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Abstract

Lithology is a crucial factor in reservoir characterization. Due to the limited availability of cores, the

classes of the subsurface lithologies in boreholes need to be predicted from indirect measurements like well

logs. However, the spatial interdependence between sediments and the spatial coupling between the well

logs data pose challenges in this lithology classification. Numerous proposed classifiers are based on spatial

element-wise independence and these classifiers usually fail to provide accurate predictions. In this study,

we focus on two classification models from the Bayesian and the deep learning framework, which both take

spatial context into account. We discuss a kernel-based hidden Markov (HM) model and a kind of recurrent

neural network model named gated recurrent unit (GRU). Cross-validation results from these two models

of three partially cored real wells are compared to result from a simple non-spatial deep neural network

(DNN) model. The cross-validation results indicate that the lithology classifiers from models taking vertical

spatial dependency into account are much more reliable in terms of classification accuracy and geological

interpretation. The probabilistically defined HM model performs better than the neural network GRU

model.

Keywords: Hidden Markov Model, Recurrent Neural Network, Lithology Classification, Well Logs

Inversion

1. Introduction1

Lithology is one of the most crucial factors to control the reservoir characteristics. To predict this cate-2

gorical attribute, qualitative analyses of the well logging curves labeled by core-plugs are usually performed.3

Also, geological experience and geophysics forward modeling is involved in the classification procedure (Fre-4

sia et al., 2017). However, the number of cores are limited by the costly coring operation and the fragile5
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borehole condition. Thus, the quantitative information hidden in the well logging data is needed in the6

classification models for the subsurface lithology distribution (Saggaf and Nebrija, 2000; Ghosh et al., 2016).7

Proposed classifiers usually belong to one of two types, either multivariate statistics or artificial intelli-8

gence. We focus on Bayesian classifiers from the former type and the deep learning neural networks from the9

latter. In the Bayesian setting, the geological knowledge derived from the reservoir exploration experiences10

are captured in the prior model while the observation response can be represented in the likelihood model11

(Loures and Moraes, 2006; Lindberg et al., 2015; Corina and Hovda, 2018). The posterior model is fully12

defined by the prior and the likelihood models. The Bayesian framework is frequently used in geological13

inversion of well log data into lithology classes (Schumann, 2002; Eidsvik et al., 2004; Grana et al., 2012;14

Moja et al., 2018). The deep learning framework provides many data-driven models. Deep learning meth-15

ods, for example the deep neural network (DNN), take advantage of the hidden information of the labeled16

data in order to predict attributes automatically based on few distributional assumptions (LeCun et al.,17

2015; Forgione et al., 2015). In recent years, with the enormous development in the processing power of18

computers, deep learning methods are applied in many research fields such as computer vision, medical19

diagnostics, natural language process and robotics. Also, in geoscience research deep learning is used in20

classification for lithologies and oil-water layers (Liu et al., 2009; Horrocks et al., 2015; Ghosh et al., 2016;21

Maxwell et al., 2019; Saporetti et al., 2019; Tian et al., 2019).22

The lithology class and the corresponding physical properties of the local sediments are mainly controlled23

by the depositional environment. Since the depositional environment stays relatively stable during a period,24

the sediments during one period are more similar than those sediments deposited in another period. Hence25

there is a spatial dependency between the adjacent sediments. Note that we assume that there are no faults26

or other post-sedimentary formation reconstructions. Furthermore, limited by the resolution of well logging27

tools, the observed well log measurements may record a spatial convolution of the true physical properties28

of the subsurface sediments. Each recorded value of logging curves is a weighted summation of the adjacent29

sediments’ logging responses (Lindberg et al., 2015). Hence there may also be spatial coupling between the30

observations. Traditional lithology classifiers in both the Bayesian and the deep learning framework treat31

each sample as a spatial element-wise independent event. Fortunately, advanced models can take the spatial32

dependency into account which is expected to improve lithology classification.33

A first order hidden Markov (HM) model from the Bayesian setting and a recurrent neural network34

(RNN) classifier named bidirectional gated recurrent unit (GRU) model from the deep learning framework35

are discussed in this study. The HM model is frequently used in statistical analysis. For the lithology36

classification, the prior model with the Markov chain assumption is used to capture the vertical spatial37

dependency between classes (Eidsvik et al., 2004; Lindberg and Omre, 2014). The RNN model is specially38

designed for sequential data processing (Cleeremans et al., 1989; Schuster and Paliwal, 1997). An advanced39

version of RNN, the bidirectional GRU model, is implemented in this study as a classifier. The bidirectional40
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GRU model captures the hidden information of the observations in a neighborhood of the current sample41

(Schuster and Paliwal, 1997; Cho et al., 2014; Chung et al., 2014). Then the model is used for lithology42

classification.43

In Section 2, we describe the lithology classification challenge and present the data in our case study.44

We also introduce suitble notation for the study. In Section 3, we introduce and discuss three classifiers45

including the DNN model, the bidirectional GRU model and the HM model. In Section 4, we compare the46

performance of the models based on the case study. In Section 5, we display the cross-validation results47

for three wells and discuss the results. Finally in Section 6, the conclusion and recommendation for further48

work are presented.49

2. Problem definition, case study and notation50

The clastic sediments of our study area are created in a beach depositional environment. Hence the51

predominant deposition is widespread fine-grained sediments. The lateral continuity of the fine-grained52

sedimentary layers ensure high correlation between wells. However, for sediments generated in fluvial system,53

lithology identification of beach and bar sedimentary bodies are a laborious task. The rarely changed grain54

size limits the discrimination of well log responses for various matrix. Low porosity and permeability restrain55

the effects of formation fluids on logging measurements. Therefore the categorical information is hidden in56

the multidimensional data space. Furthermore, the facies along a vertical 1D profile through the subsurface57

layers should be considered as a spatial inversion problem because of interdependence between sediments and58

convolution properties of well log data. In this case study we consider the lithology sequence along vertical59

wells in which well-log observations are available. The sedimentary lithologies are classified as medium60

sandstone (MS), fine sandstone (FS) and siltstone (SS). In the wells, the lithologies are partly observed in61

core samples, see Fig.1. Note that a large proportion of the well profile lacks core samples. Five normalized62

logging curves from three wells are available for us. These curves are acoustic log (AC), density log (DEN),63

gamma ray (GR), log-deep resistivity (R4) and spontaneous potential (SP). Pairwise scatterplots of the64

well logs sorted by lithologies are displayed in Fig.2. Although the MS layers may be identified by using65

primarily the GR log, there appear large overlaps between most of the log responses for varying lithologies.66

The 1D profile along the well path is discretized to T = {1, . . . , T}. At each t ∈ T, a observation vector67

dt = (dt,1, . . . , dt,5) is provided by five well logs with d = {dt; t = 1, . . . , T} being the complete set of68

observations. At each depth t, we assign one of the three lithologies κt ∈ Ωκ : {MS,FS, SS}. The objective69

of our study is to assess the full lithology profile represented by the vector κ : {κt; t = 1, . . . , T} given70

the observations d, i.e. [κ|d]. The lithology variables of interest with associated well log observations are71

displayed in Fig.5a, and we need to connect these variables by a directed graph pointing from d to κ in72

order to make the lithology classification.73
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Figure 1: Normalized well logs AC, DEN, GR, R4, SP and the cored profiles in wells

3. Methodology74

We discuss three classification models: the traditional DNN model, the bidirectional GRU model and the75

HM model. The former two are neural network models which are typical artificial intelligence classifiers while76

the latter one is cast in a statistical Bayesian framework. Both the HM and the GRU models capture the77

spatial vertical dependency in the problem, while the traditional DNN model ignores the spatial dependency.78

3.1. The Traditional Deep Neural Network79

As mentioned above, the traditional DNN classifier, which is found to be superior to many other simple80

machine learning methods such as decision tree and k-means, provides us with the benchmark results.81

DNN model assumes the observations are spatial elementwise independent. Hence it does not take any82

vertical spatial dependency into account. The observations are directly processed through the DNN-layers83

ld = 1, . . . , Ld as84

zldt = fRelu(Γldz zld−1
t + βldz )

with initial condition z0
t = dt. The zldz is a nld -vector with n0 = nd. The unknown model parameters are85

Γldz being a (nld × nld−1)-matrix and βldz being a nld-vector. The dimension at the last layer nLd must be86
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Figure 2: Pairwise scatterplots and histograms of all the well logs sorted by lithologies

three corresponding to Ωκ : {MS,FS, SS}. Hence the result zt = zLdt = [zt,κt ]κt∈Ωκ is just based on the87

corresponding measurements dt, see Fig.3.88

The marginal probabilities for κt ∈ Ωκ are then defined as89

p(κt|d) = p(κt|dt) = p(κt|zt)

=
exp zt,κt∑

κt∈Ωκ
exp zt,κt

and a marginal maximum posterior (MMAP) criterion is used in the lithology profile prediction90

κ̆MMAP = {κ̆t = argmax
κt

{p(κt|dt)}; t ∈ T}

and we use p(κt|dt);κt ∈ Ωκ; t ∈ T for uncertainty quantification. Note that the neural network model only91

provide marginal probabilities, hence no general statements about κ given d can be quantified probabilisti-92

cally. Moreover, realizations from [κ|d] cannot be generated. The unknown model parameters denoted by93

matrices Γ·
· and vectors β·

· are estimated from a training set of wells [κo,do]i; i = 1, . . . , nT . We use the94

matching criterion for each well,95
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Figure 3: Dependence structure of the DNN; (a) the lithologies profile with the corresponding observations; (b) the posterior

marginal distribution from DNN.

L(κ̆MMAP ,κ
o; Γ·

·,β
·
·) =

∑
t∈To

I(κ̆MMAP,t = κot )

and define the estimator as96

[Γ̂··, β̂
·
· ] = argmax

Γ··,β
·
·

{L(κ̆MMAP ,κ
o; Γ·

·,β
·
·)}

The actual optimization is made by the advanced gradient-based optimization method back-propagation97

through time (BPTT) with a fixed loss-function, and it is demanding computationally. Note that the model98

parameters have no intuitive interpretation and hence we have to rely fully on the algorithm to identify a99

optimum solution.100

3.2. Bidirectional Gated Recurrent Unit Neural Network101

In recent decade, a lot of attention has been paid to data-driven methods represented by deep learn-102

ing. Deep neural network methods are believed to automatically extract the hidden information in data103

concerning the variable of interest. Bidirectional GRU provides a memory unit with several gates to inte-104

grate the input data at current and nearby depths. The GRU system provides an artificial vector at each105

depth t called the recurrent hidden na-vector state, at = (at,1, . . . , at,na) by summarizing the observations106

d∆t
t = {dt; t = t−∆t, . . . , t, . . . , t+∆t} to capture the vertical spatial dependency in a 2∆t+1 neighborhood.107

Thereafter a general DNN classifier is activated on these artificial vectors hence the classifier is κ̃t = g(at),108

see Fig.4. The possible interaction in the lithology vector κ is not captured by the model, hence available109
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geological and exploration experiences are ignored. The normalized results from the GRU model may be110

interpreted as marginal posterior pdfs p
t|d∆t

t
= [p(κt|d∆t

t )]κt∈Ωκ ; t ∈ T.111

Figure 4: Dependence structure of the RNN; (a) the lithologies profile with the corresponding observations; (b) the posterior

marginal distribution from RNN.

The bidirectional GRU model capture the information in the well logs in a neighborhood around t,112

represented by d∆t
t . The model iterates over t ∈ T and for each GRU-layer l = {1, . . . , Lg} of dimension nl.113

It sweeps ∆t both from above to t and below to t, and generates the recurrent hidden state for each depth114

t at the current hidden layer l, i.e. alt. The upward sweep of alt is made recursively for s = t−∆t, . . . , t as115

follows116

ac =

ȧls−1

al−1
s


αlf = fsigmoid(Γ

l
fac + βlf )

cls = ftanh(Γlc

 αlf

i2nl−1

⊗ ac

 + βlc)

αlu = fsigmoid(Γ
l
uac + βlu)

ȧls = αlu ⊗ cls + [inl −αlu]⊗ als−1

The downward sweep of alt is made in a similar way in the opposite direction for s′ = t + ∆t, . . . , t. The117

initial conditions are a0
s = ds, a0

s′ = ds′ and ȧlt−∆t−1 = ȧlt+∆t+1 = 0inl . Hence ac is a nl + 2nl−1-vector118

for l = 2, . . . , Lg and a nl + nd-vector for l = 1. αlf , αlu, cls and ȧls are nl-vectors. The unknown model119
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parameters Γlf , Γlc and Γlu are (nl× (nl+2nl−1))-matrices for l = 2, . . . , Lg and (nl× (nl+nd))-matrices for120

l = 1, while βlf , βlc and βlu are all nl-vectors. The transfer functions fsigmoid(·) and ftanh(·) are activation121

functions which improve the nonlinear regression performance. More details of the upward and downward122

sweep are presented in Appendix A.123

We set the final results of the sweeps as ~alt = ȧls=t, ~alt = ȧls′=t and then stack them to get the hidden124

state for t at lth layer125

alt =

~alt
~alt


Hence the alt is a 2nl-vector. The upward recursion at t though s after the last GRU-layer is performed126

to obtain the nLg -vector ~a
Lg
t . Similarly the downward recursion at t though s′ after the last GRU-layer127

provides the nLg -vector ~a
Lg
t . The stacked 2nLg -vector a

Lg
t = [~a

Lg
t , ~a

Lg
t ]T , which we believe has captured the128

spatial coupling in observations, is then processed by the following traditional DNN classifier through the129

DNN-layers ld = 1, . . . , Ld of dimension nld as130

zldt = fRelu(Γldz zld−1
t + βldz )

with initial condition z0
t = a

Lg
t . The zldz is a nld -vector with n0 = 2nLg . The rest of the parameters are131

identical to the ones in the traditional DNN classifier defined in Section 3.1. The recursion of GRU model132

provides the nLd -vectors zt = zLdt = [zt,κt ]κt∈Ωκ which are dependent on the observation vector d∆t
t through133

the initiation at a
Lg
t .134

We define the corresponding marginal probabilities for κt ∈ Ωκ as135

p(κt|d) = p(κt|d∆t
t ) = p(κt|zt)

=
exp zt,κt∑

κt∈Ωκ
exp zt,κt

Lastly we use a MMAP criterion to predict the lithology class136

κ̃MMAP = {κ̃t = argmax
κt

{p(κt|d∆t
t )}; t ∈ T}

Here the uncertainty quantification is based on p(κt|d∆t
t );κt ∈ Ωκ; t ∈ T. The matching criterion and model137

parameter estimator used in Section 3.1 are also used here. Furthermore, the gradient-based optimizer and138

loss-function for parameters estimation are identical to the ones used for the traditional DNN.139

3.3. The Hidden Markov Model140

According to Bayes’ rule, the posterior model is provided by141
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p(κ|d) =
1

p(d)
× p(d|κ)p(κ)

where the likelihood model p(d|κ) defines the procedure of well logs data collection, the prior model p(κ)142

represents the geological and exploration experience with the variable of interest κ, and p(d) in the equation143

is a normalizing constant. In general high-dimensional models the normalizing constant is computationally144

demanding to assess, but under certain model assumptions efficient recursive algorithms can be defined.145

The likelihood model p(d|κ) links the observations to the lithology classes, which are in focus here. We146

assume that the likelihood model is conditional independent with single-site response, and can be expressed147

as148

p(d|κ) =
∏
t

p(dt|κ) =
∏
t

p(dt|κt)

Hence the likelihood function is defined by the location-wise likelihood functions149

p(dt|κt); κt ∈ Ωκ; t ∈ T

which we assume to be stationary, hence independent of t.150

The prior model, represents our knowledge about the geological setting and sediments. A Markov chain151

with the first-order Markov property is chosen to represent the spatial coupling of the lithologies. It can be152

defined as153

p(κ) = p(κ1)
∏
t∈T−1

p(κt|κt−1, . . . , κ1) = p(κ1)
∏
t∈T−1

p(κt|κt−1)

The initial pdf p1 and the set of transition matrices Pt−1,t; t ∈ T−1 is defined as154

p1 = [p(κ1)]κ1∈Ωκ

Pt−1,t = [p(κt|κt−1)]κt−1,κt∈Ωκ ; t ∈ T−1

and we assume the transition matrices to be stationary, hence independent of t. Moreover the initial pdf155

is defined as the stationary pdf of this transition matrix. The set of marginal prior pdfs pt; t ∈ T can be156

calculated by157

pt = [p(κt)]κt∈Ωκ = P′t−1,tpt−1; t ∈ T−1

Due to the stationarity assumptions these marginals will be identical. The HM model is displayed in the158

directed graph Fig.5b. The prior and likelihood models given above will fully define the posterior model.159

The resulting posterior pdf is160
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p(κ|d) =
1

p(d)
×

∏
t∈T

p(dt|κt)× p(κ1)
∏
t∈T−1

p(κt|κt−1)

=
1

p(d)
× p(d1|κ1)p(κ1)×

∏
t∈T−1

p(dt|κt)p(κt|κt−1)

= p(κ1|d)
∏
t∈T−1

p(κt|κt−1,dt:T )

The latter identity, which is varying through depth, entails that the posterior model is a non-stationary161

first-order Markov chain (Moja et al., 2018), see Fig.5c. From Fig.5b it is easy to interpret this posterior162

model. Focus on κt, and conditioning on κt−1 cuts off the lower part of the graph and hence only dependence163

on dt:T remains. The recursive reverse algorithm, see Baum et al. (1970); Scott (2002); Moja et al. (2018),164

can efficiently provide the initial pdf and the transition matrices165

p1|d = [p(κ1|d)]κ1∈Ωκ

Pt−1,t|d = [p(κt|κt−1,dt:T )]κt−1,κt∈Ωκ ; t ∈ T−1

The marginal posterior pdfs can be calculated as166

pt|d = [p(κt|d)]κt∈Ωκ = P′t−1,t|dpt−1|d; t ∈ T−1

and they will all depend on the full set of observations d, see Fig.5d, since they are recursively obtained167

starting with p1|d which depends on d. Hence the HM model has captured the spatial coupling in the168

variable κ and in the observations d. From the posterior model we can generate posterior realizations169

rapidly according to the initial posterior pdf and the set of posterior transition matrices. Moreover, the170

recursive Viterbi algorithm provides the gobal maximum posterior (MAP) prediction (Viterbi, 1967),171

κ̂MAP = argmax
κ
{p(κ|d)}

Lastly, the posterior probability profiles for a given κ can be presented as172

pκ = [p(κt = κ|d)]t∈T; κ ∈ Ωκ

and we quantify the prediction uncertainty by these probability profiles. An alternative naive prediction173

can be defined as the MMAP predictor174

κ̂MMAP : {κ̂t = argmax
κt

{pκ(κt|d)}; t = 1, . . . , T}

where the maximizations are made marginally.175

10



Figure 5: Dependence structure of the hidden Markov model; (a) the lithologies profile with the corresponding observations;

(b) the definition of hidden Markov model; (c) the posterior Markov chain; (d) the posterior marginal distribution from HMM.

This HM model is completely probabilistically defined, and the posterior model is assessable by very fast176

recursive algorithms. The advantage of having the posterior model available is that the probability of any177

statement involving κ given d can be calculated. Example of relevant questions are:178

• at depth t, what is the probability of having an unbroken string of three for a given lithology κ′179

upwards?180

• in the profile, what is the probability of having more than five transitions between two given lithologies181

κ′ and κ′′?182

Note also that the model can be extended to capture convolved observations, i.e. likelihood models183

being conditional independent with multi-site response. Also higher-order Markov chain prior models can184

be evaluated. These extensions, see Lindberg et al. (2015), define posterior models which also can be assessed185

recursively, although with considerable larger computational demands.186

We use a kernel estimator to estimate p(dt|κt), see Moja et al. (2018). Denote the observed well logs of187

cores of class κ as dκ = (dκ1 , . . . ,d
κ
nκ), see Fig.2, then the estimator is,188

p̂k(dt|κ) =
1

nκhκ

nκ∑
i=1

k(
dt − dκi
hκ

); κ ∈ Ωκ

where k(τ); τ ∈ Rn is the kernel function and hκ is the band width which defines the smoothness of the189

density distribution. The kernel function applied here is Gaussian kernel function,190
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kG(τ ) = ϕn(τ ; 0n, Σ̂κ); τ ∈ Rn

with a zero n-vector 0n as the expectation of each class of observations dκ and a (n × n)-matrix Σ̂κ as191

the empirical covariance matrix. A cross validation psuedo-likelihood (CVL) method provides the optimum192

band width hκ as193

CV L(hκ) =

nκ∑
i=1

p̂k(−i)(d
κ
i |κ)

where p̂k(−i)(·) is the kernel estimator based on the observations dκ = (dκ1 , . . . ,d
κ
i−1,d

κ
i+1, . . . ,d

κ
nκ). Then194

the estimator for the band width can be chosen as195

ĥκ = argmax
hκ

{logCV L(hκ)}

We use a naive counting estimator to provide the transition probabilities p(κt|κt−1), and denote the196

observed lithology classes κo = [κo1, . . . , κ
o
T ], then197

p̂(κt|κt−1) =
1

T − 1

∑
i∈T−1

I(κoi = κt ∩ κoi−1 = κt−1); κt−1, κt ∈ Ωκ

The actual estimator is adjusted for missing observations. The associated initial pdf p1 is defined by the198

stationary pdf obtained by the expression199

p1 = P̂′t−1,tp1

The estimators for the model parameters p(dt|κt);κt ∈ Ωκ and p(κt|κt−1);κt−1, κt ∈ Ωκ can be justified200

intuitively from the interpretation of the parameters, and they are extremely fast to assess.201

4. Model comparison202

We use the three wells displayed in Fig.1 for the model comparison. We do cross-validation by removing203

one well at the time and estimate model parameters based on the two others. Then we make lithology204

classification κ∗ with associated probability profiles pκ = [p(κt = κ|d)]t∈T for κ ∈ Ωκ for the removed well.205

Hence we got three cross-validated wells, where the truth is denoted κo. We propose three coefficients for206

the performance evaluation of the DNN, GRU and HM classifiers.207

The results from the cross-validation of wells are presented as follows:208

• visual inspection of truth κo with classification κ∗ and probability profiles pκ for κ ∈ Ωκ, for each of209

the models.210
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• classification match score CSκ of classification for each κ ∈ Ωκ211

CSκ =

∑
t∈T I(κ∗t = κot = κ)∑

t∈T I(κot = κ)

where CSκ ∈ [0, 1], with CSκ = 0 for complete mismatch and MSκ = 1 for full match.212

• probability score PSκ of probability profiles for each κ ∈ Ωκ213

PSκ =

∑
t∈T I(κot = κ)p(κ∗t = κ|d)∑

t∈T I(κot = κ)

where PSκ ∈ [0, 1], with PSκ = 0 for complete probability mismatch and PSκ = 1 for full match.214

• overfit loss OLκ for each κ ∈ Ωκ215

OLκ =
CStrκ − CScvκ

CStrκ

where CScvκ is the CS for the cross validation well while CStrκ is the CS for training wells. Note216

OLκ ∈ [0, 1] where OLκ = 0 entails no overfit while OLκ = 1 entails dramatic overfit.217

5. Results and Discussion218

The model parameters of each model are estimated by the two training wells in each cross-validation219

study. The DNN classifier is based on a 64-128-64-32-16-3 general hidden layer model, which does not take220

spatial dependency into account. The large number of parameters are estimated from the two training221

wells, and it requires about 2 hours on a regular Apple Mac Pro laptop. A GRU classifier with 64-128-64222

memory unit layers followed by 32-16-3 general hidden layers is chosen. This model is based on a ∆t = 2223

neighborhood hence including d∆t=2
t : {dt; t = t − 2, . . . t + 2} in the classification at each depth t. The224

model parameters are also jointly estimated from the two training wells, and the computer demands are225

about 3.5 hours. Interpretation of the parameters from the DNN and GRU model is impossible. Hence the226

neural network based classifiers should be considered as a kind of black-box model. Lastly, the HM classifier227

is parameterized by a prior transition matrix between the lithologies and a likelihood Gaussian kernel. The228

transition matrices are assessed by counting estimators on the training wells, see Table.1, while the Gaussian229

kernel band width is estimated by cross-validation on the training wells, see Table.2. Note that in spite of230

a large proportion of missing core samples, the model parameter estimates in the HM classifier are fairly231

consistent. The estimation process is very efficient and the computing demand is less than 10 seconds. On232

the contrary with the DNN and GRU model, all the model parameters of HM classifier can be interpreted233

easily.234
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Table 1: The prior transition matrices and the corresponding stationary pdfs

The training wells The prior transition matrix The stationary pdf

Well A & Well B

MS FS SS


MS 0.9358 0.0600 0.0042

FS 0.0068 0.9390 0.0542

SS 0.0075 0.0625 0.9300

MS

FS

SS


0.0995

0.5041

0.3964



Well A & Well C

MS FS SS


MS 0.9489 0.0487 0.0024

FS 0.0090 0.9640 0.0270

SS 0.0012 0.0813 0.9175

MS

FS

SS


0.1210

0.6595

0.2195



Well B & Well C

MS FS SS


MS 0.9453 0.0498 0.0050

FS 0.0068 0.9392 0.0541

SS 0.0075 0.0522 0.9403

MS

FS

SS


0.1157

0.4616

0.4277



Table 2: The optimized band widths

ĥκ

Lithology class MS FS SS

By using well A and B 2.337 2.913 1.660

By using well A and C 1.360 2.930 1.500

By using well B and C 1.363 2.926 1.730

We separately trained these classifiers by using the labeled observations from two of the wells each time.235

The remaining well is taken as a blind test well to evaluate the performance of the classifiers. Hence three236

blind test results for each model are provided by our study.237

Fig.6-8 display the blind test results for each of the three cross-validated wells. Each display contain from238

the left to right, the true profile κo, DNN classification (MMAP) and probability profiles, GRU classification239

(MMAP) and probability profiles and two HM classifiers (MAP, MMAP), the probability profiles with four240

realizations.241

Fig.6 displays the cross-validation results of well A. The DNN model provides random, frequent and thick242

SS layers with extremely thin MS layers next to them along the well profile. The GRU model provides more243

FS layers at the upper and middle part. However, SS layers with unreasonable thickness are also predicted.244

Both these neural network method miss the true MS layers which can be identified by core-plugs at the245
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upper part. The HM model provides homogeneous prediction with thick FS layers. Wrong MS and SS layers246

are predicted in the bottom of the well. But the HM model is able to give us the correct prediction of the247

MS layer at depth 2068m and always provides the predicted MS and SS layers with reasonable thickness.248

Note that well A is the one with the most core-plugs, hence more samples are removed from the training249

set. All models are considered to provide unsatisfactory predictions in this cross-validation study.250

Fig.7 displays the cross-validation results for well B. The DNN model predicts the bottom part as a thick251

SS layer with thin MS interlayers. Moreover, it arranges many layers with wrong depth for the remaining252

well profile. The GRU model supply a reliable reproduction of the lithology profile. It arranges scattered253

but wrongly located SS layers in the bottom of the profile. We also get a reliable reproduction by the HM254

model. The MMAP is closer to the truth than the corresponding MAP because it has larger prediction255

heterogeneity. The four realizations are of course even more heterogeneous prediction. According to the256

MMAP, the SS layer at the bottom of the well and the thinner MS layer in the middle are correctly predicted.257

Figure 6: The cross-validation result for well A

Fig.8 displays the cross-validation results for well C. All models fail to predict the thick SS layers at the258

top of the well. The DNN model predicts more MS layers and frequent MS-SS transitions in the middle259

unknown part. This effect is not consistent with geological interpretations and observations in core plugs.260
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Figure 7: The cross-validation result for well B

Figure 8: The cross-validation result for well C
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The predictions from GRU and HM model are similar to each other. The proportion of SS increases with261

depth. At bottom of well both the GRU and HM models correctly arrange the MS interlayer around depth262

2153m while the HM model predicts the thickness better.263

The proposed evaluation coefficients provide us with quantitative information to compare the model264

performances. We calculate CS, PS and OL for each model, lithology and cross-validation. Then we take265

the average values as their finally scores, see Table 3. The models which take the vertical spatial dependency266

into account are superior in almost all scores except for lithology SS. The DNN model is superior for SS.267

The severe over-prediction of the thick SS layers by the DNN model causes this effect. For the models with268

spatial coupling, the HM model preforms better than the GRU model in all cases, also for lithology SS.269

Hence we consider the HM model to be the most general and robust lithology classifier in this study.270

Table 3: Model Comparison by evaluation coefficients, with best values colored

Coefficient
Classifier

Lithology MS FS SS

CS

DNN model 0.176 0.558 0.690

GRU model 0.310 0.773 0.449

HM model 0.448 0.786 0.452

PS

DNN model 0.242 0.570 0.620

GRU model 0.309 0.748 0.488

HM model 0.369 0.782 0.506

OL

DNN model 0.816 0.411 0.226

GRU model 0.666 0.209 0.518

HM model 0.552 0.024 0.456

6. Conclusion271

According to the predictions from the three models and the corresponding comparisons, the spatial272

interdependence between the sediments and the spatial coupling of the observations are quite important273

for the lithology classification. The DNN classifier which takes no vertical spatial dependency into account274

provides the worst lithology classifications for all cross-validation. The GRU model which just captures the275

spatial coupling in observations has medium performance in each case. And the HM model, which represents276

the spatial interdependence between sediments and the spatial coupling in observations by using the Markov277

chain assumption, is the most reliable one of the classifications. Moreover, the neural network training is278

a time consuming process. The training time for the DNN and GRU models are dramatically longer than279

for the recursive reverse algorithm of the HM model. Last but not least, the neural network methods only280
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provide the locationwise classifiers. Meanwhile the HM model provides a fully specified probabilistic model281

which is able to provide answers to any statement about κ. In this case study, a small data set collected282

from just three wells is used for the experiments. Hence more comparisons and discussions based on big real283

data sets from variable geological settings are needed to obtain a more reliable conclusion.284
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Appendix A. The Upward and Downward Sweeps for Bidirectional GRU Neural Network292

Algorithm 1: The upward and downward sweep algorithm

for l = 1, . . . , Lg do

for t = 1, . . . , T do

for s = t−∆t, . . . , t do

set ȧlt−∆t−1 = 0inl and a0
s = ds;

ac =

ȧls−1

al−1
s

;

~αlf = fsigmoid(~Γ
l
fac + ~βlf );

~cls = ftanh(~Γlc

 ~αlf

i2nl−1

⊗ ac

 + ~βlc);

~αlu = fsigmoid(~Γ
l
uac + ~βlu);

ȧls = ~αlu ⊗ ~cls + [inl − ~αlu]⊗ ȧls−1

end

~alt = ȧls=t;

for s′ = t+ ∆t, . . . , t do

set ȧlt+∆t+1 = 0inl and a0
s′ = ds′ ;

ac =

ȧls′+1

al−1
s′

;

~αlf = fsigmoid( ~Γ
l

fac + ~β
l

f );

~cls′ = ftanh( ~Γ
l

c

 ~αlf

i2nl−1

⊗ ac

 + ~β
l

c);

~αlu = fsigmoid( ~Γ
l

uac + ~β
l

u);

ȧls′ = ~αlu ⊗ ~cls′ + [inl − ~αlu]⊗ ȧls′+1

end

~alt = ȧls′=t;

alt =

~alt
~alt

;

end

al = [alt, . . . ,a
l
T ];

end

a = aLg = [a
Lg
1 , . . . ,a

Lg
T ]

293
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