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A B S T R A C T   

Automation is increasing in shipping. Advancements in Artificial Intelligence (AI) applications like collision 
avoidance and computer vision have the potential to augment or take over the roles of ship navigators. However, 
implementation of AI technologies may also jeopardize safety if done in a way that reduces human control. In 
this systematic review, we included 42 studies about human supervision and control of autonomous ships. We 
addressed three research questions (a) how is human control currently being adopted in autonomous ship sys-
tems? (b) what methods, approaches, and theories are being used to address safety concerns and design chal-
lenges? and (c) what research gaps, regulatory obstacles, and technical shortcomings represent the most 
significant barriers to their implementation? We found that (1) human operators have an active role in ensuring 
autonomous ship safety above and beyond a backup role, (2) System-Theoretic Process Analysis and Bayesian 
Networks are the most common risk assessment tools in risk-based design, and (3) the new role of shore control 
center operators will require new competencies and training. The field of autonomous ship research is growing 
quickly. New risks are emerging from increasing interaction with AI systems in safety–critical systems, under-
scoring new research questions. Effective human-AI interaction design is predicated on increased cross- 
disciplinary efforts, requiring reconciling productivity with safety (resilience), technical limitations with 
human abilities and expectations (interaction design), and machine task autonomy with human supervisory 
control (safety management).   

1. Introduction 

Artificial Intelligence (AI) and automation have the potential to 
improve safety in complex transportation systems. Unlocking that po-
tential, though, appears to depend on a seamless integration of human 
and machine control, combined with well-executed strategies for man-
aging risks in a constantly changing environment. Maritime Autono-
mous Surface Ships (MASSs) have in recent years emerged as a new 
application of vehicle automation, in turn presenting new challenges 
and a productive research community. In the backdrop of rapid tech-
nology development, research contributions about MASSs have come 
from disparate fields, including risk and safety science, human factors, 
policy, and engineering. Currently, there is no comprehensive review 
available to serve as a guidance across the multiple disciplines, despite 
what unites them all as a common goal: the vision of safe, effective MASS 
operations. The objective in this study is to systematically review the 
different disciplines contributing to MASS research. By identifying 
research themes and directions of current work, our motivation is to 
promote cross-pollination of research ideas and multi-disciplinary 

efforts as the field converges towards its common goal. Our aim in 
analyzing the research state-of-the-art is to contribute to a better un-
derstanding of current design frameworks for human-AI system inte-
gration. We also aim to synthesize the methods risk scientists are using 
to respond to the need to predict behavior of such systems in the face of 
considerable uncertainly and complexity. 

Despite continually improving safety records, shipping is considered 
a dangerous industry with a high rate of fatal injuries and high conse-
quences of maritime disasters (Hansen et al., 2002; Hetherington et al., 
2006). The International Maritime Organization (IMO), the United Na-
tions agency regulating international maritime safety, calls it “perhaps 
the most international of all the world’s great industries - and one of the 
most dangerous” (IMO, 2019). Investigations of underlying causes for 
marine accidents tend to point to “human error” as the single greatest 
contributor, by some estimates involved in 75–96% of all accidents 
(Rothblum, 2000). Proponents of automation, harkening its precision 
and untiring capabilities, have long promised an end to human errors. 
And yet the statistics appear unchanged: one recent safety report stated 
that the same “75% to 96%” of marine incidents in 2020 were at least 
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partly due to human error (Allianz, 2020). The tendency for automation 
applications to introduce new modes of error, even while effectively 
addressing known ones, has been well documented, including in the case 
of ship navigation (Lützhöft and Dekker, 2002). The risk picture 
emerging in the wake of MASS development remains unclear, hanging in 
the balance as new risks latent in human-AI interactions appear only 
partly offset by reduced instances of human error. 

While it is difficult to measure the direct effect of automation on 
overall safety, comparisons of yearly safety reports show that safety at 
sea is generally improving (Allianz, 2020). Automation in shipping has 
incrementally increased since the transition of sails to engines and 
manual rudder control to powered steering. Today, “autopilot” system 
controls analogous to those on cars are commonplace on ships, as is 
Dynamic Positioning (DP) control in vessels like ferries, offshore supply 
vessels, survey ships, cable layers, and drill ships that require precise 
maneuvering. While automation and safety seem to advance in parallel, 
it is unclear to what extent the two are linked, and if so by what 
mechanisms. 

At the start of the 2010s, a shift was observed towards digital 
transformation of the maritime industry, captured by the moniker 
“Maritime 4.0” and referring especially to automated integration of real- 
time data into decision making (Sullivan et al., 2020). The first major 
project about autonomous ships was completed in the years 2012–2015, 
called the MUNIN project (Burmeister et al., 2014). In 2017, two Nor-
wegian companies Yara and Kongsberg announced plans to develop the 
Yara Birkeland, an autonomous cargo carrier servicing three ports in 
Southern Norway (Yara, 2017). Today, the project is still a forerunner, 
with plans for “fully autonomous operation” slated for 2022 (Kongsberg, 
2020a). Recent innovations have demonstrated so-called “auto- 
crossing” and “auto-docking” in several ferry applications (Kongsberg, 
2020b; Rolls-Royce, 2018). Collectively, these technologies effectively 
handle entire crossings between terminals automatically, relying on 
bridge crew to intervene to avoid possible collisions. 

Today, AI is heralding the next level of automation in transportation 
applications, and it is the most recent harbinger of improved system 
safety addressing the ubiquitous “human error” problem. Deep learning 
has been demonstrated in applications ranging from obstacle detection 
(Chen et al., 2020), obstacle avoidance (Cheng and Zhang, 2018), and 
mooring line fault detection (Chung et al., 2020). As a research field, AI 
has been characterized by periods of rapid advancement and abundant 
research funding (so-called “AI Springs”) followed by periods of slower 
progress (“AI Winters”). At the start of the 2010s, new breakthroughs in 
AI, made possible in part by increased computational power in Graphics 
Processing Units (GPUs), marked a new AI Spring. In the marine in-
dustry, it also marked first ever serious attempts at developing autono-
mous ships. Since 2018, MASS have been formally recognized by IMO, 
the agency of the United Nations promoting global maritime safety. 
Foremost on their agenda for MASS is meeting the growing need to 
reconcile perceived benefits of MASS implementation with growing 
concerns for safety (IMO, 2018). 

1.1. The concept of shore-based control for unmanned ships 

The future of MASS operations will aim at reducing the crew onboard 
and increasing the land-based coordination and control. The concept of 
the Shore Control Center (SCC) (also known as the Remote Control 
Center or Remote Operation Center) meets a growing need for central-
ized coordination with the tasks of monitoring, supervision, and inter-
vention of MASS fleet operations. The scope of MASS operations for this 
paper includes open-ocean, short-sea, inland, urban, and mission- 
oriented operations, each of which set unique constraints for naviga-
tion, regulation, and safety management. Open-ocean MASS operations 
involve generally non-demanding navigation (e.g., Burmeister et al., 
2014) whereas short-sea shipping routes involve trafficked shipping 
lanes containing aids to navigation and established Vessel Traffic Ser-
vices (VTS) coordination (e.g., Lunde-Hanssen et al., 2020; NTNU, 

2021). Inland applications apply to inland cargo vessels in inland wa-
terways (e.g., Peeters et al., 2020a); urban applications apply to small 
vessels that transport passengers or goods in urban canals or waterways 
(e.g., MiT, 2020; Reddy et al., 2019; Valdez Banda et al., 2019; Wang 
et al., 2019), and data-collection Autonomous Surface Vessels (ASVs) 
are used in scientific research and exploratory field work (e.g., Dallolio 
et al., 2019; Dunbabin et al., 2009; Kimball et al., 2014). While we can 
conceptualize an SCC by its execution of land-based operational tasks 
like supervision, monitoring, and control intervention, the work un-
dertaken by its operators will vary considerably across the range of 
MASS applications. For example, short-sea shipping will set more de-
mands on navigation than open-ocean applications; urban passenger 
transport will set more demands on safety management that mission- 
oriented ASVs whose payload is just measurement equipment and data. 

1.2. Definition of AI and applications to marine operations 

AI has no formal definition. The first informal definition can be 
traced to a workshop on AI held in 1955 at Dartmouth College, 
commonly held to be the origin of the field. The concept was based on 
the “conjecture that every aspect of learning or any other feature of 
intelligence can be in principle be so precisely described that a machine 
can be made to simulate it (McCarthy et al., 2006).” This description 
largely holds true today, and many of the original topics under inves-
tigation at the first workshop on AI, like natural-language processing, 
neural networks, machine learning, and reasoning, still serve as guiding 
beacons for contemporary AI researchers and developers. The absence of 
a formal definition is not necessarily a hindrance. In a recent publication 
about the research state-of-the-art in AI, a committee of leading re-
searchers stated that “the lack of a precise, universally accepted defi-
nition of AI probably has helped the field to grow, blossom, and advance 
at an ever-accelerating pace (Stone et al., 2016, pp. 12).” In this paper, 
we will examine AI applications for collision avoidance and computer 
vision used in the context of marine navigation. Examination of tech-
nology aspects are topical; the focus is on their implications for hazard 
identification, risk assessment, and human–computer interaction, with 
special attention afforded to the relevant theories and methods used 
across disciplines. 

1.3. AI brittleness and the need for “humans-in-the-loop” 

While there is significant potential for AI to improve safety by 
reducing “human errors” in marine operations, there are also many as-
pects of the technology that suggest new hazards. For example, com-
puter vision based on deep learning is prone to so-called “adversarial 
attacks,” whereby strategically modified images, often imperceptible to 
the human eye, deceive the algorithms and produce egregious errors 
(Akhtar and Mian, 2018). Real-world examples of adversarial attacks 
have been explored for autonomous cars (Eykholt et al., 2018) but not 
yet for computer vision in ships. A related problem is that of so-called 
“tail effects,” referring to the occurrence of low-probability events that 
are impractical or even impossible to train as inputs into a deep learning 
training dataset. This introduces a subversive “tail risk;” namely, the risk 
arising when specific tasks like navigation are performed in an unfa-
miliar environment or under new conditions. 

The brittleness of AI systems underscores the necessity of “humans- 
in-the-loop.” Human operators, especially when experienced, have the 
remarkable ability to integrate information in unfamiliar contexts and 
with apparently little information (Klein, 2017). This can be thought of 
as the complement of AI systems, whose decision making accuracy 
hinges on how similar the data is to its training set. In the much- 
anticipated “Outcome of the regulatory scoping exercise for the use of 
Maritime Autonomous Surface Ships (MASS),” the IMO listed, as one of 
its “high-priority issues,” the “Remote control station/centre.” This 
format of operating a MASS, was, they wrote, “a new concept to be 
implemented… and a common theme identified in several [IMO 
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Fig. 1. Schematic showing article selection method.  
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regulatory] instruments as a potential gap” (IMO, 2021, p. 8). Further-
more, it was outlined that the qualification, responsibility, and role of 
SCC operators were among the “most complex issues to be addressed.” 
This points to the current need to articulate the concept of the SCC 
(called Remote control station/centre by the IMO). before researchers 
from diverse fields can collectively address the underlying research and 
design gaps. 

1.4. Excessive automation and emerging risks 

Recent investigations into high-profile accidents in transportation 
have identified interaction with highly automated systems as a root 
cause. Following two Boeing 737 MAX crashes in the years 2018–2019, 
it was revealed that the Maneuvering Characteristics Augmentation 
System (MCAS), designed to automatically control pitch based on sensor 
readings of air flow, malfunctioned without the pilots being aware that 
the controller existed, leading to uncontrolled dipping of the nose to 
counteract a non-existent stall (Nicas et al., 2019). In another accident 
investigation, the Tesla “Autopilot” function came under scrutiny by the 
National Transportation Safety Board, which surmised that “system 
limitations” in combination with “ineffective monitoring of driver 
engagement, which facilitated the driver’s complacency and inatten-
tiveness” were the probable causes of a fatal accident in California 
(National Transportation Safety Board, 2020, pp. 58). The task of 
monitoring automated systems, whether in the role of a trained pilot or 
passenger, is well known to be ill-suited to humans, with associated risks 
compounded by the need to take over control quickly (Parasuraman and 
Manzey, 2010; Parasuraman and Riley, 1997). Both the Boeing and 

Tesla examples demonstrate how poor human-AI system interaction 
design can lead to unacceptably dire consequences by not bringing 
human-in-the-loop and resilience to the fore in system design. For ap-
plications in MASS operations, which also involve control intervention 
in safety–critical situations, similar underlying human-system integra-
tion issues are present. Some important distinctions do exist; for 
example, ships have considerably slower speed, reducing the time- 
criticality of takeovers and simplifying interface design (Vagia and 
Rødseth, 2019). However, ships are also considered “under-actuated,” 
having fewer inputs than degrees of freedom (Reyhanoglu, 1997), and 
may have very high inertia, requiring that navigation decisions are 
taken well in advance of the vessel’s actual response. Controlling safety 
in MASS operations within acceptable risk levels will involve addressing 
human-AI interaction as a potential source of error, especially for time- 
and safety–critical interventions. 

1.5. Research questions and aims 

Research and development in MASS operations has increased 
dramatically in the last decade. In the risk sciences, significant attention 
has been afforded to assessing different hazard identification and risk 
assessment techniques for MASS operations. Designers have promoted 
resilience in human–computer interaction; engineers have developed 
and tested novel technology, and much has been written about human 
factors in unmanned ships. Given the emerging need for a robust human- 
AI interface at the SCC, as well as the contributions from multiple fields 
of research and the long list of obstacles slowing progression towards 
implementation, we organized our systematic review around three 

Table 1 
Results of systematic review. 

Analysis criteria Articles analyzed(ID can be matched to corresponding article using list in Appendix A 
) 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Research Question 1: 
How is human 
control being 
adopted?                      

Level of Autonomy 
taxonomies  

●  ● ●  ● ● ● ● ● ● ●   ●   ●  ● 

Humans’ roles in 
automated systems 

●   ●  ● ● ● ●     ● ● ● ●    ● 

Resilience Engineering   ●              ●   ●  
Benefits of 

collaborative 
systems                    

●  

Research Question 2: 
How to address 
design and safety?                      

Practical design 
approaches           

●   ● ●  ●   ● ● 

Risk assessment 
methods                    

●  

Human-computer 
interaction 

●     ● ●  ●  ● ●   ●  ●     

Empirical testing and 
prototypes 

●   ● ●  ● ● ● ● ●   ●   ●  ●   

Research Question 3: 
What are the 
outstanding 
knowledge gaps?                      

Risks in human-AI 
interaction  

●  ● ● ●   ●  ● ●  ●        

Regulatory concerns  ●  ● ●   ●   ●  ●  ● ●      
Training for SCC 

operators  
● ● ● ●  ● ●  ●   ●         

Infrastructure for 
mixed traffic          

● ●  ● ●         
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distinct research questions. Namely, given that automation is increasing 
in shipping,  

1. how is human control currently being adopted in autonomous ship 
operations?  

2. what methods, approaches, and theories are being used to address safety 
concerns and novel design challenges?  

3. what research gaps, regulatory obstacles, and technical shortcomings 
represent the most significant barriers to real-world implementation? 

The review is organized as follows. Section 2 describes the review 
method. Section 3 describes the outcomes of the review as guided by the 
three research questions. Section 4 discusses the outcomes by comparing 
them to relevant theory and methods outside the review. Section 5 
presents conclusions of the review and traces the direction of future 
work. 

2. Method 

Understanding the state-of-art within a research topic is a complex 
task. There are many methods available, ranging from traditional styles 
that adopt an inductive analysis approach and “snowball sampling” of 
relevant resources, to meta-analysis approaches that aim to synthesize 
with the help of statistical tools an entire field of research, often citing 
hundreds of studies. In this paper, we adopted a systematic, compre-
hensive review approach that can be considered somewhere between 
traditional and meta-analysis review approaches. The systematic review 
has three virtues: it is reproduceable, introduces little bias, and it is 
transparent. Systematic reviews come in no universal form, although 

one commonly used guideline called “Preferred reporting items for 
systematic reviews and meta-analyses” (PRISMA) calls for a degree of 
standardization among researchers (Moher et al., 2009). We adopted 
PRISMA guidelines in our review. 

The scope of the review was guided by the need for state-of-the-art 
research, not simply a state-of-the-art in implementation. We searched 
specifically for research about remote and shore-based control of 
autonomous ships because it conceptually represented the integrated 
MASS system, including not just elements of automated navigation but 
also of human control and emergent safety properties. We chose our 
search keywords (“Shore Control Center” and various alternatives) 
because these keywords represented this integrated system emerging in 
the wake of MASS development. The concept is also used by different 
fields in different ways, agnostic to any one research discipline. More-
over, the concept is relevant to all the research questions we set out to 
investigate. The method is divided into three phases: a scoping review, a 
systematic review, and an abductive review (Fig. 1).  

(i) Scoping review: electronic search on the research topic followed 
by a series of screenings. The screenings occurred in two stages:  
1. Initial screening: based on title, type, and language: only titles 

that reflected the scope of our research questions were 
included, as were peer-reviewed journals, and English- 
language studies.  

2. Abstract screening: based on consensus of the two authors who 
independently analyzed the abstracts of studies passing initial 
screening. 

Articles analyzed(ID can be matched to corresponding article using list in Appendix A 
) 

Sum 

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42                          

● ● ●  ● ●     ● ● ● ● ● ● ● ● ● ● ● 29  

●  ● ●   ● ● ●    ●   ●  ● ● ● ● 23    

● ● ● ● ●   ●   ●  ● ●  ●    13  
●    ●  ●        ●      5                           

● ● ● ● ● ●  ●  ●   ● ●  ● ● ● ●   20  

● ● ● ● ● ●    ●   ● ●   ● ● ● ● ● 15  

●  ●   ●       ● ●  ●  ●   ● 16   

●        ●    ●     ●   15                             

● ● ●    ● ●   ● ● ● ● ● ● ● ● ● 22   

●    ●     ●           11     
●       ●  ● ●       12  

●              ●  ●     7   
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(ii) Systematic review: full-text analysis by first author and coding 
in text analysis software NVivo (NVivo, 2020) according to the 
three research questions and relevant bibliographic details.  

(iii) Abductive review: comparison to literature outside of the 
analyzed studies and expansion of the topics analyzed in the 
results. 

2.1. Scoping review 

Four databases were searched: ScienceDirect, Scopus, Web of Sci-
ence, and Google Scholar. This ensured a broad indexing of academic 
databases, although it also resulted in many duplicates. The date range 
was set to 1 Jan 2010 to 12 Nov 2021. The search was restricted to the 
keywords “Shore Control Centre,” “Remote Operation Centre,” and 
“Remote Control Centre,” plus an additional phrase to narrow the scope 
to marine applications (“AND Ship OR Vessel AND Marine”). 

Note that using double quotations in search phrases (e.g., “Shore 
Control Centre”) in ScienceDirect and Scopus specified a search with 
those words together, but also included variants on punctuation and 
regional spelling and plural forms as well as variations on capitalization. 
For example, “Shore-Control Centers” and “Shore Control Centre” 
appeared together in the same search. For Web of Science and Google 
Scholar, the regional spelling variants had to be specified using the 
search “Shore Control Centre” AND “Shore Control Center” (but main-
tained all same flexibility in plurals, hyphenation, and capitals as in the 
other search database rules). 

The initial screening was straightforward: duplicates and non- 
English language contributions were removed as were any publica-
tions from non-peer-reviewed journals. Note that excluding all technical 
reports and conferences papers potentially excluded valuable contribu-
tions, presenting a limitation in our review method. On the other hand, 
this exclusion criterion ensured a consistent standard of research 

contributions in the analysis. Titles of all remaining peer-reviewed 
journal articles were screened for those that were obviously out-of- 
scope. 

The second-stage screening of articles required analyzing their ab-
stracts and reaching a consensus on whether they should proceed to full- 
text review. Analysis was conducted by the two authors. Eligibility was 
based on whether the study potentially contributed to either one of the 

Fig. 2. Number of SCC studies published by year.  

Fig. 3. Categories of all analyzed studies.  
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three research questions defined in the Introduction. This was not al-
ways obvious from just the abstract; Grote et al., 2014 when in doubt, we 
included the study on the basis that the subsequent full-text analysis 
would confirm whether the study should be included. Also, only studies 
presenting original research were included, excluding opinion papers 
and review studies. 

During the second-stage screening, we also made some additional 
scoping constraints to help converge our study subset. We briefly note 
these constraints here. We defined the scope to studies including any 
integrated system consisting of one or more MASSs and an SCC. From 
here on in we refer to such systems as just “MASS systems.” The context 
was broad, including information needs, design approaches, systems 
design, complex socio-technical perspective, and elements of human-
–machine interaction related to remote control and intervention (from 
safety, risk, regulatory, technological, and maritime training perspec-
tives) from shore-based infrastructure or from other surface vehicles. 
Importantly, this excluded work about UAVs and ROVs and papers 
focused on business cases or economics, cyber-security, law, cyber-
netics, insurance, or discussions about taxonomy for autonomous ves-
sels. Additionally, we excluded works focused on just one component (e. 
g., communication or motion control) that only peripherally mentioned 
the human control and human interaction elements. The guiding prin-
ciple was that the studies as a whole should reflect state-of-the-art 
research on MASS systems and not a state-of-the-art on its 
implementation. 

2.2. Systematic review 

Following the PRISMA guidelines, our main aim was to qualitatively 
synthesize the literature in the context of the defined specific research 
questions in a way that was reproduceable, unbiased, and transparent. 

2.2.1. Review protocol, data extraction & coding 
A review protocol specified how the studies were screened during 

full-text review against eligibility criteria and how information was 
extracted for answering the research questions. 

Studies were screened for information that contributed to any one of 
the three defined research questions. This was done by coding the 
studies in the text analysis software NVivo (NVivo, 2020). Coding for the 

Fig. 4. Salient themes by word frequency in all analyzed studies.  

Table 2 
LoA taxonomies adopted in the reviewed studies.  

LoA taxonomy Description of maximum LoA 
for current operational 
concepts 

Article ID 

IMO (2018) Remotely controlled ship 
without seafarers on board 
(Degree 3 out of 4): The ship is 
controlled and operated from 
another location. There are no 
seafarers on board. 

[2, 4, 5, 8, 9, 10, 
11, 13, 22, 23, 33, 
35, 38, 39, 42] 

NFAS (Rødseth, 2017) Constrained autonomous 
(Level 7 out of 8): This is 
assumed to be a common mode 
for unmanned ships operating in 
relatively benign environments. 
The ship can operate fully 
automatic/autonomous in low 
traffic and non-restricted waters, 
until it sees problems that it 
cannot solve itself. Then it can 
call on shore control to resolve 
any problems. This reduces ship 
system complexity, while 
optimizing the benefit of having 
backup functions on shore. 

[12, 19, 24, 37] 

Utne et al. (2017) Semi-autonomous operation 
or management by exception 
(Level 3 out of 4): The system 
automatically executes mission- 
related functions when response 
times are too short for human 
intervention. The human may 
override or change parameters 
and cancel or redirect actions 
within defined timelines. The 
operator’s attention is only 
brought to exceptions for certain 
decisions (human-supervisory 
control). 

[27, 34] 

Lloyd’s Register, (2016) “Active” human in the loop 
(Autonomy Level 3 out of 6): 
Decisions and actions at the ship 
level are performed 
autonomously with human 
supervision. High impact 
decisions are implemented in a 
way to give human operators the 
opportunity to intercede and 
override them. Data may be 
provided by systems on or off the 
ship. 

[26, 41] 

Central Commission for 
Navigation on the 
Rhine (CCNR, 2021) 

Conditional to High 
Automation (Level 3–4 out of 
5): The sustained context- 
specific performance by a 
navigation automation system of 
all dynamic navigation tasks, 
including collision avoidance, 
with the expectation that the 
human helmsman will be 
receptive to requests to intervene 
and to system failures and will 
respond appropriately (no 
human intervention needed for 
High Automation). Applies to 
inland MASS only. 

[16, 32, 40] 

Combination / dynamic 
LoA 

Shifts between generalized LoA 
levels, especially under 
“adaptive autonomy” as 
defined by Sheridan (2011) 
whereby “allocation of control 
function (to human or computer) 
changes with time to 
accommodate changes in the 
conditions of either the physical 
environment or the human” (p. 
662). 

[7, 21, 36]  
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three research questions also helped to identify likenesses among studies 
across more granular dimensions – dimensions that, when assigned a 
title, became the sub-categories that structured the presentation of the 
Results. There are, namely, four such sub-categories for each research 
question presented in the Results section. 

The following information was coded during analyses of the studies:  

(i) Research Question 1: How is human control currently being 
adopted?  
a. Level of Automation (LoA) taxonomies  
b. Humans’ role in MASS operation  
c. Resilience Engineering  
d. Benefits of collaborative systems  

(ii) Research Question 2: What methods, approaches, and theories 
are being used to address design challenges and improve safety?  
a. Practical design approaches  
b. Risk assessment methods  
c. Human-computer interaction paradigms  
d. Empirical testing and prototypes  

(iii) Research Question 3: What research gaps, regulatory obstacles, 
and technical shortcomings represent the most significant bar-
riers to implementation?  
a. Risk assessment methods  
b. Regulations  
c. Design for human-AI interaction  
d. Infrastructure to support mixed traffic 

The coded data relevant to the research questions are summarized in 
Table 1. 

Studies were also screened for bibliographic and descriptive details. 
The purpose of the former was to tabulate a list of all analyzed studies, 
which is included Appendix A. The purpose of the latter was to broadly 
characterize the contributing publications in terms of journal scope 
(which we sought to bin into categories) and in terms of salient themes 
(which could be represented by textual analysis of the most frequently 
used keywords). The following bibliographic and descriptive informa-
tion was coded during analyses of the studies:  

(i) Bibliographic information (author, year, title, and journal name)  
(ii) Descriptive information:  

a. Journal scope (Safety & Risk, Human Factors & Training, 
Reliability Engineering, Ocean Engineering, Marine Policy & 
Regulation)  

b. Salient themes (computed from keyword frequency). 

2.3. Abductive review 

The abductive review is presented in the Discussion. Here “abduc-
tion” refers to the process of forming an explanation for a phenomenon. 
It presupposes that the explanation we present are grounded at least 
partly in the works we analyzed (and partly in works outside the review) 
and do not simply represent our conjectures or guesswork. The term was 
coined by the philosopher Charles Peirce and has inspired in-
terpretations for its use in modern science (for example, Paavola, 2006; 
Swedberg, 2014). We adopt the interpretation that forming an expla-
nation is a principled process. We present our Discussion accordingly, in 
five sub-sections that expand upon central themes uncovered in the 
analysis. Inferences are drawn transparently to the Results as well as to 
literature outside the review’s scope. This includes a diverse range of 
topics, including human-AI interaction for autonomous cars, ethno-
graphic studies of control room work, the growing use of simulation in 
human-AI interaction studies, as well as the role of safety management 
in striking a balance between human and machine autonomy. In the 
abductive review we also reviewed studies cited in the system review in 
a so-called “snowballing” approach to scoping relevant literature. 

3. Results 

3.1. Electronic search 

The electronic search resulted in 743 studies. This included, in 
respective order, 70, 116, 521, and 36 for ScienceDirect, Scopus, Google 
Scholar, and Web of Science. This included research and review articles, 
books, conference papers, and reports published from 1 Jan 2010 to 12 
Nov 2021. After removing duplicate studies, 603 remained. Each of 
these was screened by title and by language, removing those studies that 
were clearly out-of-scope and those in a language other than English. 
The remainder was 318 studies, comprised of 92 peer-reviewed journal 
articles and 226 other publications (conference papers, books, theses, 
and reports). Fig. 2 presents a plot of these 318 studies organized by date 
and frequency of occurrence. It shows an abrupt start in the years 
2013–2014, followed by steady publication rate through to 2017, after 
which publications increase markedly in 2018 through to 2020. The 
year 2021 saw a relative increase in the number of journal articles and 
decrease in amount of conference papers – likely a result of the COVID- 
19 pandemic. Note that the first publication describing the concept of a 
MASS system was in a 2010 paper by Im and Seo (2010), who described 
a “free running” or “automatically navigating” ship controlled from an 
SCC. The concept of “autonomous ships” with integrated control from a 
“shore control center” was first formally described by Rødseth et al. 
(2013). 

Excluding all conference papers, non-peer-reviewed journal articles, 
theses, reports, books, and book sections, we were left with 92 poten-
tially eligible peer-reviewed journal articles. After scanning the ab-
stracts of these 92 articles, a further 50 were excluded. Note that it was 
not always obvious from the abstract whether a study should be 
included; in these cases, the full text was scanned, often after discussion 
between the co-authors until consensus was reached. Full-text analysis 
and coding was done for a total of 42 studies (Appendix A). 

Categorizing the 92 articles by journal scope, we found that “Safety 
& Risk” and the related category of “Reliability Engineering” together 
accounted for 45% (n = 19) of the total studies analyzed (Fig. 3). A text 
frequency query, computed in NVivo (NVivo, 2020), showed that the 
word “safety” appeared among the top five most frequent words 

Table 3 
Humans’ roles in MASS system.  

Category Description Article ID 

Active Continuous monitoring and decision 
making support: operator’s role is active 
and engaged in all operational phases; the 
operator is in control of the ship, either 
through direct or indirect remote control. On- 
board roles were often specified, including 
emergency handling, active maintenance, 
lookout / watchkeeping, cargo loading and 
unloading. 

[1, 7, 9, 15, 16, 17, 24, 
29, 30, 34, 40, 42] 

Backup Monitoring and control intervention: 
operator’s role is characterized as “backup” 
to the AI system; control interventions, or 
takeovers, can occur when the operator takes 
over control from the AI system, either on 
their own initiative or from the prompting of 
the AI system itself. Monitoring is mostly 
continuous; the operator is never far from the 
control position if left unattended; emphasis 
placed on timely emergency or contingency 
response. 

[4, 6, 8, 21, 25, 37, 
41] 

Passive Supervision and assistance: operator’s role 
is characterized mainly by passive 
supervision; the operator can leave the 
control position and is alerted by the AI 
system if they are needed. Instead of handling 
situations as they arise, emphasis is on 
planning how to resolve situations before 
intervention is needed. 

[14, 22, 28, 39]  
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(excluding words with fewer than three letters and including stemmed 
words) (Fig. 4). 

3.2. Research question 1: Given that automation is increasing in shipping, 
what are the implications for human control? 

In this section, we explore the question of why human control is 
needed despite increasing automation. Drawing exclusively from the 
reviewed articles, we examine four relevant themes: (1) Level of Auto-
mation (LoA) taxonomies, (2) humans’ roles in MASS systems, (3) 
Resilience Engineering (RE), and (4) the benefits of collaborative 
human-AI systems. Together, these four themes offer a cross-section of 
the reviewed studies that explain what at first glance seems to be a 
paradox: that designing for increased automation in shipping hinges 
upon design for human control. 

3.2.1. Level of automation taxonomies 
Most of the articles analyzed (twenty-nine out of forty-two), adopted 

a Level of Automation (LoA) taxonomy. LoAs are a way of describing 
how autonomous a system is by way of a linear integer scale, usually 
from 0 indicating full human control to some maximum number repre-
senting full machine autonomy. All articles adopted the position that full 
autonomy was not feasible in the scope of current research. That is, even 
though the terms “autonomous ship” was used, it was understood to be a 
“highly automated ship” involving some level of mixed human-AI con-
trol as defined by an LoA taxonomy. To illustrate this, Ramos et al. 
(2019, 2020b) express that full autonomy is “not expected in the near 
future” and Huang et al. (2020) take the stance that it is “still unreal-
istic.” In Hannaford and Hassel (2021), the authors surveyed forty-two 
licensed seafarers on the matter, of whom two-thirds responded “it 
will not be safe to operate vessels in the future as fully autonomous” (p. 
13). Regardless of what LoA taxonomy was being used, all studies 
positioned themselves one or two steps below the maximum number to 
show that the ship was highly autonomous, albeit not autonomous 
enough to exclude humans. Specifically, MASSs still relied on humans 
enough to merit the SCC in the system design. 

By far the most commonly referenced LoA taxonomy in the papers 
analyzed was that proposed by IMO (2018). Fifteen out of the twenty- 
nine papers that positioned themselves within an LoA framework used 
this definition (Table 2). The second most commonly cited was NFAS 
(Rødseth, 2017), with four articles. Other LoAs used included one by 
Utne et al. (2017), Lloyd’s Register of Shipping (Lloyd’s Register, 2016), 
and the Central Commission for Navigation on the Rhine (CCNR, 2021) 
(the latter applying to inland MASS only). Three articles, while 
acknowledging the existence of various LoA taxonomies on offer, opted 
not to adhere to just one of strict definition. Instead, these studies 
generalized the MASS system as a combination of machine and human 
control, dynamically shifting with time. For example, Thieme et al., 
(2018) referenced several LoAs but settled on the general term “adaptive 
autonomy” put forward by Sheridan (2011) to avoid adherence to one 
particular LoA taxonomy. For a detailed review of LoA taxonomies, the 
reader is referred to Vagia et al. (2016). 

3.2.2. Humans’ roles in MASS systems 
Just over half the analyzed papers (twenty-three out of forty-two) 

described specific roles human operators play in the MASS system. 
The studies were unanimous in their assertion that operators would be 
responsible for ensuring safety of the ship and any passengers onboard, 
and for ensuring protection of the surrounding environment. The ability 
for humans to oversee several ships at once was also described as a 
common feature of SCC work, as was the ability to plan voyages and take 
over control of the automated system. 

Still, there were some notable differences in how humans’ roles were 
described. In our review, we identified three broad categories of oper-
ator roles: (1) Active, (2) Backup, and (3) Passive. In Table 3 we char-
acterize these three roles and list their corresponding studies. In 

approximately half the studies (twelve out of twenty-three), humans 
were identified as having an “active” role, characterized by “continuous 
monitoring and decision making support.” The remaining role de-
scriptions were underpinned by “backup” (seven studies) and “passive” 
roles (four studies). One common feature to all three roles, as noted in 
the studies, was their susceptibility to change, dependent as they were 
on technology development and operational elements (busier ports, for 
instance, require more active operator engagement). Still, each study 
could be mapped to just one of the three categories. This categorization 
was usually based on the case studies presented or on underlying as-
sumptions about MASS system design. For example, Rødseth et al. 
(2021), while acknowledging the wide range of possibilities for human 
participation, narrow down the operators’ primary role in the MASS 
system as one of backup to the automation. “It is expected that most 
autonomous ship systems will operate with continuous supervision from 
an RCC [Remote Control Center],” they write, specifying that operators 
need to “intervene when the automation is incapable of maintaining 
control” (p. 5). Wróbel et al. (2021), on the other hand, emphasize that a 
more active role related to diagnosing problems is needed to meet the 
expectation that problems can be “rectified” in a timely way. Mean-
while, others highlighted the need for planning and logistics, especially 
as more ships fall under command of a single SCC (e.g., Reddy et al., 
2019). 

Note that the categories below are independent of the studies’ chosen 
LoA taxonomy. To illustrate this, some studies described operators’ tasks 
as becoming more passive with higher automation (e.g., Zhou et al., 
2021), while others argued that higher automation comes with the need 
for more active coordination among different roles (e.g., Huang et al., 
2020; Relling et al., 2021). 

Some studies stood out in their treatment of specific roles in the 
MASS system. Eriksen et al. (2021), for example, highlight that main-
tenance activities are critical to a ship’s operability and rely on manual 
repair. Kooij and Hekkenberg (2021) also allude to the importance of 
repair activities onboard ships, pointing out that, “in contrast to [highly 
automated] cars and aircraft, the operators on ships do much more than 

Table 4 
Design approaches adopted in the reviewed studies.  

Goal-based 
design 
approach 

Description Article ID 

Human- 
computer 
interface 
design 

Functional requirements are defined 
in terms of tasks, task goals, and 
operational objectives. Methods for 
decomposing operational objectives 
into distinct task goals included Task 
Analysis (TA) and Information- 
Decision-Action (IDA) (described in 
more detail in Section 3.3.3). 

[11, 15, 17, 22, 24, 
27, 29, 31, 34, 35, 37] 

Safety design Functional requirements are defined 
in terms of acceptable risk levels. 
Although this can take many forms, 
the over-arching purpose in generally 
the same: to identify hazards, estimate 
their occurrence, predict associated 
risks, and design safety controls for 
mitigating these risks (see Section 
3.3.2 for a full list of risk analysis 
methods). Often referred to as “risk- 
based design.” 

[20, 22, 23, 24, 25, 
26, 27, 29, 31, 34, 35, 
37, 38, 39, 40] 

System 
integration 

Functional requirements stem from 
integrating components of a complex 
system. This may include diverse 
elements like human–computer 
interaction, operator tasks, and risk- 
based design, and emphasizes 
consistent modeling techniques across 
the board. Often referred to as 
“systems thinking,” or “systems 
engineering” approaches to design. 

[14, 21, 31]  
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‘just’ navigating the vehicle” (p. 2). In this sense, some human roles can 
be seen as holdouts to increasing automation, which include not just 
machinery maintenance and repair, but also cargo loading/unloading 
and mooring at port. 

Saha (2021) draws similarities between the role of MASS operators 
and those of Officers of the Watch (OOW) on conventional ships, in that 
they are both “responsible for monitoring the ship and intervening if 
needed” (p. 10). Hannaford and Hassel (2021), in contrast, hesitate to 
describe human roles at all, on the grounds that “it is too early to identify 
the amount of crew and the specific roles that will be needed because the 
crew has not been replaced yet, and not enough research has been 
conducted or published” (p. 15). Yoshida et al. (2021) argue that overall 
responsibilities of SCC operators will increase when compared to navi-
gators aboard conventional ships. 

3.2.3. Resilience Engineering 
Resilience Engineering (RE) is a paradigm that aims to balance 

productivity with safety in complex systems using safety control tech-
niques where risks are managed over time. Instead of focusing on human 
errors and inferring safety from accident investigations, RE positions 
humans as the source of resilience in a complex system and places the 
emphasis on safety controls. This way of thinking sheds light on the 
implications for human control in the MASS system, even before we 
have such systems implemented. Almost one-third of the analyzed pa-
pers (thirteen out of forty-two) adopted a design framework that fit 
within the RE paradigm. 

Here we present the relevant studies in terms of four broad principles 
at the core of RE. These are (1) focus on human as a source of resilience 
rather than as a source of error, (2) emphasis on safety controls and 
dynamic risk indices, (3) use of systems engineering-based risk assess-
ment technique like System-Theoretic Process Analysis (STPA), and (4) 
approaches to safety science that consider human and organizational 
interaction elements in addition to more straightforward component 
failures. 

Starting with the first principle, Ahvenjärvi (2016) directs attention 
towards the roles of software developers of the MASS system on the 
principle that here, too, can resilience be built in given that we design 
for front-line operators’ flexibility and problem solving abilities. In line 
with the second principle, Thieme and Utne (2017) apply the “resil-
ience-based early warning approach to development of indicators” 
(REWI) method to the MASS system, focusing on handling accidents, 
incidents, and unexpected events from an organizational perspective. 
Utne et al. (2020) elaborate on the “supervisory risk control” concept, 
showing that the system’s resilience goes beyond conventional safety 
controls by virtue of its ability to learn, adapt and improve over time. 
Reddy et al. (2019) highlight the need for a “systematic, traceable, and 
holistic assessment” of safety controls which shares some of the orga-
nizational and managerial elements discussed in Thieme and Utne 
(2017) and Utne et al. (2020). Peeters et al. (2020b) designed their 
prototype specifically to be able to measure performance indices over 
time; similarly, Wu et al. (2021) designed a real-time safety index al-
gorithm based on historical sailing voyages along the same route. 

For the third RE principle, Wróbel et al. (2018) were the first to apply 
STPA to MASS system risk assessment. In the same year, assessing the 
applicability of sixty-four risk assessment methods to MASS systems, 
Thieme et al. (2018) promote STPA as among the most suitable candi-
dates, in part for its ability to identify human–machine interaction risks 
and propose risk reduction methods. Valdez Banda et al. (2019) also 
used STPA, in their case to inform early-stage risk-based design of an 
autonomous urban passenger ferry. Zhou et al. (2021) also apply the 
STPA approach to MASS system design, with a special focus on identi-
fying both safety and cyber-security hazards and their inter-related 
safety controls. In line with the fourth RE principle, Ramos et al. 
(2020a, 2020b) developed the “H-SIA method” to enable analysis of the 
complex system as whole, rather than modeling how component failures 
can propagate. Ramos et al. (2019) take a similar approach for human 

task analysis in MASS operations, linking the success of MASS operators’ 
tasks to latent socio-technical factors like training and organizational 
culture. Overall, the studies that adopted RE principles placed humans’ 
roles in the MASS system as central to ensuring system safety. 

3.2.4. Benefits of collaborative human-AI systems 
Collaborative human-AI systems are a way of framing increasing 

automation as an effort to enhance both human and machine roles by 
tailoring both according to the strengths and weaknesses of the two 
counterparts. The purpose of increasing automation, in this sense, 
should not be seen simply as an effort to reduce occurrence of human 
errors. Rather, collaboration between human and machine should lead 
to greater system performance than could be achieved by either coun-
terpart working in isolation. 

Five studies out of the forty-two analyzed identified benefits of 
human-AI teaming that went above and beyond human error reduction. 
Wu et al. (2021b, 2021a), for example, develop interface designs for 
MASS operators that display a comparison of current navigation activ-
ities relative to those of successful historical voyages on the same route. 
The AI computes large amounts of data and alerts the operator only 
when a safety index is exceeded – when the ship deviated from its 
course. At this point, the operator can use the output as a heuristic for 
decision making (does the course deviation warrant intervention?). In 
this way, a synergy between the computational power of the AI system 
and the decision making capacity of an expert operator emerges. To 
consider another example, Thieme and Utne (2017) frame shore-based 
decision support, control, and operational logistics in terms of “dy-
namic safety performance monitoring.” This view presumes that pri-
mary navigation tasks are computed by AI while humans attend to the 
higher-order tasks involved in safety management: a partnership that 
augments operators’ role of safety–critical decision making. Similarly, 

Table 5 
Risk assessment methods adopted in the reviewed studies.  

Name Description Article ID 

BNs Bayesian Networks: used to update prior beliefs about 
system behavior to model risk over time in an interactive 
network. 

[27, 35, 38, 
41] 

FMEA Failure Modes and Effects Analysis: a classic risk 
assessment method combining severity, likelihood of 
failure mode, and detection rate to compute component or 
system level failure probabilities. 

[38, 42] 

H-SIA Human-System Interaction in Autonomy: “provides a 
framework for analyzing autonomous ship operation as an 
entirety, rather than each agent separately” (Ramos et al., 
2020b, p. 1). 

[24, 34] 

REWI Resilience-Based Early Warning Approach to 
Development of Indicators: aims at determining 
organizational cap- 
abilities to handle unexpected situations and producing 
quantifiable safety indicators. 

[25] 

STPA System-Theoretic Process Analysis: used for identifying 
hazards and revealing causal factors especially for novel 
and complex systems for which there is little experience or 
empirical data. 

[26, 27, 31, 
39] 

THERP Technique for Human Error Rate Prediction: risk 
assessment focused on quantifying human errors; used in 
the quantitative analysis of human reliability in human 
factors domain. 

[35] 

RCM Reliability Centered Maintenance: stepwise method 
developed in the aviation industry to optimize 
maintenance management and improve reliability of 
safety–critical systems. 

[30] 

FSA Formal Safety Assessment: a process developed by IMO 
in the wake of Alpha Piper disaster; consists of systematic 
hazard identification, risk assessment and control, cost- 
benefit analysis, and safety recommendations. 

[40] 

CPA Closest Point of Approach: risk is assessed based on 
proximity of other objects, or from deviation of a target 
from its planned path; risk is a considered as a function of 
the target’s spatial–temporal properties. 

[20, 22, 23]  
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Huang et al. (2020) and Ramos et al. (2019) frame AI-operator teaming 
in terms of enhancing practical control-related tasks like object detec-
tion and coordinating collision avoidance, rather than in terms of 
wholesale substitution of human control. 

3.3. Given that automation is increasing in shipping, what methods, 
approaches, and theories are being used to address design challenges? 

The forty-two studies analyzed revealed a broad range of methodo-
logical approaches. Each of these approaches represented a different 
investigative angle to the same underlying problem; namely, how can 
design challenges emerging from increased automation in shipping be 
addressed. Here we break down this methodological dissonance into 
four categories representing common strategies among the various 
theoretical frameworks. Each of these categories are analyzed separately 
below and include: (1) practical design approaches for human–computer 
interaction, (2) risk assessment methods used in risk-based design, (3) 
different human–computer interaction paradigms adopted, and (4) 
empirical testing or data collection efforts. These four categories 
emerged during the analysis, encompassing the wide array of perspec-
tives contributing to the same topic. This “common denominator” 
approach to summarizing the variety of methods on offer provides a 
handle on the relevant theoretical foundations adopted in the contrib-
uting studies. 

3.3.1. Practical design approaches for human–machine interaction 
Almost half of the studies (twenty out of forty-two) adopted a 

practical approach for designing human–machine interaction elements 
of the MASS system. We summarize these approaches here, character-
izing them broadly within three sub-sets of goal-based design (Table 4). 
Here we use the term “goal-based design” to describe the general process 
of mapping high-level system objectives to functional requirements. We 
identified three goal-based design sub-sets: (1) human–computer 

Table 6 
Human-computer interaction paradigms adopted in the reviewed studies.  

HCI 
paradigm 

Description Article ID 

Cognitive 
modelling 

Situation Awareness: a concept used in a 
general sense to describe an operator’s 
semantic apprehension of their surroundings; 
often specifically refers to Endsley’s cognitive 
model called of the same name (Endsley, 
1995). 

[1, 6, 11, 17, 22, 
26, 35, 39, 42]  

Information, Decision, Action in Crew 
context: a framework introduced by Chang 
and Mosleh (2007) to model cognitive 
processes of crew in response to accidents in 
nuclear power plant operations. 

[24, 34, 37]  

Task Analysis: “collective noun used in the 
field of ergonomics, which includes HCI 
[human–computer interaction], for all the 
methods of collecting, classifying, and 
interpreting data on the performance of 
systems that include at least one person as a 
system component” (Diaper, 2004). 

[15, 24, 34, 37] 

Embodied 
cognition 

Sense-making: an “enactive” approach in 
cognitive science (distinct from 
“functionalist” cognitive paradigms defining 
the body only in terms of input and outputs); 
“cognition as sense-making is the exercise of 
skillful know-how in situated and embodied 
action” (Varela et al., 2016, p. xxvi). Also 
referred to as “ship sense” and “harmony.” 

[1, 6, 11, 12, 17]  

Human factors: examines latent causes of 
error or factors that improve system 
interactions in a socio-technical system. This 
may include cognitive functions and sense- 
making, but also other phenomena like 
vigilance, workload, trust, and fatigue. 

[6, 7, 9]  

Table 7 
Studies that present empirical observations about MASS systems.  

Source of 
observation 

Description Article 
ID 

Field test A prototype unmanned inland cargo vessel 
(scale model, length 4.8 m) was tested in inland 
waters to demonstrate its feasibility. 

[19] 

Field test The SCC counterpart to [19] was tested for 
operator situation awareness. The researchers 
aimed to “stress test” the SCC prototype and 
investigate whether eye-tracking could provide 
insights into operators’ SA (n = 2 participants). 

[17] 

Field test Sea trials were undertaken for an “autonomous 
cargo test ship” in a test area outside of Wuhan, 
China; the ship was controlled remotely from a 
testing center in Netherlands. 

[35] 

Simulator test First test program in a full-mission bridge 
simulator re-configured as an SCC, designed to 
investigate operators’ situation awareness (n =
6 participants, all experienced seafarers). 

[1] 

Simulator test Researchers designed and conducted an 
experiment to study VTS-MASS interactions. 
Testing was done in a full-mission bridge 
simulator (n = 24 participants; half experienced 
seafarers, half control group). 

[10] 

Simulator test Commercial full-mission bridge simulator used 
to measure effect of a “guidance-support 
system” designed by the researchers to enhance 
collision avoidance performance (n = 36). 

[23] 

Survey Participants were asked to evaluate the extent to 
which they thought that sixty-six different 
Knowledge, Understanding & Proficiency 
requirements (KUPs), set out in the STCW 
convention, were relevant for autonomous 
shipping. Responses were collected on a Likert 
scale (n = 109, all seafarers with a navigation 
license). 

[4] 

Survey Participants were asked to evaluate the 
relevance of seventy-five human factors for SCC 
operators (n = 32, seafarers). 

[9] 

Survey and 
interview 

Participants were asked about employment, 
training, safety, and feasibility of MASS 
systems, with results collected on a Likert scale 
(n = 42, all licensed navigators). Subject Matter 
Experts were also interviewed about similar 
topics (n = 7, variety of background expertise). 

[5] 

Workshop Held with VTS operators in Norway; 
participants generated ideas about the role VTS 
may play in the MASS system, with special focus 
on regulatory challenges (n = 26). 

[14] 

Workshop Series of four workshops held with experts to 
identify hazards and ideate safety control 
functions for an autonomous urban passenger 
ferry in early-stage design (Workshop 1–3: n =
8, Workshop 4: n = 7; participants were a 
variety of subject matter experts with some 
return participants; n = 20 total individuals). 

[31] 

Workshop Series of two expert workshops to assess risks in 
the MASS system (Workshop 1: n = 12, variety 
of subject matter experts; 2: n = 8, return 
participants). 

[40] 

Interview Semi-structured interviews with expert 
informants about competence requirements for 
SCC operators (n = 10, subject matter experts 
from academia, regulatory agencies, technology 
companies, and other relevant backgrounds). 

[8] 

Interviews and 
questionnaire 

Interviewed seafarers (n = 10) and 
subsequently had participants watch a video of 
a simulator running scenarios (n = 25 trials); 
participants also filled out a NASA-TLX 
questionnaire for perceived workload. 

[7] 

Focus group Interviewed experienced nautical sciences 
instructors (n = 3) about situation awareness in 
SCC operations in light of current STCW 
conventions on training and competency 
requirements for seafarers. 

[11]  
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interface, (2) safety, and (3) system integration. 
Eleven studies adopted a goal-based design approach oriented to-

wards “human–computer interface design.” Peeters et al. (2020b), for 
example, design and build an SCC that is integrated with a model-scale 
MASS prototype. Their approach starts with coming to terms with the 
various “activities” of operators, which take shape from assignment of 
operational objectives. Similarly, Yoshida et al. (2020) propose func-
tional requirements for an interface designed to support operator situ-
ation awareness based on a “human behavioral model” of the SCC. Kooij 
and Hekkenberg (2021) focus on what tasks need to be replaced when 
moving seafarers off MASSs, leading to suggestions for a crew-reduction 
implementation plan. This also leads to functional requirement in terms 
of how many operators are onboard a given MASS and at what times. For 
example, the latter authors propose, “Replacing mooring, deck mainte-
nance, bunkering, administration, and port supervision decreases the 
required crew to four crew members” (p. 15). 

Fifteen studies adopted a goal-based design approach oriented to-
wards “safety design.” Wu et al. (2021a) propose a safety indicator 
system intended specifically for SCC operators and demonstrate it using 
data collected from the log files of sixteen voyages completed by a 
research vessel. The technique uses a supervised machine learning al-
gorithm in a “black box” approach to obtain what is essentially a real- 
time safety indicator calculator active during a ship’s voyage. Wu 
et al. (2021b) do something similar, based on historical data collected 
from VTS logs. Several other studies systematically identified hazards 
for the purpose of developing functional requirements for safety controls 
(Bolbot et al., 2021; Chang et al., 2020; Thieme and Utne, 2017; Wróbel 
et al., 2018; Zhou et al., 2021). 

Three studies adopted a “system integration” approach to goal-based 
design. Relling et al. (2021) propose ways to integrate VTS with MASS 
traffic coordination, calling their approach a mixture of “systems 
thinking and participatory design thinking.” Rødseth et al. (2021) argue 
for a systems approach to MASS design that develops functional design 
requirements from a range of related elements under a so-called 
“Operational Design Domain.” This includes elements like operational 
complexity, human–computer interaction, and geographic location. The 
design work presented by Valdez Banda et al. (2019), in considering 
functional requirements over the entire life cycle of a MASS, is also 
exemplary of a systems engineering approach. 

The three goal-based design approaches identified were not mutually 
exclusive and were often combined. Ramos et al. (2019, 2020a, 2020b), 
go to great lengths to describe operator tasks and link them to risks 
associated with MASS operational design. Utne et al. (2020), Huang 
et al. (2020), and Zhang et al. (2020) also combine elements of interface 
and safety design, in their cases mapping cognitive elements related to 
task handling (like perception, action, and prediction) to hazard iden-
tification and failure probabilities and their associated risks. Valdez 
Banda et al. (2019) combine elements of all three approaches, adopting 
risk-based design within the classic naval architecture “design spiral” 
(Evans, 1959), and adhere to systems engineering principles for life- 
cycle design. Yoo and Lee (2021) develop requirements for VTS and 
SCC operator interface designs based on collision avoidance risk 
assessment in a busy port. 

3.3.2. Risk assessment methods used in risk-based design 
In the previous section, we identified risk-based design (goal-based 

design oriented toward functional requirements of safety controls) as the 
most common approach among studies presenting practical design ap-
proaches to MASS systems. Considering the central role of risk-based 
design in MASS systems, we examine the studies contributing to this 
topic more closely. The result is a list of fifteen studies, among which we 
identified nine different risk assessment methods. These are listed in 
Table 5 along with their respective definitions and corresponding 
studies. Note that while each method describes a distinct modelling 
approach for risk assessment, they were not exclusive, often appearing 
in combination with other approaches. 

3.3.3. Human-computer interaction paradigms 
In this section, we examine distinct human–computer interaction 

(HCI) paradigms adopted in the reviewed studies. We observed that such 
paradigms yielded different hypotheses about MASS functionality and 
are therefore important elements when considering the breadth of 
relevant design approaches. Overall, we identified two broad HCI par-
adigms, which we define in Table 6 along with their corresponding ar-
ticles. These paradigms were described in sixteen of the forty-two 
studies in the review. 

Situation Awareness (SA) was the most common HCI paradigm, 
referred to in nine of the studies. Surprisingly, almost all studies 
adopting SA also adopted elements of sense-making in their treatment of 
interactions. Sense-making represents a distinct cognitive paradigm 
from SA in that it links cognitive processes to the body, something that 
SA does not do. This unlikely combination may in part be a result of 
MASS operators’ working remotely. Operators’ bodies were in the SCC 
while their actions involved distant MASSs, a cognitive discord that was 
bridged by adopting elements from both SA and sense-making 
paradigms. 

Task Analysis (TA) was another common framework used to describe 
HCI. The task analyses presented in Ramos et al. (2019, 2020a, 2020b) 
provide detailed classification of SCC operators’ roles and tasks, in their 
case for MASS without operators onboard. In Ramos et al. (2019), for 
example, the authors present a “task description” listing specific tasks 
goals and sub-goals, as well as descriptions of possible errors corre-
sponding to the defined tasks (pp. 40–41). For example, the first task 
goal they list is “supervise safety status of the ships,” which has the sub- 
task “monitor the screens” and the corresponding possible error “not 
checking information on the screens” (p. 40). This way of conceptual-
izing the MASS system was practical for modelling risks and for guiding 
interface design. 

The study of human factors also provided a lens on HCI. For example, 
Yoshida et al. (2021) frames human–computer interactions as a source 
of stress for SCC operators. They argue that stress “might sometimes 
increase due to information overload by receiving enormous amounts of 
visual data to compensate for the lack of the feeling of the environment 
inside or outside a ship” (p. 2). In another study, Wróbel et al. (2021), 
studying the various human factors emerging from human-computer 
interaction within the MASS system, adopt a systematic method called 
“Human Factors Analysis and Classification System for Maritime Acci-
dents (HFACS–MA).” Both studies indicate that human factors play an 
important role in design of safe interactions in the MASS system. 

3.3.4. Empirical testing and prototyping 
Fifteen studies presented results of empirical testing and observa-

tions about MASS systems. Considering MASS systems are still in a 
developmental phase, such results are valuable given that they can 
contribute to further design iterations and extended research. The 
empirical material came in a variety of forms, ranging from expert 
workshops and interviews to simulator tests and field trials with MASS 
prototypes. In Table 7 we list an overview of empirical testing and data 
collection efforts in the reviewed studies. 

While the studies in Table 7 generated new observations to inform 
their work, several others used historical data. These other efforts, while 
not contributing new data to the research community, did present useful 
data collection methods. For example, Thieme and Utne (2017) and 
Fossen and Fossen (2018) both use field data collected from Trondheim 
Fjord in Norway, which is a designated a test area for autonomous ships. 
The former use field trial data from autonomous underwater vehicles 
(AUVs) to make inferences about safety performance indicators for 
MASS operations, while the latter use live Automatic Information Sys-
tem (AIS) data to test ship motion prediction and visualization algo-
rithms intended specifically for remote operators. In another study, Wu 
et al. (2021a) collect data from the ship log of a research vessel transiting 
between two locations. Taking this information to represent successfully 
voyages, dynamic safety indices were generated based on the extent to 
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which route deviations were detected in real time. Wu et al. (2021b) 
accomplish something similar for AIS traffic data to inform collision 
avoidance maneuvering at a VTS or SCC. 

3.4. Given that automation is increasing in shipping, what research gaps, 
regulatory obstacles, and technical shortcomings represent the most 
significant barriers to real-world implementation? 

In this section, we explore the extent to which the lack of full-scale 
autonomous ships currently implemented in the field is due to 
research gaps, regulatory obstacles, and technical shortcomings. 
Together, the reviewed studies described MASSs along a spectrum of 
technology readiness levels. Some authors argue that MASS are ready for 
implementation so long as the appropriate operational strategies are in 
place (e.g., Rødseth et al., 2021; Valdez Banda et al., 2019); others argue 
out that MASS do not currently exist in operational scale because of 
unresolved design obstacles (e.g., Kooij and Hekkenberg, 2021; Relling 
et al., 2021). Here, we investigate four relevant themes in the effort to 
identify and assess what barriers currently exist on the path from 
concept design to real-world implementation: (1) emerging risks in 
human-AI interaction, (2) regulatory obstacles, (3), training for SCC 
operations, and (4) infrastructure needs to support mixed conventional 
ship and MASS traffic. These categories shed light on the directions of 
current research in the field and on where more work is needed. 

3.4.1. Emerging risks in human-AI interaction 
The MASS system introduces novel challenges related to integrating 

human supervisory control within a highly automated system. In the 
reviewed studies, a new risk picture emerged characterized by un-
certainties involving how human-AI interaction will be accomplished in 
real-world conditions. Here we examine how human-AI interaction was 
positioned as a central factor in twenty-two of the analyzed studies, 
underpinning risk assessment and design of safety controls. 

In Section 3.3.2, we presented studies that applied risk assessment 
methods to study MASS systems. The result of such risk assessments 
typically materialized as a list of potential hazards, with the hazards 
near the top of the list contributing the largest share of overall risk. 
Chang et al. (2020), for example, review all published hazard identifi-
cations for MASS operations and evaluate the most salient hazard cat-
egories. Of these, they conclude that “interaction with manned vessels 
and detection of objects” represent the most significant contributors to 
overall risk (p. 10). Wróbel et al. (2018) (which was one of the studies 
Chang et al. reviewed), also determined that “interaction between shore- 
based facilities and legal or organizational [entities]” was a significant 
source of hazards. This finding is corroborated in Guo et al. (2021), in 
which the failure probability of an autonomous urban passenger ferry is 
found to be “most sensitive to the failure of the remote supervisor’s 
intervention” (p. 7). Eriksen et al. (2021), taking a different approach, 
frame interactions in terms of preventative maintenance and conclude 
that so long as conventional ship machinery is used in MASS, mainte-
nance requirements cannot be met without personnel present on board. 
The overall risk picture of the MASS system, in other words, remains 
unclear until we design its functional requirements around human 
interaction. Anticipating that risks arise from interactions within a 
socio-technical system, the “H-SIA” method was developed specifically 
in Ramos et al. (2020a) to model error propagations from human-AI 
interactions. 

Among obstacles towards understanding the mechanisms behind 
human-AI interaction, lack of research and especially empirical data 
emerged most clearly. It was expressed in twenty-two of the forty-two 
articles analyzed. Of these, the most cited was related to lack of data 
about how failures propagate between interaction of hardware, soft-
ware, and humans (Bolbot et al., 2021; Fan et al., 2021; Guo et al., 2021; 
Ramos et al., 2019, 2020a, 2020b; Thieme et al., 2018). Also wanting 
was research about risk management frameworks appropriate for MASS 
systems (Chang et al., 2020; Ramos et al., 2020a; Thieme et al., 2018; 

Thieme and Utne, 2017). Some studies also pointed out that 
observation-based data is needed about hazards for MASS in order to 
shed light on mitigation strategies in the aim of eventually being able to 
quantify their associated risk levels (Thieme et al., 2018; Valdez Banda 
et al., 2019; Wróbel et al., 2018). Similarly, several studies highlighted 
the lack of research about human error probability quantification for 
human-AI interaction especially for emergency response (Ramos et al., 
2019; Zhang et al., 2020; Zhou et al., 2021). Other areas where lack of 
empirical data was reported as a barrier to real-world implementation of 
MASS applied to safety management (Størkersen, 2020), reliability of 
MASS machinery (Eriksen et al., 2021), human-AI system interface 
design (Fan et al., 2021; Huang et al., 2020), and competence re-
quirements for SCC operators (Kim and Mallam, 2020; Sharma and Kim, 
2021). Interaction between MASS and conventional vessels was also an 
area lacking data (Relling et al., 2021; Thieme et al., 2018), as were 
observations about how human factors affect SCC operations (Hanna-
ford and Hassel, 2021; Kari and Steinert, 2021; Wróbel et al., 2021; 
Yoshida et al., 2021). 

3.4.2. Regulatory obstacles 
Gaps in regulations for unmanned ships were identified as a major 

barrier to MASS system implementation in the analyzed studies. They 
were prominently featured in eleven out of the forty-two papers 
analyzed. Common to all studies was the finding that conventions like 
COLREGS, SOLAS, and STCW, which are all regulated by IMO, are 
predicated on seafarers being onboard the ship. Legal precedents are 
also based on human crew onboard the ship. Katsivela (2020), a mari-
time law scholar, argues for amendments to existing conventions that 
would allow for MASS and SCC to be regulated as conventional ships. 
Although the author suggests that these definition-based amendments 
are relatively straightforward to implement, the need for them is 
described as “urgent,” as are efforts towards harmonization and stan-
dardization of terms used across many different regulatory agencies at 
both international and national levels. Katsivela (2020) and Yoshida 
et al. (2020) both highlight Rule 5 in COLREGS as an example of how 
current regulations may have limited applications to MASS. The rule 
states that “Every vessel shall at all times maintain a proper look-out by 
sight and hearing as well as by all available means appropriate in the 
prevailing circumstances so as to make a full appraisal of the situation 
and of the risk of collision.” Both authors suggest that while sensor 
fusion is showing potential in accurate detection and classification of 
objects, the appraisal of the “situation and the risk of collision” appears 
to necessitate the presence of a human. Wu et al. (2021b) argue that 
COLREGS is “human-centered” and “formulated in an intuitive manner,” 
adding that its qualitative nature imposes challenges on the develop-
ment and implementation of rule- or machine-learning-based ap-
proaches to collision avoidance. Katsivela is particularly attentive to the 
vocabulary used in maritime conventions and how it accentuates gaps 
between regular ships and MASS. For example, the wording in inter-
national conventions like STCW uses phrases like “a personnel on-
board,” “those on board,” and “seafarers on board,” which have been 
attributed to the obligation of the shipowner in maritime law to “provide 
for a seaworthy vessel” (United Nations, 1982). Also, the definition of 
“seaworthiness” has legal precedent in maritime law (Tetley, 2008) 
requiring that “The vessel be capable of withstanding the ordinary perils 
of the sea, be fit for the proposed trip and be crewed by a competent 
crew.” Katsivela (2020) suggests clarifications of definitions for “ship,” 
“navigation bridge,” and “seaworthiness” as they are defined in the 
current conventions to include the possibility of unmanned ships with 
crew on land. Kooij and Hekkenberg (2021), in their proposed incre-
mental crew reduction strategy for MASS systems Wróbel, 2021, also 
meet barriers for allowing seafarers to be responsible for ships at a 
distance. This regulatory change, they write, is the last step in the pro-
cess of moving seafarers to land-based work like that envisioned at the 
SCC. 

Conventions for seafarer training and competence requirements 
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were also lacking prescriptions for meeting the novel demands of skilled 
SCC work. These conventions are laid out in STCW, which Kim and 
Mallam (2020) and Sharma and Kim (2021) investigate for applicability 
to MASS. Out of the sixty-six knowledge, understanding, and pro-
ficiencies (so-called “KUPS”) listed (IMO, 2017, Table A-II/1), Sharma 
and Kim (2021) surmise that only twenty-six are relevant for MASS 
operations, while many whole new ones will be needed. Moreover, it 
was found that STCW leadership strategies need to be re-evaluated (Kim 
and Mallam, 2020) and that potential pitfalls like “over-reliance on 
sensors” warrant special attention (Hannaford and Hassel, 2021). Saha 
(2021) also finds that STCW presents a clear gap when it comes to SCC 
operators and suggests new competency requirements in the form of 
“system understanding, communicational and technical knowledge, and 
maritime competence” (p. 6). 

Bačkalov (2020) and Nzengu et al. (2021) focus on regulations for 
inland MASS. Nzengu et al. (2021) point out that inland MASS do not fall 
under IMO jurisdiction, since “their operations and their context differ 
significantly from short-sea and ocean-going ship applications” (p. 359). 
The authors conclude that current regulations do not allow for auton-
omous MASS because they by definition rely on human functions on-
board. Bačkalov (2020) presents detailed suggested amendments to 
updated regulatory framework for inland MASS, including introducing 
the notions of the “remote operator” and the “remote control center,” as 
well as refining the “notion of the Master of an inland vessel” (p. 11). 

Rødseth et al. (2021) focus on the approval process of MASS systems, 
comparing six design guidelines published by flag states and classifica-
tion societies. The authors find that the six guidelines are largely in 
agreement that approval will hinge on submitting “descriptions of the 
MASS (system) design, [its] intended operations, and the environment it 
is intended to operate in.” However, since it was not immediately clear 
from the guidelines how best to describe the system, the authors develop 
the concept of the “operational design envelop.” Intended to help de-
signers describe the MASS system for the approval process, the opera-
tional design envelop encourages description of how responsibilities 
between human and automation are shared, independent of project- 
specific factors like geographic location and operation. 

3.4.3. Training for SCC operators 
Eleven studies addressed training needs of MASS operators working 

at the Shore Control Center – so-called “SCC operators” (SCCOs). The 
knowledge gap in what training and competency requirements were 
needed for these operators was framed as a barrier to MASS 
implementation. 

Four of the studies framed the need for training in terms of risk, 
where training was seen as a safety control. Wróbel et al. (2018) and Fan 
et al. (2020), for example, argue that insufficient training of SCC oper-
ators can lead to inadequate safety control functions. By this logic, the 
reverse also holds true: “…a well-trained and experienced operator 
having adequate control over the vessel can find the best solution to the 
situation encountered” (Wróbel et al., 2018, p. 342). Zhang et al. (2020) 
go one step further, presenting the effect of “insufficient training” in 
quantitative terms among other human error factors present in SCC 
work. Thieme et al. (2018), in assessing various risk modelling tech-
niques for applicability to MASS systems, find that training, competence, 
and experience feature repeatedly as factors influencing risk. 

The remaining seven studies focused on what type of competencies 
are needed at the SCC. Ahvenjärvi (2016) was among the first to point 
out that special training will be needed to meet the demands of inter-
acting with manned and unmanned ships in the same area. Subsequent 
studies agreed that a lack of knowledge about how to train SCC opera-
tors is hindering MASS implementation. Katsivela (2020) express this 
problem from a regulatory perspective: “…existing regulations relating 
to the training and certification of the crew and, therefore, the pro-
visions of the International Convention on Standards of Training, Cer-
tification and Watchkeeping for Seafarers 1978 (STCW) currently under 
the purview of the IMO’s scoping exercise will have to be revised to 

accommodate the presence of a properly trained crew onshore” (p. 243). 
(Note that the scoping exercise is now completed and recommends 
further investigation into these competency needs, a topic we outlined in 
Section 1.3). Three studies compared competency requirements for 
conventional ships with those that are most likely required for MASS 
operations, orienting readers towards appropriate revisions to the STCW 
or to tailor-made SCC requirements (Kim and Mallam, 2020; Saha, 2021; 
Sharma and Kim, 2021). Baldauf et al. (2019), on the basis of results 
from a simulator experiment, argue that ship-handling skills and expe-
rience at sea are prerequisites for SCC operation. This is corroborated by 
Saha (2021) and Yoshida et al. (2020), who confer with subject matter 
experts and seafarers. Additional competency requirements also 
emerged, like those associated with digital communication and infor-
mation transfer (Saha, 2021; Yoshida et al., 2020). The former concludes 
that, “the SCCO should possess a combination of maritime and techno-
logical competence to control the unmanned vessels with comprehen-
sive knowledge of the remote vessel operational and monitoring system” 
(Saha, 2021, p. 11). 

Sharma and Kim (2021) were also motivated to address the short-
comings in STCW to MASS operations, and systematically compare 
sixty-six KUPs set out in current convention (IMO, 2017, Table A-II/1). 
Their findings point to twenty-six KUPs that are no longer relevant and 
to emerging requirements for “technical and cognitive competencies.” 
The former involves “IT skills, safety & security management skills, 
knowledge regarding engine room operations, electronic equipment and 
system integration” (p. 13), while the latter involves “non-routine 
problem solving, ability for self-regulation, critical thinking, mental 
readiness and systemic thinking” (p. 15). Sharma and Kim (2021), after 
accumulating survey results, report that most seafarers agree that 
training will change significantly with the onset of autonomous shipping 
and that skillsets will likely be similar to those of currently licensed 
seafarers. 

The studies reviewed revealed that questions about training, until 
resolved, present a barrier to MASS implementation. This is the case 
whether framed as a safety control mechanism in risk science or as 
competency requirements human factors. Training, in this sense, en-
compasses not just skills, but qualifications, roles, and responsibilities 
that are at the core of safe MASS operations. 

3.4.4. Infrastructure to support mixed traffic 
Although autonomous vessels stand ready for implementation, the 

reality of marine traffic is that it will always be mixed, composed of both 
MASS and manned vessels sharing the water. This mixed traffic format 
will introduce unique challenges. Here we briefly summarize results 
from seven studies encompassing three relevant topics: (1) SCC coor-
dination with VTS, (2) development of mixed traffic navigation aids, and 
(3) harmonization of rules and standards for aids to marine navigation. 

It emerged from four studies that VTS will play an important role in 
coordinating MASS traffic. VTS is regulated globally by an organization 
called the International Association of Marine Aids to Navigation and 
Lighthouse Authorities (IALA). Katsivela (2020) refers to a 2019 report 
by IALA that affirms that the organization is preparing for the advent of 
MASS by monitoring technology development for MASS navigation 
services and by promoting harmonized rules and standards regarding 
data transferred via different services (IALA, 2019, pp. 10-11). Baldauf 
et al. (2019) focus on challenges associated with interaction between 
SCC and VTS. The authors’ premise is that since that both infrastructures 
will have similar roles of coordinating marine traffic from a centralized 
control room, some degree of cooperation will be needed. This logic is 
also held by Relling et al. (2021), who examine how VTS procedures can 
be standardized to include MASS coordination. Their findings point to 
increased involvement: “VTS need to change their role from solving 
situations ad-hoc to assume a tactical responsibility in traffic planning 
and to resolve situations at an earlier stage” (p. 1). The authors under-
score that this not does not replace SCC roles, but rather shares coor-
dination tasks between SCC and VTS operators. Yoo and Lee (2021) were 
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also motivated by what services VTS could provide in MASS traffic 
management. Their work came on the tail of IALA’s announced in-
tentions to work towards integrating “…autonomous vessels with con-
ventional traffic, the information flow between MASS and shore 
authorities, and the related information exchange with conventional 
traffic” (IALA, 2019, p. 15). In this aim, the authors developed a “real- 
time collision risk assessment support system to improve the situational 
awareness of VTSOs [VTS operators] and MASS remote operators… 
regarding near-collision situations occurring in local waters” (p. 1). 

An additional two studies argue that aids to navigation will have to 
be updated to support mixed traffic. Chang et al. (2020), after con-
ducting a detailed risk assessment, found that “interaction with manned 
vessels” was among the highest contributors to overall risk of MASS 
operations. Thieme et al. (2018) also investigated mixed traffic from a 
risk science perspective, showing that traditional risk assessment 
methods that estimate collision frequency from conventional ship traffic 
will likely need to be updated for new traffic patterns that will inevitably 
emerge. The same authors highlight that navigation lights and buoys are 
used by deck officers and lookouts mainly as a type of visual ground- 
truth to radar and are in this way oriented uniquely to human naviga-
tion practices. Considering that MASS navigation will rely on the 
detection of such aids to navigation, consideration should therefore be 
directed towards making them more “visible” to sensor technologies. 

Three studies specifically raised harmonization of rules and stan-
dards as a barrier to MASS implementation in mixed traffic. Katsivela 
(2020) defines harmonization as “any attempt, by whatever instrument, 
to minimize or eliminate discord between national commercial laws as 
they apply to international commercial transactions” (p. 241). Katsivela 
(2020) shows that the discord between MASS development, undertaken 
by a small number of institutions, are in discord with international 
standards for navigations infrastructure. The problem is especially 
evident for marine aids to navigation. These are regulated by IALA, 
whose initiatives to support digitalization of navigation (so called “e- 
navigation”) still assumes that human operators are present on ships. 
Størkersen (2020) and Baldauf et al. (2019) similarly argue that 
harmonization of procedures across different procedures (e.g., MASS 

versus conventional ships, SCC versus VTS), will serve to address current 
obstacles to MASS implementation. 

4. Discussion 

In this section, we expand upon the themes uncovered in the sys-
tematic review, linking our original three research questions to farther- 
reaching discussions about how the introduction of AI is changing 
safety–critical work and about how risk scientists, designers, and re-
searchers are addressing emerging challenges underpinning system 
design. 

Sections 4.1 and 4.2 expand upon Research Question 1. Section 4.1 
focuses on the need for “continuous monitoring and decision making 
support” made clear in the Results. Because this need is at odds with the 
traditional LoA approach, which implies a one-off focus on automation 
at the cost of human control, we explore alternatives to the traditional 
approach. Section 4.2 addresses the debate about “human error” in 
design, especially in the context of the de-facto risk baseline that came to 
light in the Results; namely, that MASS systems should be “at least as 
safe as” conventional ships. If automation is foremost to reduce human 
errors, should not MASS systems by this logic be significantly safer than 
conventional ships? We consider what new risks are introduced when 
increasing interactions with AI systems, as well as how these new risks 
may be addressed. 

Sections 4.3–4.5 expand upon Research Question 2. Section 4.3 
considers the popularity among the reviewed studies of cognitive ap-
proaches to human decision making modeling in the risk sciences. We 
consider limitations of such cognitive modeling approaches in light of 
contemporary research in the fields of computer supported collaborative 
work and neuroscience. Section 4.4 explores the viability of virtual 
simulation as a venue of systematic testing of MASS system, including a 
brief assessment of its strengths and weaknesses. Section 4.5 takes a 
second look at risk assessment methods for MASS systems. Considering 
the relatively wide spectrum of approaches identified in the Results, we 
raise the question: are some methods more appropriate that others? 

Finally, Section 4.6 expands upon Research Question 3. Specifically, 

Fig. 5. IMO degrees of automation plotted onto the Human-Centered AI “Stages of Automation” framework 
adopted from Shneiderman (2020). 
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it addresses barriers to real-world implementation of MASS systems 
through the wide lens of safety management. The review results made 
clear that a special dexterity is needed to realize human-AI teaming 
flexible enough to deal with real-world demands. We examine the bal-
ance of operational flexibility with managerial control, drawing com-
parisons to established theories in organizational science. 

4.1. The need to increase human control in navigation for AI applications 

In Section 3.2.1 we reviewed forty-two studies about autonomous 
ships systems, guided by the question what are the implications for human 
control? Although it seemed like a paradox, the review showed that 
humans are needed to control autonomous ships. Part of the answer lay 
implicit in the way Level of Automation (LoA) taxonomies are used to 
describe human-AI collaboration. All taxonomies available (there were 
six in the studies reviewed) involved some degree of human control; no 
system is currently being designed for fully autonomous operations. 
Human control most often took the form of “Continuous monitoring and 
decision making support” (Section 3.2.2). Furthermore, the studies 
argued that this role ensured the safety of the system. Extending this 
idea here, we can interpret this as positioning operators as “active 
backup” to the automated system, where the operator is a safety control 
to the automated system. It seems counterintuitive, then, to categorize 
LoA by degree of autonomous control gained over human control lost, 
when in practice both are needed to ensure safety. For similar reasons, 
Eriksen et al. (2021) deliberately avoided using an LoA designation at 
all, noting they do not apply to how ship machinery systems are 
currently maintained. Rødseth et al. (2021) also concludes that none of 
the standard LoA systems do justice to explaining operators’ time- 
critical role in the MASS system. This leaves the possibility open that 
other frameworks exist that may more appropriately handle the 
collaborative aspects of human and machine teaming as compared to the 
LoA frameworks adopted in this review. Here we explore alternatives to 
the traditional LoA approach. 

One framework was recently proposed by Shneiderman (2020) who 
introduced a two-dimensional “Stages of Automation” in place of the 
more prevalent one-dimensional “Levels of Automation.” This frame-
work is what Shneiderman calls Human-Centered Artificial Intelligence 
(HSAI), which aims to improve AI-based systems design by jointly 
increasing human and machine control to achieve “Safe, Reliable, and 
Trustworthy” systems. Shneiderman’s work focuses predominantly on 
the car industry, which is currently leading innovations in autonomous 
transportation. Specifically, the work is in response to current trends in 
autonomous car design that are leading to purportedly unacceptable 
risks by combining high autonomy with low human control. The current 
LoA framework used in the car industry is published by the Society of 
Automotive Engineers (SAE) and features six levels, ranging from Level 
0 to Level 5 (SAE International, 2017). But like the frameworks designed 
for MASS operations encountered in the review, the SAE’s focus on 
automation implies that human control decreases with each increment 
on the scale. Considering that the four-degree IMO LoA was the most 
common framework adopted in the reviewed studies, we mapped them 
onto the “Stages of Automation” framework for direct comparison 
(Fig. 5). IMO Degrees 1 and 2 fit roughly in the intersection of the 
human–machine control quadrants. Examples of these types can be seen 
in modern ships and early MASS designs today. IMO Degree 3 fits into 
the low human control-high machine control quadrant and is where 
most attention in MASS development is afforded today. It is surprising 
that the only element setting Degree 3 and Degree 2 ships apart is the 
complete absence of people on board, implying that MASS autonomy is 
improved simply by superseding human control. Finally, IMO Degree 4 
appears to exist only for symbolic reasons, considering not one of the 
papers reviewed considers full machine autonomy technically feasible. 
This way of framing the popular IMO Degrees of Automation suggests 
that attention should be focused on “raising” Degree 2 and 3 from their 
current positions towards higher levels of human control, as illustrated 

by the arrows in Fig. 5. Fig. 5 also illustrates a trend tracing automation 
development in modern ships (upper left quadrant) towards the “fully 
autonomous” vision (lower right quadrant”). But considering the 
infeasibly of the fully autonomous model, one must ask why technology 
trends tend to orient towards such a model. The reviewed studies, after 
all, repeatedly emphasized the importance of improving human control, 
not supplanting it altogether with automation. Consider, for example, 
the results presented in Section 3.2.2, where we reported twenty-three 
studies specifically addressing humans’ roles in autonomous ship sys-
tems. It follows that re-aligning design efforts toward the upper right 
quadrant, labelled “autonomous ships with human collaboration” in 
Fig. 5, may stand as a more appropriate guiding model. Of the reviewed 
studies, Rødseth et al. (2021) came closest to the “Stages of Automation” 
approach by avoiding adherence to current LoA taxonomies and instead 
presenting a two-dimensional grid with human control versus automa-
tion. “We believe that this is a useful approach,” they write, “… as it 
clearly defines the responsibilities of the automation system versus 
humans…” (p. 5). 

The review also led to a clearer understanding of specific tasks that 
necessitate shared human–machine control in safe MASS systems. For 
example, Huang et al. (2020) and Wu et al. (2021b) remind readers that 
interpreting regulations like COLREGS in rule-based programming code 
is challenging, suggesting that an AI-based collision avoidance system 
may require some level of collaboration with a human operator. More-
over, a recent empirical study by Rutledal et al. (2020) shows that 
collision avoidance is about more than just following codified rules. The 
study recorded instances in marine traffic where adherence to COLREGS 
was intentionally broken to resolve a give-way vessel in possible colli-
sion situations. Nonetheless, efforts in encoding COLREGs both in 
traditional symbolic AI and uncertainty-based or heuristic methods have 
seen considerable attention for over two decades (Statheros et al., 2008; 
Tam et al., 2009). Efforts in this area generally improve in accuracy over 
time, with recent work showing high accuracy in adopting Rapidly- 
Exploring Random Tree (RRT) algorithms (Chiang and Tapia, 2018; 
Zaccone et al., 2019). However, limitations like adverse weather con-
ditions and non-AIS vessel targets suggest that more work is needed 
before these systems can be robust enough to make decisions on their 
own, relegating them for now to the lowest IMO Degree of “decision 
support” automation. The “Stages of Automation” framework may thus 
have a practical application for designing such collaborative collision 
avoidance systems, addressing the need to reconcile outputs of algo-
rithms and the context of human control in varying conditions. Pla-
tooning, which combines human control and automation in an elegant 
way, represents one such reconciliation of human and machine control 
collaboration (e.g., Colling et al., 2021; Munim et al., 2021). 

Aside from interpretation of COLREGs, several other important ele-
ments of seafaring appeared more straightforward for humans to 
accomplish than for AI systems. This included, for instance, managing 
Very High Frequency (VHF) marine radio communication and cargo 
loading and unloading. Checking the literature, we found that it has long 
been observed that tasks humans find naturally straightforward are 
often firmly outside the grasp of advanced AI. First articulated by 
Moravec (1988, pp. 15), this principle has since been coined the “Easy 
things are hard” paradox in AI. This has important implications espe-
cially for regulatory gaps that were identified in the review, because 
requirements of “seaworthiness” as well as statutory rules for “proper 
lookout by sight and hearing” (COLREGs) and responding to others in 
distress at sea (SOLAS) should be considered firmly within in the realm 
of human interpretation and control – firmly beyond the reach of AI 
methods. 

4.2. New challenges emerging from increased human-AI interaction 

Studies assessing risk of MASS operations often surmised that MASS 
should be “at least as safe as conventional ships” (Fan et al., 2020; Reddy 
et al., 2019; Relling et al., 2021; Saha, 2021; Thieme et al., 2018; Valdez 
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Banda et al., 2019; Zhou et al., 2021). Similarly, Utne et al. (2020) cite a 
DNV GL position paper recommending a goal-based Autonomous Ship 
Code (ASC) regulated by IMO stating that “autonomous and remote- 
controlled ships shall be as safe as conventional ships of the same 
type” (DNV GL, 2018). The question we raise here is whether this “at 
least as safe as” baseline is appropriate from a risk perspective. The 
predominant argument, after all, for introducing autonomous systems is 
that they will improve safety by reducing instances of “human errors” – 
sources widely held to account for 75–95% of marine casualties (Roth-
blum, 2000). Following this logic, should not system design produce 
safer systems – and by a significant margin? The automotive industry, to 
contrast with shipping, appears to follow the latter logic. Leading de-
velopers of autonomous cars proclaim significant improvements in 
safety when compared to their conventional counterparts (e.g., Tesla, 
2019; Waymo, 2020). The logic follows from a “human error” narrative 
similar to the shipping case, with oft-cited statistics attributing attrib-
uted the bulk of accidents to human driver errors (e.g., U.S. National 
Highway Traffic Safety Administration, 2015, which sets the statistic at 
92–96%). The comparison to automation in the car industry is not 
without precedent; Rødseth et al. (2021) adopted their central concept 
of “operational design domain” from design approaches of autonomous 
cars. Some important differences between cars and ships do exist, 
however, which the authors diligently highlight. “Ships,” they write, 
“[and] especially large ones, have a much higher cost and damage po-
tential compared to road vehicles… Låg, 2019 [also] most merchant 
ships move slowly and have more space to use for maneuvering” (p. 5). 
As a bottom line, though, safety baselines for MASS based on conven-
tional ships should be brought to question. This is especially the case 
given that “human error” seems impossible to fully circumvent in ship 
systems, in that they will always exist by nature of human interaction, 
regardless of how much autonomous control is incorporated (Wróbel 
et al., 2017). 

The review also showed that assessing the performance of autono-
mous systems within frameworks of conventional ship navigation oc-
casionally led to experimental pitfalls. For example, in Man et al. (2018), 
the authors conducted an experiment in a full-mission bridge simulator 
set up such that participants operated vessels that appeared to be 
navigated autonomously when in fact they were be steered by re-
searchers in another room. The authors set out to study the interface 
design of the SCC by measuring how they used bridge equipment to 
handle scenarios of remote operation. However, they concluded that 
“when the operators utilize commonly used navigational and collision 
avoidance technologies but in a different way, they would have prob-
lems in developing sufficient situation awareness for remote supervisory 
control tasks (pp. 241).” In other words, by attempting to study needs of 
remote operation by using tools found on a conventional ship’s bridge, 
the researchers could only conclude that the tools on a conventional 
bridge were not sufficient. A similar problem was described by Baldauf 
et al. (2019), who, after running experiments with participants in a ship 
simulator to investigate interactions between a simulated MASS and 
VTS, observed that the results were limited by the equipment available. 
While concluding that VHF marine radio was needed and that frequent 
cross-checks between bridge navigation equipment and the bridge 
windows were important, the results generally failed to link results to 
the underlying research question about MASS interaction design. The 
primary conclusion that one can draw from the two studies is that 
conventional navigation equipment is probably not sufficient for novel 
MASS applications. They serve as examples of what can happen when 
making inferences about paradigm-challenging observations in this way, 
analogous to over-fitting a model to observations, leading to results that 
do not satisfy hypothesis testing. The pitfall is forewarned by Kari and 
Steinert (2021), who write, “the working environment in the SCC is 
completely different from the traditional onboard bridge” (p. 17). 

Increased interaction with AI systems appears to come with 
increased risk. Zhou et al. (2021) make the case that with every new 
interaction comes a security vulnerability, increasing the risk of cyber- 

threats. Meanwhile, Yoshida et al. (2021) argue that increased AI 
interaction results in higher mental workload among seafarers, subse-
quently undermining their performance. The latter also show that nav-
igators use lookouts at their “eyes,” trusting them differently than they 
would sensors in an automated lookout system. “Human–human 
communication is mentally more comfortable,” they write, “than using 
autonomous support and navigation system in this situation” (p. 19). 
The findings are in line with the so-called “cooperative eye hypothesis,” 
which explains that humans evolved to have large sclera (whites of the 
eyes) to be able to follow the gaze of others in cooperative activities 
relying on joint attention and communicative interaction (Kobayashi 
and Kohshima, 2001, 1997; Tomasello et al., 2007). 

In a similar line of thinking, the increased human-AI interaction 
presented by the MASS system was framed by Sharma and Kim (2021) as 
“increasing invisible interactions.” The authors continue: “It is para-
mount for the crews onboard to be able to have a holistic and systemic 
understanding of the systems and its interactions, to be able to 
comprehend the complexity, to evaluate the interrelations of sub- 
systems and to subsequently generate the best decisions and course of 
actions” (p. 17). Whether it was framed as misconstrued safety statistics, 
vulnerabilities to cyber-attack, or compromised human factors effects on 
work performance, it appeared that increased interaction between 
human work tasks and AI functions contributed to a significant extent of 
the added risk in MASS systems. 

4.3. Limits of cognitive models of situation awareness for risk modeling 

In Section 3.3.2 we showed that state-of-the-art risk assessment 
methods of MASS operations included the human-in-the-loop by 
adopting simplified models for cognitive processes for human operators. 
In particular, the IDAC model described by Chang and Mosleh (2007) 
played an important role in H-SIA. In Ramos et al. (2019), the authors 
identified cognitive errors stemming from tasks using the IDAC frame-
work by re-describing task goals (in terms of sub-goals and high-level 
goal plans) until one element in the cognitive model (Information, De-
cision, Action) could be isolated and subsequently linked to errors 
within a network of possible events, forming a coherent risk picture for 
the system. This approach is exemplary of human cognition modeling, 
which is useful in risk modeling by virtue of its predictive power of 
human behavior in novel situations. However, limitations of modelling 
cognitive processes of operators in control applications have been a 
source of debate in the literature (Endsley, 2015; Flach, 2015). For at 
least four decades, neuroscientists have accepted that modeling human 
cognition is faced with the apparently insuperable challenge of infinitely 
many mechanisms that can generate any given observation (Anderson, 
1978 Shneiderman, 2016). Recent theories in neuroscience are showing 
promising ways to reconcile constraints of cognitive models with peo-
ples’ underlying irrationality, including for decision making (Lieder and 
Griffiths, 2020). Their applicability to risk modeling, however, has not 
yet been explored. There also remains important social elements to 
cognition, which have been investigated in depth in the case of bridge 
navigation by Hutchins (1995). Heath and Luff (1991) also demon-
strated, with the case of control room operators for the London Under-
ground, that “awareness” existed in a collaborative sense, implying that 
decision making emerges in a team rather than individual context for 
control room work. Limitations in modelling human cognition for use in 
risk assessments of human-AI interactions for collaborative control room 
work remain under-explored. 

4.4. Virtual simulation methods 

In Section 3.3.2 we uncovered a dilemma particular to the problem 
of risk modeling for new applications like MASS operations. This 
inherent paradox is as follows: risk models, which are needed to predict 
risk in novel operations, rely on historical data that do not exist because 
the operations in question are novel. While risk identification methods 
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like STPA and expert judgment-based techniques like Bayesian Net-
works (BNs) circumvent the need for large amounts of historical data, 
verification will inevitably depend on empirical observations. The 
strategy of building test prototypes and operating them in controlled 
areas sanctioned for autonomous vessels is one strategy already adopted 
by some contemporary research efforts. But this approach is also 
expensive and, as observed by researchers like Baldauf et al. (2019), 
Peeters et al. (2020a), and Thieme et al. (2018), is faced with uncer-
tainty symptomatic of early design phases. One potential solution lies in 
simulation. Several studies we analyzed highlighted the important role 
simulators play in investigating emerging human-AI interaction chal-
lenges. For example, Kari and Steinert (2021) write that simulator ex-
periments will “help to assess and evaluate the role of human–machine 
and human–human interactions” (p. 17). Saha (2021) also points to 
benefits of simulators for training and assessment of SCC operators. In 
simulation, virtual versions of sensors sense a virtual world, allowing 
researchers and developers to study how the AI works without resource- 
intensive field testing. Scenarios can be built and tested rapidly, 
including emergency scenarios that are impractical or impossible to 
coordinate in real life. Graphics can make the virtual worlds immersive, 
opening possibilities to training and testing human factors and inter-
action solutions. The automotive industry has adopted virtual simula-
tion to research autonomous cars, with one notable example being the 
open-source platform CARLA (Dosovitskiy et al., 2017). Recent efforts 
aimed at developing analogous platforms for MASS systems have 
emerged (Vasstein et al., 2020). Given that risk scientists broadly 
recognize the potential value of virtual simulation, and given its suc-
cessful applications in autonomous car research, we can expect that 
future work will rely upon simulation before operation of MASS is a 
reality. Still, simulation is not without its limitations. The method de-
pends upon accurate scenario development and is faced with the so- 
called “long tail problem” that precludes the simulation of rare events 
encountered only in the wide spectrum of possible events characteristic 
of the real world. Also, introducing MASSs will inevitably change the 
behavior of conventional marine traffic once implemented, a second- 
order effect that that alludes simulation. 

4.5. Risk assessment methods for MASS systems 

Risk assessment proved to be a popular topic among studies 
contributing to the theme of MASS systems. In Section 3.3.2, we 
analyzed fifteen studies that contributed risk assessments of MASS sys-
tems, which in total adopted nine different methods. The breadth of risk 
assessment methods was high compared to the number of studies 
adopting them. This raised the question of whether some methods were 
more suitable than others for MASS applications. This question was 
investigated in Thieme et al. (2018), who pegged System-Theoretic 
Process Analysis (STPA) as among most promising risk assessment 
methods for MASS system hazard analysis. Four of the reviewed studies 
used STPA for this purpose (Utne et al., 2020; Valdez Banda et al., 2019; 
Wróbel et al., 2018; Zhou et al., 2021), making it the most popular 
technique along with BNs. One reason for its apparent appeal is that 
STPA does not rely upon large amounts of historical safety records for 
purposes of inference. This is a virtue shared by BN techniques, which, 
as expressed by Thieme et al. (2018), offer “flexibility of modeling 
methods and input from experts” (p. 151). Four studies demonstrated, 
with detailed case studies, how BNs could be implemented into risk 
models (Chang et al., 2020; Guo et al., 2021; Utne et al., 2020; Zhang 
et al., 2020). BN approaches framed input from experts as a valuable 
source in the absence of operational data; this was in contrast to other 
studies whose authors, while also relying on expert judgment, framed 
qualitative data as an input source with limited value in the absence of 
objective, statistical data (e.g., in the FMEA technique adopted by Fan 
et al., 2021 and FSA approach in Bolbot et al., 2021). 

Examining STPA approaches more closely, Wróbel et al. (2020), who 
champion the technique, demonstrate that organizational and human 

interaction issues remain under-represented in risk assessment, while 
focus on the technological components of the system receive the locus of 
attention. Wrobel et al. (2021) argue that it may even be impossible to 
quantify human errors in shipping applications. STPA circumvents the 
needs to set percentages to human errors, and instead focuses on how 
human interact with a system in a real-world setting. “Why bother 
quantifying such a complex social phenomenon [as human error],” ask 
the authors rhetorically, “using various and incomparable approaches, 
instead of investigating how to fit the human element into a technical 
system so that both operate at their optimum?” (p. 10). STPA is not 
without its critics. Bolbot et al. (2021), for example, highlight that STPA 
does not offer practical recommendations for completing a hazard 
identification. The authors opted instead for a traditional Formal Safety 
Assessment (FSA) approach, which they claim is also more straightfor-
ward to approve. The first risk assessment published on MASS also used 
FSA, highlighting similar reasons for doing so (Rødseth and Burmeister, 
2015). 

Other risk assessment methods framed safety controls in terms of 
preventative maintenance (Eriksen et al., 2021) or in terms of safety 
indices based on deviations of MASSs traversing known routes (Wu 
et al., 2021a). Like STPA and BNs, these methods, too, rely upon expert 
judgment as a model input. Preventative maintenance requires the 
expert machinist for input; building safety indices from navigation 
patterns relies on training Machine Learning algorithms on “expert” 
data. Even the FSA approach described by Bolbot et al. (2021) relied 
upon expert advice for hazard identification, which is explicitly rec-
ommended in its guidelines for novel or innovative designs (IMO, 2013, 
pp. 10-12). In this way, all risk assessment methods in the review made 
use of a combination of qualitative data in the form of expert judgment 
and quantitative methods in the form of statistical inference. 

Aside from STPA and BN methods, another risk assessment approach 
that showed promise was the Hybrid Causal Logic (HCL) model. Origi-
nally developed for the offshore petroleum industry by Røed et al. 
(2009), HCL describes event propagations and their consequences. 
Outcomes are then linked to BNs, allowing for probabilistic input of 
subjective aspects like human and organization behavior. The H-SIA 
method introduced by Ramos et al. (2020a) was inspired by the HCL 
approach but lacked the implementation of BNs. A full HCL modeling 
approach for MASS operations was demonstrated by Wu et al. (2020), 
but it focused on interactions between manned and unmanned vessels 
rather than on interactions of land-based operators and the unmanned 
vessels under their control. An HCL model for a MASS control system can 
lead to risk assessments that are updated based on operators’ experience 
and continually revised over time. 

Among other potentially useful approaches is the Functional Reso-
nance Analysis Method (FRAM), which has been adopted in dynamic 
safety management in complex socio-technical systems like healthcare 
and aviation. It was assessed in Thieme et al. (2018) for MASS systems 
and found to hold promise. However, there are currently no FRAM 
studies in the literature applied to MASS systems. 

4.6. Safety management holds clues for reconciling human and machine 
autonomies 

Safety management will play a crucial role in human-AI systems for 
safety critical applications. Theories that underpin safety management 
in terms of safety and (human) autonomy may also help to frame the 
emerging problem reconciling safety and (machine) autonomy in terms 
of practical organizational mechanisms. This applies to MASS operations 
but also all transportation systems introducing human-AI teaming. 

In this review, there was only one paper that directly addressed 
safety management for MASS operations. The author frames safety 
management as both a “source of engagement and frustration among 
seafarers” and suggests that remotely controlled vessels open the door to 
amending conventions set out in International Safety Management 
(ISM) Code specifically for increasing task flexibility for operators and 
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for reducing cumbersome paperwork (Størkersen, 2020). Historically, 
research in work design has focused on striking a balance between 
human autonomy of front-line workers and centralized managerial 
control. In situations that demand dexterity from operators in the face of 
uncertainty, this balance means combining a high degree of both oper-
ational flexibility and organizational stability. The theoretical ground-
work was established by Weick (1976) who framed this balance as a 
contradiction between centralization and decentralization and as a 
contradiction between safety and worker autonomy. Still, an analogy 
may be made between front-line human workers and the AI tools being 
currently developed. Drawing this parallel, we can extend the safety 
management frameworks to consider safety management for human-AI 
systems. Weick also theorized that specific mechanisms were present: 
so-called “loose couplings” that bridge the divide between safety 
(centralized, stable, managerial control) and autonomy (decentralized, 
flexible, task-based work). Recent work by Grote (2020) has picked up 
the debate, suggesting three coupling mechanisms that can be used in 
safety management towards High Reliability Organizations (HROs): 
safety rules, safety leadership, and safety culture. While specific exam-
ples like participatory rulemaking, transformational leadership, and 
safety climate outline practical tools in this framework, the work re-
mains theoretical and without direct empirical verification. Regardless, 
many elements of the conventional work design debate can carry over to 
the debate in human-AI control. We outline three carry-over elements 
here. The first is that many aspects of personal worker safety are now 
moot considering that AI tasks can replace them. For example, SCC 
workers are not spending shifts at sea, virtually eliminating “slips, trips, 
falls, and vehicles accidents” traditionally associated with personal or 
occupational safety. New occupational hazards will present themselves 
at the SCC, but the hazards will be fewer and less consequential. The 
second is that principles we have drawn from studying HROs match the 
aims of human-AI systems in that the focus is on things going right, 
rather than counteracting things going wrong. For example, Rasmussen 
says, “Rather than striving to control behavior by fighting deviations from 
a particular pre-planned path, the focus should be on the control of 
behavior by making the boundaries explicit and known and by giving op-
portunities to develop coping skills at boundaries (Rasmussen, 1997, pp. 
191). Rasmussen was referring to boundaries between worker control 
and managerial control, but they apply also to AI control and supervi-
sory control. The idea of making “boundaries explicit and clear” echo the 
need to understand the AI system limitations as well as the underlying 
motivation of “Explainable AI” (Gunning and Aha, 2019). The “coping 
skills” at boundaries refer to the adaptability and contextuality of 
working in shared control between an AI system and human operators. 
The third and final element that we discuss here is the opportunity to 
learn from HROs for designing resilient human-AI systems. This is 
challenging, given the lack of empirical data on the subject. However, 
adopting Grote’s framework and the concept of mechanisms for loose 
coupling between human autonomy and safety, one could imagine how 
strategies from HROs can carry over to loose couplings between AI and 
safety. Examples include participatory rulemaking, whereby the oper-
ator provides regular feedback to train AI systems, and strong cultural 
norms supporting switches between modes of operation. 

5. Conclusion 

In this article, we summarized the research state-of-the-art for 
autonomous ship systems, surveying a growing body of scientific liter-
ature published in peer-reviewed journals encompassing risk and safety 
science, human factors and training, marine policy, and ocean and 
reliability engineering. Given that automation is increasing in shipping, 
we posed three research questions: (1) how is human control currently 
being adopted in autonomous ship systems? (2) what methods, ap-
proaches, and theories are being used to address safety concerns and 
design challenges? and (3) what research gaps, regulatory obstacles, and 
technical shortcomings represent the most significant barriers to their 

real-world implementation? 
In a systematic review, we collated findings from forty-two relevant 

peer-reviewed articles. Although the review spanned five broad disci-
plines (marine policy, ocean engineering, human factors, reliability 
engineering, and risk science), two underlying themes underpinned all 
findings: safety and control. The two themes were closely linked, with 
safety framed as a property emerging from reconciling control between 
machine autonomy and human autonomy. From this perspective, ma-
chine autonomy executes defined tasks while human autonomy man-
ages supervisory goals under changing external factors and uncertainty. 

Starting with the first research question, we found that human con-
trol plays a critical role even for the most advanced autonomous ship 
systems. Autonomous ships and their land-based counterparts, so-called 
Shore Control Centers (also called Remote Control Centers or Remote 
Operating Centers), represent a collaborative system. Most researchers 
envision human roles that go above and beyond simple backup to the 
automation, involving roles in all operational phases (e.g., watch-
keeping, preventative maintenance, cargo loading and unloading, and 
emergency handling). During regular navigation, the AI system should 
enhance operators’ decision making for route planning and collision 
avoidance, not replace it outright. In line with this perspective, new 
thinking is emerging about how to frame autonomous system design as 
advancing in stages of human-AI interaction, rather than in levels of 
machine control. 

In line with the second research question, we synthesized current 
thinking about which risk assessment methods are best suited for 
autonomous ship systems. Our findings pointed to System-Theoretic 
Process Analysis (STPA) and Bayesian Networks (BNs) as the most 
appropriate tools to use in goal-based design of safety controls. These 
techniques do not rely on historical data about accident frequency, and 
instead leverage expert human input. A parallel can be drawn in this 
regard to Machine Learning algorithms and resilience thinking, two 
relevant fields that also frame human expertise as a source of power, not 
as a source of error. Current thinking raises safety management frame-
works originally intended to bridge the divide between worker auton-
omy and managerial control as relevant for human-AI systems. Parallels 
were drawn in this sense to control coupling mechanisms bridging the 
divide between machine autonomy and human control. 

Finally, addressing the third research question, we sampled the 
research state-of-art for the most significant obstacles standing in the 
way of real-world implementation off MASS systems. Notable obstacles 
included regulations, which hinge upon definitions ships as having 
seafarers physically onboard, and training requirements, for which gaps 
abound in current maritime conventions. The most significant obstacle 
involved the uncertainly surrounding human-AI interactions. Research 
is needed to shed light about how people work when teamed with AI, 
especially in safety–critical contexts. 

Autonomous ships will soon sail in our oceans, coastal waters, and 
inland waterways. Current research shows that humans will have just as 
important a role in ensuring safety of autonomous ships as for conven-
tional ships. The question remains how this role will be most appro-
priately carried out and best to coordinate it with AI system functions.  
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