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ABSTRACT

This thesis will introduce two of the lattice-problems, learning with errors (LWE )
and shortest integer solution (SIS ), which the security of lattice cryptography
rely on. These problems were introduced by Oded Regev in 2005 [1] and Ajtai
Miklos in 1996 [2], respectively. Further, the thesis will provide insight into how
one can use them in encryption and commitment schemes, zero-knowledge pro-
tocols (ZKP ), and digital signatures.

SAMMENDRAG

Bachelor oppgåva vil introdusera to gitter-problem, learning with errors (LWE )
and shortest integer solution (SIS ), som sikkerheten til gitter-kryptografi baserer
seg på. LWE og SIS var introdusert av henholdsvis Oded Regev i 2005 [1] og Aj-
tai Miklos i 1996 [2]. Vidare vil bacheloren gi eit innblikk i korleis ein kan bruka
gitter-problema i kryptering, forpliktelse-protokoll, kunnskapsløyse bevis, og dig-
itale signaturer.
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Chapter 1

Introduction

Cryptography, or shortened crypto, can be seen as techniques to secure commu-
nication from malicious attackers. Today we focus the use of cryptography for
communication over the internet, but crypto has in some form existed for many
thousands of years. Before the age of computers, they used more basic codes and
cryptic keys to hide secrets. An example is when they shifted the alphabet to en-
crypt messages. The term modern cryptography has emerged to differ between
this earlier crypto and the crypto used for computers today.

In modern cryptography, we divide encryption into symmetric and asymmetric
encryption. We use asymmetric crypto to exchange secret keys to the party com-
municating, among more, and symmetric crypto to encrypt the messages. In this
thesis, we will focus on asymmetric crypto. Refer to [3] for more information
about symmetric and asymmetric cryptography.

Asymmetric encryption is applied in many applications you most likely use daily.
Examples are Facebook messenger and TLS (a cryptosystem that secures commu-
nication over a computer network such as email and Web browser). The security of
asymmetric encryption today depends on the Diffie-Hellman assumption [4, sec-
tion 1] and the RSA assumption [5, section 1], which rely on the hardness of the
discrete logarithm and prime number factorization, respectively. This thesis will
introduce two new mathematical assumptions asymmetric encryption can depend
on.

1.1 Why Lattice Cryptography?

Since around 1980, scientists have worked on building a quantum computer. It
is suggested this computer holds the potential to compute problems significantly
faster than a classical computer can, and among these problems are discrete loga-
rithms and factoring. Through Shor’s algorithm, a quantum computer will be able
to compute this problem in polynomial time [6]. Therefore we need new mathe-

1
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matical problems whose computational complexity in a quantum computer is such
that the asymmetric encryption is secure enough to rely on.

This is where lattice cryptography becomes quite helpful. The assumptions lattice
cryptography is based on are not only hard for a classical computer but also for
a quantum computer. For this reason, lattice cryptography has become a trendy
and useful field studied today.



Chapter 2

Theory

We will assume that the reader has a basic knowledge of cryptography and ring
theory.

2.1 Notation

The operations we will be performing through this paper will be in the ring (Zq,+,
×), where q represent some positive integer. We let U be a set, and β ∈ Z . Some
useful notation to keep in mind:

• [β]: the set {−β , ...,−1, 0,1, ...,β}.
• t ∈ Un: t is a vector with n entries, and with element from U in each entry.
• Un×m: an n×m matrix with element from U in each entry.

• t
$
←− U: t chosen at random from U.

• ||s||∞ ≤ β: we have si ≤ β for i = 1,2, ...

You will be introduced to the commitment, challenge, and ciphertext space in this
thesis, and they will all be denoted C, but from the context, it will be clear which
space we are working with.

2.2 CPA Security

The security of the schemes will be CPA-secure (semantically secure against chosen
plaintext attack). We will assume the reader has some knowledge of this and will
only state the definitions. You can find a more detailed description of the defi-
nitions in [7, section 5.3]. Semantic security is defined to be the security against
the adversary’s advantage to differ between the encryption of two given messages.
We will omit the formal definition of semantic encryption, but it can also be found
in [7, section 5.2].

3
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Challenger Adversary

(sk,pk)
$
←− GenKey(k)

b
$
←− {0,1}

pk
−−−−−→

m0,m1 ∈M
m0,m1←−−−−−

c
$
←− Enc(pk,mb)

c
−−−−−→

b′
←−−−−−

Figure 2.1: Visualisation of CPA-security

Attack game (CPA-security)

For a given scheme E = (E,D), defined over the key (K), message (M) and chipertext
space (C), and for a given adversary A, we define an experiment

Experiment:

• The challenger selects (pk, sk)
$
←− GenKey(k) and b

$
←− {0,1}.

• The adversary submits two messages m0,m1 ∈M of same length to the chal-
lenger.

• The challenger computes c
$
←− Enc(pk,mb), and sends c to the adversary.

• The adversary outputs a bit b′ ∈ {0,1}.

A wins if b = b’.

See figure 2.1 for a visualization of the game.

For b ∈ {0,1}, let W1 be the event that A outputs 1 in the experiment, and W0
when A outputs 0 in the experiment. We define A’s advantage with respect to E
as

C PAadv[A,E] := |Pr[W0]− Pr[W1]|.

Definition 1 (CPA security)

A scheme E is called semantically secure against chosen plaintext attack, or sim-
ply CPA secure, if for all efficient adversaries A, the value CPAadv[A,E] is negligible.

2.3 Learning With Errors

Now, the first mathematical problem which the lattice cryptography relies its se-
curity on, learning with errors (LWE ). The definition below can be found in [8,
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section 2.3]

Definition 2 (Learning With Errors problem)

For positive integers m, n, q og β ≪ q, the LWE m,n,q,β problem asks to distinguish
between the following two distributions:

1. (A,As+ e), where A
$
←− Zn×m

q , s
$
←− [β]m,e

$
←− [β]n

2. (A,u), where A
$
←− Znxm

q and u
$
←− Zn

q

i.e. given (A, t) you are supposed to be able to distinguish t = As+ e and u where u
is picked at random from an uniform distribution over Zn

q .

For the LWE problem to be hard, we have to use the LWE assumption. The as-
sumption says that if we add a short vector to another vector, it will appear ran-
domly picked from a uniform distribution.

What makes the problem hard is, therefore, the presence of e. How hard the prob-
lem is relies on the parameters m, n, q, and β . How their values are determined
in connection with each other. The more we increase m and β/q, the harder the
problem will get. When increasing m the size of the sets [β]m, Z n×m

q will increase.
The bigger β/q are, the more values we can choose between for our parameters
s and e, and the harder they are to find for an adversary trying to determined
if t = As + e or is picked at random. For a more detailed explanation of how to
choose the parameters and how they are related, we refer to [8, section 2].

2.4 Shortest Integer Solution

The shortest integer solution, or SIS , problem focus on the hardness of finding a
short vector satisfying a given equation.

Definition 3 (Shortest Integer Solution Problem)

For positive integers n, m, q and β ≪ q, and given (A, t) where

A← Zn×m
q and t = As,

The SIS problem asks you to find a s such that t = As and ||s||∞ ≤ β .

The hardness of this problem rely on the size of β . The bigger β is, the more
solutions there exist for the equation t = As. If β > q/2 the problem becomes
trivial [8, section 3.2].

The lattice cryptography in focus in this thesis relies on both the SIS problem and
the LWE problem. Therefore, when choosing values for the parameters, one has
to look at them related to both the problems individually and together.
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2.5 Lattices

We will briefly introduce how lattices are defined, and introduce the LWE and
SIS problems in this notation. However, in this thesis, we will not be using this
notation. This is because we will not have use for the formal definitions in our
explanations. Therefore when working with these lattices, we will refer to Z q
over some vector space and consider matrices and vectors there.

Definition 4 (Integer lattice)

Let (Zm,+) be a group, and let B be a basis for the vectorspace Zm×m. Then we define
the lattice Λ with respect to B to be a subgroup of (Zm,+) such that

Λ= L (B) = {v ∈ Z m|∃z ∈ Z m;Bz= v}

We will look at the set of lattices defined above, satisfying the definition be-
low.

Definition 5 (Q-ary integer lattice)

Let A ∈ Z n×m
q , then the q-ary integer lattice Λ with respect to A is defined to be

Λ= L ⊥q (A) = {v ∈ Z
m|Av≡ 0( mod q)}

To connect lattice notation to the LWE and SIS problems, we have to introduce
more theory. First, we say that two element s1, s2 ∈ Z n

q is in the same coset if and
only if As1 ≡ As2( mod q). There are qm such cosets since we work modulo q,
and the elements are vectors of length m.

We also need some notation to measure the distance in the lattice. The definition
can be found in [8, section 3.1.2].

For an m-dimensional lattice Λ and any vector r ∈ Z m
q (not necessarily in Λ), the

lp-norm distance from r to the lattice is defined as

∆p(r,Λ) =min v∈Λ∥v− r∥p.

Let r1, r2 ∈ Z m
q /Λ, whereZ m

q /Λ is some coset, then we have∆p(r1,Λ) =∆p(r2,Λ).
Distance is therefore a well defined notation for coset.

If Λ= L ⊥q (A) and t≡ As ( mod q) defines a coset s+Λ, we write

∆C
p (t,Λ) =∆p(s,Λ),

where ∆C denote that t is the image of the coset under A, instead of some coset
representative as s.

We are now ready to introduce the LWE and SIS problems in lattice notation.
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Definition 6 (The LWE problem in lattice notation)

For positive integers m, n, q og β ≪ q, and A
$
←− Z n×m

q , define Λ = L ⊥q (A | In). The
LWE m,n,q,β problem asks to distinguish between the following two distributions:

1. t where t is some coset of Z m
q /Λ, and ∆C

∞(t,Λ) ≤ [β].
2. u where u is some random coset of Z m

q /Λ.

i.e. the problem becomes to distinguish between the two coset t and u.

Definition 7 (The SIS problem in Lattice notation)

For positive integers n, m, q and β ≪ q, and given (A, t) where

A
$
←− Zn×m

q , and define L ⊥q (A | In),

The SIS problem asks you to find a s ∈ L ⊥q (A | In) such that ∥s∥∞ ≤ β .

More about this can be found in [8, section 3].

2.6 Polynomial Rings

As you might know, the polynomial ring holds a lot of structure. This can be ad-
vantageous in crypto schemes and protocols for optimization and making them
more efficient. But the structure can also be used for attack, and therefore there
must be taken precaution when choosing what ring to work with and parameters
for the schemes and protocols.

In this section, you will get an introduction to polynomial rings and how to relate
them to lattices. Read more about this in [8, section 4].

An Introduction to Polynomial Rings

One classic example of a ring is the integers Z . And you might see the ring M2(F ),
the 2×2-matrix over F , where F is a field. The polynomial ring is an extension of
some ring R, where one uses the elements of the ring as coefficients in polynomi-
als. The polynomials will then be the element of the ring, and we denote the ring
as R[X]. This ring fulfills the axioms of a ring structure and is left to be checked
by the reader.

When formally defining a polynomial ring we write (R [X],+,×), where R is
some ring, in our case Z . The element of the ring R[X] is then defined to be of

the form r(x) =
∞
∑

i=0

ri x
i where ri ∈R .
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Addition will be performed the same way as in R[X], polynomials over the real
numbers, by adding the coefficient of the same degree term together. Multiplica-
tion will be the usual polynomial multiplication in R[X] as well.

• r(x) + a(x) =
d
∑

i=0

(ri + ai)x
i where d = max{deg(r(x), a(x))}

• r(x) · a(x) =

� t
∑

i=0

ri x
i

�

·

� s
∑

i=0

ai x
i

�

=
t+s
∑

k=0

k
∑

l=0

rl ak−l x
k, t and s equals

deg(r(x)) and deg(a(x)) respectively.

In this thesis, we will focus on subrings of the polynomial ring (Z [X],+,×). The
subring will be all polynomials of the form above, but only up to a given degree
d. We note this subring Z [X]/ f (x), or simply Zf[X] , where f (x) is a monic irre-
ducible polynomial of degree d. If you are familiar with some Galois theory, you
might recognize this as the Galois group of the polynomial f .

The element of the ring will work modulo f (x). Meaning, if a polynomial g(x)
has degree higher than f (x), deg( f (x)) < deg(g(x)), there will exist another
polynomial r(x) ∈ Zf[X] representing g(x), where deg(r(x)) < deg( f (x)). We
write g(x) ≡ r(x) mod ( f (x)). This is based on the euclidean algorithm, for
every polynomial g(x) and f (x), deg( f (x)) < deg(g(x)) we can write g(x) =
f (x)h(x) + r(x), where deg(r(x)) < deg( f (x)), and h(x) ∈ Z [X].

Some Linear Algebra

The question then becomes how to work with these polynomials in terms of ma-
trices. This section is mainly based on [8, Section 4.1.1 and 4.2] with some more
detailed calculations.

Polynomial Modulo Arithmetic

First a helpful trick to make note of is when multiplying two polynomials, g(x)
and h(x), modulo some other polynomial f (x). The multiplication can be written
as the multiplication of a matrix Z d×d and a vector Z d , where d is the degree of
the polynomial we are working module with. Observe:

g(x) · h(x) = g(x) ·

�d−1
∑

i=0

hi x
i

�

mod f (x) =
d−1
∑

i=0

(gi x
i mod f (x))hi (2.1)

To better understand this, we will go through an example part by part, but first,
the example will be presented without any calculation.

Example, with out any calculation, of a reduction of the product of the two poly-
nomials g(x) = x3 − x2 − 1 and h(x) = x2 − 2 modulo f (x) = x4 + 1.
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(x3 − x2 − 1)(x2 − 2) mod (x4 + 1) = −2x3 + x2 − x + 3 (2.2)

Detailed explanation:

(x3 − x2 − 1)(x2 − 2) = x5 − x4 − 2x3 + x2 + 2

Now we need to get rid of the 5th and 4th degree term. When working modulo
a polynomial we can express terms with higher degree than deg( f (x)) in lower
degree terms by manipulating the polynomial f (x).

f (x) = x4 + 1= 0 because we work modulo f(x).

x4 = −1

x5 = −x By multiplying each side by x.

Replace the 5th and 4th degree term with the new terms found above.

(x3 − x2 − 1)(x2 − 2) = x5 − x4 − 2x3 + x2 + 2

= −x − (−1)− 2x3 + x2 + 2

= −2x3 + x2 − x + 3

Matrix Representation

Further, we will rewrite the polynomial in matrix representation. First, we will
present the matrix representation. Then there will be a more detailed explanation
of how to find the matrix representations.

I will represent g(x) in the vector space of polynomials modulo f (x). Hence the

first term of equation 2.1,
d−1
∑

i=0

(gi x
i mod f (x)). Then multiply it with there vector

representation of h(x).







−1 −1 1 0
0 −1 −1 1
−1 0 −1 −1
1 −1 0 −1






·







−2
0
1
0






=







3
−1
1
−2







The vector representation of h(x) is pretty straightforward, the first entry repre-
sent the lowest degree term, and for each entry the degree increase by 1. The
matrix representation on the other hand is not that straightforward. Each of the
column represent g(x) time x i for i ∈ {0, .., deg( f (x)) − 1}. The i’th Column is
the vector representation og g(x) · x i−1 mod ( f (x)). We will only show the cal-
culation for column 3.
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(x3 − x2 − 1) · x2 mod (x4 + 1)

= x5 − x4 − x2 mod (x4 + 1)

≡ −x − (−1)− x2

= −x2 − x + 1

which has the vector representation
�

1 −1 −1 0
�T

Some new notation will be necessary to talk about this theory.

For a polynomial g(x) =
d−1
∑

i=0

gi x
i ∈ Zf[X] we define:

• V g(x) =







g0
g1
...

gd−1






∈ Z d .

• M g(x) =
�

V g·1 mod f (x) V g·x mod f (x) ... V g·xd−1 mod f (x)
�

∈ Z d×d

Rewriting equation 2.2 in the notation above:

M x3−x2−1 · V x2−2 = V −2x3+x2−x+3

The polynomial f (x) should be apparent from the context. So we can omit writing
modulo f (x) in the notation.

Extending the notation above, the matrix and vector can store even more data.
This is done by letting each entry of an n×m matrix and vector of length n consist
of an M g for some g(x) ∈ Zf[X] . We will use this when redefining an encryption
scheme in section 3.2.

The definition is found in [8, section 4.1.1]:

Let g=







g(x)1
g(x)2

...
g(x)n






where g(x)i ∈ Zf[X] , and G =





g(x)1,1 ... g(x)1,m
... ... ...

g(x)m,1 ... g(x)m,n





where g(x)i, j ∈ Zf[X]

Further we define V g and M G:

V g =







V g(x)1
V g(x)2

...
V g(x)n






∈ Z dn, and M G =





M g(x)1,1
... M g(x)1,m

... ... ...
M g(x)m,1

... M g(x)m,n



 ∈ Z dn×dm.
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This gives the equation

M G · V a = V Ga ∈ Z dn for G ∈ Zf[X]
n×m and a ∈ Zf[X]

m,

which can be checked holds using the earlier definitions.

The Generalized-LWE and -SIS Problem

We now have the tools to generalize the LWE and SIS problems from the integers
Z to the polynomial ring Zf[X] . The integer case can then be seen as a special
case over Zf[X] , namely when deg( f (x))≤ 1.

We will introduce some more notation before defining the generalized version of
the LWE problem. Zf[X] has been used repeatedly throughout this section. But it
is not to be confused with the subring Zq,f[X] , which will appear in between from
now. The difference is the space which the coefficients are picked from. In Zq,f[X] ,
we have coefficients in Z q instead of the entire Z . In addition, throughout this

section the notation a
$
←− [β] will mean the coefficients of all the polynomials in

the vector a is picked uniformly from [β]. The following definition can be found
in [8, section 4.2]

Definition 8 (Learning With Errors Problem over Zq,f[X] )

For positive integers m, n, q and β ≪ q, and ring Zq,f[X] , the Zq,f[X] − LWE n,m,β
problem asks to distinguish between the following two distributions:

1. (A,As+ e), where A
$
←− Zq,f[X]

n×m, s
$
←− [β]m,e

$
←− [β]n

2. (A,u), where A
$
←− Zq,f[X]

n×m and u
$
←− [β]n

Definition 9 (Shortest Integer Solution Problem over Zq,f[X] )

For positive integers n, m, q and β ≪ q, and given (A, t) where

A← Zq,f[X]
n×m and t = As,

The SIS problem asks you to find a s such that t = As and ||s||∞ ≤ β .

The hardness of the Zq,f[X] -LWE n,m,β and Zq,f[X] -SIS n,m,β problems can be re-
duced to the LWE defined in 2.3 and the SIS problem defined in 2.4.





Chapter 3

Encryption

The scheme presented in this thesis is the same as can be found in [8, section 2].
This section will start with an introduction to a scheme, the proof of its security,
and then two ways to generalize it. First, by choosing the element used in the
scheme from matrices instead of vectors, and then using polynomial rings instead
of the integers Z .

3.1 Encryption Scheme

3.1.1 Public-Key Encryption Schemes

When defining a public-key encryption scheme, we define three algorithms. The
key-generation algorithm, which generates the public key (pk) and the secret key
(sk), and the encryption and decryption algorithms which encrypt the message m
and decrypt the ciphertext c, respectively. We often shorten these terms to Gen,
Enc, and Dec, respectively. Below is an overview of the inputs and outputs of the
algorithms.

• (pk, sk)
$
←− GenKey(k)

• c
$
←− Enc(pk,m)

• m← Dec(sk,c)

The Generator protocol takes as input the security parameter k, and as mentioned
outputs a public key (pk) and secret key (sk) for encryption and decryption. The
encryption scheme takes pk as input and uses it to encrypt the message m. Then
the decryption uses sk to decrypt c and finds the message m. How the different
protocols work on the inside varies from scheme to scheme. We will focus on a
scheme presented in [8, section 2.3] represented in figure 3.1.

13
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Gen(k) Enc(m, pk)

s,e1
$
← [β]m r,e2

$
← [β]m

A
$
← Z mxm

q e3
$
← [β]

t := As+ e1 uT := rTA+ eT
2

sk := s, pk := (A, t) v := rTt+ e3 + ⌈q/2⌋m

return (sk, pk) c= (uT, v)
Dec(sk,c) return c

m= v − uTs

return m

Figure 3.1: A CPA secure encryption scheme E based on the LWE -problem.

3.1.2 An LWE-Based Encryption Scheme

The security of the scheme E in figure 3.1 and the later generalized version of the
scheme is based on the LWE problem in section 2.3. The scheme in figure 3.1 will
be the encryption scheme we will be following and building upon in this thesis.
You will find a more detailed description of the scheme in [8, section 2.3.1].

Note, in the scheme in figure 3.1 to differ between the message m, and the dimen-
sion of the vectors and matrices m, we write the message m in bold even though
it is not a vector.

For a game-based proof of the CPA security of the scheme, look at figure 3.2. If
you’re not familiar with game-based proof, one can find another explanation in [8,
section 2.3.1]. From the proof in figure 3.2 we have

CPAadv[A,E]≤ LWEadv[R,E]

Thus if we can break the E scheme with probability α, we can break LWE with the
same probability.

To see the correctness of the scheme we will write out the decryption,

v− uTs=rT(As+ e1) + e3 + ⌈2/q⌋m− (rTA+ eT
2)s

=rTe1 + e3 + ⌈2/q⌋m− eT
2s.

This is not the same m decrypted, the decryption is left with multiple error terms
and the message is multiplied with ⌈2/q⌋. But looking closely at the decryption,
you will realise it is pretty close. If you remember, the error terms are all bounded
by some β . We rewrite the error term, rTe1 + e3 − eT

2s= e. Now by looking at the
upper bound of each of the terms in the error we get rTe1 ≤ mβ2, eT

2s≤ mβ2 and
e3 ≤ β . This gives us e ≤ 2mβ2 + β . Then, by depending the parameters on the
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C LWE-game R CPA-game A
(A,t)
−−−−−→

pk := (A,t)
pk

−−−−−→

b
$
←− {0,1}

r,e2
$
←− [β]m

e3
$
←− [β]

uT := rT A+ eT
2

m0,m1←−−−−−

v = rT t+ e3 + ⌈q/2⌋ ·mb

c= (uT , v)
c

−−−−−→

b′
←−−−−−

If b = b′

t= As + e for

some s and e

Else

t random

Figure 3.2: A CPA security proof of the encryption scheme in figure 3.1
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Gen(k) Enc(sk,pk)

S,E1
$
← [β]m×l R,E2

$
← [β]k×m

A
$
← Z m×m

q E3
$
← [β]k×l

T := AS+ E1 U := RA+ E2

sk := S, pk := (A,T) V := RT+ E3+⌈q/2⌋M
return (sk, pk) C= (U,V)
Dec(sk, c) return C

M= V−US

return M

Figure 3.3: A generalised version of the LWE -scheme in figure 3.1

inequality 2mβ2 + β < q
4 , we can find the value of m by examining the value of

the decryption. If the decryption has value closer to q/2 than 0, we will conclude
with m = 1. On the other hand, if the decryption has value closer to 0, we will
conclude m = 0.

So far, the only downside of the scheme seems to be the restriction of the length of
the message. Using the scheme in figure 3.1 we will only be able to decrypt one bit
at a time. Therefore we have constructed a more generalized scheme, figure 3.3,
where we trade a longer public key for a longer message.

3.1.3 A Generalised Version of the Scheme

The same security argument from the scheme in figure 3.1 applies in the gener-
alised scheme. Decomposing the parameter T from the second part of the public
key, we see T = AS+ E1 = (As1 + e1, ...,Asl + el). Thus we can look at the public
key as (A,T) = (A,As1 + e1, ...,Asl + el) = (A,As1 + e1), ..., (A,Asl + el). Which is
secure by the game based security proof in figure 3.2. But there will be some loss
of the security from the expansion [8, section 2.4].

When Looking at the (i, j)th coefficient of V−US = RE1 + E3 +
q
2M− E2S we see

rT e1 + e3 +
q
2m− eT

2 s which should look recognizable. It is the same decryption
we got when decryption the scheme earlier. The same arguments for correctness
follows.

3.1.4 The Difference of the two Schemes

Here are a couple of things to make a note of. First, the message size has in-
creased from 1 bit to k× l bits. On the other hand the public key size has increased
from |ρ|+m log(q) to |ρ|+ lm log(q) bits, and the ciphertext has increased from
(m+ 1) log(q) to k(m+ l) log(q) bits. By varying the parameters k and l, we can
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minimize the combined size of the public key and the ciphertext. But it has in-
creased by a significant amount.

On the upside, we can now encrypt bigger messages, as was our goal. But there
is still potential for improvement. You can read more about some of the ways of
optimizing the scheme in [8, section 2.5]. Another way is by instead of using the
integers Z for building the matrices and vectors. One can use the polynomial ring
Zf[X] , which we will discuss in the next section.

3.2 Using the Structure of Polynomial Rings

In section 2.6, you were introduced to the polynomial ring, more specifically, its
structure and how to convert it to linear algebra. In this section, we will use this
to generalize the scheme from figure 3.1. The only difference is a switch from
computing over Z to Zq,f[X] . One of the advantages of the new scheme will be
the ability to encrypt a message of d bits instead of only one, as in the scheme
in figure 3.1. There will also be some advantages we can use from the structure
of the polynomial ring for efficiency, but the structure can be used for attacks as
well. To read more about this, see in [8, section 4.4].

The new scheme can be found in figure 3.4. Remember that the notation a
$
←−

[β] when considering polynomial rings will mean that the coefficients of all the
polynomials in a is picked uniformly from [β].

The correctness of the scheme in figure 3.4 can be computed in a similar manner
as the scheme in figure 3.1. The error term

M rT V e1
+ V e3

−M eT
2
V s

can be bounded as before by q/4 by making β and m depend on an equation
derived from the upper bound on the error term.

The security will as well follow from the security proof in figure 3.2. Read more
about the security argument in [8, section 4.3.2].
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GenKey(k) Enc(sk, pk)

s,e1
$
← [β]m r,e2

$
← [β]m

A
$
← Zq,f[X]

m×m e3
$
← [β]

t := As+ e1 u := rT A+ eT
2

sk := s, pk := (A,t) v := rT t+ e3 + ⌈q/2⌋m
return (sk, pk) c= (u, v)
Dec(sk,c) return c

m= v − us

return m

Figure 3.4: A CPA secure encryption scheme based on the Zq,f[X] -LWE problem,
generalized from the scheme in figure 3.1



Chapter 4

Commitments and
Zero-Knowledge Proofs

Commitment schemes and zero-knowledge proofs (ZKP ) are central in modern
cryptography. Commitment is used for committing to a value without sharing it.
Thus you can not change the value after committing to it without the other party
knowing. It is used in numerous protocols, for instance, in coin flipping and zero-
knowledge.

Zero-knowledge also has many applications. A few examples are electronic vot-
ing, authentication, and blockchains. Zero-knowledge is used to prove knowledge
about a statement without sharing any more information than the public part of
the statement. Let’s look at the zero-knowledge part of a digital election. You want
to vote for the party you’re supporting, but one has to prove to the voting system
that one’s vote is valid. At the same time, you don’t want to share what the vote
said.

This section will start with a more formal definition of commitment and an exam-
ple of a commitment scheme. Then we will continue with a more formal definition
of zero-knowledge, and end with a ZKP -protocol using the previous commitment
scheme.

4.1 Commitment

A commitment scheme consists of three algorithms the public-key generator, Key-
Gen, which takes the security parameter k as input and outputs a public commit-
ment key, PP, the algorithm Commit which commits a given message using the
public commitment key, and the algorithm Open which verifies or reject the com-
mitment. The public-key generator also outputs a definition of the message space,
probability space, and the commitment space.

19
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Challenger Adversary

PP
$
←− KeyGen(k)

b
$
←− {0, 1}

PP
−−−−−→

x0,x1 ∈M
x0,x1←−−−−−

(c,r)
$
←− Commit(PP,xb)

c
−−−−−→

b′
←−−−−−

Figure 4.1: A visualisation of the hiding property.

• PP
$
←− KeyGen(k), KeyGen also output a definition of the message space M,

randomness space R, and commitment space C.

• (c, r)
$
←− Commit(PP,x), where x ∈M, and c ∈ C and r ∈R.

• b←− Open(PP,x, c, r), where b ∈ {0, 1}.

KeyGen and Commit are PPT (Probabilistic polynomial time) algorithms, while the
last one, Open, is a deterministic algorithm. The algorithm Open outputs 0 or 1
dependent on if it verifies or rejects the commitment to x.

For the scheme to be a commitment scheme, it has to fulfill two properties called
hiding and binding.

Definition 10 (Hiding)

The hiding property is dependent on the scheme’s ability to hide the message. For two
messages x0 and x1 the adversary A should not be able to distinguish between the
commitments for the messages. For a visualization, see figure 4.1.

We differ between the two terms computational and statistical hiding. The scheme
is computational hiding if A is restricted to polynomial-time algorithms and is
statistical hiding if we allow A to be any all-powerful algorithm.

Definition 11 (Binding)

The scheme is said to be binding if the probability for an adversary A finding two
openings for the same commitment is less than ε.

P r
�

A(PP) = (x,x′, r, r′,c) s.t. x ̸= x′ ∧Open(PP,x,c, r) = Open(PP,x′,c, r′) = 1|

PP
$
←− KeyGen(k)
�

< ε
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KeyGen(k) Com(x,A1,A2)

A1 = [In A′1]
$
← Zq,f[X]

n×(k−n) r
$
← Z β , f [X]k, f = 1

A2 = [0
l×n Il A′2]

$
← Zq,f[X]

l×(k−n−l) c= [c1 c2]
T = [A1 A2]

T · r+ [0n x]T

Return A1,A2 Return c, r, f

Open(c, r, x, f ,A1,A2)

Check:

f · [c1 c2]
T = [A1 A2]

T · r+ f · [0n x]T

and

∥ri∥2 ≤ 4σ
p

N ∀ i and f ∈ C′

return 0 or 1

Figure 4.2: A Lattice based Commitment Scheme

We also differ between computational and statistical binding. Similar to above, if
the adversary A is restricted to polynomial-time algorithms, we say it is compu-
tational, and if A is allowed to be an all-powerful algorithm, it is statistical like
above.

4.1.1 Example Commitment Scheme

In this section, there will be introduced a commitment scheme, figure 4.2, de-
pending on the security of the LWE and SIS problems. Further, we will use the
scheme to define a ZKP -protocol, figure 4.4. For a more detailed overview of the
schemes, you can look in [9, Section 4.1]. A heads-up about the notation used in
the thesis referred to, they rely the security on the DKS∞ (Decisional Knapsack
problem in l∞ norm) and SKS 2 (Search Knapsack problem in l2 norm) problem.
These problems can be rewritten to the LWE and SIS problems, respectively, and
will be used instead in the security argument.

The hiding and binding properties of the scheme in figure 4.2 rely on the LWE and
SIS problems, respectively. Now there will be stated a couple of lemmas from [9,
section 4] which argue for hiding and binding of the scheme.

Lemma 1 For any x,x′ ∈ Zf[X]
l , if there exists an algorithm A that has advantage

ε in breaking the hiding property of the commitment scheme, figure 4.2, then there
exists another algorithm A′ that runs in the same time and has advantage ε in solving
the LWE n+l,k,β problem.

Proof can be found in [9, section 4.2].

Lemma 2 If there is an algorithm A that can break the binding of the commitment
scheme, figure 4.2, with probability ε, then there is an algorithm A′ who can solve
the SIS n,k,16σ

p
κN problem with advantage ε.
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Proof can be found in [9, section 4.2].

The binding and hiding property follows from lemma 1 and 2.

By varying the parameters, one can make the scheme either statistical hiding or
statistical binding, but not both simultaneously. The parameters can also be set
such that the scheme is hiding and binding but then computational for both. Read
more about the different instantiations here [9, section 4.3], and how to set the
parameters in [9, section 3.1].

4.2 Zero-Knowledge

For a protocol to be Zero-Knowledge (ZK ) it has to satisfy three properties com-
pleteness, soundness, and honest-verifier zero-knowledge. We will introduce these
properties below. The ZK protocols are divided into interactive and non-interactive
protocols. In this thesis, we will look at an interactive one. But it can be trans-
formed into a non-interactive one by the Fiat-Shamir transform [10].

The protocol consists of a prover (P) and a verifier (V), and the prover will try
to prove his knowledge to the verifier but at the same time don’t reveal any more
information than necessary. The ZK protocol in figure 4.3 can be read in more
detail in [11, Section 2].

Both P and V will input x , also called the statement. The statement consists of one
or more public parameters used in the ZK -protocol. P will have another input as
well, the witness w unknown to V. The witness is used to prove the knowledge of
P to V.

For the protocol to be secure, it has, as mentioned, to fulfill three properties.

Definition 12 Completeness

If P and V on input (x,w) and x, respectively, follow the protocol honestly. Then V
will always accept except with a negligible probability.

Definition 13 (Soundness)

Soundness looks at the protocol’s protection from a dishonest prover. A dishonest
prover is a P ′ who doesn’t know the witness w but can convince V with more than
probability E it knows w.

Another property that implies soundness is special soundness.

If P sends a, V answer e and e′ where e ̸= e′ and P is able to compute z and z′,
z ̸= z′, which both is accepted by V. Then V can efficiently compute the secret w.

Definition 14 Honest-Verifier ZK

The Honest-verifier ZK property gives the protocol the security against V learning
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Prover Verifier

Picks a commitment a
a

−−−−−→

V picks the challenge

e
$
←− C, the challenge space.

e
←−−−−−

Compute the response z

using a, e, w and x .
z

−−−−−→

Based on the data V has

seen, V has to decide weather

to reject (output 0) or

accept (output 1).

Figure 4.3: An general description of a interactive Zero-Knowledge proof

anything about the secret w only P knows. Given the following property to the pro-
tocol, it should satisfy honest-verifier ZK .

There exist a polynomial time algorithm able to compute a accepted conversation
(a,e,z) on input x, which will have the same probability distribution as an actually
conversation between P and V.

4.2.1 Example Zero-Knowledge Protocol

This protocol will use the commitment scheme introduced in the previous section.
The protocol is described in figure 4.4.

Below you will find an argument for completeness, soundness, and Honest-verifier
Zero-Knowledge for figure 4.4. The argument is found in [9, section 4.4].

Completeness:

For completeness there are two properties that has to be satisfying. for all i ∥zi∥2 ≤
2 ·σ

p
N and A1 · z = t+ d · c1. We only have to worry about the first one, since

by definitions of the parameters the second one holds. From in [9, section 2.3,
Remark 1] the first property holds except with negligible probability.

Special Soundness:

As mentioned, if the protocol fulfills special soundness, it fulfills soundness.
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Pick two different challenges d and d′. Define f = (d− d′) ∈ C′ and r =





r1
...
rk



 =

z− z′ such that A1 · r = f · c1. The message x contained in c is then defined to be

x= c2 − f−1 ·A2 · r. We then have ∥ri∥2 ≤ ∥zi∥2 + ∥zi∥2 ≤ 4σ
p

N and

�

A1
A2

�

· r+ f ·
�

0n

x

�

= f ·
�

c1
c2

�

, the opening (x, r,f) is valid.

Honest-Verifier Zero-Knowledge:

To simulate a conversation, one start by picking a z
$
←− N k

σ, a vector of length k
where the element of the entries are picked from a normal distribution centred
around zero. Then one compute t = A1z− dc1 using the already decided z. This
conversation will be statistical indistinguishable from the real non-aborting tran-
script by [9, section 2.3, lemma 2].
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Γopen

Public information:

A1,A2←− KeyGen(k)
Prover’s information:

r,r’ ∈ Z β , f [X]

c= [c1,c2] = Com(x; r)

Prover Verifier

y
$
←N k

σ

t := A1 · y
t

−−−−−→

d
$
←− C

d
←−−−−−

z= y+ d · r
Abort with probability

1−min

�

1,
N k
σ

M ·N κdr,σ(z)

�

z
−−−−−→

Write z= [z1 · · · zk]
T

Accept iff ∀i,∥zi∥2 ≤ 2
p

N and

A1 · z= t+ d · c1

Figure 4.4: ZK Protocol using commitment from figure 4.2





Chapter 5

Digital Signature

Digital signatures are schemes used for verifying the integrity and authenticity
of messages and other received data. One example of use is to verify the sender
when sending a message.

In this section, we will first present an interactive ZK -protocol found in [8, section
5.2], which can be used to build a digital signature scheme using the Fiat-Shamir
transform [10] making the ZK -protocol non-interactive.

5.1 Digital Signature from the Σ-Protocol

From the public information given in the Σ-protocol, figure 5.1, (A,t), one can see
that the prover’s information is kept secret by using the hardness of the Zq,f[X] -
LWE and Zq,f[X] -SIS problem. The scheme relies on the conversation and the
hardness of the same problems.

The Σ-protocol also allow to rather be checking for some s′1 ∈ [β ′]m, s′2 ∈ [β ′]n

where β ′ > β , instead of checking for [β]. The reason for this is that it is significant
less efficient proving knowledge for small s ∈ [β] than for a relaxed versions s’ ∈
[β ′]. Therefor one end up proving knowledge about (A, t= As1 + s2) by actively
proving knowledge about the relaxed solution As′1+s′2 = t′ where t′ = e′t. A more
detailed explanation of why we can do this can be read in [8, section 5.1]

The size of the coefficients of s′1, s′2 and e′ will be determined by the challenge
space. One can read more about this in [8, section 5.1.1].

The Σ-protocol is visualised in figure 5.1. The protocol consists of the prover gen-
erating to masking variables y1 and y2 used to mask the commitment ω. Then
the verifier responds with a challenge e from the challenge space C. The last part
consists of the prover adding the masking variable to the challenge multiplied by
the witness s1 and s2.

Completeness:

27
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Σ-Protocol

Public information:

A ∈ Zq,f[X]
n×m,

t= As1 + s2 ∈ Zq,f[X]
n

Prover’s information:

s1 ∈ [β]m, s2 ∈ [β]n

Prover Verifier

y1
$
← [γ+ β ′]

y2
$
← [γ+ β ′]

ω :=H(Ay1 + y2)
ω

−−−−−→

e
$
←− C

e
←−−−−−

z1 := es1 + y1

z2 := es2 + y2

If z1 /∈ [β ′]m or z2 /∈ [β ′]n

(z1,z2) :=⊥
(z1,z2)−−−−−→

Accept iff z1 ∈ [β ′]m and z2 ∈ [β ′]n

and H(Az1 + z2 − ct) =ω

Figure 5.1: ZK -Protocol used for building a digital signature.
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The protocol won’t have perfect completeness, and will therefore have a rejection
sampling step were checking the size of z1 and z2. But when (z1,z2 ̸=⊥), then the
first property is fulfilled. For the second property one have to check if Ay1 + y2 =
Az1 + z2 − ct, which written out are the same.

Soundness:

We use an extractor to obtain two transcripts (ω, e, z1 z2) and (ω, e′, z′1, z′2)
where both pairs (z1,z2) and (z′1, z′2) is accepted by the verifier. Then, if there are
no collisions, we have Az1 + z2 − et = Az′1 + z′2 − e′t which then gives A(z1 − z′1)
+(z2 − z′2)− (e− e′)t. The last solution will give the exact statement to the relaxed
solution.

Honest Verifier Zero-Knowledge:

Recall that HVZK means you should be able to compute a conversation (ω, e,
(z1,z2)) with the same distribution as a real conversation in the protocol without
knowing s1 and s2. This can be shown and is in detailed explained in [8, section
5.2.1].

As mentioned, when using the Fiat-Shamir tranform [10], one can make the Σ-
protocol non-interactive. The protocol can also be optimized. More about this can
be read in [8, section 5].
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