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Abstract 
Hybrid modelling methods consolidate first-principles models and machine learning 

algorithms such as Artificial Neural Networks (ANNs). This combination is claimed to 

have superior modelling capabilities while preserving the physics rigorousness of the 

first-principles model. The open literature available hybrid modelling methods usually 

set up a structure where the mechanistic model and the ANN exchange information 

but still are independent models. Therefore, the available hybrid modelling methods 

do not exploit important features of the ANN training algorithms. 

This thesis introduces a new hybrid modelling paradigm called Neural Network 

Programming (NNP), in order to maximize the potential of the ANN training algorithms. 

NNP utilizes first-principle-based equations and structural analysis to formulate a 

physically coherent Algorithmically Structured Neural Network (ASNN). The key 

difference between a typical fully connected ANN and an ASNN is that the former 

utilizes generic architectures that do not represent the unique modelled phenomena 

while an ASNN has a priori knowledge that is transcribed in its architecture. NNP 

enables chemical engineers to comprehend and shape the ANN architecture 

according to their needs, instead of borrowing generic neural network architectures. 

The first section of this thesis presents applications of the NNP method to a diverse 

chemical engineering subdisciplines with emphasis on equilibrium thermodynamics. 

Four main points are made regarding the integration of thermodynamics and ANNs: 

(1) it is demonstrated that basic principles such as the Gibbs’ phase rule is paramount 

to formulate an appropriate Vapor-Liquid Equilibrium (VLE) model, (2) the typical fully 

connected neural networks cannot be thermodynamically consistent for VLE 

modelling. Hence, the importance of analyzing the neural network structure for 
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achieving thermodynamic consistency is stressed, (3) it is shown that NNP can be 

applied to formulate thermodynamically consistent models by transcribing the Wilson 

and NRTL to the architecture of an ASNN, and (4) the formulation of thermodynamic 

functions that exploit the universal approximator theorem is proposed. In particular, 

an activity coefficient model that overrides the need of performing chemical 

equilibrium calculations is suggested. 

The second section presents a simulation framework and algorithmic improvements 

for the techno-economic evaluation of solvent-based acid gas treating technologies. 

Specifically, processes involving aqueous amines and organic solvents for biogas 

upgrading and CO2 capture. Lastly, ideas and concepts for the implementation of 

solvent screening simulation frameworks based on ANN-driven algorithms is 

discussed.  
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Chapter 1.  

Introduction 

 

A summary of the history and evolution of AI and ANNs in the past 80 

years is first presented in this chapter. The modelling potential of ANNs 

as well as their challenges of being physically coherent are discussed. 

After the background, this chapter also states the motivation, objective, 

hypothesis, and an outline of the work that comprises this thesis.  
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1.1. Background 

1.1.1. Artificial intelligence and chemical engineering 

The importance of Artificial Intelligence (AI) in today’s world is unquantifiable and 

unquestionable. AI is critical in high-tech projects such as in the development of self-

driving planetary rovers or for trivial tasks such as the recommendation system in the 

Steam store. The development and evolution AI since its conception is shown in 

Figure 1.1. Additionally, milestones towards a successful integration of AI and 

chemical engineering are highlighted in green in Figure 1.1. 

The history of AI started with the notion that “machines think”, idea envisioned by Alan 

Turing in 1950 [1]. He proposed that a machine can be deemed as intelligent if its 

behavior is comparable to that of a human. However, eight decades later, the AI 

definition has morphed, and it is dependent on the context and environment in which 

the AI is implemented. 

An interesting and particularly useful subset of AI is Machine Learning (ML). ML is a 

set of algorithms that utilize advanced computational methods to make inferences 

about datasets. Artificial Neural Networks (ANNs) are a prominent subset of ML 

algorithms that have the flexibility to be adapted to a wide variety of problems. ANNs 

can be applied for regressing data, analyze uncertainty, diagnose faults, classify data, 

image recognition, or even perform complex decisions based on a multiagent scheme 

and beat the best chess and videogame players in the world. Because of this and 

extensive media coverage, ANNs have surfaced as a promising tool for chemical 

engineering modelling. 
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Despite the fact that ANNs are a subset of AI, the history of ANNs starts prior to Alan 

Turing’s work. This is because McCulloch and Pitts [2] formulated the first artificial 

neuron model for applications in neuroscience rather than for computer science. The 

goal of their model was to replicate the process that occurs in human brains. The 

McCulloch and Pitts neuron (MCN) model takes an input signal, processes the 

information with a linear combination and a decision function, and finally transmits the 

output to the user. MCN is a binary model that utilizes thresholding logic. Hence, it 

only accepts binary inputs, provides binary outputs, and uses a tunable thresholding 

parameter instead of individually weighting the inputs. 

Regardless of its limitations, the MCN model served as basis for the formulation of 

better alternatives based on a similar philosophy. A remarkable improvement of the 

MC model is the single layer perceptron (SLP) proposed by Rosenblatt in 1957 [3,4] 

(an illustration of an SLP is shown in Figure 1.2 a)). In this model, the SLP receives 

an input signal, performs a non-linear transformation of the linear combination of the 

inputs, and finally provides the output to the user. As opposed to the MCN, the SLP 

accepts any real input, can perform both Boolean and non-Boolean predictions, and 

weights the inputs.  

The future of neuron-based models seemed promising until 1969 when Minsky and 

Papert [5] showed that a SLP was incapable of learning the XOR operation. This is 

due to the fact that SLP can only converge on linearly separated data. This discovery 

began what is known as the dark age in the history of neuron-based AI technology 

since other options could handle this problem. Thus, the interest in neural networks 

and their corresponding funding waned [6]. 
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Figure 1.2. Examples of the artificial neural network architectures. 

The renaissance of the perceptron-based technology began with the proposal of 

multilayer perceptrons (MLP) by Rumelhart, Hinton and Williams in 1986 [7]. 

Nowadays the models that utilize MLP as the basic building block are known as ANNs 

(e.g., ANNs are shown in Figure 1.2 b) and Figure 1.2 c)). They suggested using 

sequentially connected perceptron layers whose weights were trained with a 

backpropagation algorithm in order to approximate different mathematical functions. 

Each layer in the MLP processes the information in the same fashion as the SLP 

proposed by Rosenblatt. With this new idea, ANNs finally managed to solve the XOR 

problem that haunted the research field for decades. 

One of the most important features of the MLP approach is that it introduced the 

backpropagation algorithm for optimizing the MLP weights (fitting parameters). Even 

though the backpropagation algorithm was proposed in several instances in the 1960s 

[8], it was Werbos in 1974 [9,10] who first suggested its application to neural networks. 

Independently of who proposed this algorithm first, the integration of backpropagation 

and MLP changed ANNs forever. 

Although the work by Hinton suggested that utilizing ANNs could solve a broad set of 

problems, it was until 1989 when it was demonstrated that ANNs can serve as 
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universal approximators [11–13]. These papers demonstrated that by 

superpositioning sigmoid functions, it is possible to approximate any function. Later, 

in 1991, Hornik showed that the universal approximation feature was due to the 

architecture of the neural network and not the choice of nonlinear function [14]. 

Regardless of the mathematical implications, the fact that an ANN is capable of 

approximating any mathematical function independently of its complexity created 

countless areas of opportunity. Several research fields, like chemical engineering, 

found the perceptron technology as an enhanced modelling alternative. In fact, the 

first application of ANNs to a chemical engineering problem was done just a couple of 

years later after the conception of the MLP by Hoskins and Himmelblau [15]. They 

utilized an ANN approach for fault detection and diagnosis on a series of continuously 

stirred tank reactors. The impact of ANNs has been so significant in chemical 

engineering that there are more than 15,000 peer-reviewed publications combining 

these two topics (SCOPUS database as of 02/2022). 

By definition, utilizing an ANN to find numerical relationships in a dataset is a merely 

empirical modelling approach. This implies that there is no certainty that basic 

concepts and constraints are fulfilled within the ANN. In order to address this, the 

concept of hybrid modelling was proposed by Psichogios et al. in 1992 [16]. Hybrid 

models are composed of a mechanistic model based on first principles equations and 

an ANN. Therefore, they leverage ANNs as to substitute the empirical parameters< 

of mechanistic models. For example, instead of utilizing the Antoine’s equation 

parametrization, the model uses an ANN. Hybrid models allow the user to exploit the 

multidimensional and universal approximator properties of the ANN. This allows 

finding better correlations between the model inputs and outputs and while still 

complying with physics laws and constraints. The application of hybrid modelling has 
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been quite successful and has inspired more than 1000 research documents in 

chemical engineering alone. Examples of their application have been observed in 

process monitoring, process control, process optimization, feasibility analysis, model-

plant mismatch analysis, environmental science, predictive maintenance, virtual flow 

metering, among others [17,18]. Almost two decades later, the Physics-Informed 

Neural Networks (PINNs) were proposed by Raissi et al. in 2018 [19]. PINNs are a 

deep learning framework for solving problems that involve partial differential 

equations. PINNs are trained by summing two errors namely, the neural network error 

and the error of the mechanistic model function. PINNs have been quite successful in 

several research fields for instance in fluid dynamics, plasma physics or biophysics 

[20]. 

By looking at Figure 1.1, the reader might ask why it took so long from envisioning of 

MLP (1986), to the deep learning revolution (2006)? The simplest answer is related 

to the computer processing capabilities and the availability of “big data”. However, the 

advent of deep learning came with the greedy layer-wise training algorithm developed 

for training Deep Neural Networks [21,22]. Improved algorithms, together with more 

computational power created the best scenario for the exploration and improvement 

of DNN architectures aimed at solving different problems.  

Image processing is one of the research fields that has been benefitted the most with 

Deep Learning. Some of the most remarkable projects in image recognition are 

ImageNet (AlexNet) [23] and GoogLeNet (Inception) [24], which provided enhanced 

accuracy than previous systems. Another field that has fascinated computer scientists 

for decades is the deployment of AIs that are smarter than humans (according to 

Turing’s definition of machine intelligence). Although not based on ANN technology, 

one of the most memorable AIs is “Deep Blue”, that managed to beat the current 
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chess world champion in 1997, Gary Kasparov. Eventually, AI enthusiasts (DeepMind 

research group) have developed outstanding AIs for classical games such as Go 

(2016) or chess (2017) [25,26] and even multi-agent schemes for playing real-time 

strategy videogames such as StarCraft II (2018) [27]. More recently, in 2018 the 

DeepMind team deployed the AlphaFold model which is capable of accurately solving 

protein structure problems [28].  

Considering these fantastic achievements in AI and computer science, there is no 

denying that sooner than later chemical engineering will be transformed by machine 

and deep learning. 

1.1.2. Applicability of ANNs to chemical engineering 

As usual with new promising technologies, there are skeptics and naysayers (like me 

:v). This is unsurprising, especially given that it is the first time since the scientific 

revolution that a technology surpasses the understanding of its makers. To my 

knowledge, Machine/Deep Learning is the only computer-based technology that has 

a specialized research field focused on understanding how and why they work [29]. 

One of the most incomprehensible characteristics about ANNs is the unpredictability 

and highly entropic nature of the algorithm. In other words, if the same data and ANN 

model are used, different fitting parameters will be obtained. Despite this, in most 

cases, all the models have competitive and comparable prediction capabilities.  

From a more fundamental and conservative viewpoint, perceptron-based models lack 

the rigorousness and finesse of first-principles models. In this context, the phrase 

commonly attributed to J.S. Denker, “neural networks are the second-best way to do 

almost anything” [30] suggests that mechanistic modelling is a better alternative.  
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It is true that due to these factors, ANNs do not seem too promising for understanding 

physics phenomena in detail. However, ANN-based models are exceptional at 

pointing out correlations between the inputs and outputs due to their universal 

approximator feature. This characteristic together with the entropic nature of ANN 

modelling makes them ideal for temporarily replacing highly entropic sections of 

mechanistic models. The highly entropic sections are usually empirical parameters or 

correlations. They are utilized to compensate for knowledge gaps (or ignorance 

according to Jaynes’ definition of entropy [31]).  

The word temporarily was highlighted because, from a rigorous perspective, an 

accurate model without fitting parameters would be the ultimate goal. Yet, the truth is 

that developing such models either would take an unfeasible amount of time or is 

straightforward impossible.  

Considering the above discussion, ANNs have high potential to be used for 

temporarily substituting unknown functions. Thus, speeding up the implementation of 

simulation and optimization frameworks without the need of describing every 

phenomenological detail. 

1.2. Motivation 

The universal approximation feature is one of the most important features of ANNs in 

order to be used for modelling physics phenomena. Unfortunately, it is also its main 

drawback. The reason for this is that, as the name of the feature implies, it is an 

approximator that is being used for exact sciences. Based alone on the feature name, 

discrepancies between the physics concepts and the ANN model are expected. Thus, 

the models cannot be considered to be “correct”. But how can a model be defined as 

correct? A famous answer to this question was given by George E.P. Box who 
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declared “all models are wrong, some are useful”. Although from a philosophical point 

of view, this statement is plausible, using this definition of correct does not move 

forward this discussion. 

The typical method for assessing the correctness of ANN-based models is by using a 

“consequential” approach. This indicates that it only evaluates its validity based on 

statistical methods (e.g., a performance function). However, I find this approach to be 

shallow because it disregards first principles concepts.  

It must not be ignored that most physics laws are mathematized human interpretations 

of nature. In many cases physics laws are used in the data acquisition, e.g., the Beer-

Lambert law is used to relate the energy absorbed by a solution and its concentration. 

Therefore, one cannot just ignore physics laws in the development of the models since 

the training data comes from the application of physics laws in the first place. I 

consider that in order for an ANN model to be correct, it should comply with the physics 

framework it is approximating. The priority of this “deontological” approach aims at 

preserving the physics coherence. Nonetheless, it is evident that the usefulness of a 

model depends on whether it can make accurate predictions or not. Therefore, the 

model performance is equally important and should be considered as equally 

important. 

It should be commented that the universal approximation feature of ANNs is quite 

impressive. In fact, the discrepancy that can exist between the physics laws and 

constraints can be “reasonably small”. While this is not a problem for several chemical 

engineering subfields like process control, process monitoring or feasibility analysis, 

the same cannot be said for more fundamental disciplines like kinetics, transport 

phenomena or thermodynamics. Of particular interest is equilibrium thermodynamics 

since it is the foundation of most process models. The intrinsic thermodynamic 
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relationships that exist between the different variables provide valuable information 

(e.g., predicting the heat of vaporization from the saturation pressure through the 

Clausius-Clapeyron equation). Thus, if the model is not thermodynamically consistent, 

then it is not appropriate to utilize these relationships  

Due to the recent developments, it is reasonable to assume that in the coming 

decades machine learning algorithms will become a dominant modelling approach. 

Therefore, the motivation of this work is to propose methods and algorithms that allow 

the integration of artificial neural networks and scientific knowledge. This, with the 

purpose of making better use of available data, improve hybrid modelling, and lifting 

up the skepticism towards ANNs so that they can be finally accepted as a reliable 

modelling tool. 

1.3. Hypothesis and objective 

The structural characteristics of the ANNs and the universal approximation theorem 

suggest that a large set of mathematical functions can be represented with an ANN. 

Considering this, the hypothesis of this work is formulated as: “Every physics law can 

be transcribed into an Artificial Neural Network with an appropriate architecture and 

parametrization”. Since testing this hypothesis for every physics problem is time-wise 

unfeasible, the scope of this thesis is narrowed to deterministic physics laws 

expressed with algebraic equations. This work emphasizes on equilibrium 

thermodynamics and process modelling. Equilibrium thermodynamics is particularly 

interesting since it is one of the most constrained subdisciplines. Thus, it is expected 

that if the methods proposed can formulate physically coherent models, there are 

reasonable chances that they will be useful in several subdisciplines. The physics-
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coherence concept describes whether a model follows fundamental physics 

relationships or not. This term is akin to the thermodynamic consistency concept.  

Considering this, the thesis objective is to: “Formulate algorithms based on ANNs for 

automating and speeding-up the development of physically coherent chemical 

engineering models”. 

1.4. Thesis outline 

This thesis is divided in three sections, namely introduction, results, and concluding 

remarks. The first section (Chapter 1) discusses the possibilities and challenges of 

utilizing ANNs for chemical engineering problems. Chapters 2 – 7 include the results 

obtained during the PhD timeframe which in turn are subdivided in two topics. The 

first set of topics (chapters 2 – 5) involves the implementation of ANN-based hybrid 

modelling algorithms for chemical engineering and equilibrium thermodynamics. The 

second set of topics (chapters 6 - 7) is about process analysis and unit operation 

design algorithms. Although the methods presented in this thesis are applicable to a 

broad set of chemical engineering problems, this work focuses focus on CO2 capture 

processes. This is because of environmental concerns and scientific curiosity. 

Moreover, the high complexity of the absorption phenomenon makes it an excellent 

candidate to highlight the advantages of the proposed algorithms. Chapter 8 

discusses the applicability of the methods to help in addressing some of the 

challenges in modelling gas-treating processes. Additionally, it presents the 

conclusions of this thesis.  
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Chapter 2. 

VLE modelling with relaxed 

constraints 

This is the first work related to the integration of thermodynamic 

concepts into ANN modelling. The importance of considering the 

degrees of freedom (Gibbs’ phase rule) in thermodynamic systems is 

emphasized. 
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2.1. Abstract 

An easy-to-implement methodology to develop accurate, fast and thermodynamically 

consistent surrogate machine learning (ML) models for multicomponent phase 

equilibria is proposed. The methodology is successfully applied to predict the VLE 

behavior of a mixture containing CO2, MEA, and H2O. The accuracy of the surrogate 

model predictions of VLE for this system is found to be satisfactory as the results 

provide an average absolute relative difference of 0.50 % compared to the estimates 

obtained with a rigorous thermodynamic model (eNRTL + Peng-Robinson). It is 

demonstrated that the integration of Gibbs phase rule and physical constraints into 

the development of the ML models is necessary, as it ensures that the models comply 

with fundamental thermodynamic relationships. Finally, it is shown that the speed of 

ML based surrogate models can be ~10 times faster than interpolation methods and 

~1000 times faster than rigorous VLE calculations. 
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2.2. Introduction 

2.2.1. Motivation and Literature Review 

The emission of anthropogenic greenhouse gases has been one of the main subjects 

of environmental concerns over the past decades. Development of new, clean and 

enhanced industrial processes has become a must in order to reach international and 

national sustainability goals. One of the most promising approaches to operate 

cleaner industrial processes is the implementation of CO2 capture and storage. It has 

been labeled as one of the key technologies that will assist in achieving a global 

temperature increment of no more than 1.5 °C by the end of 2030 (IPCC, 2018). Albeit 

there are several other technologies for CO2 capture, chemical absorption of CO2 with 

aqueous amines has been, and seems to be in the foreseeable future, the most 

commercially ready and competitive technology [2,3]. The high energy demand 

associated with the CO2 capture process is its main challenge [4].  

Extensive experimental and modelling research has been conducted aiming to find a 

system with favorable vapor-liquid equilibrium (VLE) behavior that will lead to a more 

energetically efficient process. Modelling of VLE is of great importance for these 

efforts. The knowledge of phase behavior is necessary in order to assess the solvent 

performance in CO2 capture processes. Traditionally, the VLE models are divided into 

two categories: semi-empirical models (also called rigorous models) and empirical 

models, each with their respective advantages and disadvantages.  
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In this work, an alternative approach to VLE modeling is proposed which attempts to 

merge all the main features of both categories.  

The main objectives of this work are: 

• To present an easy-to-implement method based on machine learning 

technology that combines the robustness of rigorous models with the 

computational efficiency of an empirical model. 

• Demonstrate that machine learning models can properly predict the 

dependencies between the input and output variables if a proper analysis of 

the thermodynamic variables is performed. 

• Give an insight into how to select properly the input and the output variables 

of a machine learning model so that it is thermodynamically consistent. 

Rigorous models may use different mathematical representations like an equation of 

state for both phases (phi-phi formulation) or excess Gibbs energy model for liquid 

phase and equation of state for the gas phase (gamma-phi formulation). These 

models make use of governing thermodynamic equations (e.g. Henry’s law, Raoult’s 

law), semi-theoretical models (e.g. excess Gibbs energy models for aqueous 

electrolytic solutions [5–7]) together with empirically fitted parameters. Some 

successful applications of gamma-phi models for the prediction of the CO2 solubility 

in several aqueous amines are: 2-aminoethan-1-ol (MEA) [8], piperazine (PZ) and 2-

amino-2-methylpropan-1-ol (AMP) [9], 2-piperidineethanol (PE) [10], AMP [11] to 

name a few. 

Although semi-empirical models have proven to give accurate predictions of VLE, the 

difficulty of developing a thermodynamic model for each CO2 aqueous amine solvent 

and the high computational overhead of these computationally complex models have 

led to the development of empirical models.  
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A simple empirical VLE model that describes the CO2 solubility in primary, secondary 

and tertiary amines was proposed by [12]. This model was developed by summing up 

all the reactions into a single overall reaction and lumping the equilibrium constant 

with the CO2 physical solubility coefficient to obtain the CO2 partial pressure. Another 

empirical approach was taken by [13–16]  where empirical correlations that relate the 

molar compositions and the temperature with the CO2 partial pressure were 

formulated. All these empirical correlations are computationally inexpensive due to 

their simplicity when compared to gamma-phi models. The main drawback of these 

empirical models is their low dimensionality, which translates into their limited validity 

range. Hence, the mathematical functions are different among different systems.  

Machine learning has been used as an alternative to create empirical models. Several 

studies in the literature have used this approach to estimate the VLE of CO2 capture 

related thermodynamic systems. These studies have mostly focused on the 

estimation of CO2 solubility in different liquid solvents: triisopropanolamine – MEA 

aqueous solutions [17], various alkanol systems [18], several aqueous amine and 

diamine systems containing MEA, MDEA, PZ, 2-amino-2-methyl-1-propanol (AMP) 

[19–21], pure water [22], mixtures of ethanol and ionic liquids [23], aqueous PZ 

solutions [24], piperazine (PZ) and ionic liquids [25], aqueous sodium salt of L-

phenylalanine [26], aqueous potassium lysinate mixed with MEA [27], among others. 

In general, the authors of these models claim that their machine learning models have 

better prediction capabilities than the semi-empirical models. This is expected, since 

these multidimensional models were fitted to a limited range of operating conditions. 

However, that is unfortunately also the reason why they cannot be extrapolated. In 

addition, due to their empirical nature and to the fact that they are constrained to an 

univariable output, the reported models are not capable of predicting other important 
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thermodynamic quantities such as the CO2 heat of absorption or speciation in the 

liquid phase.  

Because of these major limitations, a direct application of these models into a process 

simulation framework is not practical. Besides, in the context of CO2 absorption into 

aqueous amine systems, the molar compositions of all the ionic species and the 

physical solubility of CO2 are needed for the evaluation of kinetic and mass transfer 

rate expressions. Even though the CO2-MEA-H2O mixture is the most studied amine 

system, the available data alone is not enough to create an accurate machine learning 

model that will estimate the VLE behavior of all thermodynamic (e.g., liquid or vapor 

molar fractions) variables over a broad range of operating conditions. 

2.2.2. What is Machine Learning? 

Machine learning has become popular over the past years in both industrial and 

research environments. The sudden increase in popularity is due to the fast 

improvement of the technical capabilities of current-day computers. Machine learning 

is a computational modelling tool for data management that enables the classification, 

pattern recognition, clustering and data prediction [28]. Machine learning is closely 

related to artificial intelligence, hence, it aims at implementing intelligent agents that 

are capable of mimicking the cognitive functions of a biological brain in order to learn 

or solve complex problems [29].  

One of the most prominent and notable methods of machine learning is artificial neural 

networks (ANN), which were first conceptualized by McCulloch and Pitts several 

decades ago [30]. An ANN can be defined as a nonlinear vector of functions (Ω) that 

needs a vector of input variables (𝛸) and a set of weight parameters (𝜔) in order to 

estimate a vector of output variables �̂� [31].  
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In general, an ANN has the form: 

�̂� = 𝛺(𝛸;𝜔) (2.1) 

Due to the high dimensional nature of ANN, any set of experimental or observed 

values (𝛶𝑒) corresponding to a certain set of experimental input values (𝑋𝑒) can be 

approximated using Eq. (2.1) as long as an appropriate 𝜔 is used.  

The process of obtaining 𝜔 that, together with 𝛸𝑒, allows an estimation of the predicted 

output �̂� which numerically resembles the experimental values 𝛶𝑒 is called ANN 

training. This process is based on the biological analogy on how a person is trained 

to perform a task correctly through a feedback procedure. Following this scheme, a 

person performs a task and receives feedback on the task performance in order to 

improve the result. This process goes on repeatedly until the person performs the task 

well enough to meet a standard.  Following this analogy, the ANN is trained by utilizing 

a loss function (ℒ) that evaluates its performance by comparing the experimental 

values 𝛶𝑒 and the predicted output �̂�: 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ℒ(�̂�, 𝛶𝑒) (2.2) 

The loss function indicates the total error of the predicted values with respect to the 

observed values. 

Figure 2.1 illustrates the training process of a feedforward neural network (FFNN) that 

has 3 input values, 4 neurons in the hidden layer and that estimates 2 values in the 

output layer. The FFNN inside the grey square in Figure 2.1 and is said to be a 

feedforward propagation model because the information flows only in one direction. 

First, the input vector 𝛸𝑒 is transformed to calculate the hidden layer vector 𝑍 using 
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an activation function (e.g. an hyperbolic function or sigmoid function) and 2 subsets 

of the weight parameter vector (𝜔(0) and 𝜔(1), also note that: 𝜔(0) ∪ 𝜔(1) ∪ 𝜔(2) = 𝜔). 

Afterwards, vector 𝑍 uses a linear transformation together with another subset of 

weight parameters 𝜔(2) to estimate �̂�. The output vector (�̂�) is then forwarded to the 

loss function (marked with a red square in Figure 2.1) outside the FFNN. The loss 

function assesses the ANN performance by comparing �̂� and 𝛶𝑒 and, depending on 

this evaluation, a backpropagation signal is sent to modify 𝜔 so that the loss function 

is minimized. This process keeps going until the variation of the parameters stops 

improving the predictions. The loss function can be optimized through different 

backpropagation training methods such as Levenberg-Marquardt, resilient 

backpropagation, Bayesian regularization propagation, the scale conjugate gradient, 

among others [32].  

In summary, training an ANN is quite similar to the other approaches that have been 

used for decades or even centuries to develop mathematical models; one of such 

methods is polynomial fitting. For example, let’s consider a case where it is desired to 

develop a linear model of a process. One must have a set of experimental data that 

contains the values of the independent variable 𝛸𝑒 and the dependent variable 𝛶𝑒. A 

linear model contains only the slope and the intersect as the model weight parameters 

𝜔, so the «training» of a linear model should find the 𝜔 that minimize the difference 

between 𝛶𝑒 and the values calculated with the linear model �̂�. Machine learning 

models use the same concept as polynomial fitting. The main difference is that the 

machine learning model equations are more complicated, hence the optimization 

algorithms are more sophisticated. Despite the similarities between ANN and other 

mathematical modelling methods, ANN has the advantage of its inherent high 

dimensionality that allows it to capture non-linear behaviors. 
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Figure 2.1. Diagram of a forward propagation artificial neural network (FFNN) trained by a 

backpropagation algorithm. 
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2.3. Methodology 

2.3.1. The Thermodynamic System  

The vapor-liquid equilibrium of the reactive mixture of CO2-MEA-H2O is a highly non-

ideal thermodynamic system due to the distinct chemical nature of the components 

that constitute the liquid phase. There is a gas (CO2) dissolved in an already non-ideal 

mixture of MEA and H2O. Furthermore, some species are electrolytes, and the 

presence of ions induces highly non-ideal long-distance interactions that contribute to 

a highly non-linear behavior. The reactions taking place in the liquid phase have been 

reported to be [33]: 

2𝐻2𝑂 ↔ 𝐻3𝑂
+ + 𝑂𝐻− (2.3) 

2𝐻2𝑂 + 𝐶𝑂2 ↔ 𝐻3𝑂
+ + 𝐻𝐶𝑂3

− (2.4) 

𝐻2𝑂 + 𝐻𝐶𝑂3
− ↔ 𝐻3𝑂

+ + 𝐶𝑂3
2− (2.5) 

𝑀𝐸𝐴𝐻+ + 𝐻2𝑂 ↔ 𝐻3𝑂
+ + 𝑀𝐸𝐴 (2.6) 

𝑀𝐸𝐴𝐶𝑂𝑂− + 𝐻2𝑂 ↔ 𝑀𝐸𝐴 + 𝐻𝐶𝑂3
− (2.7) 

A sketch of the component distribution in the system of CO2 chemically absorbed in 

MEA and H2O is shown in Figure 2.2. It illustrates the presence of 3 volatile 

components that are distributed between the two phases and the non-volatile 

components that correspond to the cations and anions formed in the liquid phase due 

to the chemical reactions. Note that the water is considered as the diluent of the ions 

and the volatile components in Figure 2.2. 
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Figure 2.2. Sketch of the modelled thermodynamic system with water as the diluting component 

of the liquid phase. 

2.3.2. Essential Thermodynamic Relations  

2.3.2.1. Physical Constraints and Auxiliary Equations 

The semi-empirical gamma-phi VLE model that is replicated in this work (also referred 

to as “base model”) considers the phase equilibria of the volatile components and the 

speciation reactions in the liquid phase. This gamma-phi model is composed of 

equations for phase equilibria (Henry’s law and Raoult’s law), chemical equilibria, 

thermodynamic constraints and complementary auxiliary equations. The 

complementary auxiliary equations can be either of empirical or semi-empirical nature 

and have fitted parameters (e.g., an activity coefficient model). 

The base model estimates the activity coefficients with the eNRTL model [6] along 

with the Peng-Robinson equation of state for the vapor phase [34]. The binary 
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parameters of the eNRTL activity coefficient model, the equilibrium constant 

correlations and the implementation of the semi-empirical model were taken from a 

previously published paper [35].  

Since machine learning models use alternate pathways to compute the numerical 

values of the VLE, there is no certainty that these estimations comply with 

thermodynamic rules. Therefore, it is mandatory to ensure that the calculated 

thermodynamic system fulfills physical constraints. The summation constraints for the 

vapor and liquid phases must be considered in the implementation of machine 

learning models: 

∑𝑦𝑖

𝑖

= 1 (2.8) 

∑𝑥𝑖

𝑖

= 1 (2.9) 

The electro-neutrality constraint is a restriction that only exists in electrolytic systems. 

This equation arises from the principle that the overall sum of local charges must be 

0 in a system at thermodynamic equilibrium [36]. This relation is: 

∑𝑛𝑖𝛤𝑖
𝑖

= 0 (2.10) 

Here 𝑛 is the total number of moles of the component and 𝛤 is the ion charge relative 

to a hydrogen ion. For a more detailed description of the additional fundamental 

equations and the parameters of the semi-empirical model please refer to the 

supporting information. 
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It is customary in the CO2 capture research field to represent the component 

concentrations in the liquid phase with non-natural thermodynamic variables: CO2 

loading (𝛼𝐶𝑂2
) and amine weight percent in the liquid solvent on a CO2 free basis 

(𝑤𝑀𝐸𝐴). The CO2 loading is estimated with the following relation: 

𝛼𝐶𝑂2
=

𝑥𝐶𝑂2,𝐴𝑝𝑝

𝑥𝑀𝐸𝐴,𝐴𝑝𝑝

 (2.11) 

Where the subscript App refers to apparent and indicates that the molar compositions 

of CO2 and MEA are calculated as if they had not reacted in the liquid phase. 

Therefore, the apparent molar compositions only consider the CO2, MEA and H2O 

molar fractions. 

The following equation relates 𝑤𝑀𝐸𝐴 with the MEA apparent molar fraction on a CO2 

free basis 𝑥𝑀𝐸𝐴,𝐴𝑝𝑝
∗ : 

𝑥𝑀𝐸𝐴,𝐴𝑝𝑝
∗ =

(
𝑤𝑀𝐸𝐴

�̅�𝑀𝐸𝐴
 )

(
𝑤𝑀𝐸𝐴

�̅�𝑀𝐸𝐴
+

100 − 𝑤𝑀𝐸𝐴

�̅�𝐻2𝑂
)

 (2.12) 

Where �̅�𝑀𝐸𝐴 and �̅�𝐻2𝑂 are the molecular weights of MEA and H2O respectively. It is 

possible to calculate the apparent molar compositions of the liquid phase using Eqs. 

(2.11) and (2.12). 

2.3.2.2. Enthalpy of Phase Change 

The CO2 enthalpy of phase change (usually referred to as CO2 enthalpy of absorption) 

is of fundamental importance in the field of acid—gas treating because it is one of the 

main characteristics that determines the techno-economic potential of the technology 
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[37,38]. It is this thermodynamic quantity that is needed to estimate the required heat 

duty of the solvent regeneration system in the process. 

As opposed to non-supercritical fluids (MEA-H2O), the enthalpy of vaporization of 

permanent gases (CO2) cannot be measured in pure state. Therefore, it is a function 

of the solvent into which the CO2 is absorbed. Moreover, experimentally it is not 

possible to measure the enthalpy of vaporization and the enthalpies of the individual 

reactions separately. Therefore, the overall effect is commonly measured and 

reported as a single CO2 enthalpy of absorption [39,40]. 

An alternative way to obtain the heat of phase change from VLE data is by using an 

expression derived from the Gibbs-Helmholtz relation (the vant’ Hoff equation): 

(
 𝜕 𝑙𝑛(𝑃𝐶𝑂2

)

𝜕 (
1
𝑇
)

)

𝑃,𝑛

= −
𝛥𝐻𝐶𝑂2

𝑅
 (2.13) 

Here 𝑃𝐶𝑂2
 is the partial pressure of CO2 in the vapor phase and 𝛥𝐻𝐶𝑂2

 is the CO2 

enthalpy of absorption. For an in-depth discussion of the derivation and the inherent 

assumptions to obtain Eq. (2.13) see [4]. 

2.3.2.3. Gibbs Phase Rule Analysis 

The Gibbs phase rule for reactive systems provides an information about how many 

degrees of freedom exist in a closed reactive thermodynamic system. The degrees of 

freedom refer to the number of independent variables that can be simultaneously set 

in order to fully specify the state of the thermodynamic system.  
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The equation for the Gibbs phase rule for reactive systems is: 

𝐹 = 2 + 𝑁 − 𝜋 − 𝑟 − 𝑠 (2.14) 

Where F is the number of degrees of freedom, N is the number of components, π is 

the number of phases, r is the number of reactions and s is the number of non-

summation constraints. It is imperative to follow the Gibbs phase rule in the 

development of machine learning models. If this rule is broken, thermodynamic 

quantities cannot be estimated with thermodynamic consistency. 

2.3.3. Developing Surrogate Thermodynamic Models  

The principles of the proposed methodology to formulate surrogate machine learning 

VLE models is summarized in Figure 2.3. Figure 2.4 presents detailed the algorithms 

of the steps 4,5 and 7 shown in Figure 2.3. 

Step 1: The semi-empirical model to be replicated is chosen. As previously 

mentioned, an eNRTL thermodynamic model for CO2-MEA-H2O is utilized in this work 

as the case study to exemplify the use of the proposed methodology.  

Step 2: The number of independent variables that can be selected in the input layer 

of the ANN is calculated. In the current example of the CO2-MEA-H2O mixture, the 

evaluation of Eq. (2.14) yields F = 3, which designates that only 3 variables can be 

selected. 

Step 3:  The parameters needed to perform the next steps of the algorithm are set. 

The ANN training parameters are independent variables, dependent variables, limits 

of the independent variables, architecture of the ANN, simulations to parameters ratio, 

sampling method, training algorithm, preprocessing function, loss function, accuracy 

target. 
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Figure 2.3. Algorithm for the development of a surrogate thermodynamic machine learning 

based model. 
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Independent variables: any set of independent variables can be chosen as long as 

the number of independent variables is equal to the degrees of freedom and the 

variables are independent of each other (i.e. all the apparent molar fractions of CO2, 

MEA and H2O cannot be chosen simultaneously due to the summation constraint). 

The fact that ANN can estimate the relationships between different numerical values 

provide the possibility to select any non-natural thermodynamic variable as 

independent variable (i.e. CO2 loading can be selected as independent variable). The 

independent variables selected in the presented case study are 𝛼𝐶𝑂2
, 𝑥𝑀𝐸𝐴 and 

temperature (𝑇). 

Dependent variables: any number of dependent variables may be chosen. In addition, 

any variable can be chosen as a dependent variable as long as it is a function of at 

least one independent variable. In the present case study, there are 13 dependent 

variables: 9 liquid molar fractions (𝑥𝑖), 3 vapor molar fractions (𝑦𝑖) and the total 

pressure (𝑃). 

Limits of the independent variables: the upper and lower boundaries in which the 

surrogate model is valid are set for each one of the independent variables. The limits 

set for the surrogate ANN model in this work are presented in Table 2.1. They were 

specified so that the machine learning model can be used for applications under 

common industrial operation conditions in a CO2 amine-scrubbing plant. 

Architecture of the ANN: the number of hidden layers and the number of neurons in 

the hidden layer must be chosen. In this work a feedforward neural network (FFNN) 

was chosen as it is the simplest ANN architecture without internal cycles or loops. 

Therefore, it is expected that the lack of recursive operations will create the most 

computationally efficient ANN-based surrogate models. 
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Table 2.1. Limits of the independent variables for the case study. 

Variable Min Max 

𝛼𝐶𝑂2−𝑀𝐸𝐴/(𝑚𝑜𝑙 𝐶𝑂2/ 𝑚𝑜𝑙 𝑀𝐸𝐴) 0.001 0.60 

𝑀𝐸𝐴 𝑤𝑡/% 0.1 0.60 

𝑇/𝐾 293.15 393.15 

Additionally, the number of hidden layers for all ANN was fixed to 1 because a higher 

number of hidden layers is used for more complex purposes where deep learning is 

specifically needed, for example for image pattern recognition [41] or in the 

development of advanced artificial intelligence for intricate decision-making models 

for the video-game industry [42]. Furthermore, there is no need to choose more 

complex architectures according to the universal approximation theorem that states 

that any continuous function can be approximated using a single hidden layer feed-

forward ANN with a finite number of hidden neurons [43]. The effect of the number of 

neurons in the hidden layer on the ANN model performance is analyzed and 

discussed in section 3.1. 

Simulations to parameters ratio: the number of simulations present in the training 

dataset is selected. Since the overall idea of our proposed methodology is to use data 

generated by a semi-empirical model to train an ANN, the number of data points 

generated by the base model is an important training variable.  
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The simulations to parameters ratio is given by:  

𝐷𝑎𝑡𝑎𝑃𝑎𝑟 =
𝑁𝑆

𝑁𝑃

 (2.15) 

Here 𝐷𝑎𝑡𝑎𝑃𝑎𝑟 is the simulations to parameters ratio, 𝑁𝑆 is the number of datapoints 

in the datasets and 𝑁𝑃 is the number of parameters in the ANN. The number of 

parameters in a single layer FFNN is calculated by: 

𝑁𝑃 = (𝑁𝐻𝑁𝐼 + 𝑁𝐻𝑁𝑂) + (𝑁𝐻 + 𝑁𝐼) (2.16) 

Where 𝑁𝐻 is the number of neurons in the hidden layer, 𝑁𝐼 is the number of inputs 

and 𝑁𝑂 is the number of outputs in the FFNN. It is important to remark that 𝐷𝑎𝑡𝑎𝑃𝑎𝑟 

must always be greater than 1 so that the ANN training can be an optimization 

problem. The effect of 𝐷𝑎𝑡𝑎𝑃𝑎𝑟 on the accuracy of the ANN models is studied in 

section 3.1. 

Sampling method: the values of the independent variables in the raw matrix must be 

generated with a sampling method. Three different sampling methods are analyzed 

in this manuscript: random, structured and combined. The random method generates 

the input raw matrix with a Monte Carlo sampling scheme. The structured method 

generates permuted vectors that form an evenly distributed grid. The combined 

scheme divides the number of simulations in two, the first half is generated with the 

random method while the second half with the structured method. All the values 

generated with the sampling methods must be within the limits shown in Table 7.1. 

Training algorithm: selection of the optimization method used to fit ANN models. The 

present work focuses on the most prominent methods to train FFNN: the Levenberg-

Marquardt backpropagation method and the Bayesian regularization method.  
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The Levenberg-Marquardt (LM) backpropagation algorithm is considered because, 

according to the Matlab documentation [44], it is the recommended method due to its 

higher computational speed during the training of feedforward neural networks. The 

LM method uses a maximum neighborhood search method that is an hybrid between 

the Taylor series and gradient optimization methods [45]. This method was later 

adapted and applied to perform the backpropagation training of ANN [46]. The 

Bayesian Regularization (BR) backpropagation algorithm combines the Bayesian 

interpolation method developed by [47] with the Levenberg-Marquadt (LM) 

optimization method [48]. It was chosen because it has been shown in several 

applications like in biological studies with mice [49] or in the cement industry [50] that 

the Bayesian regularization may give better generalization properties than the LM, 

and thereby, better prediction capabilities. The effect of the training algorithm on the 

ANN performance is discussed in section 3.1. 

Preprocessing function: any mathematical function can be used to transform the raw 

data into preprocessed data. Data normalization is a common preprocessing function 

that scales the data within a certain range usually from 0 to 1. The normalization 

function is not shown in Figure 2.3 or Figure 2.4 because Matlab 2019b always 

includes this step inside the ANN model and therefore it is not necessary to explicitly 

program it. Caution is advised when using a different programming platform. 

Loss function: the loss function assesses the performance of the ANN based on the 

preprocessed values. 

The Matlab framework for performing the ANN training uses the Mean Square Error 

(MSE) as the optimization function. Nonetheless, in the case of models that are valid 

over a broad range of molar compositions, using MSE will focus the optimization on 

the higher values rather than distribute the error evenly throughout the dataset. To 
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avoid this, the optimization function of the model was changed to Mean Relative 

Square Error (MRSE) instead of the default mean square error (MSE). The 

optimization function for MRSE has the form:  

min ℒ =
1

𝑁𝑆

∑(
𝐵′ − �̂�′

𝐵′
)

2

 (2.17) 

Where 𝐵′ is the output matrix generated with the base model and �̂�′ is the output 

matrix from the ANN model.  

Accuracy target: the degree of desired exactness of the surrogate model with respect 

to the base model must be specified (see step 8).  

Step 4: Here, the datapoints are generated with the semi-empirical model. Figure 2.4 

a) shows that in the first iteration of the algorithm, the input matrix 𝛸𝑒 and the output 

𝛶𝑒 testing matrices are generated. This testing dataset is used in step 7 to determine 

if the ANN model can properly predict values for which the ANN model was not trained 

for. If the predictions of the testing dataset are significantly worse than the ones done 

with the training dataset, it means that the ANN is overfitted and cannot generalize 

(this usually happens if the DataPar value is too small). Note that a similar algorithm 

is used to generate the raw input matrix 𝐴 and the raw output 𝐵 matrices used for the 

ANN training of each one of the ANN models. 

Step 5: The raw input matrix 𝐴 and the raw output matrix 𝐵 are preprocessed using 

transformation functions (see Figure 2.4 b)). In the present work the matrices are 

transformed as follows: 𝐴′ = 𝐴 and 𝐵′ = ln(𝐵). 

Using the natural logarithm of the output variables helps in addressing one of the main 

challenges in the modelling of VLE with ANN: the big variance between the orders of 
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magnitude in the molar fractions of the individual electrolytes. A large variation in the 

orders of magnitude of the output variables results in an ill-conditioned or badly scaled 

training dataset which reduces the accuracy of the model predictions. 

An example of badly scaled data points can be obtained by comparing the orders of 

magnitude of the unreacted molar fraction of CO2 (𝑥𝐶𝑂2
) of two different 

thermodynamic systems. The first case considers a thermodynamic system at 𝛼𝐶𝑂2
=

10−5, 𝑇 = 293.15 𝐾 and 𝑤𝑀𝐸𝐴 = 30 % which yields molar fraction  𝑥𝐶𝑂2
= 3 𝑥 10−16. 

This small value is caused by the low CO2 loading and the exothermic nature of the 

chemical reactions which promote the product formation. Hence, most of the 

solubilized CO2 is chemically bound to the amine. On the other hand, the second 

scenario considers the system to be at 𝛼𝐶𝑂2
= 0.60, 𝑇 = 393.15 and 𝑤𝑀𝐸𝐴 = 30 % 

which leads to an absolutely contrasting value of molar fraction 𝑥𝐶𝑂2
= 3 𝑥 10−3. This 

is because the high CO2 loading together with the high temperature significantly 

decreases the molar fraction of CO2 that can be chemically bound to MEA and, 

consequently, increases the amount of CO2 solubilized by van der Waals forces. 

In order to overcome this problem, a scaling through a logarithmic transformation can 

be performed. An additional advantage of this transformation is that it avoids the 

calculation of negative molar fractions when any of the molar compositions is close to 

0.  

Step 6: The ANN weight parameters 𝜔 are calculated and the ANN function Ω is 

generated. This step needs the following ANN training parameters: training algorithm, 

ANN architecture, number of neurons in the hidden layer and the loss function. 

In Matlab 2019b, the training datasets are usually divided into 3 parts: the training 

fraction, the validation fraction and the test ratio. We selected 0.90 for the training 
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fraction, 0.1 for the validation fraction and 0 for the testing ratio. The testing ratio is 

used to assess the ANN generalization capability of the ANN model to predict values 

that were not used in the ANN training. Since the ANN model testing in this 

methodology is performed with an independent dataset, the value was set to be a very 

low value. 

Step 7: The model is tested and assessed by evaluating the ANN model Ω using the 

testing matrix 𝛸𝑒 as input and then comparing the output predictions with the testing 

output matrix 𝛶𝑒 (see Figure 2.4 c)).  

First, the preprocessing transformation function 𝑝 is applied on 𝛸𝑒 to obtain 𝛸′𝑒. Then, 

the transformed matrix 𝛸′𝑒 and 𝜔 are used to evaluate Ω in order to get �̂�′′. The values 

of �̂�′′ do not have physical meaning yet because they are in a different mathematical 

space due to the preprocessing. Hence, a postprocessing procedure must be 

performed with an anti-transformation function of the form 𝑞−1 to get physically 

meaningful values �̂�′. In this work, the molar compositions of the liquid and vapor 

phase in �̂�′ are evaluated afterwards with a compositional normalization function (𝜂) 

in order to comply with the restrictions of Eqs. (2.8) and (2.9). This process finally 

calculates �̂�.  

After postprocessing, the accuracy of the model can be evaluated by comparing �̂� 

and the testing output matrix 𝛶𝑒. The ANN model capabilities to replicate the base 

model can be assessed by calculating the “model average absolute relative 

difference” (MAARD) and “model average relative difference” (MARD) of each one of 

the variables between the base model and the ANN model.  
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The equations for the MAARD and the MARD are:  

𝐴𝐴𝑅𝐷 =
1

𝑁𝐶

∑
|�̂� − 𝛶∗|

√�̂� 𝛶∗
𝑁

∗ 100 % (2.18) 

𝐴𝑅𝐷 =
1

𝑁𝐶

∑
�̂� − 𝛶∗

√�̂� 𝛶∗
𝑁𝐶

∗ 100 %. (2.19) 

Where 𝑁𝐶 is the total number of datapoints in the testing dataset (𝑁𝐶 = 250,000 in the 

case study). 

Step 8: This decision-based step will stop the algorithm if the accuracy target is 

reached. In the case that the accuracy target is not reached, the algorithm estimates 

if the number of neurons in the hidden layer or 𝐷𝑎𝑡𝑎𝑃𝑎𝑟 should be increased. It should 

be remarked that although ANN can replicate the base model, one should specify 

reasonable values (i.e., do not specify very small MAARD). 
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2.4. Results and Discussion 

2.4.1. Surrogate Model Parametrization 

Since the number of ANN training parameters is somewhat extensive, a factorial-

based study was done to determine the best parameter selection. The analyzed ANN 

training parameters as well as their factors are presented in Table 2.2. A total of 54 

ANN models were developed considering all permutations. These models were 

generated by only performing the steps from 1 to 7 of the algorithms shown in Figure 

2.3 and Figure 2.4. Step 8 was not done because this parametric study aims at 

understanding the effect of the training parameters on the ANN model performance. 

Training method: It can be seen from Table 2.3 that the best models were trained 

using the BR back propagation method. Moreover, the average MAARD of the models 

trained with the BR method was 23 % better than the models trained with LM. 

Sampling method: The results in Table 2.3 demonstrate that both the combined and 

random sampling methods provide quite similar results and there is not a clear trend 

on which one is better. The MAARD of the random sampling ANN models have, on 

average, a MAARD of 3.78 % while for the combined method it is 4.72 %.  

Architecture of the ANN: The effect of the number of neurons in the hidden layer is 

clear, as the best models have 50 neurons. This is expected as the number of neurons 

and number of fitting parameters increase together. The average MAARD of all the 

models with 10, 30 and 50 neurons are 13.2 %, 5.6 % and 4.2 % respectively, which 

confirms that a higher number of neurons increase the model accuracy. 

Simulations to parameters ratio: As seen in Table 2.3, a higher DataPar has a higher 

chance of having higher accuracy. For instance, models #35, #33 and #31 have the 

same training parameters except for the DataPar and it is seen that the model with 
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the highest DataPar has the best MAARD. It is important to note that the DataPar 

value does not have a significant impact in the computational performance of the 

surrogate model as it is only used in the ANN training. However, choosing a large 

DataPar (e.g. 100) may significantly increase the training time and, as seen in Table 

2.3, the MAARD improvement is so minimal that it may not justify the considerable 

additional training time. 

According to this study, we recommend using the Bayesian Regularization training 

method and the random sampling method to develop thermodynamic ANN surrogate 

models for new systems. However, the optimal number of neurons in the hidden layer 

and DataPar may vary from system to system. Therefore, we suggest starting the 

procedure shown in Figure 2.3 with 𝑁𝐻 = 10 neurons and 𝐷𝑎𝑡𝑎𝑃𝑎𝑟 = 2. 

Table 2.2. ANN training parameter values. 

Variable Values 

Number of neurons in the hidden layer (𝑁𝐻) 10 / 30 / 50 

Simulations to parameters ratio (𝐷𝑎𝑡𝑎𝑃𝑎𝑟) 2 / 3 / 5 

Training method BR / LM 

Sampling method R / S / C 

* In sampling method: R, S and C stand for random, structured, and combined 

respectively 
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Table 2.3. ANN model performances using different training parameters. 

ANN 

Model 

# Neurons 

in the 

hidden layer 

DataPa

r 

Training 

method 

Sampling 

method 

Mean 

MAARD 

(%) 

Mean 

MARD 

(%) 

35 50 5 BR Random 0.50 0.03 

33 50 3 BR Random 0.52 0.04 

13 50 2 BR Combined 0.52 -0.01 

15 50 3 BR Combined 0.54 0.00 

17 50 5 BR Combined 0.57 -0.01 

31 50 2 BR Random 0.57 0.09 

36 50 5 LM Random 0.63 0.11 

16 50 3 LM Combined 0.66 -0.02 

18 50 5 LM Combined 0.67 0.00 

34 50 3 LM Random 0.80 0.17 
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2.4.2. Surrogate Model Assessment 

2.4.2.1. Statistical and Graphical Analysis 

In this section, the application and validation of the model #35 is performed (the 

parameters can be obtained from the authors upon request). This model was chosen 

because it is ranked as the best model and because it has a MAARD of 0.50 %. The 

MAARD and the experimental AARD (EAARD) of model #35 and the eNRTL model 

are presented in Table 2.4. All fitted variables in model #35 show good agreement 

with the base model, as none surpasses a MAARD value of 1.00 %.  

The EAARD values were calculated by comparing the model predictions against 

experimental data: 131 CO2 partial pressure data points [8], 80 total pressure data 

points [8], vapor molar fractions data points [51] and 16 liquid phase speciation data 

points [52]. The operating conditions in the cited references that were outside the 

validity range of the ANN models were omitted. The MAARD seems to be insignificant 

as the difference between the EAARD of the base model and model #35 is negligible.  

Parity plots between the base model and the ANN model #35 are presented in Figure 

2.5. The 1,000 datapoints used in Figure 2.5 were randomly chosen from the testing 

dataset. It can be seen in Figure 2.5 a) – b) that the highest residual errors are not the 

same as the largest relative deviations. The residual errors are higher in the 

carbamate 𝑥𝑀𝐸𝐴𝐶𝑂𝑂− at high loadings because this is when the carbamate 

concentrations are larger, so even if the relative error is small at these conditions, the 

residual error will be high. 
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Table 2.4. Relative deviations between model #35 and the base model and experimental 

data. 

Variable 
Model #35 

MAARD (%) 

Base model 

EAARD (%) 

Model #35 

EAARD (%) 

𝑥𝐻2𝑂 0.05 - - 

𝑥𝐶𝑂2
 0.63 - - 

𝑥𝑀𝐸𝐴 0.41 14.6 14.8 

𝑥𝐻3𝑂+ 0.86 - - 

𝑥𝑀𝐸𝐴𝐻+ 0.46 28.4 28.6 

𝑥𝑂𝐻− 0.57 - - 

𝑥𝐻𝐶𝑂3
− 0.41 34.6 34.5 

𝑥𝐶𝑂3
2− 0.67 27.0 26.9 

𝑥𝑀𝐸𝐴𝐶𝑂𝑂− 0.35 12.5 12.6 

𝑦𝐻2𝑂 0.39 1.7 1.7 

𝑦𝐶𝑂2
 0.79 23.8 23.9 

𝑦𝑀𝐸𝐴 0.50 31.5 31.5 

𝑃𝑇 0.41 13.9 14.0 

𝑃𝐶𝑂2
 - 20.7 20.8 

Overall (%) 0.50 24.4 24.5 
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Figure 2.5 c) – d) on the other hand presents the vapor molar fraction of CO2. The 

residual plot shows that at low loadings, the residuals are small. This is because at 

these loadings, the CO2 is mostly absorbed in the liquid phase by chemical reactions, 

therefore the free CO2 in the liquid solution does not exert high pressures of CO2 in 

the vapor phase, resulting in a small CO2 molar fraction. This gives low vapor molar 

fractions and, therefore, the residuals must be small. In contrast, at higher loadings 

the CO2 is absorbed in the liquid phase by van der Waals forces as well, thus the 

pressure exerted by CO2 on the vapor phase increases drastically, and the CO2 vapor 

molar fraction is higher. 

When the relative deviations are compared, the error is well distributed along the 

entire range of CO2 loadings and temperatures. There is no trend that suggests that 

the CO2 loading and temperature have any effect on the differences in CO2 molar 

fractions between the ANN model #35 and the base model. 

In order to show the VLE prediction accuracy, the total pressure of the CO2-MEA-H2O 

system was calculated at different conditions and compared against experimental 

data. The results are presented in Figure 2.6 to Figure 2.9, where the continuous lines 

represent the predictions of model #35. The data reported for total pressure in 

literature [8] are mainly from medium to high pressures, hence there are few data 

points at low CO2 loadings or temperatures. Figure 2.6 shows that the cited 

experimental data and the model predictions are in good agreement over a broad 

range of temperatures and CO2 loadings. 
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Figure 2.5. Parity plots between the base model and the ANN model #35: a) 𝑥𝑀𝐸𝐴𝐶𝑂𝑂− 

residual error parity plot, b) 𝑥𝑀𝐸𝐴𝐶𝑂𝑂− relative deviation plot, c) 𝑦𝐶𝑂2
 residual parity plot and d) 

𝑦𝐶𝑂2
 relative deviation plot. 

The speciation predictions of model #35 were calculated and are presented in Figure 

2.7 and compared against experimental speciation data points [52]. Even at low 

loadings, the smooth behavior of the speciation curves was accurately reproduced by 

the ANN model. It is important to underline that the estimation of the molar 

compositions need to be reasonably accurate as the liquid molar compositions are 

often used in kinetic and mass transfer models.  
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Figure 2.6. Total pressure plots at different MEA weight fractions: a) 𝑤𝑀𝐸𝐴 = 15 % and b) 

𝑤𝑀𝐸𝐴 = 60 %. Continuous lines: model prediction with ANN model #35. The top solid lines 

without experimental datapoints are computed at 𝑇 = 100° C and 𝑇 = 120° C (the topmost 

correspond to the highest 𝑇). Experimental data: [8].  
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Figure 2.7. Speciation plots at different conditions. a) 𝑤𝑀𝐸𝐴 = 30 % and 40 °C, b) 𝑤𝑀𝐸𝐴 =

45 % and 20 °C. Continuous lines: model prediction with ANN model #35. Experimental 

data: [52]. 
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Figure 2.8. Molar fraction plots at a) 3.5 MEA molarity and 60 °C and b) 7.0 MEA molarity 

and 40 °C. Continuous lines: model prediction with ANN model #35.  

Experimental data: [51]. 
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b  

Figure 2.9. CO2 partial pressure plots at different 𝑤𝑀𝐸𝐴: a) 15 % b) 60 %. Continuous lines: 

model prediction with ANN model #35. The top solid lines without experimental datapoints are 

computed at 𝑇 = 100° C and 𝑇 = 120° C (the topmost correspond to the highest 𝑇). 

Experimental data: [8]. 

Although the developed ANN models in this work do not explicitly predict the CO2 

partial pressure 𝑃𝐶𝑂2
, it can be calculated by multiplying the total pressure and the 
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CO2 vapor phase molar fraction. Since the ANN model #35 accurately estimates both 

variables independently, the calculated 𝑃𝐶𝑂2
 is in good agreement with the 

experimental data as shown in Figure 2.9. This indicates that the surrogate model is 

not only accurate, but also represents the thermodynamic system in the same fashion 

as calculations done with traditional VLE models. 

Figure 2.10. presents a relative deviation plot for predicted 𝑃𝐶𝑂2
 and 𝑃𝑇 as a function 

of 𝛼𝐶𝑂2
 compared with to experimental data. Figure 2.10. shows four different sets of 

relative deviations between the predictions of the base model and model #35 and the 

experimental values of 𝑃𝐶𝑂2
 and 𝑃𝑇.  It is seen that model #35 and the base model 

agree very well with each other, as almost all datapoints in Figure 2.10 calculated by 

the base model are covered by the estimations of model #35. Additionally, the relative 

deviation of model #35 with respect to the experimental data is well distributed and 

there is no sign of bias.   

 

Figure 2.10. Relative deviation plot between the experimental values and the predicted values 

from the ANN model #35 and the base model. Experimental data: [8].  
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The predictions of the base model and model #35 were plotted together so their 

differences could be illustrated. For instance, if only the datapoint of the ANN model 

#35 is seen, it is an indication that both models predicted the same values. Few 

datapoints show both model datapoints, whereby it can be concluded that the base 

model was accurately replicated by model #35. 

2.4.2.2. Thermodynamic Constraints  

The black-box nature of ANN models may draw skepticism on the physical validity of 

the model, which in turn, may inhibit their implementation into process engineering 

frameworks. The ANN models are said to be of black-box nature because, to this day, 

it is not possible to deduce a physical meaning from the ANN parameters alone. 

Additionally, the difference between the semi-empirical model and the ANN models is 

that the first model considers the electronegativity constraint and the summation 

constraints in the solution algorithm while the ANN models do not (the summation 

equation restrictions are used in the postprocessing calculations but not in the neural 

network itself).  

Table 2.5 presents the mean difference between the values calculated by the ANN 

model #35 with respect to Eqs. (2.8) - (2.10) without performing a compositional 

normalization. The second column presents the absolute mean error when the molar 

fractions are compositionally normalized. Note that the absolute error of Eqs. (2.8) 

and (2.9) is 0 on the second column because the normalization redistributes the molar 

fractions so that their sum is 0.  

Table 2.5 shows that although there is a small error in the summation constraints, the 

fact that the absolute error in Eq. (2.10) is the same between the second and third 

column. This indicates that the error in the molar fractions is well distributed between 
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all the species. The base model fulfills the electronegativity constraint within error less 

than 10-15 while the error in the summation constraints is 0. 

Table 2.5. Thermodynamic constraints check of ANN model #35. 

Eq. 
Absolute error without 

normalization - 105 

Absolute error with 

normalization - 105 

(2.8) 2.34 0 

(2.9) 8.19 0 

(2.10) 12.6 12.6 

 

2.4.2.3. Why Does the Gibbs Phase Rule Matter? 

Complying with the Gibbs phase rule is crucial, regardless of whether if the model is 

either semi-empirical or machine learning based. For example, let us consider an over 

specified system where there are more fixed variables than degrees of freedom. In 

this case, the thermodynamic system will not have any physical meaning as it cannot 

exist at the specified conditions. The mathematical effect of overspecification in a 

thermodynamic system depends on the model type. If one tries to estimate the VLE 

behavior of a thermodynamic system with a semi-empirical model, a solution cannot 

be achieved as the mathematical model will be mathematically inconsistent. 

Unfortunately, an ANN does not have a similar “safe-lock” and it can predict VLE 

values that may seem reasonable at first glance, but do not have a physical meaning.  

Consistent thermodynamic models allow evaluating thermodynamic quantities that 

are related to the VLE behavior through fundamental equations. In the context of CO2 
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capture, an important solvent quantity is the CO2 enthalpy of absorption which can be 

estimated using Eq. (2.13) and the VLE model. 

In order to highlight the importance of the Gibbs phase rule and thermodynamic 

consistency in the ANN model development, an inconsistent model of the VLE system 

was formulated following the methodology previously presented but omitting the 

Gibbs phase rule analysis. The inconsistency was imposed on the model by specifying 

one extra variable and breaking the Gibbs phase rule. The “inconsistent model” was 

trained with 4 inputs: 𝛼𝐶𝑂2
, MEA wt%, T and PT. The model was developed and 

compared with the testing dataset, and a MAARD of 0.37 % was obtained. The PT 

values of the training dataset were given as inputs in the “validation” of the 

inconsistent model. Hence, the MAARD seems to be low and in agreement with the 

base model. 

Figure 2.11 and Figure 2.12 show the CO2 enthalpy of absorption on the left axis and 

the 𝑃𝐶𝑂2
 on the right axis, both as functions of 𝛼𝐶𝑂2

. This was done demonstrate that 

a low MAARD is not necessarily a satisfactory indication that the model was “properly 

understood” by the ANN.  

Figure 2.11 presents the thermodynamic system at 40 °C, it shows that model #35 

accurately reproduced the 𝑃𝐶𝑂2
 behavior of the base model as the curves of both 

models are overlapping completely. The heat of absorption predictions between the 

two models are in excellent agreement (MAARD = 0.30 %). The difference between 

the experimental and the estimated CO2 heat of absorption is caused by the inherent 

simplifications to the use of Eq. (2.13) [4,40,53]. 

Figure 2.12 on the other hand, presents the predictions of the inconsistent model and 

the base model at: 𝑤𝑀𝐸𝐴 = 30 %, 120 °C and different loadings and pressures. The 
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heat of absorption predictions with the inconsistent model are inaccurate (relative 

deviations up to 50 %). This is a clear indication of a model inconsistency. An ANN 

model may look “good” in a statistical analysis even if it was with a wrong conception 

of the system physics. The inconsistent ANN model created a fallacious dependency 

of 𝑃𝐶𝑂2
 on the total pressure even though it is thermodynamically proven that, for this 

case, it should only be a function of 𝛼𝐶𝑂2
, 𝑤𝑀𝐸𝐴, and 𝑇. This demonstrates that the 

misuse of machine learning or artificial neural networks can lead to correlation-

causation fallacies. 

If the 𝑃𝐶𝑂2
 predictions of the inconsistent model are observed, one would expect that 

the CO2 heat of absorption estimations would be accurate as well, but they are not. 

This might raise the question: why are the heat of absorption values so inaccurate? 

This can be explained by considering the similitudes between the ANN and biological 

organisms. Much of the knowledge of animals or humans is based on experience or 

correlations. They learn to react accordingly to environmental stimuli by creating a 

cause-effect correlation that does not necessarily indicate that the living being has 

understood the root cause of the phenomenon. A similar situation occurs when 

training an ANN. During the process, the ANN learns and finds the correlations 

between the variables, but that does not mean that it found right dependencies of the 

system, it just found a mathematical correlation.  

Another situation in which thermodynamic inconsistencies in ML models may occur is 

if there is an interdependence among the input variables. Let us consider a situation 

where the ANN model was developed using the CO2 molarity concentration, 𝑇 and 

𝑤𝑀𝐸𝐴 as inputs. While the use of three input variables complies with the degrees of 

freedom of the system, the interdependency between the molar concentration and the 

temperature will produce thermodynamic inconsistencies if a physically unfeasible 
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combination of input variable values is chosen. Once again, this may not be detectable 

by the ANN as the VLE predictions do not directly solve the thermodynamic equations. 

For this reason, concentrations on a molarity basis are not recommended and it is 

preferable to use concentrations on a molal basis or a molar fraction basis. 

 

Figure 2.11. Enthalpy of absorption calculated as a function of CO2 loading using 30 MEA 

wt% at 40 °C. Experimental data: [54]. 

 

Figure 2.12. Enthalpy of absorption calculated as a function of CO2 loading using 30 MEA 

wt% at 80 °C. Experimental data: [54]. 
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2.4.3. Surrogate Model Application 

Since the goal of developing the surrogate model is to improve the computational 

time, the computational speed of the different calculation methods was compared. 

Table 2.6 presents the comparison of the computational speed of the gamma-phi 

calculations, different interpolation methods and the ANN surrogate model method 

proposed in this work. The molar fraction of CO2 in the vapor phase was chosen as 

the output variable.  A total of 100 batches with 50 simulations each were run in order 

to estimate the relative computational speed with respect to the gamma-phi 

calculations shown in Table 2.6. The values of each batch are different between each 

other and were generated randomly. 

The interpolations were done using the Matlab built-in function interp3. Two 

interpolating algorithms were chosen: the linear interpolation and the cubic spline 

interpolation algorithm [55]. The best models with 10, 30 and 50 neurons in the hidden 

layer are also presented in Table 2.6. This table shows that the linear interpolation 

can accelerate the computational speed. However, its intrinsic relative error is high 

and the savings in computational time may not be high enough to compensate and 

justify the error. 

Cubic spline interpolation has better accuracy when compared to the linear 

interpolation, but at the cost of lower computational speed. Making a balance between 

the relative computational speed and the MAARD, cubic spline interpolation appears 

to outperform the linear interpolation. It is important to underline, that due to the 

algorithm of the cubic spline interpolation, it may happen that the algorithm estimates 

values of 𝑦𝐶𝑂2
 less than 0 whenever there is a steep change in 𝑦𝐶𝑂2

 when the value is 

close to infinite dilution.  
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Table 2.6. Computational speed comparison between different VLE calculation schemes. 

 

Elements in the 

interpolation 

matrix 

Relative 

computational 

speed 

𝑦𝐶𝑂2
 MAARD 

(%) 

Gamma-phi 

calculations  

(base model) 

- 1 - 

Linear interpolation 

 

1000 10 28.17 

8000 7 8.78 

27000 6 4.67 

Cubic spline 

interpolation 

 

1000 8 9.20 

8000 6 1.74 

27000 5 0.93 

ANN with 10 neurons - 1202 8.03 

ANN with 30 neurons - 987 1.12 

ANN with 50 neurons - 966 0.49 

The machine learning models clearly outperforms the interpolation in both the 

computational speed and the capabilities for estimation accuracy. The main reason of 

the computational speed superiority is that the ANN calculations are simple and non-

recursive calculations. Another reason for the machine learning outstanding 

computational characteristics is that the ANN structure allows calculating the entire 

input matrix in parallel (in this example there were 50 simulations in parallel) as 
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opposed to the interpolation algorithms that must process each one of the inputs 

individually. 

The last three rows of Table 2.6 suggest that there is a tradeoff between the number 

of hidden neurons and the computational speed. Figure 2.13 presents how the speed 

of the ANN models is affected by the number of parallel simulations and the number 

of hidden neurons. The tradeoff between the number of neurons and the 

computational speed is evident as the model with 10 neurons has the fastest relative 

speed, however its MAARD is somewhat high, thus the models with 30 and 50 hidden 

neurons seem to be better. A higher number of neurons implies more operations 

inside an ANN. Therefore, it is important to set a reasonable target of the MAARD in 

order to avoid a large number of neurons that would reduce the computational speed. 

From Figure 2.13 a) it is evident that the model with 50 neurons is around 3 orders of 

magnitude faster than the gamma-phi calculations when performed with more than 

100 simulations done in parallel. The computational gain at smaller number of parallel 

simulations is unclear, hence, an amplification was done and shown in Figure 2.13 b). 

The minimum relative speed is reached for all models when there is only one 

simulation. However, even at this minimum point the relative speed of all 3 models is 

40 times the speed of the base model. At 30 parallel simulations the computational 

gain is around 3 orders of magnitude, while for 400 simultaneous calculations, the 

speed is around 2,500 times faster if the model with 50 neurons is used. 

So, one may wonder: is it really important to speed-up the VLE computation time? If 

the surrogate model is to be used to model the behavior of a single vapor-liquid 

separator, the calculations would take 8.0 x 10-5 s instead of 3.2 x 10-3 s. Looking at 

this scenario, from the end user perspective there is not a noticeable difference that 

justifies the use of a surrogate model. But what happens if there is a complex problem 
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that requires a non-steady state 2-D formulation? Let us assume that the geometry 

uses a 400 x 400 grid that requires a VLE evaluation in each discretized point. 

Furthermore, the time is discretized in 400 timesteps and it is assumed that each 

timestep requires 10 iterations to solve. Considering these conditions, the VLE 

simulations would take 400 x 400 x 100 x 10 x 3.2 x 10-3 s = 510,000 seconds (142 

hours) if the base model is used. In contrast, the simulation would take 0.15 hours to 

solve if the surrogate model with 50 neurons is used (this scenario assumes 400 

simultaneous VLE simulations). The use of ANN surrogate models instead of 

performing the traditional semi-empirical models may thus give extraordinary 

computational advantages in complex problems that require VLE calculations in 

multidimensional problems. One of such examples may be the solution of the model 

needed for the characterization of aerosol emissions from CO2 capture plants [56].  
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Figure 2.13. a) Computational efficiency tradeoff between the number of neurons and the 

number of parallel simulations. b) Amplification of a). 
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2.5. Conclusions 

An easy-to-implement method based on machine learning Artificial Neural Networks 

(ANN) was developed and proved to be a feasible alternative for the development of 

accurate, consistent and computationally fast surrogate models. The proposed 

method was employed to develop a surrogate machine learning thermodynamic 

model of a ternary system CO2-MEA-H2O. The surrogate models were based on a 

semi-empirical gamma-phi model framework (eNRTL for the liquid phase and Peng 

Robison for the vapor phase). The advantage of the proposed method is that it can 

be easily extrapolated to other thermodynamic quantities (e.g. activity coefficients, 

enthalpy calculations or heat capacities) and systems (e.g. more components or more 

phases).  

A quantitative assessment of the effect of the training parameters on the prediction 

capabilities of the ANN models was performed. The first conclusion from this study is 

that a single hidden-layer FFNN architecture is enough to represent the behavior of 

reactive multiphase systems.  Therefore, the need for more complex architectures 

(e.g., multiple hidden-layers or feedback) may be unnecessary as they may introduce 

extra training parameters or iteration loops that may make the ML model 

implementation difficult without significantly improving the prediction capabilities. 

Through a statistical analysis, it was found that the accuracy of the surrogate models 

was improved using Bayesian regularization back-propagation algorithm and a 

random sampling method to generate the training datasets. The DataPar value is 

suggested to be as low as possible (𝐷𝑎𝑡𝑎𝑃𝑎𝑟 = 2 for similar applications). The 

analysis involved the development of 54 ANN models wherefrom the one with the best 

prediction capabilities with respect to the semi-empirical model has a 𝑀𝐴𝐴𝑅𝐷 =

0.50 %.  
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It was shown that the integration of the Gibbs phase rule and physical constraints in 

the ANN framework is of utmost importance as their inclusion allows avoiding 

thermodynamic inconsistencies that may lead to inaccurate predictions.  

It was also demonstrated that good prediction capabilities in ANN models are not 

necessarily a satisfactory indication of thermodynamic consistency, proper 

dependency between the variables or that the model complies with the physical 

constraints. Therefore, the integration of the Gibbs phase rule and physical 

constraints in the ANN model is a viable method to ensure that the thermodynamic 

model has the same behavior and dependencies as the semi-empirical models. 

The developed surrogate ANN models can be around ~1000 times faster than 

rigorous calculation methods because the ANN models do not have recursive 

operations that jeopardize the computational efficiency of the calculations. 

Additionally, the computational speed of ANN surrogate models outperforms the ones 

of linear and non-linear interpolation methods.  
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2.6. Supplementary information 

2.6.1. Fundamental equations of the base model 

The Henry’s relation for the physical solubility of CO2 is 

𝑦𝑖�̂�𝑖𝑃 = 𝑥𝑖𝛾𝑖𝐻𝑖
∞exp (

�̅�𝑖
∞(𝑃 − 𝑃𝑖

𝑠𝑎𝑡)

𝑅𝑇
). (2.20) 

Where the subscript 𝑖 indicates that the subscripted variable is related to component 

𝑖, the superscript 𝑠𝑎𝑡 indicates that the variable is at its saturation point, 𝑦 is the vapor 

molar fraction, �̂� is the vapor fugacity coefficient, 𝑃 is the total pressure of the system, 

𝑥 is the liquid molar fraction, 𝛾 is the liquid activity coefficient, 𝑇 is the temperature, 𝑅 

is the gas constant and finally, 𝐻𝑖
∞ and �̅�𝑖

∞ are the Henry’s coefficient and partial molar 

volume of component 𝑖 at infinite dilution in water [57]. For the case of the other volatile 

components (MEA and H2O), the modified Raoult’s law is used: 

𝑦𝑖�̂�𝑖𝑃 = 𝑥𝑖𝛾𝑖𝑃𝑖
𝑠𝑎𝑡exp (

𝑉𝑖(𝑃 − 𝑃𝑖
𝑠𝑎𝑡)

𝑅𝑇
). (2.21) 

Where 𝑉 is the pure component liquid molar volume. The general equation governing 

the chemical equilibria in terms of molar fractions and activity coefficients is given by: 

𝐾𝑗 = ∏(𝑥𝑖𝛾𝑖)
𝜈𝑖

𝑖

. (2.22) 

Where 𝐾 is the chemical equilibrium constant, the subscript 𝑗 indicates the reaction 

number and 𝜈 is the stoichiometric coefficient according to the reaction set given in 

section 2.1 of the manuscript. The right side of Eq. (2.22) is the product of the volatile 

and electrolyte components activities in each one of the reactions. The activity 

coefficients must be calculated using a usually computationally intensive set of 
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equations that consider the contribution of the molecule-molecule, ion-molecule and 

ion-ion binary interactions [58].  

An extra equation must be added to electrolyte systems: the electro-neutrality 

constraint, it arises from the principle that the overall sum of the local charges must 

be 0 in a system at thermodynamic equilibrium [36]. This relation is: 

∑𝑛𝑖𝛤𝑖
𝑖

= 0. (2.23) 

Where 𝑛 is the total number of moles of the component and 𝛤 is the ion charge relative 

to a hydrogen ion. Note that only ionic species can be evaluated with Eq. (2.10). Since 

the equations are written in terms of molar compositions, the summation constraint 

for the vapor and liquid phases respectively must be set 

∑𝑦𝑖

𝑖

= 1, (2.24) 

∑𝑥𝑖

𝑖

= 1. (2.25) 

The apparent composition approach has been widely used to represent the VLE data 

of gas-liquid systems due to its convenience in data analysis and representation. 

Apparent compositions represent the system as if only unreacted species existed in 

it, therefore only CO2, MEA and H2O have apparent compositions. In order to relate 

the apparent mole compositions with the actual compositions of the reactive system, 

the following relations must be used: 

𝑥𝐶𝑂2,𝐴𝑝𝑝 =
𝑥𝐶𝑂2

+ 𝑥𝐻𝐶𝑂3
+ 𝑥𝐶𝑂3

2− + 𝑥𝑀𝐸𝐴𝐶𝑂𝑂−

𝑥𝑇𝑜𝑡𝑎𝑙

 (2.26) 
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𝑥𝑀𝐸𝐴,𝐴𝑝𝑝 =
𝑥𝑀𝐸𝐴 + 𝑥𝑀𝐸𝐴𝐻+ + 𝑥𝑀𝐸𝐴𝐶𝑂𝑂−

𝑥𝑇𝑜𝑡𝑎𝑙

 (2.27) 

𝑥𝐻2𝑂,𝐴𝑝𝑝 =
𝑥𝐻2𝑂 + 𝑥𝐻30+ + 𝑥𝑂𝐻− + 𝑥𝐻𝐶𝑂3

− + 𝑥𝐶𝑂3
2−

𝑥𝑇𝑜𝑡𝑎𝑙

 (2.28) 

𝑥𝑇𝑜𝑡𝑎𝑙 = 𝑥𝐶𝑂2
+ 𝑥𝑀𝐸𝐴 + 𝑥𝐻2𝑂 + 𝑥𝐻30+ + 𝑥𝑂𝐻− + 2𝑥𝐻𝐶𝑂3

− + 2𝑥𝐶𝑂3
2−

+ 𝑥𝑀𝐸𝐴𝐻+ + 2𝑥𝑀𝐸𝐴𝐶𝑂𝑂− . 

(2.29) 

Where the subscript 𝐴𝑝𝑝, indicates that it is an apparent composition. The 

denominator (Eq. (2.29)) in Eqs. (2.26) - (2.28) is given by summing the numerators 

of all equations. Note that one of the Eqs. (2.26) - (2.28) can be substituted if the 

summation constraint in apparent basis is used.  

It is customary in the CO2 capture field of research to represent the apparent molar 

compositions in terms of the relative composition of CO2 with respect to the amine: 

𝛼𝐶𝑂2
=

𝑥𝐶𝑂2,𝐴𝑝𝑝

𝑥𝑀𝐸𝐴,𝐴𝑝𝑝
. (2.30) 

Where 𝛼𝐶𝑂2−𝑀𝐸𝐴 is the well-known CO2 loading. The solvent composition is usually 

specified in terms of amine weight percent in a CO2 free basis (𝑤𝑀𝐸𝐴). free basis molar 

fraction percent for MEA is related to the amine weight percent with: 

𝑥𝑀𝐸𝐴,𝐴𝑝𝑝 =

(
𝑤𝑀𝐸𝐴

�̅�𝑀𝐸𝐴
 )

(
𝑤𝑀𝐸𝐴

�̅�𝑀𝐸𝐴
+

100 − 𝑤𝑀𝐸𝐴

�̅�𝐻2𝑂
)

. (2.31) 

Where �̅�𝑀𝐸𝐴 and �̅�𝐻2𝑂 are the molecular weights of MEA and H2O respectively.  
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2.6.2. Semi-empirical parameters 

The Henry’s relation for the solubility of CO2 (Eq. (2.20)) in pure water at infinite 

dilution is given by: 

ln𝐻𝐶𝑂2
∞ = 𝐴 +

𝐵

𝑇
+

𝐶

𝑇2
+

𝐷

𝑇3
. (2.32) 

While the equilibrium constants for the reactions in the liquid phase have the following 

form: 

ln𝐾𝑗 = 𝐴 +
𝐵

𝑇
+ 𝐶 ln𝑇 + 𝐷𝑇. (2.33) 

The values of the Henry’s coefficient and equilibrium constants used in the base 

model are provided in Table 2.7. 

Table 2.7. Parameters for the Henry’s coefficient and the chemical equilibrium constants. 

Reaction: A B C 104D Eq. Reference 

𝐻𝐶𝑂2

∞  -6.8346 12817 -3.76E6 29970 (2.32) [59] 

H2O diss 132.899 -13455.9 -22.4773 0 (2.33) [57] 

CO2 diss 231.465 -12092.12 -36.7816 0 (2.33) [57] 

CO3 216.049 -12431.70 -35.4819 0 (2.33) [57] 

MEAH+ -4.9074 -6166.12 0 -9.84816 (2.33) [60] 

MEACOO- -4.47 -2354.14 0.168549 77.7289 (2.33) [35] 
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Chapter 3. 

Neural network 

programming 

The novel NNP hybrid modelling method and the ASNNs are presented 

in this chapter. NNP is contrasted against the current hybrid modelling 

methods in order to highlight its modelling advantages. The NNP is 

used for the development of the ASNNs described in Chapter 4 - 

Chapter 5. The NNP method is applied for modelling a diverse set of 

chemical engineering processes such as flash tanks, distillation 

columns or biogas upgrading processes.  
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3.1. Abstract 

This work introduces Neural Network Programming (NNP) as an integrated hybrid 

modelling approach. NNP consists in formulating a set of first principles equations that 

is later decomposed and transcribed to an Algorithmically Structured artificial Neural 

Network (ASNN). NNP leverages the advantages of the universal approximation 

theorem and neural network optimization algorithms in order to generate physically 

coherent machine learning models. Since ASNNs are not mere approximations of 

physics equations, it is not necessary to modify either the gradient or performance 

function in order to account for errors with respect to the first principles equations. 

ASNNs are automatically differentiable, hence, they are trained faster and more 

accurately than typical hybrid models. It is shown that the same ASNN architecture is 

transferable between processes with similar characteristics.  
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3.2. Introduction 

The complex nature of the physics involved in engineering processes is usually 

reflected in highly intertwined and sophisticated mechanistic models. This complexity 

has always been both a challenge and a motivation for the formulation of new 

modelling strategies and techniques. Although quite rigorous, mechanistic models 

often exhibit considerable deviations from experimental measurements, perhaps due 

to unreasonable assumptions about the physics or maybe because some effects were 

not properly characterized. Recently, the modelling community has shifted its 

attention to data-driven modelling tools. From quite a few modelling alternatives, 

machine learning algorithms seem to have the potential to become the dominant tool 

in the Industry 4.0 era [1,2]. From all the ML methods, Artificial Neural Networks 

(ANNs) are particularly interesting since they have been used to predict the unfolding 

mechanism of macromolecules [3], redesign proteins [4] or even perform activities 

that require complex and high-level decision making [5,6].  

The outstanding performance of ML algorithms together with important media 

coverage has brought the awareness of their capabilities, not only to academia, but 

also to the general public. However, ML has been around for decades or even 

centuries if one considers that linear regression was pivotal in the development of 

these algorithms. Figure 3.1 shows that the overall relative amount of ML research 

publications indexed in SCOPUS with respect to the end of the previous decade has 

been rapidly increasing. We expect that, in the same fashion as with other novel 

technologies, the annual research output will reach a maximum and then a decline 

will come afterwards. Nevertheless, due to the advances in computer science we 

expect that this technology will be around for several decades. 
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Figure 3.1. Relative number of research documents indexed in SCOPUS (The relative 

number of publications was calculated by dividing the yearly number of publications over 

the number of publications available in 2010). Keywords: “machine learning” OR “artificial 

neural networks”. “Limited to” Chemical engineering whenever applicable. 

There might be some well-founded skepticism about the reliability and applicability of 

ML and ANNs in many chemical engineering subdisciplines. This might be due to the 

lack of transparency and the fact that purely data-driven models override first 

principles relationships. Some of these concerns have been partially addressed in the 

past with the introduction of hybrid modelling algorithms. However, from our 

perspective, in most cases the traditional hybrid modelling methodologies address the 

physics problems more from a computer science perspective rather than from a 

chemical engineering or physics perspective. Although in some chemical engineering 

subdisciplines utilizing relaxed physics models is convenient, this is not valid in 

several subdisciplines in which it is mandatory that certain mathematical relationships 
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are exactly conserved and not only approximated. One example of this is found in 

thermodynamics, where several restrictions must be accounted for in order to be able 

to call a set of equations a “thermodynamic model”. Some other subfields that require 

a more rigorous description of the physics are transport phenomena, kinetics 

modelling or thermophysical property modelling, which we consider, will find this work 

especially interesting. 

This work proposes a hybrid modelling method named Neural Network Programming 

(NNP) that utilizes both theoretical knowledge and the universal approximator 

capabilities of ANNs. In essence, NNP consists in integrating a first-principles model 

within a customized neural network type called Algorithmically Structured Neural 

Network (ASNN). NNP not only provides a new set of hybrid models but also gives a 

new perspective on how to utilize and approach neural networks. In this way, chemical 

engineers can formulate customized architectures instead of only utilizing borrowed 

predefined generic architectures (e.g., typical fully connected neural networks). The 

NNP method has some advantages over purely data-driven algorithms and typical 

hybrid modelling configurations including their rigorousness, extrapolation 

capabilities, interpretability, auto differentiability (optimized faster and more 

accurately), ability of representing limit cases (e.g., an appropriate ASNN of a flash 

separator will not compute vapor molar fractions of a component whose molar 

composition is 0), and parallel computations (in order to simulate several systems a 

single call to the ASNN is required instead of using “for” or “while” cycles). Due to the 

parallel computation advantages given by quantum computing [7], this last feature 

might become critical in the coming decades. 
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3.3. Modelling methodologies 

3.3.1. First principles models 

First principles models are also known as mechanistic, semi-empirical, 

phenomenological, or white-box models. They are catalogued as rigorous although 

they are founded on an idealized human interpretation of the physics phenomena. 

Due to their inherent simplifications, these models usually possess empirical 

parameters that account for unmodelled dynamics (i.e., unmodelled phenomena). 

Mechanistic models can be regarded as interpretable and physically coherent 

because the mathematical equations are compelled to be consistent with physics laws 

(e.g., conservation, kinetics, or thermodynamics laws) despite the use of empirical 

parameters.  

There are different mathematical frameworks that can be utilized for mechanistic 

modelling in chemical engineering. The first type of frameworks is known as equation-

oriented modelling. These frameworks utilize their own user-friendly programming 

language, auxiliary chemical-engineering-oriented routines, and requires defining all 

involved variables and equations. Some notable examples of equation-oriented 

modelling frameworks are gPROMS, Aspen Custom Modeler, Dymola [8], ASCEND 

II [9], Omola/Omsim [10,11] , EMSO [12], ICAS-MoT [13], JModelig.org, 

Mosaic/Optimica [14,15], DAE Tools [16], Daedalus modelling framework [17], among 

others. The second category corresponds to phenomenological modelling 

frameworks. These frameworks explicitly utilize first principles to semiautomatically 

generate equation-oriented models, where the user specifies information about the 

problem such as assumptions or the topology of the system. Some notable 

phenomenological modelling frameworks are Model.la [18], Techtool [19], ModKit 
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[20], OntoCAPE [21], Mobatec [22], computer-aided modelling template [23] and an 

ontology builder for physics-chemical processes [24]. 

In some cases, these frameworks are either unknown by the modelers or are not 

suitable for specific studies. For instance, there are not any open packages for 

bifurcation analysis that can be utilized for thermally coupled distillation columns, thus, 

a combination of different libraries (MatCont and Aspen) was needed in order to 

perform the hysteresis study [25,26]. Another issue regarding the development of 

mechanistic models is their high requirement for multiple model subroutines that 

complement the first-principles model. For example, in order to model an absorption 

column, models for vapor-liquid equilibrium, kinetics, viscosity, surface tension, 

diffusivity and packing correlations are needed [27]. The number of subroutines 

needed in many unit operations can be inconvenient. Thus, in many cases, models 

based on machine learning seem to be a more practical option. 

3.3.2. Data-driven models (Artificial neural networks) 

Machine learning models are data-driven models that consist of an arrangement of 

equations that do not explicitly describe the causal interactions between the data, 

thus, they entirely rely on the data and their quality instead of the shape of the 

equations. Because of their lack of interpretability, these models are usually known 

as black boxes. Some of the most relevant data-driven modelling methods for 

chemical engineering are linear regression, artificial neural networks (ANNs), support 

vector machines (SVM), multivariate adaptative regression splines (MARS), latent 

variable methods, dimensionality reduction methods, to name a few. 

ANNs —also known as multilayer perceptrons — are the most prominent data-driven 

models because of their ability to model highly non-linear systems. They were 
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developed as representations of how biological brains process information [28–30]. In 

other words, ANNs are mathematical models that we, as humans, developed to 

“understand” how we “understand” things. However, due to the extreme complexity of 

biological brains, ANNs seem to have found broader use in data and computer 

science rather than in neurological sciences. Their modelling robustness is due to the 

universal approximation feature of the multilayer perceptrons demonstrated in the late 

1980s [31–34]. 

ANNs are constituted by input layers, output layers and hidden layers. The input layers 

transfer the information specified by the user to the neural network and the output 

layers deliver the results back to the user. Hidden layers are constituted by smaller 

building blocks called artificial neurons that transform the information in order to 

provide a numerical prediction of the outputs as a function of the inputs. Each artificial 

neuron (hence all hidden layers) must follow the artificial neuron signal transformation 

process, which consists in combining the input vectors and applying a transfer function 

afterwards. The combination of the input vectors is usually done through a linear 

combination. However, the input vectors can also be combined using a Schur / 

Hadamard product (element-by-element product). The Hadamard product as a means 

of combining input functions has been mostly used for image processing and 

classification (e.g., [35–38]). On the other hand, transfer functions are usually 

nonlinear or logic functions like the linear hyperbolic tangent function, log-sigmoid 

function, or rectified linear unit (ReLU). In some cases, it is not necessary to perform 

a non-linear transformation and the transfer function is simply a linear function. 

In order to illustrate the artificial neuron signal transformation process, a hidden layer 

formed of 𝑝 artificial neurons that linearly combines the inputs and uses a hyperbolic 
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tangent transfer function (Figure 3.2 a)). This is hidden layer is mathematically 

described as 

𝐿1 = tanh(𝜇
1
𝑋1 + 𝜇

2
𝑋2 + 𝛽)     [𝑝], (3.1) 

where 𝐿1 is the output vector with 𝑝 x 1 dimensions (𝑝 is the number of artificial 

neurons), 𝑋1 is an input vector with 𝑞
1
 x 1 dimensions while 𝑋2 has 𝑞

2
 x 1 dimensions. 

The square brackets to the right of the equation are utilized to encompass the number 

of artificial neurons in a particular hidden layer. The fitting parameter matrices 𝜇
1
 and 

𝜇
2
 have 𝑝 x 𝑞1 and 𝑝 x 𝑞2 dimensions, respectively, while the bias 𝛽 has 𝑝 x 1 

dimensions. In every hidden layer, the fitting parameter matrices reshape the size of 

the input vectors so that the new column vector has as many elements as number of 

artificial neurons. 

 

Figure 3.2. Examples of hidden layers:  

a) Linear combination with hyperbolic tangent transfer function and b) Hadamard product. 
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A second example containing the Schur product (Figure 3.2 b)) is described with the 

following equation 

𝐿2 = (𝜇
1
𝑋1) ⊙ (𝜇

2
𝑋2) ⊙ (𝜇

3
𝑋3) ⊙ (𝛽)     [𝑝], (3.2) 

where the ⊙ symbol stands for the Schur product. Once again, the fitting parameters 

matrices 𝜇
1
, 𝜇

2
 and 𝜇

3
 reshape the input vectors (𝑋1, 𝑋2 and 𝑋3) to the size of the 

output vector (𝑝 x 1 dimensions) to perform the operations. 

As seen in Figure 3.2, this work introduces a new way of expressing the architecture 

of an ANN. This was proposed because we consider that the typical fully connected 

representation does not provide valuable information aside from the overall input-

output relationship. The symbols in bold represent the name of the hidden layer while 

the subindexes and superscripts are related to the characteristics of the hidden layer. 

Every layer in this representation may have up to 2 subscripts and 2 superscripts. The 

first subscript indicates represents the number of artificial neurons 𝑝 in the layer. The 

second subscript symbolizes the use transfer function: 𝑡 for the hyperbolic tangent 

transfer function, 𝑒 for the exponential function, 𝑙 for the natural logarithm transfer 

function, ⊘ for the Hadamard division function, 𝑠 for the saturating linear transfer 

function, 𝑟 for the rectified linear transfer function, and a blank space for the linear 

transfer function. The first superscript indicates whether the linear combination (+) or 

the Hadamard product (⊙) is used. The second superscript indicates whether there 

is a bias (marked with 𝛽) or not (no second superscript). 

This work focuses on the application of the NNP method to Feedforward Neural 

Networks (FFNNs). FFNNs are a static time-invariant neural network and are divided 

in two subclasses: shallow artificial neural networks (e.g., Figure 3.3 a)) and deep 
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neural networks (e.g., Figure 3.3 b)). The difference between a shallow neural network 

and a deep neural network is that the former must have 2 hidden layers while latter 

should have 3 or more hidden layers. In general, shallow neural networks are related 

to “machine learning” while deep neural networks are related to “deep learning”. 

Despite their differences, according to the universal approximation theorem, both 

shallow and deep neural networks are universal approximators.  

 

Figure 3.3. FFNN sketches:  

a) shallow neural network and b) deep neural network. 
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3.3.3. Hybrid models 

Data-driven models that are, to some extent, physics-driven are known as hybrid 

models or grey-box models. Hybrid modelling combines the flexibility of ML-based 

models with the rigorousness of mechanistic models. Specifically, they utilize the 

physics framework inherent to mechanistic models and a data-driven model to reduce 

the discrepancy between the hybrid model and the experimental data. The typically 

reported benefits of using hybrid models over the mechanistic and data-driven 

modelling methodologies are: lower data requirement, more interpretability, more 

accuracy, and more compliance with physics than purely data-driven models [39–41]. 

Several data-driven models have been utilized in hybrid models such as ANNs, 

support vector machines [42], Padé expansion [43], extended Kalman filter [44], 

multivariate adaptive regression splines (MARS) [45], multivariate discrete-time 

models [46], principal component analysis [47], fuzzy systems [48], to name a few. 

The development of hybrid models can be done by using serial or parallel hybrid 

modelling structures [49]. Although in both modelling structures the core idea is alike, 

the mechanistic and the data-driven model interact differently as illustrated in Figure 

3.4. 

In the serial hybrid modelling paradigm, the data-driven and mechanistic models are 

set up in sequence (Figure 3.4 a)). The input variables are fed to the black box model 

thereafter fed to the first principles model (the sequence between the black and white 

boxes can also be reversed [50]). The mechanistic model has the first principles 

equations (e.g., conservation laws) while the black box is utilized as the empirical 

section of the model (e.g., mass transfer coefficients or kinetic constants). The 

pioneering work by Psichogios and Ungar (1992) for sequential hybrid models was 
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firstly applied to fed batch bioreactors in order to substitute the traditional empirical 

parts of a kinetic model with an ANN. Some other hybrid modelling examples have 

been used to predict the pulp quality [52], kinetics of polymerization processes [53], 

fermentation processes [54], scaling of a pilot plant catalytic cracking [55], 

crystallization rates [56–58], process identification of an ethylene glycol process [59], 

analysis of fixed-bed reactor processes [60], cheese fermentation [61].  

 

Figure 3.4. Hybrid modelling structures. 



Neural network programming 

101 

The parallel hybrid modelling paradigm consists in formulating a mechanistic model 

independently of the black box model (Figure 3.4 b)). The data-driven model is used 

to predict the difference between the mechanistic model (with its own empirical 

parameters) and the experimental measurements. The first reported parallel model 

was done by Su et al. (1992) for the modelling of a reactor system where the output 

signals of both individual models were summed. A similar approach was proposed by 

Thompson and Kramer (1992) for the predictions of the kinetics in a fermentation 

study. Other examples are the knowledge based modular networks for yeast 

production processes [64], process control with knowledge-enhanced algorithms [65] 

or monitoring and control of bioreactors [66]. More recently, improved algorithms and 

structures that provide enhanced accuracy in parallel hybrid models have been 

proposed for flowmeters [41]. 

The decision of which modelling structure is better is a function of the amount of 

available data and the accuracy of the mechanistic model. In general, it has been 

proposed by Sansana et al. (2021) as generally rule to choose parallel models if the 

deviation between the mechanistic model and the measurements is considerable; 

otherwise, a serial model is preferred. 

On the other hand, there are other important types of hybrid modelling paradigms that 

are not based on these structures. They add information through the gradient of the 

performance function rather than with a mechanistic model. Their main feature is the 

utilization of a loss function comprised of different error terms, which are specific to 

each method. Some of the most remarkable examples is the solution of Partial 

Differential Equations (PDE) based on Physics-Informed Neural Networks (PINNs) 

[67] or the theory/physics guided neural networks [68,69]. For a more in-depth review 
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of these hybrid modelling approaches the reader can refer to the review by 

Karniadakis et al., 2021. 

The neural network programming (NNP) approach proposed in this work is an 

integrated method that transcribes first principles equations on the architecture of an 

ASNN (Figure 3.4 c)). Applying NNP to a problem yields a new set of neural networks: 

Algorithmically Structured Neural Network (ASNNs). NNP simplifies the ASNN 

training since the performance function does not need to be modified. Utilizing NNP 

allows the formulation of models that are completely coherent with the physics 

framework and are not mere approximations (as gradient-based or parallel structure 

methods). These features make the NNP an ideal tool for fields like thermodynamics 

or kinetic modelling where the consistency of the model is as important as the 

accuracy.  

ASNNs can be equivalent to serial hybrid models if the same model structure, 

variables, and information flow is utilized. Nevertheless, as opposed to the typical 

hybrid model paradigms, ASNNs are automatically differentiable. Automatic 

differentiation is a technique in which the derivative of an operation is computed by 

evaluating elementary arithmetic operations, thus, the numerical error is only caused 

by computational precision limits. Since the typical hybrid model structures are usually 

not automatically differentiable, they perform numerical differentiations with an 

inherent numerical error. The numerical error associated to numerical differentiation 

can be highly inaccurate due to round-off and truncation errors [71]. Even though for 

small processes with low amount of experimental data the computational efficiency 

might not be significant, for large processes training an ANN might become 

economically prohibitive. Another important factor is the coding efficiency imposed by 
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the ASNNs framework, which compels the model to be written in matricial operations, 

hence, exploiting the parallel computing technology. 

Although ASNNs and PINNs have similar conceptual ideas, the main differences 

between the two is that PINNs account for the physics and constraints through the 

performance function while the ASNNs account for them through the architecture. 

This suggests that ASNNs require fewer fitting parameters than PINNs (which usually 

require several layers with dozens or hundreds of fitting parameters). However, it is 

not fair to compare these two approaches in this fashion since PINNs and ASNNs 

were designed to solve different sets of problems. 

3.3.4. Interpretability 

The lack of interpretability in machine learning models might be one of its main 

drawbacks. In order to address this issue, two method categories for interpreting data-

driven models have been reported model-specific methods and model-agnostic 

methods [72]. The model specific methods are those that can be understood or “read” 

by analyzing the model structure like the gradient booster algorithm XG-boost [73], 

the use of rule lists [74,75], or additive models [76]. The model agnostic methods 

evaluate the feature importance and, therefore, are applicable to any machine 

learning method. For a more in-depth review we recommend the following references 

Ribeiro et al. (2016) and Bikmukhametov and Jäschke (2020).  

The ANN training procedure heavily relies on random processes that induce entropy 

of modeling into the optimized parameters and, hence, reducing the chances to 

interpret the model. Randomness can be observed in the selection of the datapoints 

used for training / validation, the initial values of the optimizable parameters, or the 

optimization process (e.g., the stochastic random descent method). Furthermore, the 
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fact that the ANNs utilize generic equations of the same form (e.g., Eq. (3.1)) does 

not facilitate their interpretation. Because of this, it is unlikely to produce the same 

optimized parameter values in different runs. The highly entropic behavior of the ANN 

training can be compared to the molecular movement in an ideal mixture in an isolated 

system (like in the Figure 3.5 a) sketch). Due to the high entropy associated to the 

molecular movement, it is unlikely that the same molecule arrangement will be 

obtained even if both runs start at the same conditions (chances are 1 in 24).  

Mechanistic models are expected to have a lower entropy since the equation 

parameters are constrained by the first principles equations. This behavior can be 

compared to the molecular movement in a nonideal mixture in an isolated system (as 

illustrated in Figure 3.5 b)). Although in principle, these molecules can “freely” move, 

the molecule interactions can compel that some molecule arrangements are always 

formed (the fact that molecules associate has been used for developing local 

composition activity coefficient models [77,78]). 

Considering the above, we hypothesize that an ASNN with an appropriate architecture 

will have a more uniform distribution of the optimized parameters (if trained several 

times) even if it is trained with the highly entropic algorithms commonly used in ANNs. 

Therefore, the proper construction of the ASNN might be equally or more important 

than the training procedure. The interpretability of ASNNs is further discussed in 

section 3.5.1.2. 
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3.4. Methodology 

The NNP algorithm is divided in six steps, which are briefly described below and 

exemplified in section 3.5. 

Step 1. Setting the modelling objective and data collection. Definition of the 

phenomenon or process to be modelled, delimitation of the system boundaries, 

gathering of experimental data or auxiliary data that can aid the ANN training (e.g., 

vapor liquid equilibrium data may be useful if a flash separator is to be modelled). 

Step 2. Definition of the assumptions, physics laws and constraints. Formulation of 

the first-principles equations and auxiliary equations to be transcribed. Determination 

of the model inputs and outputs in accordance with the Degrees of Freedom (DoF) of 

the first principles model. Defining a first principles system of equations inherently 

assumes a model structure, therefore, the first principles system of equations must 

be completely determined. Acknowledging the assumptions and the limitations of the 

physics equations is paramount in order to modify the ASNN in case that the proposed 

structure does not meet the performance expectations.  

Step 3. Identification of the uncertain/surrogate sections of the model. The selection 

of the empirical parameters/sections that are to be substituted with a universal 

approximator substructure. A universal approximator substructure is any ANN with a 

shallow neural network or a deep neural network architecture. It should be remarked 

that the user must ensure that the uncertain/surrogate sections of the model 

completely satisfy the system of equations proposed in step 2. 

The user has the flexibility to either use traditional semi-empirical parameters (e.g., 

saturation pressure) or new model parametrizations. The universal approximators can 
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also be utilized as surrogates in order to simplify the modelling process by lumping 

several parameters into a single substructure. 

Step 4. Equation decomposition. Every first principles equation must be decomposed 

into simpler equations so that they can be transcribed and subsequently arranged. It 

must be remarked that the decomposition must follow the rules imposed by the 

artificial neuron signal transformation process (e.g., Eqs. (3.1) - (3.2)). The 

decomposition algorithm for an arbitrary equation 𝒇 is presented in Figure 3.6, where 

𝛸𝑗 is the input 𝑗 fed to the equation 𝛶𝑘 and 𝑚 is the total number of inputs fed to 𝛶𝑘 

(includes the bias/constant, if any). The function 𝒇 is defined by placing on the right 

side the part of the equation to be decomposed. As seen in Figure 3.6, the 

decomposition is done according to the hierarchy of operations (HO), in other words, 

in the same order as if the equation was being numerically evaluated in a calculator. 

Therefore, the decomposition should be done from left to right, from the innermost to 

the outermost parentheses, and multiplication operations have priority over the 

addition / subtraction operations. Note that if function 𝛶𝑘
∗  is not encompassed in a 

nonlinear function, then 𝛶𝑘 = 𝑔(𝛶𝑘
∗) = 𝛶𝑘

∗ . The algorithm ends when the right side of 

the first principles equation cannot be decomposed anymore (i.e., when 𝛶𝑘 = 𝑓). 

It must be remarked that divisions cannot be expressed as 𝑎/𝑏 in an ANN, but rather 

as 𝑎𝑏−1. Therefore, divisions should be treated as nonlinear functions in NNP (this is 

valid for the Deep Learning Toolbox from Matlab). 



 

108 

 

Figure 3.6. Equation decomposition algorithm. HO: hierarchy of operations. 

Step 5. Construction of the ASNN. A solution algorithm should be formulated in order 

to solve the decomposed equations. In this work, we propose two alternatives for 

implementing the solution procedure: sequential solution algorithm and matrix 

inversion algorithm (further explained in section 3.5). After the solution algorithm is 

proposed, the ASNN is constructed following the order of computation given by the 

solution algorithm. 

The input and output layers correspond to the inputs and outputs selected in steps 2 

and 3. The inputs can be fed to the ASNN in different mathematical forms as long as 
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they are not dependent on the computations done by the neural network (this is further 

discussed in section 3.5.2.1).  

The algorithm shown in Figure 3.6 automatically generates the solution sequence 

(inverted) of the decomposed equations. However, if more than one function 𝒇 is to 

be decomposed, then the user should decompose each function and subsequently 

arrange all the decomposed equations from every function. 

It must be remarked that an ASNN must have an associated weight matrix (𝑊) to 

every vector that is fed to a layer (e.g., if the decomposition of an arbitrary equation 

yields 𝛶𝑘 = 𝛸1 + 𝛸2, the neural network will represent it as 𝛶𝑘 = 𝑊1𝛸1 + 𝑊2𝛸2).  

Constructing the ASNN architecture is the only mandatory requirement in this step. 

Nonetheless, minor structural modifications can be performed in order to simplify the 

ASNN architecture or to constraint the predictions. The first type of minor modification 

merges the output of a universal approximator with the equation that is feeding. 

However, this can only be done if the output of the universal approximator feeds 

exactly one equation. A second type of minor modification consists in adding process 

constraints in order to help the ASNN to compute unrealistic results if the model is 

extrapolated too far away from the training conditions (e.g., avoid negative volumes). 

The minor modifications are no limited to the ones listed above. These modifications 

are done as a function of each modelled system and, in general, are not a requirement 

for successfully implementing NNP.  

Step 6. Training the ASNN. The parameters with low entropy are those that help to 

transcript the physics laws within the ASNN architecture (identified in step 2) while the 

high entropy parameters are the ones used for modelling semi-empirical parameters 
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(identified in step 3). Considering this, the low entropy parameters must be fixed so 

that the physics equations are properly transcribed.  

The fixed parameters can either be used to only transfer the signal (e.g., if the identity 

matrix is used), to perform summations of the input vector (e.g., if an all-ones row 

vector), or to arrange an output vector according to the solution algorithm (e.g., to set 

up the constant vector 𝐶 for the matrix inversion algorithm). Utilizing the weight 

parameter matrices for quite different purposes is one of the main strengths of the 

NNP algorithm. The high entropy parameters are set free so that the ASNN can adjust 

to the data.  

Since the unfixed parameters have a high entropic behavior, it is recommended to 

train the model several times and pick the set of parameters that provides the best 

performance. 
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3.5. Results and discussion 

This section presents the application of the NNP method to two study cases. The first 

case uses NNP to model a thermodynamic vapor-liquid equilibrium (VLE) problem 

and the second study case applies the NNP to two-product separators. 

3.5.1. Case study 1: ideal VLE system 

3.5.1.1. Application of the NNP method 

Step 1. Setting the modelling objective and data collection. This example develops a 

VLE model for a benzene (1) and toluene (2) system. A dataset containing the results 

of 200 simulations was utilized to train the ASNN. This dataset was generated by 

using the ideal thermodynamic package available in Aspen Plus v8.8. The molar 

fraction of component 1 (𝑥1) and the temperature (𝑇) are the 2 independent variables 

and were randomly generated according to 0 < 𝑥1 < 1 and 333 𝐾 ≤ 𝑇 ≤ 473 𝐾. The 

output variables taken from the Aspen Plus model were the partial pressure 𝑝
𝑖
 and 

the total pressure 𝑃. 

Step 2. Definition of the assumptions, physics laws and constraints. The physics laws 

and constraints to be considered are Raoult’s law (Eq. (3.3)), and Dalton’s law 

(Eq.(3.5)) 

ln 𝑥𝑖 + ln 𝑝
𝑖
𝑠𝑎𝑡(𝑇) = ln 𝑝

𝑖
 (3.3) 

𝑝
𝑖
= exp(ln 𝑝

𝑖
) (3.4) 

∑ 𝑝
𝑖

𝑖

= 𝑃. 
(3.5) 
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Considering that the partial pressure vector in Eq. (3.3) is in logarithmic and the partial 

pressure vector in Eq. (3.5) is not, an auxiliary equation (Eq. (3.4)) is needed to solve 

the system of equations. Whenever there is a subscript 𝑖, the equation refers to 

component 𝑖, otherwise, it refers to a vector (e.g., 𝑥 is the vector of liquid molar 

compositions and 𝑥𝑖 is only for component 𝑖) 

Imprinting physics laws into the ASNN inherently assumes that the theoretical 

framework in which they were developed is correct. Hence, the available DoF must 

be the same as in the mechanistic model. It was previously shown that ignoring the 

DoF for modelling a VLE system (Gibbs’ phase rule) makes the ANN to find 

correlations foreign to equilibrium thermodynamics [79]. The Gibbs’ phase rule 

determines the number of intensive variables that can be independently selected. For 

vapor-liquid non-reactive systems, the Gibbs’ phase rule is 

𝐷𝑜𝐹 = 2 + 𝑛 − 𝜋 . (3.6) 

Where 𝑛 is the number of components and 𝜋 is the number of phases. By evaluating 

Eq. (3.6), the DoF is 2.  

Step 3 Identification of the uncertain/surrogate sections of the model. In this example, 

the source of entropy (or ignorance according to the definition of entropy [80]) comes 

from the uncertainty about the form of the pure component saturation pressure 

equation. At low pressures, 𝑝
𝑖
𝑠𝑎𝑡 can be safely assumed to be only a function of 𝑇. 

Therefore, a shallow neural network function (𝜂) with the general form can be utilized 

ln 𝑝
𝑖
𝑠𝑎𝑡 = 𝜂 (𝑇). (3.7) 

Note that 𝜂 is formed by two sequential equations.  
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Step 4. Equation decomposition. Since the equations utilized in this example are 

relatively simple, the decomposition procedure does not change the form of Eqs. (3.3), 

(3.4), (3.5), and (3.7). Therefore, they can be directly transcribed into an ASNN. 

Step 5. Construction of the ASNN. This example applies the functionality matrix 

equation-ordering algorithm from Book and Ramirez [81,82] to arrange Eqs. (3.3), 

(3.5), (3.7). The functionality matrix of this example is 

𝐸𝑞.\ 𝑉𝑎𝑟. 𝑇 ln 𝑝
𝑖
𝑠𝑎𝑡 ln 𝑥𝑖 ln 𝑝

𝑖
𝑝

𝑖
𝑃

(3.7) 𝐱 𝐱

(3.3) 𝐱 𝐱 𝐱

(3.3) 𝐱 𝐱

(3.5) 𝐱 𝐱

. (3.8) 

Note that Var. stands for variable. The 𝐱 marks indicate that the variables are present 

in the equation that matches the given row. For instance, ln 𝑝
𝑖
𝑠𝑎𝑡, ln 𝑥𝑖 and ln 𝑝

𝑖
 are 

related by Eq. (3.3).  

The functionality matrix indicates that the solution procedure should evaluate, in order, 

Eqs. (3.7), (3.3), (3.4) and (3.5). The resulting ASNN is illustrated in Figure 3.7 and 

given by the following set of equations  

𝐿1 = tanh(𝑊1𝑇
∗ + 𝛽

1
)   [3] (3.9) 

𝐿2 = 𝑊2𝐿1 + 𝛽
2
   [𝑛] (3.10) 

𝐿𝑅 = 𝑊𝑅,1 ln(𝑥) + 𝑊𝑅,2𝐿2 = ln(𝑝)   [𝑛] (3.11) 

𝐿𝐴 = exp(𝑊𝐴𝐿𝑅)   [𝑛] (3.12) 
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𝐿𝐷 = ln(|𝑊𝐷𝐿𝐴|) = ln(𝑃)    [1]. (3.13) 

Neither the input nor the output variables are normalized, however, the absolute value 

of 𝑇 is reduced according to 𝑇∗ = 𝑇/1000. 

 

Figure 3.7. Visual representation of the ASNN that represents the VLE. 

Layers 𝐿1 and 𝐿2 are the representation of the shallow neural network substructure 

that implicitly calculates the logarithm of the saturation pressure as a function of 𝑇∗. 

According to Eq. (3.3), ln(𝑥) and ln(𝑝𝑠𝑎𝑡) must be linearly combined in order to 

estimate ln 𝑝. The auxiliary equation (Eq. (3.4)) is represented in layer 𝐿𝐴, and Dalton’s 

law corresponds to layer 𝐿𝐷. Note that Layer 𝐿2 could have been merged with the 

Raoult’s law layer.  

The ASNN could have utilized 4 layers if physics laws were not represented in their 

logarithmic form. This emphasizes that an adequate selection of the input and output 

variables is essential since it can needlessly complicate the ASNN architecture. 

The total number of sets of parameters (𝑊) in Eqs (3.9) - (3.13) must be equal to the 

number of connections that feed a non-output layer (six in this example: 𝑊1, 𝑊2, 𝑊𝑅,1, 

𝑊𝑅,2, 𝑊𝐴, and 𝑊𝐷. The number of neurons in layers 𝐿2, 𝐿𝑅, 𝐿𝐴, and 𝐿𝐷 is equal to the 
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number of components (𝑛) since Raoult’s law is used 𝑛 number of times (𝑛 = 2 in this 

example). The number of neurons in layer 𝐿1 was determined by a trial-and-error 

procedure and it was found that using 3 neurons provided excellent prediction 

capabilities of the model without incurring into overfitting.  

Step 6. Training the ASNN. Since layers 𝐿𝑅, 𝐿𝐴 and 𝐿𝐷 represent two physics laws 

and an exact mathematical relationship, the transformation functions and their 

parameters are fixed as follows:  

• Layer 𝐿𝑅: the set of parameters available in this layer are 𝑊𝑅,1 and 𝑊𝑅,2. Both 

weight matrices should be equal to an identity matrix with 𝑛 x 𝑛 dimensions. 

• Layer 𝐿𝐴: the set of parameters that correspond to this layer is 𝑊𝐴 which 

should be an identity matrix of 𝑛 x 𝑛 dimensions. 

• Layer 𝐿𝐷: 𝑊𝐷 is an all-ones vector of 1 x 𝑛 dimensions so that its dot product 

with 𝐿𝐴 is equivalent to Dalton’s law (Eq. (3.5)). 

The nonfixed parameters (𝑊1 and 𝑊2) were trained afterwards using the Bayesian 

regularization algorithm [83–85]. The deep learning toolbox from Matlab 2020b was 

used for implementing and optimizing the ASNN. 

The data was divided using the default parameters from Matlab (70 % for training, 15 

% for validation and 15 % for testing). The learning rate was set to 0.001 and the 

weights of each observation were divided by the square of the experimental value in 

order to emulate an AARD performance function. No special hyperparameter tuning 

was required.  

The NNP approach showed adequate representation of the ideal VLE system. The 

absolute average relative deviation (AARD) of the partial pressures 𝑝
1
 and 𝑝

2
 were 



 

116 

estimated to be 0.09 % and 0.08 % respectively while for total pressure 𝑃 is 0.10 %. 

One of the main features of NNP is that it is possible to retrieve and analyze the 

parameters calculated inside the ASNN. In this case, if the output values of 𝐿2 are 

analyzed, one can notice that they correspond to those of ln(𝑝𝑠𝑎𝑡), hence, the values 

of 𝑝𝑠𝑎𝑡 can be compared to those calculated with Aspen Plus. In this example, the 

AARD of 𝑝
1
𝑠𝑎𝑡 and 𝑝

2
𝑠𝑎𝑡 are 0.12 % and 0.15 %, respectively. These values are 

satisfactory considering that the ASNN was not explicitly trained for modelling these 

values. 

3.5.1.2. Entropy of the modelling process 

It was discussed in subsection 3.3.4 that providing a structure to an ANN can reduce 

the entropy of the optimization process. Thus, sharpening the distribution of the fitting 

parameters. We tested this hypothesis by comparing the parameter distribution values 

of the ASNN (Figure 3.7) and a shallow neural network (SNN) with 4 artificial neurons 

(see Figure 3.8). In this study, the parameters fixed in step 6 (e.g., 𝑊𝐴 or 𝑊𝐷) were 

fitted by the ANN training algorithm instead of being fixed. Moreover, biases were 

added to Eqs. (3.11) - (3.13) and obtain, respectively, 

𝐿𝑅 = 𝑊𝑅,1 ln(𝑥) + 𝑊𝑅,2𝐿2 + 𝛽
𝑅
     [𝑛] (3.14) 

𝐿𝐴 = exp(𝑊𝐴𝐿𝑅 + 𝛽
𝐴
)     [𝑛] (3.15) 

𝐿𝐷 = ln(|𝑊𝐷𝐿𝐴 + +𝛽
𝐷
|)      [𝑛]. (3.16) 

The biases were added for the purpose of this study. The ASNN trained in this study 

is formed by Eqs. (3.9), (3.10), (3.14), (3.15), and (3.16). The optimized parameter 
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distribution was analyzed by training both neural networks 1000 times with the same 

dataset used in subsection 3.5.1.1.  

 

Figure 3.8. Shallow neural network (SNN) architecture of the benzene (1) – toluene (2) VLE 

system.  

Figure 3.9 a) shows the empirical probability distribution of the weight parameters of 

the second layer of the shallow neural network (𝑊2
∗). This distribution is broader and 

flatter than the optimized parameter distributions of the ASNN (Figure 3.9 b) and 9 

d)). These characteristics imply that there is a low likelihood that the same fitting 

parameter values will be obtained during different training procedures. Therefore, the 

𝑊2
∗  parameters have high entropy and consequently low interpretability. It is not 

possible to obtain definite conclusions from their numerical values despite having 

good agreement with the dataset (the AARD of all shallow neural networks is between 

0.05 and 0.25 %). If more artificial neurons are utilized in the SNN, more variability of 

the fitting parameters are expected, hence, the chances of interpreting overfitted 

ANNs are even lower than non-overfitted ANNs. 

The empirical probability distribution of the optimized parameters of the ASNN are 

presented in Figure 3.9 b) – d). Figure 3.9 b) shows two highly sharp distributions that 

correspond to 𝑊𝑅,1. These distributions indicate that there is an 80 % chance that the 
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optimized 𝑊𝑅,1 parameter values are either 0 or 1. It is worth mentioning that the 

models whose 𝑊𝑅,1 parameters are 0 and 1 have an AARD less than 1 %. This 

suggests that the optimized parameters which have the highest empirical probability 

are the ones with better predictions. 

 

Figure 3.9. Histograms of the empirical probability of the optimized parameter values of: 

a) 𝑊2
∗  (shallow neural network), b) 𝑊𝑅,1, c) 𝑊𝑅,2 and d) combined effect of 𝛽𝐴 and 𝑊𝐷. 

From now on, we refer to the model developed in section 4.1.1 as the fixed parameter 

neural network (FNN) while the models developed in this section are called unfixed 

parameter neural networks (UNN).   
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If one analyzes the parameters found in 𝑊2, 𝑊𝑅,2, 𝑊𝐷, 𝛽
𝑅
, and 𝛽

𝐴
, it is not possible 

to obtain definite conclusions about the parameter behavior due to their blunt 

distribution. For example, Figure 3.9 c) shows a broad and flat empirical probability 

distribution of the 𝑊𝑅,2 parameters. The characteristics of the distribution shown in 

Figure 3.9 c) resemble those of a random probability distribution, hence, neglecting 

the possibility to draw objective conclusions from it. The results of Figure 3.9 c) 

indicate that 𝑊𝑅,2 do not interfere with the prediction capabilities. The accurate 

predictions of the UNN together with the fact that the 𝑊𝑅,2 and 𝛽
𝐷
 values agree with 

those of the FNN indicate that these models, despite being different, perform 

equivalent calculations. For example, due to lack of information in the ASNN, the 

parameters 𝑊𝑅,2, and 𝛽
𝑅
 become highly dependent on the parameter values of 𝑊2 

and 𝑊𝑅,2. In order to interpret this, let us combine Eqs. (3.10) and (3.14)  

𝐿𝑅 = 𝑊𝑅,1 ln(𝑥) + 𝑊𝑅,2(𝑊2𝐿1 + 𝛽2) + 𝛽𝑅. (3.17) 

Eq. (3.17) indicates that the product 𝑊𝑅,2(𝑊2𝐿1 + 𝛽
2
) has the condition of having 

infinite number of solutions. This condition suggests that the parameter distribution of 

these two sets of parameters should be relatively flat (as shown in Figure 3.9 c)). This 

signifies that the parameter 𝑊𝑅,2 has high entropy, therefore, the terms 

𝑊𝑅,2(𝑊2𝐿1 + 𝛽
2
) + 𝛽

3
 in Eq. (3.17) become equivalent to ln (𝑝𝑠𝑎𝑡). The difference 

between the ln (𝑝𝑠𝑎𝑡) values and the values calculated from 𝑊𝑅,2(𝑊2𝐿1 + 𝛽
2
) + 𝛽

3
 is 

quite low (0.03 - 0.06  ). This suggests that the ASNN “knows” that ln (𝑝𝑠𝑎𝑡) must be 

calculated, however, it is difficult to interpret it because we provided a sequence of 

operations with poor interpretability.  
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There is a similar effect in the Dalton’s law section of the ASNN. The bias 𝛽
𝐴
 (constant) 

in Eq. (3.15) is transformed to its exponential form and multiplies the parameters in 

𝑊𝐷. If the overall interaction of these parameters is analyzed, two narrow and definite 

distributions can be seen (Figure 3.9 d)). By only considering the UNN with an AARD 

< 1 %, there is a 50 % probability that the optimized parameter is -1 and 50 % that it 

is 1. This apparent disagreement with the FNN (where all parameters should be equal 

to +1) is caused by the fact that the argument of the logarithmic function uses absolute 

values, thus making -1 and 1 equivalent. 

3.5.2. Case study 2: two-product separator 

3.5.2.1. Sequential solution algorithm 

Step 1. Setting the modelling objective and data collection. The objective of this 

example is to develop a model of a vapor-liquid separator of a multicomponent non-

ideal mixture (see Figure 3.10). This model is expected to predict the molar flows of 

the components in each product stream. The components present in the mixture are 

methanol (1), ethanol (2) and water (3).  

A dataset containing the results of 50 simulations was utilized to train the ASNN. This 

dataset was generated with the equilibrium two-phase separator model and the NRTL 

thermodynamic package available in Aspen Plus v8.6. The input variables used were 

the molar fractions in the feed stream 𝑧𝑖 (0 ≤ 𝑧𝑖 ≤ 1), the separator temperature 𝑇 

(343 𝐾 < 𝑇 < 413 𝐾) and the vaporization fraction Ψ (0 ≤ 𝛹 ≤ 1). The values of the 

independent variables 𝑧𝑖 and 𝑇 were randomly generated. 
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Figure 3.10. Diagram of the modelled two-phase separator. 

Step 2. Definition of the assumptions, physics laws and constraints. The mass 

conservation equation for each component in the vapor-liquid separator can be written 

in terms of molar fractions and the separation or vaporization fraction (𝛹 = 𝑉/𝐹): 

𝑧𝑖𝐹 = 𝑦
𝑖
𝛹𝐹 + 𝑥𝑖(1 − 𝛹)𝐹 (3.18) 

where, 𝑧𝑖, 𝑦𝑖
 and 𝑥𝑖 are the component 𝑖 molar fractions in the feed, vapor, and liquid 

streams, respectively. The total molar flows of the feed, vapor and liquid streams are 

respectively 𝐹, 𝑉 and 𝐿. Assuming thermodynamic equilibrium, the molar fraction of 

the vapor and the liquid phases should hold the following relationship (independently 

of the magnitude of 𝐹) 

𝜆𝑖 =
𝑥𝑖

𝑦
𝑖

, (3.19) 
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where 𝜆𝑖 is the inverse of the distribution coefficients (k-values) commonly used in 

vapor liquid equilibrium calculations. By combining Eqs. (3.18) - (3.19) and multiplying 

the result by 𝛹/𝐹, the following equation is obtained 

𝑣𝑖
∗ = 𝑦

𝑖
𝛹 = 𝑧𝑖𝛹 [

1

𝛹 + 𝜆𝑖(1 − 𝛹)
]. (3.20) 

The operation 𝛹/𝐹 was performed in order to use scalable variables instead of total 

molar flows. Therefore, the “reduced” vapor flow 𝑣𝑖
∗ is independent of the magnitude 

of 𝐹 (valid for systems in equilibrium). The reduced mass balance for each component 

in the liquid phase is 

𝑙𝑖
∗ = 𝑧𝑖

∗ − 𝑣𝑖
∗ (3.21) 

According to the first principles, the DoF are 4 (𝑇, 𝛹 and 2 independent molar 

fractions).  

Step 3. Identification of the uncertain/surrogate sections of the model. Although the 𝜆𝑖 

parameters are not explicitly semi-empirical, they are calculated in mechanistic 

models with the product of semi-empirical models (e.g., activity coefficient models or 

pure component saturation pressure), hence, this is a source of entropy. Therefore, 

𝜆𝑖 can be calculated with a universal approximator substructure. Consequently, a 

shallow neural network can be used to predict the 𝜆 vector 

𝜆 = 𝜂 (𝑧, 𝑇, 𝛹). (3.22) 

The Gibbs’ phase rule establishes the inputs to 𝜂 in Eq. (3.22), therefore, it should not 

be biased. 
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Steps 4 - 5. Equation decomposition and construction of the ASNN architecture. Since 

Eqs. (3.20) - (3.22) are somewhat complex, it is necessary to break down the 

equations and organize the solution algorithm. The detailed procedure of the equation 

decomposition, structural analysis, and equation arrangement of this example can be 

found in the supplementary information. 

The ASNN that models the two-phase separator is illustrated in Figure 3.13 and is 

described by the following set of equations 

𝐿1 = tanh(𝑊1𝐼1)     [𝑝] (3.23) 

𝐿2 = (𝑊2,1𝛹
∗) ⊙ (𝑊2,2𝐿1)     [𝑛] (3.24) 

𝐿3 = 1 ⊘ (𝑊3,1𝛹 + 𝑊3,2𝐿2)     [𝑛] (3.25) 

𝐿4 = (𝑊4,1𝛹) ⊙ (𝑊4,2𝑧) ⊙ (𝑊4,3𝐿3)     [𝑛] 

𝐿4 = 0     𝑖𝑓     𝐿4 < 0     [𝑛] 

(3.26) 

𝐿5 = 𝑊5,1𝑧 + 𝑊5,2𝐿4     [𝑛] 

𝐿5 = 0     𝑖𝑓     𝐿5 < 0     [𝑛] 
(3.27) 

𝐿6 = 𝑊6,1𝑧 + 𝑊6,2𝐿5    [𝑛], (3.28) 

where 𝐼1 is a vector containing 𝑧, 𝑇 and 𝛹, and 𝛹∗ = 1 − 𝛹. Layer 𝐿1 and the operation 

(𝑊2,2𝐿1) in 𝐿2 is the shallow neural network substructure (representing Eq. (3.22)). 

Eq. (3.20) was decomposed into smaller operations (Eqs. (3.24) - (3.26)). For 

instance, (𝑊2,1𝛹
∗) ⊙ (𝑊2,2𝐿1) in Eq. (3.24) is equivalent to the 𝜆(1 − 𝛹) term in Eq. 
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(3.20). Layers 𝐿2 to 𝐿6 have 3 neurons each because there are 𝑛 = 3 components 

and 𝐿1 has 𝑝 =8 neurons (adjusted by a trial and error procedure). 

The homogeneous characteristic of the ASNN (Figure 3.11) comes from the fact that 

𝑧 is used as input in 𝐼1 in order to estimate 𝜆 (because of the equilibrium assumption). 

If the molar flows 𝑓 were utilized instead of 𝑧, it would mean that the ASNN is 

assuming a non-homogeneous behavior, therefore, the system could not be in 

thermodynamic equilibrium. Conversely, if the input 𝑧 is substituted with the molar 

flows 𝑓, the predicted values molar flows would not be reduced molar flows (i.e., 𝑣 

and 𝑙 instead of 𝑣∗ and 𝑙∗). 

Step 6. Training the ASNN. The architecture of the ASNN is composed of 4 input 

layers, 6 hidden layers and 2 output layers. The hidden layers 𝐿1 and 𝐿2 contain 

adjustable parameters while layers 𝐿3, 𝐿4, 𝐿5 and 𝐿6 containg fixed parameters layers 

(some of the parameters in 𝐿2 are fixed and some are adjustable). In order to 

represent the first principles equations, the following considerations must be done: 

• The parameter weight matrices 𝑊3,2, 𝑊4,2, 𝑊4,3, 𝑊5,2, and 𝑊6,2 should be the 

unit matrix with 3 x 3 dimensions for this ternary mixture. 

• The parameter weight matrices 𝑊5,1 and 𝑊6,1 are the negative identity matrix 

with 3 x 3 dimensions.  

• The parameter weight vectors 𝑊2,1, 𝑊3,1 and 𝑊4,1 should be a unit vector with 

3 x 1 dimensions. 

• Only the inputs in layer 𝐼1 are normalized using the “mapminmax” function 

from Matlab (transforms all variables to values between -1 and 1). 

Conversely, the remaining layers should not be normalized.  
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The data used to train the model was divided in the training, validation, and test sets. 

The training set has 70 % of the data points while the validation and test sets are 15 

% each. In order to distribute the error evenly across all the datapoints, it was 

necessary to weight the observations. The datapoint weights for 𝑙∗ and 𝑣∗ were 

calculated with (1/𝑙∗)2 and (1/𝑣∗)2 respectively. Due to the stochastic nature of the 

neural network training algorithms, the ASNN was trained 100 times and subsequently 

the model with the lowest AARD was selected. A learning rate of 0.0001 was utilized. 

An extra validation dataset consisting of 100,000 datapoints was generated in the 

same fashion as the training dataset. This was done to test the generalization 

capabilities of the ASNN on the entire parameter space. The AARDs of important 

process variables are presented in Table 3.1 (under the column ASNN, ±0 %). The 

molar fractions were calculated by normalizing the corresponding 𝑙∗ and 𝑣∗. The 

AARDs between the ASNN and Aspen’s calculations are small considering that few 

datapoints (50 runs) were used for the training. It is possible to have better predictions 

if more training data is used. For example, if using 300 datapoints, the average error 

can be reduced to 0.2 %. In view of the small AARD, it is reasonable to consider the 

proposed ASNN as a suitable surrogate model for flash separation of multicomponent 

mixtures. Utilizing ASNN for overriding the need for iterative calculations may speed-

up complex equilibrium calculations with several components. 

It is remarkable that the ASNN performance is so high despite the fact that a small 

dataset (only 50 simulations) made with a random sampling method was used. In the 

context of surrogate modelling, this suggests that using NNP together with more 

advanced sampling methods (e.g., [86,87]) can provide more extrapolable and robust 

models. 
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It is important to note that strictly applying the NNP method would yield an ASNN with 

5 hidden layers instead of 6. The purpose of adding layer 𝐿6 was to verify the 

robustness of the NNP method. Layer 𝐿6 computes 𝑣∗ a second time (𝑣∗ is computed 

in 𝐿4 as well) in order to ensure that vector 𝑣∗ does not provide negative values. It was 

observed that the results do not substantially change if the last layer is removed, in 

fact, if the mass balances are not solved twice in the ASNN, only 0.008 % of the 

solutions have an error in the mass balance larger than 10-15 while in the case with 6 

layers is 0 %. Therefore, it can be determined that the method is robust. 

Table 3.1. AARD (%) between the neural networks and the extra validation dataset when 

using different noise levels in the training dataset. 

Variable 

NNP – based hybrid models 
Serial – based hybrid 

models 

ASNN, 

±0 % 

ASNN, 

±5 % 

ASNN, 

±20 % 
SHM, ±5 % 

SHM, 

±20 % 

𝑙∗ 1.4 3.1 5.0 4.4 8.6 

𝑣∗ 0.5 1.7 4.0 2.0 6.7 

𝑥 1.1 2.9 4.6 4.1 7.5 

𝑦 0.4 1.6 3.8 1.9 6.3 

Average 0.9 2.8 4.3 3.1 7.3 
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As discussed earlier, ASNNs can be applied for fitting of experimental or process data 

where noise is expected. In order to test the proposed model, randomly distributed 

noise was added to the training dataset (the validation dataset remains without noise). 

The results of training a model with a noisy data set are shown in Table 3.1 ((ASNN, 

±5 % and ASNN, ±20 %). The noise was added to the reduced molar flows 𝑙∗ and 𝑣∗, 

then the values of 𝑥, 𝑦, 𝛹 and 𝜆 were recalculated. It can be observed that, as 

expected, the average error increases when the noise in the datapoints is increased. 

Despite the aggregated noise, the difference between the trained ASNN and the 

validation dataset remains within a reasonable range. 

A hybrid model based on the serial paradigm was developed in order to compare it 

with the ASNN. The columns labeled as “SHM, ±5 % and SHM, ±20 % in Table 3.1 

report the deviation of models generated by a serial hybrid model framework (Figure 

3.4 a)). The 𝜆𝑖 parameters were fitted through a shallow neural network (SHM) with 8 

artificial neurons (same as in the ASNN). The reduced product flows 𝑙∗ and 𝑣∗ were 

calculated with the rigorous mass balances while the molar compositions (𝑥 and 𝑦) 

were calculated by normalizing 𝑙∗ and 𝑣∗. The NNP-based models outperform the 

prediction capabilities of the coupled hybrid models. In cases where the noise is high 

(±20 %), the AARD of the ASNNs can be 40 to 50 % lower than when compared to 

the serial hybrid models. We consider that there are two causes of the superior 

performance of the ASNNs over the serial hybrid models. The first cause is due to the 

ASNN architecture which helps the optimization process. Secondly, the numerical 

differentiation error negatively affects the optimization step of the serial hybrid model.  

It is worth mentioning that the proposed ASNN structure can also work for a 𝑃𝛹 flash 

problem as well. The only difference would be the input layer 𝐼1, where 𝑇 should be 
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substituted by 𝑃. On the other hand, the solution of a 𝑃𝑇 flash would require a different 

ASNN architecture. Due to the characteristics of the 𝑃𝑇 flash problems,  it has been 

suggested in the literature [88], to use regression and classifier neural networks 

together to solve a 𝑃𝑇 flash problem. The authors reported that over 25 million 

datapoints were used to train the model for a binary mixture. This points out that using 

the NNP approach for a 𝑇𝑃 flash will require designing a possibly more complex 

architecture.  

The generality and easy adaptability of ASNN structures to other processes is a 

practical advantage. In particular, the hidden layers with fixed parameters will be the 

same as in Figure 3.11. This means that as long as the modelled system has a feed 

stream and two product streams, the ASNN structure can be utilized independently of 

the modelled process. For example, the same ASNN architecture was utilized for 

modelling the processes shown in Figure 3.12. The ASNN architecture for modelling 

the flash separator and the stripping process (Figure 3.12 a)) are quite similar, since 

the only differences are the involved components (the rich amine stream has CO2, 

MEA and H2O) and the input variables to layer 𝐼1 (molar fractions (𝑧), temperature in 

the reboiler (𝑇𝑅), feed temperature (𝑇𝐹), and the bottoms to feed ratio (𝛹)).  
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The process shown in Figure 3.12 b) has two inlet components in the feed (the raw 

biogas has 𝐶𝐻4 and 𝐶𝑂2) and 6 process parameters which are the reboiler 

temperature (𝑇𝑅), reboiler pressure (𝑃𝑅), solvent flow (𝑆), solvent temperature (𝑇𝑆), 

absorber pressure (𝑃𝐴) and biomethane to raw biogas ratio (𝛹). Therefore, the layer 

𝐼1 has 8 input parameters and layers 𝐿2 to 𝐿7 have 2 neurons. The ASNN were trained 

by utilizing data generated from models validated in previous works [89–91]. The 

same ASNN architecture was used for both processes and showed an AARD of 1-2 

% in both cases (8 artificial neurons were used in 𝐿1, however, the AARD can be lower 

if more parameters are included). 

There are important points that must be considered when applying the two-product 

separator ASNN architecture to other processes: 

• In cases where the process is quite complex or there is more available data, 

additional layers can be inserted in between or before layer 𝐿1 in Figure 3.11. 

Adding more layers should not modify layers 𝐿2 to 𝐿7 (except for the number 

of neurons which must be equal to the number of components). 

• As opposed to the flash process, the 𝜆𝑖 parameters might not have a formal 

definition in other processes (e.g., distillation or gas stripping). Despite this, 

the 𝜆𝑖 parameter indicates that, independently of the process, there is always 

a relationship between the component compositions of the two products that 

is independent of the extensive properties of the system. 

• If the process is modelled with the ASNN structure but the mass balances do 

not behave homogeneously, then the proposed ASNN architecture might not 

be optimal. However, knowing that the system does not behave 
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homogeneously is also valuable modelling information that can be utilized in 

order to modify the ASNN to account for extensive variables. 

3.5.2.2. Matrix inversion algorithm 

The application of NNP using a sequential algorithm is feasible for relatively simple 

models. However, for moderate to large processes, solving conservation equations 

sequentially is not ideal. To overcome this conundrum, this section utilizes a matrix 

inversion solution algorithm to solve the linear equations like mass balances. Steps 1 

and 2 of the NNP method are the same as in subsection 3.5.2.1. 

Step 3. Identification of the uncertain/surrogate sections of the model. The high 

entropy section (𝜂) of the ASNN is set to substitute the square bracketed term in Eq. 

(3.20). Therefore, the reduced vapor molar flows are given by 

𝑣∗ = 𝑧 ⊙ 𝛹 ⊙ 𝜂 (𝑧, 𝑇, 𝛹). (3.29) 

Steps 4 - 5. Equation decomposition and construction of the ASNN architecture. 

Applying the matrix-inversion solution algorithm to the construction of an ASNN must 

be done in two parts. The first part requires to organize the non-linear equations 

according to a sequential solution algorithm. The second part uses the values 

computed by the nonlinear sections of the model to solve the linear system of 

equations given by the mass balances. To solve the linear system of equations, the 

user should represent the system of equations such that 

𝐴 = 𝑀−1𝐶, (3.30) 

where 𝐴 is the solution vector containing the mass/mole flows, 𝑀 is the characteristic 

mass balance matrix, and 𝐶 is the constant vector.  



Neural network programming 

133 

In this example, the constant 𝐶 must be given by the output of the nonlinear section 

of the model (𝑣∗) and the known input mass flow variable (𝑧). Considering this, the 

mass balance matrix 𝑀 and its corresponding constant vector 𝐶 can be expressed as 

𝑀 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1]

 
 
 
 
 

    , 𝐶 =     

[
 
 
 
 
 
𝑣1

∗

𝑣2
∗

𝑣3
∗

𝑧1

𝑧2

𝑧3]
 
 
 
 
 

. (3.31) 

The first three columns of 𝑀 correspond to 𝑣𝑖
∗ while the last three columns to 𝑙𝑖

∗. 

Therefore, the first three rows of 𝑀 ensure that 𝑣𝑖
∗ is equal to the output of the 

nonlinear section of the model and the last three rows guarantee that 𝑓
𝑖
∗ = 𝑣𝑖

∗ + 𝑙𝑖
∗ 

(separated version of Eq. (3.21)). In order to apply this approach to other processes 

it is necessary to update the mass balance matrix 𝑀, the constant vector 𝐶 and the 

variable vector 𝐴 in accordance with the process flowsheet and the components 

involved.  

Once the 𝑀 and 𝐶 are identified, the construction of the ASNN consists in first placing 

all the hidden layers corresponding to the nonlinear section of the model (already 

organized) and then adding 2 layers afterwards. The first extra layer must utilize the 

weight parameters to construct the constant vector 𝐶 and the second extra layer must 

transcript Eq. (3.30). Therefore, the parameter matrix of the second layer must always 

be equal to 𝑀−1.   
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The ASNN architecture is shown in Figure 3.13 and the set of equations is 

L1 = tanh(𝑊1,1𝐼1 + 𝛽
1
)     [𝑝] (3.32) 

𝐿2 = (𝑊2,1𝛹) ⊙ (𝑊2,2𝑧) ⊙ (𝑊2,3𝐿1)   𝑖𝑓   0 < 𝐿2 < 1     [𝑛] 

𝐿2 = 0   𝑖𝑓   𝐿2 < 0     [𝑛]  

𝐿2 = 1   𝑖𝑓   𝐿2 > 1     [𝑛] 

(3.33) 

𝐿3 = (𝑊3,2𝑧) + (𝑊3,1𝐿2) = 𝐶     [2𝑛] (3.34) 

𝐿4 = (𝑊4𝐿3) = 𝑀−1𝐶   𝑖𝑓   0 < 𝑜1 < 1     [2𝑛]  

𝐿4 = 0   𝑖𝑓   𝐿4 < 0     [2𝑛]  

𝐿4 = 1   𝑖𝑓   𝐿4 > 1     [2𝑛]. 

(3.35) 

Layer 𝐿2 is composed of 𝑛 = 3 neurons because it predicts 𝑣1
∗ , 𝑣2

∗  and 𝑣3
∗ . 𝐿3 and 𝐿4 

have 6 neurons because they carry the information of both 𝑙𝑖
∗ and 𝑣𝑖

∗. Figure 3.13 and 

Eq. (3.33) show a product between the universal approximator predictions (composed 

of 𝐿1 and part of 𝐿2) with 𝛹 and 𝑧. The advantage of using Eq. (3.29) over Eq. (3.20) 

is that it is no longer assuming equilibrium between both phase. Eq. (3.29) guarantees 

that: in the absence of a vapor phase no vapor molar flows different than 0 will be 

predicted, and a positive component molar flow cannot be predicted if it is not present 

in the feed.   
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Optional modification to the ASNN: In order to aid that the predicted 𝑣∗ and 𝑙∗ values 

are between 0 and 1, the linear saturation nonlinear function (satlin in Matlab) was 

added to 𝐿2 and 𝐿4 (Eqs. (3.33) and (3.35)). 

 

Figure 3.13. ASNN architecture of the two-product separator using the matrix inversion 

solution algorithm. 

Step 6. Training the ASNN. In order to transcript Eq. (3.29), the weight parameter 

matrix 𝑊2,1 was fixed to be an all-ones vertical vector with 𝑛 elements and 𝑊2,2 was 

fixed to an identity matrix with 𝑛 x 𝑛 elements. In order to construct the 𝐶 vector, the 

following weight parameter matrices were defined  

𝑊3,1 =     

[
 
 
 
 
 
0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1]
 
 
 
 
 

, 𝑊3,2 =

[
 
 
 
 
 
1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0]
 
 
 
 
 

 . (3.36) 
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The purpose of 𝑊3,1 is to bypass the values of 𝑧 to the lower part of vector 𝐶 while 

𝑊3,2 transfers the values estimated by Layer 𝐿3 in order to formulate the upper part of 

vector 𝐶. The parameter matrices in layer 𝐿3 are used as mathematical artifices to 

reshape the 𝐶 vector to solve the linear system of equations. 

In order to understand the behavior of the ASNNs as a function of the number of 

training parameters, several ASNNs models were formulated. The results are 

presented in Table 3.2. The universal approximator substructure indicates how many 

hidden layers with a sigmoid function were utilized (Eq. (3.32)). For example, model 

#1 has one hidden layer with 8 neurons while model #7 has 2 layers with sigmoid 

functions (one with 8 neurons and one with 4 neurons which means that there is an 

additional layer before 𝐿2). The universal approximator substructures are connected 

to layer 𝐿2 (Eq. (3.33)). The models with 50 datapoints used the same training 

database as in section 3.5.2.1 while the ones with 200 and 500 datapoints utilized 

new databases.  

Each model was trained 20 times and the model with the lowest AARD was selected. 

The weights of the datapoints were calculated with (1/𝑙∗)2 and (1/𝑣∗)2 in order to 

optimize for the AARD instead of the mean square error. Note that the input layer 𝐼1 

that feeds the universal approximator substructure uses a normalized input while input 

layers 𝐼2 and 𝐼3 do not. The models were trained using the Bayesian stochastic 

optimization algorithm available in the Deep Learning Toolbox of Matlab 2020b.  

The AARD presented in Table 3.2 was calculated with the same extra validation 

dataset used in section 3.5.2.1. Comparing the AARD (models 1 and 2 in Table 3.2) 

against the results of Table 3.1 shows that utilizing the ASNN1 (Figure 3.11) has, in 

general, better prediction capabilities than the ASNN2 (Figure 3.13). This is 
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understandable since the ASNN1 architecture has more information regarding the 

relationship between the input and output variables than the ASNN2. This reveals a 

clear tradeoff between the ASNN complexity and its prediction capabilities. The more 

physics information is provided to the ASNN architecture, the less data and fitting 

parameters will be needed; thus, the model will have a lower entropy. In fact, adding 

more parameters without including more datapoints is detrimental to the model 

performance since it overfits the model to the training data (compare models #1 and 

#2 in Table 3.2). One can notice that in order to have a similar AARD between the 

ASNN1 and ASNN2, the number of datapoints is increased roughly tenfold (from 50 

to 500) and the number of neurons in the hidden layer is increased two times (from 8 

to 16).  

The type of universal approximator substructure can be different from a shallow neural 

network. In fact, Table 3.2 shows that the model AARD can be reduced 50 % if a deep 

neural network substructure that has 2 hidden layers is utilized. Moreover, better 

prediction capabilities can be achieved than in the ASNN1 model if more datapoints 

and a deep neural network substructure is utilized. 

It should be remarked that applying NNP with exact first principles representations for 

every equipment in a large process can be a time-consuming task, therefore, in many 

cases a compromise between accuracy and practicality will emerge. For example, in 

a process with multiple unit operations and subprocesses and large amount of data, 

it is more practical to apply the inverse matrix approach since the mass balances will 

be solved in a single step instead of multiple layers. On the other hand, for systems 

with limited amount of measured data or where keeping certain mathematical 

relationships is paramount to maintain the cohesion between the data, one should 

explicitly represent all the first-principles relationships. 
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Table 3.2. Characteristics and results of every ASNN2 architecture formulated. 

ID Universal approximator 

architecture 

No. of datapoints AARD / % 

1 8 50 12 

2 16 50 23 

3 8 500 2.0 

4 16 500 1.2 

5 8x4 50 10 

6 16x4 50 6.4 

7 16x8 50 6.7 

8 32x8 50 8.2 

9 16x4 500 1.0 

10 16x8 500 0.9 

11 32x8 500 0.8 
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3.6.  Conclusions 

This work presents the Neural Network Programming (NNP) hybrid modelling 

paradigm. It integrates a first principles modelling approach with a data-driven 

algorithm. The models developed with NNP are Algorithmically Structured Neural 

Networks (ASNNs). The idea is to generate a first principles model, decompose it and 

transcript the mathematical equations to an ASNN. This allows a physically coherent 

over the entire solution space, including limit cases (e.g., ASNNs do not predict a 

positive molar flow of a component if it is not present in the mixture). Due to the 

features of ASNNs, there is no need to utilize sophisticated performance functions in 

order to account for physics constraints and the hyperparameter tuning is not critical 

as in data-driven models. Since the first principles equations are in-built in the ASNN, 

the data is more efficiently utilized for fitting process parameters rather than trying to 

rediscover physics concepts that must hold. This causes the ASNNs to exhibit 

superior performance than black-box and conventional serial hybrid model 

configurations. 

Three examples on how to model chemical engineering problems with the NNP 

method are presented in this work. The first example consisted in the rigorous 

representation of the physics equations and relationships in the same way as how it 

is done in a mechanistic model (section 3.5.1). Being able to transcript physics laws 

within an ASNN is of utmost importance in subfields where the models must comply 

with a large set of requirements in order to be deemed as “correct” (e.g., transport 

property modelling or thermodynamics). The second example (section 3.5.2.1) shows 

a more relaxed representation of the first principles equations. It is highlighted that 

through a structural analysis of the first principles model it is possible to lump several 

parameters onto a single parameter without disrupting the reliability of the model. The 
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third example (section 3.5.2.2) presents an alternative approach for performing mass 

balances where the parameter matrix of a hidden layer is used to solve the mass 

balances. This approach is of fundamental importance in the application of NNP to 

large processes since it can be used to model processes with several process 

streams. 

There is a compromise between the complexity of the ASNN architectures and the 

amount of physics knowledge embedded into them. Therefore, a careful assessment 

of the assumptions and the information that wants to be predicted with the model must 

be done before constructing the ASNN. Performing a structural analysis allows the 

user to select the parts of the model that can be substituted with a universal 

approximator substructure and how to connect them with the rest of the model. A 

structural analysis allows ASNNs to be effectively utilized for the formulation of 

surrogate models by removing the iterative loops that are commonly seen in 

mechanistic models.  

An interesting feature of ASNNs is their transferability between processes with akin 

characteristics. For example, this work presented the ASNN architecture needed to 

model a flash separator which was later applied to model biogas upgrading processes 

without substantial modifications to the original ASNN architecture.  

In contrast to the typical hybrid configurations, NNP only relies on using a single auto-

differentiable model that complies with the physics laws rather than independently 

utilizing a first principles model and an artificial neural network model. This allows a 

more accurate and faster training because no numerical differentiation techniques are 

utilized. As opposed to mechanistic models, the NNP framework directs the user to 

develop models in matricial form, which means that multiple simulations can be 

utilized with a single call to the model function (i.e., instead of utilizing for or while 
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cycles). We expect that these features will be exploited even further in the coming 

decades due to the current advances in quantum computing.  

If the architecture of an ANN has cohesion with the physics phenomenon description, 

the parameter entropy will be lower and therefore, there is high likelihood that the 

model will provide repeatable parameters. NNP can be utilized to discard incorrect 

assumptions about the physics phenomena. 

Interpreting the parameters of a black-box ANN might is an overcomplicated task due 

to the high variability of the optimized parameters. In other words, it is unlikely to find 

a physical meaning of parameters whose numerical values are a consequence of the 

entropy associated to the ANN training. Hence, it is more effective to assume an ANN 

architecture based on a priori knowledge and find a pattern in the optimized 

parameters rather than using generic ANN architectures. When performing numerical 

analyses on ANNs, it is not enough to analyze the numerical values of the optimizable 

parameters in order to interpret them.  

Further work of NNP includes the application of this method for the development of 

consistent thermodynamic and transport property models. Additionally, we 

hypothesize that NNP can be utilized to develop NNP-based PINNs in order to 

guarantee the exact execution of first principles equations.  
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3.7. Supplementary information 

This section presents a detailed description of the steps taken in the decomposition 

and construction of the ASNN used to model the two-product separator presented in 

section 4.2.1. The equations that are to be decomposed are Eqs. (3.20) - (3.22) whose 

vectorial representation is 

𝑣∗ = 𝑧 ⊙ 𝛹 ⊙ [
1

𝛹 + 𝜆 ⊙ (1 − 𝛹)
] (3.37) 

𝑙∗ = 𝑧 − 𝑣∗ (3.38) 

𝜆 = 𝜂 (𝑧, 𝑇, 𝛹), (3.39) 

respectively. First, Eq. (3.37) is decomposed according to the algorithm presented in 

Figure 3.6. Therefore, the function 𝒇 to be decomposed is Eq. (3.37) and the result 

for the iteration steps are shown in Table 3.3. 

Only one decomposition iteration can be done for Eq. (3.38) because it is already a 

linear equation. Therefore, Eq. (3.38) can be “decomposed” as 

𝛶𝑙 = 𝑙∗ = 𝑧∗ − 𝑣∗. (3.40) 
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Table 3.3. Results of every iteration of the application of the decomposition procedure to 

Eq.(3.37). 

Step 

4.2. 
Step 4.3. Step 4.4. Step 4.5. 

Step 

4.6 

𝑘 Operation Type 𝛸𝑘,𝑗 𝛶𝑘
∗ 𝛶𝑘  

1 (1 − 𝛹) Linear 

𝛸1,1 = 1 

𝛸1,2 = 𝛹 

𝛶1
∗ = 𝛸1 + 𝛸2 𝛶1 = 𝛶1

∗ No 

2 𝛶1 ⊙ 𝜆 Product 

𝛸2,1 = 𝛶1 

𝛸2,2 = 𝜆𝑖 

𝛶2
∗ = 𝛸1 ⊙ 𝛸2 𝛶2 = 𝛶2

∗ No 

3 𝛹 + 𝛶2 Linear 

𝛸3,1 = 𝛹 

𝛸3,2 = 𝛶2 

𝛶3
∗ = 𝑋1 + 𝑋2 

𝛶3

= 1 ⊘ 𝛶3
∗ 

No 

4 

𝑧𝑖 ⊙ 𝛹

⊙ 𝛶3 
Product 

𝛸4,1 = 𝑧 

𝛸4,2 = 𝛹 

𝛸4,3 = 𝛶3 

𝛶4
∗

= 𝛸1 ⊙ 𝛸2 ⊙ 𝛸3 

𝛶4 = 𝛶4
∗ Yes 
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The set of equations that derives from the decomposition of the first principles 

equations and the shallow neural network substructure is 

𝛶1 = 1 + 𝑊0𝛹     [1] (3.41) 

𝛶2 = (𝑊2,1𝛶1) ⊙ (𝑊2,2𝜆)     [𝑛] (3.42) 

𝛶3 = 1 ⊘ (𝑊3,1𝛹 + 𝑊3,2𝛶2)     [𝑛] (3.43) 

𝛶4 = (𝑊4,1𝛹) ⊙ (𝑊4,2𝑧) ⊙ (𝑊4,3𝛶3) = 𝑣∗     [𝑛] (3.44) 

𝛶𝑙 = 𝑊5,1𝑧 + 𝑊5,2𝑣
∗     [𝑛] (3.45) 

𝜆0 = tanh(𝑊1𝐼1)     [𝑝] (3.46) 

𝜆 = 𝑊2,2𝜆0     [𝑛], (3.47) 

Where 𝐼1 is a vector formed by 𝑧, 𝑇 and 𝛹. Eqs. (3.41) - (3.44) are the decomposed 

equations that correspond to Eq. (3.37). Eq.(3.45) is the neural network 

representation of the mass balances (Eq. (3.38)). Eqs. (3.46) - (3.47) are the 

decomposition equations of Eq. (3.39). The signs of the equations (e.g., Eq. (3.41)) 

are given by the selection of weight parameters in step 6.  

Considering that the selected input variables are 𝑧, 𝑇, and 𝛹, the equations should be 

solved in the following order: (3.46) → (3.47) → (3.41) → (3.42) → (3.43) → (3.44) → 

(3.45). The ASNN constructed by following this procedure is illustrated in Figure 3.7 

a).  
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Figure 3.14. Representations of the ASNN architecture: a) unsimplified and unconstrained, 

b) substituting hidden layer 𝛶1 with the input 𝛹∗, and c) merging the output of the universal 

approximator and layer 𝛶2.  
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By comparing Figure 3.11 and Figure 3.14 a), it can be noticed that the ASNNs are 

different. The reason for this is the fact that the ASNN shown in Figure 3.14 a) does 

not have any of the optional modifications proposed in step 5, hence it is unsimplified 

and unconstrained. Note: the notation of the layer names was changed with respect 

to the manuscript (e.g., from 𝐿3 to 𝛶2) in order to be consistent with the notation given 

in Figure 3.6.  

The first modification that can be done is performing Eq. (3.41) outside the ASNN. 

This can be done because it can be calculated only by using the input variables (𝑧, 𝑇 

and 𝛹). Doing so, removes Eq. (3.41) and adds 𝛹∗ = 1 − 𝛹 as an input layer (as 

shown in Figure 3.14 b)). If this ASNN is further simplified by combining the output of 

the universal approximator and layer 𝛶2 into 𝜆𝛶2, the architecture of Figure 3.14 c) can 

be obtained. As mentioned in section 4.2.1, the ASNN in the manuscript added an 

extra layer (𝐿6), in order to verify the robustness of the NNP method. Therefore, strictly 

applying the NNP method without the proposed modifications would yield Figure 3.14 

c). After the architecture is done, the user can add the ReLU functions to Figure 3.14 

c) in order to get Figure 3.11.  
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Chapter 4. 

Constrained VLE modelling 

The application of the NNP method to the modelling of non-reactive 

VLE systems is presented. The traditional Wilson and NRTL activity 

coefficient models are used as a basis to formulate the ASNNs. These 

models were utilized in order to show that an ASNN can be 

thermodynamically consistent if its architecture is appropriately built. 

Additionally, using well-known models makes the NNP method more 

accessible to thermodynamic researchers. 
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Chapter 5. 

Universal approximators as 

generating functions 

This chapter shows an instance on how to exploit the universal 

approximator feature of ANNs for the formulation of generating function 

for thermodynamics. This approach allows modelling reactive mixtures 

in equilibrium as if they were a non-reactive system. The goal of this 

activity coefficient model is to facilitate the modelling of systems 

containing acid gases and electrolyte solutions. 
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Chapter 6. 

A simulation framework for 

solvent-based biogas 

upgrading processes 

The techno-economic assessment of different processes containing 

reactive and unreactive solvents is presented in this chapter. The goal 

of the study is to point out in which operating conditions physical 

solvents outperform amine solvents. Additionally, it is stressed that the 

cost of emitting greenhouse gases to the atmosphere should be 

considered when selecting separation technologies. 
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6.1. Abstract 

Biogas upgrading is an important industrial process for producing biomethane, a 

sustainable energy source with low carbon footprint. There are three main solvent-

based alternatives for biogas upgrading: water scrubbing, physical scrubbing and 

chemical scrubbing with amines. Though assessments have been published 

regarding which technologies are more cost-effective and energetically efficient, these 

often either neglect inspecting the impact of raw biogas concentrations and 

biomethane delivery pressures on the overall performance of the plant, or they do not 

consider that the separated CO2 has to be conditioned for transportation for properly 

fulfilling the requirements of BECCS (bioenergy with carbon capture and storage). In 

fact, many assessments of physical scrubbing processes forfeit CO2 recovery 

mailto:andres.c.abaid@ntnu.no
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altogether. This work intends to rehabilitate physical scrubbing as an alternative for 

BECCS by showing that, depending on the conditions of the raw biogas, the 

requirements for biomethane delivery, and the cost of carbon taxes, biogas upgrading 

can be feasible by scrubbing either with amines or with organic solvents. We introduce 

a review on organic physical solvents for CO2 recovery, a simulation framework for 

the evaluation of energetical operational costs of biogas upgrading, and a simplified 

economic analysis. High biomethane delivery pressures and high CO2 concentrations 

in raw biogas benefit the use of physical solvents such as N-formyl-morpholine, N-

methyl-2-pyrrolidone and poly(ethylene glycol)dimethyl ether, whereas the opposite 

conditions are advantageous to aqueous monoethanolamine. Finally, the 

implementation of carbon taxes of around 10 USD/ton CO2 emitted are sufficient to 

increase the attractiveness of CO2 recovery as opposed to CO2 wasting.  

6.2. Introduction 

In past decades, the development of sustainable energy generation technologies has 

become an important asset in mitigating climate change and environmental 

degradation. These include technologies such as improved solar panels, efficient 

wind-powered equipment, hydrogen fuel cells and biogas production facilities [1]. Of 

these, biogas production can be inserted in the wider context of negative emissions 

[2] and, therefore, deserves a careful assessment. 

Biogas is a mixture containing mostly methane (CH4, 40–75 %v/v) and carbon dioxide 

(CO2) [3], with typical secondary impurities being hydrogen sulfide (H2S), ammonia 

(NH3), siloxanes, halogenates and volatile organic carbon (VOC) compounds such as 

ketones, alkanes and terpenes [3–6]. Biogas upgrading is the name given to the 

process of removing CO2 from raw biogas. Since biogas is produced biologically 
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through anaerobic digestion of organic matter, both the nature of the digestate and 

the conditions of the biological fermentation will affect the composition of raw biogas 

[6–8]. This is of interest to the industry, since this raw biogas must often be treated 

before it is delivered as high purity biomethane, and the degree of complexity required 

for this treatment naturally impacts the sort of technologies needed to perform the task 

[3,4,6]. There are numerous biogas producing plants that include a biogas upgrading 

process [9]. 

Utilization of biogas through combustion inevitably generates CO2 and cannot be 

strictly considered a green energy alternative. However, if biogas is produced from a 

biomass source that participates in a stable carbon cycle (i.e., in which the production 

of biomass by plants or algae consuming atmospheric CO2 happens at rate 

comparable to that of combustion of the resulting biogas), then the net amount of CO2 

emitted at the end of such cycle can be said to approach zero [10]. Surely enough, 

assuring that a process is “net-zero” is a delicate matter which requires careful 

evaluation of all of its intermediary steps. One practical way of reducing the odds of 

having a disbalanced biogas production cycle is by capturing part of the CO2 that is 

generated together with biomethane before delivering the latter to its final user. Then, 

the technology can be said to have achieved negative emissions: part of the CO2 

utilized for biomass production in the beginning of the process ends up removed from 

the carbon cycle through CCS (carbon capture and storage) alternatives [2,11]. 

This is an important facet of the so-called BECCS (bioenergy with CCS): from an 

environmental perspective, the process of biogas upgrading together with CO2 

recovery is not only practical for the consumer (e.g., to generate a stream with higher 

heating value), but it is also indispensable towards achieving negative emissions in 

the industry. In this aspect, biogas upgrading without CO2 recovery – i.e., removing 
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CO2 from raw biogas and then emitting it to the atmosphere – is a practice that should 

be ultimately discouraged. 

One of the several policies suggested in the Paris agreement in order to achieve the 

global zero greenhouse gas emissions target by 2050 is the implementation of CO2 

taxes. These taxes force companies or production plants to pay a fee for each ton of 

CO2 emitted into the atmosphere. Since biogas upgrading plants may or may not emit 

the removed CO2 to the atmosphere, and since carbon taxes may or may not apply 

to bioenergy-based plants, the inclusion of these taxes in economic assessments is 

an uncertainty expected to hold a crucial role in process feasibility, thus reflecting on 

the optimal CO2 capture technology for each scenario. 

In order to assess this uncertainty, the present study considers the feasibility of 

biomethane production plants both in the scenario in which they must pay for their 

CO2 emissions and in the scenario where this is not a requirement. This may vary 

depending on the CO2 emissions policies of the country where the plant is located 

(see section 6.4 for further discussion). We suggest that the performance of different 

biogas upgrading technologies and the selection of the optimal alternative will change 

as a function of the following external conditions: the raw biogas properties, the 

treated biomethane specifications and the value of the CO2 tax. Our intention is, 

therefore, to evaluate how these external conditions will impact the choice of a proper 

upgrading technology.  

Ultimately, we repeat, biogas upgrading with CO2 recovery is environmentally 

beneficial even when not economically so. It is our goal to identify which upgrading 

technologies are able to better align financial and environmental considerations by 

minimizing the cost of BECCS. 
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This work focuses on solvent-based solutions (i.e., absorption by physical and 

chemical means) due to their prominence in the biogas upgrading market. We 

present: 

• BACKGROUND (section 6.3). A summary of biogas upgrading 

alternatives (section 6.3.1), followed by a review of physical (section 

6.3.2) and chemical (section 6.3.3) solvents for CO2 separation. Though 

sections 6.3.1 and 6.3.3 are rather cursory, we went into great lengths to 

make a proper comprehensive review of physical solvents for CO2 

absorption since we have identified a lack of such a source in the 

available published literature. 

• PROCESS MODELLING (section 6.4). A methodical explanation of our 

approach to solvent performance evaluation. Though we employ this 

approach in the assessment of BECCS in the present study, there is 

nothing deterring anyone of using such a methodology in the evaluation 

of other solvent-based processes in different contexts. Hence, we 

consider that section 6.4 in itself can be valuable for future researchers. 

• RESULTS AND DISCUSSION (section 6.5). An energy analysis and an 

operative-cost-oriented assessment of the economic performance of 4 

different technologies: Physical/Water absorption without CO2 recovery 

(PW), Physical/Water absorption with CO2 Recovery (PWCR) (both on 

section 4.1), Aqueous aMine chemical absorption without CO2 recovery 

(AM) and Aqueous aMine chemical absorption with CO2 Recovery 

(AMCR) (both on section 4.2). This includes an evaluation of different 

physical solvents, in particular with regards to PWCR (section 4.1). 

Additionally, we report an easy-to-use guide on optimal process selection 
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as a function of raw biogas conditions and biomethane delivery pressure. 

As we present results with and without the inclusion of carbon taxes, 

section 0 is insightful even in the context where there are no penalties for 

the emission of CO2 by biogas upgrading plants. 

Therefore, the middle bulk of this article contains three very distinct albeit interlinked 

sections, two laying down important groundwork and one delivering our main results. 

These sections can be read by themselves, hence we recommend that readers who 

are interested merely in the outcome of our energetic analysis skip directly to section 

0 and then to section 6.6 (the Conclusions). However, we hope to have showed with 

the table of contents above that each section has its individual value, and that they all 

contribute to a proper understanding of our results.  

6.3. Background 

6.3.1. Biogas upgrading technologies 

There are currently six main biogas upgrading technologies. These are: 

• Water scrubbing – using pressurized water to physically absorb CO2 followed 

by decompression and/or stripping with an inert gas for regeneration 

[3,6,8,12] (formerly, the resulting water was just directly wasted as an effluent, 

but this is generally not acceptable anymore [6,8]). 

• Physical scrubbing – similar to water scrubbing, but using an organic solvent 

instead of water [6,8,13,14]. Solvent regeneration can be of three types: flash 

desorption (by solvent decompression), stripping with an inert gas, and hot 

regeneration [15]. More on these organic solvents will be discussed in section 

0.  
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• Chemical scrubbing – a solvent containing a species that chemically reacts 

with CO2 is employed for upgrading [4,8,13,14]. This chemical reaction 

increases the solvent capacity for CO2 absorption, but also makes 

regeneration more difficult. Desorption is performed by supplying heat to the 

system [13,14,16]. More on these chemical solvents will be discussed in 

section 6.3.3. 

• Pressure swing adsorption (PSA) – CO2 is adsorbed over a porous material 

at high pressures and desorbed at low pressures in the so-called Skarstrom 

cycle [13,17]. The criterium for separation here is the higher CO2 diffusivity 

when compared to that of methane (due to its lower molecular size) 

[6,8,12,14]. Typical materials for CO2 adsorption are zeolites, silicates, silica 

gel and activated carbon [8,12], though current research in the field of metal-

organic frameworks render these materials particularly attractive. 

• Membrane technology – CO2 is separated from methane due to its lower 

molecular size in a porous interface using differential partial pressure as the 

driving force [3,12–14]. Development of such membranes is rapidly 

advancing [18,19]. For industrial applications, the materials employed are 

typically polymeric in nature [14], though fast developments might render this 

information anachronistic.  

• Cryogenic separation – CO2 is condensed at high pressures and low 

temperatures while methane remains in the gas phase due to the difference 

between the boiling points [3,6,8]. Due to the high energy-intensity of this 

process, designing an optimal system configuration is essential, and therein 

lie most recent advances in this field [20]. 
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Comparisons between these six different techniques can be performed across a 

variety of criteria, with none being necessarily more or less important than the other. 

In terms of modularity and flexibility, for example, membranes are commonly argued 

to be superior to other technologies [21,22] – and yet, they often require an integration 

of parallel and/or sequential modules to be fully capable of separating CO2 [18,19], 

bringing down their energy efficiency [12,14]. Energy consumption is often also high 

when operating PSA, and its footprint (i.e., the amount of physical space a processing 

plant occupies) can be problematic [17]. Cryogenic methodologies are expensive both 

in terms of equipment as well as operational costs, but are able to deliver highly 

purified biomethane ready for condensation into LBG (liquid biogas) together with 

pressurized CO2 proper for transportation and storage [8,20]. In terms of robustness 

to stand impurities, water scrubbing is able to handle most of them easily [12], 

whereas cryogenic separation can be designed so that each contaminant is removed 

sequentially according to their relative volatilities [20]. All of the other techniques are 

vulnerable to one impurity or another, which can devolve in operational issues such 

as membrane degradation [19] or solvent decomposition [23].  

Perhaps the best way to assess the competitiveness of these different technologies 

is by looking at how they are actually implemented in the biogas upgrading market. 

Almost every year, IEA Bioenergy publishes a list of the new developed biogas 

upgrading plants implemented by their member countries (which critically does not 

include neither China nor the U.S.A.) categorized by chosen upgrading technology. 

Figure 6.1 shows the cumulative number of biogas upgrading plants deployed from 

2000 up to 2019 in those member countries. We unfortunately had to ignore the 

entries in the list for which no installation year was given, but those were very few 

overall. 
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Figure 6.1. Cumulative number of biogas upgrading plants installed by IEA Bioenergy 

member countries divided by their chosen biogas upgrading technologies. List obtained 

from the IEA Bioenergy website [9]. 

Figure 6.1 shows a fragmented market between several technologies, with physical 

scrubbing and cryogenic separation techniques arguably lagging the others. From the 

perspective of someone coming from either the pre-combustion or post-combustion 

carbon capture background, this is a somewhat surprising image. In those fields, one 

typically thinks of chemical absorption as the state-of-the-art CO2 capture process 

[24,25]. In the biogas upgrading field, however, chemical scrubbing with amines not 

only fares poorly compared to membrane technologies, but it is also overshadowed 

by water scrubbing. Conversely, one finds no instances of water scrubbing ever being 

used for natural gas treatment nor CO2 removal from flue gases. 
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A 2012 study carried by the Vienna University of Technology has come up with a 

comparison between five of the six technologies mentioned previously, which is 

summarized on Table 6.1. Being from 2012, Table 6.1 is perhaps anachronistic, but 

its overall message is representative of what has been reported until quite recently 

regarding biogas upgrading  (see [26] for more contemporaneous data). The electrical 

energy consumption of all different technologies is very similar, with the remarkable 

exception of chemical scrubbing. This, of course, comes with two caveats. First, 

chemical scrubbing requires a high thermal energy consumption for its solvent 

regeneration step, so that looking at electricity consumption alone might be 

misleading. Second, chemical scrubbing is the technology in which biomethane is 

delivered at its lowest pressure. As biomethane is most often pressurized for injection 

into either a medium-pressure (e.g., 16 bars) or high-pressure (e.g., 55 bars) natural 

gas grid [1], the gas produced by chemical scrubbing is still in need of compression 

unless it is directly used for energy production. Even with this limitation, however, one 

can see at the bottom of Table 6.1 that the operational costs of chemical scrubbing 

end up above those of the various other technologies. 

Finally, there is something to be said about biomethane purity and methane slip. The 

demanded biomethane purity is defined by the constraints imposed for its utilization. 

For biomethane injection into the natural gas grid, the 2016 Deliverable D5.2 from the 

ISAAC project to the European Commission [27] compiles some of the current 

national standards: biomethane should contain less than 2.5 %v/v CO2 in Germany 

and France, less than 3 %v/v CO2 in Sweden, Denmark, Austria and the U.K., and 

less than 6 %v/v in the Netherlands. Though national standards may vary, basic 

standards for the European Union are given in EN 16723-1 for biomethane injection 

in the gas grid and in EN 16723-1 for biomethane use in road transport [28] – notice 
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that EU standards do not specify a maximum CO2 content but a minimum methane 

number: 65 according to EN 16723-1, 65 or 80 according to EN 16723-2 (depending 

on fuel grade) [29]. Clearly then, all technologies addressed on Table 6.1 are capable 

of producing high quality biomethane. The main difference among processes is 

methane slip. Other than the obvious loss of profit from reduced productivity, methane 

slip is an environmental hazard that is typically addressed through regenerative 

catalytic oxidation (RCO) or regenerative thermal oxidation (RTO) (see the following 

references [30,31] for a comparison between RCO and RTO), i.e., burning, which 

involves additional energetic and economic penalties. Chemical scrubbing has a high 

selectivity for CO2 separation and consequentially the lowest methane slip values 

amongst all technologies. The reason for this is the very low solubility of CH4 into the 

aqueous amine mixture and the low pressures commonly used in the amine scrubbing 

processes. 

One could then wonder what the most environmentally benign technology for biogas 

upgrading is. As it turns out, it depends heavily on the origin of the electricity employed 

in the biogas upgrading plant [33,34]. This highlights the importance of choosing an 

energy efficient pathway for biogas upgrading. Therefore, both for deployment 

considerations and environmental considerations, energy saving is key. 
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Table 6.1. Comparison between biogas upgrading technologies carried by the Vienna 

University of Technology [32] in 2012. Values typical of plants with a capacity to produce 

around 500 m3/h biomethane (average sized biogas upgrading plants). 

 
Water 

scrubbing 

Physical 

scrubbing 

Chemical 

scrubbing 
PSA 

Membrane 

technology 

Biomethane 

purity (%) 
95.0 – 99.0 95.0 – 99.0 > 99.0 

95.0 – 

99.0 
95.0 – 99.0 

Methane slip (%) 2.0 4.0 0.04 2.0 20.0 – 0.5 

Delivery 

pressure (bar) 
5 – 9 5 – 9 1 5 – 8 5 – 8 

Electric energy 

demand (kWh/m3 

biomethane) 

0.46 0.49 – 0.67 0.27 0.46 0.25 – 0.43 

Heating demand None Medium High None None 

Typical 

investment costs 

(€/m3/h 

biomethane) 

3500 3500 3500 3700 3500 – 3700 

Typical 

operational costs 

(€/m3/h 

biomethane) 

0.091 0.090 0.112 0.092 0.065 – 0.101 
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6.3.2. Physical solvents for CO2 absorption 

In physical scrubbing, the CO2 binds to the physical solvents by relatively loose 

intermolecular forces. It has been demonstrated that CO2 physical solubility relies on 

Lewis acid-base interactions between the acid gas and the absorbent [35–37], being 

thus more pronounced in solvents with strong electronegative groups. Because of 

this, the calorific energy requirement to regenerate the solvents in the physical 

absorption processes is lower than the one from chemical absorption processes. 

Table 6.2. Physical solvents for CO2 absorption and their processes. 

Abbreviation Name of chemical Process it appears in 

Methanol Methanol Rectisol™ / Ifpexol™ 

NFM N-formyl-morpholine Morphysorb™ 

NMP N-methyl-2-pyrrolidone Purisol™ 

PC Propylene carbonate Fluor™ 

PEGDME 
Poly(ethylene glycol) dimethyl 

ether 

Selexol™ / 

Genosorb™ 

TBP Tributyl phosphate Estasolvan™ 

TMS Tetramethylene sulfone Sulfinol™ 

There have been many physical scrubbing processes developed commercially for 

acid gas absorption [38], and new candidates for physical solvents are developed 

each year [39,40]. Many ionic liquids operate essentially as physical solvents [41], 

and so do the silicone-based hydrophobic physical solvents [42,43] recently 

presented in literature. In this study, however, we will focus only on commercial 
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solvents. The physical solvents included in our analysis are listed in Table 6.2. A good 

review on many of the physical absorption technologies is given by Vega et al. [44], 

therefore we will only summarize some of the operational peculiarities of these 

solvents. 

• Methanol: Both the Rectisol™ and the Ifpexol™ processes operate with 

methanol at moderate to high pressures (𝑝𝐶𝑂2 ≥ 1 MPa [45]) and fairly low 

temperatures, −70 to −10 °C though the details vary from author to author 

[38,44–47]. These low temperatures both enhance CO2 solubility and 

help avoiding methanol losses due to volatilization. 

• N-formyl morpholine: The Morphysorb™ process operates with mixtures 

of N-formyl-morpholine and N-acetyl-morpholine. Absorption is also 

carried at moderate pressures, such as 𝑃𝐶𝑂2
 ≈ 0.8 MPa in the Kwoen 

power plant [48] and temperatures between −20 to 40 °C [44]. These low 

temperatures both enhance CO2 solubility and help avoiding methanol 

losses due to volatilization. It is important to remark that NFM has a 

relatively high freezing point of approximately 23 °C, and thus the addition 

of N-acetyl-morpholine to the Morphysorb™ solvent comes as a solution 

for enabling operation at lower temperatures [49].  

• N-methyl-2-pyrrolidone: The Purisol™ process uses chilled N-methyl-2-

pyrrolidone at temperatures as low as −15 °C [44,47,49], with solvent 

volatility becoming possibly an issue in case refrigeration is not employed 

[47,49–51]. Once again, higher CO2 partial pressures are preferred, for 

example 𝑃𝐶𝑂2
 = 2.4 MPa [15]. 

• Propylene carbonate: The Fluor™ process operates with propylene 

carbonate at high pressures (between 3 and 8 MPa total pressure) and 
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ambient temperatures [44], though chilling can also be employed [47]. 

There seems to be evidence that the propylene carbonate selectivity for 

methane instead of CO2 increases with pressure [38], indicating some 

sort of competitive absorption. This, coupled with the low tolerance of 

propylene carbonate to H2S, makes the Fluor™ process more popular for 

syngas treating and not for natural gas applications [38,47]. 

• Poly(ethylene glycol) dimethyl ether: The Selexol™ and Genosorb™ 

processes are popular alternatives for CO2 separation [45,52]. The 

solvent is a mixture of polyethylene glycol dimethyl ethers with chain 

lengths of between 3–9 monomers [45,47,52,53] (the details of this 

mixture potentially make the difference between the Selexol™ and 

Genosorb™ solvents [53]). The Selexol™ operates between 0 and 5 °C 

[44,47], with lower temperatures being avoided due to large solvent 

viscosity issues [47]. Processes are typically operated in a pressure 

range from 2 to 14 MPa and treat gases of 5 to 60 %v/v of CO2 content 

[50,54]. 

• Tributyl phosphate: Not much is spoken about the Estasolvan™ 

nowadays, perhaps because of the low solubility of CO2 in tributyl 

phosphate [38,50,51,55]. To our knowledge, this process has never been 

implemented commercially [38]. 

• Tetramethyl sulfone: Contrarily to the other solvents mentioned in this 

section, there is no physical scrubbing process employing tetramethyl 

sulfone (commonly called sulfolane) as a solvent in itself. Instead, 

sulfolane is mixed with an amine such as diisopropanolamine or N-

methyldiethanolamine to form the Sulfinol-M™ solvent. The Sulfinol™ is 
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often called a hybrid process, and has arguably more similarities to 

chemical scrubbing than to physical scrubbing [38,56–58]. 

In terms of solvent stability, most organic solvents are apparently resistant to 

degradation. Evaluation of the Morphysorb™ process in the Kwoen plant shows that 

N-formyl-morpholine suffers little degradation, being safe to operate at temperatures 

below 80 °C [48]. The Selexol™ solvent is stable, nontoxic and biodegradable [38,45]. 

Propylene carbonate is apparently less stable, so that operations should be kept 

below 65 °C [47] and mixing with water should be avoided [49]. 

The physical solubility of CO2 and methane in these organic solvents can be estimated 

with Henry’s law, Eq. (6.1), where 𝑃𝑖 is the partial pressure of the gas and 𝑥𝑖 is the 

equilibrium molar fraction of the gas in the solvent. Eq. (6.2) shows a temperature-

dependent expression for calculating the Henry’s coefficient 𝐻𝑖, wherein 𝐻𝑖 has the 

unit of MPa and 𝑇 has the unit of K. The Henry’s relation and the correlation used to 

estimate the solubility of the gas 𝑖 is given by: 

𝐻𝑖 =
𝑃𝑖

𝑥𝑖

 (6.1) 

ln(𝐻𝑖) = 𝐴 +
𝐵

𝑇
 (6.2) 

Table 6.3 shows the 𝐴 and 𝐵 parameters for different gases in a series of solvents. 

These parameters have been regressed from different sources in literature, all of 

which are referred to in Table 6.3. For regressing the parameters of Eq. (6.2), we have 

refrained from using any set of data above 100 °C or in which the molar fraction of 

gas in the solvent was above 𝑥𝑖 = 0.30. These measures were taken to reinforce that 

the resulting parameters are fitted precisely for our region of applicability (between 20 
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°C and 80 °C, with lower temperatures if possible), and also to make sure that the 

solubility data does not extend beyond the span of validity of Henry’s law approach. It 

is also true that high temperature solubility data tends to be less reproducible than 

data at lower temperatures, as can be observed in Figure 6.2, this being another 

reason for avoiding using high temperature data for parameter fitting. 

Table 6.3. Henry’s law parameters for gas absorption in physical solvents. 

Gas Solvent 𝐴 𝐵 𝑇 range Sources 

CO2 Methanol 8.328 −1709.8 [−60, 90 °C] [59], [60], [61] 

 NFM 7.710 −1716.2 [25, 100 °C] [62], [63] 

 NMP 7.567 −1682.8 [−20, 100 °C [64], [65], [66], [67] 

 PC 7.858 −1730.5 [25, 100 °C] [63], [64] 

 PEGDME 6.032 −1411.3 [25, 70 °C] [63], [53] 

 TBP 4.493 −1024.5 [0, 40 °C] [68],[69] 

 TMS 7.123 −1471.5 [30, 100 °C] [64], [70] 

CH4 Methanol 5.086 123.26 [−60,  0 °C] [71], [72], [73] 

 NFM 4.786 101.00 [25, 100 °C] [62], [74] 

 NMP 4.926 −166.02 [−20, 25 °C] [67], [74] 

 PC 4.808 76.269 [−29, 100 °C] [75] 

 PEGDME 3.137 111.68 [25, 60 °C] [76] 

 TMS 5.086 123.26 [25, 100 °C] [70] 
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We have not included in our fitting sets of data that differed too much from their 

counterparts, or that expressed an abnormally high CO2 solubility. This applies to 

Rajasingam et al. [77] for NMP and to Chen et al. [78] for TPB. It is difficult to find (and 

thus evaluate) experimental data for CO2 solubilities in tributyl phosphate, but the 

results obtained by Chen et al. [78] seem inconsistent with those obtained by Li et al. 

[68] and by Thompson et al. [69], and molecular simulation estimates give credibility 

to the observations of the latter two research groups [79].  

 

Figure 6.2. Experimental Henry’s coefficients at different temperatures obtained in literature 

for a series of organic solvents. The bold lines have been obtained with Eq. (6.1 and the 

regressed parameters shown on Table 6.3. 
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Figure 6.3. Selectivity for CO2 absorption with respect to methane in a series of physical 

solvents at different temperatures. The lines have been obtained with Eq. (6.1 and the 

regressed parameters shown on Table 6.3. The stars are published data reported by Bucklin 

and Schendel [50] for 25 °C only. 

The experimental Henry’s coefficients of all physical solvents are shown in Figure 6.2, 

together with the curves obtained with Eq. (2) and the parameters presented on Table 

6.3. In molar basis, methanol has the lowest CO2 solubility and TBP has the highest, 

and the remainder solvents follow roughly an order of TMS < PC < NFM < NMP < 

PEGDME. 

In terms of selectivity for CO2 in detriment of methane, the solvents perform as shown 

on Figure 6.3. Unfortunately, we were unable to find published data regarding 

methane solubility in TBP. Nevertheless, Bucklin and Schendel [50] report the 

selectivity of some physical solvents for CO2, and among them TBP. As shown on 
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Figure 6.3, if the Henry’s coefficient data from Table 6.3 for CO2 and methane is taken 

into account, the selectivity for CO2 follows the order PEGDME < methanol < NMP < 

PC < TBP < NFM < TMS, though there are discrepancies between the data reported 

by Bucklin and Schendel [50] and the curves obtained through modelling (also notice 

that, while Kohl and Nielsen [38] mention the low selectivity of propylene carbonate, 

this is not observed by Bucklin and Schendel [50]). It is important to remark that the 

CO2 selectivity for all solvents increase with a decrease in absorption temperature. 

Physical solvents do not interact strongly with CO2 during the absorption process, and 

evidence of this is the low exothermicity of the chemical phenomenon. The CO2 heat 

of absorption may be calculated by application of the van ‘t Hoff equation (Eq. (6.3) to 

Eqs. (6.1) and (6.2), resulting in Eqs. (6.4) and (6.5) respectively: 

(
𝜕 𝑙𝑛(𝑃𝑖)

𝜕𝑇
)

𝑥𝑖

= −
∆𝐻

𝑅 ∙ 𝑇2
 (6.3) 

(
𝜕𝑙𝑛𝑃𝑖

𝜕𝑇
)

𝑥𝑖

= −
𝐵

𝑇2
= −

∆𝐻

𝑅 ∙ 𝑇2
 (6.4) 

∆𝐻 = 𝐵 ∙ 𝑅. (6.5) 

The van ‘t Hoff equation can be used to calculate the heat of absorption 𝛥𝐻 by using 

the differential of the Napierian logarithm of 𝑃𝐶𝑂2  with respect to temperature. 

Remarkably, one convenience of employing Eq. (6.2) for the modelling of CO2 

solubilities instead of a more complex expression is that each B-parameter fitted in 

Table 6.3 translates linearly into the CO2 heat of absorption in its respective solvent, 

as seen on Eq. (6.5). Note that Eqs. (6.3) - (6.5) apply for both CO2 and CH4. 
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The heat of absorption values calculated with Eqs. (6.4) - (6.5) and shown on Table 

6.4 are very similar to the ones obtained empirically through calorimetric experiments 

for physical solvents [80,81]. These calculations were performed with the parameters 

shown on Table 6.3 at 𝑇 = 20 °C and 𝑃𝐶𝑂2
 = 100 kPa. Tributyl phosphate has the 

lowest heat of absorption of all solvents. A low heat of absorption is also observed for 

PEGDME and TMS. It is an interesting fact that the solvents which show less CO2 

solubility also show the lowest exothermicities for CO2 absorption in Table 6.4. As for 

methanol, NFM, NMP and PC, their heat of absorption is essentially the same.  

The solubility of CO2 in water has been obtained by several authors, and the works 

by Dodds et al. [82] and Diamond and Akinfiev [83] offer good summaries of the 

published data. For our parametrization of Eq. (6.5), we have employed four 

representative datasets covering the temperature span between 0 and 100 °C with 

special emphasis on low temperature data. Our list of references, as well as the 

parameters obtained through the regression, can be seen on Table 6.5. The heat of 

absorption of CO2 and CH4 into water can be calculated with Eq. (6.5), from which 

their values are calculated as −17.55 kJ/mol and −11.51 kJ/mol respectively. 
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Table 6.4. Heat of absorption for a series of physical solvents. Values obtained 

through Eq. (6.7) with the parameters presented on Table 6.3. 

Solvent ∆𝐻 / kJ∙mol CO2
−1 

Methanol −14.2 

NFM −14.3 

NMP −14.0 

PC −14.4 

PEGDME −11.7 

TBP −8.5 

TMS −12.2 

 

Table 6.5. Henry’s law parameters for gas absorption in water. 

Gas 𝐴 𝐵 𝑇 range / °C Sources 

CO2 12.2616 −2110.7 [1, 100] [84], [85], [86], [87] 

CH4 13.0312 −1384.4 [1, 71] [88], [89], [90], [91] 

An important solvent characteristic that should be considered in addition to its 

absorption capacity and selectivity is the solvent volatility. This solvent property has 

an important effect on the selection of the operating temperatures. With the sole 

exception of methanol, all organic solvents evaluated in this study have lower volatility 

than water (see Figure 6.4). Note that some liquid vapor pressures were extrapolated 
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for the sake of completion. In fact, these solvents often have vapor pressures below 

those of aqueous amines like MEA. Moreover, all physical absorption processes 

proposed in this investigation are carried out at lower temperatures, and the little 

amount of solvent that is carried over with the CO2 product (i.e., due to desorption at 

higher temperatures) is recovered after pressurization of the CO2. Hence, the loss of 

physical absorbent via volatilization is deemed to be negligible in most applications 

covered in this research. This will be further discussed in section 4.1.1. 

 

Figure 6.4. Saturation pressure (kPa) of different components vs temperature (°C).  

Finally, it should be pointed out that our analyses do not consider the impurities in the 

biogas to be a problem with regards to solvent degradation in the case of physical 

solvents. As previously mentioned, the main impurities in biogas besides CO2 are 

H2S, NH3, and then trace amounts of siloxanes, halogenates and VOC compounds 
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[3–6]. Most reports do not mention issues regarding organic physical solvent 

degradation due to H2S, with the exception of propylene carbonate [38,47] (in fact, 

the tolerance of solvents such as PEGDME with regards to H2S is often mentioned as 

one of their strengths [47,50]). Siloxanes are harmless to physical absorbents – their 

main cause of concern is the risk of microcrystalline silica formation, which might be 

abrasive to equipment downstream of the upgrading plant [92]. Similarly, NH3 and 

other contaminants have little to no effect on solvent stability. In summary, 

degradation in the case of organic physical solvents should not be above what is 

observed for most chemical solvents. All other issues posed by these secondary 

contaminants c<an be easily addressed with a dedicated cleaning station, which is a 

common feature of most biogas production factories [5].  

6.3.3. Chemical solvents for CO2 absorption 

The field of CO2 absorption with amines is vast [25,93] and this section does not intend 

to carry a full review. Instead, we will focus solely in discussing the nature of the 

chemical solvent itself. 

Solvents for chemical scrubbing of CO2 are targeted to address a series of practical 

issues regarding the CO2 capture process. These issues encompass: 

• Capacity and cyclic capacity – Meaning how much CO2 a solvent in 

thermodynamical equilibrium can pack between its absorption and desorption 

cycles. High cyclic capacities mean that less solvent is needed to perform the 

same amount of CO2 removal, which implies smaller equipment and perhaps 

less heating, cooling, and pumping duties. 
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• Rates – Meaning how fast the CO2 is absorbed into the solvent. Without fast 

absorption rates, whatever high cyclic capacities are in equilibrium cannot be 

achieved in practice. 

• Volatility – If one employs volatile solvents, an extra care must be taken to 

avoid solvent emissive losses. This can result in costly equipment and 

complex treatment processes [94]. 

• Viscosity – High viscosities mean all transport phenomena are carried out 

with more morosity, which affects equipment sizing and energy performances 

[95]. 

• Degradation – Thermal and oxidative degradation result in constant 

reclamation and costly solvent make-up issues. Degradation has an 

additional impact on corrosion and emissions, being an environmental as well 

as a financial issue [96]. 

• Corrosion – Corrosion has been observed to happen in more than half of the 

typical CO2 capture plant equipment [97], thus drastically reducing the useful 

life of the installation. 

• Emissions – Emissions might stem from the volatilization of the amine or of 

its degradation products, presenting a threat to health and environment 

[98,99]. It must be noted that, in the case of biomethane production, wherein 

the treated gas will ultimately be combusted, the issue of emissions can be 

considered perhaps less of a problem than in cases where the treated gas is 

released to the atmosphere. 

• Toxicity – Solvent toxicity to plant and animal life is clearly an issue of health 

and environmental concern [100]. 

• Price – Amines for CO2 capture should not be too expensive [93]. 
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Previously, the benchmark chemical solvent for CO2 absorption was aqueous 

monoethanolamine (MEA). This in itself came out of a technological evolutionary 

process. In fact, the first amine employed in the chemical scrubbing industry was 

triethanolamine (TEA) [94]. This amine presented a series of issues (e.g., high 

viscosity, low absorption rates) and quickly lost ground to MEA, diethanolamine 

(DEA), N-methyldiethanolamine (MDEA) and diglycolamine (DGA). Of these, MEA 

presented the largest number of advantages: it has fast mass transfer rates, low 

viscosity, high capacity, and whatever issues it has that contribute to its losses (e.g., 

its degradation rates [101], its relatively high volatility) are swiftly compensated by its 

very low price [93]. 

The development of amine solvents for CO2 capture did not end with aqueous MEA. 

Investigations veered into new aqueous amine solvents containing one single amine 

[102] and then amine blends [103,104] with great success. Investigations attempted 

to remove the water off of these mixtures to create water-lean solvents [105], or to 

shift from alkanolamines to naturally occurring amino acids [106,107]. From single-

phase solvents, the solvent has been allowed to form two phases either with liquid-

liquid demixing [108] or solid precipitation [109]. This is an extremely long and intricate 

history of developments that go beyond the scope of this section. What can be said is 

that aqueous MEA is in a process of losing its relevance as the benchmark amine 

solvent for CO2 capture, being substituted either by aqueous piperazine (PZ) [110] or 

by blends of PZ and 2-amino-2-methyl-1-propanol (AMP) [111]. Meanwhile, it seems 

that industrial biogas upgrading plants have been using aqueous mixtures of MDEA 

and PZ more often than aqueous MEA [112–114]. This is supported by Bauer et al. 

[8,12]. This blend of MDEA with PZ is often called aMDEA (activated MDEA) [8,115].  
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Regardless, most reviews on chemical scrubbing for biogas upgrading still mention 

aqueous MEA as the benchmark [113,114,116]. For our purposes, we shall join our 

peers in focusing on aqueous MEA as a representative chemical solvent. This is 

obviously convenient, as aqueous MEA has been extensively studied and its 

properties are widely catalogued. Moreover, since we have decided to carry our 

analysis on the basis of thermodynamic performance while ignoring issues of kinetics 

and degradation/corrosion (in which one would find vast discrepancies between 

aMDEA and MEA performances), for us, the main differences between aMDEA and 

MEA are their distinct vapor-liquid equilibrium behaviors (aMDEA has a slightly higher 

cyclic capacity [117]) and enthalpies of absorption. With this in mind, results for MEA 

should not differ excessively from those for aMDEA, as the true advantages and 

disadvantages of the aMDEA solvent over aqueous MEA are obfuscated from a purely 

thermodynamic perspective. 

In a practical sense, there are two essential thermodynamic quantities that must be 

well understood for assessing the energy consumption of CO2 absorption-desorption 

into a process with aqueous amines. The first one is the solvent capacity and how it 

shifts with temperature. This is often referred to as the vapor-liquid equilibrium (VLE) 

of CO2 in the solvent. The second thermodynamic quantity is the CO2 heat of 

absorption, i.e., how much heat is released in the exothermic absorption of CO2 into 

the solvent. Even though roughly the same amount of heat must be given to the 

solvent for its endothermal desorption of CO2, the energy penalty is still considerably 

high. Together, these two thermodynamic quantities define both how much CO2 is 

released by raising the temperature of the solvent and how much energy has to be 

spent for releasing CO2 at high temperatures.  



 

324 

As discussed in the literature [118–120], the use of the van ‘t Hoff equation in amine 

systems inherently implies that, among other assumptions, only one reaction is 

occurring in the system, some species are disregarded and the relation between the 

molar fractions and the activity coefficients is constant. Even though for physical 

solvents this approach is reasonable, for amine systems considerable errors have 

been reported, even if the thermodynamic model is consistent and accurate with 

respect to the VLE [121,122]. Hence, the empirical method proposed by Kim and 

Svendsen [118] using differential calorimetry seems to produce more precise results, 

as it is directly targeted at measuring enthalpy variations in the solvent upon 

absorption of CO2. 

Some simplified thermodynamic models have been developed and report a constant 

heat of absorption for the CO2-MEA-H2O system [123] of 88.0 kJ/mol. However, for 

typical reboiler operating temperatures (120 °C), using this averaged value 

underpredicts the energetic requirements of the reboiler, hence the experimental 

values reported by Kim and Svendsen are used in this work [118]. By comparing this 

value to the ones reported by physical solvents (Table 6.4), it is possible to 

acknowledge that the chemical solvents will require more calorific energy to carry out 

the separation, as the CO2 heat of absorption in those is around 4 to 5 times larger 

than in physical solvent processes. 

A review on the chemical scrubbing process would be superfluous in this stage of our 

study, as a detailed description of how this process is performed is carried out 

throughout section 6.4. For a different approach on process modelling, however, we 

invite the reader to consider the works of Moioli et al. [107,124] and Øi et al. [125] 

employing Aspen Plus and Aspen HYSYS respectively. 
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6.4. Process modelling 

This section describes the in-house models utilized in the techno-economic 

assessment of this work. The models were implemented in Matlab 2019b and the 

thermodynamic properties not referenced in section 2 were taken from the Aspen Plus 

v8.6 databank. These parameters are provided in the supplementary information. 

Our thermodynamic framework assumes that the vapor phase behaves as an ideal 

gas, the liquid phase behaves as an ideal mixture and the condensers, reboilers and 

flash tanks are in thermodynamic equilibrium. Although real gases deviate from the 

ideal behavior at moderate to high pressures, using the same assumption when 

comparing the different technologies should not jeopardize the findings of this work. 

The main goal of any biogas upgrading plant is to process the feed of a raw biogas 

stream (𝐹𝐹) at temperature (𝑇𝐹), at pressure (𝑃𝐹) and with a methane composition 

(𝑧𝐶𝐻4
) in order to produce a biomethane stream (𝐹𝐵) with a delivery temperature (𝑇𝐵), 

pressure (𝑃𝐵) and methane composition (𝑦𝐶𝐻4
). Furthermore, the processes also 

deliver a carbon dioxide stream (𝐹𝐶) at a certain temperature (𝑇𝐶), pressure (𝑃𝐶) that 

mainly contains CO2 (𝑥𝐶𝑂2
) and usually small quantities of CH4 (𝑥𝐶𝐻4

).  

6.4.1. Physical and water absorption process 

6.4.1.1. With CO2 recovery 

The flowsheet of the Physical/Water absorption process with CO2 Recovery (PWCR) 

is shown in Figure 6.5. The role of the absorber in the process is to remove the 

necessary amount of CO2 from the absorber vapor inlet (𝐹𝐺) in order to comply with 

the biomethane composition specification (𝑦𝐶𝐻4
). The CO2 removal requires the 

absorber to be operated at a certain pressure (𝑃𝐴) with a lean liquid solvent stream 
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(𝐹𝐿) at a given temperature (𝑇𝐿). The PWCR absorber uses the material balances, 

equilibrium relations, summation equations and enthalpy balances (MESH equations). 

Thermodynamic equilibrium is assumed at the bottom of the column (the compressor 

outlet temperature is adjusted to match the outlet liquid temperature calculated with 

the energy balance in order to simplify the solution algorithm). The lean liquid solvent 

stream flow is specified using the liquid to gas ratio (𝐿/𝐺): 

𝐿/𝐺 =
𝑚𝐿

𝑚𝐺

 (6.6) 

where 𝐿/𝐺 can be in mass or mole basis. Since both CH4 and CO2 are solubilized in 

the solvent, and the carbon dioxide stream has a specified maximum limit for the 

amount of methane, part of the methane absorbed must be recovered. This is done 

by depressurizing the rich solvent stream and then recirculated the vapor that is 

vaporized from the recycle adiabatic flash tanks. Therefore, only the output pressure 

of each flash tank can be tuned in order to meet the 𝑥𝐶𝐻4
 specification. The pressure 

of the flash tanks must be between the absorber pressure 𝑃𝐴 and the reboiler pressure 

𝑃𝑅, thus the following relations are proposed: 

𝑃1 = (𝑃𝐴 − 𝑃𝑅) ∙ 𝑟𝑃 + 𝑃𝑅 (6.7) 

𝑃2 = (𝑃1 − 𝑃𝑅) ∙ 𝑟𝑃 + 𝑃𝑅 (6.8) 

where 𝑃1 and 𝑃2 are the outlet pressures of the flash tank 1 and 2 respectively, while 

𝑟𝑃 is the depressurization ratio (must be between 0 and 1) which represents the 

fraction of the pressure difference between the inlet pressure and the reboiler. This 

arrangement is convenient for numerical stability as it ensures that 𝑃𝐴 > 𝑃1 > 𝑃2 > 𝑃𝑅 
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while eliminating one degree of freedom. Considering this, 𝑟𝑃   can be directly iterated 

upon in order to comply with the specification in 𝑥𝐶𝐻4
.  

The heat exchanger shown in Figure 6.5 is the result of the heat integration of the 

biogas upgrading plant and uses a fixed temperature difference in the cold side equal 

to 10 °C. The computational framework has an implemented algorithm that does not 

perform the heat integration in cases where heat recovery is not thermodynamically 

feasible. 

The reboiler operation finishes the depressurization cycle by decreasing the pressure 

from 𝑃2 to 𝑃𝑅 and heating the solvent up to a specified reboiler temperature 𝑇𝑅. A 

temperature increase is usually needed to increase the partial pressure of CH4 and 

CO2 so that the lean solvent has the least amount of solubilized gases. The make-up 

stream reintroduces the solvent lost due to the evaporation in the reboiler. 

Since the carbon dioxide stream is assumed to be fed to a CO2 transport and storage 

system, the PWCR requires to comply with a maximum permissible amount of CH4 in 

the carbon dioxide stream. Considering this, using a reboiler as the last separation 

stage instead of a third adiabatic flash tank provides an extra degree of freedom (𝑇𝑅 ) 

that enables the regulation of the carbon dioxide stream compositions. Tuning the 

compositions without thermal regeneration constraints the operating ranges and, in 

most cases, it is not possible to find an optimal solution that complies with the 

specifications of the biomethane, and the carbon dioxide streams. 

There are four different compressor sections in the PWCR process, each of which has 

different delivery pressures. The delivery pressure of the feed compressor is the same 

as the pressure calculated from mixing the vaporized streams from the flash tanks. 

The absorber compressor section outlet pressure value is identical to 𝑃𝐴. The biogas 
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compressor elevates the pressure from 𝑃𝐴 and delivers it at 𝑃𝐵. The CO2 compressor 

increases the pressure from the reboiler up to 𝑃𝐶.One of the main concerns in biogas 

upgrading technologies is the loss of methane in the process. This is quantified with 

the methane slip parameter (𝜃): 

𝜃 = 1 −
𝐹𝐵,𝐶𝐻4

𝐹𝐹,𝐶𝐻4
  
 (6.9) 

where 𝐹𝐵,𝐶𝐻4
 is the CH4 material flow in the biomethane stream and 𝐹𝐹,𝐶𝐻4

 is the CH4 

material flow in the raw biogas stream. 

 

Figure 6.5. Proposed process configuration of the physical and water scrubbing 

technologies with CO2 recovery (PWCR). 

6.4.1.2. Without CO2 recovery 

The traditional process configuration of physical scrubbing processes regenerates the 

solvents using air stripping, i.e. stripping the solvent with an air stream that reduces 

the partial pressures of the CO2 and CH4 in the vapor phase and allows the 
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vaporization of the gases by creating a difference in the chemical potential. The 

Physical/Water process configuration (PW) analyzed in this work has been reported 

in different sources [126,127] and is presented in Figure 6.6. One can notice that, as 

opposed to the PWCR, the solvent regeneration system of the PW has a heat 

exchanger and a reboiler instead of a desorber column. The L/G ratio between the 

rich solvent and the air supply stream in the desorber column is specified and it is 

used to calculate the composition of the lean solvent exiting the bottom of the 

absorber. 

 

Figure 6.6. Proposed process configuration of the physical and water scrubbing 

technologies without CO2 recovery (PW). 

The vapor stream released from the desorber contains both CH4 and CO2. While the 

amount of CH4 is expected to be lower than that of CO2, the greenhouse effect and 

environmental impact of CH4 methane is significantly higher when compared to CO2 

[128]. Therefore, the costs associated to the release of CH4 to the atmosphere are 

more than 20 times higher than those from releasing CO2 [129]. In order to eliminate 

CH4 emissions, the gas released from the stripper is treated with a regenerative 
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thermal oxidation (RTO) unit that transforms the CH4 into CO2. The destruction 

efficiency of thermal oxidizers can be close 100% [130], hence, in this work, we 

assume that the CH4 conversion is 99% and we consider that the RTO operates at 

750 °C in order to ensure a complete conversion of methane (the autoignition 

temperature of CH4 is 550 °C). 

6.4.2. Chemical absorption process 

The chemical process flowsheet of the Aqueous aMine absorption process without 

CO2 Recovery (AM) and the Aqueous aMine absorption process with CO2 Recovery 

(AMCR) are shown in Figure 6.7. As opposed to the physical solvent processes, the 

process configuration does not change significantly whether CO2 recovery is 

considered or not. In fact, the only difference lies on the inclusion of the CO2 

compressor in the carbon dioxide stream. 

Considering that in this process most of the CO2 is solubilized by chemically binding 

itself to the amine, solvent regeneration is usually carried at low pressures. The vapor-

liquid equilibrium behavior is calculated using the machine-learning based surrogate 

model validated in a previous work [122]. On the other hand, H2O must be included in 

the phase equilibria calculations because its partial pressure can be equal or greater 

than the CO2 partial pressure. MEA is assumed to be non-volatile because its boiling 

point is considerably smaller than that of the other components. 

The role of the absorber in this process is the same as in the physical absorption 

processes, but the difference is that the absorber pressure 𝑃𝐴 is assumed to be 

constant and equal to 100 kPa. This process also uses a lean liquid solvent stream 

(𝐹𝐿) at a given temperature (𝑇𝐿), CO2 loading (𝛼𝐿𝑒𝑎𝑛) and a 30 %wt. MEA solvent. 
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Analogously to the physical and water scrubbing process, the (𝐿/𝐺) ratio is used to 

specify 𝐹𝐿. 

The model considers the absorber to be isobaric, adiabatic, and that both phases are 

in thermal equilibrium at the top. This simplification is justified when one looks at the 

pilot plant data from Tobiesen et al. [131]. It is reported that, in average, the liquid 

temperature is 5 °C higher than the vapor phase temperature at the top.  

The assumptions done in the absorber allow the estimation of the compositions and 

the temperature of the outlet streams without using complex differential models like 

the ones presented elsewhere [131–133]. An inconvenience of this simplification is 

that it does not estimate the temperature profile, hence the location of a temperature 

bulge is unknown. A large temperature bulge can lead to an undesired pinch, and the 

CO2 mass transfer flux can decrease significantly [134]. Not considering the 

temperature bulge inevitably underestimates the minimum 𝐿/𝐺 ratio and the energetic 

requirement for the separation. In order to consider the temperature bulge effect, a 

maximum theoretical temperature (𝑇𝐿,𝑀𝑎𝑥) is calculated by performing an overall mass 

and energy balance and neglecting water evaporation. Note that the value of 𝑇𝐿,𝑀𝑎𝑥 is 

always higher than the actual liquid temperature flowing from the bottom of the 

absorber. In this work we assumed that if 𝑇𝐿,𝑀𝑎𝑥 is estimated to be greater than 90 °C, 

then the absorber is deemed unfeasible. 

The heat exchanger recovers the heat from the reboiler outlet and fixes a temperature 

difference in the hot side constant and equal to 10 °C. The reboiler temperature (𝑇𝑅) 

is specified, and along with 𝛼𝐿𝑒𝑎𝑛 and the aqueous solvent composition, the reboiler 

pressure can be estimated (𝑃𝑅). The desorber pressure is assumed to be equal to the 

reboiler pressure. The temperature difference between the reboiler and the top of the 
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desorber 𝛥𝑇𝐷 is specified to be equal to 20 °C, while the condenser temperature of 

the partial condenser of the desorber is 20 °C in accordance to reported plant data 

[135]. Although a small 𝛥𝑇𝐷 would require less energy consumption, the size of the 

desorber would become unfeasibly large.  

The carbon dioxide stream (𝐹𝐶) is produced by condensing most of the water content 

that exits the top of the desorber. It is important to underline that since the solubility 

of methane is disregarded in the chemical absorption plant model, 𝑥𝐶𝐻4
 is equal to 0. 

The make-up 𝑊 compensates the amount of water lost in the absorber or desorber.  

As opposed to the physical scrubbing processes, the amine-based processes require 

less compression sections. The AM process only requires the biomethane 

compressor while the AMCR process requires the compressors for the biomethane 

and the carbon dioxide streams. 

 

Figure 6.7. Process configuration of the chemical scrubbing technology with CO2 recovery 

(AMCR) and without CO2 recovery (AM). The dashed compressor indicates that it is only 

present in the AMCR process. 
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6.4.3. Auxiliary systems 

6.4.3.1. Compressors 

The compressors are modelled as isentropic; hence the following equation can be 

applied to determine their power consumption [136]: 

𝑊𝐾 =
𝑚 ∙ (ℎ2

∗ − ℎ1)

𝜂𝐾,𝑆 ∙ 𝜂𝐾,𝑀

 (6.10) 

where 𝑊𝐾 is the compressor power consumption, 𝑚 is the material flow of the unit 

operation, ℎ2
∗  is the specific enthalpy of the outlet for the isentropic process, ℎ1 is the 

specific enthalpy of the inlet, 𝜂𝐶,𝑆 is the isentropic efficiency and 𝜂𝐶,𝑀 is the mechanical 

efficiency. The efficiency values for the compressors and other auxiliary systems are 

shown in Table 6.6. 

Since the biogas upgrading processes requires considerable pressure increments, 

the compression trains must be divided in compression stages. The number of 

compression stages in each compression section is calculated using the compressor 

ratio equation [137]: 

log(𝐶𝑅) =
log (

𝑃𝑎

𝑃𝑏
)

𝑛
 

(6.11) 

where 𝑃𝑎 is the pressure feed to the compressor sequence, 𝑃𝑏 is the outlet pressure 

of the compressor train, n is the number of compressors and 𝐶𝑅 is the compression 

ratio. It is advised that compressors do not work at high temperatures (this work avoids 

operating compressor temperatures above 150 °C), therefore the maximum value 

allowed in this work for CR is 4.0 in order to comply with this restriction.  
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Compression sequences usually include intercooling stages that lower the 

temperature from the outlet of the compressors to a low intercooling temperature (𝑇𝐼). 

This is done to improve the energetic performance of the compressor system and to 

remove any undesired volatile components from the gas mixture.  𝑇𝐼 in this work is 

fixed and equal to 25 °C for all solvents except for methanol which uses 0 °C because 

of its high volatility. The intercooling stages in the biomethane and the carbon dioxide 

streams are used for cooling the compressed gas, removing any organic 

solvent/water from the gas stream, and recirculating the condensed phase to the 

make-up stream of the process. 

6.4.3.2. Pumps 

Hydraulic pumps are required to compress and transport the liquid solvent. The 

electrical energy required by a pump (𝑊𝑃) is given by: 

𝑊𝑃 = 
𝑚 ∙ 𝛥𝑃

𝜌 ∙ 𝜂𝑃

 (6.12) 

where 𝑚 is the material flow of the fluid, 𝛥𝑃 is the pressure difference between the 

outlet and the inlet of the pump, 𝜌 is the fluid density and 𝜂𝑃 is the mechanical 

efficiency of the pump. The 𝛥𝑃 is calculated as the pressure difference between the 

pressure of the connected equipment plus a constant value of 300 kPa in order to 

account for the pressure drop caused by hydrostatic and frictional forces. 

6.4.3.3.  Cooling system 

The cooling system is used to cool the service fluid (water is used for this purpose) to 

lower the temperature of the main unit operations in the biogas upgrading plant. This 

system is composed of a cooling tower, a blower and a hydraulic pump.  
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The equation for estimating the blower power (𝑊𝐵) is given by: 

𝑊𝐵 = 
𝑚 ∙ 𝛥𝑃

𝜌 ∙ 𝜂𝐵

 (6.13) 

where 𝜂𝐵 is the blower efficiency. It is considered that the minimum temperature which 

can be reached by cooling water with air is 𝑇𝑈 = 20 °C. The value of 𝑇𝑈 is dependent 

on the geographical location of the biogas upgrading plant. A temperature increase of 

10 °C is allowed on the cooling water before it is sent to the cooling tower again. 

Moreover, a minimum temperature gradient of 5 °C is considered as needed in order 

to cool a stream, hence, any stream that requires to be cooled less than 𝑇𝑈 + 5 °𝐶 

must use a fluid service cooled by the chilling system. 

6.4.3.4. Chilling system 

The energy needed by the chilling system is calculated with the coefficient of 

performance (COP), which is the ratio between the electrical energy consumption of 

the chilling system (𝑊𝐹) and the amount of energy that must be removed using the 

refrigerant (𝑊𝐶ℎ𝑖𝑙𝑙). The energetic consumption of the chilling system can be 

calculated by: 

𝑊𝐹 = 𝐶𝑂𝑃 ∙ 𝑊𝐶ℎ𝑖𝑙𝑙 (6.14) 

There has been extensive research in order to improve the energetic efficiency of 

different chilling systems [138]. The COP of the system is a function of the chilling 

temperature (𝑇𝐶ℎ𝑖𝑙𝑙), hence the COP can be calculated with the following empirical 

equation 

𝐶𝑂𝑃 = 0.001 ∙ 𝑒𝑥𝑝(0.301 ∙ 𝑇𝐶ℎ𝑖𝑙𝑙), (6.15) 
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which is valid for chilling systems operating with CO2 as refrigerant and the M-SC 

configuration as reported by Bellos and Tzivanidis [138]. 

6.4.3.5. Reboiler 

This system provides the necessary calorific energy to heat up the solvent in the 

reboiler in order to regenerate it. It is considered that the produced biomethane is 

used as the fuel source. Henceforward, the reboiler duty (𝑄𝑅) can be calculated in 

terms of combusted biomethane (𝐹𝐵𝑢𝑟𝑛𝑡): 

𝐹𝐵𝑢𝑟𝑛𝑡 =
𝑄𝑅

𝑦𝐶𝐻4
∙ 𝛥𝐻𝐶𝐻4

 (6.16) 

where 𝛥𝐻𝐶𝐻4
 is the combustion enthalpy of methane and is equal to 890.5 kJ/mol. In 

the context of the PW process, the term 𝑄𝑅 is the energy associated to the RTO unit.  

6.4.4. Economic evaluation 

The economic assessment of the biogas upgrading technologies of this work captures 

the effect of the biomethane sold to the user, the operational costs, and the 

taxes/penalties associated to the release of greenhouse gases to the atmosphere. 

The concept of integrating the environmental impacts with monetary values has been 

standardized within the ISO 14008:2019 framework [139]. By considering this, the 

following equation is proposed: 

𝛱 = (0.844 ∙ 𝐶𝑄 ∙ 𝑦𝐶𝐻4
∙ (𝐹𝐵 − 𝐹𝐵𝑢𝑟𝑛𝑡) − 0.278 ∙ 𝐶𝐸 ∙ 𝐸 − 0.044 ∙ 𝐶𝑇

∙ (𝑥𝐶𝑂2
∙ 𝐹𝐶 + 27.8 ∙ 𝑥𝐶𝐻4

∙ 𝐹𝐶 + 𝐹𝐵𝑢𝑟𝑛𝑡) − 𝑥𝑆 ∙ 𝐹𝐶 ∙ 𝑀𝑆 ∙ 𝐶𝑆) ∙
1

𝑄𝐹
, 

(6.17) 

where Π is the unit profit in USD/Nm3 of processed raw biogas, 𝑄𝐹 is the normal cubic 

meter of raw biogas, 𝐶𝑄 is the value of the biogas per energy unit in USD/MMBTU, 𝐶𝐸 
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is the electricity price in USD/kWh, 𝐸 is the total electricity consumption of all the 

auxiliary equipment in MJ/s, 𝐶𝑇 is the CO2 tax paid in USD/ton CO2, 𝐶𝑆 is the cost of 

the solvent in USD/ton, the material flows 𝐹𝐵, 𝐹𝐵𝑢𝑟𝑛𝑡 and 𝐹𝐶 are in kmol/s and 𝑀𝑆 is 

the molecular weight of the solvent in kg/kmol. The values of 𝐶𝑄, 𝐶𝐸 and 𝐶𝑇 are 

presented in Table 6.6. The values of 𝐶𝑆 were set as follows: 0 USD/ton for water, 600 

USD/ton for methanol [140], 2,000 USD/ton for MEA [93], 1000 USD/ton for PEGDME, 

NMP and NFM (assumed value). 

The first term of Eq. (6.17)) is the combined effect of the revenue generated by 

producing the biomethane minus the cost associated to the reboiler, the second term 

is the cost associated to the electricity consumption of the plant, the third term is the 

tax or penalty that must be paid for releasing greenhouse gases (CO2 or CH4) to the 

atmosphere, and the last term represents the solvent loses due to solvent vaporization 

(PW/PWCR) or amine degradation (AM/AMCR). The numeric factor associated to the 

CH4 flow implies that the CH4 emissions are 27.8 times more expensive than those of 

CO2. This ratio was estimated by dividing the average emission values reported by 

Lombardi and Francini [129]. In this equation we assume that the emission taxes ratio 

remains constant.  

In the case that the policies do not require the biogas upgrading plants to pay CO2 

taxes, the last term 𝐶𝑇 can be the value of a CO2 credit. These credits can be sold 

between different commercial entities. If one wants to use Eq. (6.17) for the process 

evaluation with CO2 credits, then the last constant should be changed from −0.0   to 

+0.044. 
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6.4.5. Key variables summary 

The most important variables for each one of the assessed technologies in this work 

are presented in Table 6.6. Each variable with an independent tag is an available 

degree of freedom. The values for the compressor efficiencies were taken from 

recommended values [141]. The price of biomethane is an average value taken from 

the energy market [142] and the 𝐶𝐸 value is the average retail electricity price for 

industrial consumers in the U.S. in 2019 [143]. 

It is important to remark that the integration of CO2 recovery affects the parameters in 

which the process can be feasible. If Table 6.6 is looked at, one can realize that there 

are 4 degrees of freedom in the 4 processes (𝑥𝐶𝐻4
 can be considered as a degree of 

freedom because it is a restriction).  

The reboiler/desorber pressures 𝑃𝑅 for both the PW and PWCR processes were fixed 

to be equal to the atmospheric pressure. The reason for this is that operating at lower 

𝑃𝑅 implies that 𝑃𝐴 will be low as well. Operating at low absorber pressure decreases 

the electricity output of the compressors, thus making the processes economically 

more competitive. 
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Table 6.6. Summary of the key variables used in the biogas upgrading processes. 

Variable 

Process 

PWCR PW AMCR AM 

Process variables  

𝐿/𝐺 (absorber) Independent 

𝐿/𝐺 (desorber) N/A Independent Dependent 

𝑇𝐿 / °𝐶 Independent 

𝑇𝑅  / °𝐶 Independent N/A Independent 

𝑃𝑅  / 𝑘𝑃𝑎 100 100 Dependent 

𝑟𝑃 Dependent Independent N/A 

𝛼𝐿𝑒𝑎𝑛 N/A Independent 

𝑃𝐴 / 𝑘𝑃𝑎 Dependent 100 

Specifications  

𝑧𝐶𝐻4
 0.5 – 0.9 

𝑦𝐶𝐻4
 0.98 

𝑥𝐶𝐻4
 ≤ 0.0  Dependent ≤ 0.0  Dependent 

𝑇𝐵  / 𝐾 298.15 

𝑃𝐵  / 𝑘𝑃𝑎 100 – 5,500 



 

340 

Table 6.6. Summary of the key variables used in the biogas upgrading processes. 

Variable 

Process 

PWCR PW AMCR AM 

𝑇𝐶  / 𝐾 283.15 

𝑃𝐶  / 𝑘𝑃𝑎 150,000 

Equipment 

efficiency 
 

𝜂𝐶,𝑆 / % 80 

𝜂𝐶,𝑀  / % 97 

𝜂𝑃 / % 80 

𝜂𝐵 / % 70 

Economic 

variables 
 

𝐶𝑄  / 𝑈𝑆𝐷

∙ 𝑀𝑀𝐵𝑇𝑈−1 
2.50 

𝐶𝐸  / 𝑈𝑆𝐷 ∙ 𝑘𝑊ℎ−1 0.0683 

𝐶𝑇 / 𝑈𝑆𝐷 ∙ 𝑡𝑜𝑛−1 ≥ 0 

* 𝑃𝑅 is the desorber pressure in the PW process 
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6.4.6. Optimization algorithm 

Comparing different technologies is a difficult task, especially if the processes greatly 

differ one from another. Although the PWCR and the PW processes may seem alike 

at first glance, the fact that the former alternative includes a reboiler entirely changes 

the process energetic and economic performance. For this reason, in order to have a 

fair comparison and judgement of each technology, it is suggested to compare the 

different technologies only when their operating parameters are optimized. 

The optimization algorithm in this work aims to identify operating areas in which the 

different technologies may be economically competitive. Hence, a relaxed 

optimization method such as the response surface analysis is ideal. This method has 

been successfully applied to other complex separation methods [144].  

The first step involves selecting the specifications of the process and setting the limits 

of the independent variables. The limits of important variables for the physical and 

chemical solvents are presented in Table 6.7. 

The minimum and maximum temperature values for the physical solvents were taken 

from reports of already-existing processes described in section 2. In the case of NFM 

and NMP, the maximum temperatures were set so that their partial pressure does not 

exceed 1.0 kPa. The minimum solvent molar composition of water must be kept high 

in order to avoid hydrate formation [87]. Note that the NFM case assumes that the 

solvent is a mixture of NFM and N-acetyl-morpholine in order to decrease the freezing 

point, so that operations at low temperatures are feasible. 
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Table 6.7. Limits of the operating parameters of the solvents in the optimization. 

 PEGDME NFM NMP Methanol H2O MEA 

Minimum 

temperature / °C 
0 −20 −15 −60 10 40 

Maximum 

temperature / °C 
175 100 60 −10 60 120 

Maximum CO2 

molar fraction 
0.3 0.3 0.3 0.3 0.03 0.5* 

* CO2 loading: in mol CO2/mol MEA. 

The response surface method relies on creating a design of experiments (DOE) and 

then performing the simulations. The process performance is particularly sensitive to 

the 𝐿/𝐺 ratio, therefore it was found that it was best to perform the optimization in two 

steps. First, the simulations were carried at certain conditions (e.g., in the PWCR 

process, at fixed values of 𝑇𝐿 , 𝑇𝑅 and 𝑥𝐶𝐻4
) and then an univariable optimization 

method was used to find the best 𝐿/𝐺 ratio. The full optimization scheme is presented 

in Figure 6.8. 
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Figure 6.8. Optimization algorithm. 
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6.5. Results and discussion 

6.5.1. Physical absorption processes 

An overview of the operating conditions and their effect on the energetic and economic 

performance of both physical scrubbing technologies PWCR and PW is presented in 

this subsection. The physical solvent PEGDME is used as the case study to exemplify 

how the techno-economic analysis of the PWCR and PW processes were made. We 

perform the economic evaluation of four different organic solvents and water. 

6.5.1.1. With CO2 Recovery 

An overview of the operating conditions and their effect on the energetic and economic 

performance of both physical scrubbing technologies PWCR and PW is presented in 

this section. The physical solvent PEGDME is used as the case study to exemplify 

how the techno-economic analysis of the PWCR and PW processes was made.  

Usually, the physical scrubbing technologies are denominated as pressure swing 

processes because they rely on a pressure difference to perform the separations. This 

is true for the PW process. However, for the case of PWCR, the inclusion of a reboiler 

enables a mixed temperature-pressure swing separation. Considering this, the 

optimal process operating conditions are expected to differ to those from the PW 

process. 

An analysis of the PWCR process is presented in Figure 6.9 in the form of contour 

plots. The optimization was done using a 7 level DOE for the 𝑇𝑅 and the 𝑇𝐿 while 

𝑧𝐶𝐻4 = 0.7, 𝑃𝐵 = 1.2 𝑀𝑃𝑎 and 𝑇𝑈 = 20 °𝐶. The variables that are not explicitly defined 

use the values presented in Table 6.6. 

Figure 6.9 (a) shows that 𝑇𝐿 has a direct relationship with the optimized 𝐿/𝐺 ratio 

(kg/kg). This is expected as lower temperatures allow more gas solubilization into the 
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liquid phase, hence less solvent will be required. On the other hand, the reboiler 

temperature does not seem to have a noticeable effect on the optimized L/G ratio.  

The behavior of 𝑃𝐴 with respect to the operating temperatures is presented in Figure 

6.9 (b). It shows that at larger 𝑇𝐿, the absorber operating pressure will be lower. The 

fact that 𝑃𝐴 decreases when 𝑇𝐿 is higher may seem counterintuitive, but this behavior 

is a combined effect caused by the tradeoff that exists between the optimized L/G 

ratio and 𝑇𝐿: a larger 𝑇𝐿 means a larger L/G, which conversely means that the absorber 

pressure 𝑃𝐴 can be lowered. 

The effect of 𝑇𝐿 on the depressurization ratio is presented in Figure 6.9 (c). The 

recirculation rate of the flash recycle tanks and their corresponding pressure drops 

are inversely affected by 𝑟𝑃. With a higher 𝑇𝐿, the selectivity CO2/CH4 decreases for 

all physical solvents, and thus the depressurization ratio must be lower to avoid high 

methane losses. 

Figure 6.9 (d) presents the calorific energy requirements, where one can observe that 

the calorific requirement for the PWCR process increases at larger 𝑇𝐿. Although one 

may expect that larger temperatures would imply lower 𝑄𝑅, this is not true, because 

the optimized 𝐿/𝐺 ratios increase with larger 𝑇𝐿 values. This means that the system 

will spend more calorific energy to heat up the solvent and to desorb CO2 (note that 

the calorific energy and all other variables are normalized with respect to the amount 

of processed raw biogas, hence, 𝑁𝑚–3 refers to the normal cubic meters fed to the 

process). 

The electrical energy requirement as a function of the operating temperatures of the 

process is presented in Figure 6.9 (e). The electrical energy consumption is a lumped 

effect of several energy requirements needed in the process: compression, pumping, 
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cooling system and chilling system duties. Larger 𝑇𝐿 values allow the operation of the 

process at lower pressures (higher L/G), which in turn will reduce the pumping and 

compression duties. Moreover, the cooling duty is drastically reduced when 𝑇𝐿 ≥ 25 °𝐶 

because the cooling is done with water instead of employing the chilling system. The 

combination of these effects causes larger 𝑇𝐿 to induce less electrical energy 

requirements.  

The combined effect of the calorific and electrical energy can be assessed by 

observing the profit (Eq. (6.17)) surface plot in Figure 6.9 (f). The effect of 𝑇𝑅 on the 

profit equation indicates that heating the solvent up to 60 to 80 °C has a beneficial 

effect in the process performance. This is because a larger temperature enables the 

desorption of more gas from the liquid phase, hence the lean solvent will have less 

dissolved gases and more capacity to absorb. It is interesting to observe that the 

surface topology of Figure 6.9 (f) is almost symmetrical to that of the electrical energy. 

This is not a surprise if we consider that, according to Table 6.6, the cost ratio between 

the electrical and calorific energy is 8:1. In fact, if the price of electricity is increased 

significantly, the topology of the electrical requirement and profit response surfaces 

become symmetrical.  

A similar response surface analysis was performed on the PWCR process at different 

concentrations of CO2 in the feed and the results are presented in Table 6.8. It is 

shown that the optimal 𝐿/𝐺 ratio has a direct relationship with the value of 𝑧𝐶𝐻4
. This 

behavior is a result of the interaction between the 𝐿/𝐺 ratio and the molecular weight 

of the gases. Although the total amount of gas in mass basis is decreasing with larger 

CO2 concentrations, the total amount of gas in mole bases is increasing, which means 

that a larger higher quantity of solvent will be needed to keep a lower pressure. 
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The analysis on these results also suggests that the dependency of the optimized 𝑇𝐿 

and 𝑇𝑅 with respect to 𝑧𝐶𝐻4
 is not significative. However, this is not the case for all 

process variables as 𝑟𝑃, θ and 𝐸 have a smooth inverse relationship when compared 

to 𝑧𝐶𝐻4
. The results show that at larger 𝑧𝐶𝐻4

 the depressurization ratio must be lower, 

hence the recirculation of the recycle tanks must increase as well. The cause of this 

is that larger 𝑧𝐶𝐻4
 involves more CH4 dissolved in the mixture, which must be removed 

from the solvent so that the carbon dioxide stream can meet the specification of 𝑥𝐶𝐻4
. 

The reduction in the methane loss and the operating costs eventually cause that the 

profit increase proportionately with respect to 𝑧𝐶𝐻4
. This is reasonable as it is easier 

to perform a separation from 𝑧𝐶𝐻4
= 0.9 to 𝑧𝐶𝐻4

= 0.98 than if the separation starts at 

𝑧𝐶𝐻4
= 0.5. 

The share of the costs associated to the conditioning of the carbon dioxide stream 

(𝐾𝐶) is shown in Table 6.8. These costs include the electricity consumed by the 

compressors and the cooling power needed in their interstage cooling sections. The 

inverse relationship between 𝐾𝐶 and 𝑧𝐶𝐻4
 is caused by the reduction of the material 

flow in the carbon dioxide stream with a larger CH4 feed concentration.  
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Figure 6.9. PWCR process contour plots of: (a) 𝐿/𝐺 in kg/kg, (b) absorber pressure 𝑃𝐴𝑏𝑠 in 

MPa, (c) depressurization ratio 𝑟𝑃, (d) 𝑄𝑅 in MJ/Nm3, (e) 𝐸 in MJ/Nm3 and (f) Profit 𝛱 in 

USD/ Nm3. 𝑧𝐶𝐻4 = 0.7, 𝑃𝐵𝑖𝑜 = 1.2 𝑀𝑃𝑎 and 𝑇𝑈 = 20 °𝐶. Solvent: PEGDME.  
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Table 6.8. Optimized parameters of the PWCR process using PEGDME as the solvent. 

𝑧𝐶𝐻4
 0.5 0.6 0.7 0.8 0.9 

L/G (kg/kg) 10.5 12.5 14.5 17 20 

𝑇𝐿 / °C 25 25 25 25 25 

𝑇𝑅 / °C 70 70 70 70 70 

𝑃𝐴 / MPa 2.4 2.3 2.2 2.1 2.1 

𝑟𝑃 0.76 0.67 0.57 0.44 0.27 

𝑃𝑅 / MPa 0.1 0.1 0.1 0.1 0.1 

𝑥𝐶𝐻4
 0.04 0.04 0.04 0.04 0.04 

𝜃 0.041 0.027 0.017 0.010 0.004 

Lean solvent molar 

fraction 

0.99 0.99 0.99 0.99 0.99 

Rich solvent molar 

fraction 

0.67 0.72 0.76 0.80 0.84 

𝑄𝑅 / MJ/Nm3 0.59 0.58 0.56 0.54 0.51 

E / MJ/Nm3 0.77 0.70 0.64 0.60 0.57 

𝑃𝐵 / MPa 1.2 1.2 1.2 1.2 1.2 

𝐾𝐶 / % 59.4 52.5 43.6 31.8 18.2 

Profit 𝛱 / USD/Nm3 0.029 0.040 0.051 0.062 0.072 
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A comparison of five different physical solvents (4 organic solvents and water) is 

presented in Figure 6.10. The organic solvents PEGDME, NFM and NMP seem to be 

equally competitive over almost all compositions of 𝑧𝐶𝐻4
. Due to the high methanol 

volatility, the process must be operated at cryogenic temperatures. This causes 

considerable electricity demands due to the additional dependence on the chilling 

system. However, this is not the only cause of economic loses, the methanol that 

cannot be recovered within the compression system should also be replaced. While 

more than 99.99 % of the evaporated PEGDME, NFM and NMP can be recovered in 

the interstage cooling systems, only 98-99 % of the methanol can be recovered. 

Although the methanol loss may seem low one should consider that adding an extra 

component into the CO2 transport and storage systems may raise unforeseen 

operating issues. Despite the fact that the water absorption capabilities are worse than 

those of methanol, its low volatility and negligible prices make it more economically 

competitive at lower 𝑧𝐶𝐻4
.Nonetheless, neither methanol nor water seem to be 

economically competitive. 

It is interesting that, despite the fact that PEGDME, NFM and NMP have different 

thermodynamic properties, they seem to be equally competitive. For example, 

PEGDME has the worst selectivity of all the compared solvents, however, this is 

compensated with having the lowest Henry’s coefficient ( .7 MPa at 25 °C) and a high 

boiling point (> 250 °C). This last property implies that the solvent can be regenerated 

at higher temperatures without incurring into considerable solvent losses. On the other 

hand, NFM and NMP have higher Henry’s coefficients (e.g. 7.1 and 6.8 MPa at 25 °C 

respectively) than PEGDME, but their higher selectivity and lower molecular weight 

outweigh the lower CO2 solubility. The lower Henry’s coefficient of PEGDME may be 
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advantageous from a capital costs perspective as it means that the shell thickness of 

the absorber will be smaller and, therefore, more economical. 

 

Figure 6.10. Profit Π of each one of the solvents using the PWCR process technology at 

different methane concentrations in the feed. 

Water seems to not be energetically or economically competitive in the PWCR 

because its Henry’s coefficient is around 10 to 20 times greater than in the studied 

organic solvents. This indicates that the process will be required to operate at larger 

pressures, and hence the electricity consumption will be larger. Moreover, larger 𝐿/𝐺 

ratios are needed in order to counter the large Henry’s coefficient values and to avoid 

hydrate formation. This causes that its economic performance is around 10 to 25% 

worse than the competing technologies. In addition to this, since the solubilization of 

CO2 into water produces an acidic mixture, it is necessary to use stainless steel to 

avoid corrosion and the capital costs of the equipment will increase by a factor of 2.4–

3.4 (depending on whether stainless steel 304L or 316L is used) [130].  
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Due to the similar competitiveness of the PEGDME and NMP, it is important to 

consider the transport properties. In particular, viscosity is an important property as it 

may increase significantly the equipment size if it is too large. In Table 6.9 we include 

the minimum and maximum viscosity values that can be found in the PWCR process. 

From this perspective, the solvent competitiveness could be rearranged as H2O > 

NMP > Methanol > PEGDME > NFM (the actual viscosity values the NFM-based 

solvents also accounts for N-acetyl-morpholine). Although NFM, methanol and H2O 

have competitive viscosities when compared to the other organic solvents, their 

thermodynamic and corrosion-related disadvantages are too substantial to be 

countered by low viscosities alone. 

Table 6.9. Solvent viscosity as a function of the operating temperatures. 

Solvent Viscosity / mPa ∙ s 

at lowest 𝑇𝐿 

Viscosity / mPa ∙ s  

at highest 𝑇𝑅 

Source 

PEGDME 6.5 at 25 °C 2.4 at 70 °C [146] 

NFM* 17.1 at −20 °C 8.3 at 25 °C Aspen Plus v8.6 

NMP 1.5 at 15 °C 1.1 at 54 °C [147] 

Methanol  .25 at −60 °C 0.8 at 0 °C [148] 

H2O 1.31 at 10 °C 0.5 at 47 °C [149] 

* These values account for the mixture between N-formyl-morpholine and N-acetyl-morpholine. 

Providing a definite conclusion about whether PEGDME or NMP is better might not 

be possible without performing a detailed engineering design. However, an analysis 

on the optimal 𝑇𝐿 for each solvent, might suggest that PEGDME has a slight 

advantage because the 𝑇𝐿 in all cases is at 25 °C while the minimum temperature of 
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NMP is at 15 °C. This implies that PEGDME, might not need to require a chilling 

system. Nonetheless, we remark, the decision of the optimal solvent requires a 

thorough analysis that considers the plant location, solvent availability, solvent price 

and capital investment requirements. 

6.5.1.2. Without CO2 Recovery 

It is not possible to fully understand the difference between the processes with CO2 

recovery and without CO2 recovery by only analyzing the effect the of compression 

system. For this reason, the same optimization procedure was performed on the PW 

process at different 𝑧𝐶𝐻4
 conditions when using PEGDME as the solvent. The results 

of these calculations are shown in Table 6.10. 

The 𝐿/𝐺 ratios in the PW process are highly influenced by 𝑧𝐶𝐻4
. In contrast to the 

PWCR process, the 𝐿/𝐺 ratios in the PW process are significantly larger than in the 

PWCR process. This suggests that the PWCR process relies more on the pressure 

increase to perform the separation while the PW process depends more on the solvent 

flow. Since the PWCR process requires higher absorber pressure, the pressure drop 

between the absorber and the recycle tanks is enough to be able to vaporize the 

methane and reduce its concentration in the desorber vapor outlet. Nonetheless, it is 

more expensive to operate the process at larger pressures, therefore, the optimal 𝐿/𝐺 

values in the PW process tend to be higher than in the PWCR process. 

Another significant difference is the optimal 𝑇𝐿. While for the PWCR process larger 

temperatures are preferred, for the PW it seems to be the opposite. This can be 

explained by considering the fact that a low 𝑇𝐿 reduces the absorber pressure and 

that the PWCR has to operate at larger pressures in order to comply with the 𝑥𝐶𝐻4
 

restriction. 
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Although the PWCR process relies on a chemical potential shift caused by a combined 

temperature and pressure swing in contrast to the PW process, the PWCR requires 

less input calorific energy. This is caused by the implementation of the RTO. We can 

observe in Table 6.10 that the amount of calorific energy used to abate the methane 

in the PW process is significantly higher than in the reboiler of the PWCR process. 

This is because the PW process increases the temperature from low temperatures to 

around 750 °C, while the PWCR process increases the temperature of a liquid around 

50–70 °C. Moreover, the share of the costs associated to the carbon dioxide stream 

conditioning – K (i.e., the operating costs of the RTO system) is significantly higher at 

low 𝑧𝐶𝐻4
. This can be explained by analyzing the absorber L/G, the smaller the L/G 

rate is, the less amount of liquid will be fed to the desorber and, hence, less air supply 

flow rate will be needed to be heated. Note that the carbon dioxide stream in the PW 

process is a mixture of CH4, CO2, air and evaporated solvent. This additional 

complexity of the PWCR process gives an economic disadvantage with respect to the 

PW process. More than 95 % of the calorific energy penalty can be removed if a cross 

heat exchanger is used to recover the energy of the carbon dioxide stream. If a heat 

exchanger is added, the profit increases between 1 % for larger 𝑧𝐶𝐻4
 and 5 % for 

smaller 𝑧𝐶𝐻4
. Comparing both processes when there is no penalty for the CO2 

emissions is intrinsically unfair, as the PWCR process was developed to comply with 

the specifications of both biomethane and carbon dioxide streams. 
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Table 6.10. Optimized parameters of the PW process using PEGDME as the solvent when 

𝐶𝑇 = 0. 

𝑧𝐶𝐻4
 0.5 0.6 0.7 0.8 0.9 

Absorber mass basis 

L/G 

143 123 107 82 42 

Desorber mass basis 

L/G 

300 300 300 300 300 

𝑇𝐿 / °C 0 0 0 0 0 

𝑟𝑃 0.05 0.05 0.05 0.05 0.05 

𝑃𝑅  / 𝑘𝑃𝑎 100 100 100 100 100 

𝑥𝐶𝐻4
∗ / 106 161 183 239 299 284 

𝜃 0.02 0.02 0.01 0.01 0.00 

Lean solvent molar 

fraction 

0.98 0.98 0.98 0.98 0.98 

Rich solvent molar 

fraction 

0.95 0.95 0.94 0.94 0.91 

𝑄𝑅 / MJ/Nm3 1.38 1.08 0.76 0.47 0.21 

E / MJ/Nm3 0.23 0.27 0.29 0.33 0.38 

𝑃𝐵 / MPa 1.2 1.2 1.2 1.2 1.2 

K / % 40.2 31.5 22.6 13.7 5.7 

Profit Π / USD/Nm3 0.039 0.048 0.058 0.067 0.077 

Profit with integrated 

heat Π / USD/Nm3 

0.042 0.051 0.060 0.069 0.077 

* In an air-free basis. 
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Figure 6.11. Dependence of the PW process profit Π as a function of the CO2 tax value. 

The break point is the CO2 tax value in which the PW and PWCR have the same 

economic performance. Solvent: PEGDME. 

The economic performance of the PW process as a function of 𝐶𝑇 is presented in 

Figure 6.11 using PEGDME as a study case. Figure 6.11 highlights that processes 

with less 𝑧𝐶𝐻4
 will be more affected if the biogas upgrading process has not 

implemented CO2 recovery. Furthermore, Figure 6.11 also shows the break points in 

each one of the methane concentrations isolines. A break point is the value of the 

CO2 tax in which the PWCR process and the PW processes have the same economic 

competitiveness. From the break point onwards, the PWCR process will always be 

economically more competitive. It is important to underline that since the processes 

with CO2 recovery do not have CO2 emissions, their optimal operating conditions are 

independent of the 𝐶𝑇 value. In most cases, the value of the CO2 tax in the break point 

is around 12 𝑈𝑆𝐷/𝑡𝑜𝑛.  
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The values of the CO2 tax depend on the geographical area in which the biogas 

upgrading plant is to be built. Therefore, analyzing the breakpoint may be important 

to forecast the upgrading plant revenues, and most importantly, to decide whether the 

implementation of CO2 recovery into the process is feasible or not.  

These results assume that the biomethane plant must pay CO2 taxes. If the 

biomethane plant sells CO2 credits, then the results would be linearly translated to 

higher profit values (this can be seen in the fact that Eq. (6.17) has a linear 

dependence on 𝐶𝑇). 

6.5.2. Chemical absorption processes 

In the case of chemical scrubbing, the difference between the AMCR and AM 

processes is minimal because the only discrepancy is the carbon dioxide stream 

compressor. For this reason, the AMCR and AM processes share the same optimal 

operating conditions.  

In the same fashion as the physical scrubbing processes, the operating parameters 

were optimized following the algorithm of Figure 6.8 and considering the constraints 

given in Table 6.7. The results of the optimization algorithm are presented in Table 

6.11.  

The main advantage of the chemical absorption processes over the physical 

absorption processes is the high selectivity of CO2 and negligible loses of methane, 

hence, the production of biomethane is maximized with chemical scrubbing. The 

results show that larger 𝑧𝐶𝐻4
 require lower solvent flow rates because a smaller 

amount of CO2 needs to be captured. Furthermore, a low concentration of CO2 in the 

lean solvent requires less calorific and electric energy because smaller liquid solvent 

flow rates imply lower calorific and electric energy requirements. However, low CO2 
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loading values (less than 0.2) are not desirable, because at lower loadings the energy 

required to perform the regeneration increases considerably.  

Assuming that the effect of methane on the AM process is similar to nitrogen, the last 

case in Table 6.11 can be compared to the removal of CO2 from the flue gas of a coal 

plant using MEA as a solvent. The value of 𝑄𝑅 = 0.69 𝑀𝐽/𝑁𝑚3  when 𝑧𝐶𝐻4
= 0.9 is 

equivalent to 3.64 GJ/ton of CO2 captured, which is similar to what is usually reported 

for the conventional setup of CO2 capture with aqueous MEA at 30 %wt. [135]. 

Contrarywise, for 𝑧𝐶𝐻4
= 0.5, estimated reboiler duties are reduced to 1.62 GJ/ton of 

CO2 captured. Although the amount of heat needed is less than in the case with high 

methane concentration, the economic performance is inferior. This is caused by two 

main factors: higher CH4 concentration implies more biomethane sold and lower CO2 

tax/credits. 

One of the main operating concerns in amine-based chemical scrubbing plants is the 

thermal and oxidative degradation of the solvent. Chemical absorption plants using 

MEA to remove the CO2 from a coal-fired plant have reported amine degradation 

values between 0.3 kg and 3.6 kg/ton CO2 [150]. Due to the lack of oxygen in the 

biogas upgrading feed, we expect a lower degradation rate, hence, the degradation 

boundaries are set to be between 0 and 3 kg/ton CO2. Table 6.11 shows that the 

economic impact of amine degradation decreases with larger 𝑧𝐶𝐻4
 due to a lower 

requirement of amine solvent. This effect is quite pronounced at low 𝑧𝐶𝐻4 , where 

degradation can reduce the profit up to 35 % at maximum degradation conditions. 

The difference between the AMCR and AM processes in the electrical energy 

consumption is the carbon dioxide compressor. In the case of the AM process, the 

electricity demand increases slightly when 𝑧𝐶𝐻4
 increases because the amount of gas 
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that needs to be compressed increases as well. Conversely, the electrical demand 

decreases when the amount of methane increases because the delivery pressure 

specification of the biogas 𝑃𝐵 = 1.2 𝑀𝑃𝑎 is significantly lower than the delivery 

pressure of the carbon dioxide stream 𝑃𝐶 = 15 𝑀𝑃𝑎. 

Table 6.11. Optimized parameters of the AM and AMCR processes using 30 %wt. MEA as 

the solvent. 

𝑧𝐶𝐻4
 0.5 0.6 0.7 0.8 0.9 

Absorber mass basis 

𝐿/𝐺 
13.5 12 10 7 4.5 

𝛼𝐿𝑒𝑎𝑛 0.24 0.24 0.24 0.24 0.30 

𝑇𝐿 / °C 40 40 40 40 40 

𝑇𝑅 / °C 120 120 120 120 120 

𝛼𝑅𝑖𝑐ℎ 0.50 0.50 0.50 0.50 0.50 

𝑄𝑅 / MJ/Nm3 4.13 3.28 2.42 1.55 0.69 

𝐸 – AM / MJ/Nm3 0.28 0.31 0.35 0.38 0.42 

𝐸 – AMCR / MJ/Nm3 0.97 0.86 0.75 0.64 0.54 

Profit 𝛱 (no 

degradation) / 

USD/Nm3 

0.019 0.032 0.046 0.059 0.073 

Profit 𝛱 (maximum 

degradation) / 

USD/Nm3 

0.012 0.027 0.041 0.056 0.071 

 



 

360 

 

Figure 6.12. Dependence of the AMCR process profit Π as a function of the CO2 tax value. 

The break point is the CO2 tax value in which the AM and AMCR have the same economic 

performance. Solvent: 30 %wt. MEA with no degradation. 

The breakpoint plot of the AMCR and the AM process is presented in Figure 6.12. 

One can realize that 𝑧𝐶𝐻4
 does not have a significant influence in the location of the 

breakpoints, which means that most of them are located when the CO2 tax is around 

10 𝑈𝑆𝐷/𝑡𝑜𝑛 . Furthermore, the breakpoints are located at lower 𝐶𝑇 values, which 

indicates that the extra costs related to the compression of the carbon dioxide stream 

are low compared to the tax that must be paid for CO2 emissions. 

The capital costs of the AM process will increase with larger amounts of methane in 

the biogas, because the biomethane compressor must become larger, and thus, the 

investment costs become larger as well. However, this is not the case for the AMCR 

process, where capital costs associated to the compressors will be reduced when 𝑧𝐶𝐻4
 

is increased. This is caused by the fact that 𝑃𝐵 < 𝑃𝐶, hence, the less amount of gas 
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that is needed to be pressurized to 150 bar, the smaller the compressors will be (the 

same effect is found in the PWCR process). We should remark that the AMCR 

process will always be more expensive than the AM process because of the extra 

compressor system needed.  

The size of the absorber will not change significantly at different 𝑧𝐶𝐻4
because its 

diameter is mainly a function of the gas surface velocity [151] and the total amount of 

biogas entering the absorber is always the same. Conversely, the larger the amount 

of CO2 in the feed (low 𝑧𝐶𝐻4
), the more gas the desorber must process and, hence, it 

will be larger and more expensive.  

Since the amine-based processes are operated at mild temperatures and pressures, 

the equipment thickness is expected to be minimum when compared to the PWCR 

process. Unfortunately, due to the corrosive nature of aqueous amine mixtures, it is 

required to use stainless steel 304L or 316L (the latter is recommended in order to 

avoid failures [152]). Stainless steel 316L can be 3.4 times more expensive [130] and 

will increase significantly the capital costs of the plant. 

6.5.3. Selection of the optimal technology 

In the previous sections, it was shown that, at moderate CO2 tax values, the PWCR 

and the AMCR processes seem to be economically more feasible that their 

counterparts without CO2 recovery. For this reason, and because of environmental 

interests, this subsection will focus only on the processes that involve the CO2 

recovery. 

If the profit values reported for the PWCR and the AMCR are compared, one can 

notice that the PWCR process is more profitable than the AMCR process when 𝑧𝐶𝐻4
 

is between 0.5 and 0.8. Conversely, the chemical scrubbing process has better 
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performance at higher methane compositions. One of the main reasons on why the 

PWCR process has better performance than the AMCR process is because it uses a 

combined pressure and temperature swing to perform the separation. Contrarywise, 

the AMCR process relies only on a temperature swing, hence, the energy used to 

regenerate the solvent can be said to be lost because it does not give any added 

value to the final product (the biomethane stream at 𝑃𝐵). In contrast, the electrical 

energy spent in the PWCR process to increase the pressure not only serves to 

separate the raw biogas mixture but also gives an added value to the final product.  

The profit of each one of the processes should change as a function of 𝑃𝐵 (as shown 

in Figure 6.13). One can observe that the AMCR process profit increases at higher 

𝑧𝐶𝐻4
 while it decreases at higher 𝑃𝐵. The reason for this effect is because 𝑃𝐵 < 𝑃𝐶, 

which indicates that the larger the CO2 concentration, the higher the electric 

consumption. The profit decreases with larger pressures because more electrical 

power is required to compress the biomethane stream. On the other hand, for the 

PWCR process, the profit (Π) seems to not be affected by 𝑃𝐵. This is because the 

absorber pressure 𝑃𝐴 is larger than the delivery pressure of biomethane 𝑃𝐵, therefore, 

the last compressor is deemed unnecessary and, therefore, less capital cost 

investments are required. 

If the PWCR and AMCR processes are compared, it is possible to notice that when 

𝑃𝐵 is equal to 0.1 MPa, there is a crossover in the profit lines, which means that when 

𝑃𝐵 is low, then it is preferable to use an AMCR process at larger feed methane 

compositions (𝑧𝐶𝐻4
> 0.7) values. Conversely, when the delivery pressure 𝑃𝐵 is 

1.2 𝑀𝑃𝑎, the AMCR process loses competitivity due to the extra costs caused by the 

higher compression duties.  
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Figure 6.13. Effect of 𝑃𝐵 and 𝑧𝐶𝐻4
 on the profit Π of the PWCR and AMCR processes using 

PEGDME and MEA as solvents. 

In order to provide a guide on which technology to choose based on the methane 

concentration 𝑧𝐶𝐻4
 and the delivery pressure 𝑃𝐵, Figure 6.14 was generated. A 

technology is reported as being superior if the difference between the optimized profit 

between the AMCR and the PWCR process is larger than 5%. Since the degradation 

values in the AMCR process are somewhat uncertain, an average value of 1.5 kg of 

degraded MEA/ton CO2 was used for the calculations in Figure 6.14. In the case 

where the AMCR and PWCR processes have very similar competitiveness (marked 

with green in Figure 6.14), further evaluations are required to determine the best 

option. These evaluations should consider that both processes have inherent 

disadvantages caused by their high operation pressures (PWCR) or corrosive 

solvents (AMCR) that might reflect on higher capital costs. 
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Figure 6.14 shows that the competitiveness of the PWCR processes increases at 

higher delivery pressures. This is because the PWCR process uses the pressure 

increase for two purposes: to perform the separation and to reach the delivery 

pressure 𝑃𝐶𝐻4
. The AMCR process spends the same amount of calorific energy just 

to regenerate the solvent, while the electric energy always increases when 𝑃𝐵 is 

augmented. 

We want to remark that when the study case fixes 𝑧𝐶𝐻4
= 0.9 and 𝑃𝐵 = 0.1 𝑀𝑃𝑎, the 

biogas upgrading plant behaves similarly to CO2 capture processes from flue gases 

(usually the CO2 composition is 10–12% mol/mol in coal-fired power plants). At these 

conditions, the AMCR process seems to have better economic performance. This 

finding agrees with what has been widely discussed about CO2 capture processes 

from flue gases: the amine-based separation processes are expected to outperform 

processes that require pressurization because of the compression work [24,153]. This 

is because the CO2 capture systems have a “clean” stream that flows out from the 

absorber with a low concentration of CO2 and a low pressure equal to 1 bar. For this 

reason, any kind of energy spent to modify the pressure or temperature of the gases 

that are not CO2 can be considered to be unnecessary.  
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Figure 6.14. Technology selection for processes with CO2 recovery. 
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6.6. Conclusions 

The energetic and economic assessment of 5 physical solvents was performed. 

These solvents are PEGDME, NFM, NMP, methanol and water. It was concluded that 

all of them are capable of upgrading biogas with a CO2 recovery system, delivering 

both biomethane and CO2 within the required specifications. The performance of the 

solvents can thus be arranged in terms of economic, energetic and expected capital 

costs in the following order: PEGDME ≈ NMP > NFM > methanol > water. 

The feasibility of implementing CO2 recovery into liquid solvent-based processes was 

evaluated. It was found that it is necessary to consider the CO2 tax into the 

assessment of the biogas upgrading technologies because, at relatively low CO2 tax 

values (between 10 and 15 USD/ton CO2), the processes with CO2 recovery are 

economically more competitive than their counterparts without CO2 recovery. 

The optimal technology for biogas upgrading plants is a function of the methane 

concentration in the feed (𝑧𝐶𝐻4
) and the delivery pressure of the biogas (𝑃𝐵). 

Processes using amine solvents are favored at lower 𝑧𝐶𝐻4
 and lower 𝑃𝐵 values, while 

the physical solvents are favored at larger 𝑃𝐵. The physical absorption processes 

outperform the modelled chemical solvent process based on 30 %wt. MEA at 

moderate to high pressures because the physical absorption uses the compression 

duty to separate the raw biogas mixture, partly regenerate the solvent, and achieve 

the delivery pressure specification 𝑃𝐵. In this way, the energetic usage is optimized. 

On the other hand, the amine processes use the calorific energy to regenerate the 

solvent, hence all the energy spent on the CO2 desorption is not used on any other 

part of the process.  It should be remarked that increasing the absorber pressure in 

case of chemical absorption would lead to different results. 
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6.7. Supplementary information 

The complementary component properties used for the pumping systems and the CO2 

compression systems in the simulation framework are shown in Table 6.12. Pure 

component properties used in this work were taken from Aspen’s Plus databank v8.6. 

The gas heat capacity (𝐶𝑃𝑖
𝐼𝐺) equation used in this work is: 

𝐶𝑃𝑖
𝐼𝐺 = 𝐶1 + 𝐶2 (

𝐶3/𝑇

𝑠𝑖𝑛ℎ(𝐶3/𝑇)
) + 𝐶4 (

𝐶5/𝑇

𝑠𝑖𝑛ℎ(𝐶5/𝑇)
) (6.18) 

This equation is one proposed by the Design Institute for Physical Properties (DIPPR) 

and the constants used are given in Table 6.13 and were taken from Aspen’s Plus 

v8.6 databank. 

The pure liquid vapor pressure of the components (𝑃𝑖
𝑠𝑎𝑡) used in this work is given by 

the extended Antoine equation is: 

ln 𝑃𝑖
𝑠𝑎𝑡 = 𝐶1 +

𝐶2

𝑇 + 𝐶3

+ 𝐶4𝑇 + 𝐶5 ln 𝑇 + 𝐶6𝑇
𝐶7 (6.19) 

The parameters can be found in Table 6.14 and were taken from Aspen’s Plus v8.6 

databank. 
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Table 6.12. Pure component properties used in this work. 

Component 
MW  

/ g/mol 

Critical 

temperature 

/ K 

Critical 

pressure  

/ MPa 

Critical 

volume  

/ mol/cm3 

Critical 

compressibility 

factor 

Acentric 

factor 

CH4 16.04 190.56 4.599 98.6 0.286 0.011 

CO2 44.01 304.21 7.383 94 0.274 0.224 

H2O 18.02 647.1 22.06 55.94 0.229 0.344 

MEA 61.08 678.2 7.12 225 0.284 0.447 

NMP 99.13 721.6 4.52 310 0.234 0.373 

NFM 115.13 779.3 5.08 328 0.257 0.403 

Sulfolane 120.17 853 5.030 300 0.213 0.382 

PEGDME 266.33 769.8 1.67 821 0.214 1.139 

Methanol 32.04 512.5 8.08 117 0.222 0.566 
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Table 6.13. Parameters for the 𝐶𝑃𝐼𝐺 equation (kJ/kmol). 

Component 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

CH4 33.30 79.93 2086.90 41.60 991.96 

CO2 29.37 34.54 1428.00 26.40 588.00 

H2O 33.36 26.79 2610.50 8.90 1169.00 

MEA 72.14 181.50 2030.00 131.40 860.00 

NMP 73.44 346.70 1874.50 249.10 821.50 

NFM 108.67 227.28 783.07 140.37 3174.20 

Sulfolane 115.56 202.29 968.69 -1130.20 28.10 

PEGDME 231.42 786.85 1628.10 565.85 702.04 

Methanol 39.25 87.90 1916.50 53.65 896.70 
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Table 6.14. Parameters for the 𝑃𝑖
𝑠𝑎𝑡 equation (kPa). 

Component 𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 𝐶6 𝐶7 

H2O 66.74 -7258.2 0 0 -7.3037 4.17E-06 2 

MEA 85.72 -10367 0 0 -9.4699 1.90E-18 6 

NMP 61.57 -8467.9 0 0 -6.3622 3.22E-18 6 

NFM 78.27 -10241 0 0 -8.6143 3.39E-18 6 

Sulfolane 143.75 -13283 0 0 -19.429 0.013441 1 

PEGDME 133.22 -17794 0 0 -15.547 3.09E-18 6 

Methanol 75.81 -6904.5 0 0 -8.8622 7.47E-06 2 
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Table of symbols 

Symbol Unit Meaning 

𝐴, 𝐵  Henry’s coefficient parameters 

𝑏 mol/kg solvent Molality 

𝐶𝑂𝑃  Coefficient of performance 

𝐶𝑅  Compression ratio 

𝐶𝑇 USD/Nm3 Carbon tax 

𝐸 MJ/Nm3 Electric energy 

𝐹 kmol/s Molar flow rate 

𝐻 MPa Henry’s coefficient 

ℎ kJ/kg Enthalpy 

K % 

Share of the costs associated to the 

carbon dioxide stream 

conditioning 

𝐿/𝐺  Liquid-to-gas ratio 

M kg/kmol Molecular weight 

𝑚 kg/s Mass flow rate 

𝑛  Number of compression stages 

𝑃 kPa Pressure 

𝑄 MJ/Nm3 Calorific energy 

𝑟𝑃  Depressurization ratio 

𝑇 K Temperature 

𝑥  Mol fraction in CO2 stream 
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Symbol Unit Meaning 

𝑊 kW Compressor work 

𝑦  Mol fraction in biomethane stream 

𝑧  Mol fraction in raw biogas stream 

Greek symbols Units Meaning 

𝛼 mol CO2/mol amine Amine loading 

∆𝐻 kJ/mol CO2 Heat of absorption 

𝜂𝐾,𝑆  Isentropic efficiency of compressor 

𝜂𝐾,𝑀  Mechanical efficiency of compressor 

𝜂𝑃  Mechanical efficiency of pump 

𝜃  Methane slip 

𝛱 USD/Nm3 Profit 

𝜌 kg/m3 Density 

Subscripts Meaning  

𝐴 Referent to absorber  

𝐵 Referent to biomethane  

𝐵𝑢𝑟𝑛𝑡 Referent to the biogas that has to be burnt 

𝐶 Referent to the carbon dioxide stream 

𝐶𝐻4 Referent to methane  

𝐶ℎ𝑖𝑙𝑙 Referent to chilling system 

𝐷 Referent to desorber  

𝐺 Referent to gas entering absorber 
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Subscripts (Cont.) Meaning 

𝑖 Referent to component i 

𝐿 Referent to liquid entering absorber 

𝐿𝑒𝑎𝑛 
Referent to lean 

loading 
 

𝑅 Referent to reboiler  

ref Reference value  

𝑅𝑖𝑐ℎ Referent to rich loading  

𝑆 Referent to solvent  
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Chapter 7. 

A computationally efficient 

algorithm for designing  

unit operations 

The description of a new unit operation design algorithm is presented 

in this chapter. This algorithm can be one order of magnitude faster 

than the typical iterative algorithm. Moreover, a rigorous modelling 

framework for gas-liquid contactors is presented here. The resulting 

model can substitute the equilibrium-based model in Chapter 6. This 

model serves to highlight which properties are needed for implementing 

a rigorous absorber model. 
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7.1. Abstract 

A computationally efficient numerical method that uses a Pseudo-Eulerian formulation 

(PEF) for the design calculation of unit operations is presented and validated. This 

method is applicable to any unit operation that can be modelled using a system of 

ODEs. Performing the design of a unit operation in the PEF is tenfold faster than with 

the conventional Eulerian formulation (EF). The mathematical equivalence between 

the PEF and the EF is demonstrated by proving that the solution of different unit 

operation design problems provides the same numerical result independently of the 

formulation. It is shown that reducing the computation of the unit operation design 

problems also speeds the computation time of a process design or an optimization 

flowsheet. PEF allows the accurate estimation of the concentration or temperature 

profiles of complex unit operations such as multiphase reactor systems.  
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7.2. Introduction 

The simulation of chemical engineering processes is a necessary task in the 

assessment of the techno-economic performance of chemical engineering projects. 

The flourishment of process simulations can partly be attributed to the steady and 

constant development of enhanced computer technologies in the recent decades. 

Although the computational capabilities of modern-day computers have been 

significantly enhanced over the past years, the computational resources may appear 

limited with respect to conceptual design and optimization superstructure frameworks. 

The complexity of these frameworks ultimately may lead to long overall computation 

times. Undesirable long times are greatly accentuated if the process has unit 

operations that are designed with ordinary differential equations (ODE). Due to the 

relevance of ODE-based models for process design, this work will focus on reducing 

the computation time of ODE systems by proposing a method that derives an 

alternative formulation of the governing equations.  

The unit operation design methods can be divided in two main branches: short-cut 

methods and rigorous methods. The short-cut methods utilize simplified physics and, 

hence, do not require complex solution procedures (e.g., the Rayleigh equation in 

batch distillation, performance equation in reactor design or the height equivalent 

theoretical plate method for packed columns [HETP]).  These methods are usually 

presented in process design textbooks (e.g. [1–3]) to highlight the fundamental 

concepts behind the unit operation rather than providing a rigorous description of the 

physics. On the other hand, rigorous models include different physics phenomena 

(e.g., thermodynamics and transport phenomena) into the mass and energy 

conservation equations to account for important effects. It is a common practice to 

design ODE-based unit operations using the models available in commercial software 
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such as Aspen Plus, CO2SIM or Mathcad. In these cases, a parameter is set (design 

specification) and an iterative procedure is utilized to find the operating parameter or 

equipment size that will yield the design specification (e.g., [4,5]). An alternative 

procedure, applicable for simplified physics, consists in transforming the mathematical 

model into a set of nonlinear algebraic equations and then using shifted-Legendre 

polynomials together with the orthogonal collocation method to design the unit 

operation [6].  

Despite being computationally efficient, the applicability of the short-cut approaches 

is limited because they neglect important effects that affect the unit operation design 

and performance. This causes the short-cut models to have worse prediction 

capabilities than their rigorous counterparts. For example, by comparing the 

predictions done by a short-cut model (HETP) [7] and a rigorous model [8] of an 

amine-based CO2 scrubber, it can be observed the later model has superior prediction 

capabilities of the concentration and temperature profiles. The proper estimation of 

these profiles is paramount in several unit operations (e.g., heat exchangers or gas-

liquid contactors) because their operation and performance can be affected by mass 

or heat transfer pinch conditions.  

Considering the need to reduce the computational costs of the simulations without 

losing the physical meaningfulness of the model. PEF provides a method for 

developing the governing equations in the Pseudo-Eulerian Formulation (PEF) (This 

work extends on the method previously presented [9]). This work presents the 

application of the PEF to the design of a plug-flow reactor and a gas-liquid contactor 

for the removal of CO2. The results highlight the computational advantages of using 

the PEF to reduce the computational costs without oversimplifying the physics. 
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7.3. Methodology 

7.3.1. Eulerian Formulation 

The differential equations describing the property flows (mass and energy flows) can 

be derived using the Eulerian formulation (EF) or the Lagrangian formulation (LF). 

The difference between both formulations is the frame of reference used to derive the 

equations and the chosen control volume. The EF uses a control volume that is fixed 

in space; thus, it quantifies the property flow field from a stationary location. On the 

other hand, the control volume in the LF moves with the flow field, hence it quantifies 

the property flow field using a moving location. Of the two, the EF is more used, 

perhaps because of its computational advantages [10] or its simpler way of 

formulating and solving the governing equations.  

The main characteristic of the EF is that the property flows are the state variables, 

and the spatial dimension of the system is the independent variable. The general form 

of a 1-D model can be expressed as a vector of state variables (𝛽) that are a function 

of an independent variable (𝜃) and a set of parameters (𝜋): 

𝑑

𝑑𝜃
(𝛽(𝜃)) = 𝑓 (𝛽(𝜃), 𝜋). (7.1) 

Note that the independent variable can be either a spatial or temporal dimension. The 

simulation of a unit operation described by Eq. (7.1) usually means solving a boundary 

value problem (BVP) where the boundary conditions of each one of the dependent 

variables must be specified in addition to the boundary where those conditions apply 

(𝜃0 or 𝜃𝑓).  
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Unit operation design calculation implies that the value of a state variable at a given 

location in the unit operation is specified (usually it is when 𝜃 = 𝜃𝑓). The unit operation 

design specification fixes the state variable (𝛽𝑠𝑝𝑒𝑐
∗ ) at a certain 𝜃𝑓. Since the value of 

𝜃𝑓 is an unknown variable of the design problem and, at the same time, it is needed 

to solve Eq. (7.1), an iterative procedure is needed (see Figure 7.1 a)). A discrepancy 

function is then applied to evaluate how far the calculated specified state variable (𝛽∗) 

is from the specified value (𝛽𝑠𝑝𝑒𝑐
∗ ). For a constant set of input parameters 𝜋, the 

evaluation of the discrepancy function (𝑓) must be equal or below a specified 

tolerance (휀) 

𝑓 = |𝛽∗(𝜃) − 𝛽𝑠𝑝𝑒𝑐
∗ (𝜃)| ≤ 휀. (7.2) 

Figure 7.1 a) illustrates that it is computationally expensive to solve a BVP problem in 

order to comply with Eq. (7.2) because of the iterative nature of the algorithm which 

is causing a computational bottle neck in the unit operation design calculation.  

It is important to remark that a unit operation can be designed if and only if the solution 

of the state variables satisfies 𝛽  ∈  ℝ. Unit operation design calculation implicitly 

assumes that the solution is within physical boundaries, hence if there is no solution, 

the algorithm will not converge (the program may even crash in some cases if complex 

numbers appear during the calculations). 
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Figure 7.1. Algorithm to design a unit operation with a) Eulerian formulation (EF) assuming a 

Newton-Raphson iterative method and b) Pseudo-Eulerian Formulation (PEF). 

7.3.2. Pseudo-Eulerian Formulation 

This formulation is based on deriving the governing equations as a function of 𝛽∗ 

instead of 𝜃. The way to do this is to apply the chain rule between the vector of 

derivatives and the inverse of the ODE that describes the specified state variable. In 

this way, the new ODE system expresses the state variables (the ones that are not 

the specified state variable 𝛽𝑟) as a function of the specified state variable.  

This procedure gives the following governing equations with the PEF: 

𝑑

𝑑𝛽∗
(𝛽𝑟(𝛽∗)) = 𝑓𝑟 (𝛽𝑟(𝛽∗), 𝜇). (7.3) 

Note that 𝛽𝑟 is a reduced vector with c-1 variables. The PEF ODE system has a 

reduced geometry when compared to the ODE of the EF. This is because the 

procedure to derive the PEF equations makes the equation corresponding to the 
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specified variable a trivial solution. The form of Eq. (7.3) implies that when the system 

can be conceived within the physical boundaries (𝛽  ∈  ℝ), all the mass and energy 

balances are relative to each other, hence, one can calculate how the state variables 

behave as a function of the specified state variable. 

As seen in Figure 7.1 b), solving the ODE set given by Eq. (7.3) provides the solution 

of the mass and energy balances, but it does not calculate the final design of the unit 

operation. This is because the ODE set is relative to 𝛽∗and the solution is then in a 

dimensionless mathematical space that is not dependent on the spatial or temporal 

dimensions. Because of its mathematical properties and the physical implications of 

the PEF of the governing equations, it can be considered that the mass and energy 

balances are formulated in a different frame of reference than in the EF. 

It should be noted that if the problem does not require to design the unit operation 

(i.e., the equipment volume is not needed), then it is enough to solve the equations 

with the form of Eq. (7.3). This can save further computation time since the extra 

computational resources needed to give the system some spatial dimensions are 

avoided. 

On the other hand, if the unit operation design is needed, one must bring the solution 

from the dimensionless mathematical space to the spatial or temporal dimensions. 

This is done by adding a “dimensioning” function to the ODE system. This equation 

has the general form:  

𝑑𝜃

𝑑𝛽∗
= 𝑓∗ (𝛽𝑟(𝛽∗), 𝜇) (7.4) 

Note that the ODE of Eq. (7.4) is the reciprocal of the ODE that describes the state 

variable behavior in the EF. 
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7.4. Results 

This section presents the application of the PEF for two different unit operation design 

problems. The first example highlights the numerical and conceptual equivalence 

between the EF and the PEF models and shows the computational gains of using the 

PEF. The second example validates PEF-based model of a multiphase 

multicomponent reactor and discusses the effect of the computational advantages of 

using the proposed method on a superstructure framework.  

7.4.1. Multiple Reactions in an Ideal Plug-Flow Reactor  

This subsection presents the implementation of the PEF for the design of an ideal 

plug-flow reactor (Figure 7.2). The reaction mechanism is illustrated in Figure 7.2 and 

each one of the reactions has a first order kinetic behavior. The model considers a 

reactive liquid phase system with constant density that operates under an isothermal 

plug-flow hydrodynamic regime where the diffusivity of the components is infinitely 

slow compared to the reaction rate. 

 

Figure 7.2. Sketch of the modelled tubular reactor with two reactions in series. 
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Eulerian Formulation: The equations and the boundary conditions that model the 

plug-flow reactor are: 

𝑑𝐶𝐴

𝑑𝑧
= −

𝜒1𝐶𝐴

𝑣
 𝐵. 𝐶.:   𝐶𝐴 = 𝐶𝐴,0   𝑓𝑜𝑟 𝑧 = 𝑧0 (7.5) 

𝑑𝐶𝐵

𝑑𝑧
=

𝜒1𝐶𝐴

𝑣
−

𝜒2𝐶𝐵

𝑣
 𝐵. 𝐶.:   𝐶𝐵 = 𝐶𝐵,0   𝑓𝑜𝑟 𝑧 = 𝑧0 (7.6) 

𝑑𝐶𝐶

𝑑𝑧
=

𝜒2𝐶𝐵

𝑣
 𝐵. 𝐶.:   𝐶𝐶 = 𝐶𝐶,0   𝑓𝑜𝑟 𝑧 = 𝑧0 (7.7) 

The design problem consists in finding the reactor volume that yields a certain amount 

of component A, therefore, the discrepancy function is: 

𝑓 = |𝐶𝐴,𝑓 − 𝐶𝐴,𝑓|𝑠𝑝𝑒𝑐| ≤ 휀 (7.8) 

Pseudo-Eulerian formulation: considering the same assumptions and using the 

concentration of component A as the independent variable, the equations are: 

𝑑𝐶𝐵

𝑑𝐶𝐴

= −
𝜒1𝐶𝐴 − 𝜒2𝐶𝐵

𝜒1𝐶𝐴

 𝐵. 𝐶.:  𝐶𝐵 = 𝐶𝐵,0    𝑓𝑜𝑟 𝐶𝐴 = 𝐶𝐴,0 (7.9) 

𝑑𝐶𝐶

𝑑𝐶𝐴

= −
𝜒2𝐶𝐵

𝜒1𝐶𝐴

 𝐵. 𝐶.:   𝐶𝐶 = 𝐶𝐶,0   𝑓𝑜𝑟 𝐶𝐴 = 𝐶𝐴,0 (7.10) 

𝑑𝑧

𝑑𝐶𝐴

= −
𝑣

𝜒1𝐶𝐴

 𝐵. 𝐶. :   𝑧 = 𝑧0        𝑓𝑜𝑟 𝐶𝐴 = 𝐶𝐴,0 (7.11) 

The key difference between the EF and the PEF is that while the PEF express the 

concentration values of components B and C when the concentration A has certain 

value (𝐶𝐴,0), the B.C. in the EF express the concentration values of A, B, C where the 

inlet is being fed. From a practical point of view, both formulations “answer” different 
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questions. While the EF answers: “what happens to the component concentrations in 

a reactor with certain spatial dimensions?”, the PEF answers: “what should happen in 

the reactor to achieve this concentration of this component?”.   

The PEF can also be utilized in the design of processes where time is the independent 

variable (batch or semi batch processes like reactors or drying systems). If we apply 

the reaction scheme shown in Figure 7.2 to a batch reactor, Eqs. (7.9) - (7.11) will 

have a similar form with minor differences: the independent variable would be time (𝑡) 

instead of length (𝑧) and Eq. (7.11) will not have the surface velocity term (𝑣). The 

resulting set of ODEs would find the time 𝑡 needed to reach certain concentration. It 

should be noted that in this case, the design of the unit operation does not include the 

estimation of the physical dimensions of the reactor, which can be easily estimated 

with an algebraic equation that involves time and the initial amount of reactants as it 

has traditionally been done in reactor design [3].  

Transforming an already-implemented EF model into a PEF is a straightforward task 

that requires few modifications in the EF programming code. It is enough to evaluate 

the equations in their EF (form of Eq. (7.1)) and then multiply the numerical result by 

the inverse of the ODE containing the design specification. Note that the ODE 

containing the design specification must be multiplied twice in order to obtain the 

inverse of the design specification derivative (Eq. (7.11) was estimated by multiplying 

Eq. (7.5) by its inverse two times). Moreover, the boundary conditions should also be 

modified according to the change of independent variables, however, as seen in Eqs. 

(7.9) - (7.11), the numerical values are the same as in the EF.  

In order to illustrate the equivalence between both formulations, a design calculation 

was performed of a plug-flow reactor that converts 98 % of an inlet stream that only 

contains 1 𝑚𝑜𝑙 𝑚−3 of component A (see Figure 7.2). Figure 7.3 presents the obtained 
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concentration profiles of the 3 components as a function of the independent variable. 

Figure 7.3 a) is done by solving Eqs. (7.5) - (7.8) with the algorithm presented in Figure 

7.1 a) while Figure 7.3 b) is the solution of Eqs. (7.9) - (7.11). The “spaceless” 

concentration profiles of Figure 7.3 b) can be transformed into the spatial-dependent 

concentrations profiles shown in Figure 7.3 a) by evaluating Eq. (7.11). 

Both ODE systems are solved with the orthogonal collocation fifth-order method 

available in Matlab 2019b (bvp5c function). For the case of the EF, the Newton-

Raphson numerical method was used to find the solution to the design problem by 

solving the discrepancy function. 

 
 

Figure 7.3. Concentration profiles obtained with solution of the ODE set given by the a) 

Eulerian formulation (EF) and b) Pseudo-Eulerian formulation (PEF). Parameters (𝜋): 

𝐶𝐴,0 = 1 𝑚𝑜𝑙 𝑚−3, 𝐶𝐵,0 = 𝐶𝐶,0 = 0 𝑚𝑜𝑙 ∙ 𝑚−3, 𝜒1 = 1 𝑠−1, 𝜒2 = 0.5 𝑠−1 and 𝑣 = 1.0 𝑚 ∙ 𝑠−1. 

Design spec: 𝐶𝐴,𝑓 = 0.02 𝑚𝑜𝑙 ∙ 𝑚−3. 

The equivalence between the EF and the PEF can be assessed by calculating the 

average absolute relative deviation (AARD) between the numerical results of both 

formulations.  
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The AARD was calculated using the following equation 

𝐴𝐴𝑅𝐷 =
1

𝑁
∑ |

(𝑌𝐸𝐹 − 𝑌𝑃𝐸𝐹)

√(𝑌𝐸𝐹)(𝑌𝑃𝐸𝐹)
|

𝑁

1

, (7.12) 

where N is the total number of compared simulations, 𝑌𝐸𝐹 and 𝑌𝑃𝐸𝐹  are the output 

variables calculated using the EF and PEF respectively.  

An analysis of the computational speed and the numerical equivalence between both 

formulations was done by performing the simulations for the presented problem at 

different operating conditions. The Monte Carlo method was used to randomly 

generate the input parameters of 1,000 design problems from which the 

computational speed and the numerical difference between selected output variables 

(𝐶𝐴,𝑓 , 𝐶𝐵,𝑓 , 𝐶𝐶,𝑓 and 𝑧𝑓) was assessed. The varied input parameters and their respective 

ranges are shown in Table 7.1 and the remaining parameters have the same values 

as used in the calculations needed in Figure 7.3. The initial value to start the iterations 

in the EF calculations to obtain the required 𝑧𝑓 was set to be equal to 1 m. 

Table 7.1. Limits of the varied parameters in the Monte Carlo simulations. 

Parameter Min Max 

𝜒1 / 𝑚𝑜𝑙 ∙ 𝑚−3 ∙ 𝑠−1 0.5 3.0 

𝜒2 / 𝑚𝑜𝑙 ∙ 𝑚−3 ∙ 𝑠−1 0.01 0.5 

𝑣 / 𝑚 ∙ 𝑠−1 0.5 1.5 

𝐶𝐴,𝐹  / 𝑚𝑜𝑙 ∙ 𝑚−3 0.01 0.99 
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Although both models use the same BVP solver, it is important to remark that the PEF 

does not require a discrepancy function to solve the design problem specifications, 

therefore, the entire computation time is spent on solving a single BVP problem. 

Contrarily, the EF requires to specify the tolerance of the discrepancy function (휀), 

which impacts the computational cost of the design problem as seen in Figure 7.4. 

The computational cost is defined as the number of times the ODE system is 

evaluated to solve a single design problem (i.e., the number of times the Matlab 

function containing the ODE system is evaluated). The relative computational cost 

(𝛺) is defined as 

𝛺 =
𝐸𝐹 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡

𝑃𝐸𝐹 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑠𝑡
 (7.13) 

Figure 7.4 presents two probability histograms as a function of 𝛺. The histograms use 

the same sampling sets but different discrepancy function tolerances. The tolerance 

in Figure 7.4 a) is set to be 휀 = 10−5 while for Figure 7.4 b), ε = 10−9. In both cases 

the probability of decreasing the computational costs by more than 5 times is > 95 % 

while for an entire order of magnitude is over 60 % for Figure 7.4 a) and 75 % for 

Figure 7.4 b). If one compares Figure 7.4 a) and Figure 7.4 b), it is possible to notice 

that the lower the tolerance, the larger the computational speed-up. This situation 

occurs because lower tolerances require more iterations in the Newton Raphson while 

the computational cost for the PEF remains constant because the design specification 

is fed as the upper boundary of the independent variable (𝐶𝐴,𝑓). This proves that the 

removal of the iteration loop in the algorithm (Figure 7.1) makes the operation unit 

design calculation more efficient.  
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One may wonder, how does the computational cost relate with the computational 

speed and does it speed-up the calculations? To answer this question, a parity plot 

between 𝛺 and the inverse of the relative computational speed (1/𝜅) is shown in 

Figure 7.5. The relative computational speed is calculated with the following equation: 

𝜅 =
𝐸𝐹 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑

𝑃𝐸𝐹 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑠𝑝𝑒𝑒𝑑
 (7.14) 

Figure 7.5 shows that the relative computational cost is inversely proportional to the 

relative computational speed. Therefore, reporting 𝛺 or 1/𝜅 is approximately 

equivalent. It is important to remark that, Although reporting the relative computational 

time may give a more meaningful insight to the end-user, computation times are 

subject to the available computing resources and other variables that are outside the 

scope of this discussion. For this reason, it is more convenient to compare the 

computational costs of algorithms instead of the computation time. 

  

Figure 7.4. Probability distribution of the relative computational cost (ε) at different discrepancy 

function tolerance: a) 휀 = 10−5 and b) 휀 = 10−9. 
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Figure 7.5. The reciprocal of the relative computational speed versus the relative computational 

costs between the Eulerian and the pseudo-Eulerian formulations. 

Both formulations are equivalent from a mathematical standpoint. However, the 

comparison of obtained solutions may exhibit discrepancies caused by the non-exact 

nature of the numerical method used to solve the ODEs and the fact that the EF uses 

a discrepancy function, hence the calculated 𝐶𝐴,𝑓 will be different from 𝐶𝐴,𝑓|𝑠𝑝𝑒𝑐. In 

contrast, the PEF uses 𝐶𝐴,0 and 𝐶𝐴,𝑓 as the limits of the independent variable, 

therefore, 𝐶𝐴,𝑓 = 𝐶𝐴,𝑓|𝑠𝑝𝑒𝑐. The difference between solutions obtained from both 

formulations was assessed and it is presented in Figure 7.6. It shows that the AARD 

substantially decreases when the discrepancy function of the EF is 휀 ≥ 10−7 for all the 

output variables. 
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Figure 7.6. The AARD between the numerical solutions of the EF and the PEF equations for the 

ideal plug-flow reactor study. 

7.4.2. Multicomponent Multiphase Reactor  

7.4.2.1. PEF Governing Equations  

This subsection presents the validation of a multicomponent multiphase reactor PEF-

based model. The studied case is the CO2 capture from a flue gas using an amine-

based absorption relevant to both the chemical and the environmental engineering 

field. Absorbers for CO2 capture are usually designed to remove a specified amount 

of CO2 from a given flue gas, hence, developing the governing equations in the PEF 

can be particularly advantageous.  

A sketch of the modelled system is presented in Figure 7.7. The following 

considerations were done in the model development: 

1. The process is adiabatic, isobaric and is operated in steady state. 

2. The vapor and liquid phases have a plug-flow hydrodynamic regime. 
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3. There are four components in the system: CO2, monoethanolamine (MEA), 

H2O and N2.  

4. N2 is not soluble in the liquid phase. 

5. The direction of the mass and energy transfer is assumed to be from the vapor 

phase to the liquid phase. 

6. All thermal effects related to phase-shifting take place in the liquid phase. 

7. The energy transport in the liquid phase is infinitely fast compared to the vapor 

phase. 

 

Figure 7.7. Sketch of the modelled multicomponent multiphase reactor. 𝑉 and 𝐿 represent the 

property flows of the vapor and liquid phases respectively. 
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According to assumptions #1 to #3, the model is independent of time and the state 

variables only vary along the axial dimension. Following the nomenclature of Figure 

7.7, the resulting equations in the PEF are 

𝑑𝑉𝑖
𝑟

𝑑𝑉𝐶𝑂2

=
𝑟𝑖

𝑟

𝑟𝑉,𝐶𝑂2

   (𝑖 ≠ 𝐶𝑂2) 𝐵. 𝐶.:   𝑉𝑖
𝑟 = 𝑉𝑖,0

𝑟    𝑓𝑜𝑟 𝑉𝐶𝑂2
= 𝑉𝐶𝑂2,0 (7.15) 

𝑑𝐿𝑖

𝑑𝑉𝐶𝑂2

=
𝑟𝑖

𝑟𝑉,𝐶𝑂2

 𝐵. 𝐶.:   𝐿𝑖 = 𝐿𝑖,𝑓   𝑓𝑜𝑟 𝑉𝐶𝑂2
= 𝑉𝐶𝑂2,𝑓 (7.16) 

𝑑𝐸𝑉

𝑑𝑉𝐶𝑂2

=
𝑟𝐸,𝑉

𝑟𝑉,𝐶𝑂2

 𝐵. 𝐶.:   𝐸𝑉 = 𝐸𝑉,0   𝑓𝑜𝑟 𝑉𝐶𝑂2
= 𝑉𝐶𝑂2,0 (7.17) 

𝑑𝐸𝐿

𝑑𝑉𝐶𝑂2

=
𝑟𝐸,𝐿

𝑟𝑉,𝐶𝑂2

 𝐵. 𝐶.:   𝐸𝐿 = 𝐸𝐿,1   𝑓𝑜𝑟 𝑉𝐶𝑂2
= 𝑉𝐶𝑂2,𝑓 (7.18) 

𝑑𝑧

𝑑𝑉𝐶𝑂2

= −
1

𝐴𝐶𝑟𝑉,𝐶𝑂2

. 𝐵. 𝐶. :   𝑧 = 𝑧0        𝑓𝑜𝑟 𝑉𝐶𝑂2
= 𝑉𝐶𝑂2,0. (7.19) 

The form of the mass energy balance equations for gas-liquid contactors in the EF 

can be consulted in the literature [8,11–14].  

The system of ODEs contains 8 equations from which 2 ODEs with the form of Eq. 

(7.15), 3 ODEs with the form of Eq. (7.16) and one ODE for each one of the remaining 

equations. Because of assumption #4, the evaluation of the ODEs corresponding to 

N2 are always 0 and therefore can be eliminated from the ODE set. Furthermore, it is 

important to remark that although there are electrolyte compounds in the liquid mixture 

(caused by the solubilization of CO2), their mass balances are lumped into the 

apparent mass balances of CO2, MEA and H2O. 
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The source terms in the above equations are estimated using an overall mass or 

energy transfer coefficient. Considering assumption #5, the rate term for component 

𝑖 can be defined by 

𝑟𝑖 = [
1

𝑍𝑅𝑇𝑉

𝑎𝑒𝑘𝑉,𝑖
+

𝐻𝑖𝜑𝑖𝑃
𝑥

𝛯𝑎𝑒𝑘𝐿,𝑖𝐶𝐿

] (𝑃𝑖 − 𝑃𝑖
𝑥). (7.20) 

Note that the overall mass transfer coefficient is the term inside the square brackets. 

The first term in the denominator is the resistance to the mass transfer in the vapor 

phase while the second term corresponds to the liquid phase resistance. The 

enhancement factor term (𝛯) only applies to the CO2 rate of mass transfer. 

Since assumption #6 implies that the liquid phase gives or removes the necessary 

amount of energy from the molecule that is going to be transferred between both 

phases the energy source terms are: 

𝑟𝐸,𝑉 = [
1

1
𝑎𝑒ℎ𝑉

] (𝑇𝑉 − 𝑇𝐿) + ∑𝑟𝑖𝐻𝑉,𝑖

𝑛

𝑖

  (7.21) 

𝑟𝐸,𝐿 = [
1

1
𝑎𝑒ℎ𝑉

] (𝑇𝑉 − 𝑇𝐿) + ∑ 𝑟𝑖(𝐻𝑉,𝑖 − 𝜆𝑖)

𝑛

𝑖

. (7.22) 

Assumption #7 implies that the overall energy transfer coefficient is only a function of 

the vapor phase resistance to energy transfer. The enthalpy of phase change (𝜆𝑖) is 

estimated using a rigorous method that sums the enthalpies of vaporization and 

reaction [15]. 
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7.4.2.2. Complementary Equations and Parameters 

The model validation was performed by comparing the simulated results with the 

measured values from different pilot plant systems reported in the open literature. A 

summary of the equations used to describe the absorber transport phenomena and 

thermodynamics is presented in Table 7.2. Two different systems are used as the 

benchmark to validate the absorber model. System 1 refers to the data measured in 

a random packed column [11] and system 2 refers to the experimental data obtained 

in a structured packed column [8]. Since the packing material in the experimental 

setups is different, the correlations to describe the mass transfer coefficients will differ 

as well.  

Table 7.2. Description of the parameters used in the model validation of the gas-liquid 

contactor. 

System Parameter Comment Reference 

1,2 𝑍 Peng - Robinson [16] 

1,2 𝜑𝑖 Peng - Robinson [16] 

1,2 𝐻𝑖 , 𝑃
∗, 𝑃𝑖

∗ 

Machine learning based 

surrogate thermodynamic 

model 

[17] 

1 𝑎𝑒 , 𝑘𝑉,𝑖  , 𝑘𝐿,𝑖 
Random packing (Berl 

saddles) 
[18,19] 

2 𝑎𝑒 , 𝑘𝑉,𝑖  , 𝑘𝐿,𝑖 
Structured packing (Mellapak 

250Y) 
[20,21] 

1,2 𝐸 
Irreversible enhancement 

factor 
[22] 

1,2 ℎ𝑉 Chilton-Colburn analogy [23] 
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The correlations used in the gas-liquid contactor model require certain properties of 

the gas and liquid phases to be estimated. The methods used to estimate the physical 

properties are shown in Table 7.3. The properties labeled as machine learning models 

in Table 7.3 use a shallow neural network architecture. The models, their parameters 

and their statistical analysis are presented in the supporting information. 

Table 7.3. Methods to estimate the properties of the gas-liquid contactor. 

Property Comment Reference 

𝜌𝑉 Peng-Robinson [16] 

𝐾𝑉 
Non-linear mixing rule and correction for 

higher pressures 
[24–26] 

𝜇𝑉 
Non-linear mixing rule and correction for 

higher pressures 
[25–27] 

𝐷𝑖,𝑉 
Predictive method of the binary diffusion 

coefficients 
[28] 

𝐶𝑃𝑉 DIPPR equation 
Parameters taken from 

Aspen Plus v8.6 Databank 

𝜌𝐿 In-house machine learning model [29–31] 

𝜎𝐿 In-house machine learning model [29–32] 

𝜇𝐿 In-house machine learning model [33–36] 

𝐷𝑖,𝐿 
Empirical correlation for alkanolamine 

solutions* 
[37] 

*𝐷𝐻2𝑂,𝐿 is held constant and equal to 10−9 m2/s 
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7.4.2.3. Model Application 

This subsection shows that, as opposed to shortcut methods, the PEF allows the 

proper estimation of the profiles of the process parameters. As discussed in section 

1, it is important for the unit operation models to properly estimate the location of the 

mass and energy transfer pinch points because they affect the absorber performance 

[38]. As it can be seen in the profiles of 𝛼𝐶𝑂2
, 𝑦𝐶𝑂2

, 𝑇𝑉 and 𝑇𝐿 in Figure 7.8, the 

calculations not only have good agreement with the stream outlet values, but also on 

the mass and energy balances profiles. Figure 7.8 shows a proper prediction of the 

temperature bulges that are commonly observed in CO2-amine systems. In the cases 

of Figure 7.8 a) – c), the bulge is located at the bottom of the absorber whereas in 

Figure 7.8 d) is located close to the top of  the absorber. This is because the relation 

between the liquid and vapor flows (L/V ratio) in system 1 is larger than in system 2, 

which means that lower L/V ratios move the bulge location higher in the column. The 

validation of other important process variables is presented in the supporting 

information. 

In the same fashion as in the previous example, a Monte Carlo method was used to 

perform 1,000 simulations in order to assess the difference between using the EF or 

the PEF. The simulations were done using the packing specifications of system 2 and 

varying the inputs inside the ranges shown in Table 7.4 considering a tolerance for 

the discrepancy function of 휀 = 10−7. The results of the Monte Carlo simulations are 

presented in Table 7.5. The difference between the solutions of both models is 

negligible for practical purposes as the AARD between all the important variables is 

less than 10-6 which means that the relative deviation is caused by the inherent error 

of the BVP solver used and the iterative loop needed to obtain the dimensions of the 

absorber in EF. 
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Table 7.4. Limits for the Monte Carlo simulations in the 

absorber case study. 

Variable Min. Max. 

𝑦𝐶𝑂2,0 0.003 0.10 

𝑦𝐶𝑂2,0 0.01 0.2 

𝛼𝐶𝑂2,0 0.1 0.25 

𝐿 / 𝑉 6 12 

𝑇𝐿, 𝑇𝑉  / °𝐶 40 

𝑉0,𝑇 / 𝑚𝑜𝑙/𝑠 1 

𝑤𝑀𝐸𝐴  / % 30 

The comparison of the computational costs between both formulations is given in 

Figure 7.9. This histogram has a similar shape as in the first plug-flow example (Figure 

7.4). It shows that for a gas-liquid contactor, a speed-up of around one order of 

magnitude is expected. Although the computational costs may differ from system to 

system, the relative computational costs of the PEF seem to be, in average, around 

one order of magnitude. 

Another advantage of the PEF over the EF is when an unfeasible design is proposed 

as a specification (i.e., when the solution of the state variables 𝛽  ∉  ℝ). It was noticed 

that when the EF is used to solve the problem, the procedures run for a long time 

because the iterative algorithm diverges until either the program “crashes” or the 

maximum number of iterations is reached. Whereas the PEF quickly finds which 
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solution is not feasible and hence stops the calculations earlier without spending 

additional computational resources.  

Table 7.5. Difference between the EF and PEF of selected output variables of the 

absorber model. 

Variable AARD / % Max. AARD / % 

𝑧𝑓 8 x 10-7 1 x 10-5 

𝑦𝐶𝑂2,1 5 x 10-5 2 x 10-4 

𝛼𝐶𝑂2,0 5 x 10-9 1 x 10-8 

𝑇𝑉,1 2 x 10-6 8 x 10-5 

𝑇𝐿,0 9 x 10-7 2 x 10-5 

 

Figure 7.9. Results of the relative computational cost between the EF over the PEF. 
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From the end-user point of view, spending 1.5 seconds instead of 0.1 seconds to 

design a single unit operation is more a minor inconvenience rather than a fatal issue. 

However, unit operations are usually part of larger processes and optimization 

superstructure frameworks. Using the PEF in the evaluation of these frameworks is 

beneficial because if the unit operation speed can be reduced more than ten times, 

their overall computation speed should also be reduced accordingly. 

To illustrate this, let us take the examples of the biogas upgrading processes shown 

in Figure 7.10 that remove the CO2 from the raw biogas to produce biomethane [39]. 

Figure 7.10 a) shows the amine-based biogas upgrading process, which contains two 

unit operations that are designed with ODE-based models (marked in red). In order to 

test the PEF computational advantages, this process was designed and optimized by 

manipulating the solvent flowrate, amine concentration and desorber pressure. It was 

found that utilizing the PEF for optimization frameworks can be 9-20 times faster than 

with the EF. These values agree with those shown in Figure 7.9 because more than 

99 % of the computational time is spent on the design of the absorber and the stripper. 

Conversely, designing the physical solvent process (Figure 7.10 b)) with the PEF, a 

computational speed is around 7 to 16 times faster. Although still quite high, the 

computational advantages of the PEF are not as high as in the amine process 

because in the second process. In this case only 80 % of the computational time is 

spent on the absorber because the calculations involved in the flash tanks, 

recirculation compressors and reboiler are computationally intensive as well. The 

same relative computational speed up is observed when any of the two processes is 

designed at fixed conditions or when the processes are optimized. 
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Figure 7.10. Biogas upgrading technologies 

 a) Aqueous amine process b) Physical-solvent process. 

Reducing the computation time of any process superstructure framework has great 

practical potential since it is quite convenient for the analysis and selection of 

materials such as chemical solvents for CO2 removal. If one wants to assess the 

techno-economic potential of a novel solvent for CO2 capture, it necessary to have a 

mixed-integer optimization framework that considers multiple process parameters, 
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several process configurations, and other relevant variables (e.g., plant location or 

solvent supplier). Instead of unnecessarily spending days or even weeks in evaluating 

all the possible scenarios for an optimization, one could perform the same 

comprehensive analysis in few hours by reformulating the models with the PEF. This 

approach is not only limited for solvent-based technologies since the PEF can be 

utilized in other superstructure frameworks that involve other processes such as 

simple distillation (packed column), reactive distillation, membrane separation, 

adsorption or batch processes.  
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7.5. Conclusions 

A Pseudo-Eulerian formulation (PEF) was proposed to develop the governing 

equations for the design calculation of unit operations. It was shown that this 

alternative formulation (PEF) speeds-up the unit operation design algorithm by 

removing the inherent iterative loop that arises from developing and solving the 

governing equations in the Eulerian framework. It was demonstrated that utilizing the 

PEF algorithm for unit operation design is more than tenfold faster than the EF 

algorithm. The solution of the PEF-based model gives similar numerical results as the 

EF-based models with minimal numerical differences that can be attributed to the 

numerical methods.  

The PEF approach was used, as an example, to model a multiphase multicomponent 

reactive system (CO2 absorber). It was shown that, as opposed, to the short-cut 

methods, it can properly represent the mass and temperature profiles. This shows 

that there is no need to oversimplify the physics of the unit operations to implement 

computationally fast unit operation design algorithms. 

Using the PEF to develop unit operation design models can be utilized for greatly 

improving the computational speed of rigorous superstructure frameworks that involve 

conceptual process design such as the ones utilized in sensitivity, optimization, or 

uncertainty quantification studies. The computational advantages of the PEF are more 

significant when there is a larger number of unit operations that are modelled with an 

ODE.  
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7.6. Supplementary Information 

7.6.1. Density, surface tension and viscosity models 

The machine learning models. for density (𝜌𝐿), surface tension (𝜎𝐿) and viscosity (𝜇𝐿) 

in the liquid phase are a function of 𝛼𝐶𝑂2
, 𝑤𝑀𝐸𝐴 and 𝑇𝐿. All the machine learning models 

were developed by using a shallow artificial neural network architecture and the 

hyperbolic tangent sigmoid function. Hence, they have the machine learning models 

have the following general form: 

𝑥𝑛 = (𝑥 − 𝑥𝐴) .∗ 𝑥𝐵 + 𝑥𝐶 (7.23) 

𝑛 = 𝑏1 + 𝐼 ∗ 𝑥𝑛 (7.24) 

𝑎1 = 2./ (1 + 𝑒𝑥𝑝(−2𝑛)) − 1 (7.25) 

𝑎2 = 𝑏2 + 𝑂𝑇 ∗ 𝑎1 (7.26) 

𝑦 = 𝑄 ∗ 𝑒𝑥𝑝((𝑎2 − 𝑦𝐶)/𝑦𝐵  + 𝑦𝐴 ) (7.27) 

Where the vectors are assumed to be column vectors, 𝑥 is the vector of input variables 

(they must be input in the following order: 𝛼𝐶𝑂2
, 𝑤𝑀𝐸𝐴 and 𝑇𝐿) and 𝑦 is the predicted 

property. The operator “.∗” indicates that a Schur product (or element by element 

product). The remaining unknown variables are the parameters of each model and 

are presented in Tables Table 7.6 - Table 7.10. Note that “;” separates rows and “,” 

separates columns. Parity plots of the experimental properties and the predicted 

properties with the machine learning models are presented in  



A computationally efficient algorithm for designing unit operations 

427 

The average relative deviation (ARD) and the AARD of with respect to the 

experimental data are presented in Figure 7.11. The AARD shows an acceptable 

deviation between the model predictions and the experimental data while the small 

ARD values imply that there is no sign of model bias, and that the experimental data 

is well distributed around the model. 

Table 7.6.Parameter values for 𝑥𝐴, 𝑥𝐵 and 𝑥𝐶 . 

Property 𝑥𝐴 𝑥𝐵 𝑥𝐶 

𝜌𝐿 [0;0.062;293.15] [4;2.132;0.0333] -1 

𝜎𝐿 [0;0;298.15] [4;2;0.05] -1 

𝜇𝐿 [0;0;0] [4;2;0.00566] -1 

 

Table 7.7. Parameter values for 𝑏1, and 𝑏2. 

Property 𝑏1 𝑏2 

𝜌𝐿 [0.8048;0.1141;2.6733] -1.435 

𝜎𝐿 [1.623;-0.7740; 3.381] -0.03411 

𝜇𝐿 [-0.8828;-1.054;-0.09768;1.165] 0.4406 

  



 

428 

Table 7.8. Parameter values for 𝐼. 

Property 𝐼 

𝜌𝐿 

[0.2863, -0.7952, -0.1194; 

0.4250, 1.137, -0.09251; 

-0.4639, 2.283, -0.3126] 

𝜎𝐿 

[-0.8323, 0.4304, 1.164; 

-0.2820, 0.2855, 0.09529; 

0.3012, 2.192, 0.08269] 

𝜇𝐿 

[0.2324, 0.3806,1.900; 

0.1911, 1.090, 2.075; 

0.1965, 0.3745, -0.8437; 

0.8272, 0.4359, 2.088] 

 

Table 7.9. Parameter values for 𝑂. 

Property 𝑂 

𝜌𝐿 [1.654, 1.157, 0.3694] 

𝜎𝐿 [-0.07337; -2.485; -1.1549] 

𝜇𝐿 [-2.116; 1.084; 2.645; 2.139] 
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Table 7.10. Parameter values for 𝑄. 

Property 𝑄 

𝜌𝐿 1.0 (kg/m3) 

𝜎𝐿 1.0 (N/m) 

𝜇𝐿 10-6 (Pa s) 

 

Table 7.11. Deviation of the machine learning property models with respect to the 

experimental values. Application range for  

Model 𝛼𝐶𝑂2
 𝑤𝑀𝐸𝐴 𝑇 

No. 

Datapoints 

AARD 

/ % 

ARD  

/ % 

𝜌𝐿 0 − 0.5 0.062 − 1 293 − 353 271 0.311 0.003 

𝜎𝐿 0 − 0.5 0 − 1 298 − 358 278 1.67 0.162 

𝜇𝐿 0 − 0.5 0.062 − 1 293 − 353 307 4.93 0.130 

  



 

430 

 

 

 

Figure 7.11. Parity plots of the 

experimental property values and the 

predictions with the machine learning 

models: a) density, b) surface 

tension, and c) viscosity. The parity 

plots present all the experimental 

datapoints within the ranges reported 

in Table 7.11. 



A computationally efficient algorithm for designing unit operations 

431 

7.6.2. Validation of the CO2 scrubbing unit operation 

The model validation was performed using the input values in the ranges shown in 

Table 7.12. Since the PEF is aimed to design absorber columns and not to simulate 

already existing columns, the amount of CO2 at the outlet (𝑉𝐶𝑂2,1 that is expressed as 

𝑦𝐶𝑂2,0 in Table 7.12) was iterated until the total height of the absorber (𝑧𝑓) was 

obtained. If the EF is used for the validation, then it is not necessary to perform this 

iterative procedure. In summary, if the model is to be used for a simulation of an 

already existing process it is better to develop the model in the EF, but if it is going to 

be used for process design and optimization it is better to use the PEF. The error of 

the mass balances in the PEF is quantified by comparing the total amount of CO2 

removed in the outlet (𝑦𝐶𝑂2,1) and the rich CO2 loading error (𝛼𝐶𝑂2,1). The CO2 loading 

is defined as the apparent number of CO2 moles over the apparent number of MEA 

moles. The mass balances show reasonable deviation percentages in 𝑦𝐶𝑂2,1 and 

𝛼𝐶𝑂2,1. Although both variables quantify the amount of CO2 in the vapor and liquid 

phases respectively, the deviation of 𝛼𝐶𝑂2,1 is considerably lower. This may be 

attributed to a wrong estimation of water vapor in the inlet gas stream (Tobiesen, 

Svendsen, & Juliussen, 2007). The error in the energy balances is quantified as the 

difference in the outlet temperatures of the vapor phase (𝑇𝑉,1) and the liquid phase 

(𝑇𝐿,0). The deviations are small and have good agreement with the measured values. 

It is seen that the ARD and AARD of 𝑇𝐿,0 are equal. This means that the temperature 

outlet is slightly underpredicted (a maximum difference of -3 °C). 
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Table 7.12. Results of the validation of the PEF model against experimental data. 

 System 1 System 2 

Dimensions 

(Input) 

𝐴𝐶  / 𝑚
2 0.0177 0.00785 

𝑧𝑓  / 𝑚 4.36 6.55 

Bottom Vapor 

(Input) 

𝑉0 / 𝑚𝑜𝑙/𝑠 0.11 – 0.14 1.46 – 1.68 

𝑦𝐶𝑂2,0 0.15 – 0.19 0.015 – 0.11 

𝑇𝑉,0 / °𝐶 34 39 – 69 

Top Liquid 

(Input) 

𝐿1 / 𝑚𝑜𝑙/𝑠 1.00 – 1.49 2.27 – 6.95 

𝛼𝐶𝑂2,0 0 - 237 0.18 – 0.41 

𝑤𝑀𝐸𝐴,0 / % 12 - 18 30 

𝑇𝐿,0 / °𝐶 19 – 20 40 - 66 

Top Vapor 

(Output) 

AARD/ARD: 𝑦𝐶𝑂2,1 0.88 / 0.79 5.22 / -0.60 

AARD/ARD: 𝑇𝑉,1 / °𝐶 N/A 0.49 / -0.09 

Bottom Liquid 

(Output) 

AARD/ARD: 𝛼𝐶𝑂2,0 1.90 / 0.42 1.01 / -0.23 

AARD/ARD: 𝑇𝐿,0 / °𝐶 0.26 / 0.24 0.46 / -0.46 
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Nomenclature 

𝐴𝐶: cross-sectional area [m2] 𝑤: MEA weight fraction in a CO2-free 

basis 

𝑎𝑒: effective specific interfacial area 

[m2/m3] 

𝑥: liquid molar fraction 

𝑓: vector of functions 𝑦: vapor molar fraction 

C: concentration [mol/m3] 𝑍: compressibility factor [=] 

𝐶𝑃: heat capacity [kJ/mol K] 𝑧: length of the unit operation [m] 

𝐷: diffusivity [m2/s] 𝐴𝐶: cross-sectional area [m2] 

𝐸: energy flow [kJ/s] Superscript 

𝐻: thermodynamic factor (𝐻 = 𝑦/𝑥) [=] *: related to the specified variable 

ℎ𝑉: heat transfer coefficient [kJ/m2 s K] 𝑟: reduced vector 

𝑘: mass transfer coefficient [m/s] 𝑥: thermodynamic variable *at 

equilibrium 

K: conductivity [kJ/m K] Subscript 

𝐿: liquid phase mole flow [mol/s] 0: bottom of the unit operation 

𝑃: pressure [kPa] 𝐸: related to energy 

𝑅: ideal gas constant [kPa m3/mol K] 𝑓: top of the unit operation 

𝑇: temperature [K] i: related to component 𝑖 

𝑉: vapor phase mole flow [mol/s] 𝐿: related to the liquid phase 

𝑣: superficial velocity [m/s] 𝑇: total 
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Greek Letters 

𝛼𝐶𝑂2
: CO2 loading [mol CO2/mol MEA] 

𝛽: state variable vector 

휀: absolute error tolerance 

θ: independent variable 

𝜅: relative computational speed 

𝜆: heat of phase change [kJ/mol] 

𝜇: viscosity [Pa s] 

𝛯: enhancement factor [=] 

𝜌: density [kg/m3] 

𝜎: surface tension [N/m] 

𝜑: fugacity coefficient 

𝜒: reaction constant [1/s] 

𝛺: relative computational cost 
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Chapter 8.  

Concluding remarks 

 

This chapter presents a discussion on how NNP can be utilized for 

improving the development of modelling frameworks. It also provides 

conclusions on what can be done to effectively utilize neural networks 

in thermodynamic modelling. Finally, a brief personal commentary what 

would be an ideal thermodynamic modelling AI. 
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8.1. Improving chemical engineering modelling with 

NNP 

This subsection discusses some instances in which NNP and ASNNs can be utilized 

to tackle some modelling challenges. The discussion is centered on processes where 

CO2 is absorbed by liquid solvents. The phrase “improving chemical engineering 

modelling” does not exclusively refer to enhance the model accuracy. But, also to the 

simplification and speeding up the overall modelling process. 

Two alternatives for modelling processes with CO2 capture were discussed in this 

thesis. The first alternative is based on equilibrium thermodynamics and heuristics 

(the biogas upgrading model in Chapter 6). The second alternative utilizes a model 

based on thermodynamics, transport phenomena, kinetics, thermophysical 

properties, and heuristics (model in Chapter 7). From now on, the first approach is 

referred to as “equilibrium-based” while “rate-based” is used for the second 

alternative. The rate-based allows the estimation of estimating the operational costs 

(OPEX) and the capital costs (CAPEX). Conversely, the equilibrium-based models 

can only estimate the OPEX.  

Despite the limitations of the equilibrium-based approach, it could be used to map the 

operating conditions in which physical solvents outperform chemical solvents. From a 

broader perspective, the tools presented in this thesis can be utilized to determine the 

economic feasibility of a new solvent. For example, it is possible to establish whether 

the model can outperform a benchmark solvent or not. In this framework, only the 

activity coefficient ASNN (Chapter 4), VLE data, and the biogas upgrading simulation 

framework (Chapter 6) are needed. The key advantage of ASNN-based VLE models 

is that their development requires a short time. This is in contrast to the typical VLE 



 

444 

models that require speciation data and complex solution algorithms that may take a 

long time to develop (e.g., chemical equilibrium solvers [1–3]). 

Rate-based models, usually require submodels for several thermodynamic and 

transport properties (e.g., viscosity, surface tension, or volume). In many cases, 

empirical equations are used to model these properties (e.g., [4–6]). However, they 

are usually unsystematically made and might not be applicable to other systems. 

Although the models generated by NNP are empirical models as well, a generalized 

structure based on an excess function can be used instead (e.g., the excess Gibbs’ 

function proposed in Chapter 4). This would allow having a single model for every 

system where the only difference is the numerical value of the parameters. More 

accurate models than the polynomial-based models are expected due to the universal 

approximation theorem and the automatized optimization framework. More 

importantly, this task would be simplified while still maintaining a degree of coherence 

in the physics. 

The reaction kinetics are one of the most significant modelling challenges in rate-

based models. Setting aside the experimental difficulties, one of the main issues is 

the computational overhead. As discussed in Chapter 7, it is common to utilize the 

enhancement factor which, in simple terms, lumps the effect of mass transfer and 

kinetics into a single parameter. This workaround has been widely used since it was 

proposed by Hatta in 1928 [7]. Although newer and more sophisticated enhancement 

factor models have been proposed (e.g., the work by Gaspar and Fosbøl in 2015 [8]), 

it was shown by Putta et al. that they are as competitive as the simple pseudofirst 

order enhancement factor. Nonetheless, different enhancement factor models should 

be used if a primary or tertiary amine is being modelled since the speciation is 

different. For example, primary amines (e.g., MEA) form a carbamate while tertiary 
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amines (MDEA) do not [9]. Moreover, depending on the diluent, the electrolytes 

available in the liquid phase might be different whether it is an aqueous or a water-

lean solvent [10]. Considering this, formulating a generalized ASNN architecture for 

predicting an enhancement factor would be highly valuable for solvent assessment. 

Another advantage of using NNP for modelling kinetics is the possibility of overriding 

the need for modelling the diffusivity of CO2. Since it is not feasible to measure the 

diffusivity of CO2 on aqueous amines mixtures, it is customary to utilize the N2O 

analogy [11] (in my opinion this analogy is not correct but it is necessary). Customizing 

a neural network with NNP to handle the kinetics and diffusivity modelling together 

may help to simplify and reduce the modelling uncertainty. 

Another important area of interest is the one concerning systems in unsteady state. 

Physics informed neural networks (PINNs) proposed by Raissi et al. [12] can be used 

for that purpose. However, ASNNs can perform exact mass balances and hold 

thermodynamic relationships. Hence, keeping the physics coherence within the model 

at all times. Further research is required to apply NNP to solve differential equations 

since FFNNs are time invariant, therefore, Recurrent Neural Networks, would be more 

appropriate instead. 
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8.2. Conclusions 

It was demonstrated that complex mathematical relationships can be explicitly 

represented by applying the NNP method (Chapter 3). Therefore, an ASNN with a 

tailor-made architecture and parameter sets can represent a broad set of physics 

laws. This allows the formulated ASNNs to be coherent with the physics and, hence, 

reliable, and trustworthy. As opposed to most machine learning modelling 

approaches, the NNP is a “deontological” approach. This means that it prioritizes the 

preservation of the physics relationships between the inputs and outputs rather than 

focusing only on the performance.  

Analysis of the degrees of freedom (DoF) is fundamental in the development of 

models based on ANNs. As shown in Chapter 2, The Gibbs’ phase rule (DoF in 

thermodynamic systems in equilibrium) should play a key role in the selection of input 

variables. Ignoring the DoF can result in an accurate model that is not necessarily 

coherent with the physics. It was shown that ignoring the DoF in VLE modelling may 

result in accurate but inconsistent thermodynamic models. The consistency of a 

thermodynamic model is not only dependent on the Gibbs’ phase rule but also how 

the variables interact within the ANN. In fact, in Chapter 4 -Chapter 5, it was 

demonstrated that an ANN cannot be thermodynamically consistent if the inputs are 

not interacting properly within the ANN. Therefore, the architecture of the neural 

network must be built according to the definition and constraints of the thermodynamic 

function. This implies that both the Gibbs’ phase rule and proper understanding of the 

information flow is needed when developing models based on ANNs. 

As discussed in Chapter 4, the role of DoF in process modelling is different than in 

equilibrium thermodynamics. Ignoring the DoF in process modelling does not 

automatically make the model incoherent with the physics. However, it sets 
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assumptions on what is being calculated by the model. For example, consider a 

thermodynamically overspecified flash tank ASNN model. This model implies that 

there is no thermodynamic equilibrium between the output phases. Therefore, it is 

assuming that other phenomena are occurring in the flash tank (e.g., mass transfer 

limitations or an error in the temperature reader).  

The universal approximation theorem can be exploited to serve as a generator of 

thermodynamic functions. Utilizing the approach presented in Chapter 5 definitely 

simplifies and speeds-up the development time of acid gas VLE models. Moreover, it 

showcases a completely new perspective on how to create new thermodynamic 

models. Not only from the embedment thermodynamic models into neural networks, 

but also the possibility of exploiting the universal approximation theorem in different 

manners. ANNs and machine learning algorithms should improve the modelling 

process by removing uncertain parameters, not to entirely substitute physics laws.  

By applying the VLE modelling approach proposed in Chapter 5, the techno-economic 

potential of solvent candidates can be simplified. The simulation framework presented 

in Chapter 6 can be utilized to discard solvents that are clearly uncompetitive by only 

utilizing VLE measurements. However, if the solvent is reasonably competitive, a rate-

based gas-liquid contact model like the one presented in Chapter 7 would be required.  

The NNP method has great potential for implementing models that make better use 

of the available data while still maintain physics coherence. Because of these two 

characteristics, NNP has potential to enhance models in thermodynamics, kinetics, 

thermophysical/transport property, and process simulations. The most remarkable 

advantages of NNP allows using some of the best computational technologies 

developed in the last century. These features are backpropagation (optimization 

algorithm), multilayer perceptron (the building blocks of ANNs), and automatic 
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differentiation (the numerical errors are essentially removed). This is the first hybrid 

modelling algorithm that allows using these three features while maintaining exact 

physics coherence in a neural network. 

Two important questions might raise after finishing reading this thesis: (1) is NNP an 

actual machine learning method? and (2) are ASNNs artificial intelligence? Short 

answers: yes and no. 

The first question might be raised from a computer science perspective. It might be 

argued that the NNP method compels and restricts the ASNN to perform the physics 

laws. Although this statement is true, the NNP also has potential to find the 

appropriate set of parameters if a suitable architecture is proposed (see Chapter 3). 

This implies, that the power of the NNP model relies on providing a structured and 

human frame of mind to the ASNN. 

The above can be compared on how people learn basic mathematics at school. First, 

the general rules about mathematics are taught (the ASNN structure). Afterwards, the 

students are trained with examples and homework (learning data). This allows the 

teacher to provide feedback to the student (optimization algorithm). In this example, 

the NNP method has the same role as the teacher and ruleset. Contrarily, in the typical 

black box modelling with ANNs, the structure is only given by the data. Therefore, the 

model will exclusively be as good as the data. 

Regarding the second question, typical ANNs and ASNNs are excellent at making 

input / output correlations but they do not possess a degree of understanding about 

physics (i.e., AI is absent). My main argument against regarding typical ANNs as AI 

is founded on their inability of properly predicting limit cases. The fact that a typical 

ANN cannot predict a limit case implies that it did not understand the data, it just 
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approximated it. Utilizing ANNs with several layers and thousands of parameters 

might decrease the error between the predictions and datapoints in limit cases. 

However, the error reduction is not because the ANN “understood” the physics. This 

is because whenever there are more neurons in a layer, each neuron will have a lower 

contribution to the prediction. Moreover, with more neurons there are higher chances 

to cancel the effect of each other. Furthermore, as discussed in Chapter 4 - Chapter 

5, independently of how close is to the limit point there is an infinite set of operating 

conditions in which the model is not correct. However, it is unfair to blame the ANN 

when its structure is not coherent with the physics in the first place. Perhaps it is us, 

the users, the ones that do not understand neural networks. 

Lastly, I believe that a thermodynamic AI would be considered as such if it is capable 

of formulating thermodynamically consistent models on its own. This implies that it 

would require to utilize a universal approximator function as a starting function and 

automatically build the ASNN architecture. In the context of the work presented in this 

thesis, the algorithm would read the 𝐺𝐸/𝑅𝑇 function and generate the corresponding 

ASNN along with its parametrization (including the activity coefficient and excess 

enthalpies sections). Making an AI with these features seems like an impossible 

challenge, but who knows? Years ago, nobody would have guessed that there was 

going to be an AI capable of solving protein structures. 
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