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A contractive Hardy—Littlewood inequality

Aleksei Kulikov

ABSTRACT

We prove a contractive Hardy—Littlewood type inequality for functions from H?(T), 0 < p < 2
which is sharp in the first two Taylor coefficients and asymptotically at infinity.

1. Introduction

The classical Hardy-Littlewood inequality [6] says that for f(z) =a¢+ a1z +--- € HP(T),
0 < p <2, we have

c- |an|?
> iy <Gl (1.1)
In [4], the following more precise version of this inequality was conjectured.

CONJECTURE 1.1. For the function f(z) =ag+ a1z + axz®> +--- € HP(T),0 < p < 2, we

have - ,
Qn
Sl e, (12)

n—0 CQ/p (TL)

n+(1—1) )

where ¢, (n) = ("7

Despite vast numerical evidence, this conjecture is currently proved only for p = %, k € N by
Burbea [5], the case p =1 being the famous Carleman inequality (see, for example, [8] for a
simple self-contained proof).

In [3], inequality (1.2) was proved for the first two coefficients. Namely for the function f €
HP(T),0 < p < 2, we have |f(0)]* + 5| f(0)|* < ||f||127 In [2], by means of Wiessler’s inequality
[9], the authors proved the following strengthening of this result.

THEOREM 1.2. For the function f(z) = ag + a1z + agz? +--- € HP(T),0 < p < 2 we have

o0

Z 'a" <IIFIP. (13)

where @, (n) = c[q (")(ﬁ)n'

Note that ®,(0) =c,(0) =1,P,(1) =co(1) =a but for o ¢ N these coefficients grow
exponentially when n goes to infinity.
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A CONTRACTIVE HARDY-LITTLEWOOD INEQUALITY 741

In this paper, we prove the following theorem which gives us an inequality that is also sharp
in the first two terms but for n > 2 the weight decays as in the Hardy—Littlewood inequality
(1.1).

THEOREM 1.3. For each 0 < p <2, there exists €, >0 such that for all fe HP(T),
f(2) = ag + a1z + azz® + - - -, we have

|an |
Jaol* + |a1|2+€pz +1n2/p < IIfIG. (1.4)

Note that the constant % is optimal as can be seen from the function f(z) =1+ ez, — 0.
The proof of this inequality is based on the following theorem which may be of independent
interest.

THEOREM 1.4. For 0 < p < 2, there exists C;, < oo such that for all f € H"(T), we have
p
17() = £0) = £ ()22 < Gy (112 = laol® = Elar ). (L5)

Since this theorem is obviously true for p = 2 we will prove it only for 0 < p < 2. Moreover,
the constants C;) will be uniformly bounded except possibly for 0 < p<eand 2 —e<p < 2.
It is easy to see that in the former case nonuniformity is unavoidable but we do not know what
happens when p is close to 2.

2. Weak form of Theorem 1.4

In this section, we will prove the following lemma.

LEMMA 2.1. For every 0 < p < 2, there exists a constant -, such that for all f € HP(T),
we have

ILf = FOlp < v /ILFIIE = 1£(0)]2. (2.1)

In [1, Lemma 2.2], this is proved for p < 1 and in [7] this is proved for 1 < p < 2 (in [7], this
lemma is proved even for f € LP, but with 7, — co as p — 1). Nevertheless we present here a
simple uniform proof of this lemma.

Proof. Without loss of generality, we may assume that ||f], = 1. Let n = [%], % + 5= %
We can decompose the function f as a product f = fofi ... fu, fo € HI(T), f1,..., fn € H*(T)
such that || foll, = L [|fello=1,k=1,...,n

Let fr(2) = ar + gi(2), gx(0) = 0. Note that |aj| < 1, [Ti_, lax| = |f(0)|. Therefore |ay| >
|£(0)]. By orthogonality, we have ||gk|l2 < /1 —|f(0)]? and this inequality is valid even for

k = 0 since || fol|2 < [[follg-
We have the following formula for f — f(0):

n—2 n n
= <H fk) + gn— 1an<H fk) ---+g1(H ak>fo+go(H ak>. (2.2)
k=2 k=1

For each of the first n summands, by the obvious estimate |ax| < 1 and Hdlder’s inequality,
we have HP-norm is bounded by /1 — |f(0)|?. For the last summand, we have [],_, |ax| <1

and |[goll, < [lgoll2 < /1 —|f(0)]?. Therefore by the triangle inequality (with the possible
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742 ALEKSEI KULIKOV

additional constant coming from the fact that HP(T) for p < 1 is not a Banach space), we get

1f = FO)lp < vpv/1 =[O O

3. Proof of Theorem 1.4 for functions without zeroes

In this section, we will prove the following theorem.

THEOREM 3.1. Let 0 < p < 2 and f € HP(T) has no zeroes in . Then the conclusion of
Theorem 1.4 holds for this function f.

For the proof of this theorem, we will need the following result which is Theorem 4.1 from

[1].

THEOREM 3.2. For f € HP(T) with ||f||, = 1, we have

FOI<sp) =1 5 (3.1)

Note that for all 0 < p < 2 we have Lr(p)? < 1.

Proof of Theorem 3.1. Without loss of generality, we may assume that ||f[|, =1, f(z) =
ag + a1z + f. Note that || f||, < A, for some absolute constant A, < oo (for p > 1 we can take
A, =4).

We fix 0 < 4, < % to be determined later and consider the following cases depending on the
values of |ag| and |aq].

(i) lao| <4,

(i) 6, < |ao| < 1— by, |as| < 5.
(lll) 5}) g |a0| § 1-— 5;77 |(L1| 2 513'
(iv) 1 =16, < |aol.

In the first three cases, we will prove that || f| |12) — lao|* — §]a1|? is greater than some absolute

constant A, > 0 from which, by the inequality ||f]|, < A,, the desired result follows.

In the first case, we have ||f|> — |ao|* — §la1|* > 1 — 07 — Br(p)® which is positive if 4, is
small enough.

In the second case, we have ||f||2 — |ao|* — §la1|* > 1 — (1 —6,)* — 02 = 2(6, — 67) > 0.

For the third case, we will essentially repeat the proof of Lemma 1 from [3]. We have
U(z) = fP/2(2) = ab/* + gag/Q_lalz + -+ with ||U||]2 = 1 (here we used that f has no zeros).
Therefore

2
|aol” + %Iaol”‘QlalIQ <1 (3.2)

On the other hand, we have

»’ 2| |2 A 2 plas| 2\ 2 plai|?
p z p— = 1 > 1 s 3.3
<|a0| + 7 laol |a1|> laol” [ 1+ <2|a0|> |aol ( +2|a0|2> (3:3)

where the last inequality is a Bernoulli’s inequality (1 +¢)" > 1 + ¢r for » > 1,¢ > 0. Since we
are on a compact set 0, < |ag| < 1 —6,, 0, < |ai| < £(p) and the functions are continuous, we
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A CONTRACTIVE HARDY-LITTLEWOOD INEQUALITY 743

actually have a nonzero loss in the Bernoulli’s inequality

plail\*) " plas

2 1 2 1

1 > 1 A 34
|%|(+(ﬂ%0> o (14 Beae ) + (84
for some A, > 0. Therefore 1 > |ag|?(1 + ’2’{2;’2) + Ap = lao|* + §la1]? + A, as desired.

Now we turn to the fourth case which requires some additional ideas. Put U(z) = f7/%(z) =
ab”* + 5af* " arz +U() € H(T), |IU]]2 = 1.
Denote |ao|2 =1-p52 ||U||2 = e. Our goal now is to prove that ||f||,, (B% +¢).
Consider V(z) = U(2)(1 — 5-a1z). We have
2 P2ap/2_2 i p F 2 7
Viz) = ag/ =0 @224 U - —aUz= ag/ + V. (3.5)
4 2a0
Note also that by orthogonality it is easy to see from ||U]|z = 1 that |a;|,e < 8. Therefore
we can bound ||V||s < e + 82, Thus, by Pythagoras’s Theorem, we have

V12 = \/laol? + [IVII3 < V]aol? + O + B) = |ao|"* + O(c* + ). (3.6)

lai|

We will now apply Lemma 2.1 to the function V2/7 (V' has no zeros for small enough a0l

that is for small enough §,):

V2% — agll, SAVIVIE = laol? < V]ao? + O + BY) — Jao = O(B> +¢).  (3.7)

Now we are going to connect V2/? — g and f :

V2P _ gy = Uz/f”(l—2 alz)2/P_a0=(a0+a1z+f)(1_a_lz‘f'O(/Bz))_aO
ag

ag

=0(B%) + f+ flarz+ O(B%) = f+ O(B*) + O(B)f.

Therefore ||f]] = O(8% +¢)(1+ O(8)) " = O(B? + ¢), as required.
Since ||U]|2 = 1, we have

2
laol? + %|a0|p_2|a1|2 Fe2 =1 (3.8)
Recall that in the end we want to prove that
p ~
lao)* + §|al|2 +ellfI17 < 1. (3.9)

By our bound for ||f]|,, it is enough to prove that
a0l + Slar? + (8" +¢%) < 1 (3.10)
holds for some ¢, > 0. Substituting the value of |a;|? from (3.8), we get
2
Jaol* + ;Iaolh’(l — &% —aol") + ¢, (8 +¢%) < 1. (3.11)

Choosing ¢, < %(1 — 5,,) ~P, we can neglect terms with £ and we are left with the inequality

2
(1=B%)+ -1 =)0 - 1= B)"2) + B < 1. (3.12)
p
Expanding the left-hand side via Taylor’s formula, we get

T A R ) (3.13)
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744 ALEKSEI KULIKOV

and it is smaller than 1 for ¢, < 22‘” and small enough /8 (that is small enough 4,) since the

constant in front of 8% is negative. O

4. Proof of Theorem 1.4

In this section, we will finish the proof of Theorem 1.4 by taking into consideration the potential
zeros of the function f.

Let f e HP(T),||f|l, = 1. Write it as f = Bg,||g||, = 1, g has no zeros, B = Hf:’zl T
(obviously, it is enough to consider finite Blaschke products). Let ¢(z) = ag + a1z + g(2),
B(z) = by + b1z + B(z). We know that |ag|* + Blai|* + 5p||§||;2; < 1 and we want to prove the
same bound for f (with possibly smaller ¢,).

Note that if |f(0)| < J,, then as in the first case of the proof of Theorem 3.1 we can prove
the desired inequality. Therefore we can assume that |f(0)| > 0,. Since |f(0)| < |w,| for all n,

we have that |w,,| > 6.
Put fi(2) = g(2) Hk = Note that |f,(0)] > |f~(0)] = |f(0)| = J,. We will now show

n=1 1—zw,

|
tﬁat each factor = decreases |£(0)]? + E[f/(0)]* by at least ¢,(1 — |wg|) for some ¢, > 0,
that is

s O)F + S0 OF > 1O + SIFAO) + (1 = wi]). (4.1)

This inequality can be extracted from the proof of Lemma 1 in [3] but for the reader’s
convenience we outline the argument here. For simplicity, let us set fr_1(0) = a, fr_1(0)' =
b, w, = w. We have

2 P 2 2 P 2 2
[ (0)] +§|f;2(0)| = law|” + Sla — ajw]” —wd]

2 P2 2,2 2 P2 2
< law]” + Slal™(1 = |w[")" + plal[pllw|(L — |w[7) + S b w]

p p p
= laf” + b = (1 = ) (1 + fwh) (laf* + 2161 = ZlaP (1 = ) - plallbul).  (42)

Since %|b|2 — plal|b|lw| > —’2—)|a|2|w|2, we have
p p
(L4 feol) (Jaf? + Z1of? = Zlal?(1 = [w]?) — plallbljw])

> (1+ wlaf(1-2) > JaP? (1~ 2). (4.3)

Combining (4.2), (4.3) and the fact that |a| = |fr—1(0)| > J,, we get
p p p
a2 + 212 > 11 () + 21u0) 2 + (1 = ) (1 - 5) a2 (4.4)

and we obtain the desired estimate with ¢, = (1 — E)6]%.
We have

—~

4.5)

n=1 n=1 n=1

N N N
|bo| = H |wy| = exp <Z log|wn|> > exp (—Cp Z(l - |wn|)),

where C), < oo since all w,, are bounded away from 0. By orthogonality, we have

N N
1B]lp < 1Bl < V1 = [bo]* < 4| 1 —exp (—0p2(1—|wn|)) <\ Cp (1= fwal). (4:6)

n=1 n=1
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A CONTRACTIVE HARDY-LITTLEWOOD INEQUALITY 745

Let us now write f(z) — f(0) — f/(0)z in terms of B and g:
F(2) = £(0) = f(0)2 = bia12” + B(2)§(2) + B(2) (a0 + a12). (4.7)
Since Blaschke products are unimodular, we have ||Bg||, = ||g]|,. Since |ag| < 1, |a1| < &(p),

the last term has HP-norm at most a,||B||, for some a, < co. Finally, for b; we have again by
orthogonality

N
b1l < VT =002 < | Cp D (1= fwnl). (4.8)
n=1

Collecting everything we get

1 (z) = £(0) = f/(0)zll, < Ay | llgll, + (4.9)
On the other hand by (4.1)
FOP + E1F O)F <laol” + Slail* ~ <, Z ~ lwal) (4.10)
and by Theorem 3.1
jaol® + Slaa | + ,l13ll7 < 1. (4.11)

Now it is easy to see from (4.9), (4.10), (4.11) and the trivial inequality (z + y)? < 222 + 2y
that for some 5; > 0, we have

IFO)F + glf'(o)l2 +epllf(2) = f(0) = F(0)2]; < 1, (4.12)

as required.

5. Proof of Theorem 1.3

In this section, we will deduce Theorem 1.3 from Theorem 1.4.
We can rewrite inequality (1.1) as

- Z el < (5.1
Applying this to the function f(z) = f(z) — f(0) — f'(0)z, we get
o Z el < (52)
Combining it with the bound from Theorem 1.4, we get
ol + Sles* + i < (53)
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