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Abstract 

Grey-box models are data-driven models where the structure is defined by the physics while the 

parameters are calibrated using data. Low-order grey-box models of the building envelope are 

typically used for two main applications. Firstly, they are used as a control model in Model 

Predictive Control (MPC) where the thermal mass of the building is activated as storage (for 

instance in demand response). Secondly, they are used to characterize the thermal properties of 

the building envelope using on-site measurements. The influence of the data pre-treatment on the 

performance of grey-box models is hardly discussed in the literature. However, in real 

applications, information about data pre-processing by sensors or data acquisition systems is 

expected to be limited. Therefore, the influence of the sampling time, low-pass filters and anti-

causal shift (also called data labeling) are analyzed for grey-box models in deterministic and 

stochastic innovation form. The influence on the optimizer performance is also investigated. The 

datasets are generated from virtual experiments using multi-zone building performance 

simulations of a residential building (in lightweight wooden construction) heated using different 

types of excitation signals. Results show that the parameters of deterministic grey-box models are 

significantly influenced by the training data while the data pre-treatment has a limited impact on 

the model and optimizer performance. Depending on the training data, the value taken by some 

parameters is not physically plausible. On the contrary, stochastic models are significantly 

influenced by the data pre-treatment, especially the sampling time, and less by the training data. 

The parameters can become non-physical for large sampling times. However, the anti-causal shift 

proves to be efficient to keep the parameters almost constant with increasing sampling times. 

Even though the parameter values of the deterministic model are less physically plausible, the 

simulation performance of deterministic models is higher than using the equivalent stochastic 

models. These results suggest that deterministic models seem better suited for MPC while 

stochastic models are better suited for the characterization of thermal properties (if suitable data 

pre-treatment is applied). 
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Nomenclature 

DR Demand Response GA Genetic Algorithm 

MPC Model Predictive Control PSO Particle Swarm Optimization 

BPS Building Performance Simulation ACS Anti-Causal Shift 

AMS Advanced Metering System DS Direct Sampling 

RC Resistance and Capacitance MA Moving Average 

PRBS Pseudo-Random Binary Signal FIR Finite Impulse Response 

PI Proportional Integral  det Deterministic Model  

NRMSE Normalized Root Mean Squared Error  sto Stochastic Model 

FHS Full Heating Season HTC Heat Transfer Coefficient 

    

1 Introduction 

The share of Renewable Energy Sources (RES) is increasing constantly in today’s energy system. 

Power generation from RES is often decentralized and intermittent, such as solar and wind energy, 

which brings considerable volatility to the electric grid. The supply and demand sides in the power 

system have to be balanced at each time step. Any power imbalance can cause severe 

consequences for power quality and reliability (e.g. voltage fluctuations and power outage) [1,2]. 

Therefore, more flexible loads are needed to further increase the share of intermittent RES. 

Demand response (DR) is the interaction and responsiveness of the end-use customer to a specific 

penalty signal (e.g. price signal, CO2 intensity factor for electricity signal) [3,4]. It is considered 

to be an important component to provide flexibility for smart grids [5]. In addition, DR can also 

be used for peak-shaving to avoid congestion [6,7] in the distribution grid so that the 

reinforcement of these grids can be postponed.  

The share of the total final energy consumed by buildings is 20–40% and this is increasing at the 

rate of 0.5–5% per year in developed countries [8]. In Nordic countries, the building energy 

consumption is dominated by space-heating due to the long and cold heating season. Building 

thermal mass can be considered as short-term heat storage and be used to perform DR [9–11], 

which can contribute to providing flexibility to the smart grid. Model Predictive Control (MPC) 

is considered a promising technique to apply DR. In an MPC, a dynamic model is used to predict 

the response of the building to future boundary conditions (e.g. forecast of weather conditions, 

and production of the energy system). The MPC control agent (computers, built-in intelligent 

devices, etc.) will take the optimal control decisions based on the predictions of the model and 

system constraints. In buildings, the constraints for the MPC are usually the power limitation of 

the SH system, and thermal comfort. The performance of the MPC controller thus strongly relies 

on the quality of the dynamic model of the system to be controlled. Poor quality models could 

result in undesired control outcomes (e.g. increased energy cost, violation of thermal comfort, or 

even be counterproductive for the grid). In practice, MPC is currently applicable for only a small 

fraction of existing buildings due to cost criteria [12]. However, the ongoing implementation of 

smart meters, like the Advanced Metering System (AMS) in Norway [13] and “Key principles 

for the package of ordinances governing smart grids” in Germany [14], will make the MPC 

control concept more accessible in the future. The recent emergence of small, low-cost and 

wireless sensors with a data collection function [15] will also contribute to accelerate the 

implementation of MPC in buildings. Finally, creating a suitable model is acknowledged to be 

the most time-consuming part of MPC implementation [16]. Therefore, the cost related to the 

identification of the control model should also be limited to reduce the total investment cost of 
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the MPC controller. The need to identify a control model at a low cost is even more severe for 

small residential buildings.  

The modelling methods for MPC can be divided into three main categories, namely white-, black- 

and grey-box models. White-box models are based on physical laws. They require exhaustive 

information about the building including underlying physical processes, and parameters. This 

type of model is usually mathematically complex but has high accuracy. This approach is often 

used in Building Performance Simulation (BPS) software like Modelica [14], EnergyPlus [14] 

and IDA [17]. However, white-box models are time-consuming to calibrate as a lot of input 

parameters have to be defined and they need to be updated during the operational lifetime of the 

building. Moreover, the mathematical complexity requires extensive computational power [9] or 

the white-box model has to be simplified using linearization and model reduction techniques [18]. 

All these factors challenge the feasibility of white-box models for the MPC of the existing 

building. Black-box models are pure data-driven methods based on the measured input and output 

time-series data from the system. Statistical regression and Artificial Neural Network (ANN) are 

common mathematical techniques for black-box models [19]. However, this method requires 

sufficient data for training to guarantee the accuracy of the model [20]. The precision of black-

box models is also significantly influenced by data quality. Grey-box modelling is an intermediate 

strategy between white- and black-box models. It exploits the dominant physical properties of the 

system to construct the model structure and uses measurement data to estimate the model 

parameters. Grey-box models have better generalization (extrapolation) properties [21] and 

usually require less experimental data compared to black-box models [22]. Lumped resistance 

and capacitance models (i.e. RC models) are a common approach to create grey-box models, 

which means the thermal conditions of the building are expressed with an electric circuit analogy 

[23]. Existing work has already applied grey-box models for MPC in buildings. For instance, 

Coninck et al. [24] made use of a grey-box model identified by monitoring data to implement 

MPC. Zong et al. [25] used an economic MPC with a multi-zone grey-box model to control the 

power of heating radiators in a three-story Danish residential house.  

This study mainly focuses on the grey-box modelling of the building thermal dynamics. A 

significant amount of research has already addressed the question of the structure of grey-box 

models. Viot et al. [26] gave a detailed list of research papers using RC models for the MPC In 

the study by Fux et al. [27], a one-capacitance model was used to forecast the indoor temperature 

of a residential building and it gave satisfactory results. Bacher and Madsen [28] used the data 

collected from an unoccupied office building to identify a suitable model. Models of different 

orders were evaluated based on likelihood ratio tests. These showed that from third-order, 

increasing the model order cannot lead to significant improvements in the results. Palomo Del 

Barrio et al. [29] concluded that a second-order model is sufficient for forecasting results for both 

indoor temperature and heating power. The study of Reynders et al. [30] also confirmed that the 

second-order model is enough to deliver decent prediction performance. Moreover, Reynders et 

al. concluded that heat flux measurements were needed to guarantee observability for higher-

order models (i.e. fourth and fifth-order models) since overfitting and convergence problems 

occurred. Yu et al. [31] compared two grey-box model structures generated from VDI 6007 [32] 

and ISO 13790 [33]. The results revealed that with limited measurements and a large number of 

unknown parameters, the parameters of the identified model can easily become non-physical. 

Brastein et al. [34] showed that deterministic grey-box models at second-order can already face 

the problem of practical identifiability. Based on these previous findings, our paper only uses 

first- and second-order grey-box models to address the research questions so that the challenges 

related to overfitting can be eliminated from the study. When space-heating power is used as input 

and the indoor temperature is used as an output, previous works showed that second-order models 

are a good trade-off between accuracy and identifiability. Therefore, our paper only resorts to 
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first- and (simple) second-order grey-box models to eliminate challenges related to overfitting 

from the study. 

Data pre-processing (or data pre-treatment) is acknowledged to have a key influence on the model 

identification results [35]. However, this topic has hardly been addressed in the field of grey-box 

models for buildings. Ljung and Wills [36] revealed several issues when applying a long sampling 

time to estimate continuous-time models with stochastic disturbances. However, the analysis of 

Ljung and Wills is illustrated using a theoretical example. Therefore, our paper investigates the 

influence of long sampling times in building applications. The time-series data is generated using 

virtual experiments using the BPS software IDA ICE. In addition to the sampling time, the 

influence of the data pre-processing using a low-pass filter is investigated as well as the influence 

of shifting the input data in time, called anti-causal shift (ACS). In this context, the performance 

of grey-box models in the deterministic and stochastic innovation forms is compared using the 

MATLAB identification toolbox [37]. To analyze the model performance, the ability to 

characterize the thermal properties of the building envelope and the simulation performance are 

clearly distinguished. The simulation performance is a good indicator of the model accuracy for 

MPC applications. Finally, these research questions are important as data can be processed (or 

altered) by sensors, the data acquisition system or by the building modeler prior to the model 

identification. 

The remainder of the paper is structured as follows. Section 2 provides information on the virtual 

experiment using BPS software, which includes detailed information about the virtual building, 

the excitation signals and the boundary conditions. Section 3 describes the grey-box model 

structure used for this study. The model identification tool and method are also outlined, followed 

by the data pre-processing method. Section 4 shows results split into three aspects. The model 

performance to characterize the building thermal properties is first discussed. Then, the analysis 

of the optimizer performance and the simulation performance is analyzed. Section 5 gives some 

complementary discussions based on the results. Conclusions are presented in Section 6.  

2 Virtual experiments  

2.1 Detailed multi-zone dynamic simulations 

IDA ICE is a detailed dynamic simulation tool to study the indoor environment and the energy 

consumption of buildings. In this study, an IDA ICE building model is used as a virtual 

experiment to generate data for system identification. It is a two-story detached house located in 

Oslo with a heated floor area of 160 m². The building is constructed in wood, meaning a 

lightweight construction, and complies with the requirement of the Norwegian passive house 

standard, NS 3700 [38]. The three-dimensional geometry of the building is shown in Error! 

Reference source not found.. The building is equipped with balanced mechanical ventilation 

with a heat recovery unit. A cascade ventilation strategy is applied. This heat exchanger is 

modelled using constant effectiveness of 85% without bypass (like a plate heat exchanger) to 

promote the linearity of the model. This is done because the research focuses on the thermal 

dynamics of the building envelope and does not aim at modelling the air handling unit (AHU) in 

detail. Other detailed information regarding the BPS software model can be found in [39]. 
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Figure 1: 3D geometry of the building model in IDA ICE (showing the southwest facade). 

 

Figure 2: Floor plan of the test building (ducts for the supply air are in blue and in red for extraction). 

The detailed building model is multizone and the zoning follows the floor plan presented in Figure 

2. For the sake of simplicity, the grey-model models considered in our study are mono zone: it is 

not necessary to use multi-zone grey-box models to address our research questions. Consequently, 

the indoor temperature in our virtual experiments should be as uniform as possible. This is done 

by opening all the internal doors inside the building. IDA ICE has an embedded ventilation 

network model which accounts for the large bidirectional airflow through open doorways. Thus, 

the air temperature inside the building computed by IDA ICE is relatively uniform due to the 

large convective heat transfer between rooms. The volume-averaged temperature is selected to 

represent the measured indoor air temperature. The mean air temperature of the extract ventilation 

air is also a common choice. However, based on preliminary investigations, the volume-averaged 

temperature proved to give better grey-box models for this test case. The building is heated using 

electric radiators as these are the most common space-heating systems for residential buildings in 

Norway [40]. This heating system has smaller thermal inertia than the building envelope so that 

the dynamics of the radiators are expected to play a limited role. Hourly profiles for internal gains 

generated by artificial lighting, electric appliances and occupancy are taken from the Norwegian 

technical standard TS3031:2016 [41]. The typical meteorological year (TMY) of Oslo with a 

resolution of one hour is used for the IDA ICE simulations. Like internal gains, solar gains have 

thus a resolution of one hour. 

2.2 Excitation signals of the building thermal dynamics 

The system needs to be perturbed to obtain data for model identification. It is often recommended 

to use excitations having no correlation with the other inputs [28]. The Pseudo-Random Binary 

Signal (PRBS) is a periodic and deterministic signal which approximates white noise properties 
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[42]. The PRBS signal can activate the dynamic system in a large spectrum of frequencies with a 

high signal-to-noise ratio (SNR) [28,43,44]. In this study, the excitation signal is simultaneously 

applied to all the electric radiators in the BPS model. Following the guidelines of the IEA EBC 

Annex 58 [45], the excitation signal is in fact the combination of the two PRBS signals. One 

sequence to identify the short-time dynamics with a period (T) of 10 minutes and with an order 

(n) of 8. The second sequence aims at identifying the long time constant of the building with a 

period (T) of 3.5 hours and n equals to 5. The resulting time profiles for the space-heating are 

shown in Figure 3. The PRBS signal can be applied to four different weeks in the space-heating 

season. These weeks are characterized by different weather conditions, as described in Table 1. 

   

Figure 3: Time profile of the PRBS signal applied to electric radiators. 

However, it is not always desirable to apply a PRBS signal to the space-heating system as large 

variations of the indoor temperature may occur and lead to thermal discomfort for the occupants. 

Therefore, conventional controls of heating systems are also investigated. Intermittent heating 

with a temperature setpoint changing between daytime and night-time is considered (i.e. a night 

setback). Two different local controllers are tested to track the set-point temperature in each room: 

a Proportional-Integral (PI) control and an on-off control (with a differential of 1K). The last one 

is the most common control strategy for electric radiators in buildings. When a PRBS signal is 

applied over a long period of time (i.e. longer than one week), it is difficult to design the signal 

so that the indoor temperature is kept within comfortable temperature limits for the occupants. By 

definition, conventional heating controls enable to have normal occupancy of the building during 

the experiments used to collect data for model identification. It is thus possible to collect data 

over a longer period of time than one week without impacting the thermal comfort of building 

users. The full space-heating season (FHS) starting in November and finishing at the end of March 

can be used to train the model. However, it is also interesting to test whether a shorter training 

period of one month would be sufficient to train the grey-box models. It is also interesting to 

check whether specific months are more suited for this task. Therefore, the model parameters are 

also identified using each of five different months of the space-heating season (i.e. Month 1 to 5). 

Table 1: Weather conditions in four PRBS experiments. 

Type Outdoor 

Temperature 

Sky Date Duration 

Very Cold -10 ℃ Clear sky 12/13/2019 One week 
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Cold 0 ℃ Overcast 12/24/2019 One week 

Cold 0 ℃ Clear sky 3/23/2019 One week 

Mild 5 ℃ Overcast 11/23/2019 One week 

To investigate the influence of data pre-processing techniques and the grey-box modelling 

approaches, 20 different datasets have been generated using different excitation signals, duration 

of the experiment and weather data. The detailed description of each case can be found in Table 

2 below. IDA ICE assumes that variables are piecewise linear during one-time step. The model 

equations are integrated numerically using a variable time-step so that data is not generated at 

constant time intervals. Consequently, conservative interpolation has been used to interpolate 

IDA ICE data on a uniform grid of 2.5 min. This time step is significantly smaller than the shortest 

period of the PRBS (i.e. 10 min). 

Table 2: Description of the datasets and their corresponding abbreviation. 

 

 

3 Methodology for grey-box modelling 

3.1 Grey-box model structure 

Based on the literature review (see the introduction section), only first-order and second-order 

grey-box models are considered in this paper. Preliminary tests using our virtual experiments 

confirmed that a third-order model would be overfitted. The structure of the grey-box model 

expresses the conservation of energy. As mono zone grey-box models are considered (with a 

single node related to the indoor air temperature), the dominant process to be integrated is the 

heat transfer between the building and its outdoor environment. The influence of solar radiation 

Case  

(dataset) 

Case description 

(excitation) 

Period/ 

Duration 
Abbreviation 

1 PRBS1 Week 1 W1-PRBS 

2 PRBS2 Week 2 W2-PRBS 

3 PRBS3 Week 3 W3-PRBS 

4 PRBS4 Week 4 W4-PRBS 

5 Intermittent on-off Week 1 W1-Inter I/O 

6 Intermittent on-off Week 2 W2-Inter I/O 

7 Intermittent on-off Week 3 W3-Inter I/O 

8 Intermittent on-off Week 4 W4-Inter I/O 

9 Intermittent on-off Month 1 M1-Inter I/O 

10 Intermittent on-off Month 2 M2-Inter I/O 

11 Intermittent on-off Month 3 M3-Inter I/O 

12 Intermittent on-off Month 4 M4-Inter I/O 

13 Intermittent on-off Month 5 M5-Inter I/O 

14 Intermittent on-off Full heating season FHS-Inter I/O 

15 Intermittent PI Month 1 M1-PI 

16 Intermittent PI Month 2 M2-PI 

17 Intermittent PI Month 3 M3-PI 

18 Intermittent PI Month 4 M4-PI 

19 Intermittent PI Month 5 M5-PI 

20 Intermittent PI Full heating season FHS-PI 
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and internal gains are also included in the grey-box models.  Two model structures are studied: a 

one-resistance, one-capacitance (1R1C), and a three-resistance, two-capacitance (3R2C) model. 

The physical interpretation of their respective parameters can be found in Table 3. 

The internal and solar gains can be computed accurately by BPS. For the sake of simplicity, these 

gains have been introduced directly in the grey-box models rather than identified. For the 3R2C 

model, only the coefficient α that distributes the solar gains between the two temperature nodes 

needs to be identified. In real applications, the gains are not known exactly. However, simplifying 

the problem enables us to emphasize the specific research questions in this paper. To obtain a 

more physical representation of the heat exchange between the building and its outdoor 

environment, an equivalent outdoor temperature is applied as described in Harb et al. [9]. This 

temperature is calculated using Equation 1 with a short-wave absorption coefficient of the exterior 

surface (𝑎𝑓) of 0.5 and an exterior heat transfer coefficient (𝛼𝐴) of 25 W/(m2K): 

,

f

a eq a irrad

A

a
T T Q= +


           (1) 

Table 3: The physical interpretation of the parameters of the grey-box models. 

Parameters Physical interpretation 

Ti   Temperature of interior heat capacity [°C]. 

Te Temperature of the building envelope [°C]. 

Ta The outdoor (or ambient) temperature [°C]. 

Ta,eq The equivalent outdoor (or ambient) temperature [°C]. 

Ci   Heat capacity of the building combining the thermal mass of the air, the furniture, internal walls 

and, potentially, a fraction of the thermal capacitance of external walls: the first centimeters for 

the second-order model and a larger fraction for the first-order model [kWh/K]. 

Ce Heat capacity of the node external wall for the second-order model [kWh/K]. 

UA  Overall heat transfer coefficient (HTC) between the building and its ambient, including 

ventilation [kW/K]. 

UAie  Heat conductance between the building envelope and the interior [kW/K]. 

UAea  Heat conductance between the ambient and the building envelope [kW/K]. 

UAvent  Heat conductance between the ambient and the interior node [kW/K]. 

Qint Internal heat gain from artificial lighting, people and electric appliances [kW]. 

Qsolar Heat gain from solar irradiation [kW]. 

Qh Heat gain from the electric heater [kW]. 

  Fraction of solar gains to air node. 
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Figure 4: First-order 1R1C model.  

The heat dynamics of the 1R1C model is expressed in the following differential equation: 

, int( )i
i a eq i h solar

dT
C UA T T Q Q Q

dt
= − + + +      (2) 

  

Figure 5: Second-order 3R2C model.  

The heat dynamics of the 3R2C model is expressed by the following differential equations: 

, int( )+ ( )i
i vent a eq i ie e i h solar

dT
C UA T T UA T T Q Q Q

dt
= − − + + +          (3) 

,( )+ ( ) (1 )e
e ea a eq e ie i e solar

dT
C UA T T UA T T Q

dt
= − − + −   (4)   

3.2 Model identification tool and method 

The MATLAB system identification toolbox is used in our study [37]. Madsen et al. [45] 

illustrated how stochastic models can be formulated as an extension of deterministic models. In 

the stochastic form, a system noise (or noise term) is added to the deterministic model equations 

to better account for the modelling approximations, unrecognized inputs and measurement of 

inputs corrupted by noise. The generic equations of the stochastic linear state-space model in 

innovation form can be expressed as: 

( ) ( ) ( )
dx

Ax t Bu t Ke t
dt

= + +       (5) 

( ) ( ) ( )y t Cx t e t= +                       (6) 

where x is the state vector, A, B and C are the system matrices, u is the input vector (i.e. Ta,eq, 

Qsolar, Qint, Qh) and y is the output (i.e. indoor temperature, Ti). K is the disturbance matrix of the 
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innovation form (Kalman gain) [46]. The matrices A, B, C and K are functions of the model 

parameters (θ), in our case defined by Equations 2 to 4. The continuous-time model is first 

discretized so that discrete measurement data can be used to identify the model parameters. Unlike 

IDA ICE, the time discretization in the MATLAB identification toolbox assumes piecewise-

constant input data during each time interval (i.e. zero-order hold). For stochastic models, both 

the value and variance of the model parameters are identified. In the case of deterministic models, 

the K matrix is set to zero. The parameter variance is not clearly defined for the deterministic 

model in the MATLAB system identification toolbox. Therefore, it has been decided to only 

consider the parameter value.   

At the beginning of the identification procedure, the initial guess of the model parameters and 

their region of feasibility (i.e. lower and upper bounds for each parameter) should be defined by 

the user as input parameters. Then, the optimizer iterates within the feasibility region to find the 

value of the parameters that minimize the prediction error criterion 𝑓(𝑥)  

                                     
2

1

( ) || ( ) ||
N

k k

k

f x y y 


=

= −                       (7) 

 where 𝑦𝑘 is the measurement output while 𝑦̂𝑘(𝜃) is the one-step ahead prediction. 

The default function (greyest) in the MATLAB identification toolbox uses gradient-based 

optimizers. Four different iterative search methods are used in sequence. Consequently, the 

optimizer may converge to a local optimum if the problem is not convex. As shown in Arendt et 

al. [47], Genetic Algorithm (GA) combined with a gradient-based method could be used to solve 

non-convex optimization problems used to identify the parameters of grey-box models. Likewise, 

a global optimization algorithm has been implemented in our work to avoid a local optimum. A 

metaheuristic Particle Swarm Optimization (PSO) is applied at the first stage, followed by the 

default greyest function to refine results during the second stage. The PSO algorithm begins by 

creating the initial particles and assigning them initial velocities. It evaluates the objective 

function at each particle location and determines the best (lowest) function value and the best 

location. In the next step, new velocities are chosen based on the current velocity, the particles’ 

individual best locations, and the best locations of their neighbors. The optimizer then iterates the 

particle locations, velocities, and neighbors until the algorithm reaches a stopping criterion. 

Detailed information on the PSO algorithm can be found in [48,49]. For each test case, both 

optimization procedures are used in sequence: the default greyest and the global optimization. 

The method giving the lowest error for the prediction error criterion is selected to provide the 

model parameters. The flow chart of the identification routine is summarized in Figure 6.  

 

Figure 6: Flow chart of the optimization procedure to identify the model parameters. 

3.3 Data pre-processing method 

Extended sampling time (Ts) can lead to a non-physical value and variance for the identified 

parameters of grey-box models (see e.g. [36]). In real-life applications, it can be seldom 
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guaranteed that measurement data is recorded at a sampling time (Ts) shorter than the shortest 

time of the system (Tmin). In our test case, Tmin is related to the shortest period of the PRBS signal 

(T) as the other model inputs (namely the internal and solar gains) have a resolution of one hour. 

Tmin is therefore 10 min and the sampling time (Ts) applied to the BPS data has been taken at 2.5 

min to avoid aliasing. As Ts < Tmin, it is therefore possible to identify the parameters of the grey-

box model without facing the above-mentioned issues. However, the measurement data at 2.5 

min can be resampled at longer sampling times, namely 15, 30 or 60 minutes, so that the case 

where Ts < Ti can be directly compared to the cases where Ts > Ti. In real applications, it is 

difficult to guarantee that the data logging is done at a sampling time shorter than the system 

dynamics. In addition, the measurement data can be pre-processed before being logged at Ts. Two 

methods are considered here: low-pass filtering and anti-causal shift. 

Regarding low-pass filtering, three approaches are compared:  

• The first approach is direct sampling (DS) at Ts without pre-filtering. This may cause a high 

aliasing error.  

• The second approach applies a moving-average (MA) filter of length Ts before sampling. 

With MA, the aliasing error is significantly decreased but, in theory, it can still occur. 

• The third approach applies a finite impulse response (FIR) filter with a cut-off frequency of 

1/Ts before sampling. The FIR would lead to negligible aliasing error (if it is designed at a 

sufficient order).  

By analyzing the performance of the three methods, it is possible to understand the influence of 

aliasing. It is known that these low-pass filters introduce a time delay [35]. However, as the low-

pass filters are here applied to all input and output variables of the dataset, the delay does not 

affect the final identification results. In the paper, we don’t distinguish between the low-pass 

filtering deliberately introduced by the data engineer before training the grey-box model and the 

low-pass filtering done internally in the sensor. If grey-box models of small residential buildings 

should be developed at low cost, there is most likely no time to take the technical specifications 

of each sensor into account. Therefore, the type of data pre-treatment performed by the sensor 

can be unknown. The analysis is thus generic. 

Ljung and Wills [36] pointed out that time labeling plays a role in the alignment of inputs and 

outputs for the identification application. The results of Ljung and Wills’s paper show that a time 

shift (ACS) of the input (Input Delay = -Ts) is beneficial for the model. The method is going to 

be tested with the data from IDA ICE model. 

3.4 Key Performance Indicator  

One main application of the grey-box model is MPC. In this context, the long-term prediction 

performance (i.e. the simulation performance) is paramount. In our work, the NRMSE fitting, 

defined in Equation 9, is taken as the key performance indicator (KPI) to evaluate the simulation 

performance. It is based on the normalized root mean squared error (NRMSE) quantifying how 

well the simulated or predicted model response matches the measurement data, see Equation 8. If 

the fitting is 100%, this means the model fits the measurement data perfectly, while a low or 

negative fitting corresponds to a worse model. There are no outliers in the measurement data that 

will skew the NRMSE KPI, so there is little reason to use KPIs handling outliers better, such as 

Mean Absolute Error (MAE).  

|| ||

|| ( ) ||

k k

k k

y y
NRMSE

y mean y



−
=

−
                (8) 
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(1 ) 100%fitNRMSE NRMSE= −         (9)   

Regarding the characterization of the building thermal properties, the performance of the grey-

box is evaluated using the physical plausibility of the identified parameters. The calibrated value 

of the model parameters should give a physically-reasonable estimate of the thermal building 

properties.  

• The overall heat transfer coefficient (HTC) is the total heat loss of the building in a steady-

state. Convective and long-wave radiative heat transfer are non-linear. However, in the case 

of a highly insulated building, the heat conduction is dominant and often assumed linear in 

BPS (like in IDA ICE). In addition, the heat recovery effectiveness is constant, making its 

model linear. Specifically, each resistance R (or conductance) of the grey-box model will be 

dependent on the excitation signal. However, their combination to form the HTC is a steady-

state performance parameter. Consequently, the HTC does not depend much on the excitation 

signal used for the identification. For the first-order model, the HTC is equal to the 

conductance UA. For the second-order model, the formula of the HTC for the 3R2C model 

is defined by Equation 10. In conclusion, to be physically plausible, the identified HTC should 

be close to steady-state heat losses of the IDA ICE model. These losses have been evaluated 

at 85 W/K (identified by applying a step function of the space-heating to the IDA ICE model). 

                                          
1

1/ 1/
vent

ie ea

HTC UA
UA UA

= +
+

         (10)  

• The capacitances (Ci and Ce) are strongly related to the building thermal dynamics. Defining 

their physical plausibility is more challenging because their value depends on the excitation 

signal. The effective heat capacitance of the building (Ceff) based on the ISO 13786:2017 [50] 

is taken as a reference value for the capacitances mostly related to the walls (meaning Ci in 

the 1R1C model and Ce in the 3R2C models). Ceff is evaluated assuming daily fluctuations 

(i.e. 24 hours) and using the thermal properties of each layer in the building walls (i.e. 

physical-based approach). Ceff is here equal to 3.9 kWh/K. To be physically plausible, it is 

expected that the identified values, also considering their variance, have the same order of 

magnitude as Ceff. Indeed, none of the excitation signals used in our investigations have 

fluctuations significantly longer than one day. For the 3R2C model, there is no point of 

comparison for the identified value of Ci. However, as it is related to the fast dynamics of the 

building, it is expected to be smaller than Ceff. In addition, the value of Ci should decrease 

with increasing frequencies in the excitation signal. 

4 Results  

In this section, the model performance to characterize the building thermal properties is first 

discussed, followed by the analysis of the optimizer performance. Finally, the simulation 

performance, important for MPC applications, is investigated. The comparisons of this section 

are mainly based on the performance criteria defined in the previous section. However, there are 

20 different training datasets (see Table 2), four different models, four different sampling times, 

two different optimizers and three pre-filtering methods of the virtual experiments, with and 

without a causal shift. It corresponds to a total of 4320 different test cases. Thus, only the most 

representative test cases are taken to illustrate the results and support the conclusions. 

4.1 Characterization of the building thermal properties 

The physical plausibility of the identified grey-box model parameters is verified. It means the 

ability to identify values for the parameters that are in line with physics. For the sake of the 
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conciseness, we mainly focus on datasets 1 to 4 with a short training period but strong excitation 

as well as dataset 14 which has the largest amount of data, see Table 2. These datasets can be seen 

as extreme scenarios so that it makes them representative to illustrate the model performance. 

Other datasets are also occasionally used to better illustrate how the input data influences the 

identification results. As has been mentioned previously in Section 3.3, it has been demonstrated 

theoretically that ACS of the input signal can be beneficial for model identification[36]. 

Therefore, the influence of the ACS is tested. The 3R2C model is used to illustrate the results. 

Some of the results of the 1R1C model are given in Appendix A. Regarding the physical 

plausibility of parameters, the overall heat transfer coefficient (HTC) of the building and heat 

capacitances (Ce and Ci) are used to illustrate the results.  

All the figures in this section are based on the same layout, see e.g. Figure 7. In each figure, five 

cases or datasets are considered. The abbreviation for each case on the horizontal axis follows the 

description given in Table 2. The influence of increasing sampling times on these five cases is 

reported from the left to the right of the figure. Each figure also distinguishes the cases as a 

function of the data pre-treatment. Firstly, the colors of markers correspond to the different pre-

filtering techniques. The cases in red, blue and black represent the MA filter, the FIR filter and 

the direct sampling, respectively. Secondly, cases without ACS are shown by circles in normal 

colors while cases with ACS are shown by triangles in lighter colors. 

4.1.1 Deterministic 3R2C model  

In  Figure 7, the value of HTC is close to the reference value of 85 W/K. The same conclusion is 

obtained for the 1R1C deterministic model, see Figure 18 in Appendix A. The sampling time (Ts) 

does not have a noticeable influence on the HTC. Likewise, the pre-filtering method and ACS 

have no significant impact on HTC.  

 

Figure 7: Identified HTC of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

As shown in Figure 8, the training dataset has the largest influence on Ce while the sampling time, 

the pre-filtering technique and the ACS have a limited impact. The value of Ce is similar between 

the four datasets using PRBS excitation (i.e. cases 1 to 4) and is plausible compared to the Ceff of 

3.9 kWh/K determined using standards. However, it differs for case 14 that generates a higher 

value, well above 3.9 kWh/K. Comparable results are observed for the 1R1C deterministic model 

(see Figure 19Figure 19 in Appendix A). To further illustrate the influence of the dataset, the 

values of Ce identified using an intermittent on-off excitation during each month of the space-

heating season are compared, i.e. cases 9 to 13, in Figure 9. Even though the excitation signal is 

generated from the same control (i.e. intermittent on-off control) and has the same duration of 

one month, the identified Ce strongly depends on the selected period used to train the model, 



 

14 

 

meaning the specific month of the space-heating season.  

 

Figure 8: Identified Ce of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

 

Figure 9: Identified Ce of the 3R2C deterministic model for cases 9 to 13, different sampling times and 

pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

 

Figure 10: Identified Ci of the 3R2C deterministic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

As shown in Figure 10, similar results are obtained for the values of Ci. The case with ACS shows 

a progressive increase of Ci with the sampling time. A possible reason is that Ci represents the 

thermal capacitance of the building combining the air, the furniture, internal walls and, 

potentially, the first centimeters of external walls. With increasing Ts, the high frequencies of the 

inputs and the output are reduced while the low frequencies, corresponding to a longer penetration 
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depth in the walls, have more importance in the evaluation of the thermal capacitance. With longer 

penetration depths, more thermal mass is activated leading to a higher Ci. 

Several conclusions can be drawn. Firstly, the value of the parameters strongly depends on the 

dataset selected to train the model. Both the type of excitation (e.g. PRBS and on-off intermittent 

excitation) and the selected period during the space-heating season influence results. Secondly, 

the pre-processing of data does not have a large influence. Neither the ACS, the pre-filtering 

technique nor the sampling time leads to a significant change in the parameter values. The only 

exception appears with very large Ts. Then, the pre-filtering can prevent the parameter value from 

becoming non-physical. Finally, the HTC characterizing the steady-state performance of the 

building has rather stable values while the other parameters characterizing the thermal dynamics 

of the building, here Ce and Ci, are more strongly impacted by the training dataset and the 

sampling time. 

4.1.2 Stochastic 3R2C model  

For stochastic models, the value and variance of the model parameters are available. However, as 

the HTC is the combination of the three conductances in the 3R2C model, only the value of the 

HTC can be shown, not its variance. The value for HTC for the 3R2C stochastic model in Figure 

11 is similar to the deterministic model in Figure 7. The same conclusion can be made for the 

1R1C stochastic model, shown in Figure 20 in Appendix A. As for the deterministic model, long 

sampling time can lead to a non-physical value of the HTC. While all the pre-filtering prevented 

the value to become non-physical for the deterministic model, only the moving-average filter and 

the ACS have the same effect for the stochastic model. 

 

Figure 11: Identified HTC of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 
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Figure 12: Identified Ce of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

The value and variance of Ce are shown in Figure 12. As long as the sampling time is shorter than 

the system dynamics (i.e. Ts equal 2.5 min), the value of Ce is independent of the training period 

and its variance is limited. Close to the Ceff of 3.9 kWh/K, the value of Ce is meaningful from a 

physical point of view. When the sampling time increases, the behavior should be distinguished 

with and without the application of an ACS. When the ACS is applied, the value and variance of 

Ce are regular even with long sampling time. The ACS has a strong positive effect on the physical 

plausibility of Ce. With ACS, pre-filtering has a limited influence on the results. Without ACS, 

the parameter value and variance become erratic with increasing Ts. Some values are so high that 

they fall outside the y-axis limit of the graph. In addition, no clear trend can be found on the 

influence of the pre-filtering and training period.   

 

Figure 13: Identified Ci of the 3R2C stochastic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

The same phenomenon is observed for the value and variance of Ci in Figure 13. Nonetheless, 

there is one aspect that differs from Ce. As for the deterministic model with ACS, the values of Ci 

with the corresponding stochastic version also tends to increase with the sampling time. A 

possible explanation for this phenomenon has been given in the previous subsection.  

From all the results of the stochastic models, several conclusions can also be drawn. First, the 

identified parameters are strongly dependent on the sampling time. The identified parameters are 

always consistent if the Ts is taken small compared to the shortest time of the system Tmin 

(influenced by the excitation). It is only when Ts gets equivalent or larger than the building 

dynamics that the parameters are getting non-physical without ACS, especially the thermal 

capacitances. The second conclusion is that ACS prevents the parameter value and variance to 

get non-physical for large Ts. With ACS, the uncertainty of the parameters remains limited and 

their value remains physically plausible. Also with ACS, the values identified are mainly based 

on the training dataset but to a much smaller extent than the deterministic model. Pre-filtering 

only has limited influence with ACS while the pre-filtering influence without ACS does not show 

a clear trend, sometimes improving or degrading results. Finally, like the deterministic model, the 

steady-state characteristics HTC is less influenced by the dataset and pre-processing than the 

thermal capacitances. 

4.2 Performance of the optimizer 

The performance of both optimizers defined in Section 3.2 is compared for a selected number of 

datasets (i.e. cases 1 to 4 and 14), with and without ACS, for both deterministic and stochastic 

models. Error! Not a valid bookmark self-reference. shows the optimizer that leads to the 
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lowest prediction error for each test case.  The symbol “D” represents the default greyest function, 

“G” represents the two-stage global optimization algorithm and the symbol “≈” is used when both 

optimizers lead to extremely close results in terms of prediction error and estimation of the model 

parameters. Only results for the sampling times of 2.5 and 30 min are presented in Error! Not a 

valid bookmark self-reference.. However, the same conclusions are found for the other two 

sampling times (i.e. 15 and 60 minutes). 

Table 4: Optimizer leading to the lowest prediction error: each cell of the table has two symbols, one for the case 

without ACS (left) and the other with ACS (right); the symbol “D” means default greyest, “G” means global 

optimization and “≈” means equal performance. 

Time 

(Ts) 

Case  

1R1C  

DS 

(det) 

1R1C 

 MA 

(det) 

1R1C  

FIR 

(det) 

3R2C  

DS 

(det) 

3R2C  

 MA 

(det) 

3R2C  

FIR 

(det) 

1R1C  

DS 

(sto) 

1R1C 

 MA 

(sto) 

1R1C  

FIR 

(sto) 

3R2C  

DS 

(sto) 

3R2C 

 MA 

(sto) 

3R2C  

MA 

(sto) 

2.5min 1 ≈/≈ - - ≈/≈ - - G/≈ - - G/≈ - - 

 2 ≈/≈ - - ≈/≈ - - G/≈ - - G/≈  - - 

 3 ≈/≈ - - ≈/≈ - - G/≈  - - G/≈  - - 

 4 ≈/≈ - - ≈/≈ - - G/≈ - - G/≈  - - 

 14 ≈/≈ - - ≈/≈ - - G/≈  - - G/≈  - - 

30min 1 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈  G/≈ G/≈ G/≈ G/≈ G/≈ 

 2 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈ G/≈ G/≈  G/≈  G/≈ G/≈  

 3 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈  G/≈  G/≈  G/≈  G/≈  G/≈  

 4 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈ G/≈ G/≈  G/≈  G/≈  G/≈  

 14 ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ ≈/≈ G/≈  G/≈ G/≈  G/≈  G/≈  G/≈  

It is observed that the two optimizers have identical results for all the cases using a deterministic 

model, regardless an ACS is applied or not. However, global optimization generally performs 

better than the default greyest optimization for stochastic models without ACS. On the contrary, 

both optimizers have similar performance when ACS is applied. It means that ACS tends to 

preserve the physical plausibility of the model parameters when Ts is large but it also positively 

influences the convexity of the optimization problem. In general, results confirm that it is better 

to use global optimization. Otherwise, the obtained sets of parameters are possibly located at a 

local minimum which mainly depends on the initial guess of the parameters. 

4.3 Simulation performance of the models  

The simulation performance of the grey-box models, analyzed here using the NRMSE fitting, is 

another important aspect of the system identification. As expected, the second-order 3R2C model 

has better simulation performance than the first-order model and is used to illustrate the results. 

Again, only a limited set of results can be shown. The simulation performance of the 3R2C model 

trained on the FHS intermittent on-off dataset (i.e. case 14) is taken. This training period covers 

the whole space-heating season and leads to the lowest variance of the identified parameters in 

Section 4.1. Then, the simulation performance of the model trained on the case 14 is evaluated 

on cases 1 to 4, as cross-validation test cases. In simulation, the full length of each dataset is taken 

as the prediction horizon for both the deterministic and stochastic models. Figure 14 and Figure 
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15  illustrate the influence of the number of steps ahead on the NRMSE fitting for the 3R2C 

stochastic model and datasets 1 and 2. The NRMSE fitting for long k-step ahead prediction (i.e. 

more than two days) is slightly higher than that in a simulation. To study the influence of the data 

pretreatment, the 3R2C is trained on case 14 with different sampling times as well as with and 

without pre-filtering. 

 

Figure 14: Simulation performance of the deterministic and stochastic 3R2C models with different 

simulation length for the stochastic model, trained with the dataset 14 and validated with dataset 1.  

 

Figure 15: Simulation performance of the deterministic and stochastic 3R2C models with different 

simulation length for the stochastic model, trained with the dataset 14 and validated with dataset 2. 
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Figure 16: Comparison of the simulation performance of the deterministic and stochastic 3R2C models 

trained on the dataset 14 without ACS and validated using the other datasets. 

Figure 16 compares the simulation performance of the deterministic and stochastic models 

without ACS. For different Ts and pre-filtering approaches, the deterministic model has a more 

constant simulation performance than the corresponding stochastic model. For the deterministic 

model, the NRMSE fitting tends to slightly decrease with increasing Ts while it tends to increase 

for the stochastic models (except for the PRBS3 case). The deterministic model has generally a 

better simulation performance than its corresponding model in stochastic form even though this 

difference tends to disappear for large Ts. This conclusion is noteworthy as for deterministic 

models the value of the parameters is significantly influenced by the training period and some of 

the values are even not physically plausible. In other words, identifying a model with parameters 

that have a more physical value does not necessarily lead to a model with better simulation 

performance. If one is not interested in the characterization of the thermal properties but rather 

the simulation performance (like in MPC), results suggest that deterministic models can be more 

robust than stochastic models. This makes the resolution of the optimization problem to calibrate 

the model easier (as both local and global optimizer lead to the same parameters). In addition, it 

has been shown that pre-filtering techniques and Ts have a limited effect on model performance. 

This conclusion is important in the context of the design of MPC for small residential buildings 

where a control model should be identified at a low cost, potentially using a fully automated 

procedure.  

Figure 17 compares the simulation performance of the stochastic model with and without ACS. 

While the ACS tends to improve the physical plausibility of the model parameters and positively 

influence the optimization problem, it has in general a negative influence on the simulation 

performance of the model. As already mentioned, the NMRSE fitting generally increases with Ts 

for the stochastic models without ACS. This increase is less pronounced for the stochastic model 

with ACS even though the physical plausibility of the parameters has been improved. Two 

conclusions can be given. Firstly, it confirms that parameters that are more physically plausible 
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do not necessarily lead to better simulation performance. Here, with large Ts and without ACS, 

the value of some parameters, such as Ce in Figure 12, is non-physical but it nonetheless leads to 

better simulation performance. Secondly, the ACS showed to be a robust solution to characterize 

the thermal properties of the building and the resolution of the optimization problem. However, 

it appears from our investigations that the ACS comes at the price of lower simulation 

performance. Finally, none of the approaches investigated here manages to combine high physical 

plausibility and the highest simulation performance at large Ts. 

 

Figure 17: Comparison of the simulation performance of the stochastic 3R2C model with and without 

ACS, trained with the dataset 14 and validated with datasets 1 to 4. 

5 Discussions 

Based on the analysis of the results, some complementary discussions can be given: 

• Even though ACS has a beneficial effect on the performance of the stochastic grey-box 

model, the fundamental reason for explaining this phenomenon is not given in the paper. 

From the authors’ knowledge, no clear explanation has been given in the literature as well. 

• The simulation performance is a good indicator of modeling accuracy in MPC applications. 

In Figure 14, it can be seen that the k-step ahead prediction of two days (or more) has a 

NRMSE fitting close to simulation mode. It shows that the simulation performance is a good 

indicator even though the prediction horizon used in MPC is well shorter than the entire 

simulation period. However, even though it is a good indication,   it is no mathematical proof 

that a model with higher simulation performance would systematically outperform another 

model with lower simulation performance when implemented in an MPC. It should be tested 

using an MPC test case and conclusions will most probably depend on the MPC test case 

selected. 

• The results and conclusions of this paper are based on the stochastic grey-box model in 

innovation form. It is not proven that the results can be directly extrapolated to all 
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formulations of the stochastic differential equations (for instance, the statistical grey-box 

modelling toolbox of CTSM-R [28]).  

• The results and conclusions of this paper are based on the first- and second-order models. It 

is not guaranteed that the results can be extrapolated to a higher order. For instance, previous 

investigations have shown that overfitting may occur in third-order models which may lead 

to more complex analysis. In addition, the exact solar and internal gains have been applied to 

the grey-box models (i.e. they have not been identified). Furthermore, except for the solar 

gains, the distribution of the internal gains and the space-heating power between the two 

nodes of the 3R2C model has been fixed, based on the literature. If all these fixed parameters 

had also to be identified, it would have significantly increased the number of degrees of 

freedom and overfitting may have already appeared at second order [34]. 

• In real applications, the measurements would have some noise due to the sensor precision or 

the resolution of the data loggers. For some additional test cases not reported in the paper, 

artificial noise has been added to the IDA ICE measurements. For these cases, this artificial 

noise did not lead to changes in the conclusions. However, there are many different ways to 

define this measurement noise. For future work, a sensitivity analysis of the measurement 

noise should thus be performed in more systematic way to better understand how it affects 

the conclusions of this paper. Even though our study does not have measurement noise, it 

does have process noise. For instance, the IDA ICE model is multi-zone with a complex non-

linear convective heat transfer between zones while the grey-box model is only mono-zone. 

Finally, in real applications, the air temperature measurements can be impacted by complex 

heat flows such as the building fabric, solar irradiation, low ventilation in the thermostat 

casing or occupant behavior. Such influences on the conclusions should also be analyzed in 

future work. 

• The data series in this paper are based on virtual experiments using detailed dynamic 

simulations of one test case. As future work, it would be interesting to generalize results to 

other test cases and also using field measurements in real buildings.  

6 Conclusions 

The main objective of this paper is to investigate the influence of data pre-processing techniques 

and optimization approaches on the performance of grey-box models. Both the deterministic 

model and stochastic grey-box model in innovation form are investigated using the MATLAB 

system identification toolbox. The analysis is limited to first- and second-order grey-box models. 

Different excitation signals have been considered to generate input-output data. Three main 

aspects of grey-box models have been investigated: (1) the physical plausibility of the identified 

model parameters, (2) the performance of gradient-based compared to global optimizers and (3) 

the simulation performance. Among pre-processing techniques, the influence of the data pre-

filtering (using an MA or an FIR), the sampling time (Ts) and the application of anti-causal shift 

(ACS) have been investigated. In general, it is shown that pre-filtering only has a limited influence 

so this is not discussed in detail in the conclusions. The conclusions appear to be distinct for the 

deterministic and stochastic models. Regarding the excitation signal, results also showed that the 

intermittent heating with on-off control of the electric radiators is a good excitation signal. It 

enables normal occupancy of the building and the collection of long data series as well as contain 

both slow daily and fast dynamics. 

Regarding the physical plausibility of parameters: 

• For deterministic models, the data pre-processing has a limited influence on the identified 

results. The identified parameters are strongly dependent on the types of excitation and the 



 

22 

 

training period. The value taken by some of the parameters, especially the thermal 

capacitance, is not always physically plausible (even for the first-order model). 

• For stochastic models, the identified parameters are physical if the sampling time (Ts) is much 

smaller than the higher frequency of the system to be identified. 

• For large Ts and stochastic models, the parameters become non-physical without ACS (even 

for the first-order model). ACS is extremely beneficial to guarantee the physical plausibility 

of parameters, making the identified parameters not sensitive to the sampling time anymore.   

Regarding the performance of the optimizer: 

• For the deterministic and stochastic models, the sampling time (Ts) does not influence the 

optimizer performance. 

• For the deterministic model, the identification results from the default gradient-based and 

global optimization routines are almost identical (with and without ACS). It seems non-

convexity does not play a prominent role in this case. 

• For the stochastic model, noticeable non-convexity effects already emerged from the first-

order grey-box model (if ACS is not used). The two-stage global optimization leads to lower 

NRMSE than the default gradient-based optimizer and the resulting parameters have 

significantly different values. The non-convexity effects disappear if ACS is applied. 

Regarding the simulation performance and the model application: 

• The deterministic model has in general a higher simulation performance compared to the 

corresponding stochastic model. In our investigation, this difference tends to disappear for 

long sampling times. If one is not interested in the characterization of the thermal properties 

of the building but rather the simulation performance (important for MPC), results show that 

deterministic models can be a robust strategy as the simulation performance is not influenced 

much by the sampling time and the pre-filtering. In addition, the optimization problem 

appears more convex than the corresponding stochastic model. All these aspects can be 

valuable for the development of inexpensive control models for MPC applications where the 

identification procedure needs to be (partly) automated and where the information on the 

measurement accuracy and data acquisition system is limited. Finally, if the only focus is on 

simulation performance, it is worth questioning whether a grey-box model with parameters 

that have limited physical meaning have any added value compared to a black-box model. 

Therefore, in future work, it would be worth comparing the simulation performance of grey-

box and black-box models. 

• The ideal situation would be to combine physical plausibility with the highest simulation 

performance. Using stochastic models, a robust evaluation of the thermal properties requires 

the application of ACS which tends to reduce the simulation performance of the stochastic 

model. In this study, stochastic models appear more suitable for the characterization of the 

thermal performance of the building and results suggest this can be difficult to combine with 

the best simulation performance. However, it remains to be investigated whether the 

simulation performance of the stochastic model with ACS leads to acceptable accuracy when 

applied to an MPC. 
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Appendix A 

 

Figure 18: Identified HTC of the 1R1C deterministic model for the cases 1,2,3,4 and 14, different 

sampling times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

 

Figure 19: Identified Ci of the 1R1C deterministic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

 

Figure 20: Identified HTC of the 1R1C stochastic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 
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Figure 21: Identified Ci of the 1R1C stochastic model for the cases 1,2,3,4 and 14, different sampling 

times and pre-filtering techniques; cases with ACS are shown by triangles in lighter colors. 

 

Figure 22: Identified Ce of the 3R2C stochastic model for cases 9 to 13, different sampling times and pre-

filtering techniques; cases with ACS are shown by triangles in lighter colors. 
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