areas with oxygen depletion and hydrogen 

sulfide. There are some small freshwater runoffs into Hopavågen, but the amount of freshwater 

is considered to be insignificant compared to the volumes of seawater that enters through 

Straumen every day (Marion, 1996). 

 

Transect lines were conducted from land and out in three different locations (Figure 4). Each 

location was surveyed during visits to Hopavågen in three consecutive seasons: in May, 

September, and November 2021. Weather conditions for each sampling period is given in Table 

1. The three locations chosen for transects were: 

 

● Location 1 (63°35'38.3"N 9°32'11.7"E): one area close to Straumen, following the rock 

wall on the north-west side of Hopavågen. This area was expected to be the most 

exposed to currents due to its closeness to Straumen. Max depth 7.8 m. 

● Location 2 (63°35'32"N 9°32'28"E): following a pipeline on the south side of the bay. 

Max depth 8.2 m. 

● Location 3 (63°35'29.3"N 9°32'44.3"E): a shallow area further east. Max depth 2.7 m. 
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Figure 4: Hopavågen (63°35'37.8"N 9°32'44.5"E) with transect locations. The bottom maps show the 
study area marked in red. The top map shows the locations of the three transect lines that was performed 
by a Remotely Operated Vehicle (ROV) during surveys in May, September, and November 2021. 
Basemaps from the Norwegian Mapping Authority 2021 and ESRI National Geographic World Map 
2021. Datum: WGS 1984, Projection: UTM Zone 32 N. 
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Table 1: Weather conditions and tidal data for the different fieldwork dates in Hopavågen. Temperature 
and wind are the average for the time period and max gust the highest measured gust. The weather data 
is measured at the closest weather station, Ørland metrological station, 12.9 km from Hopavågen 
(www.yr.no). Tidal data is from Kartverket.no for “Slettvika”. Note that there is a delay and a lower 
tidal range inside Hopavågen compared to Slettvika. 

Date Time Areas 
visited Weather Temperature 

(ºC) 
Wind (max 
gust) (m/s) Tide (cm) Comments 

05.05.21 11:30- 
15:00 

Location 2 
Location 3 

 

9.2 9.4 
(12.9) 

128-82 
(sinking, low 
tide, rising) 

Low tide 14:19, 
76 cm 

06.05.21 15:35- 
16:05 Location 1 

 

8.7 5.0 
(8.5) 

71-74 
(low tide - 

rising) 

Calm conditions, 
sun 

06.09.21 15:15- 
16:45 Location 1 

 
12.5 2.7 

(5.2) 
157-89 

(sinking)  

09.09.21 10:15- 
11:10 

Location 2 
Location 3 

 

12.2 7.1 
(9.9) 

91-174 
(rising) 

Heavy rainfall the 
days before. 

cDOM, freshwater 
runoffs 

29.11.21 11:00- 
13:30 

Location 1 
Location 2 
Location 3  

-3.8 9.2 
(12.4) 

148-125 
(sinking – low 

tide) 
Wind, clouds 

 

2.2 Imaging techniques and platforms 

2.2.1 MiniROV 
The miniROV used for this study was the Blueye Pioneer (Blueye Robotics, Norway), named 

ROV hereafter (Figure 5). Of orientation sensors, the ROV has an accelerometer, gyroscope, 

magnetometer, and sensors for depth and internal pressure. Environmental sensors include 

sensors for drone and water temperature, and a high definition (HD) camera in the front of the 

ROV (see Table 2 for camera specifications). A light emitting diode (LED) light (3300 lumen) 

is positioned under the camera (Blueye.no, 2022). The pressure sensor giving information on 

depth is located in the upper part of the drone (M. Ludvigsen, personal communication, 

November 2021). Thus, the depth stated corresponds to the distance between the top of the 

drone and the surface. The ROV is equipped with 4 thrusters: 2 in rear section, 1 vertical in the 

center and 1 lateral. It has a maximum speed of 1.5 ms-1 and can handle currents up to 1 ms-1. 

The run-time is 2 hours for normal operations (not defined by producer), and extra batteries can 

be brought to extend the run-time.  
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The ROV is connected to a surface Wi-Fi router with a copper tether for two-way 

communication and power. For this study a 75 m long tether was used. The Wi-Fi router enables 

wireless communication with smartphones and tablets. The ROV is controlled with the Blueye 

app for Android/iOS phones or tablets, and it can be connected to a gaming controller. The 

display shows live video from the drone, heading, depth of the ROV, temperature, and battery 

status for the ROV, surface unit and mobile phone (Figure 5). Controller options include auto-

heading and auto-depth (horizontal and vertical locking respectively), options to start/stop 

video recording, take a frame grab, and turn on/off the LED light. 

2.2.2 360 camera 
The 360 camera that was used was Insta360 One X2 (Arashi Vision, China) (except for in 

Location 1 in May, where the previous model Insta360 One X1 was used). This camera has two 

ultra-wide fisheye lenses with 200 degrees field of view (FOV), and the video and images are 

automatically stitched together to give a 360 view in the software Insta360 Studio 2021 (version 

4.0.1, Arashi Vision, China). Camera sensor specifications are listed in Table 2. The camera 

was set to capture images at 30 frames per second (fps) at a spatial resolution of 5.7 K (about 

5700 pixels horizontally on the photosensor). The 360 camera has a 6-axis gyroscope for 

orientation and stabilization. It is waterproof down to 10 m depth, and to 45 m with a dive case 

(Insta360.com, 2022). For this study a dive case was used, and the 360 camera was put on a 

GorillaPod (Joby GorillaPod 3K) with one leg removed and attached to the front of the ROV 

(Figure 5). The 360 camera was started and stopped manually. 

 

 
Figure 5: (A) Setup of the ROV for the study. The ROV had an integrated camera and a LED light. A 
360 camera in a dive case was attached to the ROV with a GorillaPod. (B) The display in the Blueye 
app: (1) Heading of ROV in degrees, (2) depth of ROV in meters, (3) control options for video, frame 
grab, LED light, auto heading and auto depth. Photo: Camilla Mult Marnor. 
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Table 2: Camera sensor specifications for the camera of the ROV (Blueye Pioneer) and the 360 camera 
(Insta360 One X2). 

 Blueye Pioneer Insta360 One X2 
Video resolution  FHD:1920x1080, 25/30 fps 

HD: 1280x720, 25/30 fps 
5.7K: 5760x2880, 30 fps 
4K: 3840x1920, 50 fps 
3K: 3008x1504, 100 fps 

Sensor CMOS CMOS 
Sensor size 1/3 inch (4.8x3.6 mm) 1/2.3 inch (6.17x4.55 mm) 
35 mm equivalent focal length - 7.2 mm 
Aperture - F2.0 
Video bitrate 2 to 16 Mbps 100 Mbps 
Video format MP4 INSV 

 

2.3 ROV transects 
Areas of interest were chosen based on previous observations from SCUBA diving and field 

work in the area (Alvsvåg, 2017; Teacă, Ungureanu and Mureşan, 2017; G. Johnsen & H. 

Løvås, personal communication, May 2021), and a pre-survey by the use of a paddle board and 

GoPro 7 (Woodman Labs, USA) mounted on a camera stick. The initial geo-position on land 

for the three locations was registered using Google Earth. The ROV was placed in the desired 

direction and the heading (Figure 5 B.1) used as reference to drive the ROV in a straight 

transect. The ROV was driven from the shore and out to the extent of the tether (75 m). The 

ROV LED light was not used during transects, only natural light.  

2.4 Processing of video material 
Video from the ROV and the 360 camera was compared to find where the videos were matching 

to get video from the same segment from both cameras, and to be able to combine data from 

the ROV with imagery from the 360 camera. Frame grabs were then extracted from both sets 

of videos.  

2.4.1 Extracting transect videos from the 360 camera 
The 360 video was viewed and edited in the software Insta360 Studio 2021. The orientation 

and FOV of the edited video are set by making key frames. In a key frame the orientation and 

FOV for that exact moment in the edited video is decided by moving around in the image or 

setting desired values for the different options of the key frame (Figure 6). Identical key frames 

were added to the beginning and end of the videos, giving a constant orientation and FOV 

throughout the video.  

 

The orientation was chosen so that the ROV was in the direction of the bottom of the image 

and the direction of movement at the top of the image. In addition to the identical key frames 

at the start and end of the video, “direction lock” was used to keep the orientation throughout 

the whole video. However, this did not work for all videos (Location 3 September and Location 
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2 May). The video from Location 2 May was constantly rotating throughout the whole video 

and this might have been an error with the gyroscope of the 360 camera. For Location 3 

September the video was rotated 180 degrees and the direction of movement was towards the 

bottom of the image. This was possible to correct for later by rotating the images 180 degrees. 

The values for FOV control and Distortion angle (Figure 6) were kept the same for all videos, 

while the other values had to be adapted to the individual video. The aim was to get images that 

were showing the seafloor directly from above (zenith view), with as large FOV as possible 

without getting too much distortion at the edges of the images. See comparison of FOV in 

Figure 7. 

 

The edited video was exported as a mp4 file with spatial resolution 1920x1080 image pixels. 

Next, the video was imported to SnapMotion (Vizzini, 2020), a software that generates frame 

grabs. The interval was set to every 5 seconds, including the start frame but not the end frame.  

 

 
Figure 6: (A) The orientation of the field of view (FOV) of a 360 video can be changed by adjusting 
the pan (horizontal adjustment of FOV), tilt (up/down adjustment of FOV), and roll (sidewise rotation). 
(B) Insta360 Studio, software for viewing and editing 360 videos. FOV for edited video is set by making 
key frames. FOV is set for each key frame by adjusting values for pan angle, tilt angle, roll angle, FOV 
control and distortion control. FOV control adjusts the size of FOV (zooms in/out). Distortion control 
is related to the geometric distortion that results from a fisheye lens (straightens the horizon or increases 
its curvature), and this option also affects the size of FOV. Photo: Apple.com (A), Camilla Mult Marnor 
(B).  
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Figure 7: Comparison of different fields of view (FOV) from the 360 camera, from maximum 
magnification (FOV covers a small area) (red) to a wide angle FOV (green). The blue frame is what was 
used for the image analysis. Photo: Camilla Mult Marnor.  

 

2.4.2 Extracting video from the ROV 
The videos from the ROV from May had the dive information (depth, temperature, heading) as 

a separate subtitle file. The HandBrake software (HandBrake Team, 2022) was used to get the 

subtitle permanently overlaid on the video file. Between May and September there was an 

update on the ROV so that the dive information was automatically in the video from September 

and onwards. The videos were edited in QuickTime Player (Apple, USA) to fit the 360 video 

according to section 2.4. Frame grabs were extracted from the videos with SnapMotion in the 

same way as for the 360 videos. However, the dive information would disappear from the frame 

grabs from May when SnapMotion was used, so frame grabs from this month had to be 

extracted manually and named with the correct timestamp.   

2.5 Image analysis 

A total of 383 images from each camera were imported to Microsoft PowerPoint (Microsoft, 

USA), with corresponding images from the 360 camera and the ROV next to each other on a 

slide. This was to get an overview over the different views from the two cameras, and the dive 

information (temperature, depth, heading) from the ROV. The images from the 360 camera 

were analyzed for the number of brittle stars (to lowest possible taxonomic level), substrate 

type, and other fauna. Brittle stars were annotated with a colored dot according to their 

taxonomic identification. A subjective evaluation of the density of O. nigra was also registered 

for each image. 27 images were too blurry or too far away to see and/or count brittle stars and 

register substrate type, and were removed, giving a data set consisting of 356 images.  
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2.5.1 Identification of brittle stars 

2.5.1.1 Ophiocomina nigra 

Identification of O. nigra was done based on their characteristic dark color. Individuals of O. 
nigra were registered where the central disc was visible, or when black arms in a star shape 

were visible (in areas/images where O. nigra was already present), or where arms raised in the 

characteristic feeding position of the species were visible (Figure 2).  

2.5.1.2 Ophiura sp. 

As it is not possible to investigate mouth parts or dorsal plates on the central disc close enough 

for identification to species level of Ophiura (Southward and Campbell, 2006; Hansson, 

Cedhagen and Strand, 2013), these individuals were only identified to genus level. They were 

identified based on their characteristic shape with straight stiff arms with inconspicuous arm 

spines, and reddish brown to grey colors (Southward and Campbell, 2006).  

 

Ophiocten affinis (Lütken, 1858) is a species that looks similar to the Ophiura species and is a 

common species along the Norwegian coast (Hansson, Cedhagen and Strand, 2013; 

Artsdatabanken, 2022). With a disc diameter up to 8 mm and arm length up to 25 mm it is 

smaller than the Ophiura species that have previously been registered in Hopavågen. As smaller 

individuals of what was thought to be Ophiura sp. was registered, it is possible that some of 

these could have been O. affinis. However, this is assumed not to be of importance for the aims 

of this study as this species has a similar life style as Ophiura sp. (Ambrose, 1993). 

2.5.1.3 Density of Ophiocomina nigra 

Due to the lack of a size reference and information of aerial coverage of the images, it was not 

possible to quantitatively describe the density of O. nigra. Instead, the images were assigned a 

qualitative O. nigra density category based on a subjective understanding of the appearance 

and image coverage (Figure 8): 

 

● Absent: No O. nigra present in the image. 

● Low: A few individuals present. 

● Medium: O. nigra covers a large part of the image, or many individuals are densely 

aggregated in some areas. 

● High: O. nigra covers most of the image. 
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Figure 8: Examples of the different qualitative density categories for Ophiocomina nigra used in the 
image analysis: (A) Absent, (B) Low, (C) Medium, (D) High. Photo: Camilla Mult Marnor.  

 

2.5.2 Other fauna 
Non-ophiuroid organisms observed in the images were categorized into functional groups based 

on feeding strategies according to Table 3. The functional groups were based on those used by 

Iken et al. (2001). Many organisms use several feeding strategies but were categorized 

according to what was considered to be the main feeding strategy (De Ridder and Lawrence, 

1982; Jangoux, 1982; Riisgård and Banta, 1998; Teacă, Ungureanu and Mureşan, 2017; Capa, 

2021). The functional groups were:  

 

● Suspension feeders (Susp): Feed on food particles suspended in the water column. 

● Deposit feeders (Dep): Feed on food particles associated with the sediments. 

● Predators/scavengers (PredScav): Move actively/hunt to capture prey, or feed on 

dead biomass. 

 

For the image analysis, the presence of organisms from one or several of the functional groups 

was recorded as categories containing all occurring combinations of the three groups (Table 4). 
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Table 3: Other fauna that were registered in the images and their categorization into functional groups 
based on feeding strategies: Suspension feeders (Susp), deposit feeders (Dep), predators/scavengers 
(PredScav). 

Phylum Group Presumptive Taxon Functional group 

Cnidaria Actiniaria (order)   Susp 

  Spirularia (order) Cerianthidae  
Milne Edwards & Haime, 1851 

Susp 

Mollusca Bivalvia (class)   Susp 

  Gastropoda (class)   PredScav 

    Littorina sp. 
Férussac, 1822 

PredScav 

Echinodermata Asteroidea (class)   PredScav 

    Crossaster sp. 
Müller & Troschel, 1840 

PredScav 

  Echinoidea (class) Echinidea PredScav 

    Echinocardium sp. 
Gray, 1825 

Dep 

Annelida Polychaeta (class) Serpulidae 
Rafinesque, 1815 

Susp 

    Arenicola marina 
(Linnaeus, 1758) 

Dep 

Arthropoda Decapoda (order) Paguroidea 
Latreille, 1802 

PredScav 

 

2.5.3 Substrate 
Several different types of substrate were registered from the video and images from the 

transects that hypothetically affect the distribution of brittle stars. These were fine sediment, 

coarse sediment, the presence of larger rocks, artificial substrate, and patches of accumulated 

macroalgae (Figure 9). The presence or absence of all these categories was registered for each 

image (Table 4).  
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Figure 9: Examples of the different substrate categories that were registered as present/absent for every 
image: Fine sediment, coarse sediment, larger rocks, artificial substrate, and accumulation of 
macroalgae. Photo: Camilla Mult Marnor.  

 

2.6 Multiple correspondence analysis (MCA) 
A multiple correspondence analysis (MCA) was used to detect possible structures in the data 

set resulting from the image analysis. MCA is a type of multivariate analysis for summarizing 

and visualizing data containing more than two categorical variables. It is broadly used, 

especially for handling data from surveys. The analysis looks for the principal dimensions that 

explains the variability within the data (between the images) and identifies associations between 

the different variables. MCA also gives the relative importance of the different variables in 

explaining the variation in the data (Husson, 2016; Kassambara, 2017). 

 

MCA was chosen as the appropriate analysis for this study due to the nature of the data: lack 

of quantitative variables due to lack of size reference. The software R (RStudio Team, 2022) 

was used for the statistical analysis. The MCA was performed on 356 images described by 12 

variables: 3 numerical and 9 categorical. The different variables and the categories within the 

variables are listed in Table 4. The frequency of the different categories within each categorical 

variable is shown in Figure 10. The density category for O. nigra was set as a supplementary 

categorical variable, meaning that it did not contribute to the creation of the axes. Instead, it 

would be predicted by the other 8 active categorical variables (Kassambara, 2017). 

 

Packages FactoMineR (Lê, Josse and Husson, 2008) and Factoshiny (Vaissie, Monge and 

Husson, 2021) were used for the statistical analysis. Factoshiny was also used for data 

visualization, together with the packages tidyverse (Wickham et al., 2019) and factoextra 
(Kassambara and Mundt, 2020).  
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Table 4: The 12 variables that were used in the multiple correspondence analysis (MCA), 3 numerical 
and 9 categorical. The different categories are listed for categorical variables and the highest and lowest 
occurring values for numerical variables. 

Variable Type Explanation Categories / intervals 

Location Categorical What transect line the image is from Location1 
Location2 
Location3 

Month Categorical Time of visit May 
Sep 
Nov 

Fine sediment Categorical Presence/absence of fine sediment in the 
image 

Fine_y 
Fine_n 

Coarse sediment Categorical Presence/absence of coarse sediment in the 
image 

Coarse_y 
Coarse_n 

Rocks Categorical Presence/absence of larger rocks in the 
image 

Rocks_y 
Rocks_n 

Artificial 
substrate 

Categorical Presence/absence of artificial substrate in the 
image (e.g., pipeline) 

Artificial_y 
Artificial_n 

Accumulation of 
macroalgae 

Categorical Presence/absence of patches of macroalgae 
in the image 

Macroalgae_y 
Magroalgae_n 

Feeding types Categorical Presence of other fauna categorized in 
functional groups based on feeding type 
(Table 3) 

Dep 
PredScav 
Susp 
Dep_Susp 
PredScav_Susp 
Dep_PredScav_Susp 
Feeding_type_NA 

Density 
Ophiocomina 
nigra 

Categorical 
(supplementary) 

A qualitative density category based on a 
subjective evaluation of coverage in each 
image (see Figure 8) 

Absent 
Low 
Medium 
High 

Depth Numerical Depth in meters measured by the ROV 
(distance from surface to top of ROV) 

Min: 0.1 m 
Max: 8.2 m 

Ophiocomina 
nigra 

Numerical Number of O. nigra registered in the image Min: 0 
Max: 631 

Ophiura sp. Numerical Number of Ophiura sp. registered in the 
image 

Min: 0 
Max: 26 
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Figure 10: The frequency of the different categories within each categorical variable used in the 
multiple correspondence analysis (MCA): (a) location, (b) month of visit, (c) density category for 
Ophiocomina nigra, (d-h) categories related to substrate, (i) presence of other fauna categorized into 
functional groups based on feeding type.  
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2.7 Automatic identification of Ophiocomina nigra 
Machine learning is a section of artificial intelligence (AI) which aims to imitate human 

learning by use of data and algorithms. It is largely used for prediction and classification (for 

details see Wang, Ma and Zhou (2009)). The algorithms require training data sets to learn from.  

 

In the image analysis (see section 2.5) individuals of O. nigra were annotated with red dots. 

These images were used to train and test an algorithm for automatic classification and counting 

of O. nigra. A data set of 222 marked images and the unmarked originals of the same images 

was used. Images from Location 1 in May were excluded because another model of the 360 

camera was used (Insta360 One X1, opposed to Insta360 One X2 for the rest of the surveys), 

as the algorithm will be trained for a specific camera model. Of the total number of images, 172 

was used for training the algorithm. These images were flipped horizontally and vertically to 

multiply the training set by 4. A validation set of 19 images was used to evaluate how well the 

algorithm was training. The remaining 31 images that the algorithm had not seen were used for 

testing after training. 

 

The automatic identification of O. nigra with machine learning and DDRNet (deep dual-

resolution networks) (Hong et al., 2015) was performed by Bjarne Kvæstad at SINTEF Ocean.  
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3 Results 

3.1 Habitat description 

3.1.1 Location 1 
The beginning of the transect was dominated by coarse sediment with small rocks and shells. 

Actiniarians were widely distributed in patches. In May the actiniarians had their tentacles 

expanded (Figure 11.A). In September and November a few had their tentacles expanded. 

Further out the substrate changed from small rocks to coarse sediment (shell sand). Actiniarians 

were still highly abundant. In May O. nigra started to occur a bit out in the transect. In 

September and November O. nigra had high occurrence from early in the transect, in November 

already where the ROV was launched (Figure 11.D). The occurrence of O. nigra was generally 

high in this area. In some places they were aggregated at the base of actiniarians (Figure 11). 

Patches of macroalgae occurred occasionally and O. nigra could be seen aggregated on kelp 

(Figure 11.B) but seemed to avoid filamentous algae. Nearing the end of the transect the 

seafloor was mainly dominated by O. nigra and some patches of macroalgae. Actiniarians were 

almost absent at this point. Other fauna observed included gastropods, sea stars, hermit crabs, 

sea urchins and remains from sea urchin Echinocardium. 

 

 
Figure 11: Frame grabs from Location 1: (A) Shell sand substrate and Ophiocomina nigra aggregated 
at the base of actiniarians in May, (B) shell sand substrate and a patch of macroalgae crowded by O. 
nigra in November, (C) example of a high occurrence of O. nigra in this area and filamentous algae in 
September, (D) high density of O. nigra together with actiniarians shortly after launching the ROV in 
November. 
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3.1.2 Location 2 
The transect was along a pipeline on the seabed from the shore and out. In the very beginning 

the substrate consisted of coarse sediments with small rocks, shells, and remains from the sea 

urchin Echinocardium. After a short distance the substrate changed to fine sediment. 

Actiniarians (including Metridium senile (Linnaeus, 1761)) was highly abundant on the 

pipeline. In May all had their tentacles expanded, and large areas of the pipe were covered 

(Figure 12 A, C). In September and November most actiniarians had their tentacles withdrawn. 

Patches of accumulated macroalgae occurred next to the pipe (Figure 12 B, C). Piles and holes 

were observed in the fine sediment, assumed to be traces of Arenicola marina. Ophiura sp. was 

first observed at approximately 2.5 m depth (May). However, they were well camouflaged, and 

some partly covered by sediment. Therefore, individuals might have been overlooked. There 

were relatively many of them in some places but compared to the density category of O. nigra 

it would have been categorized as low to medium density. The Ophiura were of varying size 

(Figure 12 D, Figure 19). Ophiocomina nigra occurred mainly related to patches of macroalgae, 

on the pipeline, and on rocks (Figure 12 B). It could be challenging to see and count exact 

numbers of O. nigra due to shadows and the dark color of the macroalgae in combination with 

the dark color of O. nigra, and in May due to the cover of the tentacles of actiniarians. 

Additional fauna observed was sea urchins, Crossaster sp., bivalves, Cerianthidae, gastropods, 

a flounder, and red calcareous algae. 

 

 
Figure 12: Frame grabs from Location 2: (A) coarse substrate with more rocks at the beginning of the 
transect, from May, (B) substrate preference of Ophiocomina nigra for the hard substrates of the pipeline 
and a rock and aggregations on patches of macroalgae, from May, (C) pipeline covered by the tentacles 
of actiniarians in May, (D) many Ophiura sp. on the fine sediments next to the pipeline and O. nigra on 
the pipeline in September. 
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3.1.3 Location 3 
Location 3 had coarse sediments at the beginning of the transect with small rocks, remains from 

shells and patches of actiniarians (Figure 13.A). The sediment then changed to a finer sediment, 

but it was still categorized as coarse sediment. Larger rocks with actiniarians occurred (Figure 

13.B). Artificial substrate occurred as a small orange pipe (Figure 13.C) and several cords. In 

May O. nigra was mainly aggregated on rocks (Figure 13.B) and could be difficult to see due 

to shadows and expanded tentacles of actiniarians. In September O. nigra also occurred on the 

sediments (Figure 13.C). In November O. nigra occurred closer to the shore and aggregated on 

rocks (Figure 13.D). Occurrence of O. nigra increased further out in the transect. Some Ophiura 

sp. were observed in September, one in May, and none in November. They were more difficult 

to detect as they were camouflaged on the substrate. Filamentous algae were observed mainly 

in September. Other fauna observed included sea urchins, Cerianthidae and bivalves. 

 

 
Figure 13: Frame grabs from Location 3: (A) Coarse sediment at the beginning of the transect with 
small rocks, shells and actiniarians, from May, (B) coarse sediments with shells, actiniarians and 
Ophiocomina nigra patchily distributed, from May, (C) artificial substrate (orange pipe) and coarse 
sediments with rocks and O. nigra,  from September, (D) a rock covered by O. nigra and actiniarians, 
from November. 
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3.2 Multiple correspondence analysis (MCA) 
The MCA creates dimensions that combined account for all the variation in the data set (Table 

4). The first two dimensions account for the highest percentage of the variation in the data set 

compared to any other two dimensions. Thereby, they are the only dimensions discussed in this 

context and will be referred to as the principal dimensions. The principal dimensions described 

38.7 % of the total variance in the data set, 25.6 % by dimension 1 (Dim1) and 13.1% by 

dimension 2 (Dim2). 

3.2.1 Contribution of variables 
Figure 14 shows the correlation between the different variables and the principal dimensions. 

For Dim1 fine sediment, artificial substrate, coarse sediment, and location was of highest 

importance. For Dim2 location was of high importance. Rocks, macroalgae accumulation and 

feeding types were of intermediate importance. Month was of low importance.  

 

 
Figure 14: The absolute representation of the variables included in the multiple correspondence analysis 
(MCA) in relation to the principal dimensions (Dim1 and Dim2). The coordinates are the squared 
correlations between the dimensions and the variables. The active categorical variables are in gray, the 
supplementary categorical variable in green, and numerical variables in blue.  
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Figure 15 shows the strength (%) and direction of the contribution of the different variables in 

building the principal dimensions, and the supplementary categorical variable (Density O. 
nigra). For Dim1, the presence of artificial substrate, presence of fine sediment/absence of 

coarse sediment and location 2 were of high positive influence. The presence of deposit feeders 

together with suspensions feeders were positively correlated with Dim1 but had a relatively low 

contribution in the making of the dimensions. The presence of coarse sediment/absence of fine 

sediment and artificial substrate had a high contribution in the negative direction. The presence 

of rocks was a variable of high contribution to the principal dimensions, in the negative 

direction for Dim 1 and positive direction for Dim 2. The absence of rocks was however not 

very defining. Feeding types and month had a low contribution.  

 

 

 
Figure 15: Contribution of variable categories in the multiple correspondence analysis (MCA) in 
defining the principal dimensions (Dim1 and Dim2). The variable categories are colored according to 
their contribution in percent. The categories of the supplementary categorical variable (density of 
Ophiocomina nigra) are shown in dark green.  
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3.2.2 Distribution of samples within the different variables 
The distribution of the samples (images) in relation to the different active categorical variables, 

and the supplementary categorical variable (density of O. nigra) is shown in Figure 16. The 

locations are well separated when looking at the principal dimensions and their contributions 

are high (Figure 16.a). The distribution of the samples for Month (Figure 16 b) supports the 

interpretation of its low influence from Figure 14: the points are scattered, the confidence 

ellipses are all positioned close to the origin, and the confidence ellipses for May and November 

are overlapping, indicating that these two variable categories are not significantly different.  

 

The density category for O. nigra (Figure 16 c) shows that medium and high density is 

concentrated in the lower left corner (negative end of Dim1 and Dim2), which is the same 

position as Location 1 in Figure 16 a. The categories within the variables fine sediment, coarse 

sediment and artificial substrate are well separated by Dim1 (Figure 16 d, e, g). The macroalgae 

categories was separated by Dim2 (Figure 16 h). The presence of rocks had a lower frequency 

than the absence of rocks (Figure 16 f) which supports its higher contribution to the principal 

dimensions (Figure 15). The categories for different combinations of feeding types are scattered 

(Figure 16 i). Only 4 samples had PredScav, giving this category a very large confidence ellipse, 

and only 2 samples had Dep, resulting in a line instead of a confidence ellipse.  
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Figure 16: Multiple correspondence analysis (MCA) factor map. The distribution of the samples in 
relation to the different categorical variables (described in section 2.6): (a) the different locations, (b) 
month of visit, (c) qualitative density category of Ophiocomina nigra, (d-h) presence/absence of fine 
sediment, coarse sediment, large rocks, artificial substrate and macroalgae, (i) presence of other fauna 
based on their feeding types.  
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3.2.3 The spatial distribution and density of Ophiocomina nigra related to the 
categorical variables  

The MCA biplot (Figure 17) combines the results shown in Figure 15 and Figure 16 c. It is a 

point cloud made from the samples, the variable categories, and the supplementary categorical 

variable (density O. nigra) that is predicted by the other categorical variables. The three 

locations are located far away from each other, indicating that they were distinctly different 

from each other. This is supported by Figure 16 a where the samples for the locations are almost 

entirely isolated from each other.  

 

The MCA indicates correlations between Location 1 and coarse sediments, absence of other 

fauna, and medium to high density of O. nigra. There is a possible correlation between the 

occurrence of macroalgae and higher densities of O. nigra (see in Figure 16 h where many of 

the samples for presence of macroalgae is in the same area as the samples for Location 1 in 

Figure 16 a). 

 

Location 2 showed high correlation with artificial substrate, which was due to the pipeline that 

the transect was following. The MCA confirmed a high correlation with fine sediments in this 

location and showed correlation with deposit feeders and suspension feeders, however these 

variable categories had a low contribution to the principal dimensions (Figure 15). 

 

Location 3 was correlated with presence of larger rocks, and this was a highly defining category 

according to Figure 15.  
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Figure 17: Multiple correspondence analysis (MCA) biplot. All categories from the categorical 
variables (e.g., “Rocks_n” and “Rocks_y” for absence and presence of larger rocks in the samples 
(images)) and the samples related to the principal dimensions (Dim 1 and Dim2). The categories of the 
supplementary categorical variable (density of Ophiocomina nigra) are predicted by the other variables 
and are shown in dark green. The samples are colored according to the density classification of O. nigra 
for that sample (absent, low, medium, high). 

 

3.2.4 The numerical variables related to the dimensions of the multiple 
correspondence analysis (MCA) 

Numerical variables are not used to build the dimensions of the MCA, but they can be plotted 

on the dimensions to see their directions in relation to the dimensions (Figure 18). The 

numerical variable for O. nigra is directed towards the bottom left/negative values for both 

principal dimensions. This supports the interpretation of the biplot and the prediction of the 

density category for O. nigra based on the categorical variables (Figure 16 c, Figure 17). The 

numbers of Ophiura are negatively correlated with O. nigra and is pointed in the same direction 

as Location 2 (Figure 17), which was the location where most Ophiura were found, in addition 

to the variables fine sediment and artificial substrate (the pipeline in Location 2). Depth is 
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almost 90 degrees on the other two numerical variables, meaning that depth was of little 

importance for the occurrence of ophiuroids in this data set, supporting the interpretation of 

Figure 14.  

 

 
Figure 18: The numerical variables “Depth” and numbers of Ophiocomina nigra and Ophiura sp. 
plotted on the principal dimensions (Dim1 and Dim2) from the multiple correspondence analysis (MCA) 
to show their direction related to the dimensions.  

 

3.3 Automatic identification with machine learning 
The performance of the algorithm used for automatic identification of O. nigra with machine 

learning was an accuracy of 86.7%. This was based on the number of individuals identified in 

the 31 images for testing by human detection versus the numbers automatically identified by 

the algorithm. The accuracy evaluation was solely based on a comparison of numbers and did 

not consider the occurrence of false positives and/or negatives or if the algorithm counted the 

same individuals as was registered by a human. The algorithm avoided confusion between O. 
nigra and Ophiura sp. (Figure 19). Figure 20 shows additional two examples from the testing 

of the performance of the algorithm, one where the count was higher from the human (A), and 

one where the count from the algorithm was higher (B).  
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Figure 19: Example of potential for improvement of the algorithm that were used for automatic 
identification of Ophiocomina nigra. Identification performed by marine biologist (blue) and 
identification performed by the algorithm (red). The algorithm has successfully not counted Ophiura 
individuals, but there are several false positive counts of O. nigra. One out of two O. nigra is not 
counted.  
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Figure 20: Examples of images where individuals of Ophiocomina nigra have been automatically 
identified by a machine learning algorithm, performed by Bjarne Kvæstad (section 2.7). The 
identification performed by the algorithm is in red and by a marine biologist in blue.  
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4 Discussion 
360 video from the transects showed what appeared to be three rather different habitats. This 

observation was confirmed by the multiple correspondence analysis (MCA) where the location 

was the most defining variable. Variables related to the substrate were also of high importance 

for describing the variation in the data set. One brittle star bed with Ophiocomina nigra was 

found in Location 1 on coarse sediment. Other visible fauna was scarce in this area. Apart from 

the brittle star bed, O. nigra seemingly preferred hard and elevated surfaces, and patches of 

macroalgae. Ophiura sp. was mainly found in Location 2 on fine sediment. 

 

The 360 camera mounted in front of the ROV turned out to be a useful tool for assessing 

different benthic habitats and the spatial distribution of brittle stars in shallow areas. Any 

seasonal variation of importance was not detected with the method. Automatic identification of 

O. nigra with machine learning showed promising results with an accuracy of 86.7% based on 

the number counted by the algorithm compared to what was counted manually. 

4.1 Assessing the spatial distribution of brittle stars 

4.1.1 Ophiocomina nigra brittle star bed 
Out of the three locations visited in Hopavågen, Location 1 held the highest numbers of 

Ophiocomina nigra. In this location O. nigra was dominating the visible benthic fauna in all 

three seasons and the area can be categorized as a brittle star bed (Hughes, 1998). Location 1 

was the transect closest to Straumen. Since Hopavågen is narrower in this area and Straumen 

is the only connection to the fjord, with large water masses moving in and out with the tide 

(Marion, 1996), this location is more exposed to currents than the other two. Brittle star beds 

of O. nigra and/or O. fragilis occur in areas with strong to weak tidal streams (Hughes, 1998). 

However, one can presume that moderate current conditions are favorable, transporting more 

seston over the brittle star beds. Warner (1971) suggested that the aggregating behavior of O. 
fragilis give them the ability to inhabit areas with stronger currents, which facilitates their 

suspension feeding activity. Ophiocomina nigra is a more flexible feeder than O. fragilis 

(Blanchet-Aurigny et al., 2015), but it is feasible to assume that this species can gain the same 

benefits from this behavior, and that the aggregated population in Location 1 has seston as an 

important food source. 

 

Location 1 additionally supported a high abundance of actiniarians, which were also present in 

the other two locations. The occurrence and behavior of actiniarians can give indications on the 

hydrodynamic conditions and presence of food in the water masses. For instance, Metridium 
senile eats zooplankton (Sebens and Koehl, 1984), and tentacle expansion is positively 

correlated with increased currents, and the interaction between currents and food availability 

(Robbins and Shick, 1980). In May actiniarians had their tentacles expanded in all three 

locations, which might indicate that the conditions were favorable for suspension feeding 

during this visit. Ophiocomina nigra and M. senile might be competitors for food, but O. nigra 

is able to exploit other food sources as well and have the mobility to move to better areas. 
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Nevertheless, O. nigra was observed to frequently be located at the base of actiniarians which 

indicates that this is not a disadvantage for their access to food.  

 

Brittle star beds have been observed to be a rather stable phenomenon (Aronson, 1989; Hughes, 

1998), apart from some exceptions (mass mortality of Ophiothrix quinquemaculata (Delle 

Chiaje, 1828) in the Gulf of Trieste (Stachowitsch, 1984), and near disappearance of O. fragilis 
and O. nigra in the Bay of Douarnenez (Guillou, Blanchet-Aurigny and Le Goaster, 2013)). 

This seems to be the case in Hopavågen as well. Teacă, Ungureanu and Mureşan (2017) 

described a dense assemblage of O. nigra in what was the beginning of the transect in Location 

1 in this study, observations done in May 2012 and August 2013. They observed that the 

occurrence was stable from the first to second visit, and that the species seemingly was 

unaffected by food limitation or changes in temperature between the seasons (Teacă, 

Ungureanu and Mureşan, 2017).  

 

Predation has been suggested to be an important biotic variable to limit the distribution of brittle 

star beds (Hughes, 1998). Known predators of brittle stars include crabs, sea stars and fish 

(Aronson, 1989; Guillou, Blanchet-Aurigny and Le Goaster, 2013). Aronson (1989) showed 

that O. fragilis and O. nigra were more prone to predation on rocky reef communities than in 

brittle star beds. Crabs and fish were responsible for most of the attacks in the rocky reef 

communities. The sea star Asterias rubens had about the same number of attacks in both habitat 

types. However, they are slow eaters (8-24 hours to consume a brittle star in the laboratory), so 

they are not expected to affect a brittle star bed unless they occur in very large numbers 

(Aronson, 1989). High numbers of several sea star species were probably the explanation for 

the near disappearance of O. fragilis and O. nigra in the Bay of Douarnenez, France, in the 

1980s (Guillou, Blanchet-Aurigny and Le Goaster, 2013). Some sea stars were observed in the 

brittle star bed in Location 1. Fish were also occasionally observed during the surveys. One can 

assume that the predation pressure on the brittle star bed in Hopavågen is relatively small 

considering its persistence.  

4.1.1.1 Brittle star beds and other fauna 

For the image analysis, the surrounding fauna was divided into functional groups based on their 

main feeding strategy, as this could possibly indicate what types of food that was present. High 

and medium density of O. nigra was correlated with the absence of other fauna 

(Feeding_type_NA) (Figure 17). This indicates that where the density of O. nigra was high, 

there was little room for other fauna, at least macrofauna that was detectible with this method. 

Aronson (1989) low species diversity in brittle star beds in the British Isles, both in brittle star 

beds dominated by O. nigra and O. fragilis respectively. According to Hughes (1998) 

aggregations of brittle stars tend to exclude other epifauna on bedrock but there is often a rich 

fauna under the brittle star beds on sedimentary substrata. As no physical samples were 

collected in this study, it is not possible to say anything about epifauna and infauna under the 

brittle star, and it is not possible to collect such information with this method.  
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4.1.2 Ophiocomina nigra on macroalgae and hard substrate 
Apart from in the brittle star bed in Location 1 O. nigra seemingly preferred hard substrate as 

this species was observed to be aggregated on the pipeline and on larger rocks in Location 2 

and 3 respectively (Figure 12 B, Figure 13 D). The explanation for this might be that the species 

use higher areas to get access to more food particles drifting by in the water column. The 

pipeline created a hard substrate in an area with fine sediments, posing as suitable substrate for 

actiniarians and O. nigra. The pipeline might also pose as a physical barrier, hindering objects 

on and close to the seafloor to pass with the currents. This might be the reason for the presence 

of patches of macroalgae along the pipeline. 

 

Ophiocomina nigra was observed aggregated on these patches of macroalgae (Figure 12 B), 

and occasionally on patches of macroalgae in Location 1 (Figure 11 B). Taylor (1958) examined 

gut contents of O. nigra and found sessile algae to be a part of the species’ diet, especially for 

individuals living in inshore areas (Taylor, 1958, as discussed by Fontaine, 1965). Mortensen 

(1924) also described O. nigra climbing Laminarian macroalgae, and that they eat the 

macroalgae and small animals on the macroalgae. The position of brittle stars related to 

macroalgae was not specifically registered in the image analysis; it was only registered if 

macroalgae was present or absent in the individual images. This may have influenced the 

correlation between the occurrence of macroalgae and O. nigra in the results from the MCA, 

where the presence of macroalgae was of intermediate importance for the variation in the data 

set (Figure 15), and the correlation between presence of macroalgae and O. nigra was not 

evident from the results of the MCA (Figure 17).  

4.1.3 Spatial distribution of Ophiura sp. 
Brittle stars of Ophiura sp. were mainly observed in Location 2, with a few observations in the 

other two locations. These observations were supported by the results of the image analysis and 

the MCA, where the numerical variable of Ophiura sp. was pointed in the same direction 

(Figure 18) as Location 2 (Figure 17). These brittle stars were well camouflaged in the fine 

sediment and was not seen while driving the ROV but was visible in the video from the 360 

camera. However, as they were hard to see, their numbers were most likely underestimated in 

some images.  

 

According to the MCA, Location 2 was correlated with fine sediment, artificial substrate (the 

pipeline), deposit feeders, suspension feeders, and a low density of O. nigra (Figure 17). The 

numerical variables also showed a negative correlation between numbers of Ophiura sp. and 

numbers of O. nigra (Figure 18). This indicates that the species have different preferences, 

which was supported by observations from the video and images from Location 2: 

Ophiocomina nigra was mainly positioned on the pipeline, rocks, and patches of macroalgae 

while Ophiura sp. was observed on the fine sediment (Figure 12 B and D). Boos et al. (2010) 

found that O. albida preferred fine over coarse sediment, while O. ophiura did not show any 

preference. They observed O. albida to exhibit stationary burrowing behavior, which they 

suggested to be associated with deposit feeding and predation/scavenging on infauna, while O. 
ophiura hunted actively for epibenthic prey (Boos et al., 2010). The correlation with deposit 
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feeders in Location 2, which was remains of Echinocardium (Figure 12 D) and characteristic 

traces in the sediments (holes and casts) from Arenicola marina (Riisgård and Banta, 1998), 

can indicate that the fine sediment in this area was suitable for deposit feeding.  

4.1.4 The distribution of brittle stars in relation to temperature and depth 
The ROV measured the depth of the ROV and the water temperature, and this was registered 

for each of the images used in the image analysis. The variation in temperature was low within 

each visit and between the different locations. The largest variation in temperature was between 

the different months (roughly up 6°C from May to September and down 6-9°C from September 

to November). Thus, the different months included in the analysis also indicates different 

temperatures and temperature as a numerical variable was not included in the MCA. Since 

Month was of low importance for describing the variability in the data set (Figure 14), it is 

reasonable to conclude that temperature was not a determining factor in this case. According to 

the MCA, depth was also of low importance (Figure 18). However, only shallow areas were 

investigated, and the depth interval was small (maximum depth of the ROV registered was 8.2 

m). It is possible that depth is of importance for the distribution of brittle stars on a larger spatial 

scale and depth interval, potentially in combination with other variables (e.g., as was found by 

Piepenburg (2000) for Arctic brittle stars). 

4.2 Factors influencing video and image quality 

4.2.1 Field of view (FOV) 
With the 360 camera comes new considerations regarding choice of orientation and field of 

view (FOV) for images for the image analysis. Opposed to normal video, one must choose 

where in the 360 globe the edited video should “look”, and the size of FOV (zoomed in/out), 

that together with altitude determines the size of the area of seafloor covered by each image. 

Since the focus of this study was benthic organisms, an orientation showing the seafloor directly 

from above (i.e., zenith view) was chosen. The size of FOV is chosen by zooming in or out. 

When zooming in as much as possible, a great deal of information is lost since the image will 

only cover a relatively small area on the seafloor compared to what is available with the tool. 

As you zoom out, more and more distortion in the edges will occur due to barrel distortion 

(Park, Byun and Lee, 2009). With a smaller FOV you can capture more details which can be 

useful for identification. A larger FOV gives an overview of the habitat, composition of species 

and a context, but less details (Funk, Bryant and Heckman Jr, 1972) as the number of pixels per 

area of seafloor covered by the image is reduced (i.e., lower spatial resolution). A FOV that 

aimed to be an intermediate solution between these trade-offs were chosen for this study (Figure 

7, blue frame). In some images the distortion was helpful as it was possible to see the raised 

arms of O. nigra from the side and sometimes individuals were easier to see in that way than 

directly from above. However, the distorted edges of the images posed a challenge for image 

analysis in most cases and many individuals of O. nigra in the edges of the images were not 

counted because it was not possible to distinguish between individuals or to be certain about 

the identification. Distortion will be a challenge with fisheye lenses (Park, Byun and Lee, 2009) 
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and how to account for this must be considered related to the goal and requirements for the 

study.  

4.2.2 Settings for video resolution 
The 360 camera has several options for video resolution (Table 2). Higher spatial resolution 

gives lower options for frames per second (fps). Fps indicates how many image frames each 

second of the video consists of. A higher frame rate preserves detail sharpness when there is 

more motion (i.e., reduce motion blur) and gives more options when editing, e.g., slow motion 

possibilities. The spatial resolution (5.7K, 4K, 3K) indicates the number of pixels on the 

photosensor and the number of pixels displayed in the image or video (GoPro, 2021). A higher 

number of smaller pixels will give the possibility to distinguish more details in the images and 

video (i.e., higher spatial resolution) which is an advantage for taxonomic classification. By 

reducing the number of pixels, the size of each pixel increases and can capture more light, 

increasing the sensitivity of the sensor, increasing image quality in low-light conditions. Thus, 

there is a trade-off between spatial resolution and sensitivity. In November many images from 

the transects were blurry. This was possibly due to cloudy conditions and in general reduced 

ambient light in this time of year, and a lower speed of the ROV would have been required to 

get images of the same quality as the other visits with the same video settings. For the detail 

level required for this study, most of the images were still possible to use, but for a study 

purpose requiring a higher detail level this would have been serious for the data/outcome. A 

possible solution could have been to increase fps from 30 to 50 (67% increase). However, this 

would require a change in spatial resolution from 5.7K (16.6 MP (megapixels)) to 4K (7.4 MP), 

giving 55% reduction in pixel number. How this would have affected the results, and what is 

the best option for this study would have to be further investigated.  

4.2.3 The effect of a three-dimensional seascape 
One challenge with optical methods that record the seascape from a zenith perspective is the 

three-dimensional structure of the seascape and its components. Actiniarians were common in 

all three transects. In May most actiniarians had their tentacles expanded which covered up an 

area around them (e.g., Figure 11 A, Figure 12 A and C). This posed a challenge in all three 

transects and many O. nigra were probably missed because they were positioned under 

actiniarian tentacles. Larger rocks were another three-dimensional structure that was most 

common in Location 3 (Figure 17). Ophiocomina nigra was observed to aggregate on rocks, 

but sometimes it was not possible to see them properly because they were situated on the side 

of the rock and/or the three-dimensional structure would create a shadow that made it 

impossible to see the dark colored species. Another challenge related to three-dimensionality 

was posed by O. nigra itself. In areas where they were densely aggregated it could be impossible 

to distinguish individuals from each other and thus give a realistic estimate of the numbers of 

individuals. This is a challenge with visual methods that are not encountered with traditional 

grab sampling methods (Mackie, Coggan and van-Heteren, 2007). 
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4.2.4 The effect of ambient light, water transparency and substrate 
Comparable with shadows, O. nigra positioned on dark macroalgae was a challenge as they 

were well camouflaged on the dark patches of macroalgae. Using artificial light (lamps) could 

have been a solution to the challenge with shadows and O. nigra positioned on dark substrate. 

The ROV has a LED light under the camera in the front of the ROV. With the position chosen 

for the 360 camera, this was quite close to the light source (Figure 5 A). A LED light source 

can brighten up dark areas and give more natural colors to the objects. However, it will light up 

a limited area and the rest will be very dark (Ludvigsen, 2010). The light might also create new 

shadows due to the three-dimensionality of the seascape. As a result of the reasons mentioned, 

only natural light was used in this study. Natural light can be sufficient for imaging techniques 

in shallow waters, but surveys in deep water require artificial light due to the rapid attenuation 

of light in water (Sward, Monk and Barrett, 2019). 

 

The ambient light in shallow waters is largely affected by the weather conditions (Preisendorfer, 

1976). In May the sun created a larger contrast between light and dark areas in the shallowest 

areas of the transects. This led to larger areas with shadows where it for instance was not 

possible to see if O. nigra was present. In September there was a heavy rainfall that led to a 

large input of freshwater into Hopavågen. The freshwater carried organic matter and the surface 

waters in Hopavågen was colored brown due to an elevated concentration of cDOM, a 

phenomenon described to have happened in Hopavågen earlier (Teacă, Ungureanu and 

Mureşan, 2017). High concentrations of cDOM gives a yellow tint to images (Kjerstad, 2014), 

and this was evident in the images from Location 2 and 3 which were surveyed after the rainfall. 

This gave a better contrast between substrate and O. nigra, which made them easier to identify 

and count (Figure 13). The effect of substrate related to contrast was also apparent in Location 

1 where the white shell sand contrasted with the dark O. nigra (Figure 11). 

4.3 Study design with ROV transects 

Protocols for conducting surveys and standardization of methods are important to ensure quality 

of collected data and comparable results. Norway follows NS-EN 16260:2012, the Norwegian 

and European standard for visual seabed surveys, which gives directions for pilot surveys, 

mapping, and monitoring (Standard Norge, 2012). As previously discussed by Strømsholm 

(2018) this standard is not adapted to shallow water surveys. The standard states that transects 

in heterogenous habitats should be of 500m length, and that there should be more than 20m 

between still photographs for mapping surveys (Standard Norge, 2012). Both the length of 

transect and interval between images would not be suitable for this study. It is possible to switch 

to a longer tether or use a boat for conducting longer transects with the ROV, but this would be 

a survey of an entirely different spatial scale and resolution. By increasing the length of the 

transects and increase the frame grab interval according to the standard, a lot of information on 

biodiversity and habitat diversity would be lost. Mitchell and Coggan (2007) review different 

standards for remote video techniques (drop cameras, towed video sledges and ROVs), which 

also includes considerations related to the use of miniROVs. Reliable information on size of 

FOV and distance travelled are important factors mentioned for the accuracy of line transect 

(Mitchell and Coggan, 2007).  
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The ROV used did not have sensors for tracking the geoposition of the ROV. The intended 

solution was to choose a starting point on land, point out the desired direction for the transect, 

and use the heading information in the ROV Blueye app to keep a constant heading, aided by 

activation of the auto-heading option. However, the ROV is small and is affected by wind and 

current speed and direction. On several occasions the ROV was observed to drift with the 

current when it was at surface level, especially in Location 1 which was most exposed to 

currents. Some drift was also experienced underwater during transects, and the heading had to 

be adjusted to drive more against the direction of the current. The length of the tether used was 

75 m, but this is not a reliable measurement of distance traveled, as the tether is also subjected 

to drag by currents (Ludvigsen, 2010). Consequently, the accuracy of geoposition and length 

of the transects from visit to visit was affected. The transect in Location 2, where the ROV was 

following the pipeline, was more repeatable than the other two transects. To have a physical 

reference on the seafloor greatly eased the geopositioning of the ROV.  

 

Due to a varying altitude (distance between seafloor and ROV) the images from the 360 camera 

each covered a different sized area on the seafloor. Consequently, the number of O. nigra might 

not be representative for the actual density present. One example is from Location 1 in May 

where 165, 33, and 109 O. nigra were counted in three consecutive images. When viewing 

these images, it is apparent that the 360 camera is much closer to the seafloor in the middle one, 

thus covering a smaller area than the two other images. To introduce a relative abundance 

scoring on a qualitative scale can be an efficient method to work around such challenges 

(Mitchell and Coggan, 2007), as demonstrated in this study with the qualitative density category 

for O. nigra. However, variability in altitude can influence the ability to identify organisms, as 

demonstrated by Kjerstad (2014). She found that 13 out of 14 taxa of benthic species were 

unidentifiable when the distance between OOI and the imaging sensor increased from 0.3 m to 

1.1 m due to reduced spatial resolution and attenuation from IOPs. Consequently, an option to 

lock the ROV to a constant altitude and speed would have been more optimal for image quality 

(Johnsen et al., 2013) and repeatability of the method (Mitchell and Coggan, 2007; Standard 

Norge, 2012). 

4.4 Future perspectives 

4.4.1 Possibilities for the ROV with a 360 camera 
In the newest model of the Blueye ROV, Blueye X3, some of the challenges encountered in 

this study has been solved: the camera can be tilted and has a total vertical FOV of 115° which 

will give a better view of the seafloor. It also has options to add altimeter (ping sonar altimeter 

and echosounder) for “auto-altitude” control mode for a constant distance to the seafloor, and 

to add an acoustic positioning system (Blueye.no, 2022). New semi-autonomous options for 

constant speed and altitude and the possibility of underwater geolocation of the ROV is 

expected to make it easier to conduct this kind of survey, enable quantitative measurements, 

increase the repeatability when returning to the same survey area, and increase image quality 

and identification success of OOI (Johnsen et al., 2016).  
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As the 360 camera was found to substantially increase the information gained from the surveys, 

it could be of value to develop an integrated solution of the 360 camera into the ROV system. 

Options that would enhance the use includes to get a live feed of the 360 video, be able to start 

and stop recording during dives, and to find a more hydrodynamic solution than the one used 

in this survey. The current setup with the 360 camera altered the stability of the ROV, and it 

would rock back and forth after an input on the controller. In addition, the underwater housing 

for the 360 camera was scratched after hitting rocks and the seafloor as it was protruding out 

far in front of the ROV. A damaged underwater housing will affect the quality of future video 

and images with that housing. One possible solution would be to use a different mount and 

attach it to the top of the ROV so that the 360 camera sticks out in front of the ROV above the 

ROV camera. This will however increase the distance between the 360 camera and OOI and 

will probably not be more hydrodynamic. Other solutions would have to be explored. 

4.4.2 Ophiocomina nigra as indicator 
Brittle star beds are a prominent feature on the seabed that is easy to detect and monitor with 

optical methods such as the one used in this study. Especially O. nigra is easy to identify in 

Norwegian waters where there are no similar looking species (Hansson, Cedhagen and Strand, 

2013). The requirements of the species are relatively well known, thus monitoring of brittle star 

beds can pose as useful indicators for state and change within coastal environments (Hughes, 

1998).      

 

Ophiocomina nigra is a highly opportunistic species with a high flexibility in feeding methods 

(Fontaine, 1965; Moen and Svensen, 2020). The species has been observed to respond to 

organic enrichment and human activities in several cases: to macroalgae detritus from green 

algae blooms resulting from organic enrichment in Brittany, France (Blanchet-Aurigny et al., 
2012; Guillou, Blanchet-Aurigny and Le Goaster, 2013), aggregating on patches of remains of 

Laminaria hyperborea (Gunnerus) Foslie, 1884 after trawling in Hustadvika, Norway (G. 

Johnsen, personal communication, May 2022), aggregating close to sewage discharges in the 

Mediterranean coast (Allain, Romano and Semroud, 1978; Harmelin, Bouchon and Hong, 

1981, as discussed by Guillou, Blanchet-Aurigny and Le Goaster, 2013), to increase in numbers 

over several years after adding fertilizers to an enclosed sea-loch (Raymont, 1950), and to 

aggregate close to coastal fish farms (Woodcock et al., 2018; Keeley et al., 2020). A population 

outbreak (Uthicke, Schaffelke and Byrne, 2009) of O. nigra in a previously unoccupied area 

would be detectable with the method used in this study and could indicate organic enrichment 

or loose macroalgae. It might be difficult to determine the cause of the population outbreak 

solely based on optical surveys because of the flexibility in feeding method exhibited by the 

species. However, if there is a known source of organic enrichment, the population outbreak 

indicates that the enrichment affects the ecosystem. The consequence can be homogenization 

of the benthic ecosystem if a generalist species as O. nigra outcompetes specialist species 

adapted to the original environment (Blanchet-Aurigny et al., 2012). 
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4.4.3 Machine learning and automatic identification (AI) 
New and more efficient methods bring large amounts of data that needs to be managed, stored, 

and analyzed (Solan et al., 2003). In this study the processing from video files to images and 

further analysis of the images was time-consuming. Especially the identification and counting 

of the number of brittle stars in each image was laborious. Automatic identification with 

machine learning is a possible solution to this. It took about 10 hours to write the code and to 

perform the training of the algorithm that was used for the automatic identification of O. nigra. 

After that the automatic identification was very fast (less than 1 second per image). In 

comparison it took roughly 2.5 minutes to count 100 O. nigra manually. With 54 out of 115 

images from Location 1 containing more than 100 O. nigra, and a maximum number of 631 O. 
nigra counted in one image, this was a highly time-consuming job.  

 

The algorithm was successful in not mistaking Ophiura sp. for O. nigra (Figure 19). However, 

there was potential for improvement in some situations. The algorithm showed a tendency to 

give false positives (Figure 19). The training data only included images with O. nigra present. 

The occurrence of false positives could have been reduced by including images of the seafloor 

without O. nigra (B. Kvæstad, personal communication, May 2022). The performance of the 

algorithm of 86.7% based on number O. nigra counted in every image can be considered 

sufficient for the accuracy level required for this study. Only an estimate that can indicate the 

density of O. nigra is needed and not the accurate number. The algorithm performed poorly in 

the edges of images (Figure 20 A) due to the chosen FOV, but this was because of a lack of 

identification in such areas by the marine biologist which resulted in lack of training of the 

algorithm for these situations. Another example of poor performance of the algorithm was on 

close-up images because there were few of this in the training set. The algorithm will evaluate 

its performance based on the given training data and will therefore not perform better than the 

data it is given (Pettit et al., 2021). The training set used was rather small. Following from this 

the algorithm was only trained on a narrow set of situations. With machine learning it is 

possible, and needed, to keep assessing the performance of the algorithm and make continuous 

improvements as the data set increases. A biological expert will always be needed, but AI is a 

tool that can drastically reduce the workload that follow from advances in technology for 

efficient survey methods that generate large amounts of data (Solan et al., 2003; Wang, Ma and 

Zhou, 2009). In addition, it has the potential to reduce the subjectivity and increase the accuracy 

of visual identification (Persello and Bruzzone, 2014). However, the potential bias now lies in 

the training data. 

4.4.4 Citizen science 
The ROV used in this study is relatively cheap compared to large ROVs that additionally relies 

on specially trained people and an operational vessel to be used (Johnsen et al., 2013; Mogstad, 

2021). There are even cheaper miniROVs on the market, making them an accessible tool for 

enthusiasts for the marine environment. The increased availability and lowered threshold for 

use of miniROVs (Sward, Monk and Barrett, 2019) introduces a potential for citizen science 

projects, where members of the public and scientists collaborate to conduct scientific research. 

The use of citizen science projects has increased exponentially since the 1990s, supported by 
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the developments in technology. It is estimated to be as much as 500 ongoing citizen science 

projects in Europe related to the marine environment (Garcia-Soto et al., 2021). Citizen science 

data has successfully been used to obtain information on species that are difficult to sample or 

follow, and to collect samples of and document rare species and phenomena (Johansen et al., 
2021; Ringvold et al., 2021; Edelist et al., 2022). Potential citizen science projects related to 

the method of this study could involve uploading of observations of e.g., marine litter, pollution, 

rare or invasive species, or indicators such as a population outbreak of O. nigra. Citizens can 

also be involved in annotation of ROV video for training of a machine learning algorithm, as 

in the ongoing project connected to the Koster Islands, Sweden (EU-Citizen.Science, 2022). 

Citizen science projects are mutually beneficial. The citizens get the opportunity to increase 

their knowledge of the marine environment and get an opportunity to participate in collecting 

data that can be used in decision making for the benefit of their local marine environment. 

Scientists can obtain large, long time data sets with substantially decreased effort required 

(Garcia-Soto et al., 2021). With an increasing market for miniROVs directed towards public 

buyers, the contribution to subsea citizen science projects is no longer constricted to come from 

divers.  

 

 

 

 

 

 

 

  



 46 

5 Conclusion 
In this study the spatial distribution of brittle stars in shallow waters was assessed using a 

miniROV and a 360 camera. Ophiocomina nigra is a conspicuous species that was easily 

identified with this optical method. This species dominated the benthic habitat in one of the 

studied areas in all three seasons. In the other areas O. nigra was mainly found on elevated hard 

substrate and on patches of macroalgae. The variability between the different areas in the spatial 

distribution of this species can be related to food availability and reflect the flexibility in feeding 

strategies of the species. Brittle stars in the Ophiura genus were not possible to identify to 

species level. The spatial distribution of Ophiura sp. was correlated with fine sediments, which 

they were well camouflaged in. Their substrate preference is also hypothesized to be connected 

to their feeding strategy and access to benthic prey. Depth, season, and temperature was not 

determining factors for the distribution of brittle stars in this study. 

 

The identification success of OOI with the 360 camera is dependent on several factors, 

including altitude, video resolution and choice of FOV in the editing software. These factors all 

affect the spatial resolution of the images. There is a trade-off between the spatial resolution 

and sensitivity of the sensor, and between spatial resolution and the size of FOV. The 

identification success is additionally affected by ambient light conditions, IOPs, substrate, the 

velocity of the ROV, the three-dimensionality of the seascape and geometric distortion in the 

images. Options for geopositioning and auto-altitude and -speed in newer ROV-models are 

expected to improve the performance of the ROV in such surveys and give the possibility of 

obtaining quantitative data. 

 

The 360 camera substantially increased the information gained with minor additional expenses 

and time use. A subsequent challenge following from advances of efficient methods are to 

analyze and visualize large amounts of data. The MCA was a helpful tool for assessing possible 

correlations between the variables in the data set. Automatic identification of O. nigra with 

machine learning showed a promising accuracy of 86.7%. By increasing the size and variety of 

the training data set the algorithm can be further improved and machine learning can be a 

valuable tool for efficient image analysis. Machine learning can reduce the bias of manual 

image analysis. However, the performance is reliant on the quality and amount of training data.  

 

The study additionally demonstrated a high variability in the seascape in a relatively small area 

compared to the vast ocean space. This demonstrates the importance of studying the seascape 

on a variety of spatiotemporal scales. The easy operation and increased availability of 

miniROVs introduces a potential for involvement of citizen science projects to aid scientists in 

efficient mapping and monitoring of benthic habitats.  
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