
Analyzing and improving open-
source template matching for
orientation mapping based on
SPED data

June 2022

M
as

te
r's

 th
es

is

M
aster's thesis

Joseph Vincent Broussard

2022
Joseph Vincent Broussard

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f N
at

ur
al

 S
ci

en
ce

s
De

pa
rt

m
en

t o
f P

hy
si

cs

Analyzing and improving open-source
template matching for orientation
mapping based on SPED data

Joseph Vincent Broussard

Master of Science in Physics
Submission date: June 2022
Supervisor: Antonius T. J. van Helvoort
Co-supervisor: Håkon Wiik Ånes

Norwegian University of Science and Technology
Department of Physics

Abstract

Science has become and continues to be more reliant on fast, accurate, precise and under-
standable computational methods. Most scientific communities have been gravitating towards
open source python packages, as python is more generally readable and understandable than
most compiled languages, and electron microscopy is no different. With the wealth of open
source packages available comes a necessity to test the limitations and efficacy of these pack-
ages. Here the python package Pyxem, built upon the Hyperspy library, is of interest due to
recent developments in fast template matching of scanning precession electron diffraction data.
In template matching an experimental electron diffraction pattern is compared to a bank of
simulated templates, for example for different orientations of the candidate crystal. The ques-
tion then becomes if the template matching approach for orientation analysis can be further
optimized in regards to accuracy of the found final result. The new fast functionality allows
for the systematic study of acquisition parameters such as camera length and processing steps
such as background subtraction. Both simulated and experimental data sets, the later based
on scanning precession electron diffraction of face-centered cubic materials, are utilized for
these parameter tests. It is found that the camera length should be as small as experimentally
reasonable to maximize to amount of diffraction spots. Further, logarithmic intensity scaling
should be used with background subtraction in the form of difference of gaussians. It is also
observed that the accuracy of the results is uneven across orientation space. In addition, tilt
series are used as input. These prove useful, as in an experimental data set, as the found
crystal orientation can be compared to the known experimental tilt step, a reference area that
can be template matched more robustly or a known orientation relationship, as is the case
with identifiable twin boundaries. Instead of comparing the cross-correlation score between
experimental and simulated template, the misorientation angle between the template matched
results and the expected value can be used as matching quality parameter. In addition, mis-
indexations can be identified and the accuracy of the method as a whole quantified. Open
source based template matching has allowed for speeding up and improving template matching
and will lead to the technique being more utilized and its results being fairly valued.

i

Foreword

This is the master thesis for a degree in Physics at NTNU. The work was done between January
2021 and June 2022. All code development and data analysis is done by me unless otherwise
explicitly mentioned. The experimental data used here was taken by Dipanwita Chatterjee and
Emil Christians at the TEM Gemini Centre in Trondheim. I would like to thank my supervisor Ton
for the excellent guidance and the many wonderful discussions we have had on all things SPED,
template matching, science in general and life. I also thank H̊akon for his help and suggestions,
especially those involving code, python and orientation analysis. I thank Emil, Tina and everyone
in the SPED user group at the TEM Gemini Centre for discussions and sharing ideas. Lastly, I
thank my parents whom supported my decision to move all the way from Louisiana to Norway in
the middle of a pandemic to study physics.

ii

Contents

1 Introduction 1

2 Theory 2

2.1 Crystallography . 2

2.1.1 Crystal Structures . 2

2.1.2 Point Groups . 3

2.1.3 Space Groups . 3

2.1.4 Labeling Planes and Directions . 4

2.1.5 Representation of Crystal Orientations . 4

2.2 Diffraction . 6

2.2.1 Scattering . 6

2.2.2 Diffraction . 6

2.3 Electron Microscopy . 9

2.3.1 Hardware Principles . 9

2.3.2 Relevant Modes of TEM . 11

2.4 Data Processing . 12

2.4.1 Preprocessing . 12

2.4.2 Normalized Cross Correlation . 13

2.4.3 Diffraction Simulations . 14

2.4.4 Results and Visualisation . 14

3 Methods 15

3.1 Materials and Preparation . 15

3.2 Microscope and Data Collection . 15

3.3 Hardware and Software . 15

3.4 Work Flow . 16

3.4.1 Evaluation based on Simulated Data . 16

3.4.2 Evaluating preprocessing using experimental data 16

3.4.3 Evaluating template matching using ”known features” in experimental data 17

4 Results 19

4.1 Analysis based on simulated data . 19

4.1.1 Camera Length . 19

4.1.2 Intensity Re-scaling . 20

iii

4.1.3 Orientation Library Step Size . 24

4.2 Preprocessing of Experimental Data . 26

4.2.1 Alignment . 26

4.2.2 Background Subtraction . 26

4.2.3 Effect of Calibration . 28

4.3 Examining Tilt Series . 29

4.3.1 Simulated Tilt Series . 30

4.3.2 Au Nanoparticles Tilt Series . 30

4.3.3 Cu and Si CPU Tilt Series . 31

4.3.4 Au Thin Film Tilt Series . 32

5 Discussion 35

5.1 Analysis based on simulated data . 35

5.2 Preprocessing of Experimental Data . 37

5.3 Examining Tilt Series . 38

5.4 Optimized Setup . 40

6 Conclusion 43

7 Future Work 44

References 45

A Code Contributions to Pyxem 47

A.1 results dict to crystal map . 47

A.2 calibration utils.py . 48

B Crystallographic Information Files used 53

B.1 Si . 53

B.2 Au . 53

B.3 Cu . 54

C General Template Matching Notebook 55

D Simulated data code 60

iv

Acronyms

bcc Body Centered Cubic. 3, 8

DP Diffraction Pattern. 16

fcc Face Centered Cubic. 2–5, 8, 15, 19, 44

FIB Focused Ion Beam. 15

IPF Inverse Pole Figure. 4, 14, 32

NCC Normalized Cross Correlation. 13, 14, 17, 19–21, 26–29, 35–37, 40, 41

PED Precession Electron Diffraction. 9

sc Simple Cubic. 2, 3

SPED Scanning Precession Electron Diffraction. 1, 11, 12, 15, 36

TEM Transmission Electron Microscope. 9, 15

v

1 Introduction

The properties of materials are dependent on their structure. The study and tailoring of these
material properties is important whether it being the study of Al alloys for use in the manufactur-
ing industries or novel materials to solve challenges the world is facing. The ordering of atoms in
materials and especially the change in this order affects the properties as properties are, in general,
direction dependent. To map and analyse the orientation of these materials is often an important
part of the characterization of crystalline materials. Electron microscopy offers high spatial resol-
ution for structural crystalline material analysis, allowing for the probing of the atomic structures
of materials. This allowing for an impressive amount of information to be acquired. 4DSTEM in
particular has become a hot topic to the fields of material physics and material sciences as it is
flexible, powerful and allows for (semi-) automatic analysis with good resolution relative to large
data sizes [21]. One form of 4DSTEM is Scanning Precession Electron Diffraction (SPED), [17],
[24], where the electron beam is precessed. This leads to more stable patterns with more reflec-
tions, which aids in data processing to obtain crystal phase and orientation maps with nm-scale
spatial resolution.

The 4D data stacks obtained from SPED can be analyzed by creating images based on selecting
certain parts of the the 2D signal (virtual imaging), machine learning approaches to extract repres-
entative patterns [16] or comparison to a library of simulated templates from candidate materials
at specified orientations (template matching) [23]. Template matching has become the default
for phase and orientation analysis of SPED data. Early template matching developed by Edgar
Rauch [23] and the basis for the most used commercial package, does not take advantage of re-
latively new computing technologies such as GPU integration or CPU multi-threading. The old
standard template matching package, ASTAR [19], is a proprietary and closed source program
that has the fundamental problem of being a ’black-box’. Other alternatives include Py4DSTEM
[4], which is an open source implementation in python. Recent developments to Pyxem [12], in
the form of Fast Template Matching from Niels Cautaerts et. all [5] has become available in the
open source python environment. This form of template matching is indeed fast, allowing for CPU
multi-threading, GPU integration with Nvidia processors, parallelization and clever manipulation
of templates in orientation space to produce overall lower computation times than the alternatives.
This, in turn, allows for the analysis of larger volumes of data or the use of higher quality input.
It also allows a systematic evaluation of template matching method parameters such as image
processing approaches applied to individual patterns and parameters used in simulation such as
calibration.

The goal of this work is to test and utilize this recent implementation of template matching [5], to
show its potential and find optimized process parameters to achieve better precision and accuracy
from a more objective point of view, as Cautaerts et. all only test it in relation to ASTAR. Further
more, this work will find and describe the challenges present in the template matching routine and
attempt to find ways to work around them. For this work face-centered cubic is taken as example
structure, as this highly symmetric structure is one of the most important conceptually and in
engineering materials. As test data for this evaluation study simulated and experimental data
sets from different sample geometries are used: nanoparticles, thin films and multiphase devices.
Especially important, is the use of simulated input data as it allows analyzing the absolute accuracy
of the template matching results versus a ground truth and thereby how the accuracy can be
optimized by changing given parameters.

The work is structured as follows: first in Ch.2, relevant background theory on crystallography,
diffraction, electron diffraction using a TEM, template matching work flow and relevant data
processing steps will be presented. Details of methodology on the different samples as well as
computational setup and how the template matching will be evaluated are in Ch.3. The results of
different analysis and parameter studies based on both simulated data and experimental data are
presented in Ch.4 and these results, observations and their impact on the efficacy of this template
matching function are discussed in Ch.5. Finally, concrete suggestions based on these results will
be given to improve the SPED based orientation mapping method. The used and constructed open-
source code is given in the appendix to allow transparency and a basis for further developments
for template based orientation mapping.

1

2 Theory

This chapter briefly covers relevant theories of crystal structures ([15], [13], [7]), electron diffraction
([29]), electron microscopy ([17], [27]) and data processing required for template matching ([5], [21],
[23]).

2.1 Crystallography

2.1.1 Crystal Structures

In order to begin to describe the properties of different solid, it is necessary to first describe how
the atoms in a crystal are arranged. A crystal is made of two parts, a basic structure or unit cell
and a lattice that this unit cell periodically repeats itself within. The positions of atoms can be
defined within a Bravais lattice in 3D as follows:

R⃗ = n1a⃗+ n2⃗b+ n3c⃗ (1)

where n1, n2 and n3 are integers and a⃗, b⃗ and c⃗ are three primitive, linearly independent vectors
[15].

The simplest lattice, the Simple Cubic (sc) lattice has the primitive vectors:

a⃗ = a(1 0 0), b⃗ = a(0 1 0), c⃗ = a(0 0 1) (2)

where a is the space between atoms. There are seven distinct crystal systems; cubic being the
simplest most symmetric, with all side lengths and angles being equal and triclinic the least sym-
metric, with no side lengths or angles being equal. These systems can also categorized by their six
lattice parameters: edge lengths a, b, c and angles between them α, β, γ. For the cubic lattices these
are a = b = c and α = β = γ = 90◦, while for example the hexagonal lattices’ parameters are a = b
and α = β = 90◦ γ = 120◦. Additionally, these systems can have different lattices and there are
in total 14 Bravais lattices. The cubic system can for example be primitive(P), body-centered(I)
or face-centered(F).

However simple cubic crystals are quite uncommon to find among monoatomic structures. A more
common lattice found in nature, and consequently the lattice that both gold (Au) and copper (Cu),
which will be the main crystalline materials used in this thesis, prefer Face Centered Cubic (fcc)1.
The fcc lattice has atoms in both the corners and centers of the faces of a cube as in 2.1c. The
primitive vectors, for an fcc lattice are given by:

a⃗ =
a

2
(1 1 0), b⃗ =

a

2
(1 0 1), c⃗ =

a

2
(0 1 1) (3)

where a is the length between adjacent corners of the cube [15].

An important lattice for this work is the diamond structure, another cubic lattice and related to
fcc and the structure that silicon (Si) takes; see 2.2a. It is formed by taking two fcc lattices and
shifting one by 1

4 along the body diagonal. It’s primitive vectors are given by:

a⃗ =
a

2
x̂+

a

2
ŷ, b⃗ =

a

2
x̂+

a

2
ẑ, c⃗ =

a

2
ŷ +

a

2
ẑ (4)

It is of course possible to to have compound structures; different elements forming the group at
each lattice point. A composite structure that can be described using the introduced fcc lattice

1face centered cubic is also known as cubic close-packed and represents the most efficient packing mode of spheres
in a cube.

2

(a) (b) (c)

Figure 2.1: Three cubic Bravais Lattices: (a) Simple Cubic (sc), (b) Body Centered Cubic (bcc),
(c) Face Centered Cubic (fcc)

(a) (b) (c)

Figure 2.2: Examples of (a) diamond(Si), (b) rocksalt(NaCl) and (c) zincblende(GaAs) structures

is the rocksalt structure, that which NaCl commonly takes. This is created by again taking two
fcc lattices but this time shifting one by 1

2 along any lattice vector as they are all symmetric, see
Figure 2.2b. By taking the diamond structure but alternating the atoms, the zincblende structure
can be arrived at as in Figure 2.2c. These quite simple cubic systems with 1 or 2 elements can
be easily described visually; however for more complex regular structures, a more systematically
complete description is necessary.

2.1.2 Point Groups

A crystal can also be described by its symmetry. There are only a few symmetry elements required:
rotation 1, 2, 3, 4, 6, reflection m, inversion i or -1 and rotation inversion. Combining these there
are only 32 unique combinations, the 32 crystallographic point groups ranging from least symmetry:
1 in the Hermann–Mauguin notation to most symmetry. For monoatomic fcc the notation of point
group is 4

m 3̄ 2
m . The notation describes the symmetry elements of the structure for example in 4

m 3̄ 2
m

the first, 4
m , describes four fold, 90°, mirrors in the a⃗, b⃗ and c⃗ directions, the second, 3̄, describes

a three fold around the central diagonals, and the third , 2m , describes a two fold around the face
diagonals. These Hermann–Mauguin notations are also often shortened, for example m3̄m is short
for 4

m 3̄ 2
m . The above introduced diamond and rock salt lattice have the same point group. The

zincblende, although related via the deduction above, has the 4̄3m point group. Point groups are
relevant for describing and understanding properties such as conductivity and optical properties.

2.1.3 Space Groups

For this, the symmetry of the group at a lattice point(section 2.1.2) is combined with the sym-
metry of the lattice: the 14 Bravais lattices(section 2.1.1). There can be additional translation
symmetries, a combination of a symmetry element as described above and a partial translation:

3

a reflection plane can become a glide plane (along some axis: a,b,c,g,d or n) and a rotation axis
can become a screw axis. With proper book keeping, as not all combinations are valid, 230 crys-
tallographic space groups can be fully described from this. For example Cu and Au are fcc with a
point group of m3̄m and so have a space group of Fm3̄m or space group 225 and Si has a space
group of Fd3̄m or 227; compared to 225 a m is replaced by a diagonal glide plane: d.

The 230 space groups are listed in the International Table of crystallography, describing all the
symmetry and possible lattice points. Thereby crystals can be created (using the specific symmetry
operations), knowing the space group, elements and their lattice positions and the six lattice
parameters. This information is summarized in a crystal information file, .cif, used to create, by
software as used in present work, models or do calculations on a given crystalline material. In this
work .cif files from [11] are used for simulating the candidate materials and calculating diffraction
patterns rather than defining them directed as described in 2.1.1 see appendix B for list.

2.1.4 Labeling Planes and Directions

In order to further describe crystals, indexing of directions and planes in crystals using zone axes
and Miller indices. A zone axis, generally [U V W], expresses distance based on the lattice
constants a1, a2 and a3 as the whole numbers U, V and W. A group of symmetrically equivalent
zones axes is generally ⟨ U V W ⟩, so ⟨1 0 0⟩ will describe all six of the cubic primitive vectors,
both positive and negative, including [1 0 0], [0 1 0] and [0 0 1]. See figure 2.3 for visual example.
Planes are described by Miller indices, generally (hkl) where hkl are, similar to the zone axes,
whole numbers describing the plane intercepts of a⃗1, a⃗2 and a⃗3. Miller indices can also be used
to describe a family of symmetrical planes, generally {hkl}. For example {1 0 0} describes all six
equivalent faces of a cube [13].

Figure 2.3: Lattice vector [111] and the plane, {111}, it is normal to

2.1.5 Representation of Crystal Orientations

Two common ways in which 3D orientations are visualized in 2D representations are with a pole
figure and an Inverse Pole Figure (IPF). A pole figure is created by placing a crystal cell in
the center of a unit sphere, where the crystal’s plane normals intersect this sphere are its poles.
The pole figure is then at least two of these poles that come from non-parallel planes. Then by
projecting these poles down to the equatorial plane, a stereographic projection can be created.
The stereographic projection, in planes or directions, can be used to analyze relationships between
different planes/directions, such as the angle between them. Some example stereographic poles
are given in Fig. 2.4. An IPF is created by instead of rotating the crystal at the center of the
sphere and taking its poles, the sphere is rotated around the crystal and its orientation is defined
based on the coordinate system of the specimen [7]. The IPF is often reduced to a characteristic
reduced zone based on the symmetry of the point group.

4

Instead of visualizing orientations, euler angles can be used to describe them in a more direct way.
These euler angles are a set of three angles that describe a set of chained rotations of an object.
For crystallography this is often done the Bunge convention, where the order of the rotations is
ZX ′Z ′′. These angles are normally given for on object with respect to the sample coordinates, the
Z direction being along the beam direction and the X and Y are 90° from each other along the
specimen. Instead of visualizing or describing a specific orientation of the crystal, it can be more
relevant to describe an orientation with respect to another orientation; called a misorientation.
Misorientations can be useful for discussing differences in orientations between grains or between
tilts and will be further discussed in sections 4 and 5.

(a)

(b) (c)

Figure 2.4: Example of stereographic projections of an fcc structure along the (a) [001], (b) [011],
(c) [111] poles.

When mapping orientations it is often useful to color an image of the sample in real space with
colors based on orientation. This is done by assigning colors across the reduced zone in a direction
and coloring a real space image based on the color corresponding to orientation. An example is
given in Fig. 2.5 where the coloring for the three orthogonal directions, the real space orientation
of unit cell and the IPF depicting the color coding are shown [20]. It is important to note that one
orientation map will only give the orientation in one direction, i.e. along the z direction and as

5

such to get the full orientation map at least two directions must be used. For this work z is fixed
to the direction of the electron beam .

(a) (b) (c)

Figure 2.5: (a) Colored orientation map of sample C with (b) unit cell orientations and (c) colored
IPF showing the orientation to color relation.

2.2 Diffraction

2.2.1 Scattering

Electrons are charged and have low mass, which allows for them to be easily scattered when
passing near atoms, either by the nucleus or by the electrons of the atoms. Electron scattering is
normally split by two criteria: elastic vs inelastic and coherent vs incoherent. If there is no
energy loss then the scattering is elastic, if there is energy loss it is inelastic. The coherence of
the scattered electrons deals with their wave nature. Two electrons are coherent if they have the
same wavelength and phase. Finally, scattering can be direction dependent. It is differentiated by
its angle of scattering, it is forward scattered if it is < 90◦ or backscattered if it is > 90◦.
Generally speaking, elastic scattering is coherent for thin crystalline samples forward scatterd and
has a low scattering angle(1-10°).

2.2.2 Diffraction

Coherent elastic scatter of a wave with wave length λ similar to the interatomic lattice plane
spacing d: θB (for Bragg) is the angle between the wave vector and the atomic plane and the
scattering angle is 2θB [29]. This is Braggs’ law, written:

2dhkl sin θB = nλ (5)

In 2.1 the crystal is described in real space, however it can also be described in so called reciprocal
space. Rewriting Braggs’ law as:

2 sin θB
λ

=
n

d
= |K⃗| (6)

This new vector K⃗ is reciprocally related to d. A reciprocal-lattice vector can be defined similar
to 1 as:

R⃗∗ = m1a⃗∗ +m2b⃗∗ +m3c⃗∗ (7)

6

These translation vectors a⃗∗,b⃗∗ and c⃗∗ are defined by:

a⃗∗ · b⃗ = a⃗∗ · c⃗ = b⃗∗ · c⃗ = b⃗∗ · a⃗ = c⃗∗ · b⃗ = c⃗∗ · a⃗ = 0 (8)

and
a⃗∗ · a⃗ = 1; b⃗∗ · b⃗ = 1; c⃗∗ · c⃗ = 1 (9)

From this a reciprocal vector ⃗ghkl can be defined as:

⃗ghkl = ha⃗∗ + kb⃗∗ + lc⃗∗ (10)

where h, k, l define the plane (hkl) and the length of ⃗ghkl is defined as:

| ⃗ghkl| =
1

dhkl
(11)

Putting all of this together, the conditions for Bragg diffraction can be defined as:

K⃗ · r⃗n = N (12)

or even more simply:
Q = G (13)

which are the Laue conditions for different directions. The condition is slightly relaxed as K⃗ can
also be defined as ⃗ghkl+s with s being the excitation error of small deviations from the absolute
Bragg condition that will still produce diffraction spots. Convoluting the reciprocal lattice with a
reciprocal-lattice rod(relrod), that has a length of s, centered on each lattice point gives a 3D grid
of relrods that is used to describe the points that produce diffraction spots. By drawing a sphere
of radius 2π

λ onto the lattice, and where this Ewald sphere intersects the relrods in the lattice
diffraction spots are produced. This is a practical visual representation of when diffraction occurs
and schematically shown in Fig. 2.6.

Figure 2.6: Ewald sphere over reciprocal lattice

When K⃗ = ⃗ghkl is satisfied the intensity of the coherent diffraction spot is defined as

I(q) = |FG|2 (14)

NFG = N

∫
cell

dV n(r⃗) exp−ig⃗ · r⃗ (15)

7

(a)

(b)

Figure 2.7: Example diffraction patterns of (a) bcc and (b) fcc both at the [001]

This F⃗G is the structure factor. The structure factor of the basis is defined as

FG =
∑

fj exp−i2π(hxj + kyj + lzj) (16)

For a primative lattice, one basis per unit cell, all planes will have a non-zero FG Using the bcc
lattice as an example; the basis has identical atoms at (0 0 0) and (12

1
2
1
2) so the structure factor

for bcc is:
F (hkl) = f(1 + exp−iπ(h+ k + l)) (17)

This creates the kinematic diffraction conditions for bcc as:

F = 2f for h+ k + l = even integer

F = 0 for h+ k + l = odd integer
(18)

Thus for bcc structures, the diffraction pattern at (100) or (111) will have no intensity, due to
destructive interference from that plane, but will contain spots at (200) and (110). Refer to a Fig.
2.7 for the [001] zone of bcc.

The same can be done for fcc giving:

F = 4f for h, k, l = all odd or all even

F = 0 for h, k, l = mixed odd and even
(19)

These diffraction patterns are dependent on the relation between the crystal orientation and the
incoming electrons. Different orientations of the crystal will create distinct diffraction patterns like
those in Fig. 2.7. For a polyatomic structures, the structure factor is no dependant on the relation
between the to different atoms, for example rocksalt has diffraction conditions:

F = (4(fNa − fCl))
2 for h, k, l = all odd

F = (4(fNa + fCl))
2 for h, k, l = all even

F = 0 for h, k, l = mixed odd and even

(20)

8

(a) (b)

Figure 2.8: Example diffraction patterns of fcc at (a) [011] (b) [111]

An important note is that these rules and the intensity equation are only true for purely kinematic
scattering, in an experimental setting the diffraction becomes more complex as electrons can in-
teract with other already diffracted electrons inside the specimen. These dynamical effects can
extinguish spots that are allowed or create spots that are forbidden, which can sometimes lead to
unexpected results. For example a diamond structure has conditions:

F = 4f for h, k, l = all odd

F = 4f for h, k, l = all even and h+ k + l = 4n

F = 0 for h, k, l = mixed odd and even

(21)

Given these conditions, (200) would be forbidden, however a sample could exhibit (200) spots that
come from the (111) spots interfering constructively, shown in Fig. 2.9.

2.3 Electron Microscopy

2.3.1 Hardware Principles

A Transmission Electron Microscope (TEM) can be split into five principle stages; an electron
source, illumination stage with condenser lenses, objective stage with the objective lens and sample,
magnification stage with intermediate lenses and projector lens and finally observation and/or
recording device. The electron source is simply what creates the electrons at a given energy, an
example being a field-emission gun. The illumination part contains a set of condenser lenses that
are used to focus and direct the electron beam onto the sample. The objective lens is the primary
lens for forming an image from the sample that sits inside this lens. The magnification part consists
of multiple intermediate lenses that are used to adjust the magnification and to shift between real
space and reciprocal space. These lenses are electromagnetic lenses that can change the trajectory
of the electron beam. In each segment there are also apertures to limit the beam or select a
certain scattered beam and stigmators to obtain a round beam or isotropic signal. This is only the
principal components, there are of course additional components especially for specific modes of
TEM. For example, when using Precession Electron Diffraction (PED) there are deflectors to tilt
the beam about the optic axis and deflectors to correct the image for the rotating beam, explained
further in 2.3.2.

9

Figure 2.9: Simulated diffraction pattern of Si(diamond cubic) with kinematically forbidden spots
in red

10

Figure 2.10: Schematic of TEM in diffraction mode

2.3.2 Relevant Modes of TEM

While there are a great many possible modes that a TEM can be used for utilizing the different
scattering phenomena described in 2.2.2. Techniques include dark field imaging, high-resolution
TEM, electron energy loss spectroscopy(EELS) and energy-dispersive X-ray spectroscopy(EDS);
the relevant modes for this work are Scanning Transmission Electron Microscopy(STEM), Preces-
sion Electron Diffraction(PED) and Scanning Precession Electron Diffraction (SPED). The later
two are central in the present work and dedicated imaging and spectroscopy techniques are not
further addressed here.

Scanning Electron Diffraction Instead of having a relatively large parallel beam hitting
the sample and using a selected area aperture in an image plane under the specimen; a convergent,
more focused electron beam can be used to hit more localized parts of the sample: a few nm instead
of ¿100 nm as in selected area diffraction. This beam will produce diffracted spots more as discs
than the more point-like spots from a parallel beam. By rastering or scanning the beam across
the sample and recording an image at a specified frequency, a set of diffraction patterns can be
recorded with each one representing a small(normally around 1-2 nm) part of real space.

Precession Electron Diffraction The electron beam can be precessed about the optic
axis at some constant precession angle with a specific frequency. As the beam rotates, multiple
diffraction patterns are captured, which can then be integrated to a create a single ’mean’ pat-
tern. It is important to note that after the beam has passed through the sample, it is rotated
back(descanned) in order to correct the image since the beam is being rotated. The resultant
pattern has more reflections as more of reciprocal space is scanned (shaded region in Fig. 2.11(b)).
In addition, the rotational summed pattern, due to the averaging of many slightly different angles,

11

will appear more kinematic like [27].

(a) (b)

Figure 2.11: (a)Schematic view of a precessed beam through a sample and (b) Precessed Ewald
sphere over a reciprocal lattice

Scanning Precession Electron Diffraction By scanning the PED beam across a
specimen, many different precessed diffraction patterns can by acquired for the sample creating a
Scanning Precession Electron Diffraction (SPED) data set. This SPED data set is a 4D (two real
space, two reciprocal space; written as (x, y|sx, sy)) set where each pixel in real space has a PED
pattern. This allows for collection of nanometre scale orientation and phase information from a
sample that can then be used for texture, strain or grain size analysis [17].

2.4 Data Processing

Once the data set, a 4D data stack, from SPED has been collected, it is processed based on
the procedure in figure 2.12. This procedure is called template matching where the experimental
patterns at each scanned point are compared to the calculated patterns in different directions for
candidate phase(s) [23], [5], [21]. This will give phase and orientation maps.

The SPED data can be processed differently, for example virtual imaging, a selected part of signal
space is represented in the scanning space, or machine learning approaches selecting representative
patterns [16]. The Data and Crystal Structures sections have been discussed above, here the
remaining steps will be explained.

2.4.1 Preprocessing

Diffraction Pattern Stack Alignment Alignment is an essential step for the data
processing of SPED data. Here the individual diffraction patterns are aligned so that the center of
the direct beam is in the center of all of the images. This is necessary as there can be drift of the
patterns over the dataset. There are three common methods used in Pyxem [12] used for finding
the shift required for aligning: cross correlation, blurring and interpolation.

• Cross correlate: The shift is calculated relative to an circle perimeter. The circle can
be refined across a range of radii during the centring procedure to improve performance in
regions where the direct beam size changes, e.g. during sample thickness variation.

• Blur: Estimates direct beam position by blurring the image with a large Gaussian kernel
and finding the maximum.

• Interpolate: Finds the center of the primary beam in the image by summing along X/Y
directions and finding the position along the two directions independently.

12

Data

Preprocessing

Crystal
Structures

Simulations

Normalized
Cross Cor-
relation

Results

Figure 2.12: Standard Data Workflow: Schematic representation of analyzing template matching
using the normalized cross correlation scores.

Background Noise Subtraction Another important step, particularly for template match-
ing, is background subtraction. The diffraction patterns will have a background noise that most
consists of a gaussian profile centered on the direct beam from the substrate the sample is prepared
on. The methods used for this are common methods used for other types of signal noise reduction,
difference of gaussians, median kernel, radial median kernel and h-dome are used in Pyxem [12].

• Difference of Gaussians: A edge enhancement filter that works by subtracting the original
image from a gaussian blurred image of given gaussian size.

• Median Kernel: A smoothing filter that keeps edges by replacing each entry with the
median of neighboring, or more, entries.

• Radial Median: Similar to median kernel but instead of neighbors or grouped neighbors,
it uses a median based off of radial distance for each pixel.

• H-Dome: A method that finds local maxima and then removes those that are lower than a
given parameter.

The results for these different background subtraction methods are discussed further in section
4.2.2.

2.4.2 Normalized Cross Correlation

The patterns and simulations are compared by calculating the Normalized Cross Correlation (NCC)
score:

Q =

∑m
j=1 P (xj , yj)T (xj , yj)√∑m

j=1 P (xj , yj)2
√∑m

j=1 T (xj , yj)2
(22)

Then the template with the highest NCC score is taken as the ’best’ match for a given pattern
and it moves on to the next pattern. In essence this equation multiplies the intensity from the
pixels within the pattern(P (xj , yj)) and the template(T (xj , yj)) and then normalizes the summed
result. So for high intensity in both pattern and template on the same pixels gives a higher NCC

13

score, which equates to a ’better’ match, as the highest overall score is chosen as the match. It is
important to note that this is not preformed on every single pixel, but instead only the peaks of
the diffraction spots in the simulations, to limit the computation required. NCC is used as it fast
but still produces results similar to more computationally demanding methods [5].

2.4.3 Diffraction Simulations

An important step of template matching is simulating prospective patterns to which the experi-
mental patterns are compared. The simulations follow the principles as described in section 2.2. In
Diffsims this is done by first calculating the reciprocal lattice of the given structure and finding the
points within the sphere 2

λ . It then checks the Bragg condition, sin θ = λ
2dhkl

for each reciprocal
point. The intensity each of these kinematically allowed reflections is given by Ihkl = FhklF

∗
hkl.

It is important to simulate the necessary orientations evenly and keeping in mind the symmetry
of the system to limit the amount of computations necessary. For instance, in a cubic structure it
is unnecessary to simulate every possible orientation because of the many different symmetries, so
the simulations are only done for the reduced zone. Another simplification done in Pyxem, is to
only simulate one pattern with zero inplane angle(the first euler angle) and to instead simply rotate
that pattern over 360°; this is more computationally efficient than simulating all the patterns [5].

Gridding across orientation space is done by producing an array of beam directions, within the
stereographic triangle of the relevant crystal system based on a mesh of the unit sphere. All of this
together gives a computationally efficient setup for simulating the necessary diffraction spots used
in template matching [5]. The resolution or the grid is given in degree and equates to the largest
angle between any nearest template. For example, to grid over m3m space at 45° resolution would
give the three corner orientations of the IPF, at 1°: 1081 orientations are given and at 0.5°: 4186
evenly space orientations are returned.

(a) (b) (c)

Figure 2.13: Orientation grids of equal angular spacing in Z-IPF for resolutions of (a) 45°, (b) 1°,
(c) 0.5°

2.4.4 Results and Visualisation

The results acquired from the template matching method consist of phase, orientation and NCC
score. The phase returned as the match is simply whichever phase matches best, assuming there are
multiple prospective phases in the library. Orientations are in the form of euler angles, as mentioned
in 2.1.5. Euler angles are used instead of other orientation representations for computational
reasons, an euler angle is only three numbers while for instance a rotation matrix is nine. It is also
possible to record more than just the orientations with the highest NCC score, giving a ranked
list of orientations, allowing for the potential for post-processing and quality metrics. Along with
the orientations the NCC scores are also recorded, which can also be utilized in crystallographic
analysis, which is discussed in in sections 4 and 5.

The visualisation of results is done principally in Orix [1], allowing for phase maps (simple maps
of which phase matches best), orientation maps (as seen in figure 2.5), correlation maps and more.

14

3 Methods

3.1 Materials and Preparation

Three different samples are used in this work:

A: Au nanoparticles

B: Au thin film

C: CPU device

Sample A: The Au nanoparticles (fcc) were synthesized by a wet-chemical route as described by
Singh et al. [25] by Dr S. Bandyopadhyay at the Department of Chemical process technology,
NTNU. The specimen was prepared, by A. van Helvoort, by drop casting the sample further in a
deionized water diluted suspension on a 300 mesh Cu grid with a holey C support film and drying
the solution slowly in the air at room temperature. Well-distributed nanoparticles reduce the risk
of overlap during tilt series.

Sample B: The thin Au films (fcc) were deposited by DC sputtering on 20 nm thick amorphous
SiO2 windows of commercially available TEM grids (TEMwindows.com). A thin metallic adhesion
layer Ti was first deposited to avoid delamination of the Au film. The specimen was prepared by
M. Heinig at DTU and further details can be found in [9]. The thickness of the amorphous Ti was
approximately 1.0 nm and the polycrystalline Au film was 10 nm thick. This sample represent a
polycrystalline film. The small thickness reduce risk over overlap and inelastic contributions. The
sample contains a high density of Σ3 twins

Sample C: A CPU chip [Still details from Magnus/Emil] were a TEM specimen was extracted by
Focused Ion Beam (FIB) lift-out. The FIB used was a FEI Helios Dualbeam and done by M. Nord
[check] using a 30 kV Ga beam and final polishing was done at 5 kV The specimen thickness was
ca. 120 nm. This specimen represent device structures and contains a 111-Si substrate (diamond
fcc) useful for calibrations, polycrystalline metallic channels (not studied in this work) and a thick
poly-crystalline Cu film (fcc). TEM of this specimen has not been published so far.

3.2 Microscope and Data Collection

All data is collected on a JEOL JEM 2100F at 200 kV equipped with a Nanomegas ASTAR
scanning precession system. The microscope was aligned following the principles of Barnard et al.
[2]. A probe size of 1 nm, camera length of 12 or 20 cm, a precession angle of 0 (non-precessed
reference data) or 1°, exposure time 1 ms (unprocessed) and 10 ms (precessed) per pixel and
a precession frequency of 100 Hz. The data stacks were collected on a 256x256 Medipix direct
electron detector using a QuantumDetectors Merlin system. The data of sample A and C were
collected by Dr C. Christiansen and data of sample B was collected by Dr. D. Chatterjee. In Table
3.1 the data sets used in this study are presented.

3.3 Hardware and Software

Most of the template matching and data processing is done a PC with a NVIDIA GTX 1060
6GB possessing 1280 CUDA cores for the template matching, 16 GB of RAM and an Intel i5-
7600K CPU. When necessary due to RAM or computational limitations, the IDUN cluster at
NTNU was used. All the computational work was done in Python with the primary packages
being Hyperspy[22] development version(now release 1.7) that provides the basis for how signals
are stored, Pyxem[12] development version (now release 0.14.1) for most 4D SPED processing and
template matching, Diffsims[6] development version (now release 0.5) for the diffraction simulations

15

Table 3.1: Data Sets Used in this Study: All datasets taken at a camera length of 12cm. All
datasets have a pixel count of 16384, which gives a raw data size of 2GB each or 10GB
for a set of five tilts.

Au Nanoparticles(A) Au Thin Film(B) Cu and Si CPU(C)
Non-Precessed zero tilt zero tilt zero tilt

zero tilt zero tilt zero tilt
zero tilt +5°x zero tilt +5°x zero tilt +5°x

Precessed (1°) Tilt Series zero tilt +10°x zero tilt +10°x zero tilt +10°x
- zero tilt +5°y zero tilt +5°y
- zero tilt +10°y zero tilt +10°y

Size (Real|Reciprocal) 128x128|256x256 128x128|256x256 256x64|256x256
Step Size 3 nm 5 nm 11 nm

and Orix[1] development version (now release 0.9) for handling and plotting orientations. The used
code, given in the form of Juypter Notebooks, is in appendix A. For experimental data sets, the
following preprocessing is applied: data is first stored in a .mib file but is converted to a .hdf5 or
.hspy for further use using Pxyem and Hyperspy. Once the data is in a usable format for Hyperspy
and Pyxem, the data can be processed. The individual DPs are then centered as per 2.4.1 and any
distortions corrected for with an affine transformation.

3.4 Work Flow

3.4.1 Evaluation based on Simulated Data

Simulated data is used to test the matching and preprocessing parameters of intensity scaling,
simulation resolution and calibration in a controlled way. In place of the normal acquired data,
the simulations used for the matching are first are given a guassian spread on the diffraction spots
and then converted to hyperspy signal. No artificial noise is added to simulated data, the effect
of noise will be evaluated using experimental data in the other parts. Here the following different
parameters can be varied; calibration, camera length, intensity scaling, simulation library angular
resolution(of 0.1°, 0.25°, 0.5°, 1°, 2°), and the crystal orientations themselves These results are
then compared to the known ”ground truth” orientations of the simulated DPs and the matched
orientations. The simulated data is also used to create artificial tilt series to test how the matching
is affected and can be used to evaluate experimental tilt series. The analysis in this part is depicted
in Figure 3.1.

This approach allows for a ground truth to always be known so that parameters can be tested
and their effects seen directly from resultant misorientations without the additional variables that
experimental data comes with, such as artifacts or noise.

3.4.2 Evaluating preprocessing using experimental data

Experimental is also used to test preprocessing steps: intensity scaling, calibration and background
subtraction. For the intensity scaling and calibration, this is done to reinforce the results from
simulations. Testing the background subtraction is only done on experimental data. The data is
given background subtraction as per 2.4 and any other major effects such as gaussian bluring or
an intensity cutoff. The optimal calibration is found by taking prospective patterns and matching
these many times while varying the calibration to find the highest correlation score. Once the
experimental data is processed, it can undergo template matching. Here any intensity scaling such
as logarithmic scale is done as well. Once the template matching is completed the results can be
put into a Orix crystal map object that allows for easy saving, plotting, and further analysis.

16

Simulated Data

Preprocessing

Crystal
Structures

Simulations

Normalized
Cross Cor-
relation

Results Comparison

Figure 3.1: Simulated Data Workflow: Schematic representation of analyzing template matching
using simulated input.

3.4.3 Evaluating template matching using ”known features” in experi-
mental data

For this part, experimental data is used as in 3.4.2. The updated work flow is seen in figure 3.2.
However instead of optimizing for the NCC score, a known or knowns can be used to evaluated
the template matching results. The difference between the tilts is used for all samples: A, B and
C. In addition, sample B and C had a know orientation relation between some grains: Σ3 twins in
Au and Cu respectively, which is a known 60° misorientation. Sample C has Si as a known feature
at a known orientation(111) which allows for easy calibration and another way to track the tilts
and compare with the Cu. Generally, there are not knowns present, like a tilt series or known
orientation relation, only a library of candidate templates. Using the ranking correlation score can
be used to analyze steps in the procedures as calibration and background handling. This will be
done prior to analyzing tilt series with knowns.

17

With Knowns

Preprocessing

Crystal
Structures

Simulations

Normalized
Cross Cor-
relation

Results
Compare
to Knowns

Figure 3.2: Tilt series Data Workflow: Schematic representation of analyzing template matching
using ’5D’ tilt series as input.

18

4 Results

4.1 Analysis based on simulated data

Simulated data can be used to directly test the method of template matching and evaluate starting
parameters without addition deteriorating effects, such as noise, effects present in experimental
data. This approach takes advantage of having a known ground truth to compared the template
matching results to. This section covers the results from using simulated data, based on kinematic
theory described in 2.2.2 as an input, described in 3.4.1, on the parameters of camera length,
intensity rescaling and orientation sampling.

4.1.1 Camera Length

The camera length is an important parameter for data and can have a large impact on how reliable
template matching can be for a given sample. Camera length controls how much of reciprocal
space and how many spots are visible and can effect resultant NCC scores and therefor matching
results.

The simulated test data sets are created by taking 4000 random library entries from a library
created with a resolution of 0.5°, then given a random rotation in the in-plane(z) direction. This
allows for sampling of the entire relevant orientation space as shown in fig 4.1. The templates
are given a gaussian blur of sigma 0.5 to better mimic experimental data as the templates are
simulated as single point patterns. For this test these artificial data sets are created with varying

reciprocal space calibrations,given in Å
−1

/pixel, controlled experimentally by camera length, and
then matched against the corresponding library from which the artificial data was picked.

Figure 4.1: IPF view of how the randomly selected orientations sampling the cubic orientation
space.

This is done here with Au and Cu, both fcc, to show how the lattice parameter(s) relative to
camera length can effect the results and average accuracy. The misorientation between the known
orientations used for simulation (ground truth) and the best matched orientations can be used to
test how close the template matching gets to the true value. One way to represent these results
is by the mean misorientation angle of all 4000 patterns, while removing outliers with over 10°
misorientation angle, as in fig 4.2.

Here we see that clearly the mean misorientation angle decreases as calibration increases and for

19

Figure 4.2: Mean misorientation angle between known orientation and template matching result
orientation as a function of reciprocal space calibration for Au and Cu. The vertical

line represents the experimental camera length of 12cm at 0.00938Å
−1

/pixel

Au the point corresponding to 12 cm camera length is at roughly 0.00938Å
−1

/pixel. It also shows
that Cu(red square), which has a slightly smaller lattice parameter than Au(blue circle), gives
worse matching results for every point as the diffraction spots are further apart than those in Au.
This shows that there is a relation between the number of diffraction spots present in the pattern
and accuracy of the template matching.

This can also be represented as the percentage of the patterns that match exactly to their known
orientations. Here we see that the number of patterns that match exactly to the known decreases
from 99% for both Au and Cu very quickly as the calibration decreases, falling to 44% for Au and
23% for Cu at a camera length of 12 cm.

4.1.2 Intensity Re-scaling

The NCC based template matching approach can be done with different intensity scales for the
patterns and templates. By doing so, NCC scores can be effected to produced better or worse
results. Here linear, binary and logarithmic intensity profiles are tested to find which one can

20

Figure 4.3: Fraction of patterns that are matched exactly(a misorientation of zero) as a function of
the reciprocal space calibration. The vertical line represents the experimental camera

length of 12cm at 0.00938Å
−1

/pixel

produce better results. Linear is without any changes, binary shifts the intensity scale to be either
1 or 0 and logarithmic takes a logarithm of the original intensity values. The scaling is done on
both the pattern and template for consistency. Once again the simulated data is created with 4000
random patterns for a library of 0.5° resolution using Au at 0.01 calibration, as in 4.1.1.

Table 4.1: Effects of re-scaling expressed in NCC score, mean misorientation angle and exact
matches for three different intensity scalings.

NCC score min/max Mean Misorientation Angle Percent of Exact Matches
Linear 0.0759/0.1559 0.90° 21.2%
Binary 0.0326/0.0734 2.18° 3.7%
Log10 0.0127/0.0527 0.43° 47.3%

An important observation is that the absolute NCC score is changed by the intensity scale, so
it is impossible to compare multiple results with different intensity scales and impossible to say
absolutely what a ”good” correlation score is. The logarithmic scaling out preforms both linear
and binary and binary is particularly poor at matching the inplane angle correctly, as instead of

21

gaussian peaks the spots are circles of uniform intensity.

The results of intensity scale choice can alternatively be represented in IPFs colored based on the
misorientation angle of each individual pattern. From these plots it can be concluded again that
the logarithmic scaling is better than the other two and it provides the most uniformly distributed
matching results across the varying orientations, for example linear scaling preforms poorly in a
quarter circle roughly 10-15°away from the [101].

(a) (b)

(c)

Figure 4.4: Misorientations represented in Z-IPFs of (a) Linear scaling, (b) Binary scaling, (c)
Logarithmic scaling

Additionally, logarithmic scaling has multiple additional parameters that can be changed to pro-
duce different results.

logb(x+ a)− c (23)

Here a is a small faction, for example 0.01, that serves to stop infinities, b is the logarithm’s base
and c is some number whose value is related to the minimum intensity value in a data set. Doing
the same procedure but changing the re-scaling by: (b) is tested with 2, 10 and 100, a is varied
from 1 to 0.00001 and c is varied from 0 to 0.13 times the minimum intensity.

For the different bases 2, 10 and 100 with an a of 0.1; there is no difference in matching with this
data set, the bases having no effect on which pattern is picked. Therefor, at least in this simulated
test case, the choice of base appears to be irrelevant.

22

Varying a while keeping a base of 10 and observing the mean misorientation between ground truth
and matching results(figure 4.5) shows extreme difference between 1 and the rest due to a number
less than 1 producing a negative weighting to spots present in the template but not in the pattern.
It also shows that smaller is not better; 0.01 giving the lowest misorientation.

Figure 4.5: Parameter test of a in equation 23, mean misorientation angle as a function of a.

Finally, it is observed from varying c(figure 4.6) that it actually makes the matching worse to use
this addition parameter, as well as it having the risk of damaging the data if the number is to
large; here, past 0.2 times the minimum intensity, the matching essentially breaks down.

23

Figure 4.6: Parameter test of c in equation 23, mean misorientation angle as a function of c.

4.1.3 Orientation Library Step Size

As discussed in 2.4; when creating the template library, it is necessary to choose the orientations
that will be used to simulate the templates. The resolution and number of these orientations
impacts the overall resolution of the matching results: if the matching can only choose from
patterns spaced at 5° apart, then the matching can never be better than 5°. However this does
not necessarily mean that if the orientations are gridded at 0.05° then the matching resolution is
0.05°as it is not the only factor. The goal for this parameter test based on simulated data is to
find the point where the simulations’ gridding is not the controlling factor on the resolution of
matching, without adding unnecessary computation time as more templates equals more matching
time. The setup for this is to create a simulated data set of a random 4000 patterns from a library
with a sampling of 0.1°and with gaussian blur, similar to the previous sections, see fig 4.1. This
simulated data set is then matched against libraries with sampling of 0.1°, 0.25°, 0.5°, 1°and 2°.

24

Figure 4.7: Mean misorientation angle between known orientation and template matching result
orientation as a function of template library sampling angle.

These results (fig 4.7) show that the mean misorientation decreases as library sampling decreases up
to a point, here around 0.5° , before having serious diminishing returns. The mean misorientation
even increases from 0.25° to 0.1° , showing that smaller angular resolution libraries are not always
better for template matching.

25

4.2 Preprocessing of Experimental Data

As opposed to the relatively simple simulated data, experimental data introduces additional chal-
lenges to accurate template matching. Here the alignment of the patterns and the effects of
background subtraction intensity scaling and calibration will be examined. Generally with experi-
mental data, a ground truth is not known, so results will be presented in general terms/qualitative
description or based on NCC score.

4.2.1 Alignment

Proper alignment of the data stack is necessary for accurate matching as the templates are sim-
ulated with their center at the center of image and matching is done on a pixel-by-pixel basis.
Therefor is important that the experimental patterns also have their centers at the center of the
image. This step is a necessary step and should always be done, however there are multiple dif-
ferent methods for doing such. These methods, described in 2.4.1, are cross correlate, blur and
interpolate. Based on the experimental data sets for AU nanoparticles, Au thin film and CPU
specimen data, the following observations are made. The cross correlate method works well for
circular direct beams but will do poorly for direct beams that are distorted, it is also a relatively
computationally intensive method. The blur method will work even if the direct beam is a bit
distorted but will lose efficacy is the center of beam is far away from the center of the image.
The interpolate method is more consistent because it is simplistic as it only really looking for the
brightest part of the image, however is often lacking because of this. In general, for the exper-
imental data used here, the tilt-shift purity of the microscope was good and shifts required to
achieve a aligned data stack of the patterns were small (0.5-1.5 pixel). For the largest scanned
area, the CPU specimen, the three methods return shifts of ¡ 3 pixels. This is much smaller than
typical beam diameter (15 pixels). Note that in the TM the experimental disc is compared to
a simulated spot, therefor alignment need not be ’perfect’, however it is still important to verify
the stack alignment. No matter which method is used, it is important to only run the centering
function on the part of the data stack that contains the direct beam, a square with a half width
length of twice the average beam width is used. Further analysis will use the blur method with a
sigma of 3.

4.2.2 Background Subtraction

Dealing with background noise is an important part of template matching experimental data based
on pattern and pixel intensities. The background noise can muddle to true signal, often making the
template matching algorithm match spots in the template to background noise in a pattern. There
are four method for background subtraction available in Pyxem, as described in 2.4.1; difference
of gaussians, median kernel, radial median and h-dome. Figure 4.82 shows the results of these
methods on an example experimental pattern from the Au nanoparticles sample. The largest
challenge with background subtraction is its subjective nature, however this does not diminish its
huge importance on the final matching outcome. One can judge by eye the effect, but the numerical
difference in matching score might be different, as shown in fig. 4.2.

Background noise is case dependent, which makes extracting general trends difficult. A quantit-
ative comparison based on NCC score is difficult as the score will depend on the intensity of the
background in a given data set and the applied method and degree of background subtraction.
Here the four methods have been tested on the three different data sets. The Au nanoparticles
have a relatively low background intensity compared to the Au reflection maxima. The CPU,
relative thick, has more background between the spots. In general, difference of gaussians seems
to be the most robust way and is applied in the further study when using experimental data. To
demonstrate the effect of background subtraction, with each of the four methods and without is

2Note that these and later DPs are not indexed like those in the theory for two reasons: The point of template
matching is that the orientation and indexes of the DPs are unknown and indexes of these patterns are irrelevant
to what is being shown, i.e. the effect of background subtraction.

26

(a) (b) (c)

(d) (e)

Figure 4.8: Example of an (a) base diffraction pattern for sample A 3.1 and same pattern after (b)
difference of gaussians, (c) median kernel, (d) radial median and (e) h-dome.

shown for an example pattern in data set A, see Fig. 4.8 The corresponding NCC score range is
given in table 4.2, demonstrating that score is not a good indicator of which method preforms best.

Table 4.2: Normalized cross correlation scores for the best match of the pattern shown in Fig. 4.8
for the base experimental data without background subtraction and the four methods
previously introduced.

Base Experimental Difference of gaussians Median kernel Radial median H-dome
0.00757245 0.00772615 0.00761301 0.0370034 0.01844578

27

Different samples may exhibit different background effects, thicker samples may be more difficult
due to increased dynamical scattering or different materials may have worse single to noise ratios;
however for the samples used in this study, difference of gaussians is the preferred method, as it is
shown to also work on the thick Cu sample C 4.9.

Figure 4.9: Difference of gaussians applied to a single pattern of a thick Cu sample; sample C 3.1.

The background noise, and thereby the method used for subtracting it, has been shown to effect the
NCC score and therefor can effect the intensity re-scaling aswell. As shown in 4.1.2, log10(I+0.01)
gives the best matching results on simulated data, however it is necessary to assess the efficacy of
this when experimental data is matched, particularly when dealing with the effects of background
noise.

Figure 4.10 shows that the logarithmic scaling does not produce better results when using data
with background noise present. This makes sense as the point of using the logarithmic scaling is to
give the weaker intensity spots more weight in the NCC scoring, however this is effectively giving
the noise additional weighting, making the results potentially worse. Additionally, the logarithmic
scaling punishes the diffraction spots present in the template but not in the experimental pattern,
also described in [5].

(a) (b) (c)

Figure 4.10: Effect of the logarithmic scaling, described in 4.1.2, on experimental data. Results
with (a) no background reduction and linear scaling, (b) no background reduction
and logarithmic scaling and (c) difference of gaussians and logarithmic scaling. Green
’X’s indicate the best matched template.

4.2.3 Effect of Calibration

The calibration of the reciprocal space scale, given in Å−1/pixel, is the final important step before
template matching. This is not preprocessing applied to the patterns, but rather information from

28

the data set that must be given to the simulations in order to properly simulate the prospective
patterns. In section 4.1.1 the absolute value of the calibration was investigated, effectively the
experimental camera length, however here the relative accuracy to the true value is important.
The standard way of finding the calibration is to take data of a standardized sample, normally a
fine grain size polycrystalline Au thin film, that creates diffraction rings that can be used to find
the pixels to each ring[12]. This could be done at the same time as the sample or done prior to
create tabulated values of camera length to calibration values. However the problem arises that
this standard might not always be taken with every sample, and the tabulated values might be
close but could drift over time or the actual specimen/area studied might be on a slightly different
height. As such, having a method to find the calibration from the data set is not necessarily ideal,
it is often required. One way of doing this is to simply count the pixels of a known distance, for
example for a cubic structure the distance between [220] and [2̄2̄0] should be twice

√
8/A Å−1,

and from this the calibration can be found. The trouble with this method is that the pattern
must already be indexed to know which diffraction spot is which; this might be simple if there is
a known zone pattern present, but an additional step if not.

An alternative developed here is to optimize the calibration based on the NCC score. Here it is
possible to compare the scores because the scaling and pattern are not changing, only the templates.
Doing this allows for a optimal calibration value from a given pattern of any orientation and does
not required manual pattern indexing before hand. This gives a objective criteria for finding
the calibration value without needing a standard test data set. Figure 4.11 shows the general
shape that the NCC score takes as a function of calibration. The peak of this line is often rather
broad, showing that the calibration can be slightly different (1-2%) and still give about the same
correlation score. This method, for samples or portions of samples where the phase is known, has
the advantage of being generally applicable and does not require a pattern to be indexed before
hand like the previously mentioned method.

Figure 4.11: Plot showing the changing NCC score as a function of calibration(Å−1/pixel).

4.3 Examining Tilt Series

A tilt series can be created by taking data for a data set then tilting the specimen by some set
amount and then taking another data set. Multiple of the data set is then a tilt series, in essence
a 5D data set. A tilt series could be a very useful both verify the results of template matching,
through an imposed known, and to potentially more about a given sample that a single data set
might not include.

29

4.3.1 Simulated Tilt Series

Before discussing the experimental tilt series, a controlled simulated tilt series was examined. Sim-
ilar to how the simulated data was created in 4.1, random patterns are chosen from the simulated
templates and then rotated by a random in-plane angle. These patterns are then tilted by an
known angle(here 5°). These patterns are then template matched as has been described previously
with a intensity function of log10(I + 0.01) and a template library step size of 0.5°.

Figure 4.12: Example of simulated tilt series(tilt step 5 degrees in the x direction, template step
size 0.5 degrees) of a single pattern with the known orientation (green circles) and
template matched orientations (red squares).

From figure 4.12 there are a few general observations that can be made. The second tilt quite
mismatched vs the known orientation. Another is how the boundaries of the symmetry reduced
zone appear the make the orientation ’reflect’ off of them. It is then possible to calculate the
misorientation from one tilt to the next, for this tilt set the angles are: [4.74°, 5.03°, 6.26°, 5.19°,
4.°, 4.81°, 5.84°, 5.65°, 3.60°, 5.30°]. This set, Fig. 4.12, has two patterns with the match off by
more than 1°, the 3rd and 10th, however often the matching can be off by much more, just like in
section 4.1, so misorientations of over 10° from the expected tilt are excluded from the mean. After
doing this the mean misorientation between the tilts for the entire simulated data set of starting
patterns is found to be 5.18°, with about 10% of misorientations being excluded.

4.3.2 Au Nanoparticles Tilt Series

The single axis tilt series of Au nanoparticle data sets (sample A) contain eight clearly visible
nanoparticles as can be seen in the constructed orientation maps for the three orthogonal directions.
The z-direction is the beam direction (Fig. 4.13.c) that will be used for comparison across the three
different tilts. Figure 4.13 shows the selected region at tilts 5/0 for (b) and 9/0 (c) in the z direction.

The misorientation angle between the matched orientation of each tilt can be found and compared
to the expected value. It is important to note that the orientation for each particle is found by
finding the mean orientation of each particle before comparison. In table 4.3 the misorientations
between the tilts is presented, which shows that with only three tilts, the results can be rather
unstable; the found tilts seems to vary a lot where the two gonio tilt step sizes was well defined.
If there is a mis-indexation in one tilt then difficult to tell which one exact is the problem.

30

(a) (b) (c)

Figure 4.13: Orientation map of the Au nanoparticle sample at tilt 0/0 from the (a) x, (b) y and
(c) z directions.

(a) (b) (c)

Figure 4.14: Orientation map of the Au nanoparticle sample in the z direction in (a) tilt 0/0, (b)
tilt 5/0 and (c) tilt 9/0. Coloring is based on the IPF coloring as in Fig. 2.5.c.

Table 4.3: Table of the misorientations between the tilts for each of the 8 nanoparticles in sample
A.

Particle Number Tilt 0/0 - Tilt 5/0 Tilt 5/0 - Tilt 9/0 Tilt 0/0 - Tilt 9/0
1 8.4 6.6 12.2
2 2.2 3.6 2.4
3 9.1 25.3 31.3
4 1.9 29.4 28.5
5 5.9 0.6 6.3
6 27.3 8.2 30.8
7 29.9 0.7 30.0
8 14.0 14.6 6.8

The data set was used as a proof of concept to develop the code for tilt series in conjunction with
D, and to test what should be changed or added in the tilt series acquisition or the processing of
tilt series. As single orientation maps of randomly oriented nanoparticles the maps look plausible,
so the tilt series helps to where the template matching goes poorly.

4.3.3 Cu and Si CPU Tilt Series

The CPU sample is an interesting sample as it contains Σ3 twin within the Cu band allowing for
the known of the twin misorientation along with the known tilt angle. Data from a portion of
the crystalline Si substrate was also taken as a reference starting at the [101] in the tilt 0/0. This

31

reference is used for calibration and as well as serving as a reference for the tilt angle for each
step, as the patterns can be used to create sum patterns with very high signal to noise ratios and
Si having a larger lattice parameter than Cu that allows for more accurate template matching, as
shown in 4.1. Note that theis tilt series contains five tilts taken at the two perpendicular gonio
axis, called x and y for simplicity, compared to the single axis tilt series with three tilts in 4.2.
That series also does not contain a known either in the form of a reference (Si substrate) or in the
form of a known orientation relation (twin).

From figure 4.15, it is observed that the twins are at roughly the same orientation([101]) relative
to the Z direction, translating to the patterns are only rotated in the inplane angle by 60°. By
calculating the mean orientation for each side of the twins and finding the misorientation between
them the results in table 4.4, are found. This shows that all but the first tilt are within 1° of the
expected 60° misorientation and hence that the matching of each single or summed pattern on
both sides of the twin plane was reasonable close to the actual orientation.

Figure 4.15: Orientation map of the Cu band at the tilt 0/0, colored using the IPF color scheme
described in section 2.1.5.

Table 4.4: Calculated misorientation across the Σ3 twin plane for the five different tilts in the CPU
sample tilt series.

Tilt 0/0 Tilt 5/0 Tilt 10/0 Tilt 0/5 Tilt 0/10
58.4° 59.2° 59.3° 59.8° 59.5°

It is also possible to find the misorientation between the tilts for each side of the twin plane. Table
4.5 shows that the Si agrees with an experimental tilt of 5+-1°, the y tilts also agree, tilt 0/5 -
tilt 0/10 underestimating the misorientation angle due reflecting off of the border of the reduced
symmetry area, further discussed in 5.3. However the x tilts are far outside the expected range but
the Si reference shows that it is not an experimental error but a systematic error with the template
matching. So the relative, within one tilt position, represented by the relative orientation between
the two grains, is close to the expected value for a Σ3 twin. Where the absolute orientation,
represented by tilt of each grain, under represents the tilt when tilted along the x direct.

4.3.4 Au Thin Film Tilt Series

The final sample is a poly-crystalline Au thin film with the particularly interesting feature being
a large grain on the [112] zone. Figures 4.16 and 4.17 shows the tilt 0/0 and tilt 0/10 in the x,
y and z directions. Just from these images the complexity of the data is apparent, there many
smaller grains and even grains with visible twinning. However, all of these small grains mean plenty

32

Table 4.5: Calculated misorientation between the given twin for the Si substrate and the two
difference side of the Σ3 twin plane.

Si Substrate Twin A Twin B
Tilt 0/0 - Tilt 5/0 4.2° 2.2° 2.5°
Tilt 5/0 - Tilt 10/0 4.5° 2.8° 2.1°
Tilt 0/0 - Tilt 0/5 4.9° 5.8° 4.6°
Tilt 0/5 - Tilt 0/10 4.2° 3.4° 3.7°

of overlapping patterns, which is one of the main challenges present with template matching; an
experimental pattern which is composed of multiple different DPs is matched to single template.
In the further these areas and the issue of overlap will be ignored.

weaknesses of template matching. Another observation is that there are twin planes present in the
large grain, however they are not visible in the tilt 0/0 as the Σ3 is ’invisible’ when viewed along
the [112], in essence both sides of the twin appear to be identical in the constructed orientation
maps3. However from tilt 0/10 there are visible, even if small, twins present. There are other grains
present that appear to have twins in them as can be seen in Fig. 4.17, for different directions. The
contrast of twins in a grain, visible as a pattern with parallel straight lines can also seen in the
medium sized grains, marked with dotted areas in 4.17.

(a) (b) (c)

Figure 4.16: Au thin film orientation map of the tilt 0/0 viewed from the (a) x, (b) y and (c) z
directions with main grain of interest marked by dotted outline.

(a) (b) (c)

Figure 4.17: Au thin film orientation map of the tilt 0/10 viewed from the (a) x, (b) y and (c) z
directions with smaller grains with apparent twinning marked by dotted outlines.

Once again the misorientation between the tilts can be calculated as done previously, here for the
large grain that is at [112] in tilt 0/0. Table 4.6 shows that the tilt 0/0 - tilt 5/0 and tilt 0/0 - tilt
0/5 are within 1° of the expected 5°. However the other tilts are far off of this value, so there is a
clear problem here.

3This is due to there being an inherent 180° ambiguity along the z (optic) axis.

33

Table 4.6: Misorientation angles between the given tilts for the large grain in the Au thin film data
sets.

Misorientation Angle
Tilt 0/0 - Tilt 5/0 5.7°
Tilt 5/0 - Tilt 10/0 48.4°
Tilt 0/0 - Tilt 10/0 52.7°
Tilt 0/0 - Tilt 0/5 4.0°
Tilt 0/5 - Tilt 0/10 41.2°
Tilt 0/0 - Tilt 0/10 43.9°

34

5 Discussion

5.1 Analysis based on simulated data

Utilizing simulated data to run parameter tests in controlled ways with known ground truths
is useful way of examining the efficacy of the template matching routine, for specific process
parameters. The presented results can be further compared to TM results from experimental data,
to acquire more accurate and reliable answers. Hence, the here created python notebooks D,C
should be of interest beyond the specific examples discussed in the present work.

The method used for creating simulated data sets allows for randomized sampling of orientation
space and across the range of euler angles. This is more robust than simply using the simulated
templates themselves because, as described in 2.4.3, the simulations do not sample the first euler
angle (in-plane rotation angle). It also allows the data set size to remain constant, as when
simulating cubic templates at 1° there are roughly 1000s template but at 0.1° there are over
100000.

The way in which the accuracy is compared is the misorientation angle between the found result
and the known ground truth. This is superior to simply comparing the index and giving a right
or wrong; as it also shows how close or far a wrong answer was. Throughout the given template
matching examples it becomes clear that the NCC score can be a poor judge when comparing
difference data sets or the same data set under different preprocessing conditions. When the
mean misorientation angle is calculated the obvious outliers are removed, taking into account that
misorientation space is not evenly distributed. These outliers are answers that are more than 10°
off, this is done to ensure that the mean is a statistical mean and is not affected by answers that
are multiple standard deviations away. This extremely high misorientation angles are mostly a
result of patterns near zones of high symmetry, [112] and [123] being the most common, observed
in 4.4. These patterns have strong systematic rows and many patterns near the zone are extremely
similar to the on zone pattern, cause the patterns to be very unique which is the principle way
that template matching can differentiate between patterns.

The choice of intensity scaling function is shown to greatly effect the matching results. The base
line linear scale is out preformed by the logarithmic scale, and the binary scale does very poorly
especially when it comes to determining the in-plane angle. Binary scaling, also introduced by
Cautaerts et. all [5], of the experimental pattern could potentially be used it the disks are smaller,
like with unprecessed data, however logarithmic scaling still has the benefit of increasing the relative
weight of weaker diffraction spots, but can also punish the extra spots present in the template.
The logarithmic scaling is not a new idea as it is discussed by Cautaerts et. all [5], however the
work presented here is a more quantitative look at the scaling. It is important to note however that
these tests are done on simulated data sets with no background noise, the introduction of which
could reduce the efficacy of the logarithmic scaling and it is therefor important to keep in mind
the background in experimental data. In conclusion, based on these parameter tests on simulated
data sets, the ideal intensity re-scale function is log10(x+0.01). This function helps value weaker,
often far away from the central beam, spots that have more orientation information as well as
when combined with a background of zero, punishes spots that exist in the prospective template
but not in the pattern itself.

The important take away from the camera length test is that more visible diffraction spots leads
to more accurate matching. This seems quite logical as the more higher order spots with lots
orientation present means that patterns are more unique which in turn means that the template
matching is more accurate and can discern smaller angle difference better patterns. However while
with simulations lowering the camera length has little negative effect, experimentally this is not
the case. The diffraction spots far away from the central beam have lower chance of diffraction
and thus a poorer signal to noise ratio.

It is only since use of better recording systems [5] and [14] that more spots farther from the center
can be captured. This means these diffraction discs are much dimmer and can easily be lost in the

35

background noise. It is also important to note that since with SPED the diffraction spots are more
disc like with a size(radius 2θ) if spots become too close it might become impossible to discern
between similarly spaced spots. This has even more an impact if the sample if multi-phase where
the d-spacings are similar. If the camera length is too small, the different phases can also become
impossible to discern as the patterns of one phase are too similar to the patterns of the other.

Results from the library step size test show that larger libraries with smaller step sizes do not
necessarily equate to better matching. As shown in the camera length test, the diffraction patterns
have a ’uniqueness’, based on the phase, camera length and potentially other experimental para-
meter, that controls how angular resolution of the orientation mapping. For example, here with
Au at 12 cm, the angular resolution is at about 0.5° - 0.55° , past that the patterns simply are
not unique enough to tell apart. This is logical as the spots near the central beam, low order, are
shared between more patterns as compared to spots far away from the central beam, high order.
This reinforces the conclusion that for accurate and reliable matching, patterns should contain
many diffraction spots and in particular higher order ones.

An important observation that can be made from these tests is that template matching’s accuracy
is uneven across orientation space. In figure 4.4, the misorientations are not entirely random; there
are concentrated sections with higher than average misorientation. The section around the [112],
see fig. 5.1 for pattern, is present no matter which intensity scale is used. The logarithmic scaling
does help limit these sections, making those that are present smaller and even completely removing
some: the rings centered on the [101] and [001] and the cluster around the [113]. The [001], [101]
and [111] as exhibit this behavior to a lesser degree, particularly the [111], where pattern seem to
be ”pulled” towards certain templates near the poles that give high scores.

Figure 5.1: [112] zone diffraction pattern representative of the large grain in Au thin film sample.

The results from the intensity re-scaling also show that while the relative values of the NCC score
can be used to judge which template matches best, at least in principle as there is the potential for
the highest score match to be a misindexation, the absolute value of the NCC score has very little
useful information. As is 4.1, the value of the NCC score varies wildly between intensity scales,
the linear scale have a maximum score three times that the logarithmic scale, even though the
matching results of the logarithm are better. This is important to keep in mind when attempting
to draw conclusions from the absolute value of the NCC score itself, for example deciding if a result
is reliable based on the score or comparing two different template matching results.

Something not fully explored here is the effect of the inplane angle on the matching results. By
rotating a pattern, diffraction spots can be cut off or revealed, either giving fewer spots to match
and thus worse matching or more spots and thus better matching. This can also effect the absolute
value of the NCC score, observed in experimental data 5.3.

36

5.2 Preprocessing of Experimental Data

Preprocessing is a very important step that must be done before template matching. As mentioned
previously, centering is simply required; the diffraction patterns all need to have the same center
and is easiest the make it the center of image. The simulations are done to match this. The
best method might vary from data set to data set based on the shape of the central beam on its
intensities, however most of the time any of them should work, however it is important to restrict
the area that it ”looks” for the center to a small part of the images where the central beam is. This
ensures faster computation times but also protects against the function falsely choosing bright low
order spots instead of the direct beam. The blur and interpolate are both very similar and will
often give very similar results while the cross correlate method can often be rather unstable based
on the parameters given. The other advantage of blur and interpolate is in computation time,
these methods taking 10 seconds, while the cross correlate can take 2 minutes on the relatively
standard computer used. For these reasons the blur method is used for the data sets presented.

The general preprocessing is analyzed here, but one common preprocessing step, distortion correc-
tion, was not part of the present study. The images could have distortions like shears or stretches
that could effect the template matching, however the data sets presented appear to have little to
no distortions. Even if they do have small distortions the radius of the spots gives enough margin
of error that the matching is still good. Still, if there are non-negligible distortions present in a
data set, this would become a necessary step. Based on the inspected data sets, the current ex-
perimental set-up has, for the used camera lengths and relatively scan areas negligible distortions.
There are distortion correction routines included in Pyxem [12].

This can be done by taking a standard Au grating to get circles of known distance and if there
are distortions present the circles will be deformed and would need to be corrected for with an
affine transformation [8]. It could be possible to expand the calibration method presented here in
section 4.2.3 to also optimize for any changes due to distortions, however it becomes substantially
more complex as an affine transformation consists of nine numbers(although for this case only five
should be relevant) on top of the calibration which would need to be optimized all together. This
would call for a smarter way of optimization than presented here for just calibration, however the
principle of optimizing the NCC score would remain the same.

Background subtraction is a very important but also challenging part of template matching as it
is case specific. Here it is shown that some diffraction patterns will not match correctly without
background subtraction, thus it is a required step. However unlike centering and calibration,
it is very subjective and case-dependent. The method of difference of gaussians is shown to be
applicable on both thick and thin samples and preforms better than the other methods available in
pyxem, section 4.2.2, however the method has two parameters: the minimum and maximum sigmas
of the gaussians. These, along with values for thresholding the intensities and gaussian blurring,
create range of many possible values that could be used for background subtraction, some of which
might be obviously poor choices, however there will still be a range that produces ’good’ results
but will ultimately be the choice of individual. Cautaerts et al. [5] comes to the same conclusions,
as outlined: ’the difference of gaussians method is used and a small gaussian blur is added that
helps smooth the weak peaks’. However the fact is that background noise and therefor background
subtraction is very case dependent. This also makes it difficult to suggest optimal values as the
values used here on these three samples might produce poor results for another sample taken on
the different microscope under different conditions. This challenge is not easy to solve, however
what is present here should give some idea of the procedure to get and examples of background
subtraction that produce good template matching results.

The choice of intensity scaling, also shown on the simulated data in section 4.1.2, has a large effect
on the matching results. The most important difference here for experimental data is the back-
ground noise present and how that changes the effect of intensity scaling. When using logarithmic
re-scaling, background subtraction becomes necessary, as to not give increased weight to the back-
ground noise. Thus for optimal template matching, both logarthmic re-scaling, as described in
section 4.1.2 and background subtraction from 4.2.2 should be used.

37

5.3 Examining Tilt Series

Up to now simulations (5.1) and processing single patterns (5.2) have been analyzed. One of
the important questions for this study was if taking a series of data sets of a single sample can
have added value on evaluating the template matching workflow. Here simulated tilt series can
be used to test template matching just like the regular simulated data set presented in section
4.1. It can also do things that would be difficult or impossible experimentally; a sample can not
normally be experimentally tilted 50° in one direction without the real space part of the data
becoming extremely distorted, increasing in thickness and causing overlap. The simulated tilt
series also further backup the observation made previously that template matching accuracy is
not even distributed over orientation space, some patterns are just more difficult to match than
others. The relative orientation of the tilt angle thereby becomes an important factor. These test
can further show that the tilt series should be relatively large angles; the matching simply does not
have the angular resolution for a tilt series of 1° tilts to be worth the amount of data that would
be collected. Utilizing tilt series has the ability to introduce two different experimental references
for verification of the template matching results: i) the tilt step, which is limited by accuracy an
linearity of the holder in the microscope as is case with tomography [28] and ii) a reference area,
here the [111] Si substrate in the CPU specimen.

An idea that was only partial explored was to optimize the matching the results by searching
through more the just the best matched template and finding which patterns return the closest
tilt misorientation to the the expected tilt. This has potential to improve the results by taking
into account a known(tilt angle) and using the additional information contained in the matches
subsequent to the best. This is however quite a complex procedure and if done wrong could to
more harm than good, select incorrect patterns for various reasons; such as the misorientation
angle being under-calculated when a pattern is tilted over a boundary of the symmetry reduced
zone, or when used on experimental data as the tilt angle has a experimental variance.

The Au nanoparticle tilt series is an interest test case. The particles are not completely randomly
orientated, due to their shape there is almost always a systematic row present(here either close to
a [001] or [101]). The tilt misorientations, table 4.3 show that the matching results can be rather
unstable under these conditions. With only three different tilts however, it is often difficult to
know under which tilt a particle is misindexed but it is possible. For example, using images in
figure 4.14 and the values from table 4.3 to inspect particle 8, the observation that particle 8 is
misindexed in tilt 5/0. Sure enough if the matched template is inspected, fig.5.2.a, the pattern
appears to be misindexed. However if the list of matches is examine closer the 5th match appear to
be a better match, backing up the potential for using the known tilts in the tilt series to optimize
the matching results by searching through the list of matches.

(a) (b)

Figure 5.2: Diffraction pattern from sample A, particle 8 with the green ’X’ indicating the template
of (a) best match and (b) 5th match.

From the CPU sample there are quite a few interesting observations that can be made. The first
being that the x tilts(tilt 5/0 and tilt 10/0) appear to have a systematic error in the template
matching, table 4.5. Plotting the orientations in z-IPFs, figure 5.3, the slightly low misorientation

38

angle present in tilt 0/5 - tilt 0/10 can be explained by that fact that the tilt 0/10 orientation
gets reflected back into the symmetry reduced zone after passing the boundary which causes the
misorientation to be calculated lower than path that it travels, sketched in the figure. Another
interesting observation from this is that the twins do not start exactly on the [101] zone.

Figure 5.3: Five tilts of the Cu twins represented in z-IPFs.

The Au thin film is a very interesting sample, with a vast amount of data present. Focusing on
the main large grain it was observed that the tilt 10/0 and tilt 0/10 had very large misorientations
between the others. However, in this case the misorientations might not tell the entire story.
Plotting the orientations in an ipf, fig. 5.4, the orientations appear to make some sense. This is
evidence that there is more happening at the [112] maybe was first observed. It might not be that
patterns match poorly near the [112], but when calculating the misorientations or orientations near
the there is some systematic error or this is a quirk of reduced orientation space. It is unfortunate
that the twins present with the large grain are too small match and compare as they contain
overlapping patterns, however the smaller grains also appear to contain twins, however when the
grains that have less overlap are examined the angle between the different sides of the twin is found
to be 45°. This is not the expected 60° that a Σ3 twin should exhibit. This could easily be because
of overlap or multiple twins present in the diffraction patterns as these twins are small compared
to the grain size.

Figure 5.4: Orientation of the 5 tilts for the Au thin film data sets plotted in the Z-ipf

39

Verification of the template matching results can be done without knowns present the a data set.
The most common ways for doing this are the correlation score, although as previously discussed
it should be the relative NCC score, and reliability [23]. Using the correlation score can work
under the right conditions; however as it has been discussed already, the correlation score varies
based on the intensities and so patterns with plenty of diffraction spots with naturally have higher
correlation scores than dimmer patterns. This does not necessarily mean that higher NCC scores
translate to more accurate and vice versa. Something that the correlation can be useful for is
sample that vacuum (or bare substrate), because the relative correlation score will be much lower
for that part of the data, and can therefor be thresholded as not matching.

The reliability metric [23], given by the difference is correlation score between the best match (first)
and the second match. If this is low then the first and second matches are very close in correlation
score, however this is very often the case because the second match is often directly adjacent to
the first match. This metric also only takes into account the difference between first and second
but more matches could be used to improve upon this. This metric can show the edges of grains
however so it is not without use conditions.

A new metric proposed is to use relative correlation score to normalize the misorientation angle
between the first match and subsequent matches and then take the mean so that each point in real
space has a number for this metric. This is described by equation 24:

∑
N (Q0 −QN)(CN

C0
)

N
(24)

Here (Q0−QN) represents the misorientation angle between first match and the Nth match while
CN and C0 and the NCC score for the Nth match and first match respectively. This metric has a
few advantages. One is that this allows for the utilization of more than just the first and second
matches, as the list of matches does contain information it is just not necessarily easy to parse. The
aim of weighting the misorientation angle with the relative correlation score is to allow this metric
to show the difference between a high misorientation angle with a high relative correlation score,
which is likely indicative of poor matching, and a high misorientation angle with a low relative
correlation score, which does not necessary indicate poor matching.

The following observations from the three different metrics from figures 5.6, 5.7. The correlation
score can be good for visualizing grains and grain boundaries. The reliability index appears to
not give as much information as it does for ASTAR [19], most likely due to how ASTAR reports
the sequence of matches (however due to ASTAR being proprietary this can not be confirmed).
The proposed normalized misorientation angle can show areas of potential misindexation, the
[112] grain and plenty of overlap in the Au thin film data or particular nanoparticles in the Au
nanoparticle data. It is however ’grainier’ or pixelated than the correlation score, the substrate of
the Au nanoparticles for intense is mostly homogenous for the correlation score but the normalized
misorientation angle varies even the patterns outside the nanoparticles certainly do not match well.
So utilizing both the correlation score for thresholding out the vacuum or substrate and normalized
misorientation angle can be beneficial analysing how much the returned best match from template
matching can be trusted.

5.4 Optimized Setup

From all of the results and the observations and discussion, an optimum setup to receive the
best possible template matching results will be presented. Potentially the most important part of
accurate template matching is having as many diffraction spots present in the patterns as possible
to determine the best fitting template. As shown in section 4.1.1, both the camera length and the
material impact the accuracy of template matching. The smaller the camera length, the more of
reciprocal space is capture in each diffraction pattern. This leads to having more unique patterns,
as the higher order diffraction spots, those far away from the direct beam, have more orientation
information. The material(s) used, or more precisely the lattice parameter(s) of the material(s),
has the same effect; larger lattice parameters translate to more diffraction spots present the final

40

(a) (b) (c)

Figure 5.5: Au nanoparticles at tilt 0/0 (a) correlation map (b) reliability map and (c) proposed
normalized misorientation angle map.

(a) (b) (c)

Figure 5.6: Au thin film tilt 0/0 (a) correlation map (b) reliability map and (c) proposed normalized
misorientation angle map.

patterns. This is however entirely on the experimental side of the equation. If the material of
interest is Cu for instance, a small lattice parameter is simply something that must be taken into
account. The camera length will also have an experimental optimum range that is not tested here.
With this in mind the smallest camera length that still gives good signal to noise and peaks that
are far enough apart should be used when taking data.

The intensity re-scaling is another important factor, 4.1.2. Here it has been presented that a
logarithmic intensity scale will produce the best template matching results, in particular log10(I +
0.01) found in 4.1.2. This is due to give a higher relative contribution to the NCC score from the
weaker, often higher order diffraction spots. It also helps to give a negative contribution to spots
present in the template but not in the pattern when the intensity outside of the diffraction spots
is zero.

The pre-processing utilized on the data sets can have a large effect on the outcome of template
matching. Centering is simply required with the optimum method being somewhat case dependent,
however blur seems to be quite stable. It is important to limit the field of the patterns that the
centering algorithm works on to insure that the direct beam is chosen for the center. Background
subtraction plays a large role in the accuracy of template matching, and is required when using a
logarithmic intensity scaling, 4.2.2. The method of difference of gaussians appears to have to most
potential for ’good’ background subtraction; removing the noise without removing weak diffraction
spots. It is however still important to remember that this is quite subjective and case dependent,
so proper choice of parameters is essential. The workflow using jupyter notebooks, makes the
processing transparent and used settings and values are documented.

It is proposed and shown how a tilt series can help ensure better template matching results by
both providing a known to test results against and identify mis-indexation, as well as measuring
the same sample multiple times which can improve both precision and accuracy.

41

(a)

(b)

(c)

Figure 5.7: Cu CPU band at tilt 0/0 (a) correlation map (b) reliability map and (c) proposed
normalized misorientation angle map.

Finally, multiple ways of verifying the results of template matching have been shown: relative
correlation score, use of the knowns present in the experimental data and correlation normalized
misorientation angle. Verification of results can be very important as many of the parameters in
the pre-processing and template simulations steps can greatly effect the final template matching
results.

A demo jupyter notebook, C, that will also be used at a workshop given by the TEM Gemini
Centre shows the principle steps outlined here. Post-processing is a crucial step in the whole
approach of template matching and open-source libraries, like Pyxem, allow for transparency and
systematically improving and sharing best practice.

42

6 Conclusion

The effects of camera length, intensity re-scaling, pre-processing steps, template library step size,
calibration and use of tilt series on template-based orientation analysis within Pyxem has been
presented. Concrete observations and suggestions about and for obtaining more precise and accur-
ate template matching results have been made.

The conclusions from the simulated data set tests are:

• Experimental camera length should be as small are reasonable possible to capture the most
amount of diffraction spots in the images without making them too close together, ideally
the diffraction discs have a radius of 3-5 pixel, to be able to differentiate them.

• Intensity scaling should be done on a logarithmic scale to given a higher normalized cross
correlation score contribution to higher order, often lower intensity, diffraction spots that
contain more orientation information.

• The step size used for the template library need not be as small as possible. A step size of
0.1° does not necessarily mean a template matching angular resolution of 0.1°. A step size
of 0.5° - 1° is a good balance of precision and computational consideration given that the
overall angular resolution, even in the best case, is 0.5°.

• The template matching results across orientation space are heterogeneous: some patterns are
more difficult to match than others, examples being [112], [123] and even the [001], [101] and
[111] zones.

• Using simulated data allows for a ground truth and hence the accuracy expressed as pure
misorientation. This is a better metric than the pixel-based-intensity cross correlation score.

The conclusions from the experimental tilt series data are:

• Pre-processing has a large effect on the efficacy of template matching, the most important
steps being centering, background subtraction and calibration.

• Tilt series can be of great benefit for both identifying mis-indexation and for measuring
a sample multiple times to increase the precision and accuracy of the template matching
results. In addition, collecting data at different orientation could give a better representation
of the sample as shown by Σ3 twinning viewed at [112] zone and can reduce overlap between
adjacent crystals.

• The conclusions from simulated data on logarithmic scaling and uneven matching results
across orientation space are backed up experimentally.

Further more, contributions to Pyxem[12] where made in the form of a automatic calibration
function:A.2, and a function for converting the results from template matching into a crystal map
from further use in Orix[1]: A.1.

43

7 Future Work

It has been demonstrated that to collect data at different orientations has added value, although
comes at the cost of larger data set sizes and more computation. Therefor, one of the obvious
suggested works for the future is more automation to handle tilt series. The tilt series present in this
work are essentially 5D data sets, but the work comparing orientations between tilts via for example
misorientation to a known or reference, was done mostly manually. It could be possible to cluster
the orientations of different grains, recognize the same grain at different tilts and automatically
find the misorientation between different tilts. There are challenges in this however. For one; as
the sample is tilted, the real space image is distorted, so recognizing grain from tilt to tilt could be
difficult to do automatically without good markers that work over the entire tilt range. Another
aspect related to tilt series is how to express and visualize accuracy and precision in misorientation
space. Here the work by Morawiec [18] should be incorporated into the workflow to better visualize
accuracy and precision.

Another problem quite evident and fundamental challenge with template matching is overlapping
grains when attempting to find the best template. The patterns produced from this are a combin-
ation of multiple different orientations. Suggested solutions include sequential template matching
[26] or via Non-Negative Matrix Factorization [3]. Another potential solution to this would be to
look through the list of matches for significantly different patterns that could indicate overlap. An
alternative solution may be to take the first match and remove the spots present and rematch the
pattern. This would require restructuring the data labeling in Pyxem. Currently, in the template
library only the positions and intensity of the diffraction spots are stored but they are not indexed.
This would also add functionality to Pyxem for plotting these indexed templates onto the patterns
that they match to.

All that has been shown and suggested is based on single phase, high symmetry (fcc) examples.
Changing one or both of these will certainly introduce new challenges that need solutions. In theory
with multi-phase data; if the different phases are significantly different (different lattice parameters
and structures), then the fast template matching should be able to handle it. In principle, Cauaerts
et. all [5] has demonstrated that this is possible and that increased computational speed is a crucial
asset. But it would require addition parameter evaluation as done here for orientation analysis.
It should expected that parts of conclusions from this work, for example preprocessing steps, can
be applied without too much additional work. However phase that share diffraction spots or have
very similar lattice parameters could introduce very difficult problems.

Another factor that was not of much interest with the structures examined in this work is the
maximum excitation error used when simulating the templates. For other materials, this parameter
could be very sensitive to change [10].

44

References

[1] H̊akon Wiik Ånes et al. pyxem/orix: orix 0.8.2. Version v0.8.2. Feb. 2022. doi: 10.5281/
zenodo.6199723. url: https://doi.org/10.5281/zenodo.6199723.

[2] Jonathan S. Barnard, Duncan N. Johnstone and Paul A. Midgley. ‘High-resolution scanning
precession electron diffraction: Alignment and spatial resolution’. In: Ultramicroscopy 174
(2017), pp. 79–88. issn: 0304-3991. doi: https://doi.org/10.1016/j.ultramic.2016.12.018. url:
https://www.sciencedirect.com/science/article/pii/S030439911630211X.

[3] T. BERGH et al. ‘Nanocrystal segmentation in scanning precession electron diffraction data’.
In: Journal of Microscopy 279.3 (2020), pp. 158–167. doi: https://doi.org/10.1111/jmi.12850.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/jmi.12850. url: https://onlinelibrary.
wiley.com/doi/abs/10.1111/jmi.12850.

[4] bsavitzky et al. py4dstem/py4DSTEM: DOI release. Version v0.5. July 2019. doi: 10.5281/
zenodo.3333960. url: https://doi.org/10.5281/zenodo.3333960.

[5] Niels Cautaerts et al. ‘Free, flexible and fast: Orientation mapping using the multi-core and
GPU-accelerated template matching capabilities in the python-based open source 4D-STEM
analysis toolbox Pyxem’. In: Ultramicroscopy (2022), p. 113517. doi: 10.1016/j.ultramic.
2022.113517.

[6] Phillip Crout et al. pyxem/diffsims: diffsims 0.4.2. Version v0.4.2. Apr. 2021. doi: 10.5281/
zenodo.4697299. url: https://doi.org/10.5281/zenodo.4697299.

[7] Olaf Engler and Valerie Randle. Introduction to Texture Analysis. CRC Press, Nov. 2009.
doi: 10.1201/9781420063660. url: https://doi.org/10.1201/9781420063660.

[8] Ardeshir Goshtasby. Image registration. Principles, tools and methods. Jan. 2012. isbn: 978-
1-4471-2457-3. doi: 10.1007/978-1-4471-2458-0.

[9] Mario F. Heinig et al. ‘Aminopropylsilatrane Linkers for Easy and Fast Fabrication of High-
Quality 10 nm Thick Gold Films on SiO2 Substrates’. In: ACS Applied Nano Materials 3.5
(2020), pp. 4418–4427. doi: 10.1021/acsanm.0c00531.

[10] Endre Jacobsen. ‘Scanning Precession Electron Diffraction Template Matching for Auto-
mated Phase Mapping of Precipitates in 6xxx Aluminium Alloys’. MA thesis. NTNU, 2020.

[11] Anubhav Jain et al. ‘Commentary: The Materials Project: A materials genome approach to
accelerating materials innovation’. In: APL Materials 1.1 (2013), p. 011002. issn: 2166532X.
doi: 10.1063/1.4812323. url: https://doi.org/10.1063/1.4812323.

[12] Duncan Johnstone et al. pyxem/pyxem: pyxem 0.14.1. Version v0.14.1. Apr. 2022. doi: 10.
5281/zenodo.6505200. url: https://doi.org/10.5281/zenodo.6505200.

[13] Charles Kittel. Introduction to Solid State Physics. 8th. New York: John Wiley & Sons, Inc.,
2004.

[14] Ian MacLaren et al. ‘A Comparison of a Direct Electron Detector and a High-Speed Video
Camera for a Scanning Precession Electron Diffraction Phase and Orientation Mapping’. In:
Microscopy and Microanalysis 26.6 (2020), pp. 1110–1116. doi: 10.1017/S1431927620024411.

[15] Michael P. Marder. Condensed Matter Physics. John Wiley & Sons, Inc., Oct. 2010. doi:
10.1002/9780470949955. url: https://doi.org/10.1002/9780470949955.

[16] Ben Martineau et al. ‘Unsupervised machine learning applied to scanning precession electron
diffraction data’. English. In: Advanced Structural and Chemical Imaging (2019). issn: 2198-
0926. doi: 10.1186/s40679-019-0063-3.

[17] Paul A. Midgley and Alexander S. Eggeman. ‘Precession electron diffraction – a topical
review’. In: IUCrJ 2.1 (Jan. 2015), pp. 126–136. doi: 10.1107/S2052252514022283. url:
https://doi.org/10.1107/S2052252514022283.

[18] A. Morawiec et al. ‘Orientation precision of TEM-based orientation mapping techniques’.
In: Ultramicroscopy 136 (2014), pp. 107–118. issn: 0304-3991. doi: https : / /doi . org/10 .
1016/ j . ultramic . 2013 . 08 . 008. url: https : / /www . sciencedirect . com/ science / article / pii /
S0304399113002532.

45

https://doi.org/10.5281/zenodo.6199723
https://doi.org/10.5281/zenodo.6199723
https://doi.org/10.5281/zenodo.6199723
https://doi.org/https://doi.org/10.1016/j.ultramic.2016.12.018
https://www.sciencedirect.com/science/article/pii/S030439911630211X
https://doi.org/https://doi.org/10.1111/jmi.12850
https://onlinelibrary.wiley.com/doi/pdf/10.1111/jmi.12850
https://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12850
https://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12850
https://doi.org/10.5281/zenodo.3333960
https://doi.org/10.5281/zenodo.3333960
https://doi.org/10.5281/zenodo.3333960
https://doi.org/10.1016/j.ultramic.2022.113517
https://doi.org/10.1016/j.ultramic.2022.113517
https://doi.org/10.5281/zenodo.4697299
https://doi.org/10.5281/zenodo.4697299
https://doi.org/10.5281/zenodo.4697299
https://doi.org/10.1201/9781420063660
https://doi.org/10.1201/9781420063660
https://doi.org/10.1007/978-1-4471-2458-0
https://doi.org/10.1021/acsanm.0c00531
https://doi.org/10.1063/1.4812323
https://doi.org/10.1063/1.4812323
https://doi.org/10.5281/zenodo.6505200
https://doi.org/10.5281/zenodo.6505200
https://doi.org/10.5281/zenodo.6505200
https://doi.org/10.1017/S1431927620024411
https://doi.org/10.1002/9780470949955
https://doi.org/10.1002/9780470949955
https://doi.org/10.1186/s40679-019-0063-3
https://doi.org/10.1107/S2052252514022283
https://doi.org/10.1107/S2052252514022283
https://doi.org/https://doi.org/10.1016/j.ultramic.2013.08.008
https://doi.org/https://doi.org/10.1016/j.ultramic.2013.08.008
https://www.sciencedirect.com/science/article/pii/S0304399113002532
https://www.sciencedirect.com/science/article/pii/S0304399113002532

[19] NanoMEGAS. url: www.nanomegas.com.

[20] G. Nolze and R. Hielscher. ‘Orientations perfectly colored’. In: Journal of Applied Crystal-
lography 49.5 (2016), pp. 1786–1802. doi: https ://doi . org/10 .1107/S1600576716012942.
eprint: https ://onlinelibrary.wiley.com/doi/pdf/10.1107/S1600576716012942. url: https :
//onlinelibrary.wiley.com/doi/abs/10.1107/S1600576716012942.

[21] Colin Ophus. ‘Four-Dimensional Scanning Transmission Electron Microscopy (4D-STEM):
From Scanning Nanodiffraction to Ptychography and Beyond’. In: Microscopy and Microana-
lysis 25 (May 2019), pp. 1–20. doi: 10.1017/S1431927619000497.

[22] Francisco de la Peña et al. hyperspy/hyperspy: Release v1.6.5. Version v1.6.5. Oct. 2021. doi:
10.5281/zenodo.5608741. url: https://doi.org/10.5281/zenodo.5608741.

[23] E. Rauch and Laurent Dupuy. ‘Rapid Diffraction Patterns identification through template
matching’. In: Archives of Metallurgy and Materials 50 (Jan. 2005), pp. 87–99.

[24] E. Rauch and M. Véron. ‘Improving angular resolution of the crystal orientation determined
with spot diffraction patterns’. In: Microscopy and Microanalysis - MICROSC MICROANAL
16 (July 2010), pp. 770–771. doi: 10.1017/S1431927610059593.

[25] Gurvinder Singh et al. ‘Synthesis of Au nanowires with controlled morphological and struc-
tural characteristics’. In: Applied Surface Science 311 (2014), pp. 780–788. issn: 0169-4332.
doi: https://doi.org/10.1016/j.apsusc.2014.05.162. url: https://www.sciencedirect.com/
science/article/pii/S0169433214012033.

[26] Alexia Valery et al. ‘Indexation of diffraction patterns for overlapping crystals in TEM thin
foils - Application to orientation mappings’. In: European Microscopy Congress 2016: Pro-
ceedings. John Wiley & Sons, Ltd, 2016, pp. 657–658. isbn: 9783527808465. doi: https :
//doi.org/10.1002/9783527808465.EMC2016.6091. eprint: https://onlinelibrary.wiley.com/doi/
pdf/10.1002/9783527808465.EMC2016.6091. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9783527808465.EMC2016.6091.

[27] R. Vincent and P.A. Midgley. ‘Double conical beam-rocking system for measurement of
integrated electron diffraction intensities’. In: Ultramicroscopy 53.3 (1994), pp. 271–282. issn:
0304-3991. doi: https : / / doi . org / 10 . 1016 / 0304 - 3991(94) 90039 - 6. url: https : / /www .
sciencedirect.com/science/article/pii/0304399194900396.

[28] Matthew Weyland and Paul Midgley. ‘Electron Tomography’. In: Transmission Electron
Microscopy: Diffraction, Imaging, and Spectrometry. Ed. by C. Barry Carter and David
B. Williams. Cham: Springer International Publishing, 2016, pp. 343–376. isbn: 978-3-319-
26651-0. doi: 10.1007/978-3-319-26651-0 12. url: https://doi.org/10.1007/978-3-319-26651-
0 12.

[29] David B. Williams and C. Barry Carter. Transmission Electron Microscopy. Springer US,
2009. doi: 10.1007/978-0-387-76501-3. url: https://doi.org/10.1007/978-0-387-76501-3.

46

www.nanomegas.com
https://doi.org/https://doi.org/10.1107/S1600576716012942
https://onlinelibrary.wiley.com/doi/pdf/10.1107/S1600576716012942
https://onlinelibrary.wiley.com/doi/abs/10.1107/S1600576716012942
https://onlinelibrary.wiley.com/doi/abs/10.1107/S1600576716012942
https://doi.org/10.1017/S1431927619000497
https://doi.org/10.5281/zenodo.5608741
https://doi.org/10.5281/zenodo.5608741
https://doi.org/10.1017/S1431927610059593
https://doi.org/https://doi.org/10.1016/j.apsusc.2014.05.162
https://www.sciencedirect.com/science/article/pii/S0169433214012033
https://www.sciencedirect.com/science/article/pii/S0169433214012033
https://doi.org/https://doi.org/10.1002/9783527808465.EMC2016.6091
https://doi.org/https://doi.org/10.1002/9783527808465.EMC2016.6091
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527808465.EMC2016.6091
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527808465.EMC2016.6091
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.6091
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527808465.EMC2016.6091
https://doi.org/https://doi.org/10.1016/0304-3991(94)90039-6
https://www.sciencedirect.com/science/article/pii/0304399194900396
https://www.sciencedirect.com/science/article/pii/0304399194900396
https://doi.org/10.1007/978-3-319-26651-0_12
https://doi.org/10.1007/978-3-319-26651-0_12
https://doi.org/10.1007/978-3-319-26651-0_12
https://doi.org/10.1007/978-0-387-76501-3
https://doi.org/10.1007/978-0-387-76501-3

A Code Contributions to Pyxem

A.1 results dict to crystal map

Function to take the results from template matching and make them into a crystal map for use in
Orix. Start by me and written by myself and H̊akon Wiik Ånes.

1 def results_dict_to_crystal_map(

2 results, phase_key_dict, diffraction_library=None, index=None

3):

4 """Export an indexation result from

5 :func:`index_dataset_with_template_rotation` to a crystal map with

6 `n_best` rotations, score, mirrors and one phase ID per data point.

7 Parameters

8 ----------

9 results : dict

10 Results dictionary obtained from

11 :func:`index_dataset_with_template_rotation`.

12 phase_key_dict : dict

13 Dictionary mapping phase ID to phase name, obtained from

14 :func:`index_dataset_with_template_rotation`.

15 diffraction_library : diffsims.libraries.DiffractionLibrary, optional

16 Used for the structures to be passed to

17 :class:`orix.crystal_map.PhaseList`.

18 index : int, optional

19 Which of the `n_best` solutions (0-indexed) obtained from

20 :func:`index_dataset_with_template_rotation` to get a crystal

21 map from. Highest allowed value is `n_best` - 1. If not given,

22 all solutions are used if `n_best` was more than one and

23 `results["phase_index"]` only has one phase, otherwise, only the

24 best solution is used.

25 Returns

26 -------

27 orix.crystal_map.CrystalMap

28 Crystal map containing `results`. The map has multiple rotations

29 and properties ("correlation", "mirrored_template",

30 "template_index") per point only if `n_best` passed to

31 :func:`index_dataset_with_template_rotation` was more than one

32 and "phase_index" only has one phase.

33 Notes

34 -----

35 Phase's :attr:`~orix.crystal_map.Phase.point_group` must be set

36 manually to the correct :class:`~orix.quaternion.Symmetry` after

37 the crystal map is returned.

38 Examples

39 --------

40 After getting `results` and `phase_key_dict` from template matching

41 >>> xmap = results_dict_to_crystal_map(results, phase_key_dict) # doctest: +SKIP

42 >>> xmap.plot() # Phase map # doctest: +SKIP

43 Getting the second best match if `n_best` passed to the template

44 matching function is greater than one

45 >>> xmap2 = results_dict_to_crystal_map(

46 ... results, phase_key_dict, index=1

47 ...) # doctest: +SKIP

48 """

49 ny, nx, n_best = results["phase_index"].shape

50 if index is not None and index > n_best - 1:

51 raise ValueError(f"`index` cannot be higher than {n_best - 1} (`n_best` - 1)")

47

52

53 n_points = nx * ny

54

55 # Phase ID (only one per point is allowed, always)

56 if index is None:

57 phase_id = results["phase_index"][:, :, 0].ravel()

58 else:

59 phase_id = results["phase_index"][:, :, index].ravel()

60 n_phases = np.unique(phase_id).size

61

62 x, y = np.indices((nx, ny)).reshape((2, n_points))

63

64 if diffraction_library is not None:

65 structures = diffraction_library.structures

66 else:

67 structures = None

68 phase_list = PhaseList(names=phase_key_dict, structures=structures)

69

70 euler = np.deg2rad(results["orientation"].reshape((n_points, n_best, 3)))

71 if index is None and n_phases > 1:

72 euler = euler[:, 0] # Best match only

73 elif index is not None:

74 euler = euler[:, index] # Desired match only

75 euler = euler.squeeze() # Remove singleton dimensions

76 rotations = Rotation.from_euler(euler)

77

78 props = {}

79 for key in ("correlation", "mirrored_template", "template_index"):

80 try:

81 prop = results[key]

82 except KeyError:

83 warnings.warn(f"Property '{key}' was expected but not found in `results`")

84 continue

85

86 if index is None and n_phases > 1:

87 prop = prop[:, :, 0].ravel() # Best match only

88 elif index is not None:

89 prop = prop[:, :, index].ravel() # Desired match only

90 else:

91 prop = prop.reshape((n_points, n_best)) # All

92 props[key] = prop.squeeze() # Remove singleton dimensions

93

94 return CrystalMap(

95 rotations=rotations,

96 phase_id=phase_id,

97 x=x,

98 y=y,

99 phase_list=phase_list,

100 prop=props,

101)

A.2 calibration utils.py

Function(s) for automated optimization of calibration via correlation score. Not fully optimized
but working and shows the concept well.

48

1 # -*- coding: utf-8 -*-

2 # Copyright 2016-2022 The pyXem developers

3 #

4 # This file is part of pyXem.

5 #

6 # pyXem is free software: you can redistribute it and/or modify

7 # it under the terms of the GNU General Public License as published by

8 # the Free Software Foundation, either version 3 of the License, or

9 # (at your option) any later version.

10 #

11 # pyXem is distributed in the hope that it will be useful,

12 # but WITHOUT ANY WARRANTY; without even the implied warranty of

13 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

14 # GNU General Public License for more details.

15 #

16 # You should have received a copy of the GNU General Public License

17 # along with pyXem. If not, see <http://www.gnu.org/licenses/>.

18

19

20 import numpy as np

21

22 from diffsims.generators.library_generator import DiffractionLibraryGenerator

23 from pyxem.utils.indexation_utils import index_dataset_with_template_rotation

24

25

26 def find_diffraction_calibration(

27 patterns,

28 calibration_guess,

29 library_phases,

30 lib_gen,

31 size,

32 max_excitation_error=0.01,

33 **kwargs

34):

35 """Finds the diffraction calibration for a pattern or set of patterns by maximizing correlation

scores.↪→

36 Parameters

37 ----------

38 patterns : hyperspy.signals.Signal2D

39 Diffration patterns to be iteratively matched to find maximum correlation scores.

40 calibration_guess : float

41 Inital value for the diffraction calibration in inverse Angstoms per pixel

42 library_phases : diffsims.libraries.StructureLibrary

43 Dictionary of structures and associated orientations for which

44 electron diffraction is to be simulated.

45 lib_gen : diffsims.generators.DiffractionLibraryGenerator

46 Computes a library of electron diffraction patterns for specified atomic

47 structures and orientations. Used to create the DiffractionLibrary.

48 size : integer

49 How many different steps to test for the first two iterations. These steps have a size of 1%

of the calibration guess.↪→

50 max_excitation_error : float

51 Maximum exacitation error. Default is 0.01.

52 kwargs

53 Keyword arguments passed to :meth:`index_dataset_with_template_rotation`.

54

55 Returns

56 -------

57 mean_cal : float

58 Mean of calibrations found for each pattern.

49

59 full_corrlines : numpy.ndarray

60 Gives the explicit correlation vs calibration values. Shape:(size*2 + 20, 2 , number of

patterns)↪→

61 found_cals : numpy.ndarray

62 List of optimal calibration values for each pattern. Shape:(number of patterns)

63 """

64

65 images = patterns

66

67 num_patterns = images.data.shape[0]

68 found_cals = np.full((num_patterns,), calibration_guess)

69 full_corrlines = np.zeros((0, 2, num_patterns))

70

71 stepsize = 0.01 * calibration_guess

72 # first set of checks

73 corrlines = _calibration_iteration(

74 images,

75 calibration_guess,

76 library_phases,

77 lib_gen,

78 stepsize,

79 size,

80 num_patterns,

81 max_excitation_error,

82 **kwargs

83)

84 full_corrlines = np.append(full_corrlines, corrlines, axis=0)

85

86 # refined calibration checks

87 calibration_guess = full_corrlines[

88 full_corrlines[:, 1, :].argmax(axis=0), 0, 0

89].mean()

90 corrlines = _calibration_iteration(

91 images,

92 calibration_guess,

93 library_phases,

94 lib_gen,

95 stepsize,

96 size,

97 num_patterns,

98 max_excitation_error,

99 **kwargs

100)

101 full_corrlines = np.append(full_corrlines, corrlines, axis=0)

102

103 # more refined calibration checks with smaller step

104 stepsize = 0.001 * calibration_guess

105 size = 20

106 calibration_guess = full_corrlines[

107 full_corrlines[:, 1, :].argmax(axis=0), 0, 0

108].mean()

109

110 corrlines = _calibration_iteration(

111 images,

112 calibration_guess,

113 library_phases,

114 lib_gen,

115 stepsize,

116 size,

117 num_patterns,

50

118 max_excitation_error,

119 **kwargs

120)

121 full_corrlines = np.append(full_corrlines, corrlines, axis=0)

122 found_cals = full_corrlines[full_corrlines[:, 1, :].argmax(axis=0), 0, 0]

123

124 mean_cal = found_cals.mean()

125 return mean_cal, full_corrlines, found_cals

126

127

128 def _calibration_iteration(

129 images,

130 calibration_guess,

131 library_phases,

132 lib_gen,

133 stepsize,

134 size,

135 num_patterns,

136 max_excitation_error,

137 **kwargs

138):

139 """For use in find_diffraction_calibration. Controls the iteration of _create_check_diflib over

a set of steps.↪→

140 Parameters

141 ----------

142 images : hyperspy.signals.Signal2D

143 Diffration patterns to be iteratively matched to find maximum correlation scores.

144 calibration_guess : float

145 Inital value for the diffraction calibration in inverse Angstoms per pixel

146 library_phases : diffsims.libraries.StructureLibrary

147 Dictionary of structures and associated orientations for which

148 electron diffraction is to be simulated.

149 lib_gen : diffsims.generators.DiffractionLibraryGenerator

150 Computes a library of electron diffraction patterns for specified atomic

151 structures and orientations. Used to create the DiffractionLibrary.

152 stepsize : float

153 Stepsize of iteration.

154 size : integer

155 How many different steps to test.

156 num_patterns : integer

157 Number of patterns.

158 max_excitation_error : float

159 Maximum exacitation error. Default is 0.01.

160 kwargs

161 Keyword arguments passed to :meth:`index_dataset_with_template_rotation`.

162

163 Returns

164 -------

165 corrlines : numpy.ndarray

166 """

167 corrlines = np.zeros((0, 2, num_patterns))

168 temp_line = np.zeros((1, 2, num_patterns))

169 cal_guess_greater = calibration_guess

170 cal_guess_lower = calibration_guess

171 for i in range(size // 2):

172 temp_line[0, 0, :] = cal_guess_lower

173 temp_line[0, 1, :] = _create_check_diflib(

174 images,

175 cal_guess_lower,

176 library_phases,

51

177 lib_gen,

178 max_excitation_error,

179 **kwargs

180)

181 corrlines = np.append(corrlines, temp_line, axis=0)

182

183 temp_line[0, 0, :] = cal_guess_greater

184 temp_line[0, 1, :] = _create_check_diflib(

185 images,

186 cal_guess_greater,

187 library_phases,

188 lib_gen,

189 max_excitation_error,

190 **kwargs

191)

192 corrlines = np.append(corrlines, temp_line, axis=0)

193

194 cal_guess_lower = cal_guess_lower - stepsize

195 cal_guess_greater = cal_guess_greater + stepsize

196

197 return corrlines

198

199

200 def _create_check_diflib(

201 images, calibration_guess, library_phases, lib_gen, max_excitation_error, **kwargs

202):

203 """For use in find_diffraction_calibration via _calibration_iteration. Creates a new

DiffractionLibrary from the inputs and then matches it the images.↪→

204 Parameters

205 ----------

206 images : hyperspy.signals.Signal2D

207 Diffration patterns to be iteratively matched to find maximum correlation scores.

208 calibration_guess : float

209 Inital value for the diffraction calibration in inverse Angstoms per pixel

210 library_phases : diffsims.libraries.StructureLibrary

211 Dictionary of structures and associated orientations for which

212 electron diffraction is to be simulated.

213 lib_gen : diffsims.generators.DiffractionLibraryGenerator

214 Computes a library of electron diffraction patterns for specified atomic

215 structures and orientations. Used to create the DiffractionLibrary.

216 max_excitation_error : float

217 Maximum exacitation error. Default is 0.01.

218 kwargs

219 Keyword arguments passed to :meth:`index_dataset_with_template_rotation`.

220

221 Returns

222 -------

223 correlations : numpy.ndarray

224 """

225

226 half_shape = (images.data.shape[-2] // 2, images.data.shape[-1] // 2)

227 reciprocal_r = np.sqrt(half_shape[0] ** 2 + half_shape[1] ** 2) * calibration_guess

228 diff_lib = lib_gen.get_diffraction_library(

229 library_phases,

230 calibration=calibration_guess,

231 reciprocal_radius=reciprocal_r,

232 half_shape=half_shape,

233 with_direct_beam=False,

234 max_excitation_error=max_excitation_error,

235)

52

236

237 result, phasedict = index_dataset_with_template_rotation(images, diff_lib, **kwargs)

238 correlations = result["correlation"][:, :, 0].flatten()

239 return correlations

B Crystallographic Information Files used

B.1 Si

1 # generated using pymatgen

2 data_Si

3 _symmetry_space_group_name_H-M 'P 1'

4 _cell_length_a 5.46872800

5 _cell_length_b 5.46872800

6 _cell_length_c 5.46872800

7 _cell_angle_alpha 90.00000000

8 _cell_angle_beta 90.00000000

9 _cell_angle_gamma 90.00000000

10 _symmetry_Int_Tables_number 1

11 _chemical_formula_structural Si

12 _chemical_formula_sum Si8

13 _cell_volume 163.55317139

14 _cell_formula_units_Z 8

15 loop_

16 _symmetry_equiv_pos_site_id

17 _symmetry_equiv_pos_as_xyz

18 1 'x, y, z'

19 loop_

20 _atom_site_type_symbol

21 _atom_site_label

22 _atom_site_symmetry_multiplicity

23 _atom_site_fract_x

24 _atom_site_fract_y

25 _atom_site_fract_z

26 _atom_site_occupancy

27 Si Si0 1 0.25000000 0.75000000 0.25000000 1

28 Si Si1 1 0.00000000 0.00000000 0.50000000 1

29 Si Si2 1 0.25000000 0.25000000 0.75000000 1

30 Si Si3 1 0.00000000 0.50000000 0.00000000 1

31 Si Si4 1 0.75000000 0.75000000 0.75000000 1

32 Si Si5 1 0.50000000 0.00000000 0.00000000 1

33 Si Si6 1 0.75000000 0.25000000 0.25000000 1

34 Si Si7 1 0.50000000 0.50000000 0.50000000 1

B.2 Au

1 # generated using pymatgen

2 data_Au

53

3 _symmetry_space_group_name_H-M 'P 1'

4 _cell_length_a 4.17128800

5 _cell_length_b 4.17128800

6 _cell_length_c 4.17128800

7 _cell_angle_alpha 90.00000000

8 _cell_angle_beta 90.00000000

9 _cell_angle_gamma 90.00000000

10 _symmetry_Int_Tables_number 1

11 _chemical_formula_structural Au

12 _chemical_formula_sum Au4

13 _cell_volume 72.57892447

14 _cell_formula_units_Z 4

15 loop_

16 _symmetry_equiv_pos_site_id

17 _symmetry_equiv_pos_as_xyz

18 1 'x, y, z'

19 loop_

20 _atom_site_type_symbol

21 _atom_site_label

22 _atom_site_symmetry_multiplicity

23 _atom_site_fract_x

24 _atom_site_fract_y

25 _atom_site_fract_z

26 _atom_site_occupancy

27 Au Au0 1 0.00000000 0.00000000 0.00000000 1

28 Au Au1 1 0.00000000 0.50000000 0.50000000 1

29 Au Au2 1 0.50000000 0.00000000 0.50000000 1

30 Au Au3 1 0.50000000 0.50000000 0.00000000 1

B.3 Cu

1 # generated using pymatgen

2 data_Cu

3 _symmetry_space_group_name_H-M 'P 1'

4 _cell_length_a 3.62126200

5 _cell_length_b 3.62126200

6 _cell_length_c 3.62126200

7 _cell_angle_alpha 90.00000000

8 _cell_angle_beta 90.00000000

9 _cell_angle_gamma 90.00000000

10 _symmetry_Int_Tables_number 1

11 _chemical_formula_structural Cu

12 _chemical_formula_sum Cu4

13 _cell_volume 47.48755856

14 _cell_formula_units_Z 4

15 loop_

16 _symmetry_equiv_pos_site_id

17 _symmetry_equiv_pos_as_xyz

18 1 'x, y, z'

19 loop_

20 _atom_site_type_symbol

21 _atom_site_label

22 _atom_site_symmetry_multiplicity

23 _atom_site_fract_x

24 _atom_site_fract_y

54

25 _atom_site_fract_z

26 _atom_site_occupancy

27 Cu Cu0 1 0.00000000 0.00000000 0.00000000 1

28 Cu Cu1 1 0.00000000 0.50000000 0.50000000 1

29 Cu Cu2 1 0.50000000 0.00000000 0.50000000 1

30 Cu Cu3 1 0.50000000 0.50000000 0.00000000 1

C General Template Matching Notebook

Example code that from loading the data set, to template matching and finally inspection of the
results. Available as a notebook along with less general workflows on github:

https://github.com/soupmongoose/Pyxem-Notebooks

1 %matplotlib qt

2

3 import numpy as np

4 import matplotlib.pyplot as plt

5 import hyperspy.api as hs

6

7 # Loading Data set and basic inspection

8 dpau = hs.load("Data/20210714 142621 SPED B/128x128_12cm_1deg_step20_1nm_NBDalpha5_TX5.hspy")

9 dpau

10

11 dpau.plot(vmax = 50, cmap = 'viridis')

12 dpau = dpau.inav[35:110,15:110]

13 dpau

14 # Centering, a required step

15 dpau.center_direct_beam(method="blur", half_square_width=10, sigma=3)

16 dpau.plot(vmax = 50, cmap = 'viridis')

17 # Background subtraction, required for using logarithmic scaling

18 from skimage import filters

19 # Set values lower than a specific value to 0 in the image

20 def crop_minimum(image, minimum=0.0005):

21 copied = image.copy()

22 copied[copied <= minimum] = 0.

23 return copied

24

25 # difference of gaussians serves to remove the background intensity

26 temp = dpau.inav[93,85].subtract_diffraction_background(method="difference of gaussians",

27 min_sigma=9,

28 max_sigma=10,)

29 # smooth out the output

30 temp = temp.map(filters.gaussian, sigma=0.5, inplace=False)

31 temp = temp.map(crop_minimum, minimum = 1, inplace=False)

32 temp = temp.map(filters.gaussian, sigma=0.5, inplace=False)

33

34 temp = dpau.inav[93,85]

35 temp.plot(scalebar = False, cmap = 'inferno_r', norm = 'symlog')

36

37 dpau = dpau.subtract_diffraction_background(method="difference of gaussians",

38 min_sigma=9,

39 max_sigma=10,

40 lazy_result = False)

41 dpau.map(filters.gaussian, sigma=0.5)

42 dpau.map(crop_minimum, minimum = 1)

55

43 dpau.map(filters.gaussian, sigma=0.5)

44 dpau.plot(vmax = 50, cmap = 'viridis')

45

46 # Creating the Template Library

47 from diffsims.generators.rotation_list_generators import get_beam_directions_grid

48 resolution = 1

49 grid_cub = get_beam_directions_grid("cubic", resolution, mesh="spherified_cube_edge")

50 print(grid_cub.shape[0])

51

52 # this cell serves to visualize the grid of orientations in stereographic projection

53 from orix.quaternion import Orientation, symmetry

54 from orix.vector import Vector3d

55 #create orientations from the grid

56 origrid = Orientation.from_euler(

57 np.radians(grid_cub),

58 symmetry=symmetry.Oh

59)

60

61 v = Vector3d(((0, 0, 1))) #looking in the Z direction

62 origrid.scatter("ipf", direction=v, s = 10)

63

64 import diffpy

65 from diffsims.libraries.structure_library import StructureLibrary

66 from diffsims.generators.diffraction_generator import DiffractionGenerator

67 from diffsims.generators.library_generator import DiffractionLibraryGenerator

68

69 # Parameters necessary for simulating a template library

70 diffraction_calibration = 0.00938

71 half_shape = (dpau.data.shape[-2]//2, dpau.data.shape[-1]//2)

72 reciprocal_radius = np.sqrt(half_shape[0]**2 + half_shape[1]**2)*diffraction_calibration

73

74 structure_matrix = diffpy.structure.loadStructure("Data/Au_mp-81_conventional_standard.cif")

75

76 # In essence the microscope setup

77 diff_gen = DiffractionGenerator(accelerating_voltage=200,

78 precession_angle=1,

79 scattering_params=None,

80 shape_factor_model="linear",

81 minimum_intensity=0.1,

82)

83

84 lib_gen = DiffractionLibraryGenerator(diff_gen)

85

86 library_phases_Au = StructureLibrary(["Au"], [structure_matrix], [grid_cub])

87

88 diff_lib_Au = lib_gen.get_diffraction_library(library_phases_Au,

89 calibration=diffraction_calibration,

90 reciprocal_radius=reciprocal_radius,

91 half_shape=half_shape,

92 with_direct_beam=False,

93 max_excitation_error=0.08)

94

95 from pyxem.utils import indexation_utils as iutls

96 from pyxem.utils import plotting_utils as putls

97

98 # shows how the in-plane angle is optimized for a single pattern and single template

99 image = dpau.inav[93,85].data

100 simulation_test = diff_lib_Au["Au"]["simulations"][92]

101

102 a, c = iutls.get_in_plane_rotation_correlation(

56

103 image,

104 simulation_test,

105 intensity_transform_function=None, n

106 delta_r = 1,

107 delta_theta = 0.1,

108 max_r = None,

109 find_direct_beam = False,

110 direct_beam_position = None,

111 normalize_image=True,

112 normalize_template=True,

113)

114

115 fig, ax = plt.subplots()

116 ax.plot(a, c)

117 ax.set_xlim(0, 360)

118 ax.set_xlabel("Angular shift (Degrees)")

119 ax.set_ylabel("Correlation")

120

121

122 putls.plot_template_over_pattern(image,

123 simulation_test,

124 in_plane_angle=a[np.argmax(c)],

125 coordinate_system = "cartesian",

126 size_factor = 10,

127 vmax=20,

128 max_r = 200,

129 find_direct_beam=True,

130 cmap = "inferno"

131)

132

133 # Matching a single pattern

134

135 simulations = diff_lib_Au["Au"]["simulations"]

136

137 delta_r = 1

138 delta_theta = 1

139 max_r = None

140 intensity_transform_function = None

141 find_direct_beam = False

142 direct_beam_position = None

143 normalize_image = True

144 normalize_templates = True

145

146 n_best = 10

147 indices_n, angles_n, correlations_n, signs_n = iutls.get_n_best_matches(image,

148 simulations,

149 n_best,

150 frac_keep,

151 n_keep,

152 delta_r,

153 delta_theta,

154 max_r,

155 intensity_transform_function,

156 find_direct_beam,

157 direct_beam_position,

158 normalize_image,

159 normalize_templates,

160)

161

162

57

163 mirrored = signs_n[0] == -1

164 putls.plot_template_over_pattern(image,

165 simulations[indices_n[0]],

166 in_plane_angle=angles_n[0],

167 coordinate_system = "cartesian",

168 size_factor = 60,

169 max_r = 200,

170 vmax = 20,

171 mirrored_template=mirrored,

172 find_direct_beam=False,

173 cmap = "inferno_r",

174 marker_color = 'darkgreen',

175 marker_type = 'x',

176)

177

178

179 # Main template matching function

180

181 def log_func(x):

182 return(np.log10(x + 0.01)) # log function for better matching results

183

184 intensity_transform_function = log_func

185

186 result, phasedict = iutls.index_dataset_with_template_rotation(dpau,

187 diff_lib_Au,

188 phases = ["Au"],

189 n_best = n_best,

190 frac_keep = frac_keep,

191 n_keep = n_keep,

192 delta_r = delta_r,

193 delta_theta = delta_theta,

194 max_r = None,

195 intensity_transform_function=log_func,

196 normalize_images = normalize_image,

197 normalize_templates=normalize_templates,

198 target= 'cpu'

199)

200

201 # Converting Results to crystal map for use with Orix

202 xmap = iutls.results_dict_to_crystal_map(result,phasedict)

203

204 xmap.phases[0].space_group = 225

205 xmap

206

207 # Verification of matching results

208

209 from orix import plot

210 from orix.crystal_map import CrystalMap, Phase, PhaseList

211 from orix.io import load, save

212 from orix.quaternion import Orientation, Rotation, symmetry

213 from orix.vector import Vector3d

214

215 ckey_m3m = plot.IPFColorKeyTSL(xmap.phases["Au"].point_group, direction=Vector3d.xvector())

216 rgb_Aux = ckey_m3m.orientation2color(xmap["Au"].orientations)

217 ckey_m3m.direction = Vector3d.yvector()

218 rgb_Auy = ckey_m3m.orientation2color(xmap["Au"].orientations)

219 ckey_m3m.direction = Vector3d.zvector()

220 rgb_Auz = ckey_m3m.orientation2color(xmap["Au"].orientations)

221

222

58

223 #plotting the orientation map from all three principle directions

224 fig = plt.figure()

225 ax0 = fig.add_subplot(131, projection="plot_map")

226 ax1 = fig.add_subplot(132, projection="plot_map")

227 ax2 = fig.add_subplot(133, projection="plot_map")

228 ax0.set_title("X")

229 ax1.set_title("Y")

230 ax2.set_title("Z")

231 ax0.plot_map(xmap, rgb_Aux)

232 ax1.plot_map(xmap, rgb_Auy)

233 ax2.plot_map(xmap, rgb_Auz)

234

235

236 #plot correlation score

237 xmap.plot(value = xmap.correlation[:,0])

238

239 xmap.phases.add_not_indexed() # not indexed for the substrate/vacuum

240 xmap.phases

241 xmap[(xmap.correlation[:,0] < 0.0005)].phase_id = -1

242 xmap

243

244 xmap.plot()

245

246 rgb_Auz = ckey_m3m.orientation2color(xmap["Au"].orientations)

247 rgb_all = np.zeros((xmap.size, 3))

248 rgb_all[xmap.phase_id == 0] = rgb_Auz

249 rgb_all[xmap.phase_id == -1] = [0,0,0]

250 xmap.plot(rgb_all)

251

252 solution = result["orientation"]

253 #scan coordinate to check

254 px = 72

255 py = 65

256 # which solution to plot

257 n_sol = 0

258

259 index = np.ravel_multi_index((py,px),xmap.shape)

260 # query the necessary info from the solution

261 sim_sol_index = xmap.template_index[index,0]

262 mirrored_sol = xmap.mirrored_template[index,0]

263 in_plane_angle = np.rad2deg(xmap.rotations[index,0].to_euler())[0][0]

264 # # query the appropriate template

265 sim_sol = simulations[sim_sol_index]

266

267 fig = plt.figure()

268 ax0 = fig.add_subplot(121, projection="plot_map")

269 ax1 = fig.add_subplot(122)

270 ax0.set_title("Z")

271 ax0.plot_map(xmap, rgb_all)

272 ax0.scatter(px,py, marker = 'X', c = 'g', s = 50)

273 putls.plot_template_over_pattern(dpau.inav[px, py].data,

274 sim_sol,

275 ax = ax1,

276 in_plane_angle=in_plane_angle,

277 coordinate_system = "cartesian",

278 size_factor = 10,

279 vmax=20,

280 max_r = 200,

281 mirrored_template=mirrored_sol,

282 find_direct_beam=True,

59

283 cmap = "inferno",

284 marker_color = "green"

285)

286

287

288 # Creating a plotting normalized misorientation angle map

289 orifirst = xmap['Au'].orientations

290 store = np.zeros((xmap['Au'].size,5))

291 for i in range (5):

292 corr_weight = xmap['Au'].correlation[:,i]/xmap['Au'].correlation[:,0]

293 orinext = Orientation(xmap['Au'].rotations[:,i],symmetry=symmetry.Oh)

294 store[:,i] = np.degrees((orinext - orifirst).angle.data) * corr_weight

295 mean_misori_weighted = np.mean(store[:,1::], axis = 1)

296

297 xmap['Au'].plot(value = mean_misori_weighted,scalebar = False, vmax = 10, colorbar = True)

D Simulated data code

Important functions for creating random simulated data sets and rotating them. Full notebooks
on github: https://github.com/soupmongoose/Pyxem-Notebooks

1 %matplotlib qt

2

3 import numpy as np

4 import pyxem as pxm

5 import hyperspy.api as hs

6 import matplotlib.pyplot as plt

7 import math

8 import random

9 import diffpy

10 from diffsims.libraries.structure_library import StructureLibrary

11 from diffsims.generators.diffraction_generator import DiffractionGenerator

12 from diffsims.generators.library_generator import DiffractionLibraryGenerator

13 from pyxem.utils import indexation_utils as iutls

14 from pyxem.utils import plotting_utils as putls

15 from pyxem.utils import polar_transform_utils as ptutls

16

17 from diffsims.generators.rotation_list_generators import get_beam_directions_grid

18 grid_cub = get_beam_directions_grid("cubic", 0.1, mesh="spherified_cube_edge")

19 print("Number of patterns: ", grid_cub.shape[0])

20

21 # Parameters necessary for simulating a template library

22 diffraction_calibration = 0.01

23 half_shape = (256//2, 256//2)

24 reciprocal_radius = np.sqrt(half_shape[0]**2 + half_shape[1]**2)*diffraction_calibration

25

26 # importing the structures

27 structure_matrix = diffpy.structure.loadStructure("Au_mp-81_conventional_standard.cif")

28

29

30 diff_gen = DiffractionGenerator(accelerating_voltage=200,

31 precession_angle=1,

32 scattering_params=None,

33 shape_factor_model="linear",

34 minimum_intensity=0.1,

60

35)

36

37 lib_gen = DiffractionLibraryGenerator(diff_gen)

38

39 library_phases = StructureLibrary(["phase"], [structure_matrix], [grid_cub])

40

41 diff_lib_for_data = lib_gen.get_diffraction_library(library_phases,

42 calibration=diffraction_calibration,

43 reciprocal_radius=reciprocal_radius,

44 half_shape=half_shape,

45 with_direct_beam=False,

46 max_excitation_error=0.08)

47

48 #Function for creating a simulated data of ALL templates present in simulations with a set inplane

49 def full_lib_thing(simulations,inplane):

50 allpatterns = hs.signals.Signal2D(np.zeros((1,simulations.size,256,256)))

51 allpatterns.set_signal_type(signal_type="electron_diffraction")

52 pattern = hs.signals.Signal2D(np.zeros((256,256)))

53 pattern.set_signal_type(signal_type="electron_diffraction")

54

55 for i in range(simulations.size):

56 pattern = pointplotter(simulations,inplane,i,simulations.size)

57 allpatterns.inav[i,:] = pattern

58 pattern = hs.signals.Signal2D(np.zeros((256,256)))

59 return allpatterns

60

61 #*Code to create a random data set of simulated data and return the eulers and indexes used

62

63 def grab_random_pattern(simulations):

64 inplane = random.randint(0,360)

65 template = random.randint(0,simulations.size-1)

66 pattern = pointplotter(simulations,inplane,template,5)

67 return pattern, inplane, template

68 def build_random_tilts(diff_lib,n):

69 orientations = diff_lib['phase']['orientations']

70 simulations = diff_lib['phase']['simulations']

71 pattern_set = hs.signals.Signal2D(np.zeros((1,n,256,256)))

72 pattern_set.set_signal_type(signal_type="electron_diffraction")

73 eulers = np.zeros((n,3))

74 template_indexs = np.zeros((1,n))

75 for i in range(n):

76 pattern, inplane, template = grab_random_pattern(simulations)

77 euler = orientations[template].copy()

78 euler[0] = euler[0] + inplane

79 pattern_set.inav[i,0] = pattern

80 eulers[i,:] = euler

81 template_indexs[0,i] = template

82 return pattern_set,eulers,template_indexs

83

84 from pyxem.utils.plotting_utils import get_template_cartesian_coordinates

85 from diffsims.pattern.detector_functions import add_shot_and_point_spread

86

87 #*function for taking the simulated template and making a pattern

88 def pointplotter(simulations,inplane,template,sigma):

89 pattern = hs.signals.Signal2D(np.zeros((256,256)))

90 pattern.set_signal_type(signal_type="electron_diffraction")

91 x, y, intensities = get_template_cartesian_coordinates(simulations[template],in_plane_angle=inplane,window_size=(255,255),center=(256//2,256//2))

92 for i in range(x.size):

93 pattern.isig[x[i],y[i]]=intensities[i]

94 pattern = add_shot_and_point_spread(pattern.T, sigma, shot_noise=False)

61

95 pattern = hs.signals.Signal2D(pattern)

96 return pattern

97

98 randompatterns, eulers, template_indexs = build_random_tilts(diff_lib_for_data,4000)

99

100 # Plotting function to show a movement of tilts through a z-ipf

101 def plot_matchedandtrue_Oh(num):

102 oritrue = Orientation.from_euler(

103 np.radians(eulers[:,:,:]),

104 symmetry=symmetry.Oh

105)

106 orimatched = Orientation.from_euler(

107 np.radians(result['orientation'][num,:,0,:]),

108 symmetry=symmetry.Oh

109)

110 cmap = np.linspace(0, 1, oritrue.size)

111 v = Vector3d((0, 0, 1))

112 oritrue.scatter("ipf", direction=v, c=cmap)

113 orimatched.scatter("ipf", direction=v, c=cmap)

114

115 randompatterns.plot(cmap = 'viridis')

116

117 #*Function to rotated the simulated patterns

118 def rotate_sims(random_tilts,eulers,rot_quat,num_rot,pg):

119 shape = random_tilts.data.shape

120 pattern_set = hs.signals.Signal2D(np.zeros((shape[0],shape[1] + num_rot,shape[2],shape[3])))

121 pattern_set.inav[0,:] = random_tilts.data[:,0,:,:]

122 all_eulers = np.zeros((shape[0],num_rot + 1,3))

123 all_eulers[:,0,:] = eulers

124 for i in range(0, num_rot):

125 # rotated_eulers = np.degrees(om2eu(np.matmul(eu2om(np.radians(all_eulers[:,i,:])) ,rotation)))

126 quats = Orientation.from_euler(np.radians(all_eulers[:,i,:]),symmetry=pg)

127 rotated_quats = (quats * rot_quat)

128 rotated_quats.symmetry = pg

129 rotated_eulers = np.degrees(rotated_quats.to_euler())

130

131 all_eulers[:,i+1,:] = rotated_eulers

132 diff_gen = DiffractionGenerator(accelerating_voltage=200,

133 precession_angle=1,

134 scattering_params=None,

135 shape_factor_model="linear",

136 minimum_intensity=0.1,

137)

138

139 lib_gen = DiffractionLibraryGenerator(diff_gen)

140 library_phases = StructureLibrary(["phase"], [structure_matrix], [rotated_eulers])

141 diff_lib = lib_gen.get_diffraction_library(library_phases,

142 calibration=diffraction_calibration,

143 reciprocal_radius=reciprocal_radius,

144 half_shape=half_shape,

145 with_direct_beam=False,

146 max_excitation_error=0.08)

147 for j in range(eulers.shape[0]):

148 pattern = pointplotter(diff_lib['phase']['simulations'],0,j,5)

149 pattern_set.inav[i+1,j] = pattern

150

151 return(pattern_set,all_eulers)

62

