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ii Isak Drage: Tilting modules

0.1 Abstract

This thesis will introduce torsion pairs. After this we will introduce tilting mod-
ules, which induces a torsion class, where the tilting module is a Morita pro-
generator. This yields an equivalence between a torsion pair in mod A and
mod B, where B is the endomorphism algebra of a tilting module. The first
part of the thesis will be show this equivalence. These tilting modules also
gives an equivalence between the derived categories Db(A) and Db(B). The
second part will be about this equivalence.

0.2 Sammendrag

Denne oppgaven vil introdusere torsjonspar. Etter dette vil vi introdusere vip-
pemoduler, som er moduler induserer en torsjonsklasse, der vippemodulen er
en Morita-progenerator. Dette gir en ekvivalens mellom et torsjonspar i mod
A og mod B, der B er endomorfialgebraen til en vippemodul. Første del av
oppgaven vil vise denne ekvivalensen. Disse vippemodulene gir også en ekvi-
valens mellom de deriverte kategoriene Db(A) og Db(B). Den andre delen vil
handle om denne ekvivalensen.
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Chapter 1

Preface

1.1 Introduction

This thesis will be an introduction to classical tilting theory, a very useful tool in
describing the category of finitely generated right modules of an K-algebra.
We will mainly be focusing on defining and the result about classical tilting
modules.

Firstly we will introduce torsion pairs, a pair of subcategories (T ,F) of mod A.
These are the largest subcategories such that HomA(M,N) = 0 for allM ∈ T
and N ∈ F .

Tilting modules are modules that induces a torsion pair (T (T ),F(T )), where
T is a tilting module. Tilting modules can be thought of as a generalization
of a Morita progenerator. This is since T is a Morita progenerator in T (T ).
This hints towards there being an equivalence of torsion pairs in mod A and
mod B. The result giving the equivalences of these subcategories is called the
Brenner-Butler-theorem or the tilting theorem. The equivalences between the
torsion pairs comes from the functors HomA(T,−) and−⊗BT and Ext1A(T,−)
and Tor1B(−, T ). This theorem is exactly what we will prove during the chapter
about tilting modules. Moreover these tilting modules also induce an equi-
valence between the bounded derived categories Db(A) and Db(B). This will
be the main focus of last chapter. The presentation of this thesis is based
on Elements of the Representation Theory of Associative Algebras Volume 1
Techniques of Representation Theory[1] and Triangulated Categories in the
Representation Theory of Finite Dimensional Algebras[2].

1
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1.2 Preliminaries

Throughout this thesis it will be assumed the reader has some knowledge of
homological algebra and representation theory. Most of the thesis will be for-
mulated using the language of homological algebra. Especially the reader will
be expected to be comfortable with Hom-functor and the tensor product. As
well as their derived functors, Ext and Tor. These functor will be use frequently
throughout this thesis. The fact that that Hom and ⊗ induces a long exact se-
quence in Ext and Tor respectively. Additionally the fact that Ext1A(M,N) has
a one to one correspondence with equivalence classes of extensions of N by
N . Here the 0 element in Ext1A(M,N) corresponds to the trivial extension.

It will also be assumed that the reader is familiar with representation the-
ory of finite dimensional algebras. What we will mainly be needing is know-
ledge of modA, the category of finitely generated modules. In addition the
thesis uses a bit of Auslander-Reiten-theory. The main results from Auslander-
Reiten-theory that are used is the Auslander-Reiten-translation, defined as
τ = DTr, where D is HomA(−,K) and Tr is the transpose of a module. The
Auslander-Reiten-formulas will also be used in some proofs, stating that

Ext1A(N,M) ∼= DHomA(M, τN) ∼= DHomA(τ
−1M,N).

The Auslander-Reiten-quiver will also occur in examples. If the reader wants
they can read more about these in Assem, Simson, Skowroński[1].



Chapter 2

Torsion

In this chapter we will introduce what is called a torsion pair. A pair of sub-
categories of mod A. These subcategories will end up being fruitful when try-
ing to describe mod A and mod B, where B is the endomorphism algebra
of a module. What this module is exactly we will discuss further in the next
chapter. Although we hope to motivate its construction a bit in this chapter.
The presentation of this chapter is based on Assem, Simson, Skowroński[1].

Definition 2.0.1. Let T and F be two full subcategories of modA. We say that
the pair (T , F ) is a torsion pair if:

1. HomA(M,N) = 0 for all M ∈ T , N ∈ F .
2. HomA(M,−)|F = 0 =⇒ M ∈ T .
3. HomA(−, N)|T = 0 =⇒ N ∈ F .

T is then called a torsion class and F is called a torsion-free class.

Example 2.0.2. In modA we have the trivial torsion pairs (modA, 0) and
(0,modA)

Example 2.0.3. Let C be a class of A-modules. Then C induces a torsion pair
(T , F ), with F = {N | HomA(−, N)|C = 0} and T = {M | Hom(M,−)|F = 0}.

Example 2.0.4. Let K be a field and A be the path algebra KQ of the quiver
Q:

1

2 3

This gives rise to the AR-quiver of KQ.

3
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K
K0

0
K0

K
00

K
KK

K
0K

0
0K

Then (Add( K
KK ⊕ 0

K0 ⊕ K
0K ),Add( K

00 ⊕ K
K00 ⊕ K

0K )) is a torsion pair.

We begin by establishing some basic properties of torsion classes and torsion-
free classes. For this we will need to recall the notion of an idempotent radical.
A idempotent radical is a functor t on modA such that for every moduleM in
modA we have that t(tM) = tM and t(M/tM) = 0.

Theorem 2.0.5.

(a) Let T be a full subcategory of modA. The following are equivalent:

1. T is a torsion class for some torsion pair (T , F).
2. T is closed under images, direct sums and extension.
3. There exists an idempotent radical such that T = {M | tM = M}.

b) Let F be a full subcategory of modA. The following are equivalent:

1. F is a torsion-free class in some torsion pair (T , F )
2. F is closed under submodules, direct products and extension
3. There exists an idempotent radical such that F = {N | tN = 0}

Proof.
(a) (1. =⇒ 2.) T is closed under direct sums since the Hom-functor is addit-
ive. Thus we only need to prove it is closed under images and extensions.
Let L,M,N ∈ modA such that there exists an short exact sequence.

0 L M N 0

Now let us take a X ∈ F . Then there exists an exact sequence

0 HomA(N,X) HomA(M,X) HomA(L,X)

henceM ∈ T ⇐⇒ N,L ∈ T . Thus T is closed under images and extensions.
(2. =⇒ 3.) Let tM denote the sum of images from all homomorphisms from
modules in T to M . tM will be called the trace of M in T . Since T is closed
under images and direct sums, we get that tM is the largest submodule of
M . We now take a brake to showed that the trace is an idempotent radical.
Obviously we know t(tM) = tM . From the definition of the trace we know
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tM ⊆ M , lets assume t(M/tM) = M ′/tM , with tM ⊆ M ′ ⊆ M . Also from
the definition of the trace we know M ′/tM ∈ T . Since T is closed under
extensions we get, since tM,M ′/tM ∈ T that M ′ ∈ T . Thus M ′ = tM and
t(M/tM) = 0. We can then observe the clear equivalenceM ∈ T ⇐⇒ tM =
M . Thus there exists an radical idempotent such that T = {M | tM = M}.
(3. =⇒ 1.) Let F = {N | tN = 0}, then we know HomA(M,−)|F = 0 for all
M ∈ T . Next let us assume HomA(M,−)|F = 0. Then t(M/tM) = 0 implies
that M/tM ∈ F . Thus we get that the cannonical projection M −→ M/tM is
zero. This meansM/tM = 0, thusM = tM ∈ T . Similarly HomA(−, N)|F = 0
implies N ∈ F .
The proof of (b) is similar to (a).

The previous theorem gives rise to the existence of an incredible useful type
of short exact sequence.

Theorem 2.0.6. Let (T ,F) be a torsion pair in modA and let M be a right
A-module. Then there exists a short exact sequence.

0 tM M M/tM 0

such that tM ∈ T and M/tM ∈ F . The sequence is unique, meaning that if

0 M ′ M M ′′ 0

is exact with M ′ ∈ T and M ′′ ∈ F , the two sequences are isomorphic.

A short exact sequence like the one in the theorem is called the canonical
sequence of M

Proof. Since tM is the largest submodule of M in T we know M ′ ⊆ tM . We
now get this commutative diagram

0 M ′ M M ′′ 0

0 tM M M/tM 0

ι id f

From the snake lemma we get tM/M ′ ∼= ker f , but since F is closed under
submodules, ker f ∈ F . Then the canonical projection tM −→ tM/M is the
zero map. Thus we know tM ∼= M ′ and therefore M ′′ ∼= M/tM from the 5-
lemma.
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For now let T be an arbitrary A-module. We will now introduce a subcategory
of modA called Gen T . This is the class of modules generated by T . In other
words CogenT is the class of modules, M such that there exist an integer
d ≥ 0 together with an epimorphism T d → M . Dually we define CogenT ,
which is the class of modules cogenerated by T . In other words CogenT is
the class of modules N such that there exist an integer d ≥ 0 together with
a monomorphism N → T d. We want to know when GenT is a torsion class
and when CogenT is a torsion-free class. In other words we want to show that
GenT is closed under images, direct sums and extensions and that CogenT
is closed under submodules, direct products and extensions.

Lemma 2.0.7. Let M ∈ modA and denote B = EndA(T ) .

(a) Then M ∈ GenT if and only if the homomorphism

εM : HomA(T,M)⊗B T −→ M

with εM , given by f ⊗ t 7→ f(t) is surjective.
(b) Then M ∈ CogenT if and only if the homomorphism

ηM : M −→ HomB(HomA(M,T ), T )

with ηM , given by x 7→ (g 7→ g(x))is injective.

Proof. Firstly let M ∈ GenT , then let us look at the basis {f1, f2, ..., fd} for
HomA(T,M) as a vector space. Then we will consider the function
f = [f1 f2 · · · fd] : T d −→ M . SinceM ∈ GenT we know there exists anm ≥ 0
and a surjection g : Tm −→ M . From the fact that g is a surjection and the
definition of f we know there exists a homomorphism h : Tm −→ T d such that
g = f ◦ h. Thus f is surjective. Next we will consider the short exact sequence

0 ker f T d M 0.

Applying HomA(T,−) then gives us the short exact sequence

0 HomA(T, ker f) HomA(T, T
d) HomA(T,M) 0
HomA(T,f)

since HomA(T, f) is surjective by the construction of f . Lastly applying−⊗BT
gives us this commutative diagram with exact rows.

0 HomA(T, ker f)⊗B T HomA(T, T
d)⊗B T HomA(T,M)⊗B T 0

0 ker f T d M 0

ε
Td εM

f
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This gives us that εM is surjective since

HomA(T, T
d)⊗B T ∼= Bd ⊗B T ∼= T d.

The proof for (b) is similar to the proof of (a).

This result will be used repeatedly throughout this thesis, beginning with giving
a condition for when GenT is closed under extensions.

Lemma 2.0.8.

(a) If Ext1A(T,−)|GenT = 0 then GenT is closed under extensions.
(b) If Ext1A(−, T )|CogenT = 0 then CogenT is closed under extensions.

Proof. We will only prove (a) since the proof of (b) is similar. Let

0 M ′ M M ′′ 0

be a short exact sequence with M ′,M ′′ ∈ GenT . The functor HomA(T,−)
then induces the exact sequence

0 HomA(T,M
′) HomA(T,M) HomA(T,M

′′) Ext1A(T,M
′) = 0.

We now want to use lemma 2.0.7 by applying −
⊗

B T to the exact sequence,
which gives us the commutative diagram below.

0 HomA(T,M
′)⊗B T HomA(T,M)⊗B T HomA(T,M

′′)⊗B T 0

0 M ′ M M ′′ 0

εM′ εM′ εM′

Since ε′M and ε′′M are epimorphisms εM is also a epimorphism from the five-
lemma. Hence M is in GenT and GenT is closed under extension.

Now we have a condition for when GenT is a torsion class with
{M | HomA(T,M) = 0} as it’s torsion free class. And we also have a condition
for when CogenT is a torsion-free class with {M | Hom(M,T ) = 0} as its
torsion class.

Definition 2.0.9. Let C be a full subcategory of modA. A module M ∈ C is
Ext-projective in C if Ext1A(M,−)|C = 0. And dually M is Ext-injective if
Ext1A(−,M)|C = 0.



8 Isak Drage: Tilting modules

From this definition we reformulate the last result. If T is Ext-projective in
GenT , then GenT is a torsion class with {M | HomA(T,M) = 0} as it’s torsion
free class. Similarly if T is Ext-injective then CogenT is a torsion-free class
with {M | HomA(M,T ) = 0} as it’s torsion class.



Chapter 3

Tilting modules

In this chapter is split in to two parts. The first part gives an introduction to
tilting modules and some results about the. The second part we prove the
Brenner-Butler-theorem. Giving us an equivalence between torsion pairs in
modA and modB. The presentation of this chaper is also based on Assem,
Simson, Skowroński[1].

Definition 3.0.1. Let A be an algebra. An A-module T is a tilting module if:

T.1 The projective dimension of T is less then or equal to 1.
T.2 Ext1A(T, T ) = 0.
T.3 There exists a short exact sequence

0 A T ′ T ′′ 0

such that T ′ and T ′′ in AddT . That is the category of direct sums of
direct summands of T.

A module satisfying the two first conditions is often called a partial tilting
module.

Example 3.0.2. The algebra A is a tilting module.

T.1 The algebra A itself is projective.
T.2 Since the algebra A is projective, we have that Ext1A(A,A) = 0
T.3 Clearly, the short exact sequence,

0 A A⊕A A 0
(1,0) (0,1)

satisfies the third condition.

Example 3.0.3. From a previous example we have seen that the quiver Q

9
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1

2 3

gives rise to the AR-quiver:

K
K0

0
K0

K
00

K
KK

K
0K

0
0K

Then we check that K
KK ⊕ 0

0K ⊕ 0
0K is a tilting module.

T.1 The algebra is hereditary, so pd ( K
KK ⊕ 0

0K ⊕ 0
0K ) = 1.

T.2 From the Auslander-Reiten-formula we have that

Ext1A(
K
KK ⊕ 0

0K ⊕ 0
K0 ,

K
KK ⊕ 0

0K ⊕ 0
0K )

∼= DHomA( K
KK ⊕ 0

0K ⊕ 0
0K , K

00 ⊕ k
0K ⊕ K

K0 ).

T.3 There is a short exact sequence

0 A K
KK ⊕ K

KK ⊕ K
KK

0
0K ⊕ 0

K0 ⊕ ( 0
0K ⊕ 0

K0 ) 0.

Indeed we see that K
KK ⊕ 0

0K ⊕ 0
0K is a tilting module.

Another category we will consider is T (T ), defined as

T (T ) = {M | Ext1A(T,M) = 0}.

The following category is the largest full subcategory of mod A, such that T is
Ext-projective. We can observe that every injective module is in T (T ).

Theorem 3.0.4. Let T be a partial tilting module. Then

(a) GenT is a torsion class in which T is Ext-projective with
F(T ) = {M | HomA(T,M) = 0} as its corresponding torsion-free class.

(b) T (T ) is a torsion class, with Cogen τT as it’s torsion-free class.

Since GenT is a torsion class where T is Ext-projective, we easily get that
GenT ⊆ T (T ).
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Proof.
(a) Let M ∈ GenT . This means there exists an epimorphism T d � M with
d ≤ 1. Now applying HomA(T,−) induces an epimorphism
Ext1A(T, T

d) � Ext1A(T,M), but since T is a partial tilting module
Ext1A(T, T ) = 0 and using the fact that Ext1A(T, T

d) =
⊕d

i=1 Ext
1
A(T, T ) we have

that Ext1A(T,M) = 0, meaning that T is Ext-projective in GenT .
(b) First let us consider the following short exact sequence

0 M ′ M M ′′ 0

applying HomA(T,−) induces the exact sequence,

Ext1A(T,M
′) Ext1A(T,M) Ext1A(T,M

′′) 0

Now ifM ′ andM ′′ lies in T (T ) thenM also lies in T (T ). And ifM ∈T (T ), then
M ′′ lies in T (T ). And since Ext1A(T,−) is an additive functor, we get that T (T )
is closed under extensions, images and direct sums. Thus T (T ) is a torsion
class.
To show Cogen τT is it’s torsion free class we want to show that
Ext1A(−, τT )|Cogen τT ∼= 0. Now from the Auslander-Reiten formulas we get that
Ext1A(T,M) ∼= DHomA(M, τT ) since pd T ≤ 1 meaning that
M ∈ T (T ) if and only if HomA(M, τT ) = 0. Now let N ∈ Cogen τT , then there
exists an injection, N ↪→ τT d, which gives an injection
Hom(T,N) ↪→ Hom(T, τT d) ∼= Ext1A(T, T ) = 0. Then using the Auslander-
Reiten- formulas we get that Ext1A(N, τT ) ∼= DHomA(T,N) = 0.
Thus Ext1A(−, τT )|Cogen τT = 0 and by lemma 2.0.8 Cogen τT is a torsion-free
class and {M | HomA(M, τT ) = 0} = T (T ) is it’s torsion class.

If you recall the definition of a tilting module, the third condition is often the
hardest to show. Thus we want a way to know when a partial tilting module is
a tilting module. The following theorem will gives us equivalent statements for
a partial tilting module being a tilting module.

Theorem 3.0.5. Let T be a partial tilting module, then the following are equi-
valent:

a) T is a tilting module.
b) GenT = T (T ).
c) For every module M ∈ T (T ) there exists a short exact sequence

0 L T0 M 0 withL ∈ T (T ) and T0 ∈ AddT .
d) Let X ∈ modA. Then X ∈ AddT if and only if X is Ext-projective in

T (T ).
e) F(T ) = Cogen τT .
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Proof.
(a) =⇒ (b) From lemma 3.0.4 we have that GenT ⊆ T (T ), so we only need to
show T (T ) ⊆ GenT . Now letM ∈ T (T ). Then we have the canonical sequence

0 tM M M/tM 0

Then HomA(T,−) induces the exact sequence,

0 Ext1A(T, tM) Ext1A(T,M) Ext1A(T,M/tM) 0.

but since Ext1A(T,M) = 0 we have that Ext1A(T,M/tM) = 0. Since T is a tilting
module we have the short exact sequence:

0 A T ′ T ′′ 0,

which together with the functor HomA(−,M/tM) gives us

0 HomA(T
′′,M/tM) HomA(T

′,M/tM) HomA(A,M/tM) 0

which implies 0 = HomA(A,M/tM) ∼= M/tM , and thus M ∼= tM and
M ∈ GenT .
(b) =⇒ (c) Let M ∈ T (T ), then there exists an epimorphism, π : T d � M .
We then get the short exact sequence,

0 kerπ T d M 0
f

Applying HomA(T,−) induces this exact sequence,

0 HomA(T, kerπ) HomA(T, T
d) HomA(T,M) Ext1A(T, kerπ) 0.

But HomA(T, f) is an epimorphism and thus Ext1A(T, kerπ) = 0.
(c) =⇒ (d) Let X ∈ AddT , then there exists an module, Q such that
X ⊕Q ∼= T d and hence we have the isomorphism.

0 = Ext1A(T
d, T ) ∼= Ext1A(X ⊕Q,T ).

Since the Ext-functor is additive we have thatX is Ext-projective in T (T ). Now
let X be Ext-projective in T (T ). Then there exists a short exact sequence

0 L T0 X 0
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with L ∈ T (T ) and T0 ∈ AddT . Now sinceX is Ext-projective in T (T ) we know
that Ext1A(X,L) = 0. Hence the short exact sequence splits. Thus X ∈ AddT .
(d) =⇒ (a) Let this short exact sequence correspond to an element of Ext1A(T,A)

0 A E T 0.

Now we get that the partial tilting module T is a tilting module if E ∈ AddT ,
which is equivalent to E being Ext-projective in T (T ). Now let M ∈ T (T ).
Then applying HomA(−,M) gives us this exact sequence.

· · · 0 = Ext1A(T,M) Ext1A(E,M) Ext1A(A,M) = 0

Thus we have that E ∈ AddT , and T.3 is satisfied and T is a tilting module.

Corollary 3.0.5.1. Let M ∈ T (T ) where T is a tilting module, then there
exists an exact sequence

· · · T2 T1 T0 M

such that Ti’s are all in AddT

Proof. This follows from doing induction on part (c) of theorem 3.0.5.

An exact sequence such as the one above will be referenced as a T -resolution
of M . The exact sequences of this form are very useful. They will be used
frequently in proofs throughout this chapter.

The next corollary will be a central part of proving the Brenner-Butler theorem.

Corollary 3.0.5.2. Let TA be a tilting module and B = EndA(T ). Then
M ∈ T (T ) if and only if the canonical A- homomorphism
εM : HomA(T,M)⊗B T −→ M is an isomorphism.

Proof. From theorem 3.0.5 we know there exists short exact sequences

0 L1 T0 X 0

with L1 ∈ T (T ) and T0 ∈ AddT . Also from theorem 3.0.5 we know there exists
a short exact sequence

0 L0 T1 L1 0

Next applying HomA(T,−) gives these exact sequences, since Ext1A(T, L0) = 0
and Ext1A(T, L1) = 0.
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0 HomA(T, L1) HomA(T, T0) HomA(T,X) 0

0 HomA(T,L0) HomA(T, T1) HomA(T, L1) 0

which combines to this right exact sequence.

HomA(T, T1) HomA(T, T0) HomA(T,X) 0

Now after applying −⊗ T , while also using corollary 2.0.9.1, we get this com-
mutative diagram.

0 HomA(T, T1)⊗ T HomA(T, T0)⊗ T HomA(T,X)⊗ T

0 T1 T0 X

∼= ∼=

Thus we get an isomorphism, X → HomA(T,X)⊗B T .

Example 3.0.6. Let MP be a Morita progenerator MP , then MP is a tilting
module. Obviously MP has projective dimension less then or equal to 1 and
Ext1A(MP ,MP ) = 0. Hence MP is a partial tilting module. And since MP is a
generator for mod A we know that Gen MP = modA and from lemma 3.0.3
we have know that Gen MP ⊆ T (MP ). Thus GenMP = T (MP ) and MP is
then a tilting module by theorem 3.0.5.

Many describe a tilting module as a module which is ”close to” a Morita pro-
generators. In the sense that A is Morita equivalent to EndA(MP ), but being a
tilting module is not as strong as being a progenerator. So a tilting module T
does not induce a Morita equivalence between A and EndA(T ). But it does in-
duce an equivalence between torsion pairs of modA andmod EndA(T ). Hence
tilting modules are tools we can use to compare mod A and mod EndA(T ). We
will now work our way towards these equivalences. To motivate these equi-
valences we look to theorem 3.0.5, stating that if T is a tilting module then
GenT = T (T ). This means that T acts as a projective module in GenT . Thus
it is a Morita progenerator for this subcategory. This hints towards there being
an equivalence of subcategories in modA and modEndA(T ).

3.0.1 The Brenner-Butler theorem

In this section we want to compare modA and modB by using tilting mod-
ules. Therefore we will need to show that an right A-tilting module also is a left
B-tilting module. With this we will know that T also induces a torsion pair in
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modB. As one might expect since a tilting module is a Morita progenerator in
T (T ), this gives us an equivalence between these torsion pairs. This equival-
ence is described by the Brenner-Butler-theorem, and is exactly what we will
prove in this section.

We will start out by showing some lemmas which we will need later.

Lemma 3.0.7. Let T be any right A-module, and B = EndA(T ). Then for each
module T0 ∈ AddT we have the functorial isomorphism

HomA(T0,M) ∼= HomB(HomA(T, T0),HomA(T,M)).

Proof. Let T0 = T . Then we have

HomB(HomA(T, T ),HomA(T,M)) = HomB(B,HomA(T,M)) ∼= HomA(T,M).

The rest of the proof follows since the Hom-functor is a additive.

Nowwe can observe that the functor HomA(T,−) gives an equivalence between
AddT inmodA and the projectivemodules inB, denotedPB . Since HomA(T,−)
is obviously dense, and it is full and faithful from lemma 3.0.7.

Lemma 3.0.8. Let M,N ∈ T (T ). Then there exists natural isomorphisms

(a) HomA(M,N) ∼= HomB(HomA(T,M),HomA(T,N))
(b) Ext1A(M,N) ∼= Ext1B(HomA(T,M),HomA(T,N))

Proof.
(a) Using theorem 3.0.5 c) we get the right exact sequence

T1 T0 M 0
d1 d0

Then applying HomA(−, N) we get this left exact sequence

0 HomA(M,N) HomA(T0, N) HomA(T1, N)

which together with lemma 3.0.7 gives us this commutative diagram

0 0

HomA(M,N) HomB(HomA(T,M),HomA(T,N))

HomA(T0, N) HomB(HomA(T, T0),HomA(T,N))

HomA(T1, N) HomB(HomA(T, T1),HomA(T,N))

∼=

∼=
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(b) Taking the short exact sequence

0 Im d1 T0 M 0
ι d0

and applying HomA(−, N), we get

0 HomA(M,N) HomA(T0, N) HomA(L,N) Ext1A(M,N) 0.

Thus we get that Ext1A(M,N) ∼= CokerHomA(ι,N), which when considering
the T -resolution T• of M is isomorphic to the first cohomology group of the
complex HomA(T•, N).
As we know from lemma 3.0.7, HomA(T, T•) yields a projective resolution of
HomA(T,M). Thus by the definition of the ExtnB-functor, we have
Ext1B(HomA(T,M),HomA(T,N)) is the first cohomology group of the complex
HomB(HomA(T, T•),HomA(T,N)). Hence since the complex
HomB(HomA(T, T•),HomA(T,N)) is isomorphic to HomA(T, T•) by (a), thus
we are done.

Recall that a moduleM is said to be faithful if the right annihilator is zero. Or
in other word

AnnM = {a ∈ A |Ma = 0} = 0

Lemma 3.0.9. A tilting module is faithful.

Proof. Let T be a tilting module. Then we know from the definition, that there
exists an short exact sequence

0 A T ′ T ′′ 0.
f

Assume a ∈ AnnM . We then know T ′a = 0 since a ∈ AnnT , but then
f(a) = f(1)a = 0, since f is injective. This means a ∈ ker f = 0. Thus we get
that T is faithful.

Now we have all the tools to prove that a right tilting A-module is also a left
tilting B-module. We will also prove that we can go back and forth between
mod A and mod B.

Theorem 3.0.10. Let TA be a tilting module and B = EndA(TA). Then the
following holds:

a) D(BT ) = HomA(BT,DA)
b) BT is a left tilting B module.
c) The canonical K-algebra homomorphism ϕ : A → End(BT )op defined by

a 7→ (t 7→ t(a)) is an isomorphism.
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Proof.
(a) Using the fact that BT ⊗A A ∼=B T and hom-tensor adjunction we get that

D(BT ) ∼= HomK(BT,K)
∼= HomK(TB ⊗A A,K)
∼= HomA(BT,HomK(A,K))
∼= HomA(BT,DA).

(b)

T.1 Since T is a tilting module we know there exists a short exact sequence.

0 A T ′ T ′′ 0

with T ′, T ′′ ∈ AddT . Then using HomA(−,B TA) we get this short exact
sequence:

0 HomA(T
′′, T ) HomA(T

′, T ) HomA(A,B TA) 0

with HomA(A,B TA) ∼=B T and HomA(T
′, T ) and HomA(T

′′, T ) projective
from lemma 3.0.7. So pd BT ≤ 1.

T.2 Using part a) we have that,

Ext1B(DT,DT ) ∼= Ext1B(HomA(T,DA),HomA(T,DA)).

Then using Lemma 3.0.8 we get that

Ext1B(HomA(T,DA),HomA(T,DA)) ∼= Ext1A(DA,DA) = 0

since DA is injective. Thus Ext1B(T, T ) = 0.
T.3 Take the projective resolution of TA:

0 P1 P0 TA 0

then using HomA(−,B TA) we get

0 HomA(T, T ) = B HomA(P0, T ) HomA(P1,B TA) 0

Then using the fact that every projective module is a direct summand of
An , the additivity of Hom(−, T ) together with the isomorphism
HomA(A, T ) ∼= T . We get that HomA(P1,B TA),HomA(P0,B TA) ∈ AddT .

(c) Let a ∈ kerϕ, then Ta = 0, but from lemma 3.0.9 we know that a tilting
module is always faithful, meaning a = 0. Thus ϕ is injective.
Next we know that

A ∼= D(DA⊗A) ∼= HomA(DA,DA)
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Now using lemma 3.0.7, we get an isomorphism.

HomA(DA,DA) ∼= HomB(Hom(T,DA),HomA(T,DA)) ∼= EndB(BT )

Thus we get that A ∼= EndB(BT ), meaning that
dimK(A) = dimK(EndB(BT )), meaning ϕ is a vector space surjection since
ϕ is injective. Thus ϕ is an isomorphism.

Corollary 3.0.10.1. D(BT ) ∼= HomA(T, T ⊗B DT )

Proof. This follows from the fact that D(BT ) ∼= HomA(T,DA) and that
A ∼= End(BT )op.

We now know that a right tilting A-module is also a left tilting B-module, we
can start building a similar theory in mod B as we did in mod A. Together with
a way to move between the two. More specifically we will prove the Brenner-
Butler theorem, which gives equivalences between torsion pairs induced by a
tilting module in mod A and mod B.

As we know BT induces a torsion pair (T (BT ),F(BT )) in the category of left
B-modules, given by

GenB T = T (BT ) = {U | Ext1B(T,U) = 0}

Cogen τ(BT ) = F(BT ) = {L | HomB(T,L) = 0}

But the goal here is to compare the categories of right A and B modules.
Therefore we will rather consider the torsion pair (DF(BT ), DT (BT )) of right
B-modules.

Corollary 3.0.10.2. Let A be an algebra and T be a tilting module. Then T
induces a torsion pair (X (T ),Y(T )) in mod B, where B = EndA(T ) and
X (T ) = {XB | HomB(X,DT ) = 0} = {XB |X ⊗B T = 0}
Y(T ) = {YB | Ext1B(Y,DT ) = 0} = {YB | TorB1 (Y, T ) = 0}

Proof. Firstly we know that HomB(X,DT ) ∼= D(X ⊗B T ) from Hom and ⊗
being adjoint functors. For the second part let us take a projective resolution
of X.

· · · Pn Pn−1 · · · P1 P0 X 0

Then applying −⊗B T ∼= DHomB(−, DT ) to the resolution yields
TorB1 (X,T ) = H1(P• ⊗ T ) ∼= H1(DHomB(P•, DT )) = D Ext1B(X,DT ), where
H1 denotes the first homology group.
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We can observe that similarly to T (T ), which contains all injective A-modules.
Y(T ) contaions all projective B-modules. Since we now are considering the
dual of the tilting module. We need to show some of the analogous results
already show previously. We will need the analogous result to to part (c) of
theorem 3.0.5 and its corollaries. To start is part (c) of theorem 3.0.5.

Lemma 3.0.11. Let T be a right tilting A-module, B = EndA(T ) and
YB ∈ Y(T ). Then there exists a short exact sequence

0 BY T ′
BZ 0

With T
′ ∈ AddDT and ZB ∈ Y(AT ).

Proof. (a) BT is a tilting module, we have that DYB ∈ DY(AT ) = T (TB).
Hence from theorem 3.0.5 part c) we know there exists a short exact sequence

0 L T ′
B DBY 0

with L,DBY ∈ T (TB) and T ′
B ∈ AddTB . Now dualizing the sequence gives us

0 BY DT ′
B DL 0

Where DT ′
B ∈ AddDTB and DL ∈ Y(AT ).

The next is the analogous result to corollary 3.0.5.1. Which follow directly from
induction on lemma 3.0.11.

Corollary 3.0.11.1. Let YB ∈ Y(AT ), then there exists an exact sequence

YB T ∗
0 T ∗

1 · · ·

Lastly we will need the corollary 3.0.5.2.

Lemma 3.0.12. The canonical K-algebra homomorphism
YB → HomA(T, Y ⊗B T ) given by y 7→ (t 7→ y ⊗ t) is an isomorphism.

Proof. From 3.0.5 c) we know there exists short exact sequences

0 Y T
′
0 Z0 0

With Z0 ∈ Y(T ) and T
′
0 ∈ AddT . Also

0 Z0 T
′
1 Z1 0
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Next applying − ⊗B T gives these exact sequences, since Tor1B(Z0, T ) = 0
and Tor1B(Z0, T ) = 0.

0 Y ⊗ T T
′⊗T
0 Z0 ⊗ T 0

0 Z0 ⊗ T T
′⊗T
1 Z1 ⊗ T 0

which combines to this left exact sequence.

0 Y ⊗ T T
′
0 ⊗ T T1 ⊗ T

Now after applying HomA(T,−), while also using corollary 0.0.9.1. We get this
commutative diagram.

0 HomA(T, Y ⊗ T ) HomA(T, T
′
0 ⊗ T ) HomA(T, T1 ⊗ T )

0 Y T
′
0 T

′
1

∼= ∼=

Thus we get an isomorphism, YB → HomA(T, Y ⊗B T ).

Now we have all the tool to prove the main and final theorem of this section,
the Brenner-Butler theorem.

Theorem 3.0.13 (Brenner-Butler theorem). Let A be an algebra, TA a tilting
module, B = EndA(TA), and let (T (T ),F(T )) and (X (T ),Y(T )) be the in-
duced torsion pairs in modA and modB respectively. Then the following is
true:

a) BT is a tiltingmodule and the canonical homomorphismA → End(BT )op

is an isomorphism.
b) The functorsHomA(T,−) and−⊗BT induce quasi-inverse equivalences

between T (T ) and Y(T ).
c) The functors Ext1A(T,−) and TorB1 (−, T ) induce quasi-inverse equival-

ences between F(T ) and X (T ).

Proof.
(a) This follow directly form part (b) and (c) of theorem 3.0.10.
(b) Let M ∈ T (T ). Then taking the dual of HomA(T,M), we get
DHomA(T,M) ∼=B TA ⊗A DM from Hom and tensor being adjoint. We then
know there exist an epimorphism BTA⊗AP �B TA⊗ADM , and we also know
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there exists another projective module Q, such that P ⊕Q ∼= Ad. Hence there
exists an epimorhism,

T ∼=B TA ⊗A (P ⊕Q) �B TA ⊗A DM.

Thus DHomA(T,M) ∈ GenT . Meaning HomA(T,M) ∈ DGenT = Y(T ).
Next let Y ∈ Y , then Y ⊗B T ∈ GenT = T (T ). From corollary 3.0.5.2 and
lemma 3.0.12 we have that HomA(T,M)⊗B T ∼= M and
M ∼= HomA(T,M ⊗B T ). Thus HomA(T,−) and −⊗B T induce quasi-inverse
equivalences between T (T ) and Y(T ).
(c) Let N ∈ F(T ), then we can make a short exact sequence

0 N I L 0

with I injective, and thus I ∈ T (T ), since T (T ) is closed under images we also
get L ∈ T (T ). Then HomA(T,−) induces this short exact sequence:

0 = HomA(T,N) HomA(T, I) HomA(T, L) Ext1A(T,N) 0.

Then using −⊗B T , the isomorphism in lemma 3.0.12 and the fact that
L ∈ T (T ) gives HomA(T,L) ∈ Y , implying Tor1B(HomA(T,N), T ) = 0, we get
this commutative diagram.

0 0

Tor1B(Ext
1
A(T,N)) N

HomA(T, I)⊗ T L

HomA(T,L)⊗ T I

Ext1A(T,N)⊗ T 0

0 0

∼=

∼=

Now since the two middle arrows are isomorphisms we get that
Tor1B(Ext

1
A(T,N)) ∼= N and Ext1A(T,N)⊗ T = 0, giving us that

Ext1A(T,N) ∈ X (T ).
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Let X ∈ X (T ), then we can make a short exact sequence

0 Y P X 0

with P projective, and thus P ∈ Y(T ), since Y(T ) is closed under submodules
we get Y ∈ Y(T ). Then −⊗B T induces this short exact sequence:

0 = Tor1B(P, T ) Tor1B(X,T ) Y ⊗B T P ⊗B T 0

Then using HomA(T,−), the isomorphism in corollary 3.0.5.2 and that
Y ∈ Y(T ) gives Y ⊗ T ∈ T (T ) implying Ext1A(T, Y ⊗ T ) = 0, we get this
commutative diagram.

0 0

0 HomA(T,Tor1B(X,T ))

Y HomA(T, Y ⊗B T )

P HomA(T, P ⊗B T )

X Ext1A(T,Tor
1
B(X,T ))

0 0

∼=

∼=

Now since the two middle arrows are isomorphisms we get that,
X ∼= Ext1A(T,Tor

1
B(X,T )) and HomA(T,Tor1B(X,T )) = 0, giving us

Tor1B(X,T ) ∈ F(T )



Chapter 4

Derived categories

The main point of this chapter is to quickly introduce some concepts and fix
some notation for the next chapter. In this section we will introduce a type
of category called triangulated category. We will especially look at the trian-
gulated categories Kb(A), the bound homotopy category and Db(A), derived
category of mod A. For a ”nice enough” algebra the derived category can be
quite accessible, and can gives information about modA, although we will not
discuss this in this thesis. The reason for introducing the derived category, is
because a tilting module induces a triangle equivalence between Db(A) and
Db(B), where B = EndA(T ).

Let T be a additive category and let Σ be an automorphism on T .

Definition 4.0.1. A triangle in T is a diagram of the form:

A B C ΣA

A morphism of triangles is triple (α, β, γ) such that this diagram commutes

A B C ΣA

A′ B′ C ′ ΣA′

α β γ Σα

Amorphism (α, β, γ) is an isomorphism of triangles if α, β and γ are isomorph-
isms.

Definition 4.0.2. A triple (T,Σ,∆), where ∆ is a collection of triangles, is a
triangulated category if the following holds:

Tr.1 (a) ∆ is closed under isomorphisms of triangles.
(b) For every object A ∈ T there is a triangle in ∆

23
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A A 0 ΣA
id

(c) For every morphism f : A −→ B there exists a triangle in ∆

A B C ΣA
f g

Tr.2 For every triangle (A,B,C, f, g, h) ∈ ∆. The triangles

Σ−1C A B C

B C ΣA ΣB

g

f

are in ∆.
Tr.3 Let (A,B,C, f, g, h) and (A′, B′, C ′, f ′, g′, h′), be two triangles in ∆ such

that

A B

A′ B′

f

α β

f ′

commutes. Then there exists a morphism γ : C −→ C ′ such that (α, β, γ)
is amorphism of triangles between (A,B,C, f, g, h) and (A′, B′, C ′, f ′, g′, h′).

Tr.4 Let (A,B,C, f, g, h), (A,B′, C ′, f ′, g′, h′) and (B,B′, C ′′, β, g′′, h′′) be tri-
angles in ∆, such that the diagram below commutes.

A B C ΣA

A B′ C ′ ΣA

B B′ C ′′ ΣB

ΣC

f g

β

h

γ

f ′

f

g′ h′

γ Σα

β g′′ h′′

Σg◦h′′

Then (C,C ′, C ′′, γ, γ′, γ′) ∈ ∆.

With this new type of categories, we want to introduce triangle functors. This
being functors that preserves the triangulated structure of the categories. This
means a triangulated functor is an additive functor that commutes with Σ, and
preserves distinguished triangles.

Definition 4.0.3. Let A be an abelian category. A chain complex, often just
called a complex, is a sequence of morphisms in A,
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· · · An+1 An An−1 · · ·
dn+1 dn

such that dn ◦ dn+1 = 0

A morphism between complexes is a collection of morphisms
{fn : An −→ Bn}n∈Z such that fn◦dn+1 = dn◦fn+1. The category of complexes
in A is an abelian category.

Definition 4.0.4. A complex gives rise to an exact sequence

0 Im dn+1 ker dn Cokerhn
hn

We then say the nth homology of A•, denoted Hn = Cokerhn.

Taking the nth homology gives rise to a functor Hn : C(A) −→ A.

Definition 4.0.5. Let f• : A• −→ B• be a morphism of chain complexes. If
Hn(f•) is an isomorphism we say f• is a quasi-isomorphism.

Definition 4.0.6. We say a two morphism in f and g in C(A) are homotopic
if there exists a collection of morphisms hn such that
f − g = dBn+1 ◦ hn + hn+1 ◦ dAn

· · · An+1 An An−1 · · ·

· · · Bn+1 Bn Bn−1 · · ·

dAn+1

fn+1 gn+1

dAn

hn
fn gn

hn−1

fn−1 gn−1

dBn+1 dBn

Being homotopic is an equivalence relation.

We will now introduce the homotopy category of A, K(A). The objects of this
category are the chain complexes of A, and the morphisms are morphisms of
complexes, but up to homotopy. In other words
HomK(A)(A,B) = HomC(A)(A,B)/ v, where v is the homotopoy relation.

We can observe that the homotopy category K(A) is a triangulated category
(K(A),Σ,∆), where Σ is shifting the complex to the left. And ∆ is the collec-
tion of all triangles of the form.

A• B• Cone(f•) ΣA•
f• ι π

Now we will define D(A), the derived category of A. The main idea here
is taking the homotopy category and inverting the quasi-isomorphisms. The
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quasi-isomorphism are inverted by localizing with regards to the set of quasi-
isomorphisms. This gives rise to the localization functorQA : Kb(A) −→ Db(A),
such that Q(f•) is an isomorphism whenever f• is a quasi-isomorphism. Any
functor that inverts quasi-isomorphisms factors through Q. It is exactly from
this functor that Db(A) gets its triangulated structure. The distingushed tri-
angles in Db(A) are exactly the triangles that are isomorphic to images of the
distingushed triangles in Kb(A).

Proposition 4.0.7. Let A be a finite dimensional algebra with finite global
dimension. Then Kb(AP) ∼= Db(A) as triangulated categories.

Recall that we in section 3 called the full subcategory of projective A-modules
PA.

Proposition 4.0.8. Let A be a finite dimensional algebra. Then
ExtiA(M,N) ∼= HomDb(A)(M,ΣiN)

These propositions will in this thesis be regarded as facts and will not be
proven here. For proof of these see the last chapter of Iversen[3].



Chapter 5

Tilting in the derived categoy

Throughout this section let A be a finite dimensional K-algebra with finite
global dimension. And let AT be a tilting module. In this section we will prove
that a tilting module gives rise to a triangle equivalence between Db(A) and
Db(B) where B is the endomorphism algebra of T . The way we will be doing
this is by showing that Kb(AddT ) ∼= Db(A) with the functor
L : Kb(AddT ) −→ Db(A). This is the composition of the embedding functor of
Kb(AddT ) into Kb(modA) and the localization functor
Q : Kb(modA) −→ Db(A). This chapter is based of Happel[2].

Firstly we need to reformulate the third condition of a tilting module.

Lemma 5.0.1. Let T be a tiltingAmodule andP an indecomposible projective
module. Then there exists an exact sequence,

0 P T ′ T ′′ 0

with T ′, T ′′ ∈ AddT .

Proof. Since P is an indecomposible projective module we know there is an-
other projective module Q such that P ⊕ Q ∼= A. Then since T is a tilting
module we know from T.3, that there exists an short exact sequence

0 A T ′ T ′′ 0
f

with T ′, T ′′ ∈ AddT . Letting f = [f1 f2] : P ⊕ Q −→ T ′ gives us these short
exact sequences.

0 P T ′ Coker f1 0
f1 π1

0 Q T ′ Coker f2 0
f2 π2

27
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Combining theses sequences to

0 P ⊕Q T ′ Coker f1 ⊕ Coker f2 0
[f1 f2] [π1 pi2]

which is isomorphic to our first sequence. Thismeans that Coker f1 and Coker f2
are isomorphic to modules in AddT . Thus there exists a short exact sequence
like the one described by this lemma.

With this reformulation of the third condition of a tilting module, we can now
start showing the equivalence between Kb(AddT ) and Db(A). Firstly we will
show the functor is dense.

Lemma 5.0.2. Let AT be a tilting module. The functor
L : Kb(AddT ) −→ Db(A) is dense.

Proof. Since A has finite global dimension, we have that Kb(AP) is triangle
equivalent toDb(A). Also since AT is a tilting module we know that there exists
an exact sequence,

0 P T ′ T ′′ 0

with the kernel of T ′ −→ T ′′ = P . Thus there exists a morphism of chain com-
plexes:

· · · 0 P 0 · · ·

T∗ = · · · 0 T ′ T ′′ · · ·

this is a quasi-isomorphism, meaningP ∼=Db(A) L(T∗). This gives us by shifting
and taking direct sums and extensions, that AP lies in the images of L. Thus
L is dense since AP generates Db(A), from proposition 4.0.7.

Now We will show that the functor is full and faithfull. Although before that
we need to recall that what the width of a complex M• is. Say M i = 0 for
all i < b and i > a, but Ma,M b 6= 0. The width of M•, notated as follows
w(M•) = a− b+ 1.

Lemma 5.0.3. The functor L : Kb(AddT ) −→ Db(A) is full and faithfull.

Proof. Let M•
1 ,M

•
2 ∈ Kb(AddT ). Now we will do double induction on the

widths of M•
1 and M•

2 . First let w(M
•
1 ), w(M

•
2 ) = 1. We may assume M i

2 = 0
for i < 0, using Σ if needed. Since w(M•

1 ) = 1 and its lower bound is i = 0 we
know there exists some i ∈ Z, such that M•

1 = ΣiM1 for some stalk complex
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M1. Thus if i = 0 we get HomKb(AddT )(M
•
1 ,M

•
2 ) = HomDb(A)(M

•
1 ,M

•
2 ). Oth-

erwise HomKb(AddT )(M
•
1 ,M

•
2 ) = 0 and HomDb(A)(M

•
1 ,M

•
2 ) = 0 since

ExtiA(M1,M2) = 0. Now assume this holds for w(M•
1 ) = 1 and w(M•

2 ) = r− 1.
So now let w(M•

1 ) = 1 and w(M•
2 ) = r, then we can consider the triangle.

Σ−1M2
• M∗

2 M•
2 M•

2

Where M∗
2 is the truncated complex of M•

2 . Meaning we make the M0
2 = 0.

Now applying both HomKb(AddT )(M
•
1 ,−) and HomDb(A)(M

•
1 ,−) we get, from

the induction hypothesis and the 5-lemma, that

HomKb(AddT )(M
•
1 ,M

•
2 )

∼= HomDb(A)(M
•
1 ,M

•
2 ).

Now the remaining part of the double induction is the dual argument.

We now have a triangle equivalence between Kb(AddT ) and Db(A). We know
from 4.0.7 that if B has finite global dimension that we get a triangle equi-
valence between Kb(PB) ∼= Db(B). Thus we will need show that B has finite
global dimension. In fact we will even be able to bound its global dimension.
Although to show this we are going to need two lemmas first.

Firstly we will show a lemma connecting the projective dimensions in a short
exact sequence.

Lemma 5.0.4. Let

0 X M N 0

be an exact sequence. And let pdM < pdN , then pdX ≤ pdN − 1.

Proof. For this proof let us call pdN = n. Now let us start by taking the short
exact sequence and applying HomA(−, Y ). This yields the exact sequence

· · · 0 = ExtnA(M,Y ) ExtnA(X,Y ) Extn+1
A (N,Y ) = 0 · · · .

This gives us that ExtnA(X,Y ) = 0, meaning that pdX ≤ N − 1.

This lemma is a specialization of a more general result, giving a bound for
X,M and N . Though in this thesis we only need this case.

Lemma 5.0.5. Let TA be a tilting module and M ∈ T (T ). Then
pdHomA(T,M) ≤ pdM .
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Proof. We will do induction on pdM . To start if pdM = 0, then M is project-
ive, and thus Ext-projective in T (T ) and is by theorem 3.0.5 in AddT . Thus
HomA(T,M) is projective in B.
Now let pdM ≤ 1, then using theorem 3.0.5 we have a short exact sequence

0 X T ′ M 0

with X ∈ T (T ) and T ′ ∈ AddT . Then applying HomA(−, T )|T (T ) gives us this
exact sequence,

0 = Ext1A(T
′,−)|T (T ) Ext1A(X,−)|T (T ) Ext2A(M,−)|T (T ) = 0

Then we observe that X is Ext-projective in T (T ), and thus X ∈ AddT . Thus
by using HomA(T,−) to the sequence, we get this projective resolution of
HomA(T,M).

0 HomA(T, L) HomA(T, T
′) HomA(T,M) 0

Giving us pdHomA(T,M) ≤ 1.
Now for the last part of the proof, let pdM ≥ 2. We then know, since pdT ′ ≤ 1
that pdX ≤ pdM − 1. Giving us, from the induction that
pdHomA(T,X) ≤ pdM−1. Hence from lemma 5.0.5 the third sequence gives
us pdHomA(T,M) ≤ 1 + pdHomA(T,X). Thus

pdHomA(T,M) ≤ 1 + pdHomA(T,X) ≤ 1 + pdX ≤ pdM.

Now we can use the bound given by lemma 5.0.6 to bound the global dimen-
sion of B.

Lemma 5.0.6. Let TA be a tilting module of an algebra A with finite global
dimension. Then B = EndT also has finite global dimension.

Proof. Let N be any B-module, then there exists a short exact sequence

0 Y P N 0

such that P is projective. Since P is projective, we have that P ∈ Y(T ), thus
Y ∈ Y(T ). Now since Y ∈ Y(T ) we know there exists some M ∈ T (T ) such
that HomA(T,M) ∼= Y . Thus from the previous lemma we know that
pdY ≤ pdM . Which now gives us that

pdX ≤ 1 + pdY ≤ 1 + pdM ≤ 1 + gl.dimA.

Finally giving us that gl.dimB ≤ 1 + gl.dimA.
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From lemma 3.1.1 we have the equivalence HomA(T,−) between AddT and
PB . This equivalence extends to a triangle equivalence between Kb(AddT )
and Kb(PB). Since HomA(T,−) is an additive functor, it preserves the homo-
topy relation and also sends distinguished triangles to distinguished triangles.
This is because the distinguished triangles in the homotopy category is of the
form

T0 T1 Cone(f) ΣT0
f ι π

This gets sent to

P0 P1 ΣP0 ⊕ P1 ΣP0

Hom( T,f) ι π

Where P0
∼= HomA(T, T0) and P1

∼= HomA(T, T1). This is isomorphic to a
triangle in Kb(PB).

Now we have all the ingredients to show a tilting module AT induces a triangle
equivalence between Db(A) and Db(B), for B = EndT . That is whenever A is
a finite dimensional algebra of finite global dimension.

Theorem 5.0.7. Let AT be a tilting module andB = EndA T . Then the derived
categories Db(A) and Db(B) are triangle equivalent.

Proof. From lemma 5.0.2 and 5.0.3 we know that Kb(AddT ) and Db(A) are
triangle equivalent. Moreover the equivalence HomA(T,−) : AddT −→ PB ex-
tends to a triangle equivalence betweenKb(AddA T ) andKb(PB). Finally since
B has finite global dimension we know that Kb(PB) and Db(B) are triangle
equivalent. Thus giving us Db(A) ∼= Db(B).
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