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Abstract
The Nature in Norway (NiN) system classifies nature types according to environ-
mental variables. Large scale mapping of benthic nature types by water is chal-
lenging, as light is quickly attenuated in deep areas and shallow water is diffi-
cult to traverse. Existing data of benthic nature types are mainly based on point-
measurements. To improve the accuracy and detail of NiN, extensive mapping of
the Norwegian coastline is essential.

For the purposes of this study, shallow benthic nature types are classified accord-
ing to dominant pigment groups. This allows for pigment based classification of
hyperspectral photomosaics, and hence relation from image to the nature type sys-
tem. This study applied an Unmanned Surface Vehicle (USV) and an Unmanned
Aerial Vehicle (UAV), both carrying hyperspectral imagers, mapping the same area
in Hopavågen, Norway. The class identification potential was described for each
photomosaic. The hyperspectral photomosaics were classified using the Spectral
Angle Mapper (SAM), and the classification accuracy was assessed for the photo-
mosaics obtained with the USV and UAV.

USV and UAV are promising large scale mapping tools, but it was established that
further studies should take place in the spring/summer to obtain sufficient light
signal. SAM classification of the USV photomosaic had an accuracy of 63.4%,
while the classified UAV photomosaic had an accuracy of 24.8%. Seagrass and
brown algae were classified poorly, while red algae and sediment were classified
quite well.
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Sammendrag
Natur i Norge (NiN) systemet klassifiserer naturtyper basert på miljøvariabler.
Storskala kartlegging av bentiske naturtyper er vanskelig, ettersom lys utslukkes
fort på dype områder, og grunt vann er vanskelig å forsere. Eksisterende kunnskap
om bentiske naturtyper er stort sett basert på punktmålinger. For å forbedre nøyak-
tigheten og detaljenivået i NiN kreves omfattende kartlegging av norsk kyst.

I denne studien ble bentiske naturtyper klassifisert etter dominerende pigmentgrup-
per. Denne studien tar i bruk et ubemannet overflatefartøy (USV) og et ubeman-
net luftfartøy (UAV), begge utstyrt med en hyperspektral bildetaker, og kartleg-
ger det samme området i Hopavågen, Norge. Potensialet for klasseidentifisering
blir beskrevet for begge fotomosaikkene. De hyperspektrale fotomosaikkene blir
også klassifisert med spektral vinkelkartlegger (SAM), og klassifiseringsnøyak-
tighet vurderes for fotomosaikkene fra USV og UAV.

UAV og UAV er begge lovende verktøy for storskala kartlegging, men det etableres
også at videre studier må gjøres i vår- og sommerhalvåret, for å oppnå bra nok
signal. SAM-klassifisering i USV fotomosaikken har en nøyaktighet på 63.4%, og
den klassifiserte UAV fotomosaikken har en nøyaktighet på 24.8%. Sjøgress og
brunalger ble klassifisert dårlig, mens rødalger og sediment ble klassifisert bra.
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Abbreviations & symbols
α Spectral angle

AMOS Centre for Autonomous Marine Operations and Systems

BIL Band Interleaved by Lines

Chl Chlorophyll

Ed(λ) Downwelling Spectral irradiance (Wm-2)

ENVI Environment for Visualizing Images

FFC Flat Field Correction

HI Hyperspectral Imager

IMU Inertial Measurement Unit

NTNU Norges Teknisk-Naturvitenskapelige Universitet

NIVA Norwegian Institute of Water Research

NiN Natur i Norge

OOI Object of Interest

RGB Red, Green and blue

ROI Region of interest

SAM Spectral Angle Mapper

SD Standard Deviation

TBS Trondhjem Biologiske stasjon, NTNU

UAV Unmanned Aerial Vehicle

UHI Underwater Hyperspectral Imager

USV Unmanned Surface Vehicle

Lu(λ) Upwelling spectral radiance (Wm-2sr-1)

IOP Inherrent Optical Properties

R(λ) Relative spectral reflectance
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Chapter 1

Introduction

The extent of antropogenic effects on coastal environments has increased dramat-
ically in the last century (Halpern et al. 2019, Peirano et al. 2005, Marshall 2021).
Coastal seabed mapping is essential in the effort to gain a deeper understanding of
these effects, and to increase public awareness of the diversity in the ocean, which
in turn may help conservation of oceans species and habitat diversity (de la Torri-
ente et al. 2019, Lieske et al. 2014). There is a current need for systematic habitat
mapping and monitoring that is easily conveyed to the public and for an improved
management of different taxa and corresponding decision-making (Halvorsen et al.
2015, Cohen et al. 2020).

In the coming years, the SeaBee research infrastructure project (Funded by the
Norwegian Research Council) is aiming to create infrastructure for remote sensing
of biodiversity in shallow areas along the Norwegian coast (Walday et al. 2021,
Rinde et al. 2021). This is an important step in increasing the data base for the
marine section of the Nature in Norway system. It is important to assess the func-
tionality of mapping methods that cover large areas efficiently. Such methods
should be able to map biodiversity at a high spatial accuracy. Unmanned Aerial
Vehicle (UAV) is a quick and efficient mapping tool increasingly making remote
sensing a simple tool with a wider range of access (Everaerts et al. 2008, Ven-
tura et al. 2018). Marine mapping is however challenging from a UAV, with only
optically shallow areas available (Freitas et al. 2018, Montes-Herrera et al. 2021).

1



2 Introduction

1.1 Nature in Norway - NiN
Nature in Norway (NiN) is a nature type organization system created by Arts-
databanken, together with the University of Oslo (UiO) and Norwegian institute
of water research (NIVA). It is intended to set objective and verifiable methods for
classifying nature types when mapping flora and fauna in Norway. The system
contains three major levels of mapping: Landscape types, nature types, and life
medium (Erikstad et al. 2019, Halvorsen et al. 2015, Ødegaard et al. 2009). The
three levels are utilized depending on the needs of the end user. This study focuses
on the nature type system. It is built hierarchically with main type groups, main
types, and basic types.

Nature systems are split into two sub-categories which together aim to completely
explain the variations seen in the Norwegian ecosystem. The first category is the
type-system, containing the most commonly used nature types (Halvorsen et al.
2015). The second is a complementary description system containing a plethora of
secondary environmental variables which ad descriptive complexity to the system
(Halvorsen et al. 2015).

1.2 From nature types to pigment based classes
The NiN nature system describes a collection of species living under the same
environmental variables as a nature type. With significance of the environmental
variables determining the hierarchy of the system. For example within euphotic
solid seafloor (main type M1), the types are determined by water influence intens-
ity, i.e. the intensity of currents and wave action, depth related light attenuation,
and marine salinity. Which makes up the three most important variables in this
environment.

In the NiN system, nature types are organized according to the environmental
variables which support the appearance of a selection of species. When mapping
classes with a hyperspectral imager (HI), the nature types must be reorganized as
pigment-based classes. The pigment composition of a nature type is either decided
by the dominant organism group, or the dominant substrate of the nature type. In
the case of the main type called Euphotic marine solid bottoms (M1); some sub-
types are dominated by Phaeophyta (brown algae), specifically types M1 1-7, and
types M1 24-27. The remainder types are dominated by organism groups other
than brown algae or exposed substrates. In this case it is beneficial to reorganize
the types into a class based on the dominant pigment group; brown algae. The
pigments absorb light at different wavelengths, resulting in reflectance of different
colors (Johnsen, Leu & Gradinger 2020). Similarly, other nature types must be
reorganized according to their dominant pigment group. The following list shows



1.2. From nature types to pigment based classes 3

the nature types and their assigned spectral classes. This reclassification is limited
to the optically shallow marine nature types.

• Seagrass: M7 Marine underwater meadows
Main type M7 comprises four types which are differentiated based on depth
and salinity. Neither of these parameters are easily inferred from hyperspec-
tral photomosaics, hence the spectral class comprises the whole main type.
Zostera (Seagrass) contain chlorophyll (chl) a and b which are the main
contributors to the reflectance spectrum giving notable peaks at 550 nm and
630 nm, which is also the lowest absorption. (Ralph et al. 2002, Casazza &
Mazzella 2002).

• Red algae: M1 Euphotic marine solid bottoms (type 2) & M4 Euphotic
marine sediment bottoms (type 11-20)
Rhodophyta describes both leafy red algae, and Corallinales (coralline al-
gae), which due to the calciferous structure of coralline algae, have a slightly
different R(λ) (Hochberg & Atkinson 2003, Johnsen, Leu & Gradinger 2020).
This study uses the term "red algae" for nature types which are dominated
by coralline algae, but may also contain other forms of Rhodophyta. Ar-
rangement of sediment grain size is the main environmental variable differ-
entiating within M4. Calciferous red algae require a certain grain size as
reliable substrates, hence only a handful of the M4 types are organized as
red algae. Chl a and R-phycoerythrin are the prominent contributors to the
in vivo reflectance spectrum of coralline algae (Mogstad & Johnsen 2017).

• Brown algae: M1 Euphotic marine solid bottoms (type 3-7 & 24-27) &
M3 Solid intertidal bottoms (type 1-7)
The previously mentioned environmental variables differentiate between M1
types. Types within M3 are differentiated by water influence intensity, air
exposure time and salinity. The brown algae class comprises the types within
M1 and M3 dominated brown algae, which are of high salinity, not too deep,
and not too steep. Chl a, chl c and fucoxanthin are the dominant contributors
to the reflectance spectrum of brown algae (Colombo-Pallotta et al. 2006,
Johnsen, Leu & Gradinger 2020).

• Sediment: M1 Euphotic marine solid bottoms (type 7-14) & M4 Eu-
photic marine sediment bottoms (type 1-12)
Water with lower than usual salt content (brackish) and most extremes of
other environmental variables often leave sediments exposed, as sessile or-
ganisms struggle to settle. The distinctiveness of the sediment is its lack of
pigmentation, resulting in a generally featureless optical fingerprints. Hence,
this spectral class comprises a wide variety of nature types.
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1.3 Remote sensing
Remote sensing is defined as the non intrusive gathering of information at a dis-
tance, but more commonly refers to the use of an optical sensor utilizing several
regions of the electromagnetic spectrum (Campbell & Wynne 2011). Usually, re-
mote sensing data has been gathered from satellites, but also from platforms closer
to the object of interest (OOI) (figure 1.1). Recent advances in techonolgy has al-
lowed for the use of light weight UAVs for remote sensing (Kislik et al. 2018). A
UAV is a good tool for remote sensing of the seafloor, with no upper limit to where
in the water column it can observe, and without disturbing the sediment (Kutser
et al. 2006). It is however limited to only optically shallow waters, by the depth
and attenuation of the water column. An HI mounted on a UAV is a passive sensor,
relying on sunlight to obtain signal (Johnsen, Mogstad, Berge & Cohen 2020).

Figure 1.1: Platforms used in remote sensing primarily differ in their temporal and spatial
scale. Remotely operated vehicle (ROV), Autonomous underwater vehicle (AUV), Un-
manned surface vehicle (USV) and Unmanned aerial vehicles (UAV) are the most com-
mon for shallow benthic surveys. From (Sørensen et al. 2020).

1.4 Hyperspectral imaging and Optical fingerprints
A hyperspectral imager, also known as imaging spectrometry, is commonly defined
as an imager which measures light intensity with a spectral resolution smaller than
10 nm, over a certain interval of wavelengths (Montes-Herrera et al. 2021). The in-
creased spectral resolution reveals several dimensions of color related information
which is unavailable for normal cameras and the human eye (figure 1.2).
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Figure 1.2: The human eye and conventional cameras are only sensitive to light intens-
ity in three wavelength bands: Red, Green and Blue (RGB). A hyperspectral imager is
defined as any imager which captures light intensity in continuous bands smaller than 10
nm (Montes-Herrera et al. 2021).

Hyperspectral imagers captures light at intensity ranges decided by their bit-depth.
In the raw data, light intensity is stored as a digital count. Imager specific calib-
rations give the conversion from raw data to radiance upwelling (L(λ), Wm-2sr-1,
Thorne et al. 1997). This study refers to both light absorption, and light reflect-
ance, as a function of wavelengths. Absorption is the inverse of reflectance, hence
an absorption peak is the same as a reflectance dip, and visa versa. The imagers
used in this study are push broom scanners, which capture a cross track line of
pixels simultaniously. The cross track lines will the be stitched together to become
a hyperspectral photomosaic (Wolfe 1997, Fajardo 2019).

Water attenuates light strongly, only the upper 100 m receive light in the open
oceans, whereas coastal waters are less transparent (Smith & Baker 1978). While
containing a higher concentration of constituents, coastal water also contains a
larger diversity of constituents, making the attenuation per wavelength very com-
plex. Remote sensing of coastal benthic habitats requires recognition of the water
constituents. Inherent optical properties (IOP, comprising phytoplankton, colored
dissolved organic matter and total suspended matter) make up the light altering
constituents in water. A common method of accounting for the IOPs requires a
white reflectance standard in the image. If one assumes that the seafloor is flat
and at the same depth as the reflectance standard, this is called a "flat bottom as-
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sumption" (Rubasingam et al. 2011). This allows for radiometric correction of
IOPs according to equation 1.1 (Mogstad & Johnsen 2017) where Ed(λ)(Wm-2) is
the downwelling spectral irradiance. When investigating processed hyperspectral
data, each pixel or object of interest (OOI) reveals a curve displaying light intensity
as a function of wavelength, which is the optical fingerprint (R(λ)). Equation 1.1
gives (R(λ)), a dimensionless value where the OOI has an intensity value between
0-1 for each wavelength, where 1 is 100% reflectance, and 0 is 0% reflectance.
It is important to note that there are are R(λ) differences within nature types and
species in the pigment based classes. The pigment based classes are a general
simplification which aims to capture the most important separators.

R(λ) =
Lu(λ)

Ed(λ)
(1.1)

1.5 Spectral mixing
Spectral mixing is a prevailing obstacle to correct classification in most situations
(Smith et al. 1990). The R(λ) of a pixel contains the reflected light of all objects
in that pixel. A combination of different photosynthetic organisms and objects are
commonly captured in the same pixel, resulting in a mixing of the spectral reflect-
ance innate to the organisms and objects (Hochberg et al. 2003). Spectral mixing is
a common problem in hyperspectral imaging. Spectral unmixing through inverse
modelling is hence a common practice in satellite based hyperspectral imaging
(Heylen et al. 2014). Higher spatial resolution available with proximate remote
sensing platforms (Montes-Herrera et al. 2021), i.e. USV and UAV severely re-
duces the need for spectral unmixing models.

1.6 Spectral Angle Mapper - SAM
One of the most common classification tools in remote sensing is Spectral Angle
Mapper (SAM) (Kutser et al. 2006, Freitas et al. 2018, Rossiter et al. 2020). SAM
is a simple method of comparing complex spectral signatures, as n-dimensional
vectors, and measuring the angle between these (Kruse et al. 1993). Samples are
classified according to how similar they are to a spectrum from the training data
set. The training data set contains R(λ) of spectral classes. It is often sampled
in vivo (Mogstad & Johnsen 2017), but can also be sampled during field work
(Freitas et al. 2018). All pixels are classified within a user defined parameter called
the "spectral angle". The spectral angle is often a heuristically chosen parameter
(Freitas et al. 2018), meaning the value is chosen quickly and conveniently, often
according to what has worked previously. The spectral angle must be between 0°
and 90°. This is because the dimensions of a spectral vector consist of the color
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channel which make up the vector, often just three dimensions (RGB). In the case
of hyperspectral data, there are hundreds of color channels. The light intensity
of any color channel can only be a positive value, so the spectral vectors must be
situated in the positive-positive quadrant (if imagining a 2-dimensional space. The
equivalent is called the positive hyperoctant in an n-dimensional space). An angle
close to 0° means the two spectra are similar (Rashmi et al. 2014).

There are several different methods to assess the accuracy of a classification (Freitas
et al. 2018, De Leeuw et al. 2006), but the general concept remains the same.
The classified photomosaic is compared with another classified photomosaic. The
other photomosaic is for all purposes seen as the "true" classification, unless one is
comparing two different classifications. The percentage of pixels which are put to
the same class by both methods represent the classification accuracy of the tested
method.

1.7 Aim of the study
This study applies two relatively new portable remote sensing platforms to im-
age the same seafloor with imaging spectrometers, from the surface, and from the
air. The observed pigment based classes are analyzed in the hyperspectral images
from both platforms to describe the quality of class identification in both photomo-
saics. The photomosaics are then classified using the common SAM classification
method (Kruse et al. 1993). The accuracy of both classifications are compared,
and both classifications are analyzed and compared to identify advantages and dis-
advantages of the two platforms. These analyses combine to assess and compare
the platforms as methods of nature type mapping.

This study is performed in coordination with Marte O. Søreng (2022). Her study
maps a vulnerable shallow habitat, specifically a seagrass meadow, using a USV
based UHI. The study discusses and compares other methods of classification, and
the potential for USV based mapping of vulnerable habitats. The SAM classifica-
tion used on the USV photomosaic of this study is comparable to the classifications
used in Marte O. Søreng (2022), and her study will be referred to later in this thesis.
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Chapter 2

Materials and Methods

September 9th 2021 and March 4th 2022, two parallel surveys were performed. An
unmanned surface vehicle (USV) and an unmanned aerial vehicle (UAV) traveled
between the same two waypoints, both imaging the seafloor below. The USV car-
ried an underwater hyperspectral imager (UHI), and the UAV carried a hyperspec-
tral imager (HI). This chapter describes the equipment used, mission procedures,
as well as processing of the data.

The USV carried a UHI, and the UAV carried a HI. As vehicles travel, transverse
lines of pixels are recorded at a given frame rate (Hz, range (UHI: 0.1-90 Hz, HI:
0.1-330 Hz), which are then stitched together to a complete photomosaic. This
method of recording is called "push broom scanning" (Fajardo 2019). The along
track resolution is dependent on the vehicle speed and frame rate, whereas the
cross track resolution is dependent on the distance between the lens and object.

This study compares hyperspectral transect photomosaics captured from two dif-
ferent platforms, the USV and the UAV. These will hereby be described as the
USV photomosaic and the UAV photomosaic to avoid confusion.

9



10 Materials and Methods

Figure 2.1: Orthophoto of Hopavågen (63°35’N, 9°32’E). Approximate observed extent
of dominant classes during field trips in May and September of 2021. Polygons denote
Red algae (red), Seagrass (green), and Brown algae (Brown). Colored areas created using
the geographical information system (GIS) software ArcGIS (Esri Inc., Redlands, USA)
by investigating Ortophoto from Norwegian Mapping Authorities (2019).

2.1 Study Area
Hopavågen (63°35’N, 9°32’E) is a sheltered shallow bay in Agdenes, on the coast
of Trøndelag. A narrow stream called "Straumen", in the west end, secures water
exchange with Kråkvågfjorden, mainly through tidal action. A few small creeks
along the southeastern to northeastern border feed Hopavågen with freshwater reg-
ularly. The insignificant in-flowing freshwater has no effect on the biodiversity in
the bay (van Marion 1996). The bay only has an estimated exchange rate of 4%
to 8% of total volume per day through Straumen, meaning detritus will remain for
a long time. The water is also stratified near the bottom of the bay, with a zone
of little to no water exchange below 25 meters depth (pers. com. Geir Johnsen &
Torkild Bakken, van Marion 1996).

Steep cliffs and bedrock line the northern and north-eastern boundaries of Hopavå-
gen. The southern and western shores consist of fine sediment, with interspersed
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rocks in the intertidal zone. The species composition is described as similar to that
which is found outside of Straumen, except a notable lack of brown algae in the
littoral and sublittoral zone (van Marion 1996). Several species and a high bio-
mass of brown algae was observed in the Straumen area (Figure 2.1). Namely the
species Laminaria hyperborea (Foslie, 1884), Alaria esculenta (Greville, 1830)
& Saccharina latissima (Linnaeus). Recent studies also describe other species of
brown algae in Hopavågen, such as Fucus serratus (Linnaeus, 1753), Colpomenia
peregrina (Hamel, 1937), Chordaria flagelliformis (Agardh, 1817) & Chorda filum
(Stackhouse, 1797, Alvsvåg 2017, Marte O. Søreng 2022). Loose rocks along the
southern and western shores are covered in Corallina officinalis (Linnaeus 1758),
Phymatolithon sp. (foslie 1898), & Lithophyllum orbiculatum (Foslie 1895)(Red
algae, van Marion 1996). Hopavågen also has a seagrass meadow of Zostera sp.
(Seagrass, further info in Marte O. Søreng 2022) along the middle south shore.
The seagrass meadow and the red algae shores as well as parts of Straumen are the
areas covered in this study, as these areas cover the pigment based classes (figure
2.1).

Previously acquired samples in Hopavågen include Chlorophyta (green algae) and
several invertebrate species (Strongylocentrotus sp. (Brandt, 1835), Echinus es-
culentus (Linnaeus, 1758), Henricia sp. (Gray, 1840), Porania pulvillus (Müller,
1776), Ceramaster granularis (Retzia, 1783), Psolus squamatus (Müller, 1776),
Stichastrella rosea (Müller, 1776), Ophiothrix fragilis (Müller, 1789) & Ophiocom-
ina nigra (Müller, 1789, van Marion 1996). However, no invertebrates appear very
dominant in any nature types, and were not expected to be observed from the UAV.

The USV-path runs a line of 48 meters parallel with the shore (figure 2.2), to cover
a known seagrass meadow in Hopavågen, with a recorded average depth of 174
cm during the mission period, when the tide was 140 cm above sea map 0 cm. The
area covered by the USV is approximately 120 m2. The first part of the transect is a
dense seagrass meadow, dispersed with boulders covered with plumose anemones
and red algae. Along the transect the seagrass coverage became less dense, giving
way to fine sediment, and more dispersed rocks covered with red algae.

2.2 Physical sampling and In vivo spectrometry
Aksel A. Mogstad started a spectral library in 2016, when receieving samples of
Phymatolithon tenue (Rosenvinge, 1893), and three other red algae (Mogstad &
Johnsen 2017). In subsequent studies and courses done at TBS), other species and
groups have been recorded, namely species of Chlorophyta, Phaeophyta, Echino-
dermata, Cnidaria and seagrass. These are the main organism groups observed in
Hopavågen. Over the course of two field campaigns in October 2020, May 2021,
and September 2021, the spectral library was expanded with more samples of the



12 Materials and Methods

Figure 2.2: The smaller transect line shows the extent of the USV photomosaic covering
a line in the seagrass meadow, while the large image is the photomosaic captured in the
UAV-transect. Created in ArcGIS. Base map layer from Kartverket (2019)

same groups, also collected from Hopavågen. At the time of this study, the spectral
library contains 515 samples.

All samples were analyzed in the lab at NTNU, Sletvik field station, where they
were kept in flow through aquariums. The flow through systems continuously
provided seawater from a depth of 10 m in Hopavågen. In vivo spectrometry was
performed as described in Mogstad & Johnsen (2017) using a QE Pro spectrometer
(Ocean Optics inc., Largo, USA) connected to a fibre optic cable, illuminated by
a halogen light source (HL-2000-HP, Ocean Optics Inc., Largo, USA). It has a
spectral resolution of 0.7 nm, covering a range of 347-1113 nm. Several samples
collected while snorkelling were added to the spectral library (total n=515). Red
algae (n=70), brown algae (n=56), seagrass (n=5) and sediment (n=6) were recor-
ded for this study. After analysis, living specimens were released back into the
bay.

Dark current appears as noise in the measurements. Dark current was removed by
dividing the light sampled after connecting the fibre optic cable and light source,
with the light sampled before connecting the fibre optic cable and the light source.
The light source also has a distinct spectrum. Therefore, a submerged white re-
flectance standard (WS-1 diffuse reflectance standard, Ocean Optics Inc., Largo,
USA, 99% reflectance within visible light) was measured between the samples
and divided from the sample measurements using the "light spectrum" function in
Ocean view according to equation 1.1 as described in Mogstad & Johnsen (2017).
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2.3 In situ imaging

Figure 2.3: a) The unmanned surface vehicle (USV) mounted with two custom brackets to
carry underwater payload sensors between its two hulls. b) At the back, a UHI is mounted
to image the seafloor, with an acoustic altimeter which measures distance between camera
lens and seafloor. c) At the front, a spectral light beam attenuation meter (Viper) measured
light attenuation from 400 nm-700 nm. Photos by Asgeir Sørensen.

2.3.1 USV-based hyperspectral imaging

An Otter Pro USV (Maritime Robotics AS, Trondheim) carried a UHI-4 (Eco-
tone AS, Trondheim) in a similar setup to how it was done by Mogstad et al.
(2019). A custom bracket was used to mount a Viper spectral light beam attenu-
ation meter (TriOS, Germany) to the USV, and another bracket for the UHI, both
instruments reaching approximately 40 cm below surface (figure 2.3). An antenna
(airMAX LiteAP AC Access Point, Ubiquiti Networks, New York) was erected
on the shore for communication between the USV and a computer on land. The
computer allowed route planning and initiation, as well as manual steering of the
USV (VCS, Vehicle control station, Maritime Robotics AS, Trondheim). The UHI
was controlled from the same computer using the Immersion software (Ecotone
AS, Trondheim), which allowed for adjusting exposure time, spectral and spatial
binning as well as frame rate during the mission. Downwelling sunlight was the
only source of light. A reflectance standard for visible ambient light was placed
on the seafloor in the transect beforehand, which was used to register the spectral
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downwelling irradiance, as well as the IOPs of the water, in post processing. The
USV mission was initiated at 11:15 on September 9th. The velocity of the USV
was set to a relatively high velocity of 1 knot in an effort to reduce the disturbance
and movement from wind and waves. The photomosaics were captured with an
exposure time of 40 ms, frame rate of 50 Hz (so as to match the high velocity),
spectral binning was set to 4, reducing the spectral resolution to 2 nm, and the spa-
tial binning set to 2, reducing the across track resolution from 1920 pixels to 960
pixels. Binning was done to reduce the size of the data sets, and allow for more
light, hence a higher signal to noise ratio, in each pixel. The post-bin resolutions
were considered adequate for the purposes of the study. As mentioned previously,
the path of the USV was chosen beforehand, as part of Marte O. Sørengs study
(figure 2.2).

Wind and waves have a significant effect on the position of the USV, this is a
hazard when operating near shore. To avoid the USV drifting at the extremities of
the transect line, the route start and end were planned safely away from shore, with
a track that brings the USV gently into the transect line. This means the overlap
between the USV and UAV transects extend the 48 meter line by some meters at
each extremity. The total coverage of the USV photomosaic is approximately 120
m2.

2.3.2 UAV-based hyperspectral imaging

A DJI S1000+ octocopter UAV (Operated by dept. of engineering cybernetics,
NTNU) was fitted with an HI (SPECIM AFX10, Oulu, Finland) connected to a
stabilizing gimbal gyroscope (Gremsy T7, Ho Chi Minh City, Vietnam) in the
nadir viewing position (figure 2.4). The weather on the day of capture was cloudy
and dry, with winds averaging 9 ms-1, and the sun at an altitude of 16.3°above the
horizon. The HI has a field of view (FOV) of 38 degrees and a spectral range from
400 nm to 1000 nm, with a spectral resolution of 5.5 nm. Most importantly, it
covers the visible light range (400 nm to 700 nm). There are 1024 pixels in the
cross track direction, and the HI has a 12-bit radiometric resolution providing 4096
levels of light intensity. Three missions (mission 1, 2 & 3) were operated across
the same transect lines. For all three, the spectral binning was set to 2, spatial
binning to 1, and target speed to 2 ms-1. Previous test flights did not account
for the difference in longitudinal and transverse sampling according to frame rate
and altitude, resulting in elongated pixels and overall poorer quality in mapping.
Flight and camera parameters were set so that the pixels at the ground are the same
size in both dimensions (along-track and cross-track), resulting in square pixels
(Table 2.1). For this to be true we assume that the UAV speed, altitude and attitude
are constant throughout the transect. A reflectance standard of 1 m x 1 m was
placed in the water, at a depth of approximately 2.5 m. An antenna was used for
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Figure 2.4: The unmanned aerial vehicle (UAV, DJI S1000+) octocopter taking off, car-
rying the hyperspectral imager (HI, SPECIM AFX10) connected by a stabilizing gimbal
(Gremsy T7), at Hopavågen. Photo by Pål Kvaløy.

communication between the field station (figure 2.2) and the UAV during flight.
Routes are planned and initiated from base, and so is start/end of hyperspectral
recording, and modification of exposure time and frame rate in flight. A route was
planned along the shore covering the same area as the USV-transect, with margin.
The UAV however ran for longer, approximately 600 meters aong the shore, while
imaging. At sea level, the hyperspectral photomosaic hence covered an area of
approximately 32 000 m2 during mission 2. The photomosaic which covers the
seagrass meadow is 200 meters long, and covers 10 800 m2. The mission was
initiated on March 4th 2022. It started at 10:27 and all three missions lasted until
12:08.

Table 2.1: Control parameters for the UAV and HI were set to match the along track pixel
size with the cross track pixel size, at three different flight altitudes. All missions were
performed on March 4th 2022.

Mission 1 Mission 2 Mission 3
Time 10:27-10:45 11:22-11:35 11:52-12:05

Altitude (m) 147 74 111
Swath width (m) 102 51 77
Frame rate (Hz) 20 40 26.67

along track pixel size (cm) 10 5 7.5
cross track pixel size (cm) 10 5 7.5
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Figure 2.5: An illustration showing the simultaneous hyperspectral mapping surveys per-
formed in Hopavågen, Trøndelag. A USV travels as it images a seagrass meadow. The
USV cayrring a UHI survey was synchronized with the UAV carrying a HI transect above
the seagrass meadow, and the two transects are compared in the results. Photomontage,
photos by Pål Kvaløy and Asgeir Sørensen.

2.4 Data processing

2.4.1 USV-UHI data processing

USV photomosaics were automatically georeferenced in Immersion, using nav-
igation data from the USV. radiometric correction was performed according the
method described by Marte O. Søreng (2022) & Mogstad et al. (2019). Raw data
photomosaics from the UHI was converted to radiance L(λ) using Immersion. Pho-
tomosaics were then opened in ENVI (Environment for Visualizing Images, v.
5.4; Harris Geospatial Solutions Inc., Boulder, USA), where they were converted
to reflectance using the "Flat field correction" tool, according to equation 1.1 an
example of this process is seen in figure 2.6.

2.4.2 UAV-HI data processing

The inertial measurement unit (IMU) of the HI was not turned on during the March
flight, hence proper geographical referencing was not possible. However, the UAV
photomosaic was of such high quality that landscape features were clearly vis-
ible. It was therefore manually georeferenced using an affine transformation in
the "Georeference" tool in ArcGIS, based on comparison of landscape features
between UAV photomosaic and ortophoto from Kartverket (2019).

Each transect of the UAV photomosaic were stored as separate files in the band
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Figure 2.6: Three panels showing a pixel covering a red algae from the UAV photomosaic
(Raw image, dark current removed and reflectance converted). The first image is the raw
spectral upwelling reflectance data. The second panel is the raw image, but the average
dark current has been subtracted for each wavelength and along track line. In the third
panel, the IOPs have been removed by dividing the photomosaic by the R(λ) of the reflect-
ance standard. The full transect length is approximately 60 m, with the panels snapping
approximately 10 m each.

interleaved by lines (BIL) file format. With radiometric intensity stored as di-
gital counts (0-4096 in the 12-bit imager). The raw data is often converted to
radiance with a previously prepared calibration data specific to the sensor. The
radiance converted photomosaic is then converted to reflectance photomosaic us-
ing the color of the white reflectance standard (figure 2.6, Johnsen et al. (2013),
Mogstad & Johnsen (2017), Mogstad et al. (2019)). Radiance conversion was not
possible for the UAV photomosaic. 100 frames at the end of each transect were
captured with the shutter closed, to capture the dark current. The dark current is
specific for each along track line, so the average value of the dark pixels at the bot-
tom of each along track line was subtracted from each line, producing a picture of
spectral light intensity. Subsequently, pixels at the center of the reflectance stand-
ard were sampled using the "Region of interest (ROI)" tool in ENVI. The spectra
of all pixels in the transect were then divided by the average spectral intensity val-
ues of the ROI using the "Flat field correction" tool. The resulting transect shows
relative reflectance (R). It is important to note that the reflectance standard was
placed at a relative depth of 2.5 meters, meaning the whole transect is corrected
for the IOPs at this depth. This is a result of using the "flat bottom assumption"
(Rubasingam et al. 2011).

2.5 Sampling and SAM classification in the USV & UAV photo-
mosaics

Red algae, brown algae, seagrass and sediment were sampled for the three meth-
ods used in this study, i.e.In vivo spectrometry (R(λ)),In situ USV and In situ UAV
photomosaic. From spectrometry, there were 70 samples of red algae, 56 samples
of brown algae, 5 samples of seagrass and 6 samples of sediment. From the USV
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Figure 2.7: The spectral angle (α) is calculated according to equation 2.1 and gives the
n-dimensional angle between the reference R(λ), measured using spectrometer and the
sample R(λ) from the USV or the UAV photomosaic, where x and y bands represent color
bands. This is a 2D representation of the n-dimensional vectors. Adapted from Kruse et al.
(1993)

photomosaic and the UAV photomosaic, 100 pixels were manually sampled from
each class. Classes were sampled based on appearance, spectral signature, and
physical surveys, giving first hand knowledge of present species. As different
spectrometry sensors capture light at different spectral intervals and ranges, all
classes were resampled to fit the overlapping range from 490 nm to 690 nm, at
1 nm intervals, using the "spectrolab" package in Rstudio (RStudio Team 2022,
Meireles et al. 2017), and plotted with standard deviance for comparison. The n-
dimensional spectral angle (α, figure 2.7) of each class from the USV photomosaic
and the UAV photomosaic were calculated from equation 2.1 (Kruse et al. 1993),
where α is the spectra angle, n is the number of spectral bands, t is the sampled
R(λ) sampled In situ and r is the reference R(λ) measured in vivo with the spec-
trometer. Light intensity of a sample is irrelevant, as equation 2.1 normalizes the
spectra to calculate the angle. The α was used as an estimate of difference between
spectrometry R(λ), and In situ R(λ). The α was then used to perform a spectral
angle mapper (SAM, Kruse et al. 1993) classification on the transects.

α = cos−1
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2.5.1 Accuracy assessment of SAM classification

The SAM classified transect was inspected to verify the classification accuracy.
A confusion matrix comparing manually classified ROIs and SAM classification
was made to asses the accuracy of the SAM classification. 500 random pixels
were chosen within both photomosaics (USV & UAV) in ENVI. Each pixel was
manually classified by an expert, only based on the spectral signature, as one of the
four classes (red algae, brown algae, seagrass & sediment), or as unclassified. For
each pixel, their SAM classification and manual classification were compared in
a confusion matrix. This resulted in a total percentage of the chosen pixels which
were put to the same class by SAM and manual classification. Here, 100% means
both classification methods are in complete agreement, and 0% means there is no
agreement ( further details, see Rossiter et al. 2020). The total percentage of pixels
which were classified differently between SAM and manual classification is the
error assessment of the SAM-classification. This methods assumes that manual
classification is correct.
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Chapter 3

Results

3.1 Transects

3.1.1 USV photomosaic and manual sampling of pixels

The USV photomosaic was georeferenced with a spatial precision of 40 cm. Pre-
liminary investigations of the transect revealed R(λ) from the species observed
from underwater RGB footage and snorkeling, indicating that the spectral signal
is good. Seagrass looks very dark in the transect. The samples of seagrass pixels
look very different to the spectrometer samples. However, the distinct reflectance
peaks of seagrass around 550 nm and 630 nm are clearly visible. Brown algae also
deviates from the spectrometer measurements. Finding pixels that look similar to
the spectrometer measurement of brown algae was difficult, but the average R(λ)
of the sampled pixels (figure 3.6) shows the distinct reflectance peaks of brown
algae. The sediment and red algae in the USV transect were easy to sample and
generally showed R(λ) similar to those observed in the spectrometer measurements
(figure 3.1).

21
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Figure 3.1: Pixels from the USV photomosaic were manually sampled in post processing
using the "ROI" tool in ENVI. Red pixels are red algae, yellow are sediment, green is
seagrass and brown are brown algae. The chosen pixels show a red algae.

3.1.2 UAV photomosaic and manual sampling of pixels

The lowest altitude mission was chosen for the UAV (Mission 2, table (2.1), as it
had the highest spatial resolution. While mission 1 was the only available photo-
mosaic of Straumen, covering the brown algae. The UAV photomosaic is under-
exposed, with benthic signatures at depths below 2 meters all share a similar R(λ),
which were generally flat but with wave-like variations caused by noise. The high
level of noise at the depths interesting to this study (1-5 m, where the classes are
mainly found) make the classes of interest difficult to discern. The red algae in
Hopavågen are located in the hydro-littoral (figure 2.1). Making sampling of red
algae pixels easy with red algae reflectance peaks at 600 nm and 645 nm clearly
visible (figure 3.2). Sediment, brown algae and seagrass were only discernible due
to underwater RGB footage from the same area, and experience from snorkeling
during sampling and preparation. The sampled pixel averages for sediment, brown
algae and seagrass contain much noise, with reflectance peaks being difficult to
recognize.

3.1.3 Pixel based comparison of the USV and UAV photomosaic

The USV photomosaic was georeferenced according to navigation data captured
by the USV during the mission. It was however not possible to georeference the
UAV photomosaics automatically. With little movements in the UAV, and natural
features easily recognizable, its is possible to discern the classes of interest. Minor
discrepancies in the photomosaic are results of movement in the UAV during flight
(figure 3.3). Despite having manually georeferenced the UAV photomosaic, minor
imprecisions in georeferencing of both photomosaics, and unevenness caused by
minor movements in the vehicle may leave several meter offset between the two
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Figure 3.2: a) sampling of pixels from the UAV photomosaic a cluster of brown algae near
Straumen in flight line 2 (figure 2.2) using the "ROI" tool in ENVI. b) Using the "ROI"
tool to sample pixels of red algae from the UAV photomosaic, where red algae are colored
red, sediments and seagrass blue and green respectively.

transects, rendering a pixel by pixel comparison hard to obtain.

Figure 3.3: USV photomosaic was georeferenced according to navigational data from the
USV, while UAV photomosaic (flight line 6) was georeferenced based on known points
on an ortophoto layer (Kartverket, 2019). The top right map shows flight line 2, also
georeferenced according to known points, while the top left map shows the position of
Hopavågen near the mouth of the Trondheimsfjord.
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3.2 Spectral reflectance of classes sampled in vivo, from USV,
and from UAV

3.2.1 Seagrass

The dominating pigments of seagrass are clearly visible in the spectrometry and
UHI samples with peak reflectance at 550 nm & 630 nm (figure 3.4). The α
between the UHI-seagrass and the spectrometer seagrass at 27° (table 3.1) is evid-
ence of a lot of variation within seagrass spectral signatures. Table 3.1 shows the
seagrass from the UAV photomosaic compared to the seagrass measured using
spectrometry has a spectral angle of α=39°. Seagrass samples from the UAV pho-
tomosaic show no characteristics of the spectral signature that is expected from
seagrass as measured in the lab (figure 3.4). During ROI-sampling, seagrass was
relatively easy to spot as snorkeling and footage had given first hand knowledge of
the seagrass location and extent.

Figure 3.4: Spectral reflectance of seagrass as measured by In vivo spectrometer (n=5),
In situ UHI (n=100) and In situ HI (n=100) between 490 and 690 nm. The lines show the
average of all samples, while the shaded area cover the ± SD of mean. Vertical lines show
reflectance peaks caused by low pigment absorption.
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3.2.2 Red algae

All methods produce a similar R(λ), the α between the R(λ) are relatively small.
The α between the USV photomosaic red algae and the spectrometer red algae is
9°. While the α between the UAV photomosaic red algae and the spectrometer
red algae is 11° (table 3.1). Within the range of 490 nm to 690 nm red algae
has two distinct reflectance peaks, at 600 nm and 645 nm as measured with the
spectrometer. The reflectance peaks are present in all R(λ)s. The R(λ) from the
UAV photomosaic (green line in figure 3.5) however has a red shift, of about 5 to
10 nm, as well as an upward tilt of the general R(λ) towards the red light. Red
algae in the UAV photomosaic was sampled from depths of 0.5 m to 1 m as these
areas contained the only distinguishable and concentrated samples of red algae in
the UAV photomosaic.

Figure 3.5: Spectral reflectance of red algae as measured by In vivo spectrometer (n=70),
In situ UHI (n=100) and In situ HI (n=100) between 490 and 690 nm. The lines show the
average of all samples, while the shaded area cover the ± SD of mean. Vertical lines show
reflectance peaks caused by low pigment absorption.

3.2.3 Brown algae

The α between the UAV samples of brown algae and the spectrometer measure-
ments of algae is large (α=24°). While the angle between the USV sample and the
spectrometer measurement is smaller at α=7°(table 3.1). The spectrometer meas-
ured brown algae have distinct reflectance peaks at 600 nm and 645 nm, as well
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as a peak at 570 nm, which separates it from red algae. In figure 3.6 the green
line (UAV-HI) has been normalized to visualize the peaks and troughs of the other
R(λ)s for better comparability. The green R(λ) (figure 3.6) shows no distinct peaks
at 570 nm, 600 nm or 645 nm. Like with seagrass, it would be impossible to con-
firm that this is brown algae without first hand knowledge from ground truthing,
such as underwater videos of the area and snorkeling.

Figure 3.6: Spectral reflectance of brown algae as measured by In vivo spectrometer
(n=56), In situ UHI (n=100) and In situ HI (n=100) between 490 and 690 nm. The green
line (UAV-HI) has been normalized. The lines show the average of all samples, while the
shaded area cover the ± SD of mean. Vertical lines show reflectance peaks caused by low
pigment absorption.

3.2.4 Sediment

The general R(λ) from the UAV photomosaic sediment is similar between the USV
photomosaic and spectrometer, giving a small α of α=3°(table 3.1) between both
the USV and UAV sediment, and the spectrometer sediment. The sediment R(λ)
are generally flat, with gentle sloping from 550 nm down to 400 nm, and down
from 550 nm to 670 nm. It has a vague peak around 550 nm similar to that of
seagrass. With a vague trough at 670 nm, and a gentle rise beyond 670 nm. These
characteristics are shared between all R(λ) in figure 3.7. The same noise that is
observed in the brown algae and seagrass from the UAV photomosaic also occurs
in the sediment.
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Figure 3.7: Spectral reflectance of sediment as measured by In vivo spectrometer, In situ
UHI and In situ HI between 490 and 690 nm. The lines show the average of all samples,
while the shaded area cover the ± SD of mean.

Table 3.1: 100 pixels of each class were manually sampled from the USV photomosaic
and the UAV photomosaic. The spectral angle (α) between each class and the corres-
ponding class from spectrometry were calculated according to equation 2.1. The resulting
angles show how different the in situ spectra, as seen from UAV and USV, are from the
spectra measured in vivo using the spectrometer.

Red Algae Brown Algae Seagrass sediment
USV-UHI 9° 7° 27° 3°
UAV-HI 11° 24° 39° 3°

3.3 Spectral Angle Mapper Classification

3.3.1 USV photomosaic classification

A SAM classification was applied to the USV-UHI photomosaic with the calcu-
lated α (table 3.1) as parameters (figure 3.8). The SAM-classification in the USV
photomosaic (figure 3.8) of brown algae classified many pixels correctly. In panel
a, several brown algae (dominated by F. serratus) were classified as red algae in
single pixel spots. Other brown algae along the transect (likely C. filum) were how-
ever mostly classified correctly. A large area classified as brown algae in panel b
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Figure 3.8: A SAM classification was applied to the USV photomosaic for the four classes
(Seagrass, Red algae, Brown algae and Sediment), using the calculated spectral angle (α,
table 3.1). Three areas of interest are displayed (a, b and c), and their position in the
transect is shown in the overview map to the left.
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seems to contain a mix of both brown algae and seagrass. Occasional sediment
classification appear to cover rocks and sediment.

Pixels classified as sediment (figure 3.8) are mainly classified correctly, but sedi-
ments are generally under-classified (panel a). Only the pixels which appear to be
"pure" of spectral mixing seem to be classified as sediment. After correction, the
reflectance standard had a flat R(λ), not unlike that of the sediment, and has hence
been classified as sediment by the SAM classifier.

Seagrass is significantly under-classified in the whole transect (figure 3.8. In panel
a, there is a cluster of seagrass in the midlde, of which only a small portion is
classified. The rest of the transect contains significant dark patches of seagrass,
where little is classified as such. In panel b and c, some seagrass is incorrectly
classified as brown algae. At the start and end of the transect, much of the sediment
is classified as seagrass. The photomosaic is wider here, meaning it is also deeper
(>2.5 m deep) than the rest of the transect.

Red algae occur on smaller clusters, on hard substrates. Red algae are generally
classified correctly on the interspersed rocks in the seagrass meadow (figure 3.8
b,c). In panel a, some brown algae are classified as red algae. Manual inspection
of the R(λ) of these pixels reveal the characteristics of red algae, suggesting there
are epiphytic red algae on the brown algae (Kersen et al. 2011).

3.3.2 UAV photomosaic classification

The UAV photomosaic was characterized by a low signal to noise ratio at depths
beyond approximately 2 m. The Sediments were classified well at the same depth
as the seagrass meadow and the reflectance standard (2.5 m depth). To the left
the classified sediments slowly obscure into classified seagrass, along a line which
matches well with where the sediments slope down from 2.5 m to 4 meters outside
of the seagrass meadow (figure 3.9). All pixels beyond this slope is classified as
seagrass. The reflectance standard is also classified as sediment.

The seagrass meadow as is correctly classified as seagrass. However, severe over-
classification of seagrass (figure 3.9) in other areas indicate that the classification is
very inaccurate (table 3.3). The correctly classified seagrass can only be confirmed
when comparing the full photomosaic with ortophoto and simultaneously captured
underwater RGB footage. Again, none of the investigated seagrass classified pixels
showed any of the distinct reflectance peaks of seagrass. Most of the water which
was not classified as sediment were classified as seagrass, as well as certain pixels
on land.

Red algae were classified with high accuracy. Few pixels were classified. There-
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Figure 3.9: A SAM classification overlaid the RGB representation of UAV-HI flight line
2 and 6 (figure 2.2). The calculated spectral angle (α, table 3.1) were used as parameters.
The first four photomosaics show flight line 6, in which sediment, seagrass and red algae
were classified. The last two photomosaics show flight line 2, in which brown algae were
classified.
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fore, most were investigated and showed the distinct R(λ) of red algae. Certain
pixels which were not classified also showed spectral characteristics of red algae
in the surrounding areas. Suggesting that the α is to small, and red algae are under-
classified.

Brown algae were not classified in the seagrass meadow (flight line 6). There were
no large clusters of brown algae along the seagrass meadow, hence classification
of brown algae was not expected either. It was instead classified near Straumen
(figure 3.9). Brown algae classification misclassified much of the sediments and
other features, similar to how seagrass did. It is however more modest, due to the
smaller α than seagrass classification. Neither the shoreline nor the deeper water
classified as brown algae.

3.3.3 Accuracy assessment of SAM classification

Table 3.2: USV-UHI confusion matrix comparing the manually classified pixels (first row
in table) with the class assign by SAM (first column in table). The bold numbers show the
percent of pixels which were put to the same class where the total sum of each column is
100%. n=500.

Unclassified Seagrass Red algae Brown algae Sediment Total
Unclassified 86% 49% 38% 29% 61%

Seagrass 11% 51%
Red Algae 62%

Brown algae 71%
Sediment 3% 39%

63.4%

For USV, 63.4% of total chosen pixels were put to the same class when classifying
manually, as with the SAM classification. Out of the 500 pixels inspected, only
2.8% of SAM classified pixels gave a false positive. 100% means SAM and manual
classification agree on the class of all pixels.

Table 3.3: UAV-HI confusion matrix accuracy assesment similar to table 3.2. The bold
numbers show the percent of pixels which were put to the same class. n=500.

Unclassified Seagrass Red algae Brown algae Sediment Total
Unclassified 12%

Seagrass 54% 83% 6%
Red Algae 5%

Brown algae 46%
Sediment 94%

24.8%
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For UAV, 24.8% of chosen pixels were put to the same class when classifying
manually, as with the SAM classification. 25% of classified pixels were false
positives, classified as seagrass and brown algae. Out of the 500 pixels inspected,
67% of SAM classified pixels gave a false positive.



Chapter 4

Discussion

This study is a part of the infrastructure project SeaBee. Where the aim is to de-
velop necessary equipment, knowledge and training to map nature types along the
Norwegian coast using UAV based imagers. This study applied the newly aquired
Specim AFX10 HI, and the combination with previous information and methods to
map benthic marine nature types according to NiN using the supervised classific-
ation method SAM. The study has had a special emphasis on SAM classification,
and its parameter, called the spectral angle (α), as SAM is a simple and com-
mon tool used in hyperspectral photomosaic classification (Nababan et al. 2021,
Rossiter et al. 2020, Flynn & Chapra 2014). Supervised SAM classification from
the USV photomosaic was found to have an accuracy of 63.4% when compared to
manual classification, whereas supervised SAM classification from the UAV pho-
tomosaic obtained an accuracy of 24.8% when compared to manual classification.

4.1 Transects

4.1.1 USV based UHI photomosaic

The USV photomosaic had an estimated pixel size of 1 cm2, and can in theory cap-
ture anything larger than this with relative certainty. The seagrass leaves sampled
from Hopavågen in May and September were commonly 2-4 mm wide. The great
three-dimensionality of the seagrass meadow canopy casts shades. This means
any single pixel contains a mix of seagrass leaves at different depths with differ-
ent levels of shade and different angles relative to the lens (Dekker et al. 2007)
meaning all seagrass-pixels are expected to be spectrally mixed. With the USV
photomosaic captured on September 9th, seagrass are expected to have near an-
nual peak pigment content (Alvsvåg 2017). Meaning the distinctive reflectance
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peaks for each class should be especially easy to observe. The USV photomosaic
is in general of high quality with R(λ) of classes clearly distinct. With decent geo-
graphical referencing accuracy of 40 cm and appropriate color intensity range for
most classes observed.

4.1.2 UAV based HI photomosaic

The UAV photomosaic showed a low signal to noise ratio across most of the sea-
floor. Most features below water were covered up by spectral noise. As the sun was
only 16.3° above the horizon during the UAV mission on March 4th, a mission in
the spring/summer season would see substantially more available light. The set ex-
posure time was likely too short to capture a significant signal (figure 3.1) over the
area of interest. The dept. of cybernetics, NTNU has also mentioned unresolved
issues with the calibration of the HI, which may be the cause of the wave-like noise
observed over large parts of the photomosaic, and also from the classes sampled
in the UAV photomosaic (figure 3.4,3.6,3.5,3.7). It has been suggested that the
exposure time should be increased for further studies, and that further studies are
done in the spring/summer seasons.

There is an issue with assuming a flat bottom for a photomosaic captured from
a UAV. Håvard S. Løvaas (dept. of Marine technology, NTNU) is currently us-
ing simultaneously captured photos for estimating the water depth in the transect.
The aim is to apply water attenuation measurements to perform depth dependent
radiometric correction. However, as no such method is available yet, radiomet-
ric correction of the UAV photomosaic relied on the flat bottom assumption (Ru-
basingam et al. 2011). Which is a common method for correction of IOPs when
using UHI (Johnsen et al. 2013, Mogstad & Johnsen 2017, Summers et al. 2022,
Montes-Herrera et al. 2021). While a flat bottom was assumed for radiometric cor-
rection of the UAV photomosaic, this is obviously not the true case, with depths
ranging from land to 9 m deep seafloor. Water attenuates light exponentially to-
wards red wavelengths with depth, areas shallower than the reflectance standard
will have an overemphasized reflectance of red light after radiometric correction
(Smith & Baker 1978). This effect can be seen for the red algae sampled in
the UAV photomosaic (figure 3.5). Areas deeper than the reflectance standard
will show a stronger influence of the IOPs, with increasing attenuation of the red
wavelengths. In this UAV photomosaic however, the noise generally exceeds the
signal strength at depths including and deeper than the reflectance standard. Be-
cause of this, reflectance peaks are hard to detect for all classes beyond 2.5 m
deep. It is yet unclear at what maximum depth one can reliably hope to record
spectral signatures of the seafloor. According to Vahtmäe et al. (2006) it may be
possible to register spectral signatures down to 10 m depth in clean coastal water
from a UAV.
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4.1.3 Pixel based comparison of the USV and UAV photomosaic

A pixel based comparison of the USV photomosaic and the UAV photomosaic
would provide an opportunity to describe the spectral mixing which occurs in the
pixels of the UAV photomosaic, which has a poorer spatial resolution, hence cov-
ering a larger area on the ground. SAM classification assumes that all pixels are
"pure", as in there is no spectral mixing (Rashmi et al. 2014). This methods sheds
light on the spectral mixing effects and allows for analyzis of specific spectra com-
ponents. The procedure for a pixel based comparison of the two photomosaics
would be as follows: The two transects would be imported and overlaid using
ENVI. Several areas corresponding to 7x7 pixels in the USV photomosaic would
be chosen, as such an area is guaranteed to cover at least one pixel size in the UAV
photomosaic given the pixel resolution in this study. One could then calculate the
α between each of the 49 pixels from the USV photomosaic and the corresponding
pixel(s) covering the same area in the UAV photomosaic, as a quantitative measure
of the difference of the R(λ) between the large pixel of the UAV photomosaic and
its component pixels from the USV photomosaic.

This method does however assume that the geographic referencing precision of
both photomosaics is done with a very high precision, and that the two transects
are captured at the same point in time, at least during the same day. It also assumes
that the radiometric correction has been successful in removing any significant in-
fluence of the IOPs, and that there is a flat bottom in both transects. For this study,
none of these assumptions were true, hence this method was not performed. The
lack of automatic geographical referencing dramatically reduced the accuracy of
the transect and rendered a pixel by pixel comparison useless. The unfortunate
lack of IMU data from the flight has been mentioned as an important reminder for
future studies. The precision of both vehicles positioning data could also be im-
proved using publicly available RTK (real time kinematic) positioning-data from
Norwegian Mapping Authority. With better preparation, the USV and UAV photo-
mosaics should also be captured simultaneously. Lastly, for the area (approx. 120
m2) covered by the USV, it is reasonable to assume a flat bottom in both photom-
osaics.
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4.2 Spectral reflectance of classes sampled in vivo, from USV,
and from UAV

4.2.1 Seagrass

Species from most algal phylum cover the seagrass leaves, but red algae generally
dominate in both composition and biomass (Alvsvåg 2017, Larkum et al. 2006,
Borowitzka et al. 2007). Epiphytic red algae may explain the red shift of the re-
flectance dip around 670 nm, in seagrass captured by the USV (figure 3.4). Diverse
epiphytic organisms also diminish specific reflectance peaks, especially in the 575
- 630 nm region (Fyfe 2003). During physical sampling, withered leaves were
also found mixed in the seagrass meadow. The USV photomosaic was captured
in September, when pigment content of seagrass is near its seasonal peak (Alvs-
våg 2017). This array of factors in spectral mixing may explain why the large α
within the different samples of the seagrass pigment class (table 2.7) compared to
the other pigment classes.

The poor R(α) signal resulting from a combination of low signal to noise ratio
and a low pigment concentration will be mitigated by imaging seagrass in the
spring/summer. The UAV photomosaic was captured in March, when the pigment
content of seagrass is near the annual low, and pigment composition is differerent
than in the summer (Guidetti et al. 2002, Moore & Short 2007). With seagrass hav-
ing a generally low reflectance, i.e. absorbs a lot of light, seagrass near optically
deep water is also difficult to observe.

None of the analyzed pixels in the UAV photomosaic contained a R(λ) charac-
teristic to seagrass. Sampling seagrass-pixels in the UAV photomosaic would
therefore be very difficult without detailed knowledge of the area. The high α of
39°(table 3.1) for seagrass sampled from the UAV photomosaic shows that there
are few similarities between the R(λ) from the UAV photomosaic and the spectro-
meter (see figure 3.4).

The seagrass sampled for the spectrometer were free of epiphytes, and measured at
the healthy and green part of the leaves. To improve the spectrometer sample, one
could include a broader diversity of leaves, which more closely reflects the natural
composition of the meadow and hence better classify the nature type. Combining
classification with publicly available depth and tide data would separate M7 1 &
3 (hydrolittoral) from M7 2 & 4 (sublittoral). Finally, including field sampled
salinity data would allow for determination between all classes. It is beneficially
to maximize the amount of information extracted from the data set as field mission
are expensive and time consuming (Rinde et al. 2021).
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4.2.2 Red algae

Red coralline algae are even in shape, and encrusting to the substrate. It is a hard
biofilm that does not move with the watermasses like seagrass and brown algae.
Red algae appears flat compared to the structurally complex seagrass and brown
algae. Red algae also generally cover areas larger than the pixel size, usually giving
several adjacent pixels with R(λ) characteristic to red algae.

The USV photomosaic is intentionally captured over a seagrass meadow, consist-
ing of mostly loose sediments, hence the low occurrence of red algae. Red algae
mainly occur in the shallow parts of the bay, where rocks provide stable substrate,
this is also where red algae are observed in the UAV photomosaic. The right side
upward tilt in the R(λ) of red algae (green line in figure 3.5) is likely caused by the
algae being less deep than the reflectance standard (figure 3.9). Areas less deep
than the reflectance standard will have an overestimation of the attenuation of red
light after radiometric correction. The red shift of the peaks sampled from the UAV
photomosaic might stem from seasonal changes in the pigment composition of red
algae (Leukart 1994).

The α between red algae samples are small compared to seagrass and brown algae.
Red algae and sediment are more likely to overcome noise, As they are brighter
than seagrass and brown algae. By observing the percentage of reflected light
for each class (figures 3.4,3.5,3.6,3.7) it is apparent that red algae and sediment
reflect more light than seagrass and brown algae. While seagrass and brown algae
have a peak reflectance around 15% (R=0.15), red algae and sediment have a peak
reflectance around 30% (R=0.30).

The red algae used as spectrometer samples contain a mix of leafy red algae and
coralline red algae, which have a slightly different R(λ) (Hochberg & Atkinson
2003). The NiN nature types organized as "red algae" however, only contain cor-
alline red algae. The spectrometer sample could be improved by excluding leafy
red algae. The environmental variables differentiating between optically shallow
nature types M1 and M4, and types within M4, describe substrate grain size, sub-
strate composition and salinity. Qualified NiN personnel and field sampling is
therefore required if one wishes to determine between the nature types within the
red algae pigment class.

4.2.3 Brown algae

Brown algae samples are 7° and 24° (USV and UAV respectively) different to
the spectrometer samples. Like seagrass, brown algae observed in Hopavågen
are characterized by three-dimensional complexity and thin leaves (some species)
giving a high degree of spectral mixing between illuminated, shaded leaves and
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the substrate, at different distances and angles to the lens (Rossiter et al. 2020,
Fearns et al. 2011). The brown algae in Hopavågen also peak in photosynthetic
productivity during summer, and are photosynthetically inactive during the winter
months (Yokohama 1973, Wiencke et al. 2010, Johnsen, Leu & Gradinger 2020).
The high difference in α (table 3.1) between the USV and UAV sample suggests
the lack of pigments and low light availability is the main reason for poor signal of
brown algae in the UAV photomosaic.

Brown algae in the UAV photomosaics was only found, sampled and classified in
flight line 2 (figure 2.2). The flight line 2 photomosaic is radiometrically corrected
with the reflectance standard from flight line 6, at approximately 2.5 m depth. The
area covered in flight line 2 is less deep, at an average 1 - 2 m deep. This causes
the brown algae to appear brighter, and with an upward tilt in the red light caused
by the overestimation of red light attenuation.

Determination of optically shallow nature types within the brown algae pigment
class mostly requires trained personnel or salinity measurements. This makes it
difficult to differentiate further between the nature types using only the hyperspec-
tral photomosaics. It is however possible to use publicly available depth data to
differentiate between M1 Euphotic solid bottoms and M3 solid intertidal bottoms
to some extent.

4.2.4 Sediment

As opposed to the other classes, the sediment contain no significant concentration
of pigments, hence no distinct lack of reflectance peaks. The R(λ) of sediment
sampled from both the USV and the UAV photomosaics are only 3° (table 3.1)
different to sediment measured in the spectrometer. It is possible to make out a
general shapes in the R(λ) (figure 3.7), which seems to match that of calciferous
sediments (Hochberg & Atkinson 2003).

The only conspicuous feature of the R(λ) is a vague trough observed on both the
spectrometer and USV sample, which is an absorption peak at 670 nm. The ab-
sorption peak is likely caused by a layer of microphytobenthos (Méléder et al.
2018, Hochberg & Atkinson 2003). Microphytobenthos cover the surface of un-
disturbed marine sediments, and should be expected when imaging any sediment
based nature type. The spectrometer samples however were disturbed as they were
collected, likely overturning and burying some of the microphytobenthos. Using
a sampling method which preserves the upper layer of the sediment (Bouma &
Marshall 1964) might improve the similarity between the training data and the
photomosaic samples.

Sediment has a higher general reflectance than both seagrass and brown algae (fig-
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ures 3.4,3.6). Red algae also has a high general reflectance as they contain coral-
line structures and are usually closer to the lens. This explains why sediment is
generally more comparable to red algae in terms of their high general reflectance.
Seeing that the noise intereferrence is much higher in sediment (figure 3.7) than in
red algae (figure 3.5), despite both having a high general reflectance, suggests that
the main source of noise is related to water attenuation with depth stemming from
a lack of available light.

The spectrometer sample in this study contains loose sediment at different grain
sizes, a combination of sand, clay and gravel. All three have similar R(λ), but at
different light intensities. It is unclear whether bedrock and larger boulders along
the Norwegian coast have a similar reflectance, and can be included into the same
class.

An interesting angle which arose as a result of this study is the potential for using
sediment as a reflectance standard for radiometric correction. Sediment appear to
have a relatively flat R(λ) (figure 3.7). This obviously depends on the seasonal
cover of microphytobenthos (Méléder et al. 2018) and the composition of the sed-
iment. As sediment is not completely equally reflective, and only reflects about
40% of light, it is inferior to using a white reflectance standard. It should instead
be used in cases where a white reflectance standard is not available. This requires
further research before utilization.

4.3 SAM classification & accuracy assessment

4.3.1 USV photomosaic classification & accuracy assessment

From the RGB camera mounted within the UHI casing, the C. filum in panel b
(figure 3.8) was seen brushing across the lens of the UHI as the USV traveled.
The close proximity to C. filum may have covered several pixels around where
the specimen appears in the transect, if only for a brief time, resulting in spectral
mixing of affected pixels. This gives a false signature of brown algae leading to its
overclassification in panel b (figure 3.8).

SAM classification of the USV photomosaic had a total accuracy of 63.4% (table
3.2). Similar studies have previously assessed the classification accuracy from dif-
ferent platforms under similar circumstances (Mogstad et al. 2019, Rossiter et al.
2020, Freitas et al. 2018) and achieved higher accuracy in classification. Under-
classification happened in all four groups, and suggests the calculated α were too
small if one wanted to classify the whole seagrass meadow.

The SAM classification of the USV photomosaic has a very low level of false
positives, meaning confidence in the classified pixels is very high. An overclas-
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sificaiton of seagrass near the deep parts of the transect is expected if there is a
high concentration of green algae in the water. IOPs in areas deeper (i.e. the
start and end of the transect line) than the reflectance standard are not accounted
for during radiometric correction. Seagrass are likely classified in these areas as
phytoplankton and seagrass have the same R(λ) peak at 550 nm and 630 nm. This
is because chlorophyll a and b, which occurs in both phylum, has absorbance dips
at these wavelengths (Thorhaug et al. 2007). The underclassification of seagrass
throughout the transect is owing to the factors mentioned in section 4.2.1. The un-
derclassification of sediment may be caused by the mentioned microphytobenthos
of undisturbed sediments having a larger influence on the R(λ) than on the dis-
turbed sediments which were measured in the spectrometer.

4.3.2 UAV photomosaic classification & accuracy assessment

Seagrass and brown algae are severely overclassified (figure 3.9). The sampled
R(λ) of both classes looked similar (figures 3.4,3.6), and if calculated may have had
a smaller α between them than either sample had to their respective spectrometer
R(λ). The classification of seagrass and brown algae appears to cover most pixels
from the water column which are not already put to another class, hence both
classes seem to better represent the general IOPs, than either of their pigment
groups. Classification of red algae and sediment are highly accurate, and suggest
the low light availability was not an obstacle to their classification.

The SAM classification of the UAV photomosaic obtained an overall accuracy of
only 24.8% (table 3.3). This can be attributed to several previously mentioned
factors reducing the overall quality of the UAV photomosaic. Seagrass classific-
ation contained a high rate of false positives, as much of the water column was
classified as seagrass. Red algae and sediment however, had relatively low levels
of false positives, indicating that the confidence in these classifications are very
high.

Tait et al. (2019) and James et al. (2020), although using different classifications,
and different classification accuracy tests, achieved higher accuracy. Freitas et al.
(2018) used a similar setup, comparing SAM to another commonly used classific-
ation, and also achieved higher accuracies. This indicates the need for acquiring
further experience and knowledge with UAV-HI. The most obvious issues being
the aforementioned lack of available light, and the low concentration of photo-
synthetic pigments. Based on the relative success of the aforementioned studies,
and the high accuracy of red algae an sediment classification, UAV-HI mapping of
nature types is likely, under the right conditions, a good method for mapping large
optically shallow areas despite the low accuracy seen in this study. It is still how-
ever only confined to mapping the pigment based classes described in this study.
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4.4 Comparison of hyperspectral USV and UAV mapping
This study includes a process of learning by doing as it involved a pioneering
multi platform deployment using the USV-UHI and the UAV-HI. For a relevant
comparison of the applicability of both methods, one should also take into account
the field work and data processing necessary to prepare the data.

The USV-UHI setup weighs approximately 80 kg, had few good holds for carry-
ing, and was deployed on an uneven, long and rocky shore. Deploying the USV
demanded three people in waterproof clothing. With expensive sensors reaching
deeper than the hull of the boat, there was a constant risk of hitting rocks and
shallow seafloor in the study area, which required people to be in the water as
precaution. Mission planning and execution in and of itself was performed by
one person, with pre-planned routes automatically executed by the vehicle. With
improved navigation and georeferencing precision, this gives good repeatability.

A reflectance standard had to be deployed at a significant depth for radiometric
correction of the water column in both studies, usually the same depth as the area
of interest. This was done by a single person in snorkeling gear.

The UAV took off from the Sletvik field station (NTNU), and was operated by a
single pilot. Missions and camera settings were pre-planned, or controlled by the
pilot. The UAV obviously had no risk of hitting obstacles in shallow water, and
the UAV-HI covers a much larger area per time than the USV-UHI (2460 m2min-1

(UAV mission 2) vs. 30 m2min-1 in this study, figure 1.1). A single transport van
was sufficient for each of the platforms as well as their crew and equipment. Both
the USV and the UAV can also be deployed from ship. Study areas are therefore
only limited by car or boat access, and the platforms spatial range from the host
vehicle.

The USV photomosaic in this study was captured in September, and the UAV pho-
tomosaic was captured in March. Hence, the difference in signal to noise ratio
between the USV and UAV photomosaics should not be a variable upon which
these methods are compared and their potential are judged. May and Septem-
ber UAV missions were performed, but resulted in unusable data due to technical
issues. Literature consensus suggest there is a "field season" in the summer (Ever-
aerts et al. 2008, Kislik et al. 2018, James et al. 2020), when UAV imaging should
be done. This study challenged that notion by utilizing UAV photomosaics cap-
tured in March, ultimately finding that UAV missions should in fact be performed
in the summer season.

However, while seagrass and brown algae were indistinguishable from each other
and from the water column in the UAV photomosaic. The USV photomosaic con-
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firmed the existence and position of seagrass, as well as revealing the existence and
position of red and brown algae within the seagrass meadow. The use of both pho-
tomosaics together allowed for verification of UAV data during post processing,
and removed the need for the data analyzer to be knowledgeable about the area.

4.5 Future perspectives
It is clear that the USV is better than the UAV at capturing biological detail and
diversity. While the UAV covers much larger geographic areas in the same time,
with less risk to equipment. This study should not be seen as a case of which
platform is better, as they cover different demands in mapping. The platforms
should instead be used in conjunction to provide both large geospatial coverage
(by the UAV), and a great level of detail (by the USV).

In further studies, the UAV should cover large areas in preliminary missions, while
classifying areas of interest for conservation, management or commercial activ-
ity. On the areas of interest, the USV should be deployed to create more detailed
maps, or verify the existence and biomass of vulnerable nature types. The detailed
information could in turn be used to infer the presence of the same species and a
similar biodiversity for similar nature types observed elsewhere from the UAV.

The USV in this study carried a spectral attenuation meter, which provides light
attenuation data for depth based radiometric correction of the UAV photomosaics,
currently in development. The USV can potentially carry a conductivity, temper-
ature and depth profiler (CTD, Brown & Morrison 1978), or an acoustic current
doppler profiler (ADCP, Rowe & Young 1979). Data from these can be added to
the UAV photomosaic. Additionally, publicly available wave and current data will
enable classification of nature types based on more variables than just the dominant
pigment.

Recent publications describe similar methods and their potential for mapping (Freitas
et al. 2018, Rossiter et al. 2020, Montes-Herrera et al. 2021). Suggesting that there
is currently a shift in which shallow benthic ecological surveys are becoming in-
creasingly more automated. This allows for a repeatable surveys, expanding our
understanding of the dynamics controlling nature type and species abundance. The
definitive feature of this study is not the amount of data gathered. Instead it is the
opportunity to visualize detailed ecological data in a concise way for easier com-
munication, which is the ultimate barrier between scientific discovery and public
engagement (Bearzi 2007).
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Conclusion

This study compares the hyperspectral imaging and classification potential of pho-
tomosaics from a USV and a UAV. The USV was a good platform for capturing
biological detail, but had practical limitations in reach, cover and use. The USV
SAM classification reached a high accuracy of 63.4%. The UAV is an efficient
platform for large scale mapping, at the cost of pixel size resolution. The UAV
photomosaic was captured in March, which is likely why it only reached a SAM
classification accuracy of 24.8%.

The UAV-HI mission was performed in March, when the ambient irradiance and
pigment content were low, resulting in a low signal to noise ratio. This confirms the
existing consensus that UAV missions should be performed in the summer season.
It also demonstrates the need for depth dependent radiometric correction, which
is in development at the time of writing. This will allow for considerably more
accurate classification of pigment based classes, likely down to 10 m depth

The pigment based classes are a reliable classification of nature types, with addi-
tional field data allowing for further determination within the nature type system.
The pigment based classes may however benefit from a revision by someone with
better knowledge of NiN. There could be potential for further

The USV and UAV should be deployed strategically, and in conjunction. Meaning
the UAV covers a large area in preliminary survey, classifying areas of interest,
while the USV covers areas of interest in greater detail. This will enhance the
coverage and detail captured in shallow benthic nature types in future studies,
providing detailed and good visualizations for easier communication of Norwe-
gian coastal biodiversity.
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Kersen, P., Kotta, J., Bučas, M., Kolesova, N. & Dek, ere, Z. (2011), ‘Epiphytes
and associated fauna on the brown alga fucus vesiculosus in the baltic and the
north seas in relation to different abiotic and biotic variables’, Marine Ecology
32, 87–95.

Kislik, C., Dronova, I. & Kelly, M. (2018), ‘Uavs in support of algal bloom re-
search: A review of current applications and future opportunities’, Drones 2(4).



48 BIBLIOGRAPHY

Kruse, F. A., Lefkoff, A., Boardman, J., Heidebrecht, K., Shapiro, A., Barloon, P.
& Goetz, A. (1993), ‘The spectral image processing system (sips)—interactive
visualization and analysis of imaging spectrometer data’, Remote sensing of en-
vironment 44(2-3), 145–163.

Kutser, T., Vahtmäe, E. & Metsamaa, L. (2006), ‘Spectral library of macroalgae
and benthic substrates in estonian coastal waters’, Proc. Estonian Acad. Sci.
Biol. Ecol 55(4), 329–340.

Larkum, A. W., Orth, R. J. & Duarte, C. M. (2006), ‘Seagrasses: Biology, ecology
and conservation’, Phycologia 45(5), 5.

Leukart, P. (1994), ‘Field and laboratory studies on depth dependence, seasonal-
ity and light requirement of growth in three species of crustose coralline algae
(corallinales, rhodophyta)’, Phycologia 33(4), 281–290.

Lieske, D. J., Wade, T. & Roness, L. A. (2014), ‘Climate change awareness and
strategies for communicating the risk of coastal flooding: A canadian maritime
case example’, Estuarine, Coastal and Shelf Science 140, 83–94.

Marshall, M. G. (2021), Annual-Scale (1930-1990) Assessment of Anthropo-
genic Influences on the Assemblage Structure of Golden-Brown Algae (Chryso-
phytes) in Crawford Lake, Ontario, Canada, PhD thesis, Carleton University.

Meireles, J. E., Schweiger, A. & Cavender-Bares, J. (2017), ‘spectrolab: Class and
methods for spectral data in r’. R package version 0.0.16.
URL: https://CRAN.R-project.org/package=spectrolab

Méléder, V., Jesus, B., Barnett, A., Barillé, L. & Lavaud, J. (2018), ‘Microphyto-
benthos primary production estimated by hyperspectral reflectance’, PloS one
13(5), 1–21.

Mogstad, A. A. & Johnsen, G. (2017), ‘Spectral characteristics of coralline al-
gae: a multi-instrumental approach, with emphasis on underwater hyperspectral
imaging’, Applied Optics 56(36), 9957–9975.

Mogstad, A. A., Johnsen, G. & Ludvigsen, M. (2019), ‘Shallow-water habitat
mapping using underwater hyperspectral imaging from an unmanned surface
vehicle: a pilot study’, Remote Sensing 11(6), 685.

Montes-Herrera, J. C., Cimoli, E., Cummings, V., Hill, N., Lucieer, A. & Lu-
cieer, V. (2021), ‘Underwater hyperspectral imaging (uhi): a review of sys-
tems and applications for proximal seafloor ecosystem studies’, Remote Sensing
13(17), 3451.



BIBLIOGRAPHY 49

Moore, K. A. & Short, F. T. (2007), Zostera: biology, ecology, and management,
in ‘Seagrasses: Biology, Ecology and Conservation’, Springer, pp. 361–386.

Nababan, B., Mastu, L. O. K., Idris, N. H., Panjaitan, J. P. et al. (2021), ‘Shallow-
water benthic habitat mapping using drone with object based image analyses’,
Remote Sensing 13(21), 4452.

Ødegaard, F., Sverdrup-Thygeson, A., Hansen, L. O., Hanssen, O. & Öberg, S.
(2009), ‘Kartlegging av invertebrater i fem hotspot-habitattyper. nye norske arter
og rødlistearter 2004-2008’, NINA Rapport 500 p. 102.

Peirano, A., Damasso, V., Montefalcone, M., Morri, C. & Bianchi, C. N. (2005),
‘Effects of climate, invasive species and anthropogenic impacts on the growth
of the seagrass posidonia oceanica (l.) delile in liguria (nw mediterranean sea)’,
Marine Pollution Bulletin 50(8), 817–822.

Ralph, P., Polk, S., Moore, K., Orth, R. & Smith Jr, W. (2002), ‘Operation of the
xanthophyll cycle in the seagrass zostera marina in response to variable irradi-
ance’, Journal of Experimental Marine Biology and Ecology 271(2), 189–207.

Rashmi, S., Addamani, S. & Ravikiran, A. (2014), ‘Spectral angle mapper al-
gorithm for remote sensing image classification’, IJISET - International Journal
of Innovative Science, Engineering Technology 1(4), 201–205.

Rinde, E., Bekkby, T., Kvile, K. Ø., Andersen, G. S., Brkljacic, M. S.,
Anglès d’Auriac, M., Christie, H. C., Fredriksen, S., Moy, S. R., Staalstrøm, A.
et al. (2021), ‘Kartlegging av et utvalg marine naturtyper i oslofjorden’, NIVA-
rapport .

Rossiter, T., Furey, T., McCarthy, T. & Stengel, D. B. (2020), ‘Uav-mounted hy-
perspectral mapping of intertidal macroalgae’, Estuarine, Coastal and Shelf Sci-
ence 242, 106789.

Rowe, F. & Young, J. (1979), An ocean current profiler using doppler sonar, in
‘OCEANS’79’, IEEE, pp. 292–297.

RStudio Team (2022), RStudio: Integrated Development Environment for R, RStu-
dio, PBC., Boston, MA.
URL: http://www.rstudio.com/

Rubasingam, R., Mahmud, M., Gunathilaka, M., Estate, R., Bahru, J. et al. (2011),
‘Comparative study between flat and uniform bottom assumptions for snip-
pet imageries in hydrographic applications’, Geoinformation Science Journal
11(2), 41–51.



50 BIBLIOGRAPHY

Smith, M. O., Ustin, S. L., Adams, J. B. & Gillespie, A. R. (1990), ‘Vegetation in
deserts: I. a regional measure of abundance from multispectral images’, Remote
sensing of Environment 31(1), 1–26.

Smith, R. C. & Baker, K. S. (1978), ‘Optical classification of natural waters’,
Limnology and Oceanography 23(2), 260–267.

Sørensen, A. J., Ludvigsen, M., Norgren, P., Ødegård, Ø. & Cottier, F. (2020),
Sensor-carrying platforms, in ‘Polar night Marine Ecology’, Springer, pp. 241–
275.

Summers, N., Johnsen, G., Mogstad, A., Løvås, H., Fragoso, G. & Berge, J.
(2022), ‘Underwater hyperspectral imaging of arctic macroalgal habitats dur-
ing the polar night using a novel mini-rov-uhi portable system’, Remote Sensing
14(6).

Tait, L., Bind, J., Charan-Dixon, H., Hawes, I., Pirker, J. & Schiel, D. (2019),
‘Unmanned aerial vehicles (uavs) for monitoring macroalgal biodiversity: com-
parison of rgb and multispectral imaging sensors for biodiversity assessments’,
Remote Sensing 11(19), 2332.

Thorhaug, A., Richardson, A. & Berlyn, G. (2007), ‘Spectral reflectance of the
seagrasses: Thalassia testudinum, halodule wrightii, syringodium filiforme and
five marine algae’, International Journal of Remote Sensing 28(7), 1487–1501.

Thorne, K., Markharn, B., Barker, P. S. & Biggar, S. (1997), ‘Radiometric calibra-
tion of landsat’, Photogrammetric Engineering & Remote Sensing 63(7), 853–
858.

Vahtmäe, E., Kutser, T., Martin, G. & Kotta, J. (2006), ‘Feasibility of hyperspec-
tral remote sensing for mapping benthic macroalgal cover in turbid coastal wa-
ters—a baltic sea case study’, Remote Sensing of Environment 101(3), 342–351.

van Marion, P. (1996), ‘Ecological studies in hopavågen, a landlocked bay at ag-
denes, sør-trøndelag, norway’, Gunneria 71 pp. 1–39.

Ventura, D., Bonifazi, A., Gravina, M. F., Belluscio, A. & Ardizzone, G. (2018),
‘Mapping and classification of ecologically sensitive marine habitats using un-
manned aerial vehicle (uav) imagery and object-based image analysis (obia)’,
Remote Sensing 10(9), 1331.

Walday, M. G., Rinde, E., Andersen, G. S., Hancke, K. & Moy, S. R. (2021),
‘Frisk oslofjord. undersøkelser på grunt vann-med utprøving av ny teknologi’,
NIVA-rapport .



BIBLIOGRAPHY 51

Wiencke, C., Gómez, I. & Dunton, K. (2010), Phenology and seasonal physiolo-
gical performance of polar seaweeds, in ‘Biology of polar benthic al-
gae/Christian Wiencke (ed.) Berlin: de Gruyter’, pp. 181–194.

Wolfe, W. L. (1997), Introduction to imaging spectrometers, Vol. 25, SPIE Optical
Engineering Press, Bellingham, WA, USA.

Yokohama, Y. (1973), ‘A comparative study on photosynthesis temperature rela-
tionships and their seasonal changes in marine benthic algae’, Internationale
Revue der gesamten Hydrobiologie und Hydrographie 58(4), 463–472.



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f B
io

lo
gy

Mikkel Bjerkvoll

Aerial & Underwater Hyperspectral
Imagery For Shallow Benthic Nature
Type Mapping

Master’s thesis in Ocean Resources
Supervisor: Geir Johnsen
Co-supervisor: Torkild Bakken, Aksel A. Mogstad
May 2022

Photomosaic: photos by Asgeir Sørensen & Pål Kvaløy

M
as

te
r’s

 th
es

is


	Introduction
	Nature in Norway - NiN
	From nature types to pigment based classes
	Remote sensing
	Hyperspectral imaging and Optical fingerprints
	Spectral mixing
	Spectral Angle Mapper - SAM
	Aim of the study

	Materials and Methods
	Study Area
	Physical sampling and In vivo spectrometry
	In situ imaging
	USV-based hyperspectral imaging
	UAV-based hyperspectral imaging

	Data processing
	USV-UHI data processing
	UAV-HI data processing

	Sampling and SAM classification in the USV & UAV photomosaics
	Accuracy assessment of SAM classification


	Results
	Transects
	USV photomosaic and manual sampling of pixels
	UAV photomosaic and manual sampling of pixels
	Pixel based comparison of the USV and UAV photomosaic

	Spectral reflectance of classes sampled in vivo, from USV, and from UAV
	Seagrass
	Red algae
	Brown algae
	Sediment

	Spectral Angle Mapper Classification
	USV photomosaic classification
	UAV photomosaic classification
	Accuracy assessment of SAM classification


	Discussion
	Transects
	USV based UHI photomosaic
	UAV based HI photomosaic
	Pixel based comparison of the USV and UAV photomosaic

	Spectral reflectance of classes sampled in vivo, from USV, and from UAV
	Seagrass
	Red algae
	Brown algae
	Sediment

	SAM classification & accuracy assessment
	USV photomosaic classification & accuracy assessment
	UAV photomosaic classification & accuracy assessment

	Comparison of hyperspectral USV and UAV mapping
	Future perspectives

	Conclusion

