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Abstract

Computational Fluid Dynamics (CFD) is a scientific field encompassing methods
for simulating fluid dynamics. These methods are used to solve a wide range
of complex engineering problems, including urban wind flow prediction. With
increased urbanization, assessing how new buildings affect the wind flow is vital
to ensure pedestrian comfort and safety. However, while CFD simulations pro-
vide detailed information about the fluid flow they are extremely complex and
computationally expensive.

The rapid improvements of deep learning have allowed researchers to model
fluid dynamics using neural networks. The fast inference time of neural networks
makes it possible to predict the state of a fluid system in a matter of seconds,
making processes such as interactivity possible. Using neural networks to predict
fluid flow trades detailed information about the fluid flow for faster approximation
time. This trade-off is extremely desirable when assessing how wind flow in urban
areas affects pedestrians. Predicting how changing building geometries affect
high-level wind trajectories will allow architects to interactively design buildings
that are suited for urban development. Unfortunately, using CFD to generate
enough training data for the neural network to learn how to describe a fluid
system is still computationally expensive.

To combat the need for large amounts of data, a new paradigm of physics-Al
coupling has emerged. Neural networks are programmed to learn from data from
CFD simulations as well as the physical equations governing the fluid system.
These PINNs (Physics-Informed Neural Networks) are showing great potential
for describing fluid systems. However, researchers are still working towards the
coupling of the most complex fluid systems and state-of-the-art deep learning.

Turning our attention towards the complicated domain of turbulent fluid flow,
we introduce a PINN on several fluid flow systems of increasing complexity. The
PINN is developed by combining a state-of-the-art deep learning architecture,
the UNet, and a conservation law of fluid dynamics. We show that the PINN
is able to efficiently learn the fluid flow of our systems, and shows increased
interpretability in terms of the physics governing the fluid systems. Notably,
the PINN shows the highest improvement in interpretability in the low-resource
region, where simulated data is scarce.
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Sammendrag

Numerisk fluidmekanikk (CEFD) er et fagomrade som inkluderer metoder for simu-
lering av fluidmekanikk. Disse metodene brukes for a lgse en rekke komplekse
problemer, blant annet predikering av vind i urbane omrader. Med gkende grad
av urbanisering er det viktig a undersgke hvordan nye bygninger pavirker vin-
dstrgmmen, slik at man sgrger for komfort og sikkerhet for fotgjengere. CFD-
simuleringer tilbyr detaljert informasjon om fluid strgmning, men er ekstremt
komplekse og krevende & beregne.

Den raske utviklingen innen dyp leering har tillatt forskere & modellere fluid-
mekanikk ved bruk av nevrale nettverk. Den raske prediksjonstiden til nevrale
nett betyr at fluidsystemer kan beskrives i lgpet av sekunder, noe som muliggjar
interaktivitet. Ved a bruke nevrale nettverk for a predikere fluidstrgmninger kan
man oppnéa raskere approksimeringer, men man gir slipp pa noen av detaljene i
fluidstremmen. Denne avveiningen er meget verdifull nar det gjelder & undersgke
hvordan vindstrgmmene i urbane omrader pavirker fotgjengere. Predikering av
hvordan de overordnene vindstrgmmene endrer seg nar man endrer geometrien
til bygninger vil tillate arkitekter a interaktivt designe bygninger som er tilpasset
urban utvikling. Problemet med slike metoder er at det fremdeles er krevende &
bruke CFD til a fremstille nok treningsdata til at det nevrale nettet kan leere a
beskrive fluidsystemet.

For a redusere behovet for store menger data har en kobling mellom fysikk
og kunstig intelligens begynt & utvikle seg. Nevrale nett programmeres til a
lzere bade fra data fra CFD-simuleringer og fra fysikkligningene som beskriver
fluidsystemet. Slike PINN-er (fysikk-inspirerte nevrale nettverk) har vist seg a
ha stort potensiale for a beskrive fluidsystemer, men forskere arbeider fremdeles
med koble sammen de mest komplekse fluidsystemene og toppmoderne nevrale
nett.

Vi retter fokuset mot det kompliserte domenet turbulente strgmninger, og in-
troduserer en PINN for en rekke strgmningssystemer med gkende kompleksitet.
Var PINN er utviklet ved a kombinere en toppmoderne nevral nettverksarkitek-
tur, UNet, og en konserveringslov innen fluidmekanikk. Vi viser at PINN-en
effektivt leerer seg strgmningene i systemene vi studerer, og at den fglger fysiske
lover som beskriver systemet. Vi gnsker ogsa a vektlegge at PINN-en viser stgrst
forbedring nar den trenes pa fa eksempler fra CFD-simuleringer.
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Chapter 1

Introduction

This chapter contains an introduction to this thesis. First, section 1.1 contains
the background and motivation for investigating the use of neural networks to
solve fluid flow problems. Then, section 1.2 presents the overall research goal
and three research questions that are to be investigated. The contributions of
this thesis are summarized in section 1.3. Lastly, the structure of the thesis is
presented in section 1.4.

1.1 Background and Motivation

Computational Fluid Dynamics (CFD) is the task of numerically simulating the
fluid flow of a system by solving a set of Partial Differential Equations (PDEs).
To simulate the flow of wind, CFD is used as a cheaper and more accessible
alternative to experiments in wind tunnels. However, numerical experiments are
still extremely time- and resource-intensive, requiring expensive hardware to run
simulations on.

CFD methods have stayed the same for several decades, but the development
of computer hardware has allowed more complex physical simulations. Improved
computer hardware has also allowed the advancement of neural networks. Neural
networks are able to predict solutions to PDEs in a matter of seconds. There are
several practical applications of predicting fluid flow in real-time. Faster flow pre-
dictions make it possible to simulate systems with higher resolution, predict the
future state of a system further ahead in time, and to include more realistic mod-
els in the optimization of environmental systems. Another application of faster
simulations is interactivity with the fluid system, which is our main motivation
for moving towards real-time prediction of urban wind flow. Such interactiv-
ity will allow architects to iteratively design buildings that are suited for urban
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development. New buildings are evaluated by their impact on the surrounding
microclimate, and must adhere to rules and regulations regarding this impact.
The evaluations can be conducted with CFD simulations. Providing architects
with a tool to ensure that their building designs adhere to regulations reduces
the number of expensive CFD simulations that must be conducted. In Figure
1.1, we illustrate how a CFD simulation can be used to depict wind movement
through an urban area.

Due to the practical applications of predicting fluid flow in real-time, such
as interactivity with the fluid system, a branch of research using neural net-
works to approximate physical systems has emerged. Early attempts to model
PDEs using neural networks include the framework developed by Dissanayake
and Phan-Thien 1994, but as generating training data become more feasible,
data-driven approaches have gained popularity. These approaches require very
little knowledge of fluid dynamics - data-driven neural networks® learn to map
an input to an output by looking at input-target pairs of data.

Figure 1.1: An illustration of how the wind moves through an urban area, gen-
erated with a CFD simulation. Courtesy of Nabla Flow.

IThe term “data-driven® refers to “normal® neural networks in an explicit way, as neural
networks usually are trained on datasets with input-target pairs.
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1.1.1 CFD as a Low-Resource Domain

The size of the dataset used to train a neural network has a high impact on the
resulting predictions from the neural network. The size needed for the dataset
depends on the task at hand: The examples in the dataset must accurately
capture the underlying distribution which we want the neural network to learn.
Complex tasks thus need larger amounts of data than simpler tasks. An example
of a complex task is the prediction of wind flow in urban areas, due to the
turbulent nature of wind and the complex geometries of real-life buildings.

While in theory, one could produce infinite amounts of training data using
CFD simulations, in practice this would take a very long time. Generating only
one training example in 3D takes several hours, making it infeasible to generate
a large dataset. Brunton et al. 2020 reported that in the field of fluid dynamics,
datasets for complex problems do not model the complete underlying distribution
that one would want the neural network to learn. Improving the generalization
capabilities of the neural network is thus vital for accurate fluid flow predictions.

For low-resource domains where one wishes to use deep learning, data aug-
mentation can often be used to expand the size of the dataset. Data augmentation
is the process of creating new data from the existing dataset. For image data,
this could for instance be by skewing or rotating the images. For modelling fluid
flow, data augmentation is not always feasible as augmenting the dataset could
lead to the physical laws and initial conditions breaking.

On the other hand, these physical laws and initial conditions can be used to
constrain the optimization space, simplifying the optimization task of the neural
network. Raissi et al. 2017 introduced the Physics-Informed Neural Network
(PINN) — a neural network that is programmed to learn from both data samples
and the governing equations of the physics system. In addition to reducing the
need for training data, the PINN ensures that the physical laws of the system
are obeyed. However, adapting the PINN to a new domain is more complex than
just using data-driven neural networks. In addition to generating the required
amount of training data, the equations describing the system must be modelled
in the neural network.

1.2 Goals and Research Questions

This thesis is a part of an ongoing project with Nabla Flow and SINTEF Digi-
tal, aiming to offer interactive approximation of urban wind conditions. Urban
wind conditions are highly affected by the shape and size of buildings, so such
interactivity would allow architects to test how their designs impact the wind
flow. Estimating urban wind flow is important for accommodating pedestrians,
and has become more important in recent years due to ongoing urbanization.
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While we work towards increasing the interactivity of urban wind prediction
using neural networks, the focus of this thesis is to investigate if a PINN is suitable
for wind flow prediction. To determine whether a PINN is suitable for wind flow
predictions, we propose three research questions.

Research question 1 How does the addition of physics knowledge affect a neu-
ral network’s training process?

Our hypothesis is that including physics knowledge should help the neural
network navigate the optimization landscape. During training, a smaller solution
space should lead to more stable predictions as well as faster convergence.

Research question 2 How does the PINN’s performance differ as the amount
of training data changes?

We hypothesize that constraining the solution space should reduce the amount
of training data needed for a neural network. Thus, the performance of the PINN
with small amounts of training data should be similar to, or better than, the
performance of the data-driven neural network with larger amounts of training
data. Another way of looking at this hypothesis is that the inclusion of physical
equations provides more information to the neural network by making each data
sample more salient.

This research question also turns our focus to the low-resource region, in terms
of the amount of training data required. By evaluating the performance across
training set sizes we are hoping to learn where the number of samples is so small
that the neural network is struggling. Evaluating the PINNs performance in such
a region tells us how much we can benefit from using PINNs to model fluid flow
with CFD as a low-resource domain.

Research question 3 How well can the PINN generalize to a more complex
data distribution?

PINNSs are gaining popularity due to their generalization capabilities on un-
seen data samples. However, their performance on unseen data distributions is
rarely discussed - probably due to neural networks’ lack of generalization capabil-
ities outside of their training distribution. As the task of urban wind prediction
will require a model that is robust to a large range of building geometries, we
propose experiments to learn if the PINN can outperform a traditional neural
network on unseen distributions.

1.3 Contributions

We bring state-of-the-art deep learning techniques to turbulent fluid flow predic-
tion. Using a UNet model with a physics-informed loss function on increasingly
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complex datasets, we obtain consistent improvements over the already strong
baseline.

Making use of a range of training set sizes is key to our approach. We find
that overall, using the physics-informed loss term improves the training process
of the neural network. In particular, we find that both the training stability and
the convergence of the PINN are better than that of the baseline. Our results
show that for turbulent flow, utilizing a PINN allows for a reduction in the length
of the training process regardless of the size of the training set.

Further, we demonstrate that the PINN consistently outperforms the baseline
in terms of interpretability. In the region with minimal amounts of training data,
this improvement is even higher - our PINN is more sample efficient in the low-
resource region.

Finally, we analyse how embedding the physics-informed loss term in the
neural network affects its generalization capabilities. Our PINN is able to better
generalize to more complex data than what it has seen during training. However,
our experiments show that more research is needed to reach the full potential of
PINNSs as general fluid flow approximators.

A key component to our investigation, apart from the use of PINNs, is the use
of increasingly complex datasets. Our PINN performs well regardless of dataset
complexity, suggesting that PINNs are viable models for real-life wind prediction
in urban areas.

Lastly, some of the novelty of our idea lies in the simplicity of the input
provided to the neural networks. While other works, such as Ma et al. 2021 and
Wandel et al. 2020, input more specific information to the neural network, we
only provide the geometry of the buildings. This approach is inspired by the basic
principles of deep learning, regarding the abilities of neural networks to extract
relevant features from the input.

1.4 Thesis Structure

The next chapter contains a brief theoretical overview of CFD, neural networks,
and the integration of deep learning and physics. In chapter 3, we report state-
of-the-art methods for using neural networks to predict fluid flow. Chapter 4
outlines our neural network architecture and defines our physics-informed loss
terms. Chapter 5 details the datasets and evaluation metrics used and how the
experiments were conducted, while chapter 6 analyses the outcome. Finally, in
chapter 7 we summarise the results in terms of the research questions and provide
pointers for further research.
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Chapter 2

Background Theory

This chapter contains the theoretical background for this thesis. First, com-
putational fluid dynamics is described in section 2.1. Then, relevant aspects of
artificial neural networks are presented in section 2.2. Finally, modern integration
of the two fields are presented in section 2.3.

2.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is the numerical modelling of fluid flows,
generally described by the Navier—Stokes equations. This section presents theory
regarding these equations, as well as how to solve them. The theory, unless
otherwise stated, is based off of Malalasekera and Versteeg 2007.

Solving the Navier—Stokes equations analytically is not possible in general,
and solving them numerically often requires immense computational power. The
increase in available computing power over the years has allowed for larger and
more complex simulations. In comparison, commercial CFD methods have largely
stayed the same for decades, as shown by Slotnick et al. 2014. Still, reaching the
steady-state solution for a simulation may take several days. Reaching steady-
state is especially problematic for turbulent flow, where the changes in pressure
and velocity are chaotic and the system therefore exhibits highly unpredictable
behaviour.

2.1.1 The Navier—Stokes Equations

The Navier—Stokes equations are second-order partial differential equations de-
scribing the velocity ¢ and pressure p of a fluid flow. For an incompressible fluid
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where external forces, such as gravity, are neglected, the Navier—Stokes equations
are

V.5=0 (2.1a)

P (?;t} + (V- V)ﬁ) = —Vp + pA7, (2.1b)

where v is the velocity, p describes the fluid density, p is the pressure, and p is
the viscosity. Equation 2.1a is the continuity equation, stating that the velocity
divergence must be zero in a fluid system without sinks or sources. Equation
2.1b describes the conservation of momentum within the fluid system. Solving
these equations results in the velocity field of the fluid, ¥, and the pressure of
the fluid, p. By setting the time-derivative equal to zero, one can determine the
steady-state flow of the fluid.

The Navier—Stokes equations do not constitute a fully determined system of
equations on their own. To make the system fully determined, a set of initial
conditions and boundary conditions have to be prescribed. There exist several
types of boundary conditions, including the commonly used Dirichlet conditions
v = vy which sets the velocity at the boundary of the simulation space.

2.1.2 Simulating Turbulent Fluid Flow

Currently, the state-of-the-art within computational aerodynamics is to model the
flow using either Direct Numerical Simulation (DNS), Large Eddy Simulations
(LES), or Reynolds-Averaged Navier-Stokes (RANS). In DNS one attempts to
solve the Navier—Stokes equations by including all time-dependent fluctuations
and in LES one includes most of these fluctuations, whereas in RANS one instead
tries to solve the simpler time-averaged equations.

Slotnick et al. 2014 presented NASA’s technology development roadmap,
which shows that the technology readiness level of RANS for computational aero-
dynamics is high while for LES this level is low. RANS simulations can therefore
be used to generate training data for machine learning methods such as neural
networks.

A common method for using CFD to solve turbulent flow is the k-epsilon
model. In addition to solving the Navier-Stokes equations, one also solves an
equation for turbulent energy, k, and an equation for the dissipation of turbulence,
€. In 3D this gives a set of 6 equations: one for each of k, €, and continuity, in
addition to the three equations for momentum. A different version of the k-
epsilon model is the realizable k-epsilon model, which performs better on more
complex structures.
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To solve the set of equations, the volume or area of interest is split into smaller
pieces. This is called meshing, and for high-resolution urban wind simulations
one often require millions of these pieces. Then, the equations and boundary
conditions are set up for each piece, and the resulting millions of equations are
solved for the entire system.

A different method that is worth mentioning is the Lattice-Boltzmann method,
presented by Chen and Doolen 1998. This method is still being developed, but
it reduces the simulation time by orders of magnitude. The Lattice-Boltzmann
method is inspired by methods used to model molecules, and models the fluid
system as a grid where only the nearest neighbours depend on each other. One
can thus use parallel computations to quickly calculate the fluid flow.

For simple systems, Lattice-Boltzmann can compute the fluid flow of the sys-
tem in real-time. For more complex system, like for instance the flow field in
urban areas, the method is not fast enough to give real-time results. In addition,
the grid-structure means that the method can only model systems with a regular
grid with equally sized squares. But even with these limitations, the fast simula-
tion time of the Lattice-Bolztmann method already offers opportunities to create
larger amounts of training data which can be used when researching the use of
deep learning methods on fluid flow. Some of the work presented in chapter 3
uses the Lattice-Boltzmann method to generate training data.

2.1.3 CFD for Urban Wind Flow

Wind flow in urban areas is turbulent and incompressible, meaning that it is a
complex type of fluid flow. CFD is used to simulate wind flow to study how new
buildings impact wind conditions in an area, which in turn impacts pedestrian
comfort and safety. As explained in Hagbo et al. 2020, an increasing number of
city authorities request comprehensive wind studies before granting a building
permit.

Running CFD simulations for predicting the wind conditions in an urban area
is extremely computationally expensive. The simulation must be run for several
wind directions since in the real world, wind will come from several different
directions.

If one could interact with wind flow simulations in real-time, these simula-
tions could be used for interactive urban development. Instead of investigating if
a building has a low enough impact on the pedestrian comfort to be constructed,
one could get immediate feedback while designing buildings and thus move for-
ward accordingly. The finished building designs would then be much more likely
to adhere to regulations regarding their impact on the surrounding microclimate.
As we will see in chapter 3, deep learning is emerging as a tool for interactive
fluid flow predictions.
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2.2 Artificial Neural Networks

With observational samples (z;,y;), ¢ = 1,...,n from a CFD simulation, one can
train a general function approximator to learn the underlying distribution of the
observations. For two-dimensional fluid flow approximation, the observational
samples are often images. The input, x, includes information about the geometry
one wishes to simulate fluid flow around. The target y depicts the variables
describing the fluid flow, such as flow velocity, attained from a CFD simulation.

With an underlying distribution y = f(z) + €, where € is random noise, the
goal is to approximate f. The quality of this approximation is measured by a
loss function L(y;, f(x;)). The loss function provides a measure between the es-
timated values f (z;) and the true observed values y;. Averaging the loss over
all observations gives a single metric for the quality of the function approxima-
tor. Training such a general function approximator is referred to as supervised
learning.

Artificial Neural Networks (NNs) are a type of general function approxima-
tors. The universal approximation theory states that any function may be ap-
proximated by a sufficiently large and deep network. As fluid flow in a physical
system is defined by the Navier—Stokes equations, we can use an appropriate neu-
ral network architecture to learn the desired mapping that allows us to directly
infer solutions to this nonlinear problem.

A neural network can solve the CFD task as an image-to-image translation
task using the UNet architecture. This section therefore describes the architec-
tural elements behind UNet, while a thorough description of UNet is provided in
chapter 4. We also present a strategy for improving the generalization abilities of
a neural network. The latter is an important principle for our hybrid data-physics
model.

2.2.1 A Primer on Neural Networks

A comprehensive treatment of neural networks is far out of scope for this thesis.
Instead, we provide a short description of basic neural networks and turn our
focus to more complex architectural elements that are relevant for the work done
in this thesis. The interested reader may find an in-depth explanation of neural
networks by Goodfellow, Bengio, and Courville 2016.

A neural network consists of layers of neurons. The neurons in the first layer
are set equal to the input example x;. Neurons in other layers get their values from
linear combinations and simple non-linear functions of the previous layer’s values.
This way, information is propagated through the network and the values of the
last layer is the network’s prediction. The neural network has now completed a
forward pass. The prediction is then compared to the true value y;, and the loss
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function is used to calculate the error of the prediction. The neural network then
calculates the error gradient with respect to each parameters, and updates each
parameter according to how much it contributed to the error. Minimizing the
error this way is called gradient descent, and the whole procedure of calculating
the error and performing gradient descent is called backpropagation.

Training a neural network is done by performing forward passes and backprop-
agation for either a certain amount of times, or epochs, or until a stopping criteria
is met. This way, the neural network approximates f by finding combinations of
parameters that minimize the error given by the loss function.

After training, inference can be done in a matter of seconds with a single for-
ward pass. Training neural networks to learn complex physics problems, which
are computationally expensive to solve numerically, therefore provides much
faster solutions. The challenges of using neural networks to model physics is
the general lack of training data, as neural networks need sufficient amounts of
training data to properly tune their weights. In addition, neural networks are
black-box models, i.e. we do not have insights in their internal workings.

2.2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural networks that are
well-suited for processing grid-like data, such as images. Convolutional neural
networks use the convolution operation! to propagate information from one layer
to the next. The convolution operation for a two-dimensional image I and a
two-dimensional kernel K is

S, j) = (I« K)(i,5) = > > I(i—m,j—n)K(m,n), (2.2)

where 4, j are indices in the image and in the resulting feature map S. In
a CNN, the resulting feature map forms the basis of the next layer. There are
some major benefits to using kernels, which we will explain by comparing CNNs
to traditional neural networks.

Whereas traditional neural networks have one weight for each pair of neurons
in neighbouring layers, a kernel in a CNN has the same value when applied to all
positions of the layer. Thus, a kernel is a trainable filter, and it is trained based
on all neurons in the layer it is applied to. This sharing of parameters reduces
memory requirements, and opens for the possibility of using several kernels for
each layer. Doing so allows each kernel for a layer to learn one set of features,
e.g. recognizing horizontal edges or vertical edges in an image. CNNs can thus
learn spatial relations.

IMost libraries implement CNNs with the cross-correlation operation. For deep learning
applications, the end-results are the same.
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Compared to traditional neural networks, where each neuron in one layer is
connected to each neuron in the next layer, CNNs are sparsely connected. In
convolutional neural networks, each neuron is only connected to k neurons in the
next layer. Thus, CNNs have fewer parameters. In addition, since the neurons in
the neighbouring layers are semi-independent of each other, CNNs are suitable
for hardware acceleration through parallel computations of the parameters using
graphics cards. Training a CNN is thus less time-consuming than training a dense
neural network with the same number of parameters.

There are some other benefits of the sparsely connected weight-sharing ker-
nels. CNNs are less prone to overfitting, as each value in the feature map comes
from several configurations from the previous layer. In addition, as each layer in
a deep neural network can build more complex abstractions by using the output
from the previous layer, CNNs can build increasingly complex representations of
the input. If the first layers model the edges and curves of an input image, the
following layers might be able to model more complex features such as ears or
eyes.

In the same way that CNNs are well-suited for two-dimensional input, they
can output predictions in two dimensions. When using a CNN to predict fluid
flow, one can thus directly output the entire fluid flow field by training the CNN
to output an image representation of the flow components v, v,, and p.

2.2.3 Autoencoders

Autoencoders are neural networks that are trained to reconstruct their input.
This reconstruction is done so that the autoencoder can learn a salient represen-
tation of the dataset’s underlying distribution. Autoencoders are therefore used
as feature extractors or dimensionality reducers, where they in the latter case
were shown to outperform PCA by Hinton and Salakhutdinov 2006.
Autoencoders consists of an encoder and a decoder, where the architecture of
the decoder is the mirror image of the encoder. The output layer of the encoder
is the input layer to the decoder, and is called the latent space. After training,
the latent space provides the feature representation of any unseen data example.
To ensure that the autoencoder does not reconstruct the input by performing
the identity mapping, the neural network is restricted so that it must prioritize
the most important aspects of the input. One way to restrict the autoencoder
is by making it undercomplete, i.e. constraining the layers in the encoder to
decrease in size. Such an undercomplete architecture is shown in figure 2.1.
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Figure 2.1: The general architecture of an undercomplete autoencoder (adapted
from Flores 2019).

The undercomplete autoencoder architecture is often used in neural networks
to ensure that the neural network learns the most useful properties of the obser-
vations. When used in a general deep learning setting, not only to reconstruct the
input data, the neural network is said to have an autoencoder-like architecture
or an encoder-decoder structure.

2.2.4 Skip-Connections

Historically, neural networks with many layers and fewer neurons in each layer
have performed better than neural networks with fewer layers and many neurons
in each layer. The first type is called “deep“ networks, while the latter is called
“wide“. For a deep and a wide neural network with the same number of pa-
rameters, the deep neural network benefits from being able to build increasingly
complex abstractions in each layer. This suggests that a deep and narrow neural
network should perform better than a more shallow and narrow neural network.
A deep neural network should never have decreased performance compared to a
shallow one, as the deep neural network should be able to copy all parameters
of a shallow neural network and perform the identity mapping for the rest of
it’s layers. However, very deep networks have shown degrading performance on
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both training and test data, indicating that neural networks struggle to learn the
identity mapping.

He et al. 2015 proposed a solution to this degradation problem. Instead of
learning the mapping that best describes the data, they learn the residual of the
desired mapping and the identity mapping. Learning this residual is done by
adding skip-connections between layers. The skip-connections are just the iden-
tity mapping and does not add computational complexity or more parameters.

X
Y
weight layer
_]?(X) ! relu «
weight layer identity

Figure 2.2: A skip-connection used for residual learning in neural networks. With
H(z) as the desired mapping between input and target, learning F(z) = H(z) —=z
is easier for neural networks.

Such a skip-connection can be seen in figure 2.2. The dataset’s distribution
is described by the unknown function H(z), which we want the neural network
to learn. By instead learning the residual F(z) = H(z) — z, and adding x to the
output of the layers, we obtain the desired F(z) + « = H(z). The experiments
conducted by He et al. 2015 showed that it is often easier for neural networks to
learn the residual. Using skip-connections improved the training performance of
deep neural networks, and allowed the use of more layers to increase the accuracy
even further.

2.2.5 Regularization

Regularization are strategies that are used to improve a neural network’s gener-
alization abilities, i.e. performing better on unseen data. Regularization shift a
neural network’s priorities, trading a higher training error for a lower test error.

Common regularization methods include dropout, early stopping, parameter
norm penalization, and simply using a smaller neural network to reduce the
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representational power of the neural network. Dropout, proposed by Srivastava
et al. 2014, randomly deactivates neurons during training to ensure that the
neural network’s parameters does not co-adapt too much. Early stopping is when
the training is stopped before all epochs are concluded, e.g. if the validation loss
is non-decreasing. Increasing validation loss is a sign that the neural network has
overfitted on the training data. Parameters norm penalization adds a term to
the loss function that penalizes parameters with large absolute-values, as large
absolute-values often is a sign of overfitting. Adding such a regularizing term to
the loss function has inspired the use of scientific equations in the loss function
of neural networks.

2.3 Integrating Deep Learning and Physics

Traditionally, domain knowledge has been used to feature engineer input to, and
post-process results from, machine learning models. In recent years, integrating
scientific knowledge more closely with neural networks has emerged as a promising
scientific endeavour. Neural networks do not need feature engineering in the
same way that other machine learning methods do, and they can also directly
output the desired targets. Therefore, the new integration of neural networks
and scientific knowledge differs from the traditional one. This section shed light
on this new coupling of physics and deep learning, with a focus on solving partial
differential equations.

2.3.1 Data-Driven Neural Networks for CFD

As explained in section 2.2, neural networks can be trained to predict fluid flow
by using a dataset containing samples from a CFD simulation. We refer to this
approach, using a dataset to train a neural network, as data-driven training.
Willard et al. 2021 describe nine ways in which machine learning and physics
can be coupled, one of which is using data-driven neural networks to solve PDEs.
In systems where the governing equations are known, but traditional numerical
solutions are computationally expensive, neural networks can be used as sur-
rogate models for the PDE solver. For fluid systems, this means that neural
networks can be used to solve the Navier—Stokes equations. Even though both
generating a dataset using CFD and training the neural network are computa-
tionally expensive processes, inference using the fully trained neural network is
fast. Neural networks can thus output approximate solutions to PDEs in a man-
ner of seconds. In addition to computational speed up, the results obtained from
neural networks are differentiable and can be used in subsequent calculations.
The drawback of such data-driven neural networks is the lack of interpretabil-
ity and trustworthiness from unawareness of physical laws. Training the neural
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network may also be an issue, both in terms of training time and generating
training data. Lastly, another challenge with data-driven neural networks is
overfitting. With scarce amounts of training data, overfitting is more likely to
oceur.

2.3.2 Physics-Informed Neural Networks

To reduce the drawbacks of the data-driven method described above, one can
take one step further to incorporate physics in a neural network. Instead of just
using neural networks to solve PDEs by learning from observational samples,
Raissi et al. 2017 showed that one can embed knowledge of the physical laws that
describe the system into the neural network. Such knowledge pertains to both
the conservation laws of the system, as well as boundary conditions.

Formal Definition of a PINN

Neural networks can be used to solve a general nonlinear PDE

ug + Nlu] =0 (2.3)

with the solution wu(t, z). Here, N[:] is a nonlinear operator, ¢ is the timestep,
and z € Q. For three dimensions, ) is a subset of R3. By using the neural
network to approximate u(t, ) and defining

fi=wu+ Nu] =0, (2.4)

f(t,x) is a PINN. In section 4.2.1, we derive our physics-informed loss term
by explicitly connecting this definition with equation 2.1a.

To train the PINN, a loss function with both a data-driven and a physics-
driven term is minimized:

Lpiny = LoD (u(t, 1‘), a(t, m)) + ﬁphysics(ﬁ(t, I)) (2.5)

Here, Lpp is a data-driven loss function?, e.g. L1, which takes as input
the target values u(t, ) and the output from the model 4(t,2). Lphysics is the
residual function modeling f(¢,x), requiring the PDEs of the physics system to
be satisfied by the output of the neural network.

Incorporating a physics-based loss term changes the topography of the solu-
tion space, reducing the part of this space that contains viable solutions to the
task at hand. This reduced number of viable solutions may simplify the search
for the model, and therefore might lead to higher predictive performance due

2In deep learning libraries, many loss functions are implemented. For a list of PyTorch’s
loss functions, see https://pytorch.org/docs/stable/nn.html#loss-functions.


https://pytorch.org/docs/stable/nn.html##loss-functions

2.3. INTEGRATING DEEP LEARNING AND PHYSICS 17

to convergence to a global optima instead of a local optima. As we will see in
section 3.3, it is also possible for the model to only use Lpnysics to learn, remov-
ing the need for computationally expensive target values. Lastly, when a neural
network follows the governing physical equations of a system, it is more likely to
have strong generalization capabilities.

2.3.3 Evaluating Physics-Informed Neural Networks

There are three general computational objectives one should consider when eval-
uating a physics-informed neural network:

e First of all, the predictive performance of the neural network should im-
prove.

e Secondly, one must consider sample efficiency. One could either reduce the
number of training examples required for adequate performance, or improve
the quality of the samples so the overall search space for the optimization
algorithm is smaller.

e Lastly, interpretability of the model must be considered. Designing a model
that is physically consistent ensures that the governing equations of the
physical system are obeyed.
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Chapter 3

State of the Art

This chapter explores state-of-the-art research on the use of neural networks to
perform fluid flow simulations. First, research regarding data-driven models for
fluid flow is presented in section 3.1. Then, in section 3.2, we present research on
hybrid models such as PINNs. Lastly, unsupervised physics-driven models using
only physical knowledge are presented in section 3.3. Within all three sections,
the work is presented in chronological order to convey an understanding of how
the integration of fluid dynamics and deep learning has emerged.

3.1 Data-Driven Neural Networks for Fluid Flow

From section 2.2, we have seen that neural networks are trained using a set of
observations, more commonly referred to as a dataset of input-target pairs. This
data-driven approach has been used for fluid flow prediction, due to the fast
inference time and impressive predictive capabilities of neural networks.

Thuerey et al. 2018 used a UNet architecture to approximate the RANS so-
lutions of flow around an airfoil in 2D. By using a convolutional neural network
architecture, they are able to embed spatial information into latent space. As
input to the model, they used freestream velocities in the z- and y-direction and
a mask encoding the geometry. They argued that the latter was redudant, as the
freestream velocities were already set to zero at the pixel location of the geom-
etry. The network learned to predict velocity in the z- and y-directions, v, and
vy, as well as the pressure, p, around airfoils by using images with the simulated
values of vy, vy, and p as targets. The ground truth images were created by
CFD simulations. The model was purely data-driven, using only the difference
between model output and the target images to train.

19
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Thuerey et al. 2018 showed how the accuracy of the predictions were influ-
enced by the amount of training examples, ranging from 100 to 12800 examples,
and the size of the model. The size of the model was determined by the number
of trainable parameters in the model, while the number of layers were the same
across models. Five different models were used, where the number of weights
ranged from 122k to 30.9M.

For smaller amounts of training data, the smaller models performed better
while the larger ones were prone to overfitting. Thuerey et al. 2018 demonstrated
that the regularization stemming from the smaller number of weights led to better
generalization capabilities. When a larger amount of data was made available, the
larger models were able to generalize better than the smaller models. All models
exhibited signs of stagnating validation loss, motivating the need to investigate
other approaches to the prediction of the fluid flow.

In addition to their investigation on the influence of training data size and
the number of trainable parameters, Thuerey et al. 2018 also illustrated the im-
portance of data normalization and using dimensionless quantities. Normalizing
the pressure and the velocity substantially reduced the average absolute error in
their experiments.

Musil et al. 2019 used the UNet architecture with 3D convolutions to predict
the steady-state turbulent wind flow of an urban area. They generated a dataset
consisting of 3500 samples representing different sets of buildings with heights,
widths, and depths that are common in real cities. Their main focus was on
developing an interactive tool for wind flow prediction that can be used in urban
development.

Their model showed good generalization abilities, and with the added com-
plexity of three dimensions the neural network was three orders of magnitude
faster than a CFD solver — operating almost in real-time. In addition to the
move to 3D, Musil et al. 2019 also trained the model on the reverse workflow —
predicting building volumes for a desired wind flow.

A different architectural approach was done by Pfaff et al. 2020, who devel-
oped a mesh-based model to predict a wide range of physical systems, including
aerodynamics, structural mechanics, and cloth. Their model is able to predict
a long sequence of a physical system’s behaviour with only a short sequence as
initialization. In addition, the model handles generalization extremely well, pre-
dicting fluid dynamics of more complex shapes than what it had been trained on.
The impressive generalization was due to the use of relative encoding on graphs,
meaning that positional information was invariant to absolute spatial location in
the system.

The architecture of the model was based on Sanchez-Gonzalez et al. 2020, who
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showed that an encode-process-decode architecture performs fluid simulations
well. Each of the steps — encoding, processing, and decoding — consisted of a
graph, allowing the representation of simulation meshes. In addition to training
the model to predict the simulated system’s future dynamics, Pfaff et al. 2020 also
had the model learn the mesh discretization so that the mesh could be changed
at inference. For simulations of Lagrangian systems, i.e. systems where the
simulation nodes may move with the velocity field, the world-space is encoded in
addition to the mesh-space. In the same way that the mesh-space encodes the
simulation mesh, the world-space encodes the dynamic space of the mesh in 3D
space. The world space thus allows for explicit information about interactions,
such as contact and collision.

Using meshes to represent the physical system is, as CNNs, suitable for hard-
ware acceleration which leads to a large improvement in runtime compared to
physical simulations. Pfaff et al. 2020 outperformed the UNet architecture im-
plemented in Thuerey et al. 2018'. For all experiments, a training dataset of 1000
samples, and validation and test datasets of 100 samples each was used. Each
data-sample contained 600 training steps.

Lastly, Hginess et al. 2021 evaluated two state-of-the-art Generative Adver-
sarial Network (GAN) architectures and a UNet architecture on the data-driven
prediction of the velocity field around building geometries. While their main fo-
cus was on the assessment of GANs for predicting urban wind flow, their results
showed that the UNet was able to outperform the two GANs on almost all tasks.
This strongly motivates our use of the UNet architecture in our experiments.

Where Musil et al. 2019 used a neural network supporting three-dimensional
data, Hginess et al. 2021 took a different approach. Their datasets was gener-
ated by simulating the entire 3D velocity field, and then extracting the velocity
magnitude in a slice two meters above the ground. Thus, they could transform
the three-dimensional velocity magnitude at the pedestrian level to an image-
to-image translation task. For our experiments, this simplified solution is not
feasible. Injecting the governing equations of a fluid system into a neural net-
work requires information regarding the changes in pressure and velocity for all
dimensions.

3.2 Hybrid Neural Networks for Fluid Flow

As mentioned in section 2.3.2, using both physics and data in neural networks
to solve nonlinear PDEs gained popularity with the framework formalizing the

Tt is worth remembering that this UNet architecture was not made for predicting long
sequences.
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PINN developed by Raissi et al. 2017. In addition to further research on such
PINNs, we also present the work of another research group with a completely
different approach to injecting physics into a data-driven neural network.

Raissi et al. 2019 expanded on the research presented in Raissi et al. 2017 with
additional examples. For the data-driven discovery of PDEs, one of the additional
examples Raissi et al. 2019 use to demonstrate their framework’s capacity for
solving PDEs is the Navier—Stokes equations. A dense neural network was trained
with the Navier—Stokes equations and boundary conditions in the loss function.
The network learned to output the system’s velocity in z- and y-direction, as
well as the pressure p, from spatio-temporal input z, y, and t. Using 1% of the
total simulated data in a two-dimensional time-dependent system, the network’s
ability to learn from sparsely available data was demonstrated.

Using the framework from Raissi et al. 2019, Cheng and Zhang 2021 de-
veloped Res-PINN — a physics-informed dense neural network that incorporates
skip-connections. When demonstrating the framework’s capacities, solving the
Navier—Stokes equations was once again used as one of the examples. The relevant
equations and boundary conditions were used in the loss function. Compared to a
physics-informed neural network without Resnet blocks, Res-PINN has stronger
predictive abilities. This strongly suggest that using skip-connections improves
the performance on neural networks on the fluid flow task, which motivates our
use of UNet.

Wang et al. 2020 developed a complex neural network, TF-Net, where a spe-
cialized UNet architecture is inspired by hybrid LES-RANS CFD methods. TF-
Net focus on multi-step prediction of the future turbulent flow field of a system,
given an initial flow field. The network consist of two main parts: decomposing
of the velocity field, inspired by hybrid RANS-LES coupling, and a UNet based
encoder-decoder scheme.

The velocity field is decomposed into three parts: the time-averaged mean
flow @, resolved fluctuations w’, and a spatially filtered variable w. The first
part stems from RANS modelling, and the third part from LES modelling. The
second part is present in both RANS and LES. The hybrid CFD approach, using
the velocity decomposition from both RANS and LES, provides better resolving
power than RANS while being less computationally expensive than LES. These
decompositions are created with a spatial filter and a temporal filter. In tradi-
tional CFD, these two filters are pre-defined but Wang et al. 2020 implemented
both filters with neural networks.

The UNet based architecture used in TF-Net has a separate-encoder-shared-
decoder scheme, i.e. there are three encoders that contribute to the latent rep-
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resentation which is the input to one decoder. After decomposing the velocity
field, as described in the previous paragraph, each decomposed part is passed to
their own encoder. Then, the latent vectors from each encoder is combined into
the shared decoder which generates the final prediction of the future flow field.
Like the methods mentioned in section 3.1, TF-Net is also data-driven. The
reason why we consider this work relevant for research into PINNs is that a
model with an explicit physical constraint, Con TF-Net, was evaluated by Wang
et al. 2020. Con TF-Net includes a regularizing loss term, modeling the conti-
nuity equation. This PINN showed improved predictive performance. However,
they found that there was a trade-off between their data-driven metric and their
physics-driven metric. Better performance on the data-driven metric led to a
lower performance on the physics-driven metric, and vice versa. In contrast to
Con TF-Net, we use a UNet that is not engineered specifically towards solving
fluid flow as our neural network architecture. Our goal is to investigate if the
classic principles of deep learning in combination with the restrictions provided
by the physical laws can provide an elegant solution to turbulent flow prediction.

Pawar et al. 2020 takes a different approach in combining deep learning and
physics. Instead of incorporating scientific equations in the loss function, they em-
bed physical flow-parameters and predictions from a simpler simulation method
into a hidden layer in the neural network.

Their method is validated by predicting the lift coefficient around an airfoil,
and comparing the predictions to those from a neural network without additional
physics injected. Both network’s predictions are compared to the true value of the
lift coefficient, obtained from a simulation. The Physics-Guided Neural Network
(PGNN) is both more accurate and has a smaller uncertainty than the black-box
neural network. The uncertainty of the neural networks is calculated by training
many models with different random seeds.

A benefit with our approach — a physics-informed loss term — is that PINNs
are rewarded for generating predictions that adhere to physical equations. A
PGNN, on the other hand, is purely trained using a data-driven loss function.
Therefore, PGNNs decide for themselves how much weight to give the physical
knowledge. Our goal is to approximate values from simulated wind flow. These
values are perfectly described by physical equations, which means that using a
PINN ensures that the physical knowledge is obeyed.

3.3 Unsupervised PINNs

With the emergence of PINNs, some researchers have trained neural networks
using only the physics-informed loss term. We classify these neural networks as
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unsupervised PINNs, as they do not need targets from CFD simulations. The
downside to this approach is that the networks are slow to converge in training
due the large optimization space and the few constraints offered by the physical
equations.

Wandel et al. 2020 use such a purely physics-constrained loss, incorporating
the UNet architecture. But instead of predicting the pressure p and velocity 7,
the network is trained to learn pressure p and the vector potential @ of a system.
Predicting the vector potential for which ¢ = V x @, automatically fulfills the
continuity equation as the divergence of a curl is always zero, i.e.

V-5=V-(Vxa)=0. (3.1)

To force the network to obey physical laws, a loss function that enforces both
the conservation of momentum and the Dirichlet boundary condition is used. The
loss term enforcing the Dirichlet boundary condition had to be given a relatively
large weight to reduce leakage through boundaries.

Using a set of domain geometries, boundary velocities, and initial conditions
for the vector potential and the pressure fields, a set of features are calculated and
fed as their own separate channel to a UNet architecture. The neural network
outputs two channels, predicting the vector potential and the pressure field for
the next timestep.

Training data was subsequently updated by replacing the old vector potential
and pressure fields with the newly predicted ones, continuously providing better
training data for the model. Wandel et al. 2020 argued that re-using geometries
and boundary velocities with new vector potentials and pressure fields is one of
the reasons why the model is able to generalize so well to unseen shapes during
inference. The second reason is because the model is spatially local, allowing it
to learn basic geometric shapes and use this knowledge to predict more complex
shapes.

For comparison, Wandel et al. 2020 also trained a model that directly pre-
dicted the velocity field ¢. Here, they had to include a loss term that enforced the
continuity equation. When training this second model, the loss term modelling
the continuity equation had to be given a high weight to avoid sources and sinks
appearing. The Dirichlet boundary condition was simple to learn for this model,
so it could be given a lower weight. Qualitatively, the model that predicted the
vector potential @ showed better results than the model predicting the flow field
v directly, even though a quantitative analysis showed similar errors.

Moving back to the a less complex UNet architecture, Ma et al. 2021 adapts
the UNet architecture used by Thuerey et al. 2018. They use this UNet for
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physics-driven training for the prediction of steady-state laminar flow. Laminar
flow is in the opposite of the spectrum compared to turbulent flow, and is smooth
and predictable. The input used by Ma et al. 2021 has the dimensions of an image
with four channels, where initial velocities ug and wvg, information about the
object’s geometry G, and the Reynolds number Re each have their own channel.

Their physics-driven CNN, PD-CNN, used the approach of a physics-informed
loss term with the discretized Navier—Stokes equations and boundary conditions
in the loss function. PD-CNN predicts velocities and pressure as images, out-
putting the entire flow field.

Ma et al. 2021 also showed how the training of the neural network could
be accelerated with the inclusion of a data-driven loss term, turning it into a
PINN. While their assessment of this PINN was brief, they showed that using
both the data-driven and the physics-driven loss term accelerated the network
training. However, laminar flow is, as mentioned in section 2.1, a lot simpler than
turbulent flow. Our work attempts to investigate if using a PINN on turbulent
flow leads to similar results, which in turn could motivate the adaption of the
strategies from Ma et al. 2021 to the complex turbulent domain.
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Chapter 4

Methodology

In chapter 3, we saw how deep learning and CFD have been coupled. We pre-
sented research on using neural networks to predict laminar and turbulent flow,
steady-state prediction and the prediction of sequences. While this provides a
wider understanding of the integration of CFD and deep learning, our focus is
on the task of approximating steady-state turbulent flow using the methodology
presented in this chapter.

We will use the UNet architecture to predict the steady-state wind velocity
around building geometries. From chapter 3, we know that translating the CFD
task to an image-to-image translation problem and solving this problem with
UNet has been highly successful. By using the UNet architecture and incorpo-
rating physics knowledge, we investigate the effects of combining deep learning
with traditional physics. In section 4.1 and section 4.2 we describe the UNet
architecture used and how the physical knowledge has been incorporated, respec-
tively.

As our research questions requires the training of several neural networks, we
reduce the three dimensional wind flow prediction problem to a two dimensional
one as done in several of the works presented in chapter 3. This allows us to
generate substantially more training data with numerical CFD methods while still
evaluating the impact of added physics knowledge to a neural network. Using a
two dimensional approximation is the equivalent of modelling the airflow around
infinitely high buildings.

4.1 Neural Network Architecture

We are looking to develop a physics-informed model that is able to approximate
a CFD task more efficiently than a comparable data-driven model. To ensure
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that these two models are comparable, the physics-informed neural network uses
the same architecture as the data-driven neural network, only changing elements
which are strictly necessary to incorporate physics.

The UNet architecture developed by Thuerey et al. 2018 is used, as this has
shown promising results both as a data-driven model and when adapted to a
purely physics-driven model. We present as input to the UNet an image repre-
sentation of the building geometries, and train the model to output the velocity-
components in the z- and y-direction. The desired mapping from geometries to
velocity-components is presented in Figure 4.1.

‘e

Figure 4.1: Mapping from input geometries to target velocity components v,
(top) and v, (bottom).

Originally, Ronneberger et al. 2015 developed the UNet for biomedical image
segmentation. The model has later been used in a number of image-to-image-
translation tasks, due to its high performance on image data from combining
skip-connections and a convolutional autoencoder architecture.

The autoencoder architecture of UNet has a contracting part and an expand-
ing part. There are skip-connections between each corresponding level of the
contracting part and the expanding part, allowing the network to learn residuals.
The UNet architecture used is shown in Figure 4.2. The input has one channel
of size H x W, representing building geometry. The output from the model is
H x W x 2, one channel each for the x- and y-component of the velocity.
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Each level, or convolutional block, consists of an activation function, a convo-
lution operation, and batch normalization. Batch normalization, without dropout,
was shown by Ioffe and Szegedy 2015 to work as a regularization layer in con-
volutional neural networks. The encoder-blocks have Leaky ReLU as activation
functions, and either 4 x 4 2D convolutions or 1 x 1 2D convolutions. The last
layer of the encoder does not have batch normalization. The decoder blocks have
ReLU as the activation function, while the convolutional operation consists of an
upsampling and either 3 x 3 convolutions or 1 x 1 convolutions.

B4x64x 128

Input Output
256x25%6%1 256356 x2
18x128x32 1 128128 %64

Rx32x18

.

I
16x 1625
T
8x8x256 8x8x512
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- v T L 20
Convolution Encoder-block Encoder-block Decoder-block Decoder-block Relu + Feature-wise
4x4) (2x2) (1x1) (Bx3) Transposed Conv. Concatenation

Figure 4.2: The UNet architecture transforms the input image, and then consists
of a series of encoder-blocks and decoder-blocks connected by skip-connections.
The output from the last decoder-block is transformed to have 2 output channels,
one for the x-component of the velocity and one for the y-component.

For each layer in the encoder, the height and width of the image is halved.
The transformation of the input image results in 32 channels, and the number of
channels are increased by a factor of two by the first, third, and fourth layer of
the encoder.

In the decoder, the height and width of the image is doubled. Here, the
number of channels are decreased by a factor of two such that the decoder and
encoder are symmetric. However, the skip-connections between the encoder and
the decoder results in twice as many channels in the decoder as in the encoder.

Using 32 channels for the transformation of the input image results in a UNet
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architecture with 2,329,986 parameters. This relatively small network size was
chosen due to the relatively small size of our datasets, to ensure that the network
is less prone to overfitting.

4.2 Physics-Informed Loss Functions

Inspired by work done with PINNs, as seen in section 3.2, we integrate the con-
tinuity equation into our loss function and name the resulting model VD-UNet
(velocity-divergence-UNet). Additionally, we test how a simpler loss term, re-
quiring very little knowledge of the physical laws describing the system, impacts
the predictions from a UNet model. We name this model GM-UNet (geometry-
masked-UNet). Our baseline is the UNet without any physics-informed loss
terms. Our data-driven loss term is the L1, as Thuerey et al. 2018 showed that
this metric improved accuracy compared with other metrics. The two PINNs and
the baseline are summarized in Table 4.1. All loss terms are given equal weight.

Table 4.1: Neural networks considered in our experiments.

’ Neural network name \ Loss terms
UNet (baseline) L1
VD-UNet L1 and Velocity Divergence
GM-UNet L1 and Geometry Masking

4.2.1 The Continuity Equation as a Loss Term

We model the first of the Navier-Stokes equations, the continuity equation, in
our VD-UNet through an additional loss term. Using the formal definition of a
PINN from section 2.3.2, we approximate the solution v = v(z,y) with a neural
network by requiring

vy, Iy

With (667;” + %”; ) as the velocity divergence at pixel ¢ and N as the total
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number of pixels, the loss term to minimize for an image-representation of the

fluid flow field is
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As calculating the continuity divergence requires predictions of the velocity’s
x- and y-components, 9, and ¥,, we require the neural network to output each
component as a separate channel.

A benefit of modeling the continuity equation, as opposed to the momentum
conservation equation, is that we can inject a physical law into the neural network
without knowing the pressure of the system. For urban wind flow prediction, the
pressure itself is not necessarily of interest.

In equation 4.1, our loss-term is independent of the target images. We have
seen the use of such loss terms in the works of Ma et al. 2021, as well as by Wandel
et al. 2020. However, in our research we observed that the velocity divergence
calculated for the 256 x 256 target images did not obey the continuity equation for
the entire image. This effect is most noticeable close to the building geometries.
This non-zero velocity divergence is shown in Figure 4.3, and is due to the rapid
changes in velocity near the building geometries which the image resolution is
unable to display. Therefore, our framework calculates the velocity divergence
from the target images, and compares this to the divergence of the predicted
velocity from VD-UNet:

N

. 1 ov, Ov ot 0
Ermpicn(0:8) = 5 2. (833 o (G 8y>> oW

i

Here, v, and v, are the target velocity components while 0, and 0, are the
predicted velocity components. We approximate the derivatives numerically, us-
ing PyTorch’s gradient-method. The architecture of VD-UNet with the physics-
guided loss term is shown in Figure 4.4.

4.2.2 Adding a Constraining Mask to the Geometries

A simple constraint for the prediction of wind flow is the following: Inside a
building, the velocity should be zero. We impose a hard constraint on the loss of
GM-UNet to ensure that the neural network does not try to predict the velocity
inside a building, and instead we manually set this velocity to zero. Removing
the need for the neural network to predict the velocity at these pixels should
hopefully allow it to instead focus on other, more interesting areas of the image.
Our loss term for this geometry masking is

| M
Lov = MZ
j=1

where j is an image pixel index corresponding to a pixel which is not part of
a building geometry, and M is the total number of pixels that are not part of a
building geometry.

5 — 5] » (4.3)
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Figure 4.3: The velocity divergence is non-zero close to the building geometries.
The image resolution is unable to capture the rapid changes in velocity in this
area.
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Figure 4.4: The PINN with the velocity divergence as a loss term. The physics-
guided loss term compares how well the output from the neural network obeys
the continuity equation.



Chapter 5

Experiments

In this chapter, the practical aspects of our experiments are presented. We begin
with a description of the datasets used, along with the preprocessing applied
to them. The two subsequent sections present the evaluation metrics used to
compare our model with the baseline, as well as our experimental plan. Finally,
technical details regarding the implementation of the framework is provided.

5.1 Datasets

The experiments were conducted using three data sources, each of which contains
images depicting building geometries and the corresponding velocity components.
For each of the three datasets D; (2 buildings), D2 (4 buildings), and D3 (6
buildings), RANS CFD simulations were used to create D = {(x;,y;)}{~, with
n = 1000 pairs of input and target images. The image generation process is
described in Appendix A. The input images, z;, display building geometries while
the target images, y; contain the steady-state velocity components around the
geometries.

Due to non-convergent simulations', some of the dataset examples had to
be removed. For D;, 3 images had non-convergent velocity fields and thus the
resulting dataset contains n = 997 training examples. For the same reason, Dy
and D3 contains 841 and 845 examples, respectively. We hold out 100 samples
for our validation set and 100 samples for our test set, resulting in maximum
training dataset sizes of 797, 641, and 645 for Dy, Dy and Ds, respectively.

Each input image z; is an element of R7*W*1 where H = W = 1000. Each
dataset D; contains B = 2 X j square geometries representing buildings. The

ISome of the CFD simulations diverged, resulting in target images consisting purely of noise.
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geometries have different offsets (Ax, Ay) from the center, and were allowed to
overlap. The overlapping results in some training examples with less than B
geometries. Some of these images, containing fewer distinct buildings, have more
complex geometries due to semi-overlapping buildings. Overall, D; is the least
complex dataset, followed by Do, and then D3 is the most complex.

Each target image y; is an element of RF>*W>2 with the same H and W
as the input images. These target images depict the simulated velocity compo-
nents resulting from an inlet wind of 1ms~! at the left edge of the image. The
first channel contains the z-component of the velocity, while the second channel
contains the y-component of the velocity.

In Figure 5.1, examples of input images for all three datasets are shown in the
top row. The middle row shows the corresponding velocity components in the
z-direction, and in the bottom row we see the corresponding velocity components
in the y-direction.

Figure 5.1: Examples of z; (top) and the first and second channel of y; (middle
& bottom) for Dy , Dy, and D3. In the examples from Dy and D3, we see
that the geometries are semi-overlapping which leads to more complex building
geometries.
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5.1.1 Preprocessing

All images were resized to 256 x 256 pixels using Torchvision transform’s Resize
class?. Note that previous research has mainly considered images with 128 x 128
pixels, such as the work of Thuerey et al. 2018. The decision to not reduce the
image sizes all the way to 128 x 128 pixels was to include smaller changes in the
velocity components, ensuring that the velocity divergence fulfilled the continuity
equation to a greater extent.

Resizing the images lead to x; no longer having completely binary pixel-values.
Therefore, all input images were binarized using 0.5 as the threshold value for a
pixel being set to 0 or 1. The target images were normalized to have values from
0 to 1.

5.2 Evaluation

The overall goal of our experiments is to evaluate whether or not PINNs are
suitable models for wind flow prediction in urban areas. As mentioned in sec-
tion 2.3.3, there are three computational objectives to consider when evaluating
the performance of a PINN: predictive performance, sample efficiency, and inter-
pretability. We therefore evaluate our PINN with these three criteria.

The three research questions allow us to investigate the computational objec-
tives. The research questions are repeated here for convenience:

1. How does the addition of physics knowledge affect a neural network’s train-
ing process?

2. How does the PINN’s performance differ as the amount of training data
changes?

3. How well can the PINN generalize to a more complex data distribution?

We use one metric for the predictive performance and another for inter-
pretability, both of which will be described in detail shortly. Sample efficiency is
evaluated differently for the three research questions, in a more qualitative way.

Research question 1 is formulated to evalute the predictive performance and
interpretability of the PINN by investigating its stability and convergence during
training. Evaluating the training performance allows us to assess how well the
PINN is able to learn the mapping function describing the dataset. For this
research question, we evaluate sample efficiency by analysing how well the PINN
utilize the training data compared to the UNet.

%https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.
Resize
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For research question 2, we evaluate the models across a range of training
dataset sizes. This tells us both how several PINNs and UNets perform, in terms
of predictive performance and interpretability, and how well they are able to
utilize samples when the amount of available samples differs.

Research question 3 is related to the evaluation of the predictive performance
and interpretability for the more challenging case of generalizing to an unseen
data distribution. If the PINN exhibits improved predictive performance or in-
terpretability, compared to the UNet, this also suggests that the PINN is able to
utilize the samples better than UNet.

5.2.1 Quantitative Evaluation Metrics

To compare the performance of the neural networks to one another, two quanti-
tative metrics are used. The first measures accuracy of the wind flow prediction,
while the second measures the extent to which the neural networks’ predictions
satisfy the continuity equation.

Each of our three datasets are split into a training set, a validation set, and
a test set. The training set is, as the name suggests, used to train each neural
network. The validation set and the test set contain samples that the neural
networks have not seen during training, and thus test how well the neural net-
works generalize to unseen data samples. The validation set is used to evalute
the neural network’s performance during training, while the test set is used to
evaluate the neural network’s performance after training.

Mean Absolute Error

The Mean Absolute Error (MAE), also called the L1 loss, measures the average
absolute distance between a prediction from the neural network and the corre-
sponding target values:

N
MAE = %Z@i . (5.1)
i=1
Here, i is an image pixel index and N is the total number of pixels. The MAE
thus results in one number for each image, and is a metric of accuracy. In the
rest of the thesis, we refer to the MAE as the L1, to avoid additional terminology.
Since L1 is used as our data-driven loss function, the neural networks are trained
to minimize it and it is thus the natural choice for our evaluation.
We thus use the L1 as an evaluation metric in two ways:

e During training we measure the average L1 on the validation sets to assess
training stability and convergence.
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e After training the neural networks, we look at the distributions of the L1
on the test sets to evaluate predictive capabilities.

Velocity Divergence

While L1 is the indicator for the accuracy of the neural networks, the velocity
divergence (VD) is included as a way to evaluate the neural networks’ inter-
pretability. This evaluation tells us if there is more potential for developing deep
learning models that we can trust for predicting physics.

The continuity equation (equation 2.1a) requires the velocity divergence to
be zero. As explained in section 4.2.1, the continuity equation does not always
hold for image-representations of the flow field, depending on the resolution of
the image. Our metric is given by numerical approximation® of equation 4.2,
which to recap is:

N
1
EPhysics(ytargeh ypred) = N Z

i

%—F@y 8x+8y

dv, Oy, (a@z aa,,) ’
i
We use the velocity divergence in the same two ways as the L1, looking at
either the average over the validation set or the distributions of the test set.

5.2.2 Qualitative Evaluation Metrics

As additional evaluation of the predictive performance of the neural networks,
the predictions are compared visually. For the z-component of the velocity, we
compare the output from the neural networks to the target images. In addition,
we display the absolute pixel-wise errors for the predictions of this component, to
provide further understanding of the neural networks performance for different
spatial locations in the image. We chose to focus on the z-component, as the
inlet wind in the CFD simulations is parallel to the z-axis, thereby making v,
the most interesting flow component. To illustrate the velocity field, we display

¥, were |v] =, /vZ + vZ. The velocity field provides a complete comparison of the

predictive performance of the neural networks, as well as implicitly conveying the
y-component of the velocity, v,.

5.3 Experiment Plan

To investigate our hypotheses, as presented in section 1.2, the experiments are
structured into two main parts. The first experiment allows us to determine

3With PyTorch’s gradient-method.
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which physics-informed loss terms to use in the second experiment. The second
experiment is structured to investigate our research questions.

5.3.1 Experiment 1: Evaluating Physics-Informed Losses

We conduct an experiment to determine if the geometry masking loss term, in-
corporated in GM-UNet, should be included in Experiment 2. To learn how each
physics-informed loss term affects the performance of the UNet architecture, we
compare the test loss distributions for the three types of models — baseline UNet,
VD-UNet, and GM-UNet. All three types of models are trained on a range of
dataset sizes using D;, i.e. the dataset where only two square geometries are
included.

The training dataset sizes are increased exponentially, from 10, to 100, to
the maximum of 797 samples. The exponential increase in dataset size lets us
analyze the model’s behaviour for low-resource regions while keeping the number
of models trained to a minimum.

5.3.2 Experiment 2: Evaluating the Final PINN

The final PINN used in this experiment includes the loss term modelling the
continuity equation. Depending on the results from Experiment 1 we may also
include the geometry masking loss term. Thus, this PINN is either identical to
VD-UNet, or it is a combination of both VD-UNet and GM-UNet. Regardless, we
name our final PINN Ph-UNet (Physics-UNet). To investigate the performance
of the models for several fluid systems complexities, we conduct our experiment
on all three datasets, i.e. D; with only 2 square geometries in the flow field,
Ds with 4 square geometries and D3 with 6 square geometries. As mentioned in
section 5.1, these geometries may overlap.

Both types of models, the UNet and the final Ph-UNet, are trained on a
larger number of training dataset sizes than in Experiment 1. The increase in
the number of training dataset sizes is to allow for an in-depth investigation of
the performance of the Ph-UNet. For Dy, D,, and D3, we trained 8, 7 and 7
Ph-UNets, respectively, in addition to the corresponding baseline UNets. The
number of samples used for D; ranged from 97 to 797, increasing in steps of 100
samples. The same step sizes of 100 samples was used for Dy and D3, but here
the minimum was 41 and 45. The minimum training set size of 41 and 45 is
because D5 and D3 only contain 641 and 645 training examples, respectively. As
mentioned in section 5.1, the number of non-convergent CFD simulations were
higher for Dy and Ds.
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Training Performance

To compare the training performance of the Ph-UNet to that of the UNet, we
compare the validation losses of both types of models. While training, we record
the average L1 and VD on the validation set of 100 images. We assess the training
performance using two criteria: stability and convergence.

Performance Across Various Amounts of Training Data

All models are evaluated on the test set from the dataset with which they have
been trained. For instance, the models trained on data from D, will be evaluated
against unseen data from Dy. The L1 and the VD of the Ph-UNets and the UNets
will then be compared to determine if there are differences in their predictive
performance and interpretability that vary with the amount of training data
used. By evaluating the models across training dataset sizes, we can see how
each of them utilizes the training data available. Further, we evaluate how the
complexity of the three datasets affect the results.

Generalization Capabilities

We evaluate the Ph-UNet and the UNet on a more complex and unseen data dis-
tribution to see if Ph-UNet exhibits improved generalization capabilities. Using
the Ph-UNet and the UNet trained on the full available training data from Dy, as
well as the ones trained on the full training set from D5, we evaluate the models
on the test set from Dj3. This assessment again uses both the L1 and the VD as
separate metrics. When assessing the performance measured with the L1, we use
the UNet trained on all training data from D3 as a baseline. When assessing the
performance with the VD, our baseline is the Ph-UNet trained on all training
data from Ds.

5.4 Implementation Details

Due to the large number of artificial intelligence libraries available in Python,
Python was the natural choice for the implementation language. The models
were trained on a computer provided by SINTEF Digital with an Nvidia GeForce
RTX 3090 graphics card. All models were trained with a batch size of 16, and the
number of workers for the dataloader was set to 8 to speed up I/O operations.

Hyperparameters and other implementation details are shown in table 5.1.
Since we have less than 800 training examples, learning rate decay is used as
Thuerey et al. 2018 showed that, for datasets of this size, reducing the learning
rate during training improved the results.
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Table 5.1: Parameters and settings used in training all the neural networks.

] Parameter/setting \ Value \
Epochs 600
Learning rate 0.0006
Optimizer Adam (5, = 0.5, B2 = 0.999)
Validation dataset size 100
Test dataset size 100
Random seed 0

While the code for the experiments and the datasets used is not publicly
available, due to the thesis being in collaboration with a private company, access
to the GitHub repository may be granted by request.



Chapter 6

Results and Discussion

In this chapter, the results from the experiments are presented. First, we briefly
summarise our findings. Then, in section 6.2, we present our findings regard-
ing the use of the geometry masking loss term. In section 6.3, we present the
evaluation on the training stability of the Ph-UNet and the UNet. To visually
convey the predictive performance of the Ph-UNet and the UNet, we provide a
qualitative assessment in section 6.4. In section 6.5 we present our analysis of
the Ph-UNets and the UNets performance across training dataset sizes, and in
section 6.6 we discuss their generalization capabilities when evaluated on unseen
distributions. Lastly, we comment on training and prediction time for the two
types of models.

6.1 Summary

We found that, compared to the UNets, the PINNs converge faster and are more
stable during training in 68.5% of the cases. However, with the amount of training
we have used, both types of models are able to converge to low L1 on both
validation data and test data.

We found no significant differences in the predictive performance of the PINN
compared to the baseline UNet. However, in terms of obeying the continuity
equation, our PINNs outperformed the UNets on statistically significant levels.
In addition, the PINNs showed great potential for predicting flow fields on unseen
data distributions that obey the continuity equation, showing that inclusion of a
physics-informed loss term improves the interpretability of UNet.

The speed-up when using neural networks compared to using CFD simulations
is substantial. Simulating one example using the CFD RANS approach presented
in Appendix A takes approximately 30 seconds. Approximating the velocity with
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a neural network takes approximately 0.09 seconds — over 300 times faster.

6.2 Masking Geometry

Here, the results of Experiment 1 are presented. The experiment was conducted
to determine if including the loss term masking the geometry consistently im-
proves the performance of Ph-UNet. Figure 6.1 shows the distributions of the
test set L1 for UNet, VD-UNet, and GM-UNet, and Figure 6.2 shows the distri-
butions of the test set VD for the three types of models.

As we can see from Figure 6.1 and Figure 6.2, the constraint from adding
the geometry masking loss term does not consistently improve the predictions of
the neural network. For the three sets of training data from D;, with either 10,
100, or 797 samples, there is no clear trend in the variability or the median when
comparing the GM-UNet with the UNet and VD-UNet. In line with Occam’s
razor!, we therefore dismiss the geometry masking loss term. The following
sections present the results from Experiment 2, where we focus on investigating
the VD loss term to understand how modelling some physical behaviour impacts
a model’s predictions.

Test L1 distributions, D1 models
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Figure 6.1: Distributions of test set L1 for UNet, VD-UNet, and GM-UNet, where
D; is used for training and testing.

LA principle that, for machine learning, states that we should prefer simpler models over
complex ones, as long as their performance as similar.
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Test VD distributions, D; models
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Figure 6.2: Distributions of test set VD for UNet, VD-UNet, and GM-UNet,
where D; is used for training and testing.

6.3 Training Stability

The first analysis for Experiment 2 is structured to answer research question 1,
as described in section 5.3.2. Training stability is evaluated from the evolution of
the L1 and the VD during the training of the models. We first present an analysis
of the predictive performance of the models during training by looking at the L1
loss on the validation set. Then, we discuss how the two models compare in terms
of learning the continuity equation by analysing the validation VD.

6.3.1 Learning to Predict Wind

To assess the training behaviour of the Ph-UNet? and the UNet, we present
a qualitative analysis followed by a quantitative analysis. For the qualitative
analysis, we study the evolution of the validation L1 for a selection of models.
For the quantitative analysis, we summarize the validation L1 for all models.

Figure 6.3 shows the validation L1 for three out of the 22 pairs of Ph-UNets
and UNets (left), along with the corresponding sliding window average and stan-
dard deviation (right) using a window size of 50. For the models depicted, Ph-
UNet have smaller sliding window means and standard deviations, which can
be caused by either higher stability or faster convergence. There is no sign of
overfitting, as seen by the non-increasing trend in the validation L1.

We can clearly see from the leftmost plots of Figure 6.3 that the Ph-UNets
have smaller spikes in the validation L1 than the UNets. The Ph-UNets are
thus more stable during training. The spikes influence both the sliding window

2As a result of the findings in Experiment 1, Ph-UNet is equivalent to VD-UNet.
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Evolution of validation L1 for a subset of models
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Figure 6.3: Validation L1 (left) and the corresponding sliding window mean and
standard deviation (right) during training. The size of each training set is shown
in parentheses. Overall, the Ph-UNets appear to be more stable and may exhibit
faster convergence.



6.3. TRAINING STABILITY 45

mean and the sliding window standard deviation. The sliding window mean is
also affected by convergence. It is therefore difficult to determine convergence
by analyzing the sliding window mean. The rightmost plots do indicate that the
Ph-UNets converge faster than the UNets, which we confirm in the upcoming
quantitative analysis.

To quantify the training convergence and stability of all 22 pairs of Ph-UNets
and UNets, we use the median and the median absolute deviation (MAD). Com-
paring the median for the models tells us how well they converge, while the MAD
quantifies how stable they are.

As we can see in Figure 6.4, the Ph-UNets performance and stability is overall
better than the UNets. Training sets where Ph-UNet has a lower median and
MAD than UNet are made darker in the plots, to convey when Ph-UNet performs
better. For a larger version of this figure, refer to Figure C.1 Appendix C.
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Figure 6.4: Median and MAD validation L1 from training for all models, by
dataset. The 8 Ph-UNets and UNets trained on D; are shown in the leftmost
plot, the 7 model pairs trained on D, are in the middle plot, and the 7 model
pairs trained on D3 are to the right.

The Ph-UNets have both a lower median and a lower MAD than the UNets
for 5/8 of the training sets from Djp, corresponding to 62.5% better training
performance and stability. For Da, the Ph-UNets outperform the UNets for 5/7
training sets, or in 71.4% of the cases. The same happens for D3. Averaging for
the three datasets, we see that training with the physics-informed loss function
results in a model that converges faster and is more stable during training in
68.5% of the cases. In practice, this means that one could reduce the training
time when using a Ph-UNet model instead of a UNet. Lastly, we note that for
the largest training set in Dy, using 797 examples, Ph-UNet has a slightly higher
median than UNet but a lower MAD. In this case, the Ph-UNet is thus slower to
converge than the UNet, but more stable.



46 CHAPTER 6. RESULTS AND DISCUSSION

As mentioned in section 3.3, Ma et al. 2021 showed that a PINN was able
to converge faster for the task of predicting laminar flow, compared to an unsu-
pervised physics-driven model. Our data depicts simulations of turbulent flow.
We have shown that a PINN is able to converge faster than a purely data-driven
model for the more complex case of turbulent flow. This suggests that PINNs for
fluid flow prediction is also efficient for turbulent flow.

Causes for Inconsistent Results

We see that in some cases, increasing the training dataset by 100 samples in-
creases the validation L1 for both Ph-UNet and UNet. One example of this is
when moving from 397 to 497 training examples from D;. An explanation for
this increase is that the training dataset contains relatively few samples for some
types of building geometries. Under-represented geometries will cause the neural
networks to have trouble learning the mapping of these geometries, resulting in
a larger validation L1. This pertains to Research Question 3, regarding general-
ization to unseen distributions, which we discuss further in section 6.6.

6.3.2 Learning to Obey Physics

In Figure 6.5 we show the validation VD and the sliding window mean and stan-
dard deviation, again using a window size of 50, for the same models as in Figure
6.3. This indicates that the Ph-UNets are all able to learn the continuity equation
better than the UNets. It is worth noting that also the UNets appear to reduce
the VD when training more. While UNet does not guarantee interpretability, the
close approximation of the targets allows it to fulfill the continuity equation quite
well, as the targets themselves fulfill the continuity equation.

To investigate if the Ph-UNets are consistently better at obeying the continu-
ity equation, we again use the median and the MAD. In Figure 6.63, we show the
validation VD from training all models. The Ph-UNets outperform the UNets in
terms of obeying the continuity equation and exhibit higher stability, shown by
the lower medians and MADs, respectively. Including the physics-informed loss
term thus improves the neural network’s ability to obey the physical law being
modelled.

3In Figure C.2 in Appendix C, an enlarged version of this figure is presented.
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Evolution of validation VD for a subset of models
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Figure 6.5: Validation VD (left) and the corresponding sliding window mean and
standard deviation (right) during training. The size of each training set is shown
in parentheses. While both types of models converge, the Ph-UNets have lower
values all through training and seem to be more stable.
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Summaries of validation VD median = MAD
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Figure 6.6: Median and MAD validation VD from training for all models, by
dataset. The 8 Ph-UNets and UNets trained on D; are shown in the leftmost
plot, the 7 model pairs trained on Ds are in the middle plot, and the 7 model
pairs trained on D3 are to the right.

6.4 Qualitative Assessment

In this section, we present a qualitative analysis to visually convey the predictive
performance of the Ph-UNets and the UNets. We have selected five data examples
from the test set, and display results produced by the models that have been
trained on the maximum amount of training data. Each example is displayed with
three types of visualizations. The first row in each figure shows the z-component
of the velocity, v,,, and the second row shows the corresponding absolute error
for UNet and Ph-UNet. The third row depicts the contours and the streamlines
for the wind field, illustrating v

Generally, the predictions from both Ph-UNet and UNet are of high quality,
as those shown for D; in Figure 6.7. Here, the errors are mainly around the edges
and the corners of the buildings. For urban wind flow prediction, such small errors
are negligible as they are too small to affect pedestrian comfort and safety. With
increasing dataset complexity, i.e. for Dy and Ds, less accurate predictions seem
to occur more often. However, as shown in Figure 6.8 for D3, these predictions
are still impressive. The high performance of both models is in line with them
both having low L1 on the test set, which we shortly will demonstrate is the case.

In some cases, either UNet, Ph-UNet, or both, have more noticeable deviations
from the target. Examples of each of these cases are shown in Figure 6.9-Figure
6.11. The first two of these figures illustrate examples from Dy, and the last
illustrates an example from D3. The last example also highlights differences in
the predictions from Ph-UNet and UNet.
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Figure 6.7: An example from D; where both the UNet and the Ph-UNet provide
excellent estimates. There are slight errors at the building’s edges and corners,
but these are negligible for urban wind flow prediction.
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Models trained on 645 samples of D3
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Figure 6.8: An example from the most complex dataset D3, where occurrences
of non-optimal performance from Ph-UNet and UNet are more frequent than
for D;. For these cases, both types of models still perform quite well. In this
example, particularly the UNet’s prediction lacks accuracy, but the contours and
streamlines also shows that Ph-UNet’s prediction is not perfectly accurate.
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Figure 6.9: For this example, taken from Dy, the UNet’s prediction does not
achieve satisfactory accuracy. UNet’s prediction is particularly inaccurate in the
wake.
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Models trained on 641 samples of D,
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Figure 6.10: An example from Dy where the Ph-UNet’s prediction does not
achieve satisfactory accuracy. The largest issues in Ph-UNets prediction is the
wake.
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Models trained on 645 samples of D3
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Figure 6.11: An example from D3 where both the UNet and the Ph-UNet struggle
to predict the wind flow. The streamlines also show that their output differs from
one another.
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6.5 Performance across Training Dataset Sizes

For the second analysis of Experiment 2, we move our focus away from evaluat-
ing the training process of the models. Instead, to provide answers to research
question 2, we investigate how the fully trained neural networks perform on test
data.

For all 22 model pairs, we test their predictive performance and interpretabil-
ity on a test set of 100 unseen samples from the same dataset D;, ¢ = 1, 2, 3, that
the models were trained on. A common way to evaluate models is using the av-
erage of the evaluation metric over the test samples. We report the distributions
of the test set loss, instead of the average, to retain more information about the
models’ performance on unseen data.

To assess whether or not the differences in the predictive performance of the
Ph-UNets and the UNets are statistically significant, we use the Wilcoxon signed-
rank test introduced in Wilcoxon 1945. The null hypothesis of this test is that
two related samples come from the same distribution. We thus use the Wilcoxon
signed-rank test on the test set predictions from the Ph-UNets and the UNets to
determine the likeliness of H1, i.e. the likeliness that the Ph-UNets and UNets
have learned two different approximations of the desired mapping. We determine
the results to be statistically significant for p-values lower than 0.01.

6.5.1 Predictive Performance

The distributions of the L1 test loss for the Ph-UNets are compared to that of
the corresponding baseline UNets in Figures 6.12—6.14, illustrating the results
for Dy, Ds, and Ds, respectively. A larger version, showing these figures side-
by-side, is shown in Figure C.3 in Appendix C. Statistically significant results
are highlighted with darker outlines of the boxes. We see that for all three
datasets, most training dataset sizes lead to non-significant differences in the test
loss distribution for the Ph-UNet and the UNet. For the most complex dataset,
D3, there might be a trend of Ph-UNet performing better for the three largest
datasets. We return to this topic shortly.

The most interesting result is that, across all three datasets, the distributions
of the L1 are more symmetric for the smallest training set sizes. When more train-
ing data is made available, the distributions quickly become more skewed. This
indicates a lack of convergence for the models trained on the smallest amounts
of images, suggesting that a minimum amount of training data is necessary for
both Ph-UNet and UNet to converge properly.

The amounts of training data needed for the models to converge varies de-
pending on the complexity of the dataset. For the least complex dataset, Dy, we
see from Figure 6.12 that the models are beginning to reach convergence with
only 97 samples in the training set. Figure 6.13 shows that, for Ds, the models
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Figure 6.12: The distributions of the test set L1 for D, comparing Ph-UNet and

UNet for 8 training set sizes.
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Figure 6.13: The distributions of the test set L1 for Dy, comparing Ph-UNet and

UNet for 7 training set sizes.



56 CHAPTER 6. RESULTS AND DISCUSSION

Test L1 distributions for 3 models

0.05
UNet
Ph-UNet
0.04
0.03 4
—
-
0.02 4
=]
0.01
L
0.00 T

45 145 245 345 445 545 645
Number of training examples

Figure 6.14: The distributions of the test set L1 for D3, comparing Ph-UNet and
UNet for 7 training set sizes.

begin to converge with 241 samples in the training set. The increasing complexity
of 4 buildings instead of 2 thus has a noticeable impact on the amount of training
data required. For the most complex dataset, D3, Figure 6.14 shows that the
models seem to begin to converge with around 245 — 345 samples in the training
set.

The relatively large increase in complexity from D; to Dy, compared to that
from Dy to Ds, is in line with the general values of the distributions. The L1
distributions for Dy and D3 have larger variance and and higher values than the
distributions for D;*. It does make sense that the datasets with 4 and 6 buildings
have such an increase in complexity, as the increasing number of buildings allow
for substantially more complicated geometries to form. While the 6-building
dataset, D3, is more complex than the 4-building dataset, D5, the relatively small
increase in complexity from Do to Dj is likely caused by an increased number of
overlapping geometries for the increased number of maximum geometries. When
increasing the number of geometries from 4 to 6, the probability of overlapping
geometries increases. This, in turn, results in more similarities for D3 and Dy
than for Dy and D;.

While the analysis of the convergence and dataset complexity provides insight
into which amounts of training data can be deemed low-resource regions of train-

4This is easier to see from Figure figure C.3.
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ing data, the regions where the models do converge are also interesting. Given
sufficient amounts of training data, both types of neural networks eventually con-
verge on all three datasets. This shows that PINNS, as well as data-driven neural
networks, are viable for turbulent flow prediction in both simple and complex sys-
tems. As the prediction of urban wind is complex, both due to turbulent flow
and due to complex building geometries, this finding encourages the use of our
interpretable PINN for urban wind prediction.

Statistically Significant Differences in Predictive Performance

For some of the training set sizes, Figures 6.12-6.14 convey statistically signif-
icant differences in the test L1 distributions from Ph-UNet compared to UNet.
However, these differences are likely due to fluctuations in the quality of the
models’ learned mapping.

Our qualitative analysis of the validation loss in section 6.3.1 revealed that
both the Ph-UNets and the UNets seemed to converge towards the same L1 value.
In Figure 6.15, we zoom in on the tail of the validation loss for the models trained
on 341 images from D;. It is clear that in this case, for the last 50 epochs of
training, both models converge to a similar value.

L1 of models trained on 341 samples of D,
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Figure 6.15: Validation L1 for Ph-UNet and UNet trained on 341 samples of
D, focusing on the validation L1 for the last 50 epochs. Both types of models
converge towards the same value.
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As we train all models for 600 epochs before evaluating, the state of the Ph-
UNets and UNets at the 600th epoch determines how well they perform on test
data. The fluctuations in the L1 from one epoch to the next are larger than the
average difference in L1 between the two types of models. Therefore, the Ph-UNet
will not consistently outperform the UNet. However, as we have shown Ph-UNet
to be more stable during training, there is an increased probability that Ph-UNet
has a lower L1 at the 600th epoch. The inclusion of our physics-informed loss
term did not improve the predictive capabilities of the neural network, and the
main benefit of this loss term so far is faster convergence and more stable training.

Lack of Improved Predictive Performance

The addition of the physics-informed loss term gives the Ph-UNets an inherent
ability to extract more information from each target image, as these undergo an
explicit transformation in the physics-informed loss term. With more information
available, the Ph-UNets’ predictions should result in lower L1 than the UNets’
predictions. We postulate two explanations for why the Ph-UNet is unable to
outperform UNet in terms of L1.

Firstly, the Ph-UNets and the UNets may focus on predicting different parts
of the image. L1 only measures the average pixel-wise difference. If the Ph-UNet
and the UNet prioritise different regions of the images, the L1 will not reflect
these priorities. In Appendix B, we provide an analysis to determine if there are
differences in the model’s predictions accross three regions of the images. The
three regions are the area around and between the buildings, the wake, and the
rest of the image. The results from the analysis showed that there are no notable
differences between the Ph-UNet’s and the UNet’s performance for these three
regions, compared to that of the full image. The results did however confirm that
the most difficult regions for both models are around and between the buildings,
and the wake area.

The second possible reason is that the neural networks might be large enough,
measured in the number of parameters, and trained long enough, for the UNets
to learn to calculate the VD by itself. By learning this calculation, the UNets
will have the same information as the Ph-UNets have. We saw in Figure 6.5 that,
to some degree, the UNets learn to fulfill the continuity equation during training.
The similar results for the UNets and the Ph-UNets can thus partly be due to
the expressive capabilities of the baseline architecture. Compared to the UNet
architectures used by Thuerey et al. 2018, we have used an architecture where
the number of parameters is in the mid-range. Larger performance differences
for the L1 might occur with smaller neural networks.



6.5. PERFORMANCE ACROSS TRAINING DATASET SIZES

6.5.2 Interpretability

In Figure 6.16 we show a side-by-side comparison of the distributions of the VD
for the three datasets. The details of the VD distributions are less interesting
than those of the LL1. The details of the VD distributions are apparent from a
larger version of Figure 6.16, shown in Figure C.4 in Appendix C. The Wilcoxon
signed-rank test shows that all differences between the test losses from Ph-UNets
predictions and the test losses from UNets predictions are statistically significant.
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Figure 6.16: The distributions of the test VD loss for models trained and tested
on D; (left), Dy (middle), and D3 (right). For all three datasets, the Ph-UNets
are better at obeying the continuity equation than the UNets are.

Figure 6.16 confirm what we saw during training, namely that the Ph-UNets
are better at predicting flow fields that obey the continuity equation. For all
three datasets, the differences in the VD between Ph-UNet and UNet are larger
for smaller amounts of data. In this region of training dataset sizes, UNet is
unable to learn to predict the fluid field well enough for it to also obey the
continuity equation properly. In general, both Ph-UNet and UNet benefit from
more training data when it comes to reducing the VD. For Ds, there are also
larger differences for the larger training datasets. This is likely to be connected
to the performance on the L1. We see that the VD distributions have similar
trends to the L1 distributions, e.g. for 497 training examples from D; where both
distributions increase. As shown in the previous section, the Ph-UNets trained on
the larger amounts of D3 had a low validation L1 at the 600th epoch, compared
to the UNets. Thus, for the larger amounts of training data from Ds, the Ph-
UNets ended their training with a beneficial approximation to the mapping. A
better approximation to the mapping also results in a better approximation of the
VD, as the targets are generated using the continuity equation, resulting in the
improved interpretability for these training sets. Another possible explanation for



60 CHAPTER 6. RESULTS AND DISCUSSION

the increased difference in VD for the largest training dataset sizes from Dj is the
dataset complexity. The increased complexity of D3, compared to the two other
datasets, increases the influence of the physics-informed loss term. Thus, when
the amounts of training data required for the models to converge are available,
Ph-UNet is able to utilize the samples more efficiently for modelling the continuity
equation.

The side-by-side comparison shows that there is an overall increase in the
general level of the VD as the complexity of the datasets increase. This is not
surprising, as neither Ph-UNet or UNet has information regarding momentum
conservation®. Increasing the number of buildings increases the area where the
momentum equation is most pertinent, namely next to the buildings, and thereby
makes it more difficult to produce accurate flow predictions without explicit in-
formation about this equation.

The differences in VD between Ph-UNet and UNet are consistent and sta-
tistically significant. However, the values of the VD are an order of magnitude
smaller than those of the L1. Therefore, the differences in predictions that lead
to these differences in VD does not significantly affect the the L1. An overall goal
is to increase the predictive performance of the neural network, i.e. to reduce the
test L1. However, the improved interpretability exhibited by the PINN convey
the potential of integrating more physical knowledge into a neural network. Inte-
grating additional physics-informed loss terms could affect the neural network’s
predictions enough to improve predictive accuracy.

Recall that one of the models developed in Wang et al. 2020 also had two
loss terms, one data-driven and one that modeled the continuity equation. Both
their models had a complex LES-RANS inspired neural network architecture.
Their PINN was unable to perform well on both L1 and VD, compared to their
purely data-driven model, and instead had to prioritize one of the metrics. It is
therefore quite interesting that our classic deep learning architecture results in
a PINN (Ph-UNet) that is able to match the performance of the corresponding
data-driven model (UNet) on L1 while outperforming the data-driven model on
the VD. This suggests that using a more traditional deep learning architecture
as a base and then guiding it with scientific knowledge is an efficient way of
combining deep learning and fluid dynamics.

6.6 Generalizing to an Unseen Distribution

The third, and final, analysis for Experiment 2 is structured to answer research
question 3. To assess the generalization capabilities on a more complex, unseen
data distribution, we evaluate the models that have been trained on all training

5The second Navier—Stokes equation.
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data from D; or D5 on the test set from D3. D; only includes 2 possibly over-
lapping buildings, while D, includes 4 and D3 includes 6. We thus test how the
neural networks generalize to a higher complexity than what they are trained on.

6.6.1 Predictive Performance

Figure 6.17 shows the L1 distribution on the test set of D3 for UNet and Ph-UNet
trained on Dy, and D,, and the baseline UNet. The UNet and Ph-UNet trained
on the full training set from D; are represented with the two leftmost boxplots,
while the performance of the UNet and Ph-UNet trained on the full training set
from D5 are shown in the middle. The boxplot to the right is the baseline used in
this generalization task, which is the UNet trained on the full training set from
Ds.

L1 distributions: D; & D, = Ds

0.06 UNet
Ph-UNet
0.05 - I Baseline (UNet)
0.04 -
—
-
0.03
0.02 A
—
0.01 -
D1 (797) D> (641) D3 (645)

Dataset and training set size

Figure 6.17: Distributions of L1 for UNet and Ph-UNet trained on all training
data from D;, and for UNet and Ph-UNet trained on all training data from Ds.
All four models are then evaluated on the test set from D3. As a baseline, the
test set L1 for the UNet trained on all training data from D3 is used.

The figure clearly shows that neither the Ph-UNet trained on D; nor the Ph-
UNet trained on D5 are able to reach the same predictive performance as the
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baseline in this case. The models trained on Dy do perform better than those
trained on D;. This difference in performance is unsurprising, as Ds is more
complex and thus more representative of D3 than what D; is. The general lack
of improved predictive performance is unsurprising considering our discussion
in section 6.3.1, where we saw that underrepresented samples in the training
data made it hard for both models to generalize to the validation data. Thus,
generalizing to a completely unseen data distribution should be a challenge for
both models.

The Wilcoxon signed-rank test shows that there are no statistically significant
differences in the predictions from the UNet and Ph-UNet trained on D;, where
the p-value is 0.874. The same holds for the two Ds-models, where the p-value is
0.093. We therefore cannot conclude that the inclusion of a physics-guided loss
term improved the generalization capabilities of the UNet architecture. This is in
line with the results in section 6.5 where we concluded that there are no significant
differences in the predictive performance of the Ph-UNet and the UNet.

6.6.2 Interpretability

In Figure 6.18, we present the VD distributions on the test set of D3 for UNet
and Ph-UNet trained on D;, and Ds, and a baseline Ph-UNet. We compare the
Ph-UNet and UNet trained on all training data from D; (left) and Dy (middle)
and the baseline Ph-UNet trained on all training data from Ds.

As we can see in Figure 6.18, the inclusion of the physics-guided loss terms
allows the models to better predict a fluid flow that adhere to the continuity
equation. The differences in the test VD losses for the predictions from the
UNets and the Ph-UNets are statistically significant. For the models trained on
D1, the p-value is on the order of 1077, while for the models trained on Ds the
p-value is on the order of 1071°. In addition, the Ph-UNet trained on 4 buildings
is able to achieve test losses that approach the baseline’s test losses. The p-value
for the Wilcoxon signed-rank test performed on the test loss distribution from
the Ph-UNet trained on D5 and the test loss distribution of the baseline Ph-UNet
is 0.00091. The two models are thus not likely to have approximated the same
mapping. Even so, the four-building Ph-UNet has generalized its representation
of the VD very well. In general, the inclusion of the physics-informed loss term
allows the neural network to predict flow fields for an unseen data distribution
that better adhere to the continuity equation, while not negatively affecting the
prediction of the fluid flow.
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VD distributions: D; & D, = D3
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Figure 6.18: Distributions of the VD for UNet and Ph-UNet trained on all train-
ing data from D (left) and Dy (middle). All four models are then evaluated on
the test set from D3. As a baseline, the test set VD for the UNet trained on all
training data from Djy is used.

6.7 Training Time and Prediction Time

The computer used for training all 44 models is a shared resource, so there is no
accurate measure of runtime for the training. However, the runtime for all 600
epochs of training for each model was recorded. These runtimes were used to cal-
culate the relative difference in cumulative training time for Ph-UNets compared
to UNets:

Tph-UNets — TUNets

Relative Difference = ) (6.1)

TUths

where Tpp UNets 1S the cummulative training time for all 22 Ph-UNets and
TUNets is the cummulative training time for all 22 UNets. Using Ph-UNet resulted
in a relative increase of 8.1% in the cummulative training time. By utilizing early
stopping®, this increase in training time can be reduced — or even removed — due

SEarly stopping is, as mentioned in section 2.2.5, the process of stopping the training before
all scheduled epochs are concluded.
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to the faster convergence of Ph-UNet.

While the additional calculation of the velocity divergence increases the overall
training time of Ph-UNet, this calculation is not required during inference. Thus,
predicting the wind flow for an example takes approximately 0.09s when using
either Ph-UNet or UNet. For comparison, the corresponding CFD simulation
takes approximately 30s. With the use of our PINN, it is thus possible to generate
physically consistent approximations of wind flow around complex geometries in
a fraction of the time required for CFD simulations.



Chapter 7

Conclusion

As part of an ongoing research project working to utilize deep learning for urban
wind prediction, we have explored how injecting physics into neural networks can
improve the performance of the neural network. With this goal in mind, we have
successfully trained a Physics-Informed Neural Network (PINN) that exhibits
better sample efficiency during training and consistently increased interpretability
compared to a purely data-driven model.

We conclude this thesis with answers to our research questions, posed in sec-
tion 1.2, followed by recommendations for future work. Finally, we include take-
aways from the state of the art that may serve as a basis for general improvements
for using our framework to predict real-life wind flow.

7.1 Concluding the Research Questions

We implemented a physics-informed loss function in the state-of-the-art UNet
architecture, creating a PINN. Through the use of our PINN, we have coupled
elegant deep learning principles with a physical constraint. We explored our
framework on a range of turbulent wind flows — including wind flows of higher
complexities than those explored by the research community. While the under-
lying physics of the system is very complex, our physics loss term only required
the velocity components of the fluid flow around 2D buildings. This is a substan-
tial difference from modelling the second conservation law for fluid flow, which
requires one equation per dimension as well as the pressure of the system.
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7.1.1 RQ1: How Does the Addition of Physics Knowledge
Affect a Neural Network’s Training Process?

We evaluated the training process of a substantial number of PINNs against cor-
responding data-driven models. The addition of the physics loss term yielded
significant training improvements, both in terms of stability and faster conver-
gence. Our analysis thus suggests that the PINN is able to utilize training samples
better, in line with what has been reported by the research community.

7.1.2 RQ2: How Does the PINN’s Performance Differ as
the Amount of Training Data Changes?

With sufficient training, both the fully data-driven model and the PINN were able
to attain similar predictive performance, even when analysing different regions
of the images. Additionally, our PINN was consistently able to better adhere to
the physical law modeled, removing the trade-off between the two metrics which
was reported by Wang et al. 2020. The improvements when using the PINN were
apparent for all training dataset sizes.

The analysis of how training dataset size affects the model’s performance
showed how much data was needed for the models to converge. For the non-
convergent region, our PINN’s improvement in terms of adhering to the physical
law was even higher than in other regions. This indicates that the use of PINNs
is a promising direction for future research into applications with scarce training
resources. However, we also highlight the fact that both the PINN and the data-
driven UNet were able to converge on all three datasets, showing that, in general,
neural networks are viable models for approximating the fluid flow of complex
systems. This finding, in combination with the interpretability of our PINN,
further motivates the use of PINNs for urban wind flow prediction.

7.1.3 RQ3: How Well Can the PINN Generalize to a More
Complex Data Distribution?

On the unseen distribution, our PINN outperformed the data-driven model in
terms of obeying the physical law while maintaining similar predictive perfor-
mance. Our results suggest that the physics-informed loss term is more general-
izable across distributions, compared to the purely data-driven loss term. This
opens for further research in this area, and we believe there is a lot of potential
for improving neural networks’ generalizability on turbulent flow prediction by
using several physics-informed loss terms.

In terms of the datasets, the complexity of the training data impacted the
generalization capabilities. Compared to the UNet, the PINN improved a lot
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more on the Velocity Divergence (VD) when trained on the dataset of medium
complexity than when it was trained on the simplest dataset. However, while our
PINN needed to be trained on data that is somewhat representative of the correct
underlying distribution, the addition of several physics-informed loss terms might
soften this requirement.

7.2 Future Work

Given the modest performance improvements from modeling the continuity equa-
tion in the UNet, there is room for future improvements. We suggest two lines
of research that focus on a tighter coupling of fluid dynamics and deep learning,
and one line of research for increasing the richness of the dataset.

7.2.1 Momentum Conservation

The most obvious area of improvement is to integrate more physics into the
neural network. We have seen that adding one of the Navier—Stokes equations
is beneficial to the neural network’s training, and also consistently increased its
interpretability. We have no reason to expect that including the second Navier—
Stokes equation will not provide similar benefits.

Modeling the second Navier—Stokes equation, the conservation of momentum,
could potentially have an even larger effect than modeling the continuity equation.
The momentum conservation is more extensive in terms of modelling physics,
compared to the continuity equation, explicitly enforcing physical constraints for
each dimension of the system.

In addition to stronger regularization from the added physics constraints,
modeling the momentum conservation requires the pressure of the system. The
downside of this is the need for new datasets. However, including the pressure of
the system provides more information about the fluid flow state and thus could
contribute to improved predictive performance of the network.

As our framework is built in a modular fashion, expanding it to include the
momentum conservation for training, and as metrics, is highly recommended.

7.2.2 Boundary Conditions

The final step for full integration between deep learning and fluid flow is the
addition of boundary conditions. Adding these equations encompasses a complete
description of the fluid flow system in the physics-informed loss terms. Using each
physics loss term as a metric, one could also fully investigate how well the neural
network obeys the physical constraints of the system.
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We guided our PINN towards solutions that obeyed the continuity equation,
even though these solutions might disobey the other physical constraints de-
scribing the system. Guiding a model towards solutions that obey all physical
constraints of the system could improve predictive accuracy in complex scenarios.
Our PINN was able to generalize well in terms of the VD. A physics-informed loss
function that describes the complete system could lead to an overall improvement
of the generalization capabilities of the neural network.

7.2.3 Geometries

While our datasets model geometries that are complex compared to those used
in previous research, where the datasets normally contain 1 — 2 geometries, they
are simplified compared to real-life building geometries. As we are interested in
the wind trajectories on a macroscopic level, some level of simplification is jus-
tified. However, our generalization experiments have highlighted the importance
of representative training data, even for PINNs. It would therefore be interesting
to investigate how well a PINN performs on a dataset containing a wider range
of geometries, such as triangles or circles, as well as combinations of these geome-
tries. It would also be interesting to assess how well a PINN performs on real-life
buildings, using a dataset depicting different areas of a city.

7.3 Towards Urban Wind Prediction with PINNs

In the previous section, we suggested three lines of research as a continuation of
this thesis. There are two additional lines of research that are worth commenting
on, as they are influential to achieving state-of-the-art urban wind flow prediction.
The first line of research is related to the baseline architecture used in the PINN,
while the second concerns moving from two dimensions to three dimensions.

7.3.1 Architectural Elements

Enhancing the baseline architecture is vital for achieving state-of-the-art perfor-
mance on fluid flow, also when using PINNs. In chapter 3, we presented several
architectural elements that might improve on the baseline UNet’s performance,
and thus also on the PINN’s performance.

The model developed by Wandel et al. 2020 could be very beneficial for gener-
alizing to urban wind flow prediction. As mentioned in chapter 3, their spatially
local model was able to train on basic geometric shapes and predict more com-
plex shapes. Applying similar principles to a PINN could enhance the model’s
ability to predict wind flow in cities around the world, as building designs differ
substantially between international cities.
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In Hginess et al. 2021, using attention! improved the performance of Gen-
erative Adversarial Networks (GANs) for predicting fluid flow. In one of these
GANSs, introduced by Isola et al. 2016, UNet architecture was applied. This sug-
gests that enhancing the UNet with attention may further improve the fluid flow
predictions.

7.3.2 Moving to 3D

The most substantial limitation of our PINN in terms of urban wind prediction,
is that we have focused on two-dimensional wind flow. For the real-life three-
dimensional scenario, the wind flow would differ from the two-dimensional case
both for short and tall buildings. As described in Hagbo et al. 2020, the wind flow
around short buildings will change a lot in the z-direction. For tall buildings, a
lot of wind will be dragged down the side of the building and down to the ground,
increasing the wind speed at the pedestrian level.

Using a PINN to predict the real-life wind flow requires a neural network that
supports three-dimensional data. The PINN must be able to output pressure and
velocity for all three dimensions of the fluid flow system. The model developed
by Musil et al. 2019 was a data-driven UNet with 3D convolutions, encouraging
the use of UNet as the base architecture for a PINN in the three-dimensional
domain.

In three dimensions, the PINNs ability to converge faster will be beneficial.
A three-dimensional expansion of the UNet architecture will greatly increase
the number of parameters, so increased training efficiency will be much more
impactful.

While a line of research regarding three-dimensional PINNs is very inter-
esting, one should first determine the impact of including more physics in the
two-dimensional case. Until we can determine how substantial the benefits of
using a PINN instead of a data-driven neural network can be, the complexity of
the neural network architecture should not be increased.

LA technique to make neural networks focus on the most important aspects of the data,
originally used for language models.
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Appendix A

Image Generation Process

The CFD simulations are performed using the commercial CFD software Simcen-
ter STAR-CCM+ from Siemens PLM Software using the finite volume method
on an unstructured grid. All datasets are provided by Nabla Flow.

In some simulation cases, an asymmetrical vortex shedding pattern in the
wake appeared which results in a transient oscillating solution. To remove these
patterns from the dataset, the time-averaged of the velocity field was used to
approximate a time-independent solution.

Each building geometry was automatically generated by random uniform se-
lection of attributes, constrained by the following conditions:

Building length € [5, 25)

Building rotation € [0, 45]

Building placement for x-direction € [—30, 30]

Building placement for y-direction € [—30, 30]

Three datasets were generated, with different number of geometries generated:
D; (2 geometries), Dy (4 geometries), and D3 (6 geometries). The geometries were
allowed to overlap, so the number of buildings represented in a dataset may be less
than the number of geometries generated. Each dataset originally contain 1000
examples of input-target pairs. Input-target pairs where the CFD simulation did
not converge were removed, resulting in the following dataset attributes:

e Dy: 997 examples, maximum 2 buildings
e Dy: 841 examples, maximum 4 buildings

e Dj3: 845 examples, maximum 6 buildings
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Appendix B

Analysis of Image Regions

To determine if there are significant and consistent qualitative differences between
the Ph-UNets and the UNets predictions, we perform a quantitative analysis on
different regions of each image in the test set. Pfaff et al. 2020 showed that
convolutional neural networks undersamples the area around the obstacle and the
wake region. For fluid flow prediction, these two areas are the most interesting
regions as this is where the changes in velocity are highest. To determine if
inclusion of the physics-informed loss term mitigates this undersampling effect,
we compare how UNet and Ph-UNet perform when evaluated for three different
parts of the image:

e Building: The area of the buildings and the surrounding 15 pixels in each
direction.

e Wake: The area to the right of the building-area, with an additional
padding of 5 pixels to ensure the wake is contained in this region.

e Other: All regions that are not included in the Building-region or the
Wake-region.

An example showing the three regions for the x-channel of a target image is
shown in Figure B.1.

7
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Figure B.1: Example of how the target images are split into regions for further
evaluation, illustrated here with the channel containing the z-component of the
velocity. The green frame encompasses the Building region, and the blue frame
encompasses the Wake region. The remaining pixels lie in the Other region.

The L1 between the target image and the predicted image is then computed
for each of these regions separately. The distributions of the L1 test loss for all
three regions, as well as for the full image, are shown in Figure B.2 for Dy, in
Figure B.3 for Dy, and in Figure B.4 for Ds. Statistically significant differences
between the test loss for Ph-UNet and UNet have a darker border.

For all three datasets, the three areas follow a similar distribution to what we
saw when calculating the L1 for the entire image. The Building area might have
slightly more similar distributions when comparing the Ph-UNets and the UNets.
Overall, there appear to be no significant improvement in the predictive perfor-
mance for any of the three image regions when including the physics-informed
loss-component.
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Test L1 distributions by image region, D; models
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Figure B.2: Test L1 distribution for models trained on D;. When evaluating
interesting regions separately, the Ph-UNets and UNets do not differ substantially
in their predictions of the flow field.
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Test L1 distributions by image region, D, models
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Figure B.3: Test L1 distribution for models trained on D;. When evaluating
interesting regions separately, the Ph-UNets and UNets do not differ substantially
in their predictions of the flow field.
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Test L1 distributions by image region, D3 models
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Figure B.4: Test L1 distribution for models trained on D3. When evaluating
interesting regions separately, the Ph-UNets and UNets do not differ substantially
in their predictions of the flow field.
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Appendix C

Large Figures

We include scaled-up version of some result figures, to convey additional details.
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Figure C.1: Enlarged version of Figure 6.4 showing the median and MAD validation L1 from training for all models,
by dataset. The 8 Ph-UNets and UNets trained on D; are shown in the leftmost plot, the 7 pairs of models trained
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on Dy are in the middle plot, and the 7 pairs of models trained on D3 are to the right.
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Figure C.3: Side-by-side comparison of Figure 6.12 - 6.14. The distributions of the test set L1 for D; (left) are
generally lower than those for Dy (middle) and Ds (right). This suggests that the transition from 2 to 4 buildings
adds more complexity than the transition from 4 to 6 buildings.
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