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Abstract

Underestimation of drilling hazards in carbonates can lead to serious consequences to
personnel and the environment. The history of drilling in carbonates has shown that the
vast majority of drilling incidents are associated with drilling through unique carbonate
features called karsts. Karsts come in a variety of sizes and shapes such as cavities, caves
and underground channels. Accidents associated with drilling through karsts can result in
the loss of well control with subsequent problems. This can lead not only to operational
delays or damage to expensive drilling equipment, and also to possible personnel injuries,
loss of life or environmental catastrophes. This thesis studies different strategies, methods
and technologies for safer drilling in karstified carbonates.

It presents a general theoretical background of karstification phenomena and provides
a description and classification of various karstification objects relevant for drilling. This
classification enables the identification of important parameters of dangerous for drilling
karsts. The obtained description and classification leads to a review of available technologies
and methods that can be utilized for prediction or detection of dangerous for drilling karsts.
This analysis reveals the gap in the available technologies for early detection of dangerous
for drilling karsts. Based on in-depth analysis of an entire field in the Barents Sea, it is
shown that karsts tend to appear in groups. This finding is utilized in a novel approach,
where the not dangerous for drilling karst can be utilized as indicators of karstification
zones. The analysis of the extensive set of field data, demonstrates that karstification objects
can be detected from the analysis of certain patterns in real-time drilling data. These
patterns serve as real-time indicators of karstification objects and zones. However these
patterns often remain unforeseen during drilling. This work provides and tests a signal
processing algorithm for automated karst-patterns detection. That can help engineers
involved in real-time drilling data analysis to detect karst-related patterns in drilling data.
Finally, a novel method for prediction of karsts while drilling using look-ahead of the drill bit
technology is proposed based on borehole acoustic tool. The developed technology can be
used to indicate upcoming drilling hazards associated with karsts or any other unexpected
formation changes. The concept of this technology is demonstrated through experiments in
a state-of-the-art industrial simulator.
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Chapter 1

Introduction

1.1 Background

1.1.1 Drilling in carbonates

Carbonate reservoirs produce a significant volume of the world’s total oil and gas [1].
Many of the world’s carbonate reservoirs have considerable potential for development and
production. However, the history of drilling has shown that the heterogeneous nature and
the complexity of rock properties in carbonate reservoirs make them challenging to drill.
Karstification processes often affect carbonate reservoirs and cause the development of a
number of unique geological features called karsts. Here I refer to a common definition
of the karst, introduced to describe the landscape, which contains caves, underground
channels, and other features associated with soluble rocks [2].

Encountering karsts while drilling can cause critical safety incidents. Depending on
the size of encountered karst, loss of drilling fluid can be uncontrollable resulting in rapid
gas migration to the surface and causing well control situations [3]. When fractures and
caverns are closely connected as is common in some regions, losses can be treated without
any success for a few weeks with subsequent plugging and abandoning of the wells [4].

Such a negative impact of karsts on drilling operations is reported worldwide. Malaysia,
Sarawak offsore: based on more than eleven years of drilling experience in carbonate
structures total losses were encountered in more than 30% of the wells drilled [5]. USA,
Culberson County, Texas: in each case of drilling in the intervals of cave systems, losses that
occurred progressed into total losses with well control incidents [6]. Norway, Barents Sea,
Continental Shelf: drilling in naturally karstified carbonates resulted in total losses causing
weeks of non-productive time, shoot off and Lost in Hole (LIH) of Bottom Hole Assembly
(BHA) [7]. Western Offshore fields of India: drilling and completion problems due to mud
loss in a number of wells [8]. Philippines, North Senoro Gas Field: well control issues in
carbonates, total mud losses followed by gas kicks [3]. Russia, Eastern Siberia: catastrophic
mud losses reaching several thousand cubic meters while drilling in carbonates, gas kicks

[91.



Overall the problem of drilling in carbonates is serious and costs the industry more than
USD 800M per year [10, 11].

1.1.2 Current solutions

There are several ways to mitigate the risks of total mud losses, gas kicks and BHA drops in
open cavities. A detailed overview of these methods will be given in Chapter 3. They can be

roughly divided into three main groups:

e Pre-drill detection of karsts,
e Karst detection while drilling,
e Minimization of consequences of drilling into karsts.

The first group of methods seeks solutions on how to predict and avoid drilling into
karstification objects. It is based on technologies to investigate subsurface structures prior to
drilling. Today we benefit from cutting-edge methods within geophysical research. However
even with the most advanced geophysical methods it is still challenging to detect karsts and
avoid drilling into them.

For example, seismic - one of the most common techniques used nowadays for mapping
reservoirs, faults, and structural surfaces - can be effective for the detection of large karst
structures [12, 13]. However, not all karsts can be detected by seismic technologies. Along
with the successful case studies, the main limitation in the seismic detection of karsts is
related to the problem of vertical resolution [14]. It has been shown that caves less than {}
(40 m) cannot be detected due to wave interference [15]. In certain regions in the Barents
Sea, encountered caves were less than a meter and they were very dangerous for drilling
[71.

The second group of methods focuses on karst detection while drilling. Real-time or
early detection of karstification objects can lead to timely and more efficient risk mitigation.
A wide range of investigative IWD can be used to detect karsts. For example, Borehole
Acoustic Reflection Survey (BARS) [16], and ultradeep resistivity tools [17] are among the
most promising. Although effective in certain cases [18, 19], the main drawback of IWD
tools is that the vast majority provides look-around measurements (also usually at a great
distance from the bit) and these tools do not look ahead of the bit. Thus, the area ahead of
the bit cannot be investigated by direct measurements. Any relevant measurements from
IWD tools come with a significant delay (due to the large offset from the drill bit) and
are, therefore, not suitable for real-time decision making on avoiding karsts that can be
dangerous for drilling.

The third group addresses methods to minimize consequences of drilling into karsts.
Depending on the volume of mud loss, different techniques can be used. For example,
the volume of mud loss in some conductive fractures can be successfully controlled by
varying the concentration of Lost Circulation Materials (LCM) or by changing the chemical
composition of the mud [20, 21]. Usually, these measures have only a short-term effect and



require more and more chemicals and cement materials leading to additional costs and
delays [22].

Another approach widely used by the industry to mitigate many of the problematic
situations encountered in karstified carbonates is the use of Managed Pressure Drilling
(MPD) and its modifications, such as Pressurized Mud Cap Drilling (PMCD). In PMCD, a
sacrificial fluid is pumped through the bit nozzles to fill any fractures and caves, while a
heavier fluid is pumped into the annulus from the top to maintain the mud cap and prevent
gas migration up to the surface. Today this is the most common practice for drilling in
carbonates used by drilling companies [5, 23-26].

However, MPD-based solutions have limitations. For PMCD there is an operational
necessity for additional equipment installation on the rig site such as the Rotational Control
Device (RCD) [27]. Additionally, a significant volume of sacrificial fluid is required for
drilling, which makes this technique inapplicable in some regions. In the case of exploration
drilling, the rig may not be equipped for PMCD before drilling begins due to underestimation
of drilling risks. PMCD does not solve all karst-related challenges. An excessive shock can
act on the drill bit when the BHA suddenly reaches the bottom of a cave. It can break the
drillstring with possible Lost in Hole (LIH) and stuck-pipe events.

Despite the fact that there are different methods to tackle the challenge of drilling in

karstified carbonates, these methods have limitations:

e small, dangerous for drilling karst forms cannot be detected and located before drilling
with seismic-based methods

e any relevant IWD measurements while drilling are look-around with a significant
delay. They cannot look in front of the bit and therefore cannot be used for avoiding
drilling into karsts or even for real-time detection of encountering karsts

e minimization of consequences of drilling in karsts cannot solve the problem of dam-
aging drilling components in cavities. Moreover, the MPD type of drilling, is rarely

available in exploration drilling beforehand, leaving the risk of well-control issues
unchanged.

These limitations indicate a significant room for further research and development to
find methods and technologies for safer drilling in karstified carbonates.

1.1.3 Challenges

This thesis focuses on the challenge of how to predict karsts ahead of the bit and detect
karstification objects and zones while drilling. As follows from the overview of the available
technologies from the previous section, these challenges are far from solved. Obtaining
solutions to these challenges can be vital for real-time decision making and minimization of
drilling risks in karstified carbonates.

Early karst detection is a complex multidisciplinary problem and different approaches

have to be investigated to tackle this challenge. For example, in this thesis, an extended set



of methods from different research areas is used, including geology, geophysics, drilling,

acoustics, signal processing and machine learning. Another challenge related to early

karst detection or prediction is the lack of high quality data sets. The number of wells

encountering karstification objects is relatively low compared to the overall number of

drilled wells. Moreover, not so many of these wells were drilled with proper sensor sets.

This makes this problem even more difficult for research.

1.2 Main research questions

To address the described challenges the following research questions require answering:

Q1:
Q2:

Q3:

Q4:

Q5:

What are karsts and which of them can be considered as dangerous for drilling?

Are there any available (geophysical) methods that can be used for early karst detec-
tion?

Can karsts be detected in real-time from drilling measurements and what measurement
patterns correspond to them?

Can these drilling measurements be analyzed in an automated manner to simplify
the detection of karst patterns in real-time drilling data?

What technology can be used to consistently investigate a region ahead of the drill bit
and indicate the presence of dangerous karst forms in advance?

This thesis systematically addresses these questions with the overall goal to find better

strategies, methods and technologies for safer drilling in karstified carbonates.

1.3 Methodology

The following methodology was used to address these research questions.

M1:

M2:

M3:

Karstification phenomena were studied to gain insight into current knowledge and to
systematize theoretical information based on literature survey. To identify dangerous
for drilling karst forms and classify karstification objects from the drilling point of view,
an analysis of real field data from one of the fields in the Barents Sea was performed.
This provided a better understanding of the karstification problem in the studied
region and karstification phenomena in general.

To investigate technologies suitable for early detection or prediction of karst cavities in
drilling, advances in geophysical methods were reviewed concentrating on the detec-
tion of geological objects around and ahead of the bit. This analysis and classification
of these technologies was based on the overview of academic publications, patents,
inventions and commercial solutions used by operator/service companies.

A detailed study of drilling events was made and end-of-well reports from the available
field data from the Barents Sea. This correlated intervals of karstification identified

from borehole images with the rig-site events. This analysis provided an overview
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M4:

M5:

of rig-site drilling events for the entire field. Joint analysis of the rig-site events and
borehole images was undertaken to find specific behavior of BHA in the intervals of
karstification. A detailed analysis of the recorded time-domain data of BHA dynamics
and mud flow data in these intervals was compiled to identify signatures or patterns
of karstification objects in the corresponding real-time measurements.

Once karst signatures were identified, this work investigated the possibility of karst
patterns detection in an automated manner using a special filtering algorithm. The
algorithm was applied to the set of drilling data containing fractures, vugs and caves
identified by the operator company providing the dataset. These intervals were used
as references for comparison and validation of the intervals detected automatically by
the algorithm.

Since karst prediction while drilling is challenging with the state-of-the-art geophysical
methods, a concept was introduced to investigate a region ahead of the bit. This novel
geophysical method showed how the region in front of the bit can be investigated
and how dangerous for drilling karsts can be detected in advance. A set of numerical
models, which represented a reservoir section of the studied region, was developed to
test and validate the method. Different geological scenarios were simulated in the state-
of-the art industrial simulator COMSOL Multiphysics® to investigate and find a suitable
tool configuration as well as signal processing algorithms to demonstrate the concept.
This work demonstrated how dangerous for drilling karsts can be distinguished from
not dangerous for drilling objects with the proposed instrumentation setup and signal
processing algorithm.

1.4 Contribution

The contribution of this thesis with respect to the formulated research questions is given

below.

Cl:

C2:

The analysis of literature on karstification and the field data from Loppa High region
in the Barents Sea, provided a description of various karstification objects relevant for
drilling and their classification into dangerous and not dangerous for drilling karstific-
ation objects. These descriptions and classifications are important for evaluation and
validation of various technologies aiming at safer drilling in karstified carbonates.

The analysis of the drilling data (mud logs, drilling reports, site survey reports),
drilling mechanics data (surface and downhole measurements), geology (lithology,
stratigraphy, biostratigraphy), rock and core (conventional core analysis and core
photos), petrophysical reports (Computer Processed Interpretation (CPI), Composite),
well logs (wireline, IWD), demonstrated that karstification objects tend to appear in
groups. These groups of karsts occur in zones with geological conditions favorable
for karstification. Such zones can include both, dangerous and not dangerous for



C3:

C4:

C5:

Cé6:

drilling karstification objects. Encountering any of them while drilling can serve as
an indicator of drilling through a karstification zone. This can be used to support
decision making for mitigating risks in drilling in karstification zones. The novelty
here is utilization of not dangerous for drilling karst objects as indicators of karst
zones. These objects can often remain unnoticed in the current drilling process.

The obtained description and classification of karstification objects enabled a review
of available technologies and methods that can be utilized for their prediction an-
d/or detection either prior to or while drilling. The contribution of this stage is the
classification of available methods and technologies with respect to their ability to
detect/predict dangerous for drilling karsts. This classification shows a gap in the
available technologies and indicates the most promising directions for research and
development to fill in this gap. The summary of methods and technologies is provided
in a table which can be used as a reference for selecting the most suitable technologies
for drilling in carbonates.

An extensive set of measurements consisting of drilling mechanics, mud flow, geology,
core sample, petrophysical and geophysical data was analyzed and enabled the identi-
fication of a number of patterns in real-time drilling data corresponding to various
karstification objects. These patterns, when detected, can serve as real-time indicators
of karstification objects and zones. This information can be utilized by engineers and
drilling support centers. Moreover, various automatic data processing technologies
can be used to detect karstification zones in real-time and thus support risk mitigation
while drilling through karstification zones. The results obtained at this stage are
especially valuable, since they are based on in-depth analysis of the field data set from
the Loppa High region in the Barents Sea. This is a very rare data set as it corresponds
to drilling through karstification objects and it contains a rich set of measurements
not usually utilized in drilling. This rare combination makes this data set and the
corresponding analysis unique. The methodology developed in this section can be
utilized for analysis of similar data sets from other fields. Thus, it can contribute to
safer drilling in karstified carbonates when data from other fields become available.
This work proposes and tests a signal processing algorithm for automated detection of
the patterns in real-time drilling data corresponding to karsts. This algorithm provides
better results than standard data filtering and can help engineers in drilling support
centers to detect karstification patterns and other drilling events. The performance of
this algorithm is demonstrated on the drilling data from the Loppa High region.

A novel method is developed for prediction of karsts while drilling using look-ahead
technology based on a borehole acoustic tool. The method is based on utilizing a pulse
generator at the drilling bit and conventional borehole acoustic tool located further
up at the BHA. By utilizing sequential measurements along the wellbore while drilling
and by comparing these measurements by using an unsupervised ML algorithm, the
proposed method can indicate upcoming hazards and other significant changes in the



formation properties. The concept has been validated through extensive simulations
in the state-of-the-art industrial simulator COMSOL Multiphysics®. It can serve as
a foundation for further research and development of look-ahead bit tools for safer

drilling.

1.5 Structure of the thesis

The research has been structured into five goals, distributed over the five chapters in the
main body of the thesis.

Chapter II presents, first, a general theoretical background of karstification phenomena
with specific focus on the karst-forms that can be encountered in carbonate reservoirs
and, second, based on a real field data set introduces the research objective of this thesis:
prediction and early detection of dangerous for drilling karst forms.

Chapter III provides insight into advances in geophysical methods aiming at the detection
of different geological objects (including karsts) in front of the bit.

Chapter IV analyzes possible patterns in real-time drilling data corresponding to drilling
through karstification objects.

Chapter V focuses on the implementation of an algorithm that contributes to more
accurate karst-patterns detection through the use of real-time drilling data.

Chapter VI presents and demonstrates a novel technology based on borehole acoustics
and machine learning for investigating the region ahead of the drill bit to detect karst
hazards or formation changes.

Chapter VII contains conclusions and discussions.
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Chapter 2

Karstification - geological background

This chapter introduces the karst phenomena and discusses surface and subsurface signs of
karstification. The geological background provided in this chapter summarizes the main
elements of the conducted analysis of more than 100 papers devoted to the karst phenomena.
In addition to that, an example of karstified carbonates in the Loppa High region is reviewed.
Based on the field data provided, there is an analysis of the types of karstification objects.
Their occurrence provides a classification of these objects into dangerous and not dangerous
for drilling karsts.

2.1 Karst phenomena

One of the earth’s most common minerals is calcium carbonate. Degradation of carbonates,
known as karstification, results in the development of caves, vugs, fractures and cracks.
There are a number of processes contributing to karstification. Dissolution of soluble rocks
by meteoric waters along pathways specified by a geological structure is considered as one of
the main mechanisms of karstification [28]. Other important factors for karst development
are favorable geology, formation lithology, rock mechanical properties, burial depth and
rock fracturing.

Karsts and signs of karstification can be found at different depths. Since the main
mechanism of karstification is common for shallow and deeply buried carbonate structures,
it is essential to review the common features of karstified landscapes first and then consider
subsurface karsts.

2.1.1 Landscape karstification

Karstification of a landscape may be seen by different large and small-scale surface or
subsurface objects as shown in Figure 2.1. Karst-classification, presented in this section,
will be divided into surface (micro- and macro-forms) and subsurface (sinkhole and caves)
categories. This is a conditional division of karsts because some of the karst forms like
sinkhole may fall into both categories.
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Figure 2.1: Karstic landscape

Surface micro-forms objects can generally be developed in the limestone or other soluble
rocks such as carbonate or gypsum. As shown in the Figure 2.1, the typical result of this
process is development of some salient features such as division of limestone into blocks
(clints) bordered by vertical fractures (gricks) [2]. This is a widespread sign of landscape
karstification presented by variety of shapes and sizes, spanning up to tens of meters.

Larger scale surface signs of karstification fall under the surface macro-forms objects
category, which are the results of karsts/collapse features. As illustrated in Figure 2.1,
round depressions of different scales are the common results of this process. This process
underlies genesis of Doline or Uvala (set of Doline) surface signs of karstification. The
largest macro-form phenomena is Polje. Typically, it has landforms of a kilometer scale, and
is often seen in tectonically active karsts areas. Poljes landscape can be defined as karst
basin, with steep peripheral slopes and karstic drainage.

Sinkhole form stands out in a separate class of objects and refers to a phenomenon
of preceding cavity collapse with a subsequent development of surface sinks as the cavity
becomes filled with soil or coarse-grained material. Depending on the mechanisms of the
ground failure and rock type involved in subsidence, different types of sinkholes can be
defined.

Depending on the mechanisms of the ground failure and rock type involved in subsidence,
six classes of sinkholes were defined: dissolution, collapse, caprock, dropout, buried and
suffusion [29]. Figure 2.2 provides a schematic overview of different types of sinkholes.

It should be noted that besides the aforementioned landscape phenomena, there are
many other signs of surface karstification, which cannot fit into provided definitions as they

consist of complex forms and cannot be described with a few criteria [30, 31]. Furthermore,
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in certain cases even surface signs of karstification can be challenging to reveal. For instance,
various subsequent processes such as immersion of a landscape caused by tectonics can be
accompanied by karstification, which makes detection process complicated.

| Solution sinkhole | | Collapse sinkhole | | Dropout sinkhole |
Fissure
{ Corrosion v - Fallen
Blocks
Limestone J L 1 |
[LI_IJ |l
| Buried sinkhole | | Caprock sinkhole | | Sutfusion sinkhole |

Soil | Depression
Caprock
A (L
Limestone

Figure 2.2: Types of sinkholes, inspired by [29]

Having discussed the surface signs of karstification, the following section discusses
subsurface karst systems will. These karst systems can be discovered at large burial depths

and in certain cases can be dangerous for drilling.

2.1.2 Subsurface karstification

A cave form is a conventional subsurface karst feature of soluble rocks. Based on Bella’s
[32] classification, the following mechanisms of cave development can be distinguished:
chemical erosion (corrosion caves) and turbulent streams erosion (fluvial caves). Corrosion
caves are more numerous unlike the turbulent caves and in general are smaller (diameter
and length). Frequently, some caves can be a combination of these types of erosion.

Highly permeable channels, formed by the soluble action of water, create a primary
network of channels, called anastomotic caves. The channels are typically spread along
certain geological features such as fractures or a system of faults, and can penetrate the
system of fluvial caves. Besides that, there are isolated cave types, which are not connected
to any network. This type of caves is defined as voids. Many objects fall under this definition.
Such voids can range from the vug-size small scale, up to the full cave scale. They pose a
significant risk in case of suddenly revealing a well path crossing.

Regardless of the processes that cause enlargement of the caves, dimensions of the caves
cannot infinitely expand. The resultant cave size has certain limits [33]. One of the main

factors restricting the growth of the cave is the elastic limit of the rock masses surrounding
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the cave. As soon as a certain limit is reached, the cave starts to collapse. Cave collapse
initiates events, that have a serious impact on reservoir properties and are actively used as
part of reservoir characterization study. Products of collapse, called cave-collapse breccia
are composed of different angular fragments with their interspace filled by finer sediments
or matrix particles. There are several cave-related breccia types depending on their texture
and foregoing processes as shown in Figure 2.1. Progressive roof collapse with subsequent
upward migration of the cave creates a breccia pipe [29]. Ceilings and walls collapse result
in chaotic breakdown in a breccia. Cave-roof crackle breccia is formed by stress-contrast
fractures of cave-roof rocks. However, brecciated rocks do not necessarily belong to the
places of their development. For example, transported by fluvial flow, roof-collapse breccia
rocks might be moved to a significant distance from original places of their development.
An example of breccia is presented in Figure 2.3.

Figure 2.3: Core plug sample photo of angular breccia. Interval of cave roof collapse. Loppa
High region.

Study of the products of cave collapse is important for different purposes, such as
quantifying geological processes or reservoir modeling for flow simulators. Moreover, cave-
collapse breccia is a direct sign of zones with open or partially filled caves. Drilling through
open or filled caves can cause serious well control scenarios due to possible lost circulation
of drilling fluid or damage of drill string components due to BHA drops.

Karstification does not always create potentially dangerous objects for drilling. In the oil
and gas industry, karstification plays an important role. It is considered as the key process
for the development of the permeability and porosity of carbonate reservoirs. In some
cases, highly karstified intervals are the pay zones of the well. However, as stated previously,
karstification is a complex process and the results of this process can be everything from
small-scale porosity to the development of a large cave system. For the industry, on the one
hand, porosity plays an important role for reservoir development purposes. On the other
hand, there is a high risk associated with crossing a system of caves or vugs while drilling.

The cave form is the most complex structure among all the other landforms discussed in
this section. For instance, dissolution caves are characterized by numerous three-dimensional
patterns developed within different rock types with a variety of shapes and lengths. The

mechanism of cave development can be explained by the influence of any of the following
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factors or by a combination them: tectonic, climatic, hydrological, chemical and many
others. Different theories exist nowadays in karstology that have been proposed to classify
the caves based on the development mechanism. However, many of researchers argue that
there is no single theory of genesis which can encompass all the caves, except at a trivial
level of explanation [34].

Sometimes it is mistakenly assumed that large cave systems typically occur only at
shallow depths, as the rock strength is sufficient to support overlaying sediments. Deeply
buried open caves in general are not frequent as the increasing buried depth is directly
related to the increased probability of a cave collapse. Nevertheless, there is numerous
evidence of deeply buried caves, that are not collapsed and can exist for many centuries in
equilibrium with the surrounding rocks. !

This section has discussed the main objects of karstification, which can be encountered

both on the surface and subsurface.

2.2 Karstified carbonates in the Loppa High region

Karstification is a complex process and can result in objects with different shapes and sizes
such as large cavities or small vugs. Some products of karstification can be dangerous for
drilling, others are not. To learn more about geometrical properties of karsts deeply buried
paleokarst terrain in Alta and Gohta discoveries of the Loppa High region (Figure 2.4) were
examined. This analysis is based on the field data provided by Lundin Energy AS.

f Barents Sea
e

Sea
North Sea

Figure 2.4: Barents Sea, Loppa High region, Alta and Gohta discoveries

For further reading, I refer the interested readers to a book on problems in theoretical karst science, where
there are details of possible factors affecting cave sizes with depth [35].
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The seafloor in the studied region consists of complex patterns, formed as a result of
considerable uplift and Cenozoic era erosion. Uplift has brought high density rocks close to
the seafloor. This creates additional difficulties for seismic studies of the region [36]. This
tectonic event led to the development of a complex underlying structure with extensive

faulting and significant altitude changes of more than 1000 m (Kobbe formation) as shown
in Figure 2.5.
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Figure 2.5: Intersection window through Alta and Gohta discoveries demonstrates significant
altitude change of more than 1000 m (Kobbe formation)

Deeper layers of naturally fractured carbonates were weathered and buried. This
caused karstification and the development of dominant regional karst features with certain
properties. The major contributor to karstification is the process of dissolution of soluble

rocks by meteoric water [28, 32]. [33] and [29] provide additional background on the
mechanisms of karstification and their products.
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2.2.1 Methodology of karsts mapping

The first step in the analysis of the field data from the Loppa High region is to identify wells
with drilling events that can be associated with karsts, such as mud losses, gas kicks, drilling
through cavities (see Step #1 in Figure 2.6). Based on this analysis an overview of rig-site
drilling events was obtained for all wells within the region of study. Joint analysis of the
rig-site events confirmed the existence of karstification intervals with specific BHA behavior
such as reported drilling breaks, high levels of shocks, and mud losses.

Second, intervals of drilling events associated with karsts along the well-paths were
localized and identified, as shown in Step #2 in Figure 2.6. This analysis provides a
distribution of drilling events along the well-paths for the entire field.

Third, a detailed analysis of borehole images and core samples data was completed (Step
#3 in Figure 2.6). Interpretation of borehole image data provided insight into karstification
objects which were encountered in carbonates. This analysis allowed the study of some
important properties of karsts. This gave a better understanding of the karstification problem
in the Loppa High region in particular, and karstification phenomena in general. Moreover,
analysis of borehole images reveals additional wells and intervals with karsts, where no
drilling events were reported. This step completed the localization of karsts along the well
paths. The main outputs are: 1) accurate karst mapping along the well paths 2) description
of geometrical properties of karsts 3) revealing additional wells/intervals of karstification.

In the fourth step (#4 in Figure 2.6) I collected a systematized extended set of drilling
measurements from the wells drilled in karstified carbonates, including drilling mechanics
(surface and downhole measurements) and mud flow data (from CML sensors). This data
analysis is used in subsequent analysis of karstification intervals (see Chapter 4).
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2.2.2 Overview of available field data

For this analysis I got access to drilling data from more than 20 wells drilled in karstified
carbonates in the Loppa High region (Figure 2.4). These wells are characterized by an
extended set of data available for analysis, including drilling data (mud logs, drilling reports,
site survey reports), drilling mechanics data (surface and downhole measurements), geology
(lithology, stratigraphy, biostratigraphy), rock and core (conventional core analysis and core
photos), petrophysical reports (Computer Processed Interpretation (CPI), Composite) and
well logs (wireline, IWD).

This is a relatively rare set of data, since: 1) The percentage of wells drilled through
karsts that contain the necessary well log data such as borehole images, real-time drilling
measurements, accurate delta-flow measurements is rather small; 2) Such data are typically
confidential and rarely can be found in open access. Access to such a data set opens
possibilities for detailed analysis of subsurface karstification phenomena.

Based on this analysis an overview was obtained of the different drilling problems
encountered in carbonates for the entire field. Tables 2.1 and 2.2 present the collected
data and data coverage across the field. A larger-font table can be found in the electronic
version of the thesis available online. As can be noted, lower sections of the wells can be
characterized by an extensive set of studies, since typically lower sections of the wells were
drilled into karstified carbonate intervals.
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2.2.3 Mapping of logged karstification objects

All the above-mentioned wellbore information was gathered and aggregated into a single
industrial software platform - Techlog Wellbore Software ® [37]. It allowed the uniting of
various types of field data to conduct a joint analysis of different types of data. An example
of this analysis is shown in Figures 2.7, 2.8 and 2.9. For each wells displayed in the figure
well tops were assigned according to geological reports. This gave an understanding of the
geological section where each well was drilled. Well tops are plotted on the first track and
displayed in Measured Depth.

The second track shows the Mud Weight (MW) which was used for drilling specific
intervals of each of the studied well. These data were gathered from daily drilling- and End
Of Well Report (EOW) wellsite reports. This gave an overview of the MWs used to drill each
of the formations. It was used in estimation of average values of mud weights used across
the field for each of the formations drilled. This part of the analysis allowed the removal of
intervals of mud losses when the MW was significantly higher than the average MW used
to drill the same interval on other wells. Keeping such intervals of high MW can lead to
misinterpretations of the real causes of mud loss events.

Based on in-depth analysis of rig-site events reported in mud logging, drilling and well-
site reports, specific intervals of the communicated drilling problems were marked as shown
in Figures 2.7, 2.8 and 2.9. This gave an overview of drilling problems that encountered
corresponded to drilling through carbonate sections.
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An analysis of borehole image data was done. Interpretation of image data typically is
intended to determine the magnitudes, azimuths and geometrical properties of numerous
geological features along the wellbore paths, including studying of vugs, breccias, caves
and other karst forms. Borehole imaging can be presented as the “unrolling” of a wellbore
picture along the well path as shown in Figure 2.10. This study uses borehole images for: 1)
mapping intervals of karstification such as open fractures vugs and caves; 2) determination
of geometrical properties of karsts. This helps to get insight into root causes of some of
the drilling events that occurred in carbonate sections such as drilling breaks and mud
losses. Moreover, borehole image analysis enabled the identification of additional intervals
of karstification. An example of this analysis is shown in Figure 2.12.

Wellbore imaging Unrolling of the wellbore picture

Figure 2.10: Borehole imaging - visualization of the borehole environment

This work included an analysis of core samples. Core analysis provides essential input
for the evaluation of karstified intervals mapped by borehole images. The studied cores were
drilled near cave intervals. Analysis of these core samples indicates that cave structures are
surrounded by intervals with breccia and fluvial channels. Examples of core samples from
such intervals are given in Figure 2.11. The shown interval of fluvial channels underlies a

cave.
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Fluvial
channels
above the cave

Figure 2.11: Photography of core sampled intervals of a carbonate section. From left to right:
breccia originated from ceiling collapse, a breccia originated from wall collapse, interval of
fluvial channels discovered above a cave

2.2.4 Analysis of mapped karstification objects

A comprehensive study of the borehole images and drilling events has been performed
for the entire region of study for 20 wells. An example of this analysis is shown in Figure
2.12, where some of the discovered events are plotted along the well trajectories. The
visualization of events and mapped intervals of karstification is conducted in the Petrel
Software Platform ® [38]. The presented well intersection window allows well trajectories
to be displayed along a selected slice of a 3D geological cube. The slice-line in this example
intersects wells drilled through the intervals of karstification. Since some of the wells are
located at a significant distance from each other, it is difficult to plot them in an appropriate
scale for a figure. To obtain better visualization, in Figure 2.12 only a subset of the 20 wells
which are located close to each other are presented.

As follows from Figure 2.12 as well as from the analysis of all the remaining wells,
karstification objects and the corresponding drilling events, minor or major, are often
encountered in sequences corresponding to karstification intervals rather than as individual
objects.

This confirms the hypothesis that geological conditions favorable to development of
a single karst object extend over zone region and can reult in generation of a number of
karstification objects in that region.

Therefore, encountering karstification objects while drilling, even though they can be
not dangerous for drilling, can serve as an indicator of the region with a high likelihood of
encountering other dangerous for drilling karst objects. Detection of different karst-forms
while drilling may provide a vital information about possible regional drilling risks. How to
detect them from real-time drilling data will be discussed in details in Chapter 4. In the
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next chapter parameters of dangerous for drilling and not dangerous for drilling karsts are
considered.

2.2.5 Classification
Dangerous for drilling regional karst features

A comprehensive analysis of borehole images, and the history of drilling, revealed that karsts
larger than 0.5 m pose significant risks for drilling since they led to a partial or total loss of
drilling fluid, compromising drilling safety [7]. In some cases, Bottom Hole Assembly (BHA)
components were broken due to excessive shock loading when the drill bit suddenly touches
the bottom of a cave. As an example let us consider some parameters of a karstification cave
that caused drilling problems (Figure 2.13).
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Figure 2.13: Example of a cave

The exact geometrical size of this karst is unknown. However, its interpretation from

the borehole image defined the geometrical size as more than 50 cm in length with a
circumference of 21.6 cm (8.5” section of the well). Overall, the average size of the caves

in the studied region is in the range of 0.5 and 2 m. These karst forms are challenging to
detect with the state-of-the-art geophysical methods as will be shown in Chapter 3. This

thesis focuses on the development of solutions for early detection of karsts sized 0.5 - 2 m.

Not dangerous for drilling dominant regional karst features

Based on the analysis of drilling events from the entire field, vugs and natural fractures with

the following dimensions are considered as not dangerous for drilling within the studied

region.

Dominant regional karst features:

1. Vugs are typically dissolution cavities produced by meteoric or diagenetic fluids.
Vugs can indicate a lithology- or texture- selective nature of the dissolution process.
Borehole geologists often refer to a broader meaning and define them as a pore space
that can be detected by the imager (typically > 0.5 cm? area of the borehole wall).
In this work, the value of 0.5 em? is considered as the smallest vug size and the
maximum visually estimated value of not dangerous for drilling is a vug of 10 em?2.
Image example of cm to dm scale vugs and the vugginess intensity of the Lower Falk
formation is shown in Figure 2.14a.

2. Natural fractures are probably formed by the interaction of foliation planes with
the recent stress field or tectonic events. Four types of conductive fractures were
distinguished in the studied region, depending on their open/closed nature and their
circumferential span: Drilling-induced fractures (tensile sector of the borehole wall),
vertical to subvertical and open fractures. Aperture results are distributed in a log-
normal bell shape in the 0.2 - 20 mm range. Image examples of drilling-induced,
irregular conductive fractures and closed conductive fractures are shown in Figure
2.14b, 2.14c, 2.14d.
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In this section dominant regional karst features are conditionally divided into dangerous
and not dangerous for drilling groups. The next chapter presents an overview of the methods
for early detection of the dangerous for drilling karst forms discussed in this section.
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geometry conductive minerals

Figure 2.14: Comparison of dominant regional karst features

2.3 Summary

This chapter is based on a literature review that has considered karst phenomena and
has discussed surface and subsurface signs of karstification. A rare set of field data from
the Loppa High region was analyzed. It was concluded that karsts come in groups in
karstification zones. A single karst object can be an indicator of a karstification zone and
thus indicates a high likelihood of encountering other karsts, including dangerous for drilling
karsts. The dominant regional karst features were classified into groups of dangerous and
not dangerous for drilling. This can be used for evaluation of available technologies and for

the development of new methods proposed later in this thesis.
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Chapter 3

Geophysical methods for prediction
and early detection of karsts

3.1 Introduction

The prediction or detection of dangerous for drilling karstification objects ahead of the bit is
an important issue. There are numerous geophysical methods for measuring and evaluating
downhole conditions in the wellbore. However, due to limitations and the technological
challenges inherent in these methods, there is still no efficient and reliable technology for
the prediction or early detection of drilling hazards such as karsts ahead of the drill bit.

This chapter reviews methods and technologies that can be used for the prediction
and early detection of karsts. In particular, acoustic, resistivity and seismic approaches
are considered as well as inventions and technologies developed and published over the
past 40 years. This chapter identifies the advantages, limitations and gaps in the existing
technologies and discusses the most promising methods for karst detection and prediction.

There are different methods to mitigate the risks of drilling in karstified regions. As shown
in Figure 3.1 three main groups are defined, depending on when risk minimization occurs.
The first group is aimed at minimizing drilling risks at the pre-drill stage by identifying
potentially dangerous intervals that need to be considered before drilling begins. One of
the ways to reveal dangerous karst objects before drilling and estimate the risks of drilling
through them is based on geological analysis. In many cases, there are different surface
and subsurface signs of karstification that can be detected in the pre-drill stage. These signs
can be employed to identify such regions and intervals to optimize well placement and well
path.

Another method, that provides insight into potentially dangerous intervals for drilling is
the offset well analysis. Intervals with karstification signs that are dangerous for drilling
can be defined based on well-site reports, drilling history, and incident analysis of the
offset wells. These intervals, in accordance with different approaches to discrete properties

distribution, [39], can be propagated into inter-well space and projected on the planned
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Methods to mitigate the risks of drilling in karsts

Pre-drill detection Karst detection Minimization of
and planning while drilling consequences

Managed Pressure
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Mud Lost Circulation

Geology Resistivity

Offset Well Analysis Acoustics

Materials

Seismic-based methods

Conventional Seismic

Figure 3.1: Methods to mitigate the risks of drilling in carbonates

well path. In case the planned well path crosses the projected high-risk interval, its drilling
trajectory and/or drilling program can be revised for drilling risks minimization.

Seismic imaging is the last method in this group. This the standard technique for mapping
reservoirs, faults, and structural surfaces. Seismic detection of karst structures can be very
efficient for early drilling risk minimization by providing the most complete picture of the
main subsurface objects [40].

The second group represents methods of karst detection while drilling. In some cases, it
is challenging to minimize drilling risks at the pre-drill stage. As is the case in exploration
drilling, when uncertainties might exist due to limitations of pre-drill methods of karst
detection. Thus, to increase the accuracy of karst feature detection, real-time measurements
should be used.

There are three main real-time approaches that can be utilized for early karst detec-
tion. The first approach covers resistivity methods of karst detection based on ultra-deep
look-around and ahead of the bit measurements. The second approach unites a number
of measurements, which utilize the principle of reflected acoustic signal detection from
interfaces. Unlike conventional seismic, these methods use different wavelengths, which
helps to detect small karst features. The third approach investigates seismic-based methods.
This set of methods is separate from the conventional seismic methods group as they measure
seismic reflections while drilling. These methods are based on the principle of downhole
generation of seismic waves, which gives a number of advantages over conventional seismic
methods.

The last group addresses methods to minimize the consequences of drilling into karsts.
One of the main challenges of drilling in carbonates is potential mud losses of different
severity. This often occurs when a well path crosses highly permeable channels, faults, or
caves. Depending on the volume of mud losses and geometrical sizes of the channels, some
can be successfully plugged by LCM [41], [42]. However, severe mud losses are frequently
encountered in large fluvial channels or caves which cannot be plugged with LCM and may
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lead to well control incidents [5]. The solution widely used by the industry is MPD and its
modifications. In this case, the well is converted to PMCD and drilling can be continued with
controllable pumping of sacrificial fluid and drilling cuttings into caves, fractures, and other
highly permeable zones. The efficiency of this approach was demonstrated by a number
of wells drilled in carbonates [24], [25], [43], [26]. However, MPD-based solutions for
drilling risks minimization have limitations. First, additional equipment should be mounted
on the rig, such as a rotational control device and modified riser joints. Second, in some
regions, it is impossible to supply the required significant volume of sacrificial fluid to pump
into well. Third, there are might be government restrictions on well conversion into PMCD .
These factors might impose limitations on the use of PMICD . The methods described in this
group are beyond the scope of this dissertation. The methods described in this group are
not considered in this thesis.

The scope of this chapter is to analyze different geophysical methods and evaluate
their ability to detect karsts either before drilling begins or while drilling, before the
drill bit hits a karst. Therefore, I follow the first and second groups of methods from
Figure 3.1. This analysis can contribute to better utilization of existing technologies and
enhance understanding of possible technologies for future development. Thus I evaluate
the effectiveness of various methods for early karst detection. By systematically analyzing
various types of available measurements based on different principles, I effectively constrain
the range of concepts and summarize their areas of applicability. This can provide a starting
point for identifying relevant measurements for each specific case to minimize the risks
of sudden karst encounters. I have examined the role of the existing state of the art and
highlighted examples in which conventional geophysical methods can provide a valuable
outcome for decision making. The physical principles of measurements discussed in this
chapter are an important aspect for proper evaluation of geophysical methods for detecting
signs of karstification.

One of the contributions of this work is the identification of the most representative types
of geophysical, geological, and seismic studies that enable us to identify intervals and zones
with the highest probability of karst detection before drilling into them. The presented
contribution can be used to narrow available pre-drill and real-time data and focus on the

most representative methods capable of giving the most accurate early detection of karsts.

3.2 Pre-drill prediction of karsts

Risk avoidance and minimization measures at the early stage of well planning is an essential
component in risk management, which can predefine overall drilling and completion effi-
ciency. Wellbore profile and trajectory optimization to find the safest trajectory and ensure
that a number of potentially dangerous geological features will be avoided can greatly
enhance drilling safety. To design the safest well path, it is important to identify the spatial
distribution and geometrical properties of drilling hazards based on available pre-drill data.
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In this section, I first introduce the geological signs of karstification phenomena and then
consider pre-drill methods of risk minimization such as projection of dangerous intervals on
the new well path and seismic imaging of karsts.

3.2.1 Geological signs of karstification

The process of karstification of a landscape may result in a variety of developments in
large or small features both on the surface and beneath as was discussed in Section 2.1.
This has important implications for evaluating the possibilities of dangerous karst form
developments in the region of study. Starting from the identification of landscape signs
of karstification, geologists and other specialists in geoscience, can utilize the geological
data, typically available before drilling begins, to determine what type of rock underlies the
soil. Then, further analysis moves towards the detection of broken rocks which originate
from a cavern, fractured zones, and vugs. A joint analysis of the available geological data
can be done to improve the localization of potential karstified areas. An important element
in this analysis is the detection of vugs and breccias which might be associated with the
development of caves and/or overall karstification of the interval.

The detection accuracy of karstification objects at regional or local scales has a significant
dependence on the quality and coverage of input geological data. For instance, in the case
of limited input data, a study of only landscape signs of karstification cannot reveal spatial
positions of karsts at significant depths. At the same time, a joint study of the geological
section, through regional tectonics and sedimentation processes evaluation, can improve
the accuracy of karst detection. Consequently, the geological method of karsts detection can
serve as the first step to obtain an overall picture of karst distribution along with revealing
the main areas of karstification.

3.2.2 Projection of drilling risks on planned well-path

Gaining experience from drilling offset wells and transferring it to a planned well path
are the two most critical components in well planning. The detailed analysis of recorded
geophysical logs from offset wells can reveal some signs of karstification as mentioned in
the previous section. Having found such signs, and, thus, identified karst intervals, the next
step might be to examine whether there is a probability to intersect the same intervals in
the new well trajectory.

This can be done as follows. In most cases, we cannot model caves and vugs determinist-
ically, as we cannot obtain their geometrical properties with sufficient resolution in three
dimensions. Instead, modeling of such objects can be done stochastically with statistical
equivalence to the observed distribution of karsts along the wellbore. Sequential Gaussian
simulation [44] is a commonly used geostatistical method aimed at solving similar tasks of

property distribution, by creating stochastic models of spatial phenomena.
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This approach is often applied for discrete fracture network modeling and helps to
populate individual fracture parameters such as size, shape, orientation, aperture, and
coordinates obtained from well fracture characterization data. Besides, the same approach
is used for volumetric rock property distribution such as porosity, permeability, density, and
many other parameters that can be incorporated into a 3D geological model in the interwell
space.

A similar approach can also be used for prediction of karst distribution. The simplest
model of karst distribution can begin with setting the positions of caves randomly in a
pre-defined volume with a known density. Then, based on the calibration data of the exact
cave positions, obtained from geophysical study and/or offset well analysis, cave geometries
and any other desired parameters can be incorporated into the model. The output of this
model can be a projection of karsts into a new well trajectory. There are more sophisticated
approaches to discrete property distribution, which can be used to model different levels
of karst structure complexities. This example demonstrates the possible application of
stochastic methods to model the distribution of karsts in carbonates.

Some limitations of this method should be noted. First, the statistically-based prediction of
karsts on the planned well path depends on whether or not karsts were identified in the offset
wells. Second, due to the possible lack of geophysical studies on the offset wells, many karst
features might be unforeseen and therefore cannot be included in the stochastic distribution.
Third, there are a variety of stochastic methods with different settings, that might project
dangerous intervals differently. Detailed analysis of these methods is beyond the scope
of this study, but these methods should be considered for well planning in carbonates to
minimize the possible risks of sudden karst encounters.

3.2.3 Seismic methods of karst detection

Seismic imaging is the most common technique for mapping reservoirs, faults, and structural
surfaces. Along with the standard seismic applications, this is an effective instrument to
reveal geological objects and risks of drilling through them. There are many successful
examples of detecting karsts based on seismic reflections. Peiling et al. [13] present
seismic reflection characteristics of a deeply buried karstic carbonate. Their paper explores
Ordovician carbonate rock, composed of caves, vuggy, and fractured-vuggy reservoirs,
located in the central basin in the Tazhong area (China). The study concludes that the
strong flake-like reflections have a direct relationship with the inter-layered karstification,
which includes caves, vuggy and fractured objects.

Jianxun Zhao et al. [12] investigate how carbonate karsts can be mapped based on
high resolution 3D seismic. In their study, more than 20 different seismic attributes were
produced during processing. It was concluded that the amplitude and energy attributes
have the highest correlation coefficients with calibration data (well log data). Along with
the successful case studies of mapping the diagenetic networks of karsts based on seismic
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indicators, there are many challenges associated with pre-stack time and depth migration.

Caves are typically small-volume objects and deviation from original pre-stack time
migration imaging points can result in the significant inaccuracy of cave position estimation.
Typically for small targets, pre-stack depth migration must be used. There are different
methods and algorithms for depth-migration. An extensive work and analysis of depth
migration algorithms for cave detection has been done by Wang Xiaowei et al. [45]. The
results found that there is a significant shift of 30-70 m up-dip between Kirchhoff pre-stack
depth migration and reverse time migration algorithms. This strengthens the idea that
conventional seismic has significant limitations due to serious uncertainties generated by
the depth-migration algorithms. The significant influence of the depth-migration algorithm
on karst mapping is the main drawback of conventional seismic methods for detection of
karsts.

On the other hand, reflections from cave-like small structures are different from the
reflections from extensive interfaces. Small objects typically generate diffractive waves,
which propagate with wide scattering and azimuth directions. As these signals are often
weak, they can be affected by different types of noise and, therefore have a low signal
to noise ratio. Imaging such small objects requires advanced acquisition and processing
approaches. This problem has been investigated by [46, 47].

On top of that, the fundamental limitation of seismic detection of karsts is linked to
the problem of vertical and horizontal resolutions [14, 48]. In seismic detection of karsts
both, vertical and horizontal resolutions are important due to the nature of the problem of
unknown scale. Nijian Wang et al. [15] explore the capability of seismic imaging to detect
artificial karst caves, gradually increasing in height from 8 to 316 m. With the given model
parameters, the velocity of 4000 m/s, and the source dominant frequency of 25 Hz, it has
been shown that caves less than % (40 m) cannot be separated due to wave interference
[15].

As discussed earlier, some karstic features are relatively small (up to a few meters) and
fall beyond the resolution of state-of-the-art seismic methods. Such small cave systems
or fluvial channels might be dangerous to drill through, as the total permeable volume
is typically large enough to totally absorb drilling fluid, as will be demonstrated with an
example in Chapter 4. Thus, the main drawback of conventional seismic imaging for karst
detection is linked to its inefficiency to detect small objects that must be taken into account
to minimize drilling risks. So, instead of conventional seismic methods for karst detection,
in Section 3.3.3, I examine seismic-based methods with a better vertical resolution that can
be more suitable for karst detection.
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3.3 Real-time detection of karsts based on geophysical
measurements

In the previous section, methods of pre-drill karst detection were discussed that can be
utilized for drilling risks minimization in the well-planning stage. This section is devoted to
methods of real-time karst detection while drilling.

3.3.1 Resistivity measurements

Looking ahead of the bit has been an object of research since the 1990s and is ongoing [49].
The unpredictable environment in front of the bit can pose significant risks for drilling. On
the one hand, there is a risk of missing geological targets due to an unexpected dip in the
geological structures. On the other hand, there is a risk of underestimating or encountering
drilling hazards due to the lack of measurements ahead of the bit. Resistivity-based methods
can successfully meet some of these challenges. Generally, geosteering tools are rarely
based on direct measurements in front of the bit. Even the innovative ultra-deep geosteering
resistivity tools measure behind the bit, by looking laterally around the wellbore [50].
However, in some applications, resistivity propagation tools can utilize the drill bit as an
electrode to focus an electromagnetic radiation pattern in front of the bit. Below, both types
of tools are discussed and the application of resistivity measurements for karst detection is
examined.

Ultra-deep resistivity measurements

Rock property characterization by measuring its electrical resistivity is common in wireline
and IWD services. On September 5, 1927, a crew working for Schlumberger recorded the
first resistivity log [51]. From that moment, the study of rock resistivity has found a wide
application in the oil and gas industry. Resistivity measurements are taken as follows. The
coil-type transmitter emits an electromagnetic field at certain frequencies. Generally for IND
tools this is 2 MHz and 400 kHz [18]. Receiver coils are placed in the electromagnetic field
and voltage is induced to each of the receivers as the transmitter fires. The tool configuration
from the [51] is schematically shown in Figure 3.2. As the speed of wave propagation is
very challenging to measure directly, instead, receivers sample amplitude and phase shift
of the electromagnetic waves, emitted by the transmitter at certain frequencies. Once the
phase shift and amplitude are registered, two rock properties can be estimated — attenuation
and phase shift resistivities. To convert raw attenuation and phase shift measurements, the
relative dielectric constant is approximated to a constant function of resistivity, obtained
from empirical testing of hundreds of core samples [18].

For deep boundary detection, conventional IWD-resistivity tools have been significantly
modified by transmitter-receiver spacing increase and by introducing tilted sources of
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Figure 3.2: Schematic diagram of receivers and transmitters placement in the resistivity
tool

electromagnetic waves. These improvements enable remote boundaries detection including
identification of their spatial positions around the tool.

In practice, remote boundary detection with ultra-deep resistivity tools is challenging. As
already indicated, IWD-resistivity tools cannot provide direct measurements. Instead, the
inverse problem needs to be solved. The relation between resistivity measurements recorded
by the tool and the distance to the boundary has strong non-linearity [52], therefore to
define the distance to the boundary; the formation model needs to be updated to describe
resistivity measurements obtained by the tool and relate them to the expected geology
[17]. This approach is called front modeling and consists of modeling, comparing, and
updating the formation model. Thus the described front-modeling approach cannot solve
the problem of karst detection ahead of the bit as the expected karst structure should be
initially included in the model.

Recent case studies demonstrated that ultra-deep resistivity tools can detect geological
structures at significant distances ranging up to 70 m away from the tool [19]. However,
such Depth Of Investigation (DOI) is achievable only in favorable conditions. The DOI is
used to describe the depth, below which geophysical data cannot be used for interpretation
of physical properties of the earth [53].

The current induced in the formation by the transmitters, propagates through the least
resistive path. In the case of a low-resistivity medium, the current remains in the region
closest to the wellbore, which leads to a shallow depth of investigation. For a high-resistivity
medium, the current spreads over larger distances. This effect results in the reduced vertical
resolution and better depth of investigation, as the current spreads deeper into the formation.
Thus, the depth of investigation for resistivity methods is not a constant parameter and to a
high extent depends on the resistivity of the formation and conductivity of the mud.

There are several advantages with the discussed ultra-deep resistivity approach for karst
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detection: significant depth of investigation in favorable conditions, possibility to detect
karsts with high contrast interfaces, and controllable electromagnetic radiation pattern. In
spite of these advantages, there are drawbacks to this method when applied to early karst
prediction, as this approach is based on look-around measurements and front-modeling
algorithms. Thus, it is challenging to predict the presence of certain geological features
in front of the bit without any direct measurements ahead of the bit. The significant
dependence of DOI on the formations and the electrical properties of the drilling mud reveals
the limitations of the method, as the distance of detection might be reduced considerably.

It can be concluded that ultra-deep, look-around resistivity measurements, should not be
neglected for the purpose of karst detection. Due to a significant volume of rock, investigated
around the tool, there is a probability of the detection of some karsts with sufficient electric
contrast. Their presence might also be an indicator of possible karstification in the drilling
interval and can be used in transferring drilling experience from offset wells as stated in
Section 3.2.2.

Resistivity measurements ahead of the bit

There have been attempts in the industry to measure formation properties in front of the
bit. To implement this idea, the drill bit was utilized as an electrode to propagate electric
current ahead of the bit. The first near-bit resistivity tool was developed by Brian Clark in
1994 [54]. The tool configuration from the [54] is schematically shown in Figure 3.3.

As can be seen in the figure, the drill bit cannot be isolated from the BHA completely, as
there is a contact with the bearing section of the rotary steerable system or with the mud
motor [55], depending on the configuration of the BHA. Therefore, with an increased length
of the electrode, it becomes challenging to distinguish responses from multiple, chaotically
distributed points of contact with borehole walls.

Upper
Transmitter

Receiver Resistivity
Shallow at the Bit

Figure 3.3: Resistivity at the bit tool schematic (based on the Brian Clark Patent [54])

However, with today’s sophisticated hardware and data-processing improvements, res-
istivity at the bit is actively used for high-contrast boundary detection close to the bit in the
decimeter range [56]. Most often, resistivity at the bit measurements provides core sample
point selection, or stop-drilling warning when the well is approaching a shale layer [57].
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Despite that, the limited depth of investigation and non-azimuthal quantitative measure-
ments make it impossible to apply the resistivity at the bit for karst detection. Too shallow
measurements in front of the bit leave no room for steering the well path away from a karst

in case of successful detection.
An example of resistivity response in an interval of caves is shown in Figure 3.4. The

displayed well logs belong to one of the recent discoveries in the Loppa High region (Norway,
Barents Sea).
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Figure 3.4: Example of resistivity measurements in vug and cave intervals. Courtesy of
Lundin Energy

38




To demonstrate resistivity responses to karstification objects, in the given example cave
depths based on borehole image data were localized. 1 2

In this example logs were recorded by the conventional Array Resistivity Compensated tool
(ARC) tool. As can be seen from Figure 3.4, in zones 1, 3, and 4, resistivity measurements
remain constant and it is challenging to identify that the well is crossing the caves. These
intervals demonstrate the resistivity response in the case of the low-contrast environment,
when the dielectric properties of the rocks surrounding the cavities and dielectric properties
of the fluid, saturating the cavities are equal. Additionally, it can be noted that regardless
of the depths of investigation, the deepest resistivity measurements (400 kHz attenuation
resistivity) have the same readings as shallow measurements. This might be evidence that
the resistivity contrast plays a crucial role in cavity detection regardless of the transmitter
frequencies.

Unlike previous intervals, in Zone 2 in Figure 3.4, cave boundaries can be seen by the
peak resistivity values in deep and shallow resistivity measurements. This demonstrates
the main limitation of the resistivity-based approach — high dependency on the formation
properties around the cavities. This, in turn, might have a negative effect on the overall
reliability of advance cavity detection based on the resistivity measurements as some of the
caves cannot be detected.

In conclusion we can say that resistivity methods of karst detection have their advantages,
such as minor sensitivity to downhole noise, predictable pattern of electromagnetic radiation
around the tool, advanced methods of data interpretation, and many others. However,
this method has a number of drawbacks that are essential for karst detection such as high
dependence on the resistivity properties of drilling mud, surrounding rocks, and inter-karst

space-filling material properties.

3.3.2 Acoustics measurements

This section considers the principle of conventional sonic measurements around the tool
and also reviews sonic-based measurement application for remote object detection.

Propagation of acoustic waves in a porous media is of considerable interest for different
domains in the oil and gas industry. Studies of acoustic wave propagation in porous media
were initiated by Biot in 1956 [58]. The first sonic tool was developed in 1958. This was
a simple device that consisted of a monopole transmitter that generated a sound wave
and two receivers to detect the wave traveling through the formation. The method of the
propagation of elastic waves described in [58] is shown in Figure 3.5.

1Image tools are very accurate in terms of the detection of many geological features, crossed by the well path.
Borehole imaging can provide the exact boundaries of vugs, breccias, caves, and other karst forms. However, this
method cannot be used for early karst detection due to very shallow look-around measurements and significant
bit-sensor offset.

2A common practice is to transform phase shift from degrees to resistivity since dielectric permittivity is
considered to be related to resistivity. Similarly attenuation is converted from dB/m to Ohm.m which is more
convenient for the analysis resistivity units

39



__ [Wellbore ] _

Compressional | |
_head wave |

Compressional
body wave

Shear body wave

Stoneley wave

|

Figure 3.5: Waves traveling in the case of monopole source of sound.

As can be seen, several types of waves can be created in the mud, borehole, and formation.
Since the pressure pulses reach the borehole wall, pressure waves generate compressional
and shear wavefronts (body waves) that propagate further in the formation. The wave
propagation in the formation causes pressure disturbances in the drilling fluid. The advan-
cing compressional and shear body-waves create head waves. To generate shear and fluid
mode (Stonley) head waves, body waves must propagate faster than the head waves in
the fluid. Depending on the wave propagation speed, fast formations (shear velocity faster
than mud velocity) and slow formations (shear velocity slower than mud velocity) can be
defined.

The arrival time difference, detected by two receivers divided by the known distance,
gives an interval transit time or slowness of the formation around the tool.

Changes in wave slowness and frequency can be used to estimate different formation
properties. For example Stonley wave slowness and frequency change can be used in
estimation formation permeability [59]. Compressional and shear data are crucial for
determining wellbore strength, in-situ stress and rock mechanical properties [60].

The depth of investigation of the described tools depends on the formation slowness, the
distance between transmitter and receiver, and the presence or absence of an altered zone
in the formation. In general, the depth of investigation for the majority of sonic tools stays
within an invaded zone of several centimeters (~3-6 cm) away from the borehole.



Borehole Acoustic Reflection Survey (BARS)

Returning to the problem of remote object detection, significant changes in the hardware of
the discussed sonic tools were made, such as the introduction of array-receivers and new
types of transmitters, acoustic logging progressed towards full sonic waveform analysis [61].
The difference in frequencies between BARS (f 10 kHz) and conventional seismic (f 100
Hz) as well as the different signal detection techniques enable higher resolution of borehole
reflection imaging of the near-wellbore space.

In contrast to seismic studies, where registration and processing of a signal reflected
from geological boundaries are studied, in the sonic seismic survey, there are a number of
challenges. First, refracted and reflected waves are weaker compared with the direct arrival
waves, thus wavefield separation becomes a crucial stage in data processing. Second, instead
of seismic geophones, more sensitive receivers are used, which are capable of recording a
wider range of waves. This requires additional data filtering for BARS signal processing.

The BARS method is based on separating the waves propagated along the wellbore from
the waves spread deeply and reflected back from the boundaries of distant geological objects.
Initially, standard sonic tools were utilized for deeply reflected signal detection. Such tools
were equipped with an array of receivers and a monopole source of sound as described
earlier. To map the positions of reflections around the tool, azimuthal measurements were
introduced, which became an important step in expanding the range of applications of sonic
tools. The hardware in the modern sonic tools for reflected signal detection described in
[61] typically consists of three monopole transmitters, two dipoles, and an array of receivers,

as illustrated in Figure 3.6.

Reflected Signal -

Figure 3.6: Tool Schematic for Borehole Acoustic Reflected Survey. Bed boundary detection.

41



Directional acoustic measurements are achieved by cross-directional dipole emitters. The
introduction of azimuth measurements facilitates the detection of geological object positions
with respect to the high side of the tool. This, in turn, enables the use of acoustic tools
for geosteering, which has several advantages compared to resistivity-based geosteering
methods, discussed earlier. In the case of a low-contrast resistivity environment, sonic-based
geosteering has proved to be a good alternative method for well placement and is suitable for
boundaries detection at a distance up to 10-20 m away from the borehole [16, 62]. Unlike
the resistivity methods, the depth of investigation of acoustic measurements is significantly
less affected by properties of the surrounding medium such as rock electrical conductivity
and others. The main advantage of BARS over resistivity-based methods is the detection of
karsts and cavities regardless of the conductivity or other properties of the karst-filling fluid.

Based on the example from the Loppa High region, the discovered average sizes of the
caves have dimensions of 0.5-2 meters of a True Stratigraphic Thickness (TST). Though
they are relatively small for seismic methods objects, they might be detected by BARS, as
they fall into the resolution limits of the method (along the well resolution of 0.3 m).

Moreover, the BARS object detection distance of 10-15 m gives a sufficient volume of
investigation, which can significantly increase the possibility of karstification object detection,
around the tool. Discovering such objects might be crucial information for further drilling
decisions: detection of a single karst form might be evidence that other karst forms may
also exist within the same region and could be suddenly discovered during drilling. Overall,
the discussed method can be considered as a reliable solution for karst detection around
the wellbore.

However, despite a number of advantages, there are some limitations. First, drilling
must be stopped to provide favorable conditions for BARS acoustic surveying. Second, this
technology provides only look-around type of measurements and not look-ahead. The main
problem of object detection in front of the bit remains unsolved, since sonic tools are located
at a considerable distance from the bit and the waves do not propagate ahead of the drill
bit. Thus it is still challenging to predict the presence of dangerous drilling objects while
drilling.
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3.3.3 Seismic-based measurements

So far, I have considered acoustic methods of karst detection by tools developed for reflection
detection around the well. In this section, I focus on acoustic measurements ahead of the
bit.

To the best of the author’s knowledge, currently there is no ready-to-use solution specially
designed or adapted for karst detection in front of the bit. However, over the past few
decades extensive work has been done in this area. The principle of measurements ahead
of the drill bit is significantly different from the look around measurements, described in
the previous section. This section gives a brief review of prior work that is appropriate for
karst detection (patented inventions, academic work and commercially available solutions).
The inventions below are conditionally grouped based on the common receiver / detector

placement and wavelengths, used by the method.

Downhole excitation of seismic waves

From our perspective this section gives the most significant inventions in the area of downhole
excitation of seismic waves with a brief discussion of the basic principles of sound wave
generation / detection.

Some of the early inventions focused on the challenging problem of downhole sound
source development with certain specifications. The source should be small enough to be
lowered downhole and at the same time, have sufficient power to generate high energy
seismic waves, which can be registered by surface detectors. The reason for downhole
positioning of the sound source instead of surface positioning is because better vertical
resolution is achieved. An additional benefit of downhole excitation of seismic waves is that
almost all wave modes can be captured. A number of inventions have been dedicated to the
downhole excitation of seismic waves in different ways.

One example of downhole seismic-wave excitation of sound waves is described in the
invention by Brett in 1994 [63]. It was suggested to mount a mass on a rotating part, inside
the collar. When this apparatus is lowered downhole, the mass can be rotated to generate
the signal, which can propagate around, and ahead of the drill bit. Due to centrifugal
force, the rotating mass is designed to be in contact with the wellbore, which increases the
effectiveness of signal propagation. The reflected signal can then be recorded by geophones
placed on the surface.

Another principle of mass excitation was proposed by Paulsson in 1986 [64]. Instead of
rotation of the mass, excitation of seismic waves is activated by triggering the mechanism
that redistributes the pressure inside the air chambers in the apparatus, leading to moving
the striking mass downwards. Thus, seismic energy is produced with less destructive stresses
on the wellbore walls compared to the previous example. A similar approach for generating
seismic waves by striking mass was proposed by Pascal Dedole in 1984 [65]. A device used
a striking mass to hit elements inside the body that had a retractable platform to push the
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apparatus against the wellbore wall. Striking mass in this invention is excited by an electric
motor. Due to a firm coupling with the formation with this apparatus, a powerful seismic
pulse can be generated.

A downhole periodic seismic source was proposed by H. Hardy in 1983 [66] and described
in the patent [67]. The goal was to develop a downhole, nondestructive, high resolution,
seismic tool suitable for studying fluid zones in hydrothermal magma systems encountered
in deep holes. A downhole hydraulic seismic generator system was used for transmitting
energy of vibrations into the earth surrounding a borehole. An electric servovalve regulated
a high pressure hydraulic fluid flow traveling between the upper and lower chambers. The
valve was controlled and powered from the surface with the standard logging cable, which
is an advantage with this approach. This prototype was succesfully tested in a shallow zone
and showed that this type of oscillator can generate downhole low-frequency seismic waves
(10-100 Hz).

To the extent of my knowledge, the devices described in [63—67] were never used for
commercial work.

A compressible fluid-driven downhole seismic source was suggested in another invention
proposed by H. Hardy in 1989 [68]. The source device was capable of periodically generating
horizontally propagated shear waves. The fluid generated torsional oscillations of the mass
inside the device acts on the housing, thereby a seismic source produces waves. The oscillator
was driven by a fluid rotary valve mounted in a sleeve which fits inside or in-between an
existing bottom hole assembly.

An important result from the downhole seismic tests was obtained by B.Paulsson in 1988
[69]. The casing-cement bond strength was measured after the test of different types of
seismic sources. The most significant damage (decrease of cement bond strength up to
30%) recorded for the airguns the least damage in the cement strength was obtained for
the downhole hydraulic vibrators. An important conclusion was made regarding the use
of impulsive sources. Very strong tube waves are generated by impulsive sources which
became a new source of body waves with different acoustic impedances at different parts of
the well. These body waves hide any arrivals after the direct P-wave arrival. It was shown
that the hydraulic vibrator source is most efficient as it generates fewer tube waves.

Experimental comparison of airguns and explosives was done by S. T. Chen et al. in 1989
[70]. It was confirmed that airguns produce stronger tube waves compared to explosive
sources and explosive charges can produce enough downhole energy without significant
damage to the borehole.

A comparison of borehole seismic sources under consistent conditions was performed
at the Texaco geophysical test facility in 1991 [71]. The goal was to evaluate the relative
performance of a wide variety of downhole seismic sources such as small explosive sources,
air- and water-guns, hydraulic and pneumatic borehole vibrators. The sources that have
been tested operate with various principles and in the past it was difficult to examine
their advantages and disadvantages as they were deployed in different fields and their
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performance differed. The test facility allowed geological and regional differences to be
eliminated. The survey depth levels, setup of receivers and test well were the same for
all of the sources tested. One of the conclusions that was made is that all of the sources
produced identifiable P-waves. S-waves are challenging to detect as reflections are obscured
by numerous arrivals of the Mach waves generated by well-tube waves.

Despite the variety of methods of mass excitation, the common principle for this group of
inventions is downhole seismic waves generation by the movement of a mass. The potential
disadvantage of the methods described in this section is connected with difficulties of sound
radiation pattern control, and therefore focusing the area of investigation ahead of the drill
bit. Moreover, a serious impact on the wellbore walls by intensive mass movements can be
dangerous since it can lead to wellbore damage. When the wellbore is damaged, pieces of
the formation can fall around the drillstring leading to pack off of the annulus and/or jam
of the drillstring (hole bridging).

Directional sound waves generation

This section is devoted to the inventions aimed at propagating directional sound waves
in front of the bit with a controllable frequencies range. These inventions use a different
principle of sound waves excitation, and their detection of reflections. Special attention in
this section is given to acoustic signal focusing in front of the bit.

In the invention patented by John B. Farr and Ronald W. Ward in 1973 [72], it was
suggested to constantly measure phase delay during drilling from a mono-frequency source
of seismic waves, installed next to the drill bit. As the frequency of the source is pre-defined,
it is possible to estimate travel time and the speed of sound between the source and receiver.
The reflected signal, in this case, might be registered close to the bit, which can help to
detect geological objects ahead of the bit.

A similar apparatus is described in the invention by Alf Klavness in 1975 [73]. A seismic
pulse generator is suggested placed close to the drill bit. Obtained seismic data may be
used to determine drilling conditions in advance. In the invention, proposed later by John
Beresford in 1995 [74], sound waves are generated by excitation of the drill bit and detected
by an acoustic sensor located inside the bit. To perform an acoustic survey when drilling is
stopped, the drill bit with the excitation device is separated mechanically from the rest of
the BHA, and the bit is pushed against the bottom of the wellbore to ensure that there is
sufficient contact between the transmitter and the rock.

The invention proposed by James Legett in 1995 [75], is based on an apparatus and
methods for obtaining acoustic measurements by many segmented transmitters and receivers
which allow directional focus of acoustic energy with respect to the axis of borehole. The
arrangement of transmitters allows acoustic measurements to be made ahead of the drill bit
and provides information concerning formations that have not been drilled by the bit.

A comparable apparatus with some modifications is described in the invention by Holger
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Mathiszik and Joachim Oppelt in 2003 [76]. The invented apparatus has an array of
directional sources of sound waves that could emit acoustic signals in the selected direction
and with the defined frequencies. The controllable frequency range enabled the selection of
useful spectra of acoustic wave frequencies. This is different from the spectrum of acoustic
waves generated by the drill bit. The signal reflected from geological boundaries, is then
detected by geophones and hydrophones mounted on the apparatus. In some inventions,
it was suggested to use tilted sound transmitters to ensure that acoustic waves will not
interfere with the components of the BHA. For example the patent submitted by Rasheed
Wajid in 2011 [77] describes an apparatus that can measure geophysical and petrophysical
properties of the rocks based on transmitters and receivers that are inclined, with respect to
the tool axis. It enables angular and axial focusing of the signal to study rock properties
ahead of the bit.

To the author’s knowledge, the devices described in [72-77] were never used in com-
mercial work. Due to various difficulties, both from the hardware manufacturing and from
the subsequent signal processing points of view, these inventions remained theoretical
developments. However, they are important, since they demonstrate possible directions of
the technologies developed for early detection of reflective interfaces in front of the bit.
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3.3.4 Seismic while drilling

This section discusses a different means to tackle the same challenge of how to propagate
and detect reflected signals ahead of the bit. There have been many attempts to propagate
acoustic signals at a considerable distance in front of the bit to detect reflections from remote
interfaces. Approaches that were different from those discussed above were presented in
the early 1930s [78]. It was suggested to utilize the energy, generated by the bit while
drilling and use it as a source of seismic waves. As roller-cone drill bits became widespread,
researchers demonstrated their interest in this area. In 1985, the algorithm for instantaneous
acoustic logging in a borehole was patented [79]. The proposed Seismic While Drilling

(SWD) signal acquisition principle described in [79] is shown in Figure 3.7.
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Figure 3.7: Schematic view of Seismic While Drilling signal acquisition. Based on [79]

In the proposed signal acquisition principle, drilling bit is used to generate acoustic
impulse. Reflected from a geological interface signal then propagates back to the surface
and can be detected by a geophone. To estimate the travel time of the signal that passes
through the formation, cross-correlation technique is used. Cross-correlation between the

signal that propagates through the drillstring and the reflected signal passing through the
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formation is used to estimate the time shift and the speed of sound in the formation. To
detect the signal that propagates through the drillstring, accelerometers are mounted on
top of the drillstring as shown in Figure 3.7.

However, in reality, this process is more challenging since the speed of sound propagation
in metal is significantly dependent on the BHA and drillstring component lengths, diameters,
drill pipe wall thickness, etc. Thus inaccuracy of speed of sound propagation measurements
in metal introduced inaccuracy in the estimation of the formation speed of sound. Analysis
of seismic waves, generated by the roller-cone bit was quite popular in that period.

Many attempts have been made to increase the accuracy of direct arrivals measurements.
Farr and Ward in 1973 [72], implemented a top drillstring sensor. Later, Yves Ollivier in
1993 [80] invented a device that was installed and rotated together with the drillstring.
These inventions helped to register shocks, experienced by the BHA during drilling, almost
without attenuation.

Along with the improvements in the signal-processing techniques, the described inventions
used surface-located geophones. In this regard, the source of seismic energy (drill bit) should
be preferably a low-frequency source with a long wavelength. This limits the resolution of
the Seismic While Drilling (SWD) method, which can be roughly estimated at about 15-20
m. It has a better resolution compared with the conventional seismic study. Additionally,
as stated earlier, it is challenging to obtain an accurate reference signal based solely on
the measurements of drillstring vibrations. In 1992 [81] to address this issue the Atlantic
Richfield Company in 1992 [81] proposed using a set of sensors, positioned similarly to
sonic tools at a small distance from the bit to detect seismic waves emitted from the bit while
drilling. This was intended to improve both the resolution and the depth of investigation
in front of the bit along with the improvement of weak reflection detection from distant
objects.

It is important to mention that these inventions were not theoretical. In the 1990s a
number of experiments were performed confirming the viability of the seismic while drilling
approach. For instance, in 1992 an experiment confirmed the possibility of signal extraction,
generated by the source of sound with unknown properties (drill bit). To detect this signal,
a total of 12 km of 40 channel geophones were placed on the ground at one of the onshore
rigs in Germany. Data were recorded during 5 hours of drilling up to 3735 m depth. The
technique described in [82] showed that it can be used to detect reflectors ahead of the bit
based on SWD measurements. Extensive work was done by James Rector and Bob Hardaj
in the study of radiation patterns and seismic waves generated by SWD [83].

In 1991, Western-Atlas published interesting results obtained from wells drilled in North
America [84]. The experience from operating companies was that the proposed type
Tomex® SWD survey (Baker Atlas) would not lead to constantly satisfactory results. In
general, the results were inconsistent even with the use of roller-cone bits in favorable
conditions (hard / medium formations, vertical well trajctory, long teeth of roller-cone bits).

Later, the French Institute of Petroleum (IFP) introduced the TRAFOR® system using
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electrical wired pipe technology for fast data transmission of downhole data. This system
was used for drill-bit seismic profiling [85].

In 1996 following these works, Miranda et al. [86] developed SEISBIT®. This system
uses a selective data processing technique depending on current drilling conditions.

Starting from this time the DBSeis® system was presented by Schlumberger. The SWD
system performs recognition of drilling through the estimation of the spectral difference
between drilling and non-drilling events. The data from 12-36 geophones were digitaly
processed (beam-forming) to separate the noise from the bit signal [87].

After a series of successful and unsuccessful experiments, the 90th attempt in this direction
was continued. An important experiment devoted to studying the drill bit pattern was
performed by Chabot in 2002 [88]. The aim was to obtain seismic maps of the surrounding
formations. On the one hand, the experiment has demonstrated the advantages of a bit-
seismic approach for remote feature detection. On the other hand, it has been shown that
there is a significant limitation in the SWD method, as the BHA vibrations during drilling
have high amplitude, which complicates the process of weak reflection detection from
geological objects.

In 2002, Comelli et al. [89] proposed a methodology to increase the signal-to noise
ratio of SWD signal. The proposed idea was to utilize mud-logger surface measurements to
describe downhole process. In this way, the type of rock drilled and the drilling parameters
can be taken into account and related to the signal from the bit.

In 2008, Flavio Poletto [90] presented the results of an experiment where test drilling
was performed to study the pattern of waves generated by the drill bit. The experiment
confirmed that the drill bit can generate both compressional and shear waves. Besides
that, it demonstrated that the signal, generated by the drill bit, can propagate to significant
distances in front of the bit and reflected signals can be detected by receivers.

To avoid hazardous situations during drilling, a similar principle of seismic while drilling
was proposed by Espen Birger Raknes et al. [91] in 2017. The proposed method uses
the seismic diffraction response from the borehole for imaging the well-path using surface
seismic detectors. It was claimed that no extra tools are needed and the well can be imaged
while drilling. The main application of this approach was in relief well drilling where
this method can reduce the accuracy for the intersecting the blowing well. The numerical
simulations of the approach have shown good results and seismic while drilling images were
used to identify the exact position of the drill bit. The approach was tested on a synthetic
well on data from the Kvalhovden area, east Spitsbergen, Norway.

In summary, despite the number of SWD advantages over conventional seismic, the
bit-seismic study has not become popular due to the following reasons. First, there is no
methodology for interpreting seismic signals from the drill bit in deviated and horizontal
wells. The primary cause explaining existing challenges in interpretation is related to
the unwanted, randomly distributed additional sources of seismic waves generation at
numerous points of drillstring contact with the wellbore walls. The necessity to deal with
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these additional seismic sources becomes especially important for wells with high deviation,
extended horizontal sections, and intervals with high dogleg severity.

Second, roller-cone bits can produce high-energy seismic signals. Today, the vast majority
of the wells are drilled with Polycrystalline Diamond Compact (PDC) bits, which are quiet in
comparison with roller-cone bits and cannot produce high-energy signals. Such low-energy
signals are more difficult to detect, which limits the applicability of the SWD method.

Third, the SWD method demonstrated reliable results only during rotary drilling, as in
this mode the bit can produce a more powerful signal than in the sliding mode of drilling.
Today’s most used mud motors and Rotary Steerable Systems do not contribute to producing
high energy signals by the drill bit, which also constraints further development of the
discussed methodology.

In the next section I consider a method of employing downhole high-resolution seismic
surveying without wireline logging. This can increase the accuracy of geological objects
detection as the high-resolution seismic data can be acquired by the tool installed in the
drilling BHA.

VSP while drilling

Due to a number of difficulties, associated with the discussed SWD methods, further
development of look-ahead acoustic methods was based on a different principle.

Traditionally, in Vertical Seismic Profiling (VSP) receivers are installed on the wireline
BHA and seismic sources are placed on the surface of the ground. To perform a wireline
seismic survey (checkshot) the tool is lowered to a certain depth, and once the surface source
of seismic waves is fired a downhole tool records the travel time, required for seismic waves
to reach receivers. Knowing the depth of receivers, the interval velocity of the formation
can be estimated. Thereafter, the time-depth conversion depths of geological reflectors can
be estimated, including those, located in front of the bit. A significant drawback with this
method is the time cost required to do a seismic survey. Drilling has to be stopped and the
drillstring must be pulled out of the hole to run wireline seismic logging.

In 1999, Halliburton patented an invention aimed to overcome the problem of inefficient
rig-time usage [92]. The invention was proposed to detect seismic waves by the downhole
apparatus located in the drilling BHA. This apparatus can also detect reflections from the
boundaries ahead of the bit and can thus enable significant rig-time savings. This technology
was further developed and, similar to Halliburton’s invention, the principle was implemented
in early prototypes created by Schlumberger in 2001 [93]. This led to the development of
the seismic drilling tool, which became an alternative to the conventional VSP by providing
the same quality of data much faster. Interested readers are referred to references [94-96]
for details about seismic waveform processing techniques used in VSP while drilling. The
seismic guided drilling concept described in [93] is shown in Figure 3.8.

In this concept, a set of sensitive seismic receivers is mounted on the downhole seismic
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Figure 3.8: The seismic guided drilling technology. Based on the concept described in [93].

tool. The downhole tool processes the incident energy and utilizes a special algorithm that
is based on a series of checkshots that compares signals from repeated firings to make sure
that arrival time and shape of waveforms are similar. This logic helps to filter out noise and
perform an initial quality check of the checkshots. As the tool gathers a pre-defined number
of similar waveforms, it starts to stack them together. When the mud circulation is on again
after the drill-pipe connection, data are transmitted to the surface through the mud pulse
telemetry. The same process is repeated at each survey station. Field tests of this system
were successfully performed in the Gulf of Mexico [97].

An example of the SGD technique for carbonate cave detection was demonstrated by the
successful detection of Ordovician caves, buried at 6000-8000 m depth in the Tarim Oilfield
in China [98]. The challenge was to improve the accuracy of carbonate cave detection.
Caves, in this example, have a different genesis mechanisms leading to the development of
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“tremendous storage spaces” [99]. The seismic responses to such large paleo karst caves
are evident as “strong amplitude anomalies in legacy seismic data and are characterized as
“string of beads” with different sizes and shapes [100]. These huge cave systems, contained
almost 600 million bbl of oil extracted from the beginning of production (open caves trapping
of the oil) [101]. These huge cave systems are incomparably larger than caves, discovered
offshore Norway and Tarim caves are still open as drillers have recorded numerous "bit
drops" sometimes exceeding 10 meters [99].

The SGD is a powerful technique for the detection of large karsts. However, taking into
account the wavelengths generated by surface airguns the resolution of this method is not
sufficient for detecting small karstforms ranging from half a meter to several meters. As
discussed earlier, the detection of small forms of karstification is equally important along as
large karst forms detection. Small karsts might be equally dangerous to drill through.

3.4 Summary and conclusions

In this chapter I have reviewed methods and technologies that can be used for prediction
and early detection of dangerous for drilling karsts. All these methods have been published
in the last 40 years. The methods can be categorized into pre-drill and while-drilling karst
detection methods. They are summarized, together with their advantages and limitations
in Tables 3.1 and 3.2 respectively.

The discussed pre-drill group of methods for karst detection focuses on the identification
of potentially dangerous intervals before drilling begins. This analysis is based on already
available data.

Analysis of geological information can provide an overall picture of the regional karst
forms distribution, their possible depths of occurrence and can help in the estimation of
the most probable geometrical sizes of regional karst forms. The main limitation of this
method depends on the coverage and quality of input data. For example when there is a
lack of geophysical or seismic data, studying only surface signs of karstification cannot be
so effective in the estimation or prediction of subsurface karst properties.

Offset wells analysis is an efficient method for karst intervals prediction on a planned well
trajectory. Different algorithms can be used to transfer gained experience of drilling from
the offset wells. This method is effective if there is evidence of karstification which was
observed/logged/interpreted based on the offset wells analysis. Since many karstification
objects can be undetected in the offset wells due to lack of geophysical studies or if previously
drilled wells were not crossing any karsts, projection of drilling risks related to karsts onto
the new well trajectory is not possible. Moreover, if the offset well is located at a significant
distance from the planned well, projection of karstification intervals can be inaccurate.

One of the most common studies used for the detection of different geological objects
and structures is conventional seismic. This method can provide the most complete picture
of the main subsurface geological features including general karst distribution, depths of
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extended zones of karstification and geometrical dimensions of major karsts. However
with conventional seismic, smaller dangerous for drilling karst forms cannot be detected.
In addition, there is an inaccuracy/uncertainty in the estimation of the exact subsurface
positions of objects based on conventional seismic. These uncertainties in the exact position
of karsts detected with conventional seismic leaves the chance of crossing karsts during
drilling.

The discussed karst detection while drilling group of methods focuses on the utilization
of different types of measurements to investigate the region at or ahead of the drill bit.

Resistivity-based methods such as ultra-deep and resistivity at the bit are not efficient in
the detection of karsts with low resistivity contrast. This makes the detection of low-contrast
geological objects including karsts challenging. The depth of investigation and accuracy of
the methods utilizing resistivity type of measurements strongly depend on the electrical
properties of the formation and drilling mud properties.

Geophysical methods utilizing acoustic surveying such as Borehole Acoustic Reflection
Survey (BARS) are promising in the detection of deep interface reflections regardless of
the electrical properties of the formation. High vertical resolution and sufficient depth of
investigation make this group of methods suitable for karst detection while drilling. Despite
a number of advantages, these measurements are look-around and thus cannot be used for
investigation of the region at or ahead of the bit for early detection of karst hazards.

Some of the methods that utilize seismic measurements are very promising, e.g. seismic
guided drilling methods. They can provide detailed seismic maps of the region ahead of
the bit with higher resolution than conventional seismic. This significantly increases the
probability of karst forms detection in front of the bit. The major limitation of these methods
is linked to the relatively low wavelengths that are used in surveying. Low wavelengths
are a limiting factor for the detection of smaller dangerous for drilling karsts, which are
encountered, e.g. in the Barents Sea.

As summarized in Figure 3.9, while being effective some cases, the reviewed methods
for the prediction and detection of dangerous for drilling karsts suffer from the following

limitations:

e Small dangerous for drilling karsts are the most challenging objects to detect with
pre-drill and while drilling karst detection methods

e Study of geological drilling or offset wells data solely depends on the quality and
coverage of input field data, and thus cannot guarantee an accurate prediction of
karsts, leaving the risk of well control issues in carbonates unchanged

e Any relevant resistivity, acoustics or seismic-based methods can hardly be used for
avoiding drilling into karsts or even for real-time detection of encountering karsts

These limitations indicate room for further research and development within methods

and technologies for safer drilling in karstified carbonates.
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Figure 3.9: Methods to mitigate risks of drilling in karsts

Future work on this subject should concentrate on the development of an acoustic system
that will utilize the methods of sound wave generation and registration discussed in this
study. A first step in this direction is found in Chapter 6 where I present a novel concept

utilizing some of the principles discussed in this section.
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Chapter 4

Karstification patterns in real-time
drilling data

It is important to detect karsts as early as possible in order to improve drilling safety in
intervals of karstification. As was shown in the previous chapter, the use of the state-of-the-
art geophysical methods cannot always guarantee prediction or even real-time detection of
dangerous for drilling karsts or karstification zones encountered in the Barents Sea. This
chapter presents a novel method for real-time detection of karstification objects and zones
with high likelihood of encountering dangerous for drilling karsts. The method is developed
based on analysis of field data from 20 wells drilled in karstified carbonates in the Loppa
High region.

4.1 Introduction

The lack of available technologies to predict, detect and prevent drilling into dangerous
for drilling (smaller) karsts motivates the study presented in this chapter. As follows from
the analysis given in Chapter 2, geological conditions that lead to forming a dangerous for
drilling karst extend over some distance around that karst and lead to development of other
karstification objects in that area. These karstification objects may not be dangerous for
drilling. Yet, they can serve as indicators of drilling through an interval with geological
conditions favorable to the development of karsts and thus, with a higher likelihood of
encountering dangerous for drilling karsts. Early or real-time detection of such intervals can
be used for timely risk mitigating actions such as rigging up of Managed Pressure Drilling
(MPD) equipment, Lost Circulation Materials (LCM) chemicals rig-logistics, optimization of
the well path and well geological targets.

Karstification objects may be detectable from real-time drilling data. A minor mud loss,
for example, may correspond to drilling into such a karstification object. If one can find
patterns in real-time drilling measurements corresponding to karstification objects, these
patterns can be used for real-time detection of karstification zones.
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This chapter continuous the in-depth analysis of the field data, started in Chapter 2, for
the wells drilled in the Loppa High region. The analyzed data correspond to a very rare com-
bination of drilling through karstified carbonates with logged borehole images and accurate
mud flow-rate measurements. This combination enables the detailed analysis presented in
this chapter, which identifies and presents patterns in real-time drilling data corresponding
to various karstification objects. These patterns can either be used by engineers for manual
detection of karstification objects (and intervals) or they can be employed by advanced
analytics tools, e.g. based on machine learning, for automatic detection of karstification
objects (and intervals) from real-time drilling data.

The methodology employed in this chapter is shown in Figure 4.1. The input is the
karstification objects mapped in Chapter 2 (Steps #I -#IV in Figure 2.6). There is then an
analysis of the logged real-time drilling measurements corresponding to these objects and
intervals (Step #V in Figure 4.1. As it was shown in Chapter 2 (Figure 2.12) in some cases
drilling breaks and tight spots were encountered in the intervals close to cave or breccia
intervals. This determines the need for a detailed study of drillstring mechanics data to find
indicators of karstification zones or objects. The results of this analysis will be discussed
in Section 4.2. Since drilling in breccia intervals is often accompanied by mud losses with
varying volumes, Section 4.3 examines whether the profile of mud loss changes can be
linked to karsts.

The output of this analysis is a presentation of patterns in drilling mechanics and mud flow
measurements corresponding to various karstification objects. To the best of the author’s
knowledge, no such analysis has been reported in the literature on drilling in karsts. In fact,
the percentage of wells encountering karsts and, at the same time, containing the necessary
well-log data (e.g. borehole images) is rather small. This leads to a general lack of in-depth
studies of karst phenomena in drilling. This chapter attempts to fill in this gap and presents
a methodology that can be utilized in further studies of karsts in drilling.
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4.2 Detection of karsts based on drilling mechanics

This section considers a set of real-time drilling measurements, which can demonstrate
specific responses of drilling mechanics in the intervals of karsts. This set of measurements
may be used as the first set of indicators for real-time detection of zones with a high
likelihood of encountering karsts. Although in this section the focus was primarily on the
drillstring dynamies, hydraulic data will be also considered as an auxiliary factor for better
understanding of drilling events.

First there is a brief discussion of the measurements that will be studied in this section.
Among the surface measurements considered in this analysis there is focus on 1) Rate
of Penetration (ROP) - distance drilled per time unit, derived from the block position
measurement, 2) Hookload - the weight on the hook to control the weight applied on the
bit (Weight on the bit (WOB)). Hydraulic measurements, which will be studied in more
detail in the next section, are also mentioned here. They include mud flow rates in and
out of the wellbore. Their difference, called delta-flow, indicates mud gains or losses in the
wellbore. Accumulated, they lead to changes in the fluid volume in the mud tank. For more
information on how these measurements can be used, readers can refer to [102-104].

The downhole set of measurements provide an opportunity to study the efficiency of
transferring surface energy downhole. They are a vital source of information about drillstring
behavior [105-107]. These sensors are mounted on the drillcollar close to the drill bit [108].
Since the sensors are located very close to the drill bit, they can be utilized to evaluate in
real time possible changes in drilling mechanics in the intervals of karstification.

Drilling measurements, either surface or downhole, are affected by changes in the down-
hole conditions (e.g. formation properties) and in operational parameters specified by
the driller. Since we are interested in formation properties, only time intervals where the
operational parameters specified by the driller remain constant were studied. This helps to
eliminate changes in drilling measurements, which are not related to geological signs of
karstification.

Drilling in carbonate reservoirs is frequently accompanied by a high level of Shocks &
Vibrations (S&V). This measurement will be the first drilling mechanics measurement to
focus on when identifying responses to drilling through karstification objects. Another
measurement focused on the Rate of Penetration (ROP) in the intervals of karstification.

Typically, there are a number of drilling parameters, which have considerable influence
on the ROP. This influence is far from simple and its complete analysis lies outside the scope
of this chapter. However, ROP is an essential parameter for karst detection as it is directly
linked to rock properties. This principle underlies many studies devoted to drillability [109,
110]. An implication of these studies is that for constant drilling parameters, fluctuations of
the ROP while drilling are most probably related to rock properties. For early karst detection,
as will be illustrated later, ROP variations might be an indicator of drilling through different

karstification objects such as breccias, vugs or caves. Even though variations in ROP and
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S&V are closely related to rock properties, one often needs to consider the whole picture,
including other measurements to detect karstification objects from the measurements.

A number of examples are presented that demonstrate the effects of karstification objects
on drilling mechanics measurements. These examples also support the conclusion in Chapter
2 that there are various signs of karstification around karsts which in certain cases can be
detected through real-time measurements.

A first example is drilling in the @rn Formation (Well #a). This formation is dominated
by marine, shelf / platform carbonates with bryozoan bioherm build ups and shallow
marine, supra-tidal carbonates. Initial analysis of drilling events in Well #a reveals the
following cases. Drilling measurements logged in this well are shown in Figure 4.2, with

the corresponding measurements summarized in Table 4.1.

Table 4.1: List of measurements for real-time karst patterns detection

Measurement Abbreviation Unit
Depth of the bit Bit Depth [m]
Downhole Torque Torque [kN*m]
Difference between Inflow and Outflow Delta Flow [1/min]
Position of the block Block Position [m]
Revolutions of BHA Per Minute RPM [rev/min]
Rate of Penetration ROP [m/hr]
Stick/Slip of BHA SS Min/Max/Avg [rev/min]
Stand Pipe Pressure SPP [bar]
Weight on Bit WOB [tonne]

Initial Loss Rate 1.8 m*h Heavy Mud
Mud loss (7.92 gal(US)/im) Losses

| il il ro
i | iy it
s A i3 JHook load weight |ncrea:a [ |
| 5|4 . AL
nlolelalE|S|| Active Mud Tank volume | Drill Breaks
EEEEE
x|= =l = kS
el 5| L ] ST
= 4 i : TH "
I i
et
50 DE:00 08:10 085:20 08:30 874 3 T =T - -
RH Core Barel » | CoreRn2 | ' 'Cave >
XXd48m XX49m XX54m BHA dropped
(WX26.2 ft) (XX29.5 ft) (XX13A ) 2m (6.5 ft)

Figure 4.2: Drilling mechanics data in the interval close to cave (Well #a)
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During the core-sampling run, the Bottom Hole Assembly (BHA) dropped 2 m without
Weight on the bit (WOB). The initial loss rate was 40 ms/ h and escalated to the total
mud loss situation. A full well control incident came into effect. This sequence of events
demonstrates the result of drilling into an open cave. However, the most important research
information here are the signs of karstification in the interval above the discovered cave. As
this cave was discovered during coring of Well #a, there is rather limited information for
drilling mechanics analysis, for example, there is no information about S&V and there is no
borehole image data available for this interval. This means that other sources of information
are required: drilling fluid measurements and core samples.

A number of small mud losses were observed in the interval more than 10 m above the
cave. The possible presence of a conductive system of vugs and/or the presence of a breccia
zone could therefore be assumed, as mentioned earlier.

This assumption is confirmed by the core-sample photos, which were acquired after Core
Run 1. As shown in Figure 4.3, the interval of 20 m above the cave is presented by brecciated
dolomites, cemented clasts of different size and shape. In the interval 15 m above the cave,
it can be noticed cm-scale round to oval conductive spots, which could be interpreted as
vugs, probably formed due to dissolution of the massive facies by corrosive fluids. The core
sample closest to the cave is 10 m above the cave and has weakly cemented carbonate.

Breccia - ceiling or walls collapse Vugs
20 m (65.6 ft) above the cave 15 m (49.2 ft) above the cave

,

5.

T
Breccia - ceiling or walls collapse
17 m (55.7 ft) above the cave

Figure 4.3: Core-samples photos of the interval proceeding the cave (Well #a)

Surface and downhole drilling measurements versus time are shown in Figure 4.2. This
is a common representation of drilling data in time domain to analyze the performance of
the BHA or study the drilling process. The list of measurements used in the examples below
is given in Table 4.1.

In this example recurring mud loss events can be noticed at a distance of 6 and 5 meters
from the cave marked with arrow number 1 in Figure 4.2. These intervals correlate with
fluctuations of WOB: a small decrease in the first mud loss interval and a considerable
decrease in the second interval of mud losses. Since the rest of the drilling parameters
remain the same when the WOB changed, this might be a sign of drilling through intervals
with different mechanical properties. Before the cave interval, there are a number of sharp
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ROP increases, with simultaneous growing of the hook load (arrow #3) and WOB decrease
(arrow #4), which can be interpreted as drill breaks pointed out by arrow #5 in the figure,
caused by drilling through karstification objects.

The next example demonstrates drilling in Well #b through an interval of conductive
patches, which are interpreted as large vugs, probably formed due to post-depositional (e.g.
karstic) carbonate dissolution. The interval is identified based on borehole imaging, where
dark areas in the acoustic image represent a low-amplitude response (Figure 4.4). This
interval is interpreted as carbonate with large vugs facies, dm-scale, conductive, irregular
features. As can be seen in Figure 4.4, there is a rapid increase in the S&V in the interval of
vugs, marked with arrow #1. The drilling regime remains constant within this interval, as
can be seen by the constant value of the hookload. However, the high torque (arrow #2) and
ROP (arrow #3) are clearly evident which leads to the conclusion that these changes in S&V
might be related to the vugs facies. As in the previous case, this example also demonstrates
an increase in ROP, which might be explained by faster drilling through small cavities inside
the rock (vugs).
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Figure 4.4: Drilling mechanics data in the interval of fracture and vugs (Well #b)

The third example (Well #c) illustrates drilling through a 6 m vuggy interval of cm-scale
vugs framed by two erosive surfaces as shown in Figure 4.5. The length of the interval
helps to assess drillstring dynamics in the extended vugs zone, without any other geological
features crossed by the well path, as can be seen in the borehole image. These conductive
patches are interpreted as large vugs, which are probably formed due to post-depositional
(e.g. karstic) carbonate dissolution. The beginning of drilling in this interval is characterized
by a drilling break. As pointed out in Figure 4.5, entering the vuggy zone causes high ROP
(arrow #2) and a sharp drop in WOB (arrow #3). Drilling within the vuggy interval is
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accompanied by a constant high level of shocks displayed on the top track in the figure and
colored in green, red and blue curves. The interval of higher levels of shocks in comparison
with the outer intervals is marked with arrow #1. This example confirms that a high level
of S&V may be associated with an interval of karstification.
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Figure 4.5: Drilling mechanics data in the interval of vugs 6 m thickness (Well #c)

This section has reviewed the key aspects of drillstring behavior in zones of karstification.
A high level of shocks, ROP increase, drill breaks within carbonate intervals can often
indicate that the well path is going through a karstification object and may be close to other
karsts. However, these indicators have drawbacks. As will be discussed in the next section,
drillstring dynamics is often not sensitive enough to detect some small-scale features or
filled caves, which are also important signs of karstification zones and indicators of intervals
with a high likelihood of karsts. The next section considers a set of additional indicators,
which can significantly improve the detection of karsts and small-scale geological features
that can be missed by drilling dynamics measured by surface and downhole sensors.
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4.3 Detection of karsts based on flow-data

Moving the focus from the drilling mechanics data, this section considers a set of flow-based
indicators of karsts and identifies patterns corresponding to karsts based on flow measure-
ments. This will concentrate on the problem of karst detection based on a fundamentally
different set of measurements, which might significantly increase the accuracy of the detec-
tion of karstification objects. This section identifies patterns corresponding to karsts based
on flow measurements.

Figure 4.6 illustrates some typical delta-flow profiles corresponding to certain rock prop-
erties or drilling conditions. For example, large cavernous intervals can be identified by a
step change in delta flow without mud return to the surface. A slow decrease in delta flow
can be an indicator of rock matrix permeability caused by the invasion of drilling mud into
the formation. Reduction and immediate recovery of delta flow is an indicator of drilling
induced fracture initiating subsequent filling with the drilling fluid. A step change of delta
flow with slow recovery can be an indicator of an open natural fracture. The discussed
details of this characterization based on delta-flow measurements and its applications can
be found in [111, 112].

Conductive Natural Drilling Induced
Fractures Fractures (DIF)

™ Delta Flow _
\ |
; \

Time Time Time

Figure 4.6: Delta-flow profiles and corresponding geological features

Drilling mud is essential for many drilling tasks, from cuttings transfer to transmitting
hydraulic energy to downhole tools. It is pumped through main rig pumps to the Kelly hose,
enters the drill collars, sprays out of the drilling nozzles and is pushed up in the annulus to
the surface mud cleaning system and is then pumped back again. Analysis of the difference
between inflow and outflow rates (delta flow) underlies kick/loss monitoring and reservoir
characterization methods. The delta-flow analysis presented in this section is based on
precise measurements of the inflow and outflow using flowmeters integrated in a Controlled
Mud Level (CML) system [113], which was utilized in drilling in the region of study.

Generally, pump performance monitoring is an important component of different control
and monitoring systems across many industries. We can now examine real-time Subsea

Pump Module (SPM) performance driven by an automatic control system and integrated in
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Controlled Mud Level (CML) system. Figure 4.7 shows a schematic placement of different
components of the CML system.

Figure 4.7: CML components

As can be seen, the level of the fluid in the riser is measured by pressure sensors, which
serves for tracking changes of the hydrostatic column during drilling. Mud outflow from the
wellbore, gets into the SPM. Based on the difference between the desired level of the liquid
in riser (specified by the driller) and the actual fluid level, the control system defines the
required SPM performance. While the drilling mud is pumped through the SPM module, the
pressure and flow rate are measured by sensors, which are installed in the Mud Return Line
(MRL). Having discussed, the importance of the information obtained from the delta-flow
data, the CML system provides an extensive set of measurements:

e Precise measurements of the inflow and outflow using the flowmeters
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e SPM real-time performance measurements: voltage, current, electric mechanical
power and shaft Revolutions Per Minute (RPM)

e Riser fluid level

The benefit of the flow-based approach for advance karst detection is based on different
types of measurements. In contrast to drillstring dynamics analysis, the flow-based approach
can determine not only open caves (e.g. by specific BHA behavior in the intervals of
karstification: drill breaks etc.), but also caves filled with clastic material. For instance,
in the case of a filled cave, depending on the mechanism of cave genesis and the clastic
material property, there may be no clearly detectable changes in ROP that can be linked to
drilling through this karstification object.

Figure 4.8 represents the time plot of drilling Well #d, where a combination of two
different types of measurements is available. The first and second tracks (from top to bottom)
marked on the figure as "standard drilling data" display the same set of measurements as
discussed earlier in Wells b and c. A set of additional measurements marked in the figure
as "CML Data" is shown in the upper track. The lower track displays the borehole image
with marked intervals of vugs and cavity. Interval 1 in the figure represents the response of
drilling-based and flow-based measurements in the cm to dm scale interval of vugs. This
interval begins with a drilling break, represented by a drop of WOB (arrow #1) with a
simultaneous increase in ROP (arrow #2). After that, the ROP profile, the level of shocks as
well as other drilling parameters remain constant in this interval. This proves the limitation
of the drilling dynamics approach, as it is not accurate enough to detect small changes in

the rock properties.
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Figure 4.8: Drilling through the intervals of vugs and cave. Standard and flow data (Well
#d)
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However, analysis of the CML data can reveal some additional information. When the
bit passes through a zone with vugs or fractures, drilling mud invades some of the open
channels, which results in a consequent decrease in the delta flow (arrow #3). The initial
point, when the first difference between the inflow and outflow is noticed correlates with
the interval of the vugs facies defined by the borehole image.

Interval 2 illustrates an example of drilling through a cave. The initial depth of the cave
boundary is defined by the borehole image and represents the beginning of interval 2. As
can be noted, at the depth defined by the borehole image there are no visible changes in
any measurements. However, in close proximity to the cave there are spiky changes in the
mud losses. Mud losses in the interval of the cave reached 2000 1/min. The clear response
can be noticed by a step change in many logged parameters, such as S&V (arrow #4), ROP
(arrow #5) and WOB (arrow #6).

The next example demonstrates the response of the drillstring dynamics and delta flow
during drilling through bedding planes and Drilling Induced Fractures (DIF) (Well #e).
For convenience, the track order and drilling measurements are displayed similarly to the
previous example. As can be seen in Figure 4.9, for all three intervals the S&V level remains
constant (arrows #1, #2 and #3). The ROP profile at the beginning of each interval (marked
with arrows #4, #5 and #6) has similar behavior to the ROP in the karstified interval from
the previous example: increased drilling speed can be seen when the drill bit enters the
interval. However, the profile of the mud losses is different across these intervals and, for
example, in the interval of DIF, there is delta flow followed by recovery, which indicates

initiation of DIF and subsequent filling with the drilling mud (arrow #7).
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Figure 4.9: Drilling in the intervals of bedding and drilling induced fractures. Standard and
flow data (Well #e)
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In this section, the applicability of flow-based measurements for karst detection have been
discussed. The presented examples demonstrate that drilling dynamics-based and flow-
based indicators can complement each other in detecting karstification objects. A delta-flow
profile might reveal additional signs of karstification in the intervals that are undetectable
through drilling mechanics measurements, such as filled caves or small vugs. Detection
of even small forms of karstification can be an important part of early karst detection
methodology, as they can indicate drilling in a karstified zone. The studied intervals of
vugs are characterized by moderate values of fluid losses (delta flow), without significant
fluctuations, in contrast to cave intervals demonstrating a step change in the delta-flow

profile.

4.4 Conclusions

This chapter has studied drilling mechanics and mud-flow karst patterns. The analysis
is based on data from 20 wells drilled in karstified carbonates in the Barents Sea region.
The study included analysis of a complete set of drilling data: drilling events and end-of-
well reports, borehole image and core sample data, recorded time-domain data of BHA
mechanics and mud flow data.

By correlating logged real-time drilling data with karstification objects or intervals mapped
in Chapter 2, this demonstrates that karstification objects generate specific patterns in
drilling data. When monitored and detected, these patterns can be utilized as indicators
of karstification zones with a high likelihood of encountering karsts. Availability of such
indicators can support decision-making process to improve drilling safety. A summary of the
identified patterns corresponding to various karstification objects is presented in Table 4.2.

Table 4.2: Patterns of drilling measurements/events corresponding to karstification objects

Karst type Drilling Break ROP SEV Torque Mud Losses
Caviries Often when Step change Highest Highest Step change
entering lateral vibrations variations in mud loss profile
Vugs Not always Higher ROP Higher compared No/small Constant
detected, size-dependable while in vugs to other intervals variations moderate loss profile
Fractures Typically no Increase/ Small’ No/small Decrease and
Not always detected No increase variations i diate recovering profile

This work is the first step towards developing tools for detecting karstification zones and
mitigating risks related to drilling in karstified formations. Still, with the limited amount of
wells available for this study (wells that are located in one geographical area), the presented
results should be utilized in the context of all available information and experience.

This study is limited in terms of specific geology and the number of wells available for
the analysis. Even in carefully studied fields, the percentage of wells that encountered
karsts and at the same time had a full set of necessary well-log data (e.g. borehole images,
or accurate delta-flow data) is rather small. Moreover, some of the intervals have to be
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additionally excluded from the analysis: only intervals with constant drilling/pump/mud
parameters should be kept in order to evaluate the unique patterns of drilling measurements
corresponding to karsts and not other possible factors affecting drilling.

Future work on the subject of karst patterns detection from drilling data should be directed
towards obtaining and analyzing well data from more wells, including wells from fields with
different geology. This will allow the creation of a more complete and statistically reliable
picture of real-time indicators of karsts and karstification zones, regardless of the geography
of the research region. Such an analysis can be done utilizing the same workflow developed
and employed in this chapter.

The obtained results motivate the development and implementation of the algorithm for

automated karst pattern detection, which will be discussed in the next chapter.
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Chapter 5

Automated detection of karstification
patterns in drilling data

5.1 Introduction

Today, the ultimate goal for oil and gas companies is to increase the safety and economic effi-
ciency of drilling. To achieve these goals, significant investments have been made to develop
advanced surface and downhole drilling sensors as well as communication technologies.
The measurements can potentially provide vital information about the geological properties
of the formation and drilling performance/safety. However, most of the measurements are
very noisy, making accurate analysis of the drilling data by people or automatic algorithms
a challenging task. A solution is the algorithm discussed in this chapter which enables more
accurate and timely detection of drilling events (essential for drilling safety and efficiency),
as well as contributing to more accurate karst-pattern detection through the use of real-time
indicators discussed in Chapter 4. Also, this algorithm contributes to improved drilling risks
detection and increased drilling safety.

This chapter is organized as follows. In Section 5.2 an overview of available methods
for anomalies detection is provided. Section 5.3 explains the concept of the suggested
automated event detection method. In section 5.4 relevant results from the proposed

method are presented. Conclusions, discussion and future work are given in Section 5.5.

5.2 Anomalies detection and filtering

A karst encountered during drilling can be considered as an anomaly in the drilled formation.
As indicated in the previous chapter, such an anomaly manifests itself in specific patterns
in real-time drilling data. One can employ various methods from signal processing to
detect these patterns in the real-time data automatically, or to support their detection by an
operator. There are multiple of publications on anomalies detection and pattern recognition

in time series data. Some of the methods for automatic detection of anomalies (or faults)
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can be split into, for example, passive and active.

In active approaches, the process, including normal and faulty phases is described by a
set of models. This approach involves injecting a signal, e.g. noise or disturbance into the
system to improve the detection of faulty behaviour. Different approaches can be used for
anomalies or faults detection within a specified time horizon such as inequality-bounded
perturbations [114], bounded additive noise [115], stochastic-deterministic input [116],
auxiliary input signals [117] and active incipient signals for multiple faults detection [118].
Despite all the advantages presented in the literature there still a significant complexity
and high computational demands of the active faults detection techniques.

In the passive approaches, the signal is compared with either a historical data or modeled
data. Faults are then detected as a deviation from the historical or modeled data. Passive
approaches are well known. The most common methods are based on models [119, 120],
clustering algorithms [121], sliding-mode control [122] or data-driven methods [123].
The main disadvantage of these approaches is that they are based on a model or sets of
models. Given high complexity of drilling data, it is difficult to create a model that accurately
describes a very complex drilling process and at the same time has a high computational
efficiency.

Another group of methods called Qualitative Trend Analysis (QTA), is based on analysis
and identification of qualitative characteristics of signals. Initially these methods were based
on studying the first and second derivatives of the signals. The goal was to establish a
qualitative representation of the signal where the entire signal was divided into segments
and each segment was characterized by a convex/concave and/or increasing/decreasing
shape [124-127]. Ideally, such a qualitative representation of the signal allows automated
patterns detection in time series by incorporating expert knowledge with a qualitative
description of a process. However, a simple representation of time series is not always easy
due to noise masking important features. The currently available approaches are typically
based on piece-wise polynomial functions [128-131], wavelets [132-134], neural networks
[135, 136], kernel regression [137, 138] and some other methods. A common feature of
these methods is that they require great efforts in selecting and tuning many parameters
needed for working with specific types of data. This might be very impractical for the
real-time analysis of drilling data. Moreover some researchers indicate that many of these
methods will not work with the data outside of the ones used in the original works [124].

Taking into account the complexity of the drilling process and practical requirements on
relative simplicity of data-processing algorithms, this thesis focuses at data-driven methods
that do not require models. In this case the drilling data was analyzed and the first derivative
of the signals was estimated to identify their trends. One of the main challenges in analyzing
drilling data is that important information is usually masked by noise leading to masking
some important trends and patterns in data. Filtering needs to be applied to get rid of or
reduce the noise. Filtering is done by an algorithm that uses the available data points in
a signal to calculate a "filtered signal" in which the effect of noise is reduced. A simple
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example of a filter is a moving average filter: the value of a filtered signal at time #* is
calculated as an average over a number of neighboring data points in the original signal.

There are various filters that can be applied to filter out the noise [139-141]. Filters can
be conditionally divided in two groups. One group of filters relies on different methods
for smothening the signal such as low-pass [142], Gaussian [143], moving average [144],
polynomial fit [145] and spline filters [146]. Another group of filters computes derivatives
of noisy measurements to cancel the noise. These filters are based on either analytical [147,
148] or direct numerical differentiation [149, 150].

Despite using a different algorithms to filter out the noise, a common characteristic of
many filters is what can be called a window size. It tells how many data points are effectively
used in calculating the filtered value. The window size is usually considered a parameter of
the filter. It may be specified explicitly or implicitly. For example, for the moving average
filter, this will be the size of the sliding window involved in averaging. For filters with infinite
support, the effective size of the window is determined by the corresponding weights related
to filter bandwidth.

The selected window size of a filter affects filtering of both the noise and the original
signal. The higher the window size, the better the noise attenuation properties of the filter,
as more data points can be used to "average out" the noise. At the same time, the window
size used in averaging/filtering also affects the original signal: large window size results
in filtering out fast variations in the signal, keeping only the slowly varying components.
Depending on the selected window size, the filter can have very good noise attenuation
properties, but poor performance in capturing fast changes in the signal (for large window
sizes); or it can capture fast changes in the signal very well, but have low noise filtering
properties (for small window sizes). The former one cancels the noise, but wipes out
information from the signal. The later keeps the information, but does not unmask it from
the noise. One should therefore choose the window size depending on the properties of the
signal and the noise.

Signals significantly change during drilling and for some instances one needs a filter
with a large window to capture small/slow changes in the signal, while in other cases one
needs a small window to accurately capture fast signal changes. This can be achieved by
using several filters and switching between them based on the user’s judgment. This is
not convenient, as it requires experience and multiple actions from the user, as well as
introducing an additional human factor in the processing and analyzing of the data. In the
next section will be presented a nonlinear filter that addresses these challenges and can
both filter out noise and robustly estimate the first derivative of the signal. In addition, it
automatically detects instances when the signal experiences fast and noticeable change in
the trend, which is convenient for detecting anomalies in drilling data.
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5.3 Adaptive Differentiating Filter

In this section an Adaptive Differentiating Filter (ADF) is proposed that automatically
adjusts the size of the window to achieve maximal allowable filtering while preserving
desired accuracy in capturing fast changes in the signal (as will be explained below). This
filter is a modification of the filter described in [151], where it was developed for robotic
applications. This chapter describes it and demonstrates through examples how it can
efficiently be applied for automated detection of karst patterns in drilling data. This is the
main contribution of this chapter.

The filter increases the window size when the noisy signal is slowly varying and thus
high-level filtering is needed to capture these small slow changes. It automatically decreases
the window when the signal is quickly varying and it is more important to capture these
fast changes since the effect of noise becomes less important. In addition to that, the
filter estimates the derivative of the signal, which is often very important in detecting
and classifying various events from time series. This feature is especially helpful, as the
numerical calculation of derivatives is especially sensitive to measurement noise. 1
To present the filter, a sequence of time instances t; and the corresponding measurements

yi, 1 = 1,...N are considered. The measurement consists of the true signal y; and noise m,.
yi =i +m; (6.1

We assume that m; has zero mean.

The ADF consists of two operations conducted recursively: 1) signal and derivative
estimation (given a window) and 2) window adaptation.

1) Signal and derivative estimation: For a time instant t*, a window centered at
t* is defined and having a window radius as the sequence of instances W = [t; : i =
* — WR,* + WR], where % corresponds to the index of £*. To find an estimate of %(¢*) and
its derivative dy/dt(t*), from the data given in window W, the estimate of the signal (t*)
and its derivative djj/dt(t*) are calculated by solving the least-squares fit problem:

3 ly) - (k(t,;—t*)+b)|2—)r?cjgl. (5.2)
teWR ’
Then,
G(t*) =0 (5.3)
dij/dt(t*) = k, (5.4)

where 3(t*) and djj/dt(t*), are the estimates of (t*) and dy/dt(t*).
2) Window adaptation: at this step there is a check of the accuracy of how the straight-
line segment (t) = k(t —t*) + b approximates the data series over the window W. If

1Calculation of the derivative and adaptation of the window determines the name of this filter: Adaptive
Differentiating Filter (ADF)
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(oax. [k(ti —t") + b= y(t)| > 8) & (WR>WRpi), (5.5)

i.e. if §(t) does not fit y(t) over the window W with the required accuracy § (which is a
design parameter of the filter) and the window radius can be reduced without violating
the lower limit for the window radius W R,,,;,, (specified by the user), then the window
radius is reduced, the linear fit function is recalculated, and the condition (5.5) is checked
again. This is repeated until either the accuracy requirement is met or the window radius
has reached the minimal value W Ryy;,. This process is illustrated in Figure 5.1.

Y

9(O) = k(t—t*) +b () = k(t—t) +b
/’_"'\_, /\/_\J
dr T 1 -
—-L_.,r"‘ [ 6{
WR WR

. : =3 g —

t* t*
(a) Reduce window radius and recalculate (b) Accuracy is reached

Figure 5.1: Window adaptation from a too large window radius (a) to new window radius
where the accuracy is reached (b)

If (t_rg%xR [k(t; —t*) +b—y(t)| <) & (WR < WRpu), (5.6)

i.e. y(t) approximates the y(t) over the window W with the desired accuracy, and the
window radius can be increased without violating the upper limit for window radius W R,
(specified by the user), then the window radius is increased, the linear fit function is
recalculated until and the condition (5.6) is checked again. This process is repeated until
it is not possible to increase the window radius without either violating the accuracy of

approximation or exceeding the upper limit W R,,,,... This process is demonstrated in Figure
5.2.
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Figure 5.2: Window adaptation starting from windows radius where the desired accuracy
of the linear approximation is satisfied (a), to a maximal windows radius having the desired
accuracy (b)

The output of the algorithm at this stage is the estimate of the signal and its derivative at
time instant t* and the maximal window radius W R* reached in the window adaptation
process. For the next time instant t*, the initial window radius is taken as the largest window
radius W R* from the previous step. This significantly speeds up the calculation.

To summarize, the algorithm takes parameters W Rmin, W Rmar and § as inputs and
processes the data series #;, y; to output estimates of the signal y(t;) and its derivative
dy/dt(t;) as well as the radius of the maximal window W R* corresponding to these estimates.

Parameter W R,,,;,, determines the minimal level of filtering, as the window radius will
always be larger than or equal to W R,,;,,. Parameter W R,,,;,, must be chosen to satisfy
the required level of filtering for the particular input data. Parameter W R4 determines
the maximal level of filtering, as the window radius will always be less than or equal to
W R o Parameter of the the maximal level of filtration W R,,,,» needs to be set to the
maximal value such that a further increase of this parameter does not lead to a significant
improvement in the quality of filtering. It also affects computational cost of the algorithm —
it is more costly for higher W R;,4.. Parameter § must be chosen such that the noise m; in
Equation (5.1) satisfies |m;| < § for all 7. In practice this parameter is either known or can
be estimated from the data. The closer § to the actual limit on the noise, the more accurate
is the filter for the given W R,,,;,, and W R 4.

As was discussed earlier one of the outputs of the ADF filter is the window radius (Track b
in Figure 5.3). It can be seen that the window radius is minimal when the signal experiences
relatively fast changes. The small window radius can be used as a flag indicating changes
for the detection of drilling events, such as the detection of drilling breaks and mud losses
corresponding to karstification objects.
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The ADF filter (green line in track c) is adjusted automatically to filter out the noise and
follow the behavior of the initial signal (grey line). An overall view of intervals #1 - #4
shows that both main trends and high-amplitude changes in measurements are successfully
captured by the ADF algorithm. This is an important property of the ADF algorithm
for applications to real-time measurement analysis when it is necessary to capture both
small/slow and large/fast changes in the data.

Next, the Gaussian filter was tested for filtering the ROP signal. This filter is based on
a user-defined sliding window in which the Gaussian filter is applied. This example tests
three sliding window sizes of 1000 ms, 2000 ms, and 6000 ms, as shown in Figure 5.3,
tracks d, e and f. With small window sizes (e.g. 1000 ms and 2000 ms) the filter provides a
satisfactory filtering of fast varying parts of the ROP signal (intervals #2 and #4 in Figure
5.3, tracks d and e). However, the filter fails to properly filter slowly varying parts of the
ROP signal (intervals #1 and #3 in Figure 5.3). With wider sliding window size (e.g. 6000
ms) the filter provides a good filtering of slow varying parts of the ROP signal (intervals #1
and #3 in Figure 5.3, track f). However, as shown in the zoomed window, larger sliding
window size, filters out the important fast varying parts of the signal (intervals #2 and #4
in Figure 5.3, track f).

A similar performance to the Gaussian filter was demonstrated by the Median filtering
algorithm. This method is used to remove spikes using a sliding window across the selected
range of data. An output is the median value in the window. Similarly to the previous
example the algorithm was tested with three sliding window sizes of 1000 ms, 2000 ms,
and 6000 ms, as shown in Figure 5.3, tracks g, h and i. In the zoomed window for sliding
window sizes 1000 ms and 2000 ms, fast varying parts of the signal are almost lost (intervals
#2 and #4 in Figure 5.3, tracks g and h). Slowly varying parts of the ROP signal are not
filtered (intervals #1 and #3 in Figure 5.3, tracks g and h). For the sliding window of 6000
ms, the slow varying parts of the ROP signal are filtered properly (intervals #1 and #3 in
Figure 5.3, track f, track i). However, the fast varying parts of the signal are lost (intervals
#2 and #4 in Figure 5.3, track i).
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This example demonstrates that the ADF filter provides good filtering of signals with
both slow and fast variations. This property makes it more appropriate for applications to
real-time measurement analysis when we need to capture both small/slow and large/fast
changes in the data. The ADF provides not only the filtered signal, but also an accurate
estimate of its first derivative. It is simple, computationally efficient, and has intuitive
tuning rules. All together, these favorable properties justify the choice of ADF for automated
detection of karstification objects.
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5.3.1 Window radius for events detection

The adaptive window radius provides an effective and accurate indication of variations in
the time series. As the accuracy of the approximation must be guaranteed, the adaptive
window is forced to drop whenever it encounters rapid or large changes in the data signal
where the linear polynomial no longer fits the data. By utilizing an appropriate § value as a
threshold for window adaptation, abnormalities in the data may be discovered from a drop
in the window radius below a defined threshold. This concept can be taken advantage of to
detect changes in the drilling data for event detection.

5.3.2 Pseudo-Code

Below, the workflow of the algorithm is described briefly in the form of pseudo-code.

Algorithm for: Adaptive Differentiating Filter

Input: Raw measurements signal ¢, y(t)

Output: Filtered signal §(t), its derivative estimate djj/dt(t) and the radius of the
maximal window W R*(t)

Parameters: §, W R,.;, and W R,

while data in stream do

1. Use current window radius around current time instant

2. Calculate least-squares fit regression estimate over the window

3. Perform window adaption from accuracy check
o if accuracy is not met, reduce window radius and recalculate until the accuracy or
minimum window W Ry, is reached
o if accuracy is sufficient, increase window radius and recalculate while the desired
accuracy (specified by 4) is maintained and the window radius is below W R4,
4. Utilize the already found optimum window radius for the next time instant

end

5.3.3 ADF performance demonstration

Performance of the filter is demonstrated in Figure 5.3 for the case of Rate of Penetration
(ROP). In the presented interval, high values of ROP are related to drilling into open karsts
leading to Bottom Hole Assembly (BHA) drops (spikes in ROP). In this example a comparison
between ADF, Gaussian and Median algorithms of filtering of the ROP data is shown. As
illustrated in the figure, ROP measurements are quite noisy and contain both, slow- and
fast changes. In practice, these ROP values are obtained by numerical differentiation of the
Bit Depth signal.

ADF provides filtered values of both the signal and its estimated time derivative. In this
example, we find filtered ROP values by applying ADF to the Bit Depth signal and finding a
filtered estimate of the Bit Depth derivative. The filter was implemented in MATLAB™ [152]
and then data were exported to Techlog™ [37] for visualization. In this example, parameter
& was selected from observation of the Bit Depth signal, finding an appropriate § = 0.02.
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Minimal and maximal limits for the window radius were selected to be W Ry, = 10 and
W R0 = 120.

5.4 Case study - Automated detection of karsts and fractures

The following section presents results from a case study on automated karst events detection
using the adaptive differentiating filter. Here, the ADF is applied to the set of drilling data
containing intervals that the operator company reported as containing fractures, vugs and
caves.

Figure 5.4 presents a complete set of data, both raw and processed, corresponding to
the selected interval. The first track (from top to bottom) displays the borehole image with
marked intervals of open fractures, vugs and cave in the depth domain. The second track -
"drilling data", displays a typical set of surface and downhole measurements in time-domain
such as Torque, Pump Pressure, ROP, delta flow, hookload - the weight on the hook to
control the weight applying on the bit (WOB) and downhole WOB measurements. These
raw measurements are given to provide an overview of drilling within the discussed interval.
Tracks marked with letters a to f represent certain outputs of the ADF algorithm used to
detect events related to karstification objects.

Five time intervals will be considered as illustrated in the figure (Events 1 to 5). The
sections identified as open fractures are intervals where the operator company encountered
mud loss situations. They are marked as Events 1, 2 and 4. Event 3 is interpreted as vug
interval. Event 5 illustrates a cavity of more than 50 cm in length with circumference of 21.6
cm. These intervals are highlighted in blue, denoting the start and stop time of each event.
These benchmark intervals will serve for validation and evaluation of the ADF algorithm
that automatically detects changes in drilling data related to drilling breaks and mud losses.

In this example, drilling was performed with a managed pressure drilling system using a
subsea module pump equipped with high-precision sensors of mudflow rate. The measured
flow rate can give indications of loss zones, so the calculated delta flow is utilized as one
of the inputs for testing the ADF for automated event detection. Drilling breaks within
carbonate intervals can often indicate that the well trajectory encounters a karstification
object. Thus, I utilized sudden drops in WOB and surges in ROP (drilling break pattern) as
an indication of a karstification object and capture these changes with the ADF filter.
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An application of the ADF algorithm for drilling events detection based on three inputs (
WOB, ROP) and delta flow is considered in the following sections. The hypothesis of event
detection in the ADF algorithm is that the window radius experiences a minimal value when
the signal and its derivative experience rapid changes. The corresponding minima of the
window radius are marked with stars. Changes in the window radius for the given inputs
are displayed in tracks b, d and f. Another consideration which can be used for events
detection is the rate of change in the measurements. As was discussed earlier, it is expected
to observe a relatively sharp change in the delta-flow profile when the well path crosses
a cave. Similar behavior is noted for WOB and ROP measurements (see Section 4.2 for
details). For open fractures (fractures with mud losses) the rate of change of the discussed
measurements is different from caves. Moreover, it is often the case that open fractures are
detected only by delta flow measurements and not by ROP or WOB changes as some of the
fractures can be relatively small and might not affect the dynamics of the BHA (see Section
4.3 for details).

For events 1, 2 and 4, benchmarked as open fractures it can be noticed that the calculated
rate of change in the delta-flow drops significantly compared to the average level, indicating
mud loss situations with sharp drops in the delta flow. For events 3 and 5, which are
benchmarked as karst features of different sizes, the window radius of delta flow clearly
indicates the interval of a cave (event 5), the detected mud losses (negative values in track
e) did not have any sharp changes in the delta-flow, as indicated by no reduction of window
radius in track f. For WOB (track b) and ROP (track d) inputs, the window radius reaches
its minimum in intervals 2, 3 and 5, indicating quick changes in these parameters.

The main value of the discussed approach in the context of drilling events detection is
that it simplifies the process in the detection of suspicious changes in drilling data. For
example, it cannot be clearly seen from the raw drilling data (shown in the track "drilling
data") that some events were occurring. While the visual analysis of the window radius and
the calculated signal derivatives can easily indicate that there are changes in drilling data
that might be linked either with regular drilling instances or with drilling through karsts.

This section demonstrated that the ADF algorithm is capable of revealing events in complex
datasets such as real-time drilling measurements. Validation of event detection hypothesis
exemplified the potential for online karst patterns detection from different real-time input
signals such as delta flow, WOB and ROP.

The presented case study shows that the ADF algorithm applied to WOB, ROP and delta
flow measurements successfully detects five out of five benchmark intervals corresponding to
fractures or karsts. This detection occurred using either one, two or all three measurements.
From the results, it is clear that the ADF can be utilized to detect karsts and fractures
whenever they cause rapid changes in a measurement or its rate of change. For online
drilling event detection, the ADF is robust and reliable, as it is efficient in approximation and
detection and applicable to various datasets. This algorithm is highly modular, easy to tune
and it can provide reliable results that match with variations that can also be observed.
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5.5 Conclusions

This chapter has described the Adaptive Differentiating Filter initially proposed in [151] for
robotic applications and demonstrates that it can be effectively applied for automated drilling
events detection. In particular, it is demonstrated that it can be utilized for automated
detection of patterns in real-time drilling data corresponding to karstification objects. The
ADF automatically detects step changes in the delta flow as well as instances corresponding
to drill breaks. Both can correspond to encountering karstification objects while drilling in
carbonates.

Based on a case-study corresponding to drilling in carbonates in the Loppa High region,
it can be concluded that the proposed algorithm generates good results for automated
event detection and can efficiently locate change points in measurements corresponding to
fractures, vugs, caves and possibly other karst-related events with high precision.

It is the engineer’s responsibility to further investigate and evaluate the changes in data
indicated by the algorithm, taking into account the totality of available information. In this
way, the final responsibility for distinguishing karst patterns from other drilling events is
still with the engineer, while the proposed automatic algorithm supports the engineer by
detect potential karstification objects and zones.

As future work, automation of selecting filter parameters §, W R,,;,, and W R,,,,, can be
done. It is important to select these parameters correctly. In this study these parameters
were selected by observation/analysis of drilling data. Finding simple rules for selecting
these parameters lies outside of the scope of this chapter and is left for further work.

A variant of the proposed algorithm was successfully implemented by the author in Python
for subsequent utilization in software platforms other than MATLAB ®. Although it led to
significant learning and skills for the author, this part of work is not included in the thesis.
It corresponds to implementation/programming aspects which lie outside the scope of this
thesis.

Future work can also be undertaken to investigate algorithms for early change detection
in drilling measurements including the detection of anomalous trends in data such as losses
of drilling fluid and/or significant increase of ROP. Different types of change points detection
algorithms can be studied. Such methods are commonly based on the detection of changes
in mean [153], variance [154], periodicity [155] or changes in pattern [156] which is more
difficult to tackle than the previous ones. An implementation of some of these algorithms for
early detection of changes in drilling data will contribute to reducing the time for potential
alarms.

Future work includes incorporating multiple inputs for increasing reliability and confid-
ence in the detection of karst patterns and other drilling events, as well as reducing the
number of potential false alarms. This will contribute to automation in the detection of
karsts and other events to a higher degree and help with more consistent classification of

complex real-time drilling data.
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Future work can also be focused on combining the method presented in this section with
methods for data quality control and improvement. These methods should help to avoid
challenges related to common drilling data quality issues. The main drilling data quality
issues are typically related to noise of different levels, inaccurate measurements or imperfect
sensors, incomplete or missing data due to different sampling frequencies or measurement
failures, or invalid data due to measurements taken outside of the sensors operational range
or other issues. Therefore, to improve detection of karst patterns and other drilling events
one needs to use algorithms for noise filtering, gap filling, range checks and outlier removal.

The research results presented in this chapter also contribute to digitalization and auto-
mation of today’s manual interpretation of drilling measurements for detecting drilling

events while drilling.

84



Chapter 6

Karst detection ahead of the drill bit
based on consecutive acoustic
measurements

It is important to detect karsts in advance to avoid drilling into them and/or to prepare risk
mitigation actions to increase drilling safety in carbonates. However, with the state-of-the-
art geophysical methods early karst detection is still challenging since: 1) logging while
drilling (IWD) tools investigate the area around the tool with a large offset from the bit, so
we cannot predict the presence of karsts neither ahead of nor at the bit 2) seismic-based
methods, including Vertical Seismic Profiling (VSP) and Seismic Guided Drilling (SGD)
suffer from low vertical resolution and cannot guarantee detection of small sized dangerous
for drilling karsts, see Chapter 3.

This chapter presents a novel geophysical concept to investigate the area ahead of the
bit based on acoustic surveying. This concept suggests using an acoustic source at the
drill bit and evaluates reflections with a conventional acoustic IWD tool. Contrary to the
classical approach, the method is based on consecutive acoustic surveys and their comparison
using an unsupervised machine learning technique. Results of this comparison serve as an
indicator of the presence of karsts ahead and around the bit.

A set of numerical models was developed, which represents a reservoir section of one of
the fields in the Barents Sea to test, further develop and validate the method. These models
contain both dangerous and not dangerous for drilling karsts. Numerical simulations of
different geological scenarios with randomly distributed fractures and vugs, demonstrates
how dangerous for drilling karsts can be sensed and distinguished from not dangerous for
drilling objects. With this method one can avoid dangerous scenarios and/or prepare risk
mitigating actions.

Simulation results indicate that the same approach can also be used for other applications
such as prediction of formation changes, early detection of faults/fractures and pore pressure

fluctuations. The proposed concept has been developed and tested based on extensive
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numerical simulations. Its verification in a lab-scale setup or in field testing is left for future
work.

6.1 Introduction

So far, Chapters 4 and 5 have considered karst detection at the drill bit based on indirect
measurements. In other words, no direct measurements in front of the drill bit were utilized
to detect karsts. In this chapter a novel method of early karst detection is introduced. This
method is based on direct acoustic measurements in front of the drill bit.

Premised on advanced numerical modeling, this chapter presents a method where a drill
bit is used as an acoustic signal source to generate and propagate pressure waves ahead of
the drill bit. The pressure waves reflected from geological interfaces are then detected with
a borehole acoustic tool. Acoustic surveys, sequentially executed at increasing depths, are
then compared with each other to detect changes that may indicate the presence of karst
objects ahead and around the drill bit. Due to the high complexity of the signals detected
by the borehole tool, instead of classical signal processing, I apply an unsupervised machine
learning technique — the K-means method [157] — to evaluate the changes/difference
between the signals. Specific trends in this difference indicate an approaching anomaly (e.g.
karst). Then, a workflow for decision support is developed when such trends are detected.
This concept is demonstrated with extensive numerical simulations for different geological
scenarios. The concept shows its value for further development and possible implementation
for geoscience and drilling engineering.

The chapter is organized as follows. Section 6.2 describes the concept of consecutive
acoustic surveying for karst detection ahead of the drill bit, as well as the method of acoustic
comparisons and the workflow interpretation of its results. Section 6.3 explains acoustic
signal processing and the developed method of acoustic surveys comparison in greater detail.
Section 6.4 describes numerical models used in testing and demonstrating the method. In
Section 6.2, verifies the concept with numerical simulations in a modeled carbonate well
section. Conclusions, discussion and suggestions for future work are presented in Section
6.7.
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6.2 Consecutive acoustic surveying

6.2.1 Borehole instrumentation and concept

Borehole instrumentation of the proposed acoustic surveying method is shown in Figure
6.1. An acoustic surveying system comprises a drill bit with an acoustic source to generate
acoustic impulses and a Sonic IWD tool to register reflected signals, as shown in Figure 6.1.
The impulse is generated when drilling is stopped, but the drill bit is still in contact with
the formation. This ensures that the impulse is directly transmitted to the formation and
that the noise from the bit-rock interaction does not contaminate the measurements of the
reflected signals.

Figure 6.1: Schematic diagram of instrumentation of the method

The acoustic wave generated at the drill bit is traveling away from the source in three
directions: upward, horizontal and downward. Reflections of this wave from different
geological obstacles, including objects and karsts located ahead of the drill bit, are then
measured by the piezoelectric receivers in the acoustic IWD tool. These reflections contain
information about the geological obstacles. By taking consecutive acoustic surveys at
increasing depths and applying a specific signal processing technique, one can detect
approaching geological objects. This is the main concept behind the method.

The main advantages of this approach are:

1. The generated signal propagates ahead of the drill bit, enabling investigation of the
area in front of the bit
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2. The signal frequency range is lower than in conventional acoustic IWD tools and
higher than in seismic methods. Thus the depth of investigation and resolution that
are optimal for karst detection can be achieved

3. The approach uses current drilling instrumentation and requires minimum changes
in the BHA

6.2.2 Challenges with classical signal processing

The major challenge of karst detection with the described instrumentation setup comes from
the difficulties in classical signal processing. A conventional output for acoustic reflections
imaging is the spatial positions and geometrical properties of geological objects. However
due to the noisy environment and various unwanted reflections from BHA components
and minor geological objects, classical acoustic imaging of a geological section can be very
difficult. An attempt to utilize a typical acoustic visualization technique has been done to
see whether this can help in detecting karsts. Details of this study are presented in Appendix
A. From a karst detection perspective, these results pose the question of whether detection
of karst hazards ahead of the bit is feasible at all.

Furthermore, due to the nature of the problem, drilling hazards need to be detected and
accurately localized at a significant distance ahead of the bit to make the operator aware of
possible problems. This process requires fast processing of the reflected signals to meet the
real-time demands of drilling operations. This requirement is not always feasible with the
currently available methods.

Other problems are caused by multiple reflections from not dangerous for drilling geolo-
gical objects of different sizes and shapes, located at different depths and positions. The
pseudo-random noise generated by these objects masks reflections from dangerous for
drilling karst features and also complicates their detection. Specifically, since the character-
istics of this ambient noise are unknown, it is challenging to detect whether the received
signal contains reflections from dangerous for drilling karst objects in addition to this noise.
Without a complex signal processing technique, which can be computationally expensive
and difficult for operational interpretation of acoustic surveys, real-time detection of the

size and positions of karsts ahead of the bit is expected to fail.

6.2.3 Method of acoustic comparisons

To address these challenges, or rather, to avoid them, instead of using classical acoustic
signal processing techniques established for acoustic imaging of formation evaluation, it
was suggested a technique that relies on comparison of acoustic surveys.

This section proposes a method that avoids the aforementioned challenges inherent to
classical acoustic signal processing. It is based on comparing consecutive acoustic survey

signals. The method stems from a generic anomaly detection technique introduced in [158],
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which can be used for detecting equipment failures and other anomalies based on available
measurement streams.

The working hypothesis is that the sound reflection characteristics obtained from karsts
("echo" of the pulse information detected by the borehole acoustic tool) will be different
in a certain sense from the sound reflection characteristics acquired from any other not
dangerous for drilling objects. While the common practice of studying formation properties
is through formation images (seismic, resistivity or acoustic), which is very difficult and
costly with the described borehole instrumentation, the method applies different principle.

The method is based on consecutive acoustic surveys, illustrated in Figure 6.2. When the
well is drilled up to a certain depth, the first acoustic survey is taken (Survey #1 in Figure
6.2). Then, once the well is drilled further, the second acoustic survey is taken (Survey #2
in Figure 6.2). We can then repeat this process of conducting consecutive acoustic surveys
while drilling, as shown in Figure 6.2, where surveys from #3 to #8 are taken.

Survey comgarison

Drilling rig
]
n .
I i 2
i) )
f&\x Acoustic
SUrve
9
)
s O-0-0-O-N
BHA ; p
T ?
i KRN
Karst

Figure 6.2: Consecutive acoustic surveys along the well path (left) and their comparisons
(right)

According to the applied hypothesis, if there are no significant formation changes in the
region that has been drilled since the previous acoustic survey, then the difference between
the new and the previous acoustic surveys will be minimal. In other words, if drilling is
conducted within the same geological formation and there come no new geological objects
within the depth of investigation provided by the method, then the current and the previous
surveys will resemble each other in a certain sense. Specific ways of how to compare acoustic
signals and check their resemblance are discussed further in Section 6.3.
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In Figure 6.2, which illustrates the concept with the right-hand plot, equal surveys
are expected to be the surveys from #2 to #6. Starting from survey #6, as the well
trajectory is getting closer to the karst, each new acoustic survey will contain more reflected
components from the karst. These new karst reflections will cause an increasing difference
between the consecutive surveys as illustrated in the right-hand side of Figure 6.2 (acoustic
surveys #5 —#8). The strongest karst-reflection and thus the biggest difference between
the surveys is expected when survey #8 is taken and compared with survey #7. A trend of
differences between the neighboring surveys can serve as an indicator of an approaching
geological object. This trend can then be interpreted using additional available information,
as described in more detail in the next section.

In this concept the distance between acoustic survey stations plays an important role. The
longer the distance between surveying stations, the higher the probability of encountering
new geological reflectors while drilling. In the case of less frequent acoustic surveys, the
values of difference between the surveys can be scattered. A high scattering range between
previously recorded surveys, makes it challenging to detect small changes in the upcoming
surveys. In the suggested approach the distance between surveying stations can vary (e.g.
new survey station can be added when needed). If we expect any potentially dangerous
for drilling intervals ahead of the bit, acoustic surveying can be conducted more often.
More frequent acoustic surveying can reveal smaller differences between acoustic surveys,
thus enabling more accurate detection of an upcoming reflector (interface of geological
object ahead of the drill bit). In less dangerous for drilling intervals, or when there is no
operational necessity for the detection of geological objects ahead of the bit, acoustic surveys
can be conducted less frequently.

6.2.4 Interpretation workflow

The workflow of acoustic surveying and comparison of acoustic surveys consists of the
following steps. First, when drilling is stopped, but the drill bit is still in contact with the
formation, an acoustic source at the bit generates an impulse signal. Part of the generated
impulse propagates ahead of the bit and reflects back. The reflected signal is then detected
by a borehole acoustic logging tool such as SonicScope® [159]. Second, instead of a
conventional signal processing aimed to visualize geological formation properties, I compare
acoustic surveys and estimate the difference between them understood in a certain sense,
which will be discussed in more detail in Section 6.3. If the difference from the previous
acoustic signal is large, it can be explained by several causes, including changes in formation
properties, faulting/fracturing or karstification objects. More details on what could be
considered as a significant difference between the surveys is discussed in Section 6.3.7. Once
the difference between the surveys is detected, it is proposed to utilize additional available
data, which can be used to explain it. The workflow is shown schematically in Figure 6.3.
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Figure 6.3: The workflow of the acoustic comparisons method

An example of utilizing additional data to explain the difference between acoustic surveys
follows. Picking seismic horizons in a seismic study and converting them from time to
depth domain results in uncertainties in real horizon depths. Due to the uncertainty of the
real depths of geological horizons, on-site interpretation of geophysical data is typically
performed by geologists using additional IWD measurements. However due to a high
bit-sensor offset, geophysical measurements come with a significant delay. Prediction of an
approaching new geological horizon based on such delayed measurements is complicated.

Well site geologists project geophysical markers (patterns of geophysical measurements
corresponding to a certain geological horizon) from offset wells to solve this problem.
Still, without any direct measurements ahead of the bit, advance detection of geological
horizons is challenging. With the proposed novel acoustic surveying concept, based on
direct measurements ahead of the bit, the difference between the surveys can be detected.
Depending on how this difference changes with the depth, it can be possible to predict the
approaching to a new geological horizon or geological object as will be demonstrated by
simulations in Section 6.4. At this stage additional field data such as geophysical markers or
seismic interpretation can be used to explain the difference between acoustic surveys. If
there is an expected horizon in front of the drill bit, as follows from additional field data
(geophysical markers or seismic data), then the detected increasing difference between the
acoustic surveys will be an indicator of approaching this horizon. This difference can then
be used for calibrating the spatial data in the available data, e.g. the seismic model.

Another example illustrating possible utilization of additional field data when the dif-
ference between acoustic surveys is observed is the following. If it is not expected from
the analysis of available data that the well path will approach a new geological horizon or
that formation properties will change significantly, then a possible reason for an increasing

difference between acoustic surveys can be associated with encountering a new geological
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object. Depending on the region of drilling, various geological features can be expected:
karsts in carbonates, overpressure zones in a terrigenous formation, faults in a seismically
active region. Depending on the region of drilling, different decisions can be made when a
large difference in acoustic surveys is observed. Thus, the combination of the discussed in-
strumentation setup with the method of acoustic comparisons can be used for risk mitigation
while drilling.

The introduced concept of acoustic surveying is not intended to replace existing geo-
physical methods. It is expected that this concept can provide the best results in terms of
early detection of drilling hazards and/or formation changes, when it is used together with
other available data and knowledge about the region of drilling. Depending on whether the
difference between surveys can be explained or not, different actions can be taken. In some
cases the difference between acoustic surveys can be related to approaching a regular (not
dangerous for drilling) geological object. In other cases the difference can be an indicator

of approaching intervals/objects that are possibly dangerous for drilling.
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6.3 Signal Processing

6.3.1 Concept

Each acoustic survey consist of a combination of segments with a certain number of basic
shapes. Reflections that come from significantly different formations (e.g. one - from a
formation with a large karst, another - from a formation without a karst) will have different
features (e.g. basic shapes). Reflections that come from formations with comparable
properties will have approximately the same features in shapes. The method of acoustic
comparison presented below allows one to detect whether two acoustic surveys (e.g. signals)
have different sets of features (apart from the noise coming from minor geological reflections)
and quantify the difference in these features.

This method was initially presented in [158] and used for anomalies detection in heart
rhythm in electrocardiograms (ECG) [160]. The method of comparing two time series

(acoustic signals) consists of eight main steps as shown in Figure 6.4:

. Take acoustic survey

. Remove first arrivals (e.g. direct waves from the transducer)

. Split the survey into segments with overlapping

. Normalize each segment (windowing)

. Cluster the segments

. Generate the library of basic shapes for survey #1

. Take acoustic survey #2

. Remove first arrivals

. Reconstruct the signal from the library of basic shapes (centroids [158]) obtained in
step #6

10. Evaluate the reconstruction error

[T e s B R R R

11. Do steps #3-6 for acoustic survey #2 to generate the library of basic shapes for

comparison with subsequent acoustic surveys

The main output from these steps is the estimated value of the reconstruction error.
Sections 6.5 and 6.6 will provide more details about how this parameter can be used. As
illustrated in Figure 6.4, the library of basic shapes of the first signal is used for reconstruction
of the second acoustic survey. Once the reconstruction error is estimated for the second
survey, as will be discussed in Section 6.3.7, a new library of centroids can be created (see
Figure 6.4). More information on how a library of centroids can be created is given in
Section 6.3.6. This new library is then used to reconstruct the third survey and estimate the
reconstruction error. The details of each step are presented in the next subsections.
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6.3.2 Setup a Python Environment for Machine Learning

The method of acoustic comparisons, discussed in this chapter, requires a computer to
handle the computations and the Python environment for Al and Machine Learning. The
computer has the following configuration: Central Processing Unit (CPU) — Intel® Core™
i9-9900 processor with 8 cores (3.10 GHz), Random-access Memory (RAM) - 128 GB,
Graphics Processing Unit (GPU) — NVIDIA GeForce RTX™ 2080 (11 Gb).! To set up
Machine Learning in Windows Keras™ [161] and Tensorflow ™ -GPU packages [162] were
used. Keras - is the state-of-the-art deep learning Application Programming Interface (API)
developed by Google™ for implementing neural networks. TensorFlow ™ is a library for
numerical computations and large-scale machine learning. The following packages were

used:

e The distribution of the Python programming language Anaconda [163]

e The parallel computing platform, to use a CUDA-enabled graphics processing [164]
(CUDA Toolkit™, version: 11.0.2 451.48 winl0)

o The Deep Neural Network library (cuDNN™) - a GPU-accelerated library of primitives
[165] (version: cudnn-11.0-windows-x64-v8.0.4.30 )

Once new environment is created cuDNN .bin, .include and .1lib.x64 files can be
added to the corresponding Windows path. After that with the following commands a new

environment in Anaconda Prompt can be created:

conda create -c conda-forge python=3.8.5 -n tf

conda activate tf (switch to the new environment)

pip install tensorflow (Version 2.4 was used as the most stable one)
print(tensorflow.reduce sum(tf.random.normal([1000,10001))) (The outputshould
indicate that libraries were loaded successfully)

pip install keras (version 2.4.3)

install any additional packages if needed for the new environment such as NUMPY
[166]

To use Jupyter [167] in the activated environment:
conda install -c anaconda ipykernel

python -m ipykernel install -user -name=(name of new environment)
pip install jupyter
Once these steps are completed, one can implement examples of code listing provided in
this chapter in Jupyter Notebook and run Keras code using Tensorflow™ with Nvidia GPU
support.

1The method of unsupervised ML used in acoustic comparison (will be discussed in Subsection 6.3.6) is not
computationally expensive and can be run with a computer configuration that is less powerful than the one
described here. This computer configuration was also used for numerical modeling discussed in Section 6.4
where more computational power was required to meet the needs of the experiment.
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6.3.3 Curation of acoustic survey data

The first step in the developed workflow (see Figure 6.4) for acoustic survey comparison
is the excitation of the acoustic impulse and the registration of reflected signals as was
discussed in Section 6.2.

The second step is shrinking the signal (see Figure 6.4). Since the impulse is generated
in close proximity to the receiver (see Figure 6.1), one of the first signals detected by the
receiver is the direct arrival from the transmitter. An example of the acoustic survey is shown
in the upper part in Figure 6.5. There are different techniques for detecting direct arrivals.
Some of them are used in seismic or borehole acoustic signal processing [168-170]. For
the sake of simplicity in the implemented workflow the signal is cut at 300 s as shown in
Figure 6.5 (lower part).

Impulse from the
transducer

angnal signal

166
Shrunk signal

0 200 400 600 800 1000 1200 1400 1600

Figure 6.5: Example of simulated reflected signal detected by the receiver (acoustic survey)
and shrunk acoustic signal used for signals comparison. The first 300 ms of the signal are
cut out
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6.3.4 Segmentation

The third step in the signal comparison workflow is the segmentation of the acoustic signal,
where the input acoustic signal is split into a sequence of discrete segments (see Figure 6.4).
The generated segments are horizontal transitions with half overlapping of each other as
shown in Figure 6.6. Sliding length is the horizontal transition and the segment length is
the number of data points in each segment.

Segment
——| Length

Slide Lenglh

Figure 6.6: Sliding segmentation of the acoustic signal
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In the examples discussed in this chapter, each segment consists of 176 data points,
representing 176-dimensional space. 2 The result of splitting the signal into equal segments
of 25 [us] length is presented in Figure 6.7.

——————— Segment #
—— Segment #5
30 —————— Segment £45
20
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0 5 (1] 15 20 15

Figure 6.7: Segmentation of acoustic survey into equal segments of 25 us length. Three
segments are shown: #0, #15 and #45

The code used to implement this is:

#function:
def slide box(data, window_length, slide_length):
boxes = []
for pos in range(®, len(data), slide_length):
box = np.copy(data[int(pos) :int(pos+window_length))
if len(box) != window_length:
continue
boxes .append(box)
return box
#implementation:
segment_length = 25
slide_length = int(segment_length/2)
segments = slide_box(data, window_length=segment_length, slide length=slide_length)
len(segments)

print("_ % segments_are_ generated"” % len(segments))
2190 segments are generated

2Selection of the optimal length of segments is an important aspect in time-series analysis. The smaller the
segment size is, the more time series data is split. Depending on the length of the segment, polynomials of
different degrees and coefficients are required. In the K-means clustering method, the length of the segment
will affect the selection of the number of clusters to use. The higher the number of clusters the higher the
influence of polynomial coefficients will be. In this study both the length of the segments and the number of
clusters were chosen empirically. The development or implementation of a method to select optimal segment
length and number of clusters lies outside the scope of this thesis.
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6.3.5 Windowing

The fourth step in the acoustic survey comparison workflow (see Figure 6.4) is windowing.
Since the segments do not necessarily start and end at zero as can be seen in Figure
6.7, this can cause discontinuities when a Machine Learning (ML) technique will be used.
To reconstruct the waveform from the obtained segments (will be discussed in Section
6.3.7), the learned segments should have zero starts and ends. By applying the sinusoidal
windowing function [171] to each of the segments, all the data outside of the window is
multiplied by zero. The applied sine window function is defined by:

wln] = sin(%) 6.1)

, where w[n], 0 € n € N is the sequence of length NV with N being the length of the
segment. By applying windowing function to each of the segments, all the data outside of

the window is multiplied by zero. The code for the windowing function implementation is:

window_r = np.linspace(®, np.pi, segment_length)
window_function = np.sin(window_r)**2
windowed_segments = []
for segment in segments:
windowed segment = np.copy(segment) * window_function
windowed segments.append(windowed_segment)

The result of applying the windowing function to three segments #0, #15 and #45
is illustrated in Figure 6.8. Once the windowing is completed, all the segments are tied
together and can be clustered.

Windowed Segment #0

Ll ——————— Windowed Segment #15
———— Windowed Segment 845

i)

Pressure [MPa]
= =

=20

Time [us]
[ 5 1 15 20 25

Figure 6.8: Windowing of acoustic segments. Three windowed segments are shown: #0,
#15 and #45
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6.3.6 Clustering

Clustering algorithms can be useful to uncover the structure presented in time series. The
K-means clustering algorithm [172-174] is used in the presented acoustic survey comparison
workflow (see step five Figure 6.4). It is useful in data mining tasks since it gives researchers
insight into complex data set structures and can reduce the complexity of these data sets.
This is especially important when no prior knowledge about the data set is available (e.g.
data sets such as the acoustic surveys discussed in this thesis).

Each segment obtained in the previous steps can be visualized as a data point in an
N-dimensional space (in our case 176-dimensional space). One can imagine that these
points form clouds in the multidimensional space. The K-means algorithm splits these clouds
of segments into K not overlapping groups (clusters) based on the similarity principle. For
the acoustic surveying example studied in this chapter, each cluster will consist of segments
with a common shape. An arithmetic mean of the data points in the cluster is called a
centroid. In our case, it represents the mean shape of all segments in the cluster.

Figure 6.9 illustrates the main K-means clustering method for the case of two clusters.
First, it selects two centroids in arbitrary locations. Then it assigns data points to one of the
two clusters based on the Eucledian distance (each point is assigned to a cluster with the
minimal distance to the corresponding centroid). After all points are assigned to the two
clusters corresponding to their centroids, new centroids are calculated for each cluster (as
an arithmetic mean of all points in the cluster) and the process is repeated. The iterations
are stopped when the best possible centroid positions (and the corresponding split into

clusters) is achieved.
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Figure 6.9: K-means algorithm

When processing acoustic survey data, all segments obtained in the previous steps are
divided into K clusters and their corresponding centroids are calculated [175]. This set
of centroids form the library of main shapes of the signal and are used to reconstruct the

signal as will be discussed in the next section. Generating the library of the main shapes is

the sixth step in the acoustic comparison workflow (see Figure 6.4).

101



In this thesis was implemented the K-means algorithm provided in the Keras package.
Determining the optimal number of clusters is a known issue in partitioning clustering.
Different methods such as average silhouette [176], gap statistic [177] or computing the
number of clusters using R language NbClust package can be used to select an optimal
number of clusters to be used. However, one of the simplest, although, probably, not the
most optimal ways to find the optimal number of clusters is an iterative method: in this
method, one could gradually increase the number of clusters, until reaching the "optimal"
number after which further increase in the number of clusters does not lead to a significant
improvement in the reconstruction error of the signal. For the signal discussed in this section
the maximum number of clusters was set to 150. The code of utilizing the corresponding

K-means function is given below.

cluster = KMeans (copy_x=True,
init='k-means++"',
max_iter=300,
n_clusters=150,
n_init=10,
random_state=None,
tol=0.0001,
verbose=0)

cluster. fit(windowed_segments)

A nearest centroid estimated for one of the windowed segments is shown in Figure 6.10.

Windowed Segment
Nearest centroid
3n Original segment
20
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Figure 6.10: Original segment, windowed segment and estimated nearest centroid for the
windowed segment.
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6.3.7 Signal reconstruction and comparison

It is assumed that the obtained library of centroid shapes is accurate to depict the shape
of initial acoustic survey (see step seven in Figure 6.4). If this self-reconstruction is not
accurate enough, one can increase the number K — the number of clusters. In this example
K=150 was used. Given that, one can rebuild or reconstruct an acoustic signal from the
obtained centroids. To reconstruct the entire shape of the acoustic survey, centroids need
to be combined together. Reconstruction on clusters is conducted with the built in Python
module - sklearn. cluster. More information can be found in [178].

For a given segment, the sklearn module finds the nearest centroid from a library of

centroids based on Eucledian distance. The corresponding code is given below.

nearest_centroid_index = clusterer.predict(segment.reshape(1,-1))[0]
centroids = clusterer.cluster_centers
nearest_centroid = np.copy(centroids[nearest centroid_index])

To reconstruct the segments with the half overlap (e.g. with the defined slide length as

was shown in Figure 6.6) the centroids are combined together:

position = segment_number * slide length
reconstruction[int(pos):int(pos+segment_length)] += nearest_centroid

With acoustic survey reconstruction on clusters we can reproduce the shape of the acoustic
survey. With this reconstruction method we can compare two acoustic signals. If signal #2
contains new features that are not present in signal #1, then the reconstruction error will
be higher, since the library of centroids was obtained for signal #1 and it does not contain
the shapes to accurately reconstruct signal #2.

To estimate the reconstruction error a percentile score was used. In statistics it is a value
below which a given percentage of data in a group of observations fall [179]. To estimate
the reconstruction error, I use 98t percentile or the value (score) below which 98% of the
data (reconstructed signal) fall. The code listing for the calculation of reconstruction error

is:

error = reconstruction[®:n_samples] - data[@:n_samples]
error_98 = np.percentile(error, 98)

If signal #2 consists only of features present in signal #1 (and thus captured in the library
of centroids), then the calculated difference will be relatively low. In the examples below

these normal and anomaly reconstruction errors are considered.

Normal reconstruction error

An example of a normal acoustic survey reconstruction on centroids obtained from a normal
acoustic survey is shown in Figure 6.11. The estimation of the 98 percentile of the data
along the specified time axis gives the reconstruction error of 111352.6.
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Figure 6.11: Original acoustic survey and reconstructed acoustic survey

Anomaly reconstruction error

If the library of clusters obtained from a normal acoustic survey will be used to reconstruct
an anomaly (e.g. karst-related) acoustic survey, the error of reconstruction will be larger. A
large reconstruction error occurs when the input is different from normal acoustic surveys,
not related to karsts or any other changes of the formation properties ahead of the drill bit.
In this example, estimation of the 98™ percentile gives the reconstruction error of 247311.0,
which is more than 2 times larger than the error of 111352.6 estimated for the reconstruction
of normal signal, discussed in previous example. Figure 6.12 depicts the reconstruction
of an anomaly acoustic survey (signal reflected from a karst) from the library of clusters
obtained from normal acoustic survey.

Reconstructed ajomaly signal
075 Original signal with anomaly
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Figure 6.12: Anomaly acoustic signal and its reconstruction from the library of clusters
obtained from a non-anomaly acoustic survey
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6.3.8 Summary

This section has considered the method of acoustic signal processing. This method can be
used to compare acoustic signals and estimate the difference between acoustic surveys.
In this method first, the acoustic impulse is generated and reflections are received (e.g.
acoustic surveying is taken as was discussed in Section 6.2). Then, the signal is shrunk to
eliminate the first direct arrivals in the obtained survey (Section 6.3.3). Once the signal is
pre-processed it is divided into equal half overlapping segments (Section 6.3.4. To eliminate
discontinuities in the ML method, the windowing function is applied for each segment
(Section 6.3.5). The windowed segments are then clustered with the K-means method
(Section 6.3.6). The result of clustering is the library of the main shapes that comprises
the acoustic survey (library of centroids). This library is then used to reconstruct the next
acoustic survey. Depending on whether or not a new acoustic survey contains anomaly
reflections, the estimated reconstruction error can be different. The estimated reconstruction
error will be low if the two signals have similar features, e.g. both correspond to formations
without anomalies and high for the case when two signals contain different features, e.g.
when one of the signals correspond to a formation without an anomaly, while the other one
is with an anomaly. The reconstruction error can thus be utilized as a measure of formation
changes that occur between the two surveying stations, e.g. due to approaching a karst.
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6.4 Numerical modeling

For concept validation and validation of the acoustic surveying technique extensive numerical
simulations are conducted in an industrial simulator COMSOL Multiphysics® [180]. This
section describes the main parameters of the developed numerical models and simulation

results.

6.4.1 Model geometry

Two basic geometries were modeled in this study 16 m and 50 m of vertical section. All the
parameters that will be discussed further are identical for both models, except for the length
of the section. Below parameters of the model used to study pressure waves propagation in
a 16 m well section are considered.

A 2D model geometry is shown in Figure 6.13a. A source of sound is a surface of 0.01
m width located 4 meters below the top of the model. The detector of acoustic waves is
located 0.01 m below the top boundary of the model (3.99 m up the transmitter).

To study the influence of different karstification objects on the detection of formation
changes and dangerous for drilling karsts ahead of the drill bit, a set of randomly distributed
objects was created in the model. Depending on the simulation scenarios four types of
randomly distributed objects were considered. For all cases the number of randomly
distributed features was set to 100. In the example discussed in this section, random

features are vugs with minimum radius 0.01 m and maximum 0.1 m.

6.4.2 Materials

The speed of sound waves propagation and rock density in the model are set according
to the real carbonates formation properties in the Loppa High region and given in Table
6.1. The fluid filling the karsts is given by water, to model the physics of sound waves

propagation at the interface between two media.

Table 6.1: Material Properties

Material | Density Young’s Poisson’s | P-velocity | S-velocity
[kg/m®] | modulus [GPa] ratio [km/s] [km/s]
Carbonate | 2600 60 0.25 6.94 3.82
Fluid 1000 n/a 0.5 1.48 n/a

6.4.3 Boundary Conditions

The low-reflecting boundary condition is used in the model to ensure that all types of waves
pass out of the model domain without unwanted reflections. This condition is applied on

the outer surfaces of the model as shown in Figure 6.13b. The condition uses material

106



properties from the domain to create an impedance match for both pressure waves and
shear waves propagating in the domain [181]. Internal boundary conditions at the interface
of the two materials are computed automatically by the COMSOL Multiphysics® software.
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Figure 6.13: Configuration of the numerical model for acoustic surveying

6.4.4 Acoustic source signal

The model of acoustic wave propagation in a rock medium is developed in Finite Element
Method (FEM) Pressure Acoustic Transient interface of the COMSOL Multiphysics® software.
The source signal is defined by Body Load. The velocity of the transducer surface (drill

bit surface) is given by:

Va(t) = exp (—%sm@ﬂfﬂt)) (6.2)

with the delay 2T and the standard deviation ¢ = Tp/2+/2. Values for the period

parameter Ty and frequency parameter fj are provided in Table 6.2.
Taking the partial derivative of Equation 6.2, the source signal is then defined as a Total

Force (Body Load) acting on the surface. The profile of acceleration curve, applied to the
surface of the transducer to generate acoustic impulse is shown in Figure 6.14.
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Figure 6.14: Acceleration, applied to the surface of transducer to generate acoustic impulse

Table 6.2: Acoustic signal properties

Transmitter width [m] | Signal frequency [kHz] | Signal Period [us]
0.1 5 0.2

6.4.5 Meshing

The entire geometry of the model is meshed with triangle shaped elements. According to
the Comsol Multiphysics acoustic manual, to model acoustic wave propagation in a medium,

5 to 6 mesh elements per wavelength are required. Maximum element mesh size can be
calculated by Equation 6.3.

/\min Crnin
Rz = = 6.3
N~ Trasl 3

where hqe - maximum mesh element size, A - minimum wavelength, fiq. - maximum
frequency, ¢,i, - minimum sound speed, N - given number of elements per wavelength. In
the current model configuration, for the frequency of 5 kHz, maximum mesh element size
for solid medium is 0.06 m, for liquid - 0.03 m. The mesh consists of 162651 elements and
has 630454 degrees of freedom. An overview of the mesh is shown in Figure 6.15.
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Figure 6.15: Meshing of the model

6.4.6 Solver

To compute the time-varying propagation of pressure waves, a Time-dependent solver with

Multifrontal Massively Parallel Sparse (MUMPS) [180] was used. This type of solver is

commonly used for computing the solution over time. The model is computed with 4400 us

time steps. When solving transient models, mesh imposed limitations on the time-step size

dt are taken by the solver. In [182], a relationship between mesh size and time step was
introduced. It is given by given by Courant-Friedrichs-Lewy (CFL):

CFL = %& (6.4)

where ¢ - is the speed of sound and h - is the mesh size. This number is interpreted as

a part of an element over which the pressure wave travels in each time step. The value of

the CFL number should be less than or equal to 0.5 to minimize computational errors and
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ensure that each of the computational errors will fall within the same distribution range. A
minimum value of the time step is given by [182]:

Rmaz(rock) CF L
P — velocity(rock)

Based on Equation (6.5), for h,,,,u(r0ck) = 0.06 m, CFL = 0.5 and P — velocity(rock) =
6.94 km/s, a time step of 0.0048 is was selected to resolve wave propagation in the model.

Af — (6.5)

The model was run on the workstation Dell Precision 7920 with the configuration de-
scribed in Section 6.3.2. The average time to calculate a solution of the model with the

given parameters was ~2 hours.

6.4.7 Pressure distribution

Acoustic pressure waves propagate with a spherical wavefront. Its propagation in the model
at different time steps is shown in Figure 6.16. When the acoustic wavefront reaches vugs
and the cave at the bottom of the model, reflections occur due to a change in acoustic
impedance from rock to water-filled objects. The P-wave 3 reaches the cave at approximately
2.8[us]. The wave reflected back from the cave reaches the sensor at approximately 6[zs].
Inside the cavity, (Figure 6.16), we can see a pressure wave focusing effect [183]. Inside
the cave one part of the wave is transmitted back into the formation, and another part of
the wave is transmitted towards the Low-Reflecting bottom boundary of the model.
Reflections from the roof and the bottom of the cave are repeated until the signal is
completely attenuated. These repeated reflections from the cave can then be detected by
the receiver. The same repeated reflections appear also in smaller vugs. They contribute
to generating a smaller amplitude ambient noise in the model as shown in Figure 6.16.
All these reflections make classical signal processing challenging and require novel pro-
cessing methods, e.g. the one described in Section 6.3. The application of this method is

demonstrated and validated in the next sections.

3A P-wave is a type of elastic body waves, also called seismic waves. The fastest traveling acoustic wave.
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6.4.8 Numerical model for simulating acoustic surveying in a karstified car-
bonates formation.

To investigate how dangerous for drilling karst forms can be detected with a novel acoustic
surveying concept, a numerical representation of karstified carbonates formation was de-
veloped as shown in Figure 6.17. The modeled well section represents a 16 m carbonate
rock consisting of vugs karst features, which form heterogeneous isotropy. Vuggy zones
are common within the studied Loppa High region. This formation model can serve as a

representative model for testing the acoustic surveying method described in this chapter.

Real vuggy zone in Numerical representation
carbonates of vuggy Zone
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Figure 6.17: Numerical model of a karstified carbonates formation presented by vugs and
its instrumentation for testing acoustic surveying. Well section of a 16 m carbonate rock.
Photo creator [184]
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Instrumentation part of the numerical experiment consists of a transmitter (pointer # 1)
and a receiver (pointer # 2) shown in Figure 6.17. The transmitter generates a pulse with
the same properties as in Section 6.4.4. It represents a drill bit with a pulse generator.

The receiver of acoustic signals is located at a 4 m offset from the transmitter. This
replicates a possible position of a borehole acoustic logging tool within a drilling BHA.
In this numerical simulation, instrumentation is simplified and does not represent a real
configuration of a drilling BHA, which typically includes such components as the drill bit,
mud motor, BHA stabilizers and other IWD tools. However, it is expected that the main
principles of acoustic measurements can be captured and tested in simulations with this
instrumentation setup.

Each survey starts with an acoustic pulse generated by the transmitter. Waves generated
by the transmitter propagate in different directions, including the region ahead of the
transmitter (e.g. ahead of the drill bit). Reflected acoustic waves are detected by the
receiver (pointer # 2) as shown in Figure 6.17. Once the signal is detected, the transmitter-
receiver system moves one meter deeper and a new survey is taken. This process replicates
conducting an acoustic survey at a given depth, drilling to a new depth, and conducting the
next acoustic survey. In the simulations, this process is repeated for the entire well section
up to the water-filled karst (pointer #3).
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6.5 Acoustic surveying concept verification - Early detection of
karsts

Numerical simulations of consecutive acoustic surveying of a 16 m carbonate rock containing
vugs and a larger karst as shown in Figure 6.17 and described in the previous section were
conducted to to test the novel acoustic surveying concept described in Section 6.2. The

workflow used in this numerical experiment is the following:

e generate an impulse by the transmitter and simulate wave propagation using the
model described in Section 6.4.8

e record reflections by the receiver (e.g. record the acoustic survey)

e compare this acoustic survey with the previous acoustic survey to calculate the differ-
ence between them, as described in Section 6.3

e plot the estimated value of the difference for every new survey

The result of this simulation workflow (e.g. acoustic surveys) for four different scenarios
is shown in Figure 6.18. In the scenarios discussed below all karsts are spherical objects of
different diameters. Karst diameters vary from 0.5 m (Scenario #1 in Figure 6.18) up to
2.0 m (Scenario #4 in Figure 6.18).

Scenario #1 in Figure 6.18 illustrates the results of acoustic surveying of a well section
that contains a cave sized 0.5 m in diameter. The X-axis shows the estimated difference
between a new and the previous acoustic surveys. The distance between the sound source
and the upper boundary of the karst is marked along the Y-axis. In scenario # 1, starting at
a distance less than 6 m, a trend towards an increase in the difference between acoustic
surveys can be observed. This indicates that in the acoustic surveys, that are taken closer
than 6 m to the cave, there are new signal components (reflections from the cave). This
can explain an increase in the difference between acoustic surveys (see Scenario # 1 in
Figure 6.18). This simulation also demonstrates the functionality of the tested concept:
the increasing difference between consecutive acoustic surveys serves as an indicator of
approaching a karst.

With an increase in the cave size, the distance when the cave can be detected also increases
(see Scenario # 2 in Figure 6.18). A cave sized 1.0 m can be detected at a distance of
approximately 7.0 m. The depth when a cave can be detected, is estimated from the point
where the deviation of the difference between acoustic surveys starts.

A similar increase in the distance at which a cave can be detected is observed in Scenario
# 3 and Scenario # 4 with cave sizes of 1.5 m and 2.0 m respectively. A 1.5 m cave can be
detected at 8.0 m distance from the transmitter (Scenario # 3 in Figure 6.18), 2.0 m cave
- at 9.0 m (Scenario # 4 in Figure 6.18). It can be concluded that a consecutive trend in
the difference between acoustic surveys can be an indicator of approaching an interface
between two media as will be discussed in the next section. In this example, the interface is

the boundaries of the karst cave sized from 0.5 m to 2.0 m. Also one can notice that larger
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caves can be detected earlier than smaller caves.

Based on this sensitivity analysis the possibility of the detection of karsts with the de-
veloped novel acoustic surveying concept was investigated. More than 40 different cases
were simulated and it was confirmed that 1) the presence of a consecutive trend of the
difference between acoustic surveys is an indicator of approaching an interface between two
media (as transmitter-receiver instrumentation is approaching the karst in the considered

examples) 2) larger caves can be detected earlier than small caves.
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Figure 6.18: Numerical simulation of acoustic surveying of a 16 m carbonate rock section
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6.6 Acoustic surveying concept verification - Early detection of

formation properties changes

Numerical simulations of consecutive acoustic surveying of a 50 m of carbonate rock consist-
ing of four different formations and a larger karst as shown in Figure 6.20 were conducted to
test the novel acoustic surveying concept for early detection of formation property changes.

The modelled well section represents a 50 m carbonate rock consisting of four different
formations, marked as Formations # 1, # 2, # 3 and # 4 (see Figure 6.19). The vugs are
included in Formation # 4, were discussed in the previous section (Section 6.5). The karst
in this numerical experiment is a spherical object of a 1 m diameter. Each formation consists

of unique, randomly distributed geological features:

1. Formation # 1 - randomly aligned micro fractures form orthorhombic anisotropy
2. Formation # 2 - vertically aligned micro fractures form horizontal transverse isotropy
3. Formation #3 - horizontally aligned micro fractures form vertical transverse isotropy

4. Formation # 4 - vugs karst features form heterogeneous isotropy

The reasons for introducing such features are: 1) "most elastic media are weakly aniso-
tropic" [185] 2) micro faults, fractures and vugs are the most common features presented
within the studied region in the Barents Sea. Therefore, this formation model can serve as a
representative model for testing the acoustic surveying method described in this chapter.

Model configuration and the workflow used in this numerical experiment are identical to
the ones used in the previous example (Section 6.5). An example of a comparative visual
comparison of reconstruction errors is discussed in this section, however more advanced
techniqus of fully or semi-automatic trend analysis can be used in future work.
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Figure 6.19: Numerical model of a karstified carbonates formation and its instrumentation
for testing acoustic surveying. Consecutive acoustic surveys are conducted as we drill through
the formations towards a large karst
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The result of the simulations with the applied workflow is shown in Figure 6.20. The
reflected acoustic signals (e.g. acoustic surveys) obtained in Formation #1 are significantly
different from each other. As illustrated in Figure 6.20, this gives the greatest scatter of
values in the estimated difference between each survey, compared to other formations
(interval #1). This significant difference between surveys taken within Formation #1 can be
attributed to the lack of uniformity and variety of angles and positions of fractures. Each new
survey taken within Formation #1 consists of unique components reflected from randomly
aligned discontinuities and therefore each new survey will be significantly different from
previous surveys. However a linear trend in the values of difference can be observed when
we reach Formation #2 and start recording reflections from a formation with uniformly
aligned geological features (interval #2 in Figure 6.20).
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Figure 6.20: Numerical simulation of acoustic surveying of a 50 m carbonate rock section
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Compared with Formation #1, it is clear that further acoustic surveying in Formation
#2 is characterized by a smaller scattering of values in the acoustic surveys difference.
The smaller difference can be explained by a unidirectional fractures distribution within
Formation #2, even though the geometrical properties of fractures and their positions are
random. In other words, due to a unidirectional spatial distribution of fractures, each new
acoustic survey will contain less unique (more similar) reflections. This leads to a decrease
in the range of acoustic survey scattering (see Figure 6.20, Formation #2).

A similar to the interval #2 linear decrease of the magnitudes of the difference between
acoustic surveys, can be observed in interval #3 in Figure 6.20. There is a steady linear
trend when new Formation #3 is detected by the receiver. Comparison of acoustic surveys
in Formation # 3 shows significantly less scattering of the difference values than the previous
two formations (Formations #1 and #2). Acoustic surveys, which were taken within
Formation #3, are similar and have comparable characteristics in the reflections. Accordingly,
the distribution of acoustic survey differences is minimal.

In the transition interval between Formations #3 and #4, there is no visible trend in
the magnitudes of difference (Figure 6.20, interval #4). Taking into account the small
geometrical sizes and low reflection surfaces of the vugs included in Formation #4, these
objects do not make significant contributions to the acoustic surveys. Thus the range of
acoustic difference distribution in Formation #4 is narrow and similar to Formation #3.
The trend observed in interval #5 is an indicator of approaching a water-filled karst located
in Formation #4 as shown in Figure 6.20. The trend of the difference values in this case is
similar to the trends observed in transition intervals #2 and #3. The presence of a trend is
an indicator of acquiring new reflected components from geological interfaces located ahead
of the bit and can be an indicator of both formation changes ahead of the bit or karst-like
object detection. In this particular interval, the difference between acoustic surveys is an
indicator of approaching a karst.

In this section a conceptual framework of acoustic surveying when drilling a well section
was introduced. Consecutive acoustic surveys taken with 1 m intervals replicated the process
of taking acoustic surveys during drilling. It is assumed that drilling is stopped for each
acoustic survey. The method of acoustic comparison is utilized to estimate the difference
between surveys demonstrates good results for both the detection of formation properties
changes and karst detection ahead of the transmitter (e.g. drill bit).
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6.7 Conclusions

This chapter has presented a novel geophysical method of surveying formation properties
ahead and around the drill bit. In this method consecutive acoustic surveys are conducted
at increasing depths as we drill. They are compared with each other using an unsupervised
machine learning algorithm. The results of these comparisons are then interpreted to
evaluate formation properties ahead and around the drill bit. The method consists of Bottom
Hole Assembly (BHA) instrumentation to conduct acoustic surveying, a signal processing
algorithm, and a workflow to interpret and utilize the processed acoustic surveying data.
Together these three parts (instrumentation, signal processing and interpretation) form the
basis of the developed Method of Acoustic Comparisons (MAC) (see Figure 6.21) presented
in this chapter.

Method of Acoustic Comparisons (MAC)

Instrumentation Signal Processing

Interpretation Workflow

Figure 6.21: Method of Acoustic Comparisons (MAC)

The developed MAC method was tested with more than 80 numerical models for simulating
acoustic surveying in karstified carbonates formation. These models represent various
karstified carbonates with properties similar to the formation properties in the Loppa High
region. The tests validated the applicability of the proposed method to the problem of karst
detection ahead of the bit. They also studied its sensitivity with respect to the distance to
and the size of karsts to be detected. Finally, through simulations of the drilling/surveying
process in a 50 m section with 4 different formations, the tests demonstrated applicability
of the method for detecting not only karsts, but also formation changes.

The instrumentation consists of a pulse generator and acoustic sensors. The pulse gen-
erator has to be installed at the drill bit. This is a minor modification of the BHA. For
acoustic sensors, one can utilize standard Logging While Drilling (IWD) acoustic tools, like
SonicScope™ (Schlumberger) or XBAT™ Azimuthal sonic (Halliburton).
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The K-means clustering is presented in this chapter is a suitable approach to quantifying
similarities between acoustic survey signals. There are, however, other methods that can be
used as an alternative to K-means. Studying applicability of these methods, listed below, is

considered as future work.

e Autoencoders [186-188] consist of an encoder and decoder. Similarly to the discussed
K-Means approach, requires pre-processing of the acoustic signals (segmenting, win-
dowing, and scaling) to form an input array. The encoder is a neural network that is
trained to compress the input signal or convert the input array into a reduced dimen-
sionality array. The decoder, another neural network, that is trained to decompress
the low-dimensional output of the encoder into the same dimensionality as the input
array. The neural networks of the encoder and decoder are trained jointly to minimize
the reconstruction error between the input signal and the reconstructed output of
the decoder. These trained neural networks capture key features of the acoustic
signals used for training. When later on the same encoder-decoder pair is applied to
another acoustic survey taken at another location, the resulting reconstruction error
can indicate how similar (or different) that new signal is from the ones used in the
training of the autoencoder. Then the reconstruction error can be used in the same
way as in the K-means approach.

e Density-based algorithms for discovering clusters in large spatial databases with noise
such as Self-Organizing Maps (SOM) [189], Expectation Maximization(EM) [190]
and DBSCAN [191].

e Algorithms for categorical attributes clustering such as ROCK [192]

e A shared nearest neighbour approaches such as Wave Clustering [193, 194], Find-
CBLOF or Cluster-based Local Qutlier Factor (CBLOF) [195]

e Algorithms for clustering based on a “similarity measure” such as Euclidean distance or
more complex distance measures [196], distance to k-th Nearest Neighbour techniques
[197, 198], peer group analysis [199], hyper-graph based techniques such as HOT
[200], partition based techniques such as taking a k-th nearest neighbour for instances
in each partition [201] and density based methods such as methods that use a local
outlier factor for other outlier detection [202].

Future work can also focus on employing multiple acoustic signals in establishing the
library of centroids in the K-means method. For example, one can use multiple surveys
corresponding to different angular positions of the drilling bit. The method of angular
acoustic surveying can be tested and incorporated not only with the discussed in this chapter
K-Means clustering method but also with other machine learning techniques listed above.

In the future work one could also study whether it is possible to dynamically change
the number of clusters during drilling. It is assumed that for different types of rocks, a
different number of clusters is needed to reconstruct the signal. This can contribute to the
improvement of the robustness of karsts or other features detection ahead of the drill bit.
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The scope of this chapter was limited to presenting the method of acoustic comparisons and
validating it through simulations. Further work may include selecting optimal parameters for
the method, testing other machine learning techniques for anomalies detection, validation

in a lab scale setup and, after further development, in field tests.
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Chapter 7

Concluding remarks

7.1

Conclusions and Discussion

This thesis has systematically addressed the research questions formulated in Chapter 1
with the overall goal to find better strategies, methods and technologies for safer drilling in
karstified carbonates. This is a multidisciplinary problem. To tackle it different approaches

were investigated including geophysical methods, drilling mechanics data, acoustics and

signal processing and machine learning. The results obtained in this thesis enabled the

following concluding remarks to be made:

Q1 - Conclusions:

Q2 - Conclusions:

Based on the analysis of the drilling data (mud logs, drilling reports, site survey
reports), drilling mechanics data (surface and downhole measurements), geology
(lithology, stratigraphy, biostratigraphy), rock and core (conventional core analysis
and core photos), petrophysical reports (Computer Processed Interpretation (CPI),
Composite), well logs (wireline, LWD), it is demonstrated that karstification objects
tend to appear in groups. These groups of karsts occur in zones with geological
conditions favorable for karstification. Such zones can include both dangerous and not
dangerous for drilling karstification objects. Encountering either of them can serve as
an indicator of drilling through a karstification zone. The overall result of this analysis
indicate that encountering dangerous for drilling karsts is not always unpredictable
during drilling and that zones with high risk of karsts can be detected.

Based on the overview of methods and technologies over the last 40 years, it is
concluded that small, dangerous for drilling karsts are the most challenging objects to
detect with pre-drill and real-time karst detection methods. Any relevant resistivity,
acoustics or seismic-based methods can hardly be used for avoiding drilling into karsts
or even for real-time detection of encountering karsts. Moreover, at the moment there
is no technology or geophysical method that can consecutively investigate the region
in front of the bit and therefore be used for prediction of dangerous for drilling smaller
karsts. The identified limitations of existing technologies and methods indicate a gap
for further research and development to find methods for safer drilling in karstified
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carbonates.

Q3 - Conclusions: Based on the analysis of intervals of karstification it is concluded that there are
sequences of drilling events, which preceded hitting dangerous for drilling karst forms.
Karsts can be predicted during drilling and zones with high risk of karsts can be
detected from real-time drilling measurements. It is confirmed that combination of
drilling dynamics and flow-based sets of measurements can be implemented for karst
detection while drilling. The identified patterns of real-time measurements in the
karst intervals can be utilized for karst detection.

Q4 - Conclusions: An automated algorithm for karst patterns recognition in real-time drilling measure-
ments was implemented to simplify the analysis of drilling data for engineers. The
proposed ADF algorithm demonstrates good results for automated event detection and
can efficiently locate change points in measurements corresponding to dangerous for
drilling karst patterns with high precision. The main value of the discussed approach
is that it simplifies the process of the detection of suspicious changes in drilling data.
It was shown that the ADF outputs such as WR and calculated signal derivatives can
simply indicate that there are changes in drilling data that might be linked either
with regular drilling instances or with drilling through karsts. Validation of event
detection hypothesis on the field data showed the potential of the ADF algorithm for
real-time karst patterns detection from the drilling dynamics and flow-based sets of
measurements.

Q5 - Conclusions: A novel acoustic surveying concept for early karsts detection has been introduced.
Karsts, undetectable with the state-of-the-art geophysical, seismic or resistivity meth-
ods can be detected with the developed concept. The results of more than 80 simulated
scenarios indicate that even smaller karsts sized 0.5 m are possible to detect ahead
of the drill bit. The utilized signal comparison technique which was used instead of
conventional acoustic processing is a promising and a computationally effective tech-
nique, that can potentially be used for acoustic surveys comparison in a real drilling
environment. It is demonstrated that the developed acoustic surveying concept is
not limited to the area of karst detection ahead of the drill bit, but can also be used
for advance detection of formation changes. This significantly expands the area of

possible applications of the concept.

7.2 Future work

The following further work is proposed:

1 : The method of karst patterns detection based on real-time drilling measurements
described in Chapter 4 is limited in terms of the number of wells available for the ana-
lysis. Even in closely-studied fields, the percentage of wells, which encountered karsts
and at the same time contained a full set of necessary well-log data is rather small.
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Being limited to the area of research, the study did not include other geographical
regions of karstification. Future work on this subject should go towards additional
analysis of well data from other fields with different geology. This will allow one to
make a complete picture of unique real-time indicators of karsts, regardless of the
geography of the research region.

: Future work on the algorithm for automated analysis of real-time drilling data,
proposed in Chapter 5, can include extension to multiple inputs (compared to the
scalar time series application presented in Chapter 4). This will increase reliability and
confidence in the detection of karst patterns and other drilling events. This extension
will contribute to a higher degree of automation of event detection to a higher degree
and help with subsequent consistent classification of complex real-time drilling data.
: It is believed that the method of acoustic comparisons proposed in Chapter 6 has
potential for further research and development in the following directions.

First, one can further investigate the application of various methods of signal filtering
and preprocessing applied to the measured acoustic signals. They can be used for
initial filtering and cleaning the measured data of acoustic surveys before they are
compared using the method of acoustic comparisons presented in Section 6.3. It is
expected that signal filtering (although it is implicitly included in the method itself)
can improve the accuracy of signal comparison by the unsupervised machine learning
approach implemented in this concept.

Second, based on the generic concept of acoustic comparisons, one can test more
methods of signal comparison other than the K-means method studied in this thesis.
This can lead to selection of an algorithm that is better suited for this application or to
confirmation that the K-means method is indeed the best method for this application.
Third, the performed simulations used an impulse source to excite acoustic waves
(Section 6.4.4). Further research can be undertaken to study reflections of the waves
continuously generated while drilling by the drill bit due to rock-bit interaction. With
more frequent acoustic surveying, e.g. while drilling, comparison of acoustic surveys is
expected to be sensitive to both small and large changes in formation properties ahead
of the drill bit. Taking into account high computational efficiency of the suggested
K-means method to compare acoustic surveys, a novel acoustic concept introduced
in this thesis can be tested with the acoustic signal generated by the drill bit while
drilling.

Fourth, to investigate the feasibility of both discrete impulse-based and continuous
acoustic surveying suggested above, laboratory experiments are required. Numerical
models, discussed in this thesis can be used to develop instrumentation and plan

experiments.
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Appendix A

Visualization of acoustic reflections

Different techniques for sound waves visualization and wave characterization can be used
when rough estimation of sound reflections and absorption is needed. However these
techniques are effective only to some extent. Typically it is challenging to deal with such
complicated phenomena as sound reflection, diffraction and scattering, especially when
certain components of acoustic reflections need to be identified (e.g. karst reflections).
Moreover the application of conventional acoustic signal processing methods, such as
pulse-echo reflections, is often limited by 1) simplified geometries of the instrumentation
part 2) region of study which is typically close to the transmitter [203]. This appendix
demonstrates the results of sound waves visualization. It was conducted in an attempt to
identify karst-related reflections by visual analysis of time-spatial distribution plots.
Sound wave propagation simulations are based on the FEM discussed in Chapter 6. The

instrumentation setup is shown in Figure A.1.
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Figure A.1: Numerical simulation of karst detection with a line of receivers
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To visualize acoustic reflections, instead of a single receiver, which was used to detect
reflected signals described in Chapter 6 (see Figure 6.20), I implement a line of receivers.
This allows reflections to be obtained at each point on the receiver line. Such configuration
of instrumentation can be considered as a virtual representation of a borehole sonic tool
consisting of many receivers located closely to each other. This instrumentation setup
benefits from obtaining sound signals at each point along the receiver line and helps in the
identification of visual components of karsts reflections.

In total, four different scenarios with fixed distances to the cave (7 m, 5m, 3 mand 1 m
) were simulated in the COMSOL Multiphysics®. Parameters of the developed numerical
model are similar to that described in Chapter 6, Section 6.4.

Figure A.2 shows the time spatial distribution plots. The X-axis represents the coordinate
of each of the receiver located onto receiver line. The Y-axis is the time axis. For convenience
of visual analysis additional amplification of the reflections were applied. However, as can
be seen in Figure A.2, it is challenging to find the difference between simulated scenarios
visually. For example, the time-spatial distribution plot obtained for the case with the
maximal distance to the cave (Figure A.2a) is visually similar to the case with the minimal
distance to the cave (Figure A.2d).

In the next attempt to find a visual difference between the different scenarios discussed
above, one of the quadrature filters was applied. These filters are typically used in systems
with continuous signals and helped to extract a base signal from wave forms [204]. The
results of the Hilbert transform of a signal are shown in Figure A.3. For more information
on the subject of the Hilbert transform I refer the reader to [205, 206]. As can be seen
in Figure A.3, it is still challenging to visually compare different scenarios and find the
difference between them when the virtual BHA is approaching the cave.

Comparison of these figures reveals that the propagation of the wave front is very complex.
Multiple unwanted reflections are not optimal from the seismic point of view and the
positioning of the transmitter and receivers makes detection of karst-related reflections
challenging. This motivates the development of an unsupervised ML technique presented in
Section 6.3.
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