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a b s t r a c t 

The Inventory Routing Problem (IRP) is a broad class of complex routing problems where the quanti- 

ties of delivered products must also be determined. In this paper, we consider the classic IRP where 

a single supplier must determine when to visit its customers, how much to deliver and how to com- 

bine the customer visits in each period into routes. We propose a branch-and-cut algorithm based on a 

new mathematical formulation for the IRP, improving the average lower bound obtained from algorithms 

based on the branch-and-cut methodology. The new formulation substitutes parts of the original formula- 

tion with a convex combination of extreme points. We call these extreme points customer schedules and 

for each customer they contain information about delivery periods and corresponding delivered quanti- 

ties. We show that this algorithm outperforms a state-of-the-art branch-and-cut algorithm on instances 

with time-varying demands. The customer schedule-based algorithm obtains better lower bounds, which 

improves the average optimality gap by 29% and 15% on two new sets of instances with time-varying 

demands. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

Advances in both operations research and supply chain man- 

gement have led to increasing use of vendor-managed inventory 

VMI), a business practice where a supplier makes the replenish- 

ent decisions for products delivered to customers based on spe- 

ific inventory and supply chain policies ( Coelho, Cordeau, & La- 

orte, 2014 ). This practice results in a situation where vendors 

ave distribution and production costs, because they can coordi- 

ate shipments made to different customers, and the customers 

enefit by not allocating effort s to inventory control. 

In the context of VMI, the inventory routing problem (IRP) 

rises. Here the supplier has to make three simultaneous deci- 

ions over a planning horizon consisting of discrete time periods 

o minimize transportation and inventory holding costs. The sup- 

lier has to create a schedule determining (1) when to serve a 

iven customer (once or multiple times), (2) how much to deliver 

t each customer visit, and (3) how to combine customer visits into 

outes. A route starts and ends at the supplier in a given time pe-
∗ Corresponding author. 
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iod. Versions of the IRP can be identified both for land-based and 

aritime transportation, making it a problem with a wide range 

f applications. For road-based transportation, the application ar- 

as described in the literature are the transportation of products 

uch as heating oil, beer, soft drinks, industrial gases, and groceries 

 Andersson, Hoff, Christiansen, Hasle, & Løkketangen, 2010 ). 

The IRP was first proposed by Bell et al. (1983) , and has later at-

racted significant attention from the research community ( Coelho 

t al., 2014 ). The last decades’ research has improved both exact 

ethods and heuristics. The first exact solution method for this 

roblem was proposed by Archetti, Bertazzi, Laporte, & Speranza 

2007) for the IRP with a single supplier, a fixed time horizon di- 

ided into discrete periods, a single vehicle, and no stock-outs. The 

ethod presented is based on branch-and-cut (B&C), and is used 

o compare the effect of two inventory policies, referred to as the 

rder-up-to level policy (OU) where the delivered quantity has to 

ll up the inventory, and the maximum level inventory policy (ML) 

here any quantity may be delivered as long as it does not violate 

he inventory limits. The authors showed that the ML inventory 

olicy could drastically reduce both transportation and inventory 

osts. In addition, they also published a set of benchmark instances 

or the single-vehicle IRP. 
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Since then, improved exact solution methods for the IRP have 

een presented by Solyal & Süral (2011) and Avella, Boccia, & 

olsey (2015) for the OU policy (IRP-OU), and by Coelho, Cordeau, 

 Laporte (2012a) , Coelho & Laporte (2014) , Adulyasak, Cordeau, 

 Jans (2014) , Avella et al. (2015) , Desaulniers, Rakke, & Coelho 

2016) , Avella, Boccia, & Wolsey (2018) , Guimarães, Schenekem- 

erg, Coelho, Scarpin, & Pécora (2020) and Manousakis, Repous- 

is, Zachariadis, & Tarantilis (2021) for the ML policy (IRP-ML). 

part from the paper by Desaulniers et al. (2016) , which presents a 

ranch-price-and-cut method, all papers referenced above present 

olution methods based on the B&C methodology. The bench- 

ark instances typically used for the IRP is often divided into 

 small and a large set of instances, originally published for the 

ingle-vehicle IRP by Archetti et al. (2007) and Archetti, Bertazzi, 

ertz, & Speranza (2012) , respectively. These instances were later 

odified by Coelho et al. (2012a) to also accommodate the 

ulti-vehicle IRP, resulting in a total of 798 small instances and 

00 large instances.The authors presented a three-index arc-flow 

ormulation for the multi-vehicle IRP-ML, where subtour elimina- 

ion constraints were added dynamically. This method was im- 

roved by Coelho & Laporte (2014) , who presented three new fam- 

lies of valid inequalities that improved the results both for the 

ingle-vehicle IRP and the multi-vehicle IRP. 

Adulyasak et al. (2014) compared different formulations of both 

he multi-vehicle production routing problem (also considering the 

uantity to produce at the supplier in each period as a decision) 

nd the multi-vehicle IRP, solving them by combining a heuristic 

ith a B&C algorithm. In addition to the three-index formulation 

roposed by Coelho & Laporte (2014) , they proposed a two-index 

rc-flow formulation where capacitated subtour elimination con- 

traints were added dynamically. They showed that the algorithm 

ased on the three-index formulation is superior in finding optimal 

olutions, but that the algorithm based on the two-index formula- 

ion obtains tighter dual bounds on the largest instances. 

Avella et al. (2015) presented a new two-index arc-flow formu- 

ation for the single-vehicle IRP that is valid in cases where the 

nventory capacity at every customer is an integer multiple of de- 

and, and derived new valid inequalities for this formulation, re- 

erred to as the single item lot-sizing inequalities. Their B&C al- 

orithm based on the new formulation obtained new best-known 

esults for several of the benchmark instances both for the OU 

nd ML inventory policies. This reformulation was also used for 

he multi-vehicle IRP studied by Avella et al. (2018) , where they 

resented a new family of valid inequalities, the disjoint route in- 

qualities. By adding two special cases of these valid inequalities to 

heir two-index arc-flow formulation they improved the optimality 

ap of the benchmark instances with 50 customers and three time 

eriods, and 30 customers and six time periods. 

The latest improvements in exact solution methods further im- 

roved the results on the benchmark instances by integrating pri- 

al heuristics and feasibility mechanisms within the B&C frame- 

ork. Guimarães et al. (2020) presented two feasibility mecha- 

isms and improvement routines to enhance a B&C scheme for the 

ulti-vehicle IRP. Using these mechanisms they were able to find 

everal new best-known solutions and proved optimality for new 

nstances. Manousakis et al. (2021) presented a two-commodity 

ow formulation for the IRP and a new set of valid inequalities for 

his formulation. The formulation exploits the interaction between 

he flow of goods and the flow of empty space (inverse flow). To- 

ether with an efficient primal heuristic, they obtained new best- 

nown solutions on some of the benchmark instances. 

In addition to the development of exact methods, there has 

een a considerable effort on developing heuristic solution meth- 

ds for the IRP. Most of these heuristics can in fact be classified as 

atheuristics ( Archetti et al., 2012; Archetti, Boland, & Speranza, 

017; Chitsaz, Cordeau, & Jans, 2019; Diniz, Martinelli, & Poggi, 
1190 
020; Vadseth, Andersson, & Stålhane, 2021 ), i.e., “heuristic algo- 

ithms made by the interoperation of metaheuristics and mathe- 

atical programming techniques” ( Boschetti, Maniezzo, Roffilli, & 

olufé Röhler, 2009 ). 

Archetti et al. (2012) proposed a heuristic that combines a tabu 

earch scheme with ad hoc designed mixed-integer linear pro- 

ramming models for the single-vehicle IRP, obtaining optimal or 

ear-optimal solutions in much shorter solution time than the ex- 

ct B&C method proposed by Archetti et al. (2007) . This matheuris- 

ic was later extended to also handle the IRP with multiple ve- 

icles ( Archetti et al., 2017 ), obtaining new best-known solutions 

n 92% of the large benchmark instances. These results were fur- 

her improved by Chitsaz et al. (2019) when they found 194 new 

est-known solutions with a three-phase decomposition method, 

riginally developed for the assembly routing problem, on the 300 

arge IRP benchmark instances. Diniz et al. (2020) presented a 

atheuristic using an iterative local search method with a ran- 

omized variable neighbourhood search and the solution of net- 

ork flow problems. They found 113 new best-known solutions on 

he small benchmark set. Vadseth et al. (2021) described an iter- 

tive matheuristic for the IRP, where they used a giant tour and 

imple operators to heuristically create routes that are included in 

 path-flow formulation. The matheuristic then iterates between 

olving this path-flow model and updating the set of routes based 

n the optimal solution of the path-flow model from the previous 

teration. Running this algorithm they found 179 new best-known 

olutions out of 240 of the large multi-vehicle instances. 

The IRP also forms the basis for richer problems, such as the 

RP with perishable products ( Alvarez, Cordeau, Jans, Munari, & 

orabito, 2021 ) and the IRP with pickups and deliveries ( Archetti, 

hristiansen, & Grazia Speranza, 2018; Archetti, Speranza, Boccia, 

forza, & Sterle, 2020 ). Alvarez et al. (2021) proposed a new for- 

ulation for the IRP with perishable products and developed a 

ybrid heuristic, combining an iterated local search metaheuris- 

ic and two mathematical programming components. The proposed 

atheuristic was also modified and tested on the standard IRP 

enchmark instances, finding high-quality solutions compared with 

he state-of-the-art methods. Archetti et al. (2018) presented the 

ingle-vehicle IRP with pickups and deliveries along with a model 

ormulation and a B&C algorithm tailored to solve this problem. 

hey solved 487 out of 640 instances, with up to 50 customers 

nd three time periods and up to 30 customers and six time 

eriods. Archetti et al. (2020) designed a B&C algorithm for the 

ulti-vehicle IRP with pickups and deliveries, while also propos- 

ng a new set of valid inequalities, called interval inequalities. They 

olved 946 out of 1280 instances to optimality, and outperformed 

he state-of-the-art method for the single-vehicle version by find- 

ng 133 new best-known solutions. There also exist other variants 

f the IRP, such as the IRP with transshipments ( Coelho, Cordeau, 

 Laporte, 2012b ), the IRP with demand moves ( Baller, Dabia, De- 

aulniers, & Dullaert, 2021 ) and the two-echelon multi-vehicle IRP 

 Guimarães, Coelho, Schenekemberg, & Scarpin, 2019 ). 

In this paper, we present a new innovative formulation of the 

RP, based on a Dantzig-Wolfe reformulation of a two-index arc- 

ow model. We refer to this reformulation as the customer schedule 

ormulation (CSF), in which we introduce a set of variables contain- 

ng information about which periods a customer is visited and the 

uantity delivered in each of these periods. This reformulation al- 

ows us to significantly reduce the number of constraints, but at 

he cost of adding more variables. We prove that several of the 

alid inequalities proposed by Coelho & Laporte (2014) and Avella 

t al. (2015) are not useful for the CSF, and that it is more gen-

ral than the reformulation proposed by Avella et al. (2015) since 

t does not require an integer inventory capacity to demand ratio 

t the customers. Further, we modify the capacity inequalities pro- 

osed by Desaulniers et al. (2016) to be applicable to arc-flow for- 
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ulations, and propose a new separation algorithm for these valid 

nequalities. 

We have implemented a B&C algorithm based on the CSF in- 

luding the valid inequalities of Desaulniers et al. (2016) and Avella 

t al. (2018) . This algorithm is compared with a reimplementa- 

ion of a state-of-the-art B&C algorithm based on the formulation 

roposed by Avella et al. (2018) and including the valid inequali- 

ies of Coelho & Laporte (2014) and Desaulniers et al. (2016) . We 

est these two algorithms on the benchmark instances proposed 

y Archetti et al. (2007) and Coelho et al. (2012a) , and on modified

ersions of these instances with time-varying demands. The results 

how that the performance of the CSF-based algorithm is similar to 

he state-of-the-art reimplementation for the existing benchmark 

nstances, but significantly better for instances with time-varying 

emands. 

It is worth pointing out that an improvement of the dual bound 

t the termination of a B&C method can be achieved in two ways, 

ither by using a stronger formulation yielding a better linear re- 

axation or by quickly finding good primal solutions. A good primal 

olution makes it possible to perform variable fixing by reduced 

ost or allows for faster pruning of the branch-and-bound (B&B) 

ree. The latter is not true if using a best-first strategy, but most 

ommercial solvers embed plunging strategies and a good primal 

olution allows for faster pruning whenever the solver performs a 

lunge, i.e., swapping from a best-first to a depth-first strategy. Our 

ork is focused on improving the dual bound at the root node, and 

s the reason why we chose to compare our results with those of 

vella et al. (2018) as they represent the strongest known arc-flow 

ormulation for the IRP. 

The remainder of this paper is organized as follows. 

ection 2 presents the mathematical model along with the 

alid inequalities used in our reimplementation of a state-of-the- 

rt B&C algorithm. Section 3 explains the concept of customer 

chedules, how they can be used to reformulate the problem, 

nd a thorough analysis of the properties of this reformulation. 

he B&C algorithm is presented in Section 4 before reporting our 

omputational results in Section 5 . Finally, conclusions are drawn 

n Section 6 . 

. Problem definition and mathematical model 

In this section, the two-index arc-flow formulation for the 

ingle-depot multi-vehicle IRP is presented along with the valid 

nequalities of Coelho & Laporte (2014) , the capacity inequalities 

f Desaulniers et al. (2016) and the disjoint route inequalities of 

vella et al. (2018) . In Section 2.1 , the problem is formally stated,

efore presenting the mathematical model in Section 2.2 and the 

alid inequalities in Section 2.3 . 

.1. Problem definition and notation 

In the single-depot multi-vehicle IRP a single supplier, denoted 

, produces a single product which is delivered to a set of cus- 

omers N 

C = { 1 , . . . , n } over a planning horizon that is divided into

 set T of discrete time periods. In each time period, t ∈ T , S t 
nits of the product are produced at the supplier, while D it units 

f the same product are consumed at each customer i ∈ N 

C . A cus-

omer can be visited at most once in each time period. Both the 

upplier, 0, and each customer, i , have a storage with given upper 

nd lower inventory capacities, L i and L i , respectively, an initial in- 

entory level I i at the beginning of the planning horizon, and a 

nit holding cost H it for each time period t . In addition, we in- 

roduce I it = max { I i − ∑ t 
s =1 D is , 0 } to denote the remaining units of

he product from the initial inventory at customer i in period t , 

iven the first-in, first-out principle. 
1191 
To keep all storages within their inventory limits, a fleet of K

omogeneous vehicles, each with a capacity to hold Q units of 

he product, is used to transport the product from the supplier 

o the customers. The problem of designing routes for these ve- 

icles may be defined on a graph G = (N , A ) , where the set of

odes N = { 0 , . . . , n } consists of one supply node (0) and one node

or each customer, and the set of arcs A = { (i, j) ∈ {N × N } | i � = j}
onnects the nodes. The route driven by a vehicle can be seen as a 

imple cycle in the graph starting and ending at node 0, where C i j 

epresents the cost of driving directly from node i to node j. The 

oal is to create at most one route for each vehicle in each time 

eriod, delivering units of the product to each customer along that 

oute, so that the inventory limits at all nodes are satisfied in each 

ime period and the sum of the inventory holding costs and the 

ransportation costs is minimized. 

.2. Model 

To model this problem we introduce the following variables. 

et x i jt be equal to 1 if a vehicle traverses arc (i, j) ∈ A in period

 ∈ T , and 0 otherwise. In time period t ∈ T , let δit be 1 if cus-

omer i ∈ N 

C is visited, 0 otherwise, and let δ0 t be the number of 

ehicles leaving the supplier. For each node i ∈ N and period t ∈ T ,
e define a non-negative variable s it that represents the inventory 

evel at node i at the end of period t . In addition, for each node

 ∈ N we denote the initial inventory s i 0 . Further, we let q it denote

he quantity delivered to customer i ∈ N 

C in period t ∈ T . 
Using this notation, we can now present the formulation for the 

ingle-depot multi-vehicle IRP as the following mixed-integer lin- 

ar program (MILP): 

min 

∑ 

(i, j) ∈A 

∑ 

t∈T 
C i j x i jt + 

∑ 

i ∈N 

∑ 

t∈T 
H it s it (1) 

 0 t = S t −
∑ 

i ∈N C 
q it + s 0(t−1) , ∀ t ∈ T , (2) 

 it = q it − D it + s i (t−1) , ∀ i ∈ N 

C , t ∈ T , (3) 

 0 ≤ s 0 t ≤ L 0 , ∀ t ∈ T , (4) 

 i ≤ s it ≤ L i , ∀ i ∈ N 

C , t ∈ T , (5) 

∑ 

i ∈N C 
q it ≤ Qδ0 t , ∀ t ∈ T , (6) 

 it ≤ L i − s i (t−1) , ∀ i ∈ N 

C , t ∈ T , (7) 

 it ≤ min { L i − I it , Q} δit , ∀ i ∈ N 

C , t ∈ T , (8) 

∑ 

j∈N\{ i } 
x i jt = δit , ∀ i ∈ N , t ∈ T , (9) 

∑ 

j∈N\{ i } 
x i jt = 

∑ 

j∈N\{ i } 
x jit , ∀ i ∈ N , t ∈ T , (10) 

∑ 

(i, j) ∈ (S : S ) 
x i jt ≤

∑ 

i ∈S 
δit − δmt , ∀ S ⊂ N 

C , |S| ≥ 2 , t ∈ T , m ∈ S, 

(11) 

∑ 

(i, j) ∈ (S : N\S ) 
Qx i jt ≥

∑ 

i ∈S 
q it , ∀ S ⊂ N 

C , |S| ≥ 2 , t ∈ T , 

(12) 
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 it ≥ 0 , ∀ i ∈ N 

C , t ∈ T , (13) 

it ∈ { 0 , 1 } , ∀ i ∈ N 

C , t ∈ T , (14) 

0 t ∈ { 0 , 1 , . . . , K} , ∀ t ∈ T , (15) 

 i jt ∈ { 0 , 1 } , ∀ (i, j) ∈ A , t ∈ T , (16) 

here s 00 = I 0 and s i 0 = I i , ∀ i ∈ N 

C . The objective function

1) minimizes the sum of the transportation cost and the inven- 

ory holding cost. Constraints (2) and (3) balance the inventory at 

he supplier and at the customers, respectively. Constraints (4) and 

5) make sure that the inventory levels always stay between their 

ower and upper limits at the supplier and at the customers, re- 

pectively. Constraints (6) state that the fleet of vehicles leaving 

he supplier never delivers more than its capacity to the customers 

n a given period. Constraints (7) enforce the ML inventory policy. 

onstraints (8) ensure that a customer can only receive a deliv- 

ry if visited. Constraints (9) are the degree constraints and con- 

traints (10) ensure a correct flow of vehicles between nodes. The 

ubtour and capacitated subtour elimination constraints (SECs and 

SECs, respectively) are stated in constraints (11) and (12) , respec- 

ively, where (E : F ) = { (i, j) : i ∈ E, j ∈ F \ { i }} denotes the set of

rcs going from a node in set E to a node in set F . Finally, con-

traints (13) –(16) impose integrality and non-negativity of the vari- 

bles. 

.3. Valid inequalities 

To strengthen the linear relaxation of the model defined by (1) –

16) , we apply three sets of valid inequalities in our B&C algorithm. 

.3.1. Valid inequalities from Coelho & Laporte (2014) 

The following inequalities were proposed by Coelho & Laporte 

2014) : 

 i jt ≤ δit , ∀ (i, j) ∈ A , t ∈ T , (17) 

it ≤ δ0 t , ∀ i ∈ N 

C , t ∈ T , (18) 

t 
 

 

′ =1 

δit ′ ≥
⌈( 

t ∑ 

t ′ =1 

D it ′ − I i 

) / 

min { L i , Q} 
⌉

, ∀ i ∈ N 

C , t ∈ T , 

(19) 

t 2 ∑ 

 

′ = t 1 
δit ′ ≥

⌈( 

t 2 ∑ 

t ′ = t 1 
D it ′ − L i 

) / 

min { L i , Q} 
⌉

, 

∀ i ∈ N 

C , t 1 ∈ T \ { 1 } , t 2 ∈ T , t 2 ≥ t 1 ,

(20)

t 2 ∑ 

 

′ = t 1 
δit ′ ≥

( t 2 ∑ 

t ′ = t 1 
D it ′ − s i (t 1 −1) 

)/ 

min { L i , Q, 

t 2 ∑ 

t ′ = t 1 
D it ′ } , 

∀ i ∈ N 

C , t 1 , t 2 ∈ T , t 2 ≥ t 1 . (21) 

Constraints (17) were originally developed for an edge formu- 

ation, but can be improved for an arc-flow formulation. We know 

hat if arc x i jt is used, arc x jit cannot be used, and the use of the

rcs out from node j has to be greater than or equal to the use of

rc x i jt . 

 i jt ≤
∑ 

k ∈N\ { i } 
x jkt , ∀ (i, j) ∈ (N 

C : N 

C ) , t ∈ T . (22) 
1192 
Constraints (18) give a tighter relationship between the visit- 

ng variables δit for the customers and the visiting variables δ0 t for 

he supplier. Constraints (19) and (20) compute a lower bound on 

ow many times a customer i needs to be visited in a given time 

nterval. Constraints (21) compute a lower bound given the actual 

nventory level at customer i at the beginning of a given time in- 

erval. To maintain the linear characteristics we cannot round up 

his expression, but it gives a tighter relationship between the δit 

nd s it variables. 

.3.2. Capacity inequalities from Desaulniers et al. (2016) 

We also adapt the capacity inequalities of Desaulniers et al. 

2016) to be applicable in an arc-flow formulation. The capacity 

nequalities ensue from the same idea as the rounded capacity in- 

qualities for the capacitated vehicle routing problem ( Laporte & 

obert, 1983 ). Since we can decide the delivered quantity in each 

eriod we do not know for sure that we will deliver a quantity 

qual to the demand in each period. However, we do know that 

he residual demand for a given period has to be delivered be- 

ore this given period. We define residual demand, D it = max { D it −
 it , 0 } , to be the demand that cannot be covered by the initial in-

entory. Thus, assuming a first-in, first-out policy for the units in 

he inventory we can calculate a lower bound on the number of 

ehicles needed to serve a given subset of residual demands. 

Let RD be the set of all positive residual demands across all 

ustomers and time periods, RD = { (i, t) ∈ N 

C × T | D it > 0 } , and

et U ⊆ RD be a subset of all positive residual demands. A positive 

esidual demand D jt can be served by a vehicle traversing an arc 

i, j) in period t or previously as long as the inventory capacity is 

ot violated. 

Thus, we introduce P 

−
jt 

= { (i, j, m ) ∈ N × N 

C × T | ( D jt > 0 ∧
 ≤ t ∧ ( 

∑ t 
l= m 

D jl + I jm 

≤ L j )) } to be the set of arcs (i, j) in pe-

iod m , denoted (i, j, m ) , that can serve residual demand D jt . Let

 U = { (i, j, m ) ∈ P −
jt 

| ( j, t) ∈ U} be the set of arcs that can serve

he residual demands in U . It is worth pointing out that the same 

rc (i, j, m ) can potentially serve several consecutive residual de- 

ands at customer j, but appears at most once in A U . Then we

et the following capacity inequalities: 

∑ 

i, j,t) ∈A U 
x i jt ≥

⌈ ∑ 

(i,t) ∈U 
D it 

/ 

Q 

⌉
, ∀ U ⊆ RD . (23) 

.3.3. Disjoint route inequalities from Avella et al. (2018) 

The disjoint route (DR) inequalities were introduced by Avella 

t al. (2018) . Let R be the set of arcs in a route and let V(R ) be

he set of nodes in that route. For a given period t ∈ T , a subset

 ⊆ N 

C , a partition (S 1 , S 2 , S 3 , S 4 ) of S , and the coefficients μi j ≥
 for all (i, j) ∈ A , a valid DR inequality can be formulated as: ∑ 

i, j) ∈A 
μi j x i jt ≥

∑ 

j∈S 1 
q jt + 

∑ 

j∈S 2 
(q jt − s j(t+1) ) + 

∑ 

j∈S 3 
(q jt − s jt ) 

+ 

∑ 

j∈S 4 
(s jt − ( L j −

t ∑ 

m = t−1 

D jm 

)) (24) 

f ∑ 

i, j) ∈R 

μi j ≥ min { Q, 
∑ 

i ∈ V(R ) ∩S 1 
L i + 

∑ 

i ∈ V(R ) ∩S 2 
(D it + D i (t+1) ) 

+ 

∑ 

i ∈ V(R ) ∩S 3 
D it + 

∑ 

i ∈ V(R ) ∩S 4 
D i (t−1) } , (25) 

or every route starting and ending at the supplier. 

We include the two special cases of the DR inequalities pro- 

osed by Avella et al. (2018) , namely the simple DR inequalities 

nd the h -DR inequalities ( Avella et al., 2018 ). The technical de- 

ails regarding these valid inequalities can be found in Avella et al. 

2018) . 
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. Customer schedules 

We first present a new reformulation of the problem in 

ection 3.1 based on a Dantzig-Wolfe decomposition, before stat- 

ng and proving several properties of this new formulation in 

ection 3.2 . 

.1. Reformulation 

Let us define a bounded set of feasible solutions P i described 

y the subset of constraints (3), (5), (7) –(8), (13) and (14) for each

ustomer i ∈ N 

C . Let �i be the set of extreme points of the con-

ex hull of P i , and let Q itω , S itω and A itω be the values of q it , s it and

it , respectively, for each extreme point ω ∈ �i . Like in a Dantzig 

 Wolfe (1960) decomposition, we may express all points in P i as 

onvex combinations of these extreme points. To do this, we intro- 

uce a set of weighting variables λiω and express the set of feasible 

olutions as follows: 

 it = 

∑ 

ω∈ �i 

Q itω λiω , ∀ i ∈ N 

C , t ∈ T , (26) 

 it = 

∑ 

ω∈ �i 

S itω λiω , ∀ i ∈ N 

C , t ∈ T , (27) 

it = 

∑ 

ω∈ �i 

A itω λiω , ∀ i ∈ N 

C , t ∈ T , (28) 

∑ 

ω∈ �i 

λiω = 1 , ∀ i ∈ N 

C , (29) 

iω ≥ 0 , ∀ i ∈ N 

C , ω ∈ �i . (30) 

In the following, we refer to each extreme point ω ∈ �i as a 

ustomer schedule for customer i ∈ N 

C . A customer schedule can 

e interpreted as a set of days the customer is visited ( { t : t ∈
 ∧ A itω = 1 } ) and the quantity delivered (Q itω ) on each of these

ays. The delivered quantities also implicitly decide the inventory 

evels ( S itω ) at the customers throughout the planning period due 

o constraints (3) . By substituting for q it , s it and δit in the mathe-

atical formulation (1) –(16) , we state the CSF of the problem as 

ollows: 

min 

∑ 

(i, j) ∈A 

∑ 

t∈T 
C i j x i jt + 

∑ 

i ∈N C 

∑ 

t∈T 

∑ 

ω∈ �i 

H it S itω λiω + 

∑ 

t∈T 
H 0 t s 0 t (31) 

 0 t = S t −
∑ 

i ∈N C 

∑ 

ω∈ �i 

Q itω λiω + s 0(t−1) , ∀ t ∈ T , (32) 

 0 ≤ s 0 t ≤ L 0 , ∀ t ∈ T , (33) 

∑ 

i ∈N C 

∑ 

ω∈ �i 

Q itω λiω ≤ Qδ0 t , ∀ t ∈ T , (34) 

∑ 

j∈N\{ i } 
x i jt = 

∑ 

ω∈ �i 

A itω λiω , ∀ i ∈ N , t ∈ T , (35) 

∑ 

j∈N\{ i } 
x i jt = 

∑ 

j∈N\{ i } 
x jit , ∀ i ∈ N , t ∈ T , (36) 

∑ 

i, j) ∈ (S : S ) 
x i jt ≤

∑ 

i ∈S 

∑ 

ω∈ �i 

A itω λiω −
∑ 

ω∈ �m 

A mtω λmω , 

∀ S ⊂ N 

C , |S| ≥ 2 , t ∈ T , m ∈ S, 

(37) 

∑ 

(i, j) ∈ (S : N\S ) 
Qx i jt ≥

∑ 

i ∈S 

∑ 

ω∈ �i 

Q itω λiω , ∀ S ⊂ N 

C , |S| ≥ 2 , t ∈ T , 

(38) 
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∑ 

ω∈ �i 

λiω = 1 , ∀ i ∈ N 

C , (39) 

iω ≥ 0 , ∀ i ∈ N 

C , ω ∈ �i , (40) 

 i jt ≤
∑ 

k ∈N\ { i } 
x jkt , ∀ (i, j) ∈ (N 

C : N 

C ) , t ∈ T ,

(41) 

0 t ∈ { 0 , 1 , . . . , K} , ∀ t ∈ T , (42) 

 i jt ∈ { 0 , 1 } , ∀ (i, j) ∈ A , t ∈ T . (43) 

he objective function (31) is equivalent to (1) , constraints (32) and 

33) balance the inventory and keep it within the inventory capac- 

ty at the supplier, respectively. The constraints (34) –(38) express 

he same as constraints (6), (9) –(12) found in the original formula- 

ion, while constraints (39) ensure that only a convex combination 

f customer schedules may be selected. Constraints (41) are the 

alid inequalities (22) repeated here for the sake of readability. Fi- 

ally, the non-negativity requirements for the weighting variables 

re defined by constraints (40) , and constraints (42) - (43) are the 

ame as constraints (15) - (16) . 

.2. Properties of the reformulation 

Let us analyze the properties of the CSF. Propositions 1 –3 show 

hat the new formulation is at least as strong as the original for- 

ulation including the valid inequalities (19) –(21) and the sin- 

le item lot-sizing inequalities ( Avella et al., 2015 ). The proofs of 

ropositions 2 and 3 can be found in Appendix A . Let R CSF and R O 

e the polytopes defined by the linear relaxations of the CSF (32) –

43) and the original formulation (2) –(16) , respectively. 

roposition 1. R CSF ⊆ R O . 

This proposition is true because the CSF is a Dantzig-Wolfe re- 

ormulation of (3) –(16) . 

The next proposition indicates that the valid inequalities (19) –

21) are not useful for the CSF. 

roposition 2. The valid inequalities (19) –(21) are satisfied by all so- 

utions in R CSF . 

The following proposition shows that another set of valid in- 

qualities is not useful when employing the CSF. 

roposition 3. All solutions in R CSF satisfy the valid inequalities de- 

ned per customer based on the single item lot-sizing reformulation 

roposed by Avella et al. (2015) . 

We conclude this section by showing a numerical example 

here R CSF is a proper subset of R O . Assume we have a problem

ith only one customer i and two time periods, where demand 

s 50 in each period, and both the vehicle capacity and the in- 

entory capacity at this customer is 100. Let us also assume that 

he inventory cost is higher at the customer than at the supplier 

nd that the initial inventory at the customer is 0. For this prob- 

em, we can easily observe that R O contains a solution χ such that 

i 1 = δi 2 = 0 . 5 and q i 1 = q i 2 = 50 . Let us show that this solution

oes not belong to R CSF . Indeed, for this example, there are only 

wo customer schedules: 

 i 11 = 100 , Q i 21 = 0 , A i 11 = 1 , A i 21 = 0 . 

 i 12 = 50 , Q i 22 = 50 , A i 12 = 1 , A i 22 = 1 . 
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In this case, constraints (28) and (29) write as follows: 

i 1 = λi 1 + λi 2 , 

i 2 = 0 λi 1 + λi 2 , 

i 1 + λi 2 = 1 . 

Therefore, δi 1 = 1 for all solutions in R CSF and χ �∈ R CSF . Thus, 

 

CSF can be a proper subset of R O . 

. Branch-and-cut algorithm 

In this paper, we compare the two formulations for the IRP 

reviously presented, and their performance when put into a B&C 

ramework. In the remainder of this paper, we refer to the formula- 

ion defined by (1) –(16) and the valid inequalities (18) –(22) , as the

tate-of-the-art formulation (SOTAF). In addition, we add the single 

tem lot-sizing inequalities proposed by Avella et al. (2015) a priori 

or the test instances where they are applicable. The B&C algorithm 

ased on this formulation is referred to as SOTAF-BC. 

The B&C algorithm based on the CSF, is denoted CSF-BC. The a 

riori generation of customer schedules is done by a labeling al- 

orithm enumerating all possible combinations of visits and cor- 

esponding quantities. It is worth noting that a simple forward 

ropagation alone is not enough to enumerate all schedules due 

o the inter-dependencies between delivered quantities across dif- 

erent periods. Section 4.1 therefore gives a detailed description of 

he labeling algorithm used to enumerate the customer schedules. 

ection 4.2 gives an overview of the proposed B&C algorithms, and 

ection 4.3 presents a detailed description of the separation of the 

apacity inequalities. 

.1. A priori generation of customer schedules 

The customer schedules are generated a priori using a labeling 

lgorithm ( Algorithm 1 ) for each customer i ∈ N 

C . A label is used

lgorithm 1 Customer schedules for customer i . 

1: U = L 0 
2: while U � = ∅ do 

3: L = remov e (U) 

4: if ∀ t ′ ∈ T : s it ′ (L ) = s it ′ (L ) then 

5: P = P 

⋃ { L } 
6: end if 

7: for t ∈ T : s it (L ) < s it (L ) do 

8: create labels L 1 , L 2 
9: ∀ t ′ ∈ T : s it ′ (L 1 ) = f U 

t t ′ ( s it (L ) , s it ′ (L )) 

0: ∀ t ′ ∈ T : s it ′ (L 1 ) = f L 
t t ′ ( s it (L ) , s it ′ (L )) 

11: U = U 

⋃ { L 1 } 
2: ∀ t ′ ∈ T : s it ′ (L 2 ) = f U 

t t ′ ( s it (L ) , s it ′ (L )) 

3: ∀ t ′ ∈ T : s it ′ (L 2 ) = f L 
t t ′ ( s it (L ) , s it ′ (L )) 

14: U = U 

⋃ { L 2 } 
5: end for 

6: end while 

o store lower and upper bounds on the inventory levels for each 

ime period, and the values of these bounds for label L are referred 

o as s it (L ) and s it (L ) , respectively. The labeling algorithm starts by

nitiating a set of unprocessed labels, U , initially only consisting 

f the label L 0 (line 1). For L 0 the initial values of the inventory

ounds are set as follows: 

 it (L ) = max { I i −
t ∑ 

t ′ =1 

D it ′ , 0 } , t ∈ T , (44) 

 it (L ) = min { I i + 

t ∑ 

t ′ =1 

( min { L i , Q} − D it ′ ) , L i } t ∈ T , (45) 
1194 
hich represents the minimum and maximum possible inventory 

ounds for any given period. The algorithm then selects one label 

rom the set of unprocessed labels (line 3). If the lower and upper 

nventory bounds are equal for each time period, then the label 

epresents a complete customer schedule and is added to the set of 

ompleted labels P (line 5). Otherwise, the algorithm iterates over 

he time periods where the upper and lower inventory bounds are 

ifferent, and creates two new labels, L 1 and L 2 , for each selected 

ime period (line 8). For the selected time period t the upper in- 

entory bound in L 1 is decreased to the lower inventory bound 

line 9) and the lower inventory bound in L 2 is increased to the 

pper inventory bound (line 13). The upper and lower inventory 

ounds for the remaining periods are then updated according to 

he functions f U and f L (lines 9–10 and lines 12–13), respectively, 

hich is defined as: 

f L t 1 t 2 
(a, b) = 

⎧ ⎨ 

⎩ 

max { a − ∑ t 2 
t= t 1 D it , b} if t 1 < t 2 , 

a, if t 1 = t 2 , 

max { a + 

∑ t 1 
t= t 2 (D it − min { L i , Q} ) , b} , otherwise . 

(46) 

f U t 1 t 2 
(a, b) = 

⎧ ⎨ 

⎩ 

min { a + 

∑ t 2 
t= t 1 ( min { L i , Q} − D it ) , b} , if t 1 < t 2 , 

a, if t 1 = t 2 , 

min { a + 

∑ t 1 
t= t 2 D it , b} , otherwise . 

(47) 

here a is the fixed value in time period t 1 and b is the old value

f the lower/upper inventory bound in time period t 2 . Once the 

nventory bounds are updated a new period t where s it � = s it is se- 

ected. 

If there is any inconsistent bounds for any of the time peri- 

ds (i.e. s it (L ) > s it (L ) ) the label is discarded, otherwise it is added

o the set of unprocessed labels. Once all labels have been pro- 

essed, the corresponding delivered quantities can be calculated 

nd at which periods customer i is visited can be identified. To 

atisfy the equality in constraints (35) , for every customer schedule 

ith a non-delivery period we must duplicate the given customer 

chedule so that we have one customer schedule with a visit and 

ne without a visit. This means that for a customer i ∈ N 

C in time

eriod t ∈ T with customer schedule ω 1 ∈ � where Q itω 1 
= 0 , we

ust create customer schedule ω 2 where A itω 1 
= 1 and A itω 2 

= 0 ,

r vice versa, and where the remaining information remains the 

ame. 

From Algorithm 1 we see that we have a time complexity of 

( |T | 2 |T | ) for each customer. This means that the time complex- 

ty grows linearly with the number of customers, but exponentially 

ith the number of time periods. However, for the benchmark in- 

tances used in the literature and in this paper the time horizon is 

hort and the computational time used to enumerate the customer 

chedules a priori is negligible. 

.2. Overview of the branch-and-cut algorithms 

A B&C algorithm is an extension of the well-known branch- 

nd-bound (B&B) algorithm where each node in the B&B tree is 

olved multiple times, adding cutting planes to the formulation in 

ach iteration. These cutting planes are identified by solving one 

or more) separation problem(s) for each family of valid inequali- 

ies. Adding these cutting planes strengthens the dual bound of the 

ode, hopefully leading to a significantly smaller B&B tree. 

For both the SOTAF-BC and the CSF-BC, the SECs, CSECs, and 

alid inequalities presented in Sections 2.3.2 and 2.3.3 are added 

ynamically to the linear relaxations. 

The separation problems are solved in the following order in 

he root node: 

(i) SECs (11) 
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(ii) CSECs (12) 

(iii) Capacity inequalities (23) 

(iv) Simple DR inequalities (special case of (24) ) 

(v) h -DR inequalities (special case of (24) ) 

he separation algorithm moves on to the next separation prob- 

em when the dual bound improvement from the previous itera- 

ion falls below a given threshold. Due to the computational com- 

lexity of the last three, they are only solved in the root node. For 

he remaining part of the B&B tree, the SECs and CSECs are sep- 

rated once in each node of the tree if the solution of the linear

elaxation is fractional. 

We separate the SECs by first identifying strongly connected 

omponents, which was shown by Drexl (2013) to work well for 

he elementary shortest path problem. However, since this sepa- 

ation algorithm is exact only for integral solutions, we also iden- 

ify min-cuts between the supplier and each customer ((0 : i ) ∀ i ∈
 

C ) which are solvable in polynomial time ( Picard & Ratliff, 1973 ),

o find additional cuts when the cuts defined by the strongly 

onnected components do not improve the dual bound signifi- 

antly. The separation problem for the CSECs is solved similarly, 

ut where the first part is solved by finding the connected com- 

onents in the graph. The separation of the two families of DR- 

nequalities are done in the same manner as described by Avella 

t al. (2018) . Below we present the separation algorithm for the 

apacity inequalities. 

Vanderbei (2014) shows that sparse constraint matrices can be 

xploited in the simplex method to solve linear programs more ef- 

ciently. Thus, for potentially faster re-optimization of each linear 

rogram solved repeatedly in a B&C method, we choose the spars- 

st form of the SECs based on the size of their set S . If |S| ≤ |N 

C | 
2 

e use the inequalities (11) . If not, we use the following form: ∑ 

(i, j) ∈ ( S : S ) 
x i jt + 

1 

2 

∑ 

i ∈ S 
(x 0 it + x i 0 t ) −

1 

2 

∑ 

i ∈S 
(x 0 it + x i 0 t ) 

≤
∑ 

i ∈ S 
δit − δmt , 

 S ⊂ N 

C , |S| ≥ 2 , S = N 

C \ S, t ∈ T , m ∈ S. (48) 

For the CSECs we use the following form if |S| ≤ |N 

C | 
2 

 Adulyasak et al., 2014 ): 

min { Q, 
∑ 

i ∈S 
( L i − I it ) } 

∑ 

(i, j) ∈ (S : S ) 
x i jt 

≤ min { Q, 
∑ 

i ∈S 
( L i − I it ) } 

∑ 

i ∈S 
δit −

∑ 

i ∈S 
q it , 

∀ S ⊂ N 

C , |S| ≥ 2 , t ∈ T . (49) 

If not, we use the complement of S: 

min { Q, 
∑ 

i ∈S 
( L i − I it } )( 

∑ 

(i, j) ∈ ( S : S ) 
x i jt + 

1 

2 

∑ 

i ∈ S 
(x 0 it + x i 0 t ) 

− 1 

2 

∑ 

i ∈S 
(x 0 it + x i 0 t )) 

≤ min { Q, 
∑ 

i ∈S 
( L i − I it ) } 

∑ 

i ∈ S 
δit −

∑ 

i ∈S 
q it , 

 S ⊂ N 

C , |S| ≥ 2 , S = N 

C \ S, t ∈ T . (50) 

.3. Separation of the capacity inequalities 

Desaulniers et al. (2016) presented three separation heuristics 

or the capacity inequalities. They used a modified version of the 

euristic for the rounded capacity inequalities ( Lysgaard, Letchford, 
1195 
 Eglese, 2004 ), in addition to two heuristics exploiting the fact 

hat each variable in their formulation represents a vehicle route. 

s the latter two do not apply to the arc-flow formulations pre- 

ented in this paper, we propose an alternative separation proce- 

ure based on solving a MILP, maximizing the violation of the cut 

iven a fractional solution. 

First, we introduce the variable σi jt which is equal to 1 if the 

rc (i, j) can be used in period t to serve some future residual de- 

and D is in period s , 0 otherwise. Let γit be equal to 1 if residual

emand D it is included in U , 0 otherwise, and let αit be an auxil- 

ary variable ensuring that all arcs that can enter the set of residual 

emands U are included in the cut. Let w be a variable between 0 

nd 1 − ε, where ε is an arbitrary small value, accounting for the 

ounding up of the right hand side. In addition, we define the set 

 

−
is 

to be the set of periods when residual demand D is can be deliv- 

red. Let x ∗
i jt 

be the value of the corresponding x i jt variable in the 

ptimal solution of the linear relaxation. Thus, the MILP consists 

f maximizing the violation of the cut, i.e. minimizing its left-hand 

ide minus its right-hand side: 

min 

∑ 

i ∈N 

∑ 

j∈N C 

∑ 

t∈T 
x ∗i jt σi jt − c (51) 

 = 

∑ 

i ∈N C 

∑ 

t∈T 

D it 

Q 

γit + w, (52) 

it ≤ αis , ∀ i ∈ N 

C , t ∈ T , s ∈ T −
it 

, (53) 

i jt ≥ α jt − αit , ∀ i ∈ N , j ∈ N 

C , t ∈ T , (54) 

 ≤ w ≤ 1 − ε, (55) 

 ≥ 1 , integer , (56) 

i jt ≥ 0 , ∀ (i, j) ∈ A , t ∈ T , (57) 

0 t = 0 , αit ∈ { 0 , 1 } , ∀ i ∈ N , t ∈ T . (58) 

onstraint (52) together with (56) represent the right-hand side 

f the cut. Constraints (53) ensure that if a residual demand D is 

s included in the right-hand side of the cut U , then all arcs able 

o serve this residual demand can potentially be included in the 

eft-hand side of the cut. Constraints (54) make sure that we do 

ot include arcs between the residual demands included in the set. 

onstraints (55) –(58) define the domains of the variables. 

. Computational study 

In this section, we compare the computational performance of 

he B&C algorithms based on the SOTAF and the CSF, as well as the 

ut separation procedure proposed in this paper. In Section 5.1 we 

resent the test instances used, while Section 5.2 compares exact 

nd heuristic separation of the capacity inequalities (23) , and the 

mpact of excluding one family of valid inequalities at a time. Fi- 

ally, Section 5.3 compares the SOTAF-BC with the CSF-BC on an 

xtensive set of instances of the IRP. 

The B&C algorithms are implemented in C++ using the commer- 

ial MILP solver Gurobi 9.0.2 with default settings, except for using 

 single thread and disabling the internal Gurobi cutting plane pro- 

edures. Graph algorithms from the Boost Graph Library (BGL) are 
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sed to identify strongly connected components, connected com- 

onents, and min-cut sets in the cut separation procedures. All 

ests were run on a 12 core Intel E5-2670v3 processor clocked at 

.3 GHz and 64 GB RAM. The computational time limit was set to 

200 s. To obtain primal bounds on the new instances we also set 

 time limit for solving the root node to 3600 s, still with a total

omputational time limit of 7200 s. It is clearly stated otherwise 

or the tests where this does not apply. 

.1. Test instances 

We base all tests in this computational study on the benchmark 

nstances first introduced by Archetti et al. (2007) for the single- 

ehicle case and later modified by Coelho et al. (2012a) to include 

he multi-vehicle version of the problem. The instances have either 

hree or six time periods and involve from 5 to 50 and from 5 to

0 customers, respectively. They can further be divided into two 

ets having either high or low inventory costs. The vehicle fleet of 

he instances ranges from one to five vehicles, but the capacity of 

he vehicle fleet is constant, resulting in diminishing capacity for 

ach vehicle when the number of vehicles increases. 

One limitation of the benchmark instances described above is 

hat they have constant demand over time for each customer and 

hat the inventory capacity at each customer is an integer multiple 

f demand. This special structure is not a property of the IRP itself, 

nd therefore we have modified the benchmark instances to cre- 

te two new sets of instances. We do this by defining two sets of 

eights, W 3 = { 0 . 85 , 0 . 95 , 1 . 2 } and W 6 = { 0 . 7 , 0 . 8 , 0 . 9 , 1 . 1 , 1 . 2 , 1 . 3 }
sed to modify the instances with three and six time periods, re- 

pectively. The sum of the weights is equal to the cardinality to 

ake sure that the total demand over the planning horizon is no 

arger than in the original benchmark instances. In addition, the 

eights are chosen such that the inventory capacity of the cus- 

omers are no longer an integer multiple of demand. 

For each instance in the original benchmark set we define two 

ases, called correlated demands and uncorrelated demands , respec- 

ively. In the first case, we randomly draw one weight, F t , for each

ime period t , from the set W 3 or W 6 (depending on the number 

f time periods in the instance) without replacement, and modify 

he demands as follows: 

 it = � F t D i � , ∀ i ∈ N 

C , t ∈ T (Correlated demands) . 

n the second case, we again draw without replacement one 

eight randomly for each time period from the set W 3 or W 6 , but

epeat the procedure for each customer i , to obtain the weights F it .

hese weights are then used to modify the demands as follows: 

 it = � F it D i � , ∀ i ∈ N 

C , t ∈ T (Uncorrelated demands) . 

.2. Separation of capacity inequalities and impact of the valid 

nequalities 

In this section, we investigate the effect on the time used, 

nd the dual bound obtained, in the root node when separating 

he capacity inequalities (23) as proposed by Desaulniers et al. 

2016) using the separation routine from the CVRPSEP package of 

ysgaard et al. (2004) , and using the separation routine described 

n Section 4.3 , respectively. In addition, we give an overview of the 

mpact of the valid inequalities presented in this paper, when ex- 

luding one family of valid inequalities at a time. 

Table 1 compares the computational performance of solving the 

oot node of the B&B tree using the model defined by (1) –(21)

‘Standard’), with the addition of the capacity inequalities sepa- 

ated using the CVRPSEP library (‘+CVRPSEP’) or the exact MILP 

ormulation (‘+MILP’), respectively. 

The results are aggregated over all the original benchmark in- 

tances per number of periods and vehicles (first two columns). 
1196 
or each of the three algorithm versions, we report the average 

elative optimality gap (‘Gap’) and the average computational time 

n seconds spent at the root node (‘Seconds’). The optimality gap 

s calculated using the best-known upper bound from the exact 

ethods presented in the literature (UB) and the final lower bound 

btained in the root node (LB): Gap = (UB − LB ) /UB . Finally the

olumns ’Imp.’ show how much of the gap is closed by separat- 

ng the capacity inequalities (23) by the CVRPSEP library and the 

xact separation algorithm: Imp. = ( Gap 

standard − Gap 

j ) / Gap 

standard 

or j = +CVRPSEP or +MILP . 

Table 1 shows that the exact separation of the capacity inequal- 

ties gives a considerably better dual bound in the root node com- 

ared with separating them heuristically. Using only the CVRPSEP 

euristics improve the root node gap by less than 2% on average 

nd no more than 3 . 21% for the subset of six periods and five

ehicles where it is most effective. On the other hand, using the 

ILP to separate the inequalities, improves the root node gap by 

ore than 66% on average, and almost 80% for the subsets where 

t has the largest effect. It seems like these cuts are better for the 

hree-period instances compared with the six-period instances. A 

ossible explanation for this is that the majority of the customers 

equires a single visit in an optimal solution of the three-period 

nstances whereas multiple visits are necessary for the six-period 

nstances. Given that each residual demand can be covered by dif- 

erent potential visits to the corresponding customer, the capacity 

nequalities have less chances to be violated when more visits to 

ach customer are required at optimality. For instance, any set of 

ustomers with positive residual demands impose at least one visit 

o this set, which is a much stronger bound when the optimal so- 

ution requires a single visit than when it requires multiple visits. 

Another interesting observation from Table 1 is that separat- 

ng these cuts using the CVRPSEP library seems to be slower for 

he three-period instances. However, this is only due to a few of 

he 50-customer instances, where the heuristic separation finds 

arginally improving cuts, leading to a large number of iterations. 

n the other hand, the exact separation algorithm uses few it- 

rations because it finds better cuts in each of them. Thus, the 

otal computational time becomes larger for the heuristic, even 

hough it is significantly faster per iteration. For the six-period in- 

tances, however, the total time spent to solve the root node is 

0 − 20 times longer using the exact separation procedure com- 

ared with the CVRPSEP library. This final observation makes it 

lear that there is a big potential for speed-up when it comes to 

eparating these cuts. 

To the best of our knowledge, this is the first work including 

xact separation routines for both the capacity inequalities and the 

R inequalities. Therefore, in Table 2 we give an overview of the 

mpact of each family of valid inequalities by solving the root node, 

xcluding a given family of valid inequalities one by one. These 

esults are aggregated per number of vehicles for all the original 

enchmark instances. We present results for the CSF-BC without 

he capacity inequalities ( - Cap), without the h -DR inequalities ( - 

 -DR) and without both subfamilies of the DR inequalities ( - (DR 

 h -DR)). They are compared with the CSF-BC and we can see that 

hey all contribute significantly to the average gap at the root node. 

owever, when excluding the capacity inequalities, the average gap 

t the root node increases from 1 . 36% to 3 . 34% indicating that they

re the largest contributor to the dual bound obtained by the CSF- 

C. When excluding the h -DR inequalities the increase of the av- 

rage gap is much smaller, but still almost 17% worse than when 

ncluding them. This indicates that they cut off additional solutions 

o the linear relaxation. Excluding also the simple DR inequalities 

he average gap is further increased by 8% compared with the CSF- 

C. 

In addition, it is interesting to see how the computational time 

ncreases when omitting the capacity inequalities. The observed 
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Table 1 

Comparison between heuristic and exact separation of the capacity inequalities (23) . 

Standard + CVRPSEP + MILP 

Periods Vehicles Gap (%) Seconds Gap (%) Imp. (%) Seconds Gap (%) Imp. (%) Seconds 

3 2 4.65 3 4.52 2.69 18 0.97 79.06 14 

3 3 6.81 4 6.76 0.81 42 1.49 78.15 26 

3 4 8.69 4 8.61 0.92 71 2.51 71.09 40 

3 5 9.54 6 9.32 2.35 121 3.02 68.33 61 

Average 3 periods 7.43 4 7.30 1.63 63 2.00 73.07 35 

6 2 5.17 4 5.15 0.34 6 2.43 52.91 116 

6 3 6.62 7 6.57 0.69 7 3.07 53.55 121 

6 4 6.55 9 6.47 1.23 9 2.89 55.82 126 

6 5 6.43 11 6.23 3.21 11 2.86 55.54 160 

Average 6 periods 6.19 8 6.10 1.40 8 2.82 54.52 130 

Average all 6.96 5 6.86 1.55 42 2.30 66.92 71 

Table 2 

Comparative results on the original benchmark instances. 

CSF-BC - Cap - h -DR - (DR + h -DR) 

Vehicles Gap (%) Seconds Gap (%) Seconds Gap (%) Seconds Gap (%) Seconds 

1 0.40 306 0.71 299 0.43 10 0.45 6 

2 0.97 1 386 2.58 1 869 1.22 80 1.32 36 

3 1.58 1 528 3.91 1 942 1.87 126 1.99 53 

4 1.94 1 564 4.73 1 788 2.26 180 2.42 64 

5 1.91 1 539 4.76 1 804 2.18 249 2.35 81 

Average all 1.36 1 264 3.34 1 540 1.59 129 1.70 48 

Table 3 

Comparative results on the six-period benchmark instances tested by Avella et al. (2018) . 

Avella et al. (2018) SOTAF-BC CSF-BC 

Vehicles RG (%) OG (%) Seconds RG (%) OG (%) Seconds RG (%) OG (%) Seconds 

2 1.59 0.90 4 114 1.33 0.74 4 336 1.32 0.69 4 174 

3 2.26 1.77 5 050 1.96 1.54 5 168 1.95 1.51 5 156 

4 2.20 1.87 5 124 1.95 1.73 5 330 1.93 1.70 5 296 

5 2.37 2.10 5 190 2.08 1.87 5 400 2.07 1.84 5 358 

Average all 2.10 1.66 4 869 1.83 1.47 5 058 1.82 1.44 4 996 
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verage time increase of 21 . 8% is solely due to generating more 

 -DR inequalities. Excluding the capacity inequalities results in 

dding 39% more h -DR inequalities, on average. On the other hand, 

he average number of added simple DR inequalities actually de- 

reases by 5% , but with a negligible impact on the computational 

imes. This suggests that the h -DR inequalities are the most com- 

utationally expensive inequalities to separate, while the separa- 

ion routine for the simple DR inequalities performs similar to that 

f the capacity inequalities when considering computational times. 

.3. Computational results 

In this section, we present the computational results compar- 

ng the CSF-BC proposed in this paper with the SOTAF-BC. First, 

e do a comparison on the benchmark instances proposed by 

oelho et al. (2012a) in Section 5.3.1 , before comparing the per- 

ormance on the new sets of instances with uncorrelated and cor- 

elated time-varying demands in Sections 5.3.2 and 5.3.3 , respec- 

ively. Detailed results can be found on the following webpage: 

ttp://axiomresearchproject.com/publications . 

.3.1. Comparing the SOTAF-BC with the CSF-BC on the original 

enchmark instances 

Table 3 contains computational results comparing the results 

btained with the SOTAF-BC and the CSF-BC with those of Avella 

t al. (2018) . We limit the comparison to the six-period instances 

rom the original set of benchmark instances also tested by Avella 

t al. (2018) , namely the instances with 15, 20, 25 and 30 cus-

omers. Avella et al. (2018) ran their algorithm in two parts re- 
1197 
ulting in the total time limit being in the interval [3 600 , 5 400] .

hus, we use a total time limit of 5 400 s for the tests presented

n this section. 

For each algorithm, we report the average gap at the root node 

RG) and the average optimality gap at the end of the B&C (OG). 

hese gaps are calculated as (UB − LB ) /UB , where UB is the value

f the best-known primal solution of the existing exact methods, 

nd LB is either the lower bound achieved at the root node for RG 

r the best dual bound at the termination of the algorithm for OG. 

he table also reports the computational time in seconds. The best 

esults for each measure across these three algorithms are high- 

ighted in bold. It is worth noting that the time used to enumerate 

he customer schedules was less than 1.84 s for every instance and 

herefore not reported explicitly. 

To get a fairer comparison of the computational times from 

vella et al. (2018) , they can be adjusted with the single thread 

ating, from https://www.cpubenchmark.net , of the different CPUs 

sed between the two computational studies. The single thread 

ating for the CPU used by Avella et al. (2018) is 1459 and the 

ating for the CPU used in this paper is 1670. Thus, the com- 

utational times reported by Avella et al. (2018) can be adjusted 

y a factor of 1459 / 1670 = 0 . 8737 . From Table 3 it is clear that

he SOTAF-BC yields better dual bounds than the algorithm pro- 

osed by Avella et al. (2018) , both at the root node and at termi-

ation. The main difference between these two formulations and 

orresponding algorithms is the inclusion of the capacity inequal- 

ties ( Desaulniers et al., 2016 ). Including these inequalities helps 

ur implementation of the SOTAF-BC to obtain on average about 

3% and 11% larger gaps at the root node and upon termination, 

http://axiomresearchproject.com/publications
https://www.cpubenchmark.net
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Table 4 

Comparative results on the instances with time-varying and uncorrelated demands. 

SOTAF ∗-BC CSF-BC Improvement 

Periods Vehicles RG (%) OG (%) RG (%) OG (%) RG (%) OG (%) 

3 1 0.12 0.00 0.22 0.00 -80.8 0.00 

3 2 0.13 0.00 0.26 0.00 -102.8 0.00 

3 3 0.39 0.00 0.22 0.00 45.1 35.6 

3 4 0.73 0.05 0.40 0.02 45.1 49.2 

3 5 0.94 0.11 0.52 0.09 44.9 17.1 

Average 3 periods 0.46 0.03 0.32 0.02 30.2 27.2 

6 1 1.53 0.00 0.05 0.00 97.0 0.0 

6 2 2.53 0.06 0.82 0.03 67.5 41.1 

6 3 2.97 0.81 1.41 0.43 52.7 47.6 

6 4 3.39 1.63 2.04 1.16 39.9 28.8 

6 5 3.43 2.26 2.37 1.74 30.9 22.8 

Average 6 periods 2.77 0.95 1.34 0.67 51.8 29.3 

Average all 1.33 0.38 0.70 0.27 47.1 29.2 
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Table 5 

Comparative computational times for the 671 instances with time-varying and un- 

correlated demands solved to optimality by at least one of the algorithms. 

SOTAF ∗-BC CSF-BC Improvement 

Periods Vehicles RT ET RT ET RT (%) ET (%) # Optimal 

3 1 380 396 944 983 -148.6 -148.5 100 

3 2 1 603 1 627 1 134 1 173 29.3 27.9 100 

3 3 1 562 1 702 1 070 1 191 31.5 30.0 100 

3 4 1 636 2 047 1 144 1 540 30.1 24.8 96 

3 5 1 562 2 203 975 1 475 37.5 33.0 84 

Average 3 periods 1 339 1 571 1 055 1 263 21.2 19.6 480/500 

6 1 1 144 1 188 280 284 75.5 76.1 60 

6 2 2 193 2 791 1 015 1 475 53.7 47.2 58 

6 3 1 314 3 172 631 1 571 51.9 50.5 34 

6 4 312 2 318 58 1 000 81.4 56.8 22 

6 5 18 907 8 580 55.2 36.0 17 

Average 6 periods 1 297 2 133 516 984 60.2 53.9 191/300 

Average all 1 327 1 731 902 1 184 32.0 31.6 671/800 
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espectively, than the B&C algorithm proposed by Avella et al. 

2018) . Due to the single item lot-sizing inequalities (that relies on 

onstant demands and inventory capacity at each customer being 

n integer multiple of demand), it is not expected that the CSF-BC 

utperforms the SOTAF-BC, because the SOTAF-BC already repre- 

ents a strong formulation tailored for the benchmark instances. 

owever, it is still interesting to see that the more general CSF-BC 

erforms slightly better than the SOTAF-BC, both concerning gaps 

nd computational times. This supports the properties of the CSF 

iscussed in Section 3.2 . 

The computational times reported by Avella et al. (2018) are 

lightly lower than our two implementations, mainly due to the 

mplementation details making their total time limit to be in the 

nterval [3 600 , 5 400] , potentially resulting in a lower time limit

han the 5 400 s we use for our tests. However, this potential dif-

erence in the time limits does not seem to be crucial for the re-

ults, even when adjusting the times with the CPU ratings, espe- 

ially looking at the 5 vehicle instances where we obtain lower 

oot node gaps than Avella et al. (2018) report at the termination 

f their B&C algorithm. Thus, it is safe to claim that we have a 

tate-of-the-art implementation of the strongest arc-flow formula- 

ion found in the literature, i.e. the SOTAF-BC does not perform 

orse than the algorithm proposed by Avella et al. (2018) . This 

orms an important base to properly evaluate the performance of 

he CSF-BC on the modified instances. 

.3.2. Comparing the CSF-BC with the SOTAF ∗-BC on the instances 

ith uncorrelated demands 

In this section we evaluate the performance of the CSF-BC on 

he instances with time-varying and uncorrelated demands. Note 

hat the single item lot-sizing inequalities ( Avella et al., 2015 ) 

re not valid for the instances with time-varying demand. Thus, 

able 4 compares the algorithm based on the SOTAF without these 

nequalities, denoted SOTAF ∗-BC, with the CSF-BC. Again, we report 

he root node gap (RG) and the optimality gap at termination (OG). 

n addition we report the relative improvement of the CSF-BC to 

he SOTAF ∗-BC for both gaps: ( Gap 

SOTAF ∗ − Gap 

CSF ) / Gap 

SOTAF ∗ . 

From Table 4 it is clear that exploiting customer schedules has a 

ositive impact on the dual bound both in the root node and when 

erminating the B&C. The improvement in the root node is espe- 

ially good, with an average of 47 . 1% . We can also observe that

he advantage of obtaining good dual bounds in the root node is 

till present at the termination of the B&C. The exceptions are the 

hree-period instances with one and two vehicles, where the av- 

rage dual bound in the root node obtained by the CSF-BC is sig- 

ificantly worse than the SOTAF ∗-BC. Out of 800 instances there 

re in total 55 instances where the SOTAF ∗-BC obtained a strictly 

etter dual bound in the root node than the CSF-BC, and where 
1198 
3 of them appear in the three-period instances. Despite having a 

orse dual bound on these 55 instances, the CSF-BC still solved all 

f them to optimality within the two-hour time limit. 

We have identified two possible reasons why SOTAF ∗-BC some- 

imes obtains a better dual bound in the root node. Since the CSF- 

C has a larger initial dual bound (the dual bound of the linear 

elaxation before starting the separation routine), the relative dual 

ound improvement is potentially lower than that of the SOTAF ∗- 

C. Therefore, the CSF-BC might trigger the termination criterion 

rematurely making it start branching with a worse dual bound 

han the SOTAF ∗-BC. The use of the relative dual bound improve- 

ent to determine which separation algorithm to run also makes 

he CSF-BC call the costly h -DR separation algorithm more fre- 

uently. This is especially costly for the instances with few ve- 

icles, because the route enumeration part of the algorithm can- 

ot truncate routes as quickly when the vehicle capacity is high. 

here are 34 instances contributing to the SOTAF ∗-BC having a bet- 

er average dual bound in the root node for the three-period in- 

tances with one and two vehicles, where for 26 of them the CSF- 

C reached the time limit in the root node due to the separation of 

he h -DR inequalities. Nevertheless, on average the CSF-BC clearly 

btains larger dual bounds than the SOTAF ∗-BC, especially for the 

ore difficult six-period instances. 

Furthermore, for the six-period instances the CSF-BC seems to 

nduce the largest dual bounds in the root node when the vehicle 

apacity is large relative to the inventory capacity, which for these 

nstances are when the number of vehicles is low. For instance, if 

he vehicle capacity Q would be equal to the demand we could 

eliver Q at every single period losing a lot of the benefit from the 

SF. Thus, when the vehicle capacity decreases with respect to the 

nventory capacity we observe that the CSF becomes less effective, 

ut there is still a significant gain by using this new formulation 

n these instances. However, we do not observe the same for the 

hree-period instances due to the effects discussed above of using 

he dual bound improvement as the termination criterion and for 

uiding the separation routine. 

We also compare the impact of using the CSF-BC on the compu- 

ational time. Table 5 presents these results aggregated per number 

f periods and number of vehicles. Here we compare the compu- 

ational time after solving the root node (’RT’) and at termination 

’ET’), while the improvement is calculated like the gaps presented 

n Table 4 . The column ‘# Optimal’ reports the number of instances 

olved to optimality by at least one of the algorithms out of the 

otal number of instances. Note that the instances where both al- 

orithms reached the time limit are left out of the comparison to 

ot skew the results. 
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Table 6 

Comparative results on the instances with time-varying and correlated demands. 

SOTAF ∗-BC CSF-BC Improvement 

Periods Vehicles RG (%) OG (%) RG (%) OG (%) RG (%) OG (%) 

3 1 0.41 0.00 0.12 0.00 70.0 0.00 

3 2 0.36 0.01 0.24 0.01 35.0 27.7 

3 3 0.49 0.02 0.32 0.01 35.1 39.3 

3 4 0.87 0.25 0.62 0.24 29.4 3.1 

3 5 1.07 0.47 0.80 0.45 24.8 5.3 

Average 3 periods 0.64 0.15 0.42 0.14 34.5 5.7 

6 1 2.92 0.00 0.27 0.00 90.8 0.00 

6 2 3.52 0.33 1.25 0.26 64.5 20.8 

6 3 3.77 1.60 2.08 1.21 44.8 24.5 

6 4 4.44 2.83 3.05 2.36 31.4 16.4 

6 5 4.56 3.37 3.37 2.93 26.1 13.1 

Average 6 periods 3.84 1.62 2.00 1.35 47.9 16.9 

Average all 1.84 0.70 1.01 0.59 45.0 15.4 
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Table 7 

Comparative computational times for the 634 instances with time-varying and cor- 

related demands solved to optimality by at least one of the algorithms. 

SOTAF ∗-BC CSF-BC Improvement 

Periods Vehicles RT ET RT ET RT (%) ET (%) # Optimal 

3 1 232 258 356 379 -53.4 -47.1 100 

3 2 1 242 1 342 729 848 41.3 36.8 98 

3 3 1 381 1 639 1 133 1 404 18.0 14.3 99 

3 4 1 241 1 715 888 1 325 28.4 22.7 87 

3 5 1 083 1 752 845 1 465 22.0 16.3 79 

Average 3 periods 1 026 1 311 785 1 061 23.6 19.1 463/500 

6 1 1 209 1 263 205 225 83.1 82.2 60 

6 2 1 834 2 623 722 1 197 60.6 54.4 48 

6 3 766 1 666 285 1 186 62.8 28.8 26 

6 4 312 2 262 104 1 390 66.5 38.6 20 

6 5 190 1 630 41 1 365 78.7 16.3 17 

Average 6 periods 1 111 1 859 334 893 69.9 52.0 171/299 

Average all 1 049 1 459 663 1 016 36.8 30.4 634/799 

s

n

d

p

f

p

l

t

i

t

u

b

t

a

B

l

s

fi

s

l

t

6

l

v

t

r

s

n

w

s

i

p

u

g

e

d

t

t

i

t

f

e

Here we can see that on average the CSF-BC solves the root 

ode and terminates about 30% faster than the SOTAF ∗-BC. How- 

ver, we can observe that in addition to obtaining a worse average 

ual bound in the root node for the three-period instances with 

ne vehicle, the CSF-BC spends too much time separating valid 

nequalities without sufficient contribution to the dual bound im- 

rovement, which ultimately results in a much larger average com- 

utational time than the SOTAF ∗-BC. On the other hand, it is inter- 

sting to see that despite having a worse average dual bound in 

he root node, the CSF-BC makes up for it with close to 28% re-

uction in the average computational time on the three-period in- 

tances with two vehicles. Once the complexity increases either by 

onsidering more vehicles or more periods, we observe a consider- 

ble reduction in computational times. Especially for the six-period 

nstances, we can observe that the time spent in the B&B tree (ET - 

T) is shorter for the CSF-BC than the SOTAF ∗-BC, indicating that a 

arger dual bound in the root node speeds up the B&B part of the 

&C algorithm. 

.3.3. Comparing the CSF-BC and the SOTAF ∗-BC for the instances 

ith correlated demands 

The tables in this section have the same format as the ones in 

ection 5.3.2 . Table 6 compares the gaps of the SOTAF ∗-BC with 

he CSF-BC on the set of instances with time-varying and corre- 

ated demands. Also for these instances, we observe a substantial 

mprovement in the dual bound at both the root node and at ter- 

ination. However, at termination, we can see that the benefit of 

sing a stronger formulation (CSF) is much larger for the six-period 

nstances than for the three-period instances. For the three-period 

nstances with one, three and four vehicles, it seems like the ben- 

fit of having a larger dual bound in the root node by using the 

SF-BC is more or less lost by the faster node processing of the 

OTAF ∗-BC. It is therefore positive to see that this effect is main- 

ained throughout the B&B search for the more complex six-period 

nstances, which is an indication that the CSF-BC is better suited 

or more complex instances. 

For the same reasons as mentioned in Section 5.3.2 we point 

ut that there are, in fact, 68 three-period and 6 six-period in- 

tances where the SOTAF ∗-BC obtained larger dual bounds in the 

oot node. However, the CSF-BC never obtained a worse dual 

ound at termination of the B&C for any of the instances. Here 

e can also observe that for both the three-period and the six- 

eriod instances the average dual bound in the root node for the 

SF-BC is larger for a low number of vehicles, i.e. Q > L i , compared

o a high number of vehicles. The reason we observe this for the 

hree-period correlated demands instances, but not for the three- 

eriod uncorrelated demands instances, is that the CSF-BC only 

eached the one-hour time limit on 12 of the 68 mentioned in- 
1199 
tances where SOTAF ∗-BC obtained a better dual bound in the root 

ode. Thus, the main reason why the SOTAF ∗-BC obtained a better 

ual bound in the root node on these instances is that the CSF-BC 

rematurely started branching. Comparing the average dual bound 

or the three-period correlated demands instances with the three- 

eriod uncorrelated demands instances, we can observe that the 

argest impact on the average dual bound in the root node seems 

o be when the CSF-BC reaches the one-hour time limit by spend- 

ng too much time separating h -DR inequalities. 

Table 7 compares the average computational times obtained by 

he two algorithms. Here we can identify a similar trend as for the 

ncorrelated case. We observe a significant speed-up on average 

y using the CSF-BC, but where the SOTAF ∗-BC is much faster on 

he relatively easy three-period and one-vehicle instances. Here we 

lso see that the larger dual bound in the root node speeds up the 

&B search for the six-period instances, just like for the uncorre- 

ated case. 

In addition, it is worth noting that the correlated demands in- 

tances (634 instances solved to optimality) seem to be more dif- 

cult to solve than the uncorrelated demands instances (671 in- 

tances solved to optimality). Note also that one of the 800 corre- 

ated demands instances is infeasible and thus not considered in 

he tables. 

. Concluding remarks 

In this work, we have proposed a new Dantzig-Wolfe reformu- 

ation (customer schedule formulation) for the single-depot multi- 

ehicle inventory routing problem utilizing the concept of cus- 

omer schedules. We show that the polytope defined by the linear 

elaxation of the customer schedule formulation is a proper sub- 

et of the polytope defined by the linear relaxation of the origi- 

al formulation in some cases, but never the opposite. In addition, 

e provide a thorough computational study demonstrating the 

trength of the customer schedule formulation in practice. We have 

mplemented a state-of-the-art B&C algorithm used to evaluate the 

erformance of the B&C algorithm based on the customer sched- 

le formulation. Comparing the customer schedule-based B&C al- 

orithm to the state-of-the-art algorithm we observe that the av- 

rage dual bound is considerably improved, giving a substantial re- 

uction in the average computational time. Regarding the state-of- 

he-art B&C algorithm we have also gained additional insight into 

he separation routines showing the potential for speed-up when 

t comes to separating the capacity inequalities. Since the focus of 

his paper is to investigate the strength of the customer schedule 

ormulation, improving the separation routine for the capacity in- 

qualities are better left to future research, but we find it an inter- 
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sting observation worth pointing out. We believe this also applies 

o the DR inequalities and could form a basis for interesting future 

esearch. 
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ppendix A. Proof of propositions 2 and 3 

This section gives the proofs of Propositions 2 and 3 . 

1. Proof of Proposition 2 

roof. (by contradiction) Let us first present the proof for the valid 

nequalities (20) . For these inequalities, let us assume that the con- 

ex combination of customer schedules can give a lower bound on 

he number of visits in a given time interval [ t 1 , t 2 ] strictly worse

han the known valid lower bound given by the right-hand side of 

20) , i.e., ( 

t 2 ∑ 

t ′ = t 1 
D it ′ − L i 

) / 

min { L i , Q} 
⌉

> 

t 2 ∑ 

t ′ = t 1 

∑ 

ω∈ �i 

A it ′ ω λiω . (A.1) 

hen there exists at least one customer schedule that gives a lower 

ound strictly worse than the right-hand side of (20) . 

 ω ∈ �i : 

⌈( 

t 2 ∑ 

t ′ = t 1 
D it ′ − L i 

) / 

min { L i , Q} 
⌉

> 

t 2 ∑ 

t ′ = t 1 
A it ′ ω . (A.2) 

owever, this customer schedule ω must then be as follows: 

 

⌈( 

t 2 ∑ 

t ′ = t 1 
D it ′ − L i 

) / 

min { L i , Q} 
⌉

≥
t 2 ∑ 

t ′ = t 1 
A it ′ ω + 1 , (A.3) 

ince A it ′ ω ∈ { 0 , 1 } , 

 

( 

t 2 ∑ 

t ′ = t 1 
D it ′ − L i 

) / 

min { L i , Q} > 

t 2 ∑ 

t ′ = t 1 
A it ′ ω (A.4) 

 

( 

t 2 ∑ 

t ′ = t 1 
D it ′ − L i 

) 

> 

t 2 ∑ 

t ′ = t 1 
min { L i , Q} A it ′ ω (A.5) 

 

( 

t 2 ∑ 

t ′ = t 1 
D it ′ − L i 

) 

> 

t 2 ∑ 

t ′ = t 1 
Q it ′ ω , since Q it ′ ω ≤ min { L i , Q} ,

(A.6) 

 

t 2 ∑ 

t ′ = t 1 
D it ′ −

t 2 ∑ 

t ′ = t 1 
Q it ′ ω > L i . (A.7) 

owever, this means that the difference between the amount of 

roduct consumed and delivered is strictly greater than the upper 

imit of the inventory, something that would lead to s it 2 < 0 . Since

y definition s it ≥ 0 , such a customer schedule cannot exist. Thus, 

he CSF must induce a lower bound on the number of visits in a 
1200 
ime interval at least as large as that imposed by the valid inequal- 

ties (20) . We can use the same proof scheme for valid inequalities 

19) if we substitute L i with I i , and t 1 with the first time period. 

Similarly, a solution in R CSF may violate an inequality (21) only 

f there exists at least one customer schedule giving a lower bound 

n the number of visits strictly worse than the right-hand side of 

21) : 

 ω ∈ �i : 

( t 2 ∑ 

t ′ = t 1 
D it ′ − s i (t 1 −1) 

)/ 

min { L i , Q, 

t 2 ∑ 

t ′ = t 1 
D it ′ } > 

t 2 ∑ 

t ′ = t 1 
A it ′ ω . 

(A.8) 

Let us now differentiate between the case (i) where 

in { L i , Q, 
∑ t 2 

t ′ = t 1 
D it ′ } = min { L i , Q} , and the case (ii) where

in { L i , Q, 
∑ t 2 

t ′ = t 1 
D it ′ } = 

∑ t 2 
t ′ = t 1 

D it ′ . Following the same argu- 

entation as in inequalities (A .4) –(A .7) for case (i), we obtain: 

t 2 ∑ 

 

′ = t 1 
D it ′ −

t 2 ∑ 

t ′ = t 1 
Q it ′ ω > s i (t 1 −1) . 

uch a customer schedule is infeasible and cannot exist, as it 

ould lead to s it 2 < 0 . For case (ii) the right-hand side of (21) lies

n the interval (0,1] (we can ignore non-positive values for the 

ight-hand side as they never become binding), because the nom- 

nator is always smaller than or equal to the denominator. Since 

 it ′ ω ∈ { 0 , 1 } , the only way for the statement (A.8) to be true

or case (ii) is if 
∑ t 2 

t ′ = t 1 
A it ′ ω = 0 . However, whenever 

∑ t 2 
t ′ = t 1 

D it ′ −
 i (t 1 −1) > 0 such a customer schedule cannot exist as it would lead 

o s it 2 < 0 and thus an infeasible solution. Therefore, the CSF must 

ave a lower bound on the number of visits in a given time inter- 

al at least as large as the one given by the inequality (21) . �

2. Proof of Proposition 3 

roof. The single-item reformulation used by Avella et al. (2015) to 

ropose a set of valid inequalities for a given customer i writes as 

ollows: 

 

′ 
t−1 + x t = 1 + s ′ t , ∀ t ∈ T \ { 1 } , (A.9) 

 ≤ s ′ t ≤ V − 1 , ∀ t ∈ T , (A.10) 

 t ≤ V δt , ∀ t ∈ T , (A.11) 

 t ≥ 0 , ∀ t ∈ T , (A.12) 

t ∈ { 0 , 1 } , ∀ t ∈ T , (A.13) 

here the customer index is dropped. This reformulation is valid 

or the IRP if and only if 
L i 
D i 

= V for some integer V . If we substi-

ute for V in the formulation, and then multiply both sides of all 

onstraints with D i , and replace D i s 
′ 
t = s t and D i x t = q t , we get: 

 t−1 + q t = D i + s t , ∀ t ∈ T \ { 1 } , (A.14) 

 ≤ s t ≤ L i − D i , ∀ t ∈ T , (A.15) 

 t ≤ L i δt , ∀ t ∈ T , (A.16) 

 t ≥ 0 , ∀ t ∈ T , (A.17) 

t ∈ { 0 , 1 } , ∀ t ∈ T . (A.18) 

https://doi.org/10.13039/501100005416
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be the set of feasible solutions defined by constraints (A.14) –

A.18) for some customer i . We see that constraints (A.14) and 

A.15) are the same as constraints (3) and (5) , constraints (A.16) is 

 relaxed version of constraints (8) , and constraints (A.17) and 

A.18) are the same as constraints (13) and (14) . Thus, P i ⊆ P 2 
i 

, and

on v (P i ) ⊆ Con v (P 2 
i 
) . Let R i and R 2 

i 
be the linear relaxations of P i 

nd P 2 
i 

, respectively. Since the Dantzig-Wolfe reformulation creates 

 representation of the convex hull of P i , then R i = Con v (P i ) , and

onsequently R i ⊆ Con v (P 2 
i 
) . Thus, there cannot exist any valid in-

qualities for Con v (P 2 
i 
) that are violated by a solution in R i . �
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