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Abstract

This thesis contains an extensive discussion regarding the plane wave approach

to DFT calculations for periodic structures using pseudopotentials. The vdW-DF

and DFT-D methods are suggested as options for the inclusion of dispersion effects

in the system. The quasi-Newtonian BFGS algorithm is introduced as a possible

method for geometry optimization. An introductory guide for the two open-source

DFT simulation softwares Quantum ESPRESSO and GPAW is presented. The

fluorohectorite clay mineral is investigated as a subject for periodic modeling in

Quantum ESPRESSO.



Sammendrag

Denne avhandlingen inneholder en omfattende diskusjon ang̊aende plane bølger-

tilnærmingen til DFT-metoden for periodiske strukturer ved bruk av pseudo-

potensialer. Metodene vdW-DF og DFT-D er angitt som mulige alternativer for å

inkludere dispersjonseffekter i systemet. Den kvasi-Newtonske BFGS algoritmen

er introdusert som en mulig metode for geometrioptimering. En innledende guide

til to open-source programpakker for DFT-simuleringer, Quantum ESPRESSO og

GPAW, blir presentert. Leiremineralet fluorhektoritt blir undersøkt som et tema

for periodisk modellering i Quantum ESPRESSO.
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CHAPTER

INTRODUCTION

In the world of quantum chemistry and materials science we are working at the

scale of atoms, where the nature is bound by the Schrödinger equation. When con-

sidering complex many-body systems, this equation can be hard to solve. Density

functional theory (DFT) aims to make the process of solving this problem easier,

by making use of numerical computations in a variational approach. Implementing

this method into simulation software can lead to a new understanding of materials,

once modeled into a distribution of electrons and nuclei.

1.1 Clay and Fluorohectorite

Clay minerals are abundant, non-toxic, cheap and reusable [1]. They have large

surface areas, which makes them great candidates for applications where we want

to adsorb other molecules on the surface. Due to the layered structure in these

materials, inserting different molecules between layers can lead to adsorption that

results in strong binding energies. Today, studying the possibilities for carbon

storage in clay has become an active field of research.

In Fig. 1.1 we see the typical form of a smectite, with its center-most octahedral

layer surrounded by tetrahedral layers on either side. We will in this thesis consider

a specific type of clay material in the smectite group called fluorohectorite. The

formula for fluorohectorite is written as

Xy(Mg6−yLiy)Si8O20F4, (1.1)

where X denotes some form of an intercalated ion between clay layers. From this

expression we see that whenever y = 0 we have the pure form of fluorohectorite.
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Figure 1.1: The typical structure of a smectite [2]. Each layer of clay sheets

contains a stack of two tetrahedral structures and an octahedral layer in the middle.

1.2 Software Considerations

Due to an expired license for a previously used DFT software at NTNU, we have a

motivating factor in finding a new software that is versatile, user-friendly and effi-

cient. In this project, we will consider two different open-source DFT suites, both

relying on sophisticated methods that will be explained throughout this thesis.

1.3 Structure of the Report

In this thesis we will mainly be discussing different methods that can be applied

for DFT calculations. We will start by looking at the many-body Schrödinger

equation, and go historically through the different approaches to simplifying the

problem. In chapter 3 we will consider how DFT methods can be implemented
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in combination with geometry optimization. In chapter 4 we will compare DFT

softwares and test some clay calculations, and in chapter 5 we will finish with some

concluding remarks.
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CHAPTER

DENSITY FUNCTIONAL THEORY

In scientific fields such as physical chemistry and materials physics, the objective

is often to investigate properties of molecular structures at the quantum level.

To calculate these properties, we require a solution to the Schrödinger equation.

The task of finding such a solution proves non-trivial for many-body systems, as

the computational cost typically scales exponentially with the complexity of the

system. Among the many proposed methods to tackle this problem, DFT tends to

strike a good balance between computational time and accuracy in the results, and

it will be our method of interest for this project. In this chapter we will discuss

the DFT method in detail, starting with the history and fundamental principles

behind it.

2.1 The Many-body Schrödinger Equation

When we are studying many-body systems, we need to consider multiple nuclei

simultaneously. This translates to a more complex Hamiltonian in the Schrödinger

equation for the system, and calls for simplifications to find a solution faster.

The main simplification that is utilized is known as the Born-Oppenheimer

approximation [3]. The idea is here to separate the dynamics of the nuclei from

the dynamics of electrons in the system, given that the nuclei are much heavier than

the electrons. When solving for the motion of the electrons we may consider each

nuclei I as having a fixed position RI in space. Given a configuration of M nuclei

we can form an energy landscape E(R1, . . . ,RM) that can be minimized, which

will be discussed further in later sections. The combination of Coulomb potentials
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from all nuclei will act as an external electrostatic field V for the electrons in

the system. The time-independent Schrödinger equation for the electrons can be

written as

Ĥψ =

[
− ~2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +
N∑
i=1

∑
j<i

U(ri, rj)

]
ψ = Eψ, (2.1)

where Ĥ is the Hamiltonian and E denotes the ground state energy. The wave

function is here referring to the product of all individual electron wave functions,

which reads ψ = ψ1(r1)ψ2(r2) . . . ψN(rN) for a given number of electrons N . The

three terms inside the brackets represent the kinetic energy of the electrons, the

energy due to electron-nuclei interactions with the external field V , and the energy

from all electron-electron interactions respectively. We note that this form of the

equation is non-relativistic and does not account for electronic spin effects.

2.2 The Hartree-Fock Method

One of the early approaches to solving the many-body Schrödinger equation was

proposed by Douglas R. Hartree in 1928, where he reviewed the wave mechanics of

a system where all electron-electron Coulomb effects were neglected [4]. Following

this idea we can rewrite the Hamiltonian in Eq. 2.1 as

Ĥ =
N∑
i=1

[
− ~2

2m
∇2
i + V (ri)

]
=

N∑
i=1

ĥi, (2.2)

where ĥ denotes the Hamilton operator for a single electron. The time-independent

Schrödinger equation for a single electron can be expressed as ĥχ = Eχ, where χ

describes some eigenfunction. In order to include spin we introduce the concept of

a spin-orbital, denoted χj(xi) [5, p. 20]. The indices j = 1, 2, . . . are here referring

to energy levels Ej associated with each orbital, while xi is a vector including both

the position values and spin state of the given electron i. In Hartree’s original

procedure the total electron wave function of the system was simply expressed by

multiplying together spin-orbitals, known as the Hartree product, which reads

ψ(x1, . . . ,xN) = χj1(x1)χj2(x2), . . . , χjN(xN). (2.3)

The problem with this approach is that interchanging two electrons yields the

same wave function, thus violating the fundamental anti-symmetry principle for
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fermions [6, p. 190]. In order to rectify this issue, John C. Slater introduced what

is now known as the Slater determinant [7]. The wave function for N electrons is

here expressed as

ψ(x1, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) . . . χN(x1)

χ1(x2) χ2(x2) . . . χN(x2)
...

...
. . .

...

χ1(xN) χ2(xN) . . . χN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (2.4)

where the factor in front of the determinant simply acts to normalize the wave

function. This form of the wave function not only satisfies the anti-symmetry

principle, but also the Pauli exclusion principle, which forbids two electrons from

occupying the same quantum state [8]. We can verify both of these properties for

a simple two-electron system with the wave function

ψ(x1,x2) =
1√
2

[χj(x1)χk(x2)− χj(x2)χk(x1)] , (2.5)

where the two orbital states are denoted by indices j and k. If we swap the

electrons 1 and 2 we see anti-symmetry in that ψ(x1,x2) = −ψ(x2,x1), and if

we try to occupy the same orbital state by setting j = k we find that the wave

function goes to zero.

With the inclusion of the Slater determinant and the Pauli exclusion principle

for the N -electron wave function, we now seek to find an approximation for the

spin-orbitals. The Schrödinger equation for one electron can be expressed as[
− ~2

2m
∇2
j + V (r) + VH(r) + VX(r)

]
χj(x) = Ejχj(x), (2.6)

where χj(x) is the spin-orbital for the electron, and VX(r) denotes the exchange

interaction due to the Pauli principle. This equation is similar to Eq. 2.1 in that

it assumes a combined Coulomb potential V (r) from stationary nuclei around it.

Similarly, the electron-electron interactions are here reintroduced as an average

Coulomb potential VH(r) from all surrounding electrons. This potential, which is

often referred to as the Hartree potential, is defined as

VH(r) = e2

∫
n(r′)

|r− r′|
d3r′, (2.7)

where n(r) denotes the electron density of the system. We may also express the

electron density using the wave functions themselves. In the standard notation of
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single-electron wave functions ψi we now write

n(r) = 2
∑
i

ψ∗i (r)ψi(r), (2.8)

where the factor 2 accounts for dual spin-states per electron. By inserting back into

Eq. 2.7 we now note that solving Eq. 2.6 has become a non-linear procedure. From

the variational principle we know that any expectation value of the Hamiltonian

will be larger or equal to the ground state energy of a system [9, p. 8]. With

this in mind, we can approach the problem iteratively, whereby starting with some

suggested ansatz of χj we can calculate n(r), leading to new estimates of χj and

Ej to repeat the procedure with. We then minimize with respect to Ej to find the

ground state. This approach is often referred to as the self-consistent field method

(SCF), and the flowchart shown in Fig. 2.1 illustrates how the process eventually

leads to a satisfactory solution given some predetermined convergence criteria.

Ansatz

for χj

Calculate n(r)

(Eq. 2.8)

Solve for χj
(Eq. 2.6)

Self-consistent with

previous cycle?
Convergence

criteria

Use new χj

True wave

function

Yes

No

Figure 2.1: The Hartree-Fock calculation scheme. Finds the self-consistent true

wave function based on input quantities from the red boxes.
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As discussed above, we need to start the calculation with an ansatz of what the

spin-orbitals could look like. We can express a spin-orbital χj(x) as

χj(x) =
K∑
i=1

αjiηi(x), (2.9)

where the finite selection of expansion coefficients αji and basis functions ηi(x)

approximate the exact shape of the orbital. In the Hartree-Fock method we choose

our basis set {ηi}Ki=1 before any calculations, which means we only need to find new

expansion coefficients throughout the SCF cycles to describe the orbitals. Since

the Hartree-Fock method is ab initio, i.e. derived from fundamental principles

within physics, we can technically be as accurate as we want, given a large enough

basis set and strict enough convergence criteria.

We note that the Hartree potential in Eq. 2.7 only accounts for a portion of the

electron-electron interactions, and that any correlation energy between electrons

is left out of the Hartree-Fock method.

2.3 The Kohn-Sham Equations

The DFT method was first founded by Walter Kohn and Pierre Hohenberg in the

1960s, where they formulated two mathematical theorems related to the connection

between electrons in an external potential and the resulting ground state energy

of the system [10]. The first theorem can be transcribed as follows: The ground

state energy of a system from Schrödinger’s equation is a unique functional of the

electron density [5, p. 11]. This means that for every given electron density n(r)

there exists a corresponding energy functional E[n(r)] and vice versa. A functional

is defined as a real-valued function that takes another function as its argument.

To give an example we can consider the equation

F [f ] =

∫ 1

−1

f(x) dx, (2.10)

where F is a scalar-valued functional of the function f(x). The advantage of solving

the Schrödinger equation using a functional becomes clear when we consider the

dimensions of the problem; solving for N electrons usually requires calculations for

3N variables, but by introducing a functional we can reduce this to just 3 variables

of the electron density n(r).
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The first theorem tells us that an energy functional must exist, but it does

not help us define what it actually looks like. The second theorem proposed by

Kohn and Hohenberg states the following: The electron density that minimizes the

energy of the overall functional is the true electron density corresponding to the

full solution of the Schrödinger equation [5, p. 11]. This suggests that we can use

the variational principle to find the true ground state electron density n0(r) once

we have an adequate description of the energy functional.

In the spirit of Hartree-Fock, we will now discuss which energy contributions

should go into the Schrödinger equation. We already know the form of some of

the energy contributions in the Hartree-Fock approach, namely the nuclei-electron

potential V , the Hartree potential VH , and the kinetic energy term which we will

denote Te. The energy from ionic nuclei-nuclei interactions Eion that was previously

omitted is now also included. We can write the total energy in functional form as

E[n] = Te[n] + V [n] + VH [n] + Eion + EXC[n] = Eknown[n] + EXC[n], (2.11)

where in addition to the known contributions we have the functional EXC[n(r)]

describing the exchange-correlation energy. We remember from the definition in

Eq. 2.8 that the electron density can be described using the sum of all one-electron

wave functions ψi. This means that the energy functional can also be expressed by

the set of these wave functions as E[{ψi}]. By considering a single-electron wave

function ψi we can readily write out the known contributions as

Eknown[ψi] =− ~2

2m

∑
i

∫
ψ∗i∇2ψi d3r +

∫
V (r)n(r) d3r

+
e2

2

∫ ∫
n(r)n(r′)

|r− r′|
d3r d3r′ + Eion,

(2.12)

in the order corresponding to Te + V + VH + Eion in Eq. 2.11.

Kohn proved through his collaboration with with Lu J. Sham that it was possible

to arrive at the right electron density by solving a set of one-electron equations[
− ~2

2m
∇2
i + V (r) + VH(r) + VXC(r)

]
ψi(r) = εiψi(r), (2.13)

today fittingly known as the Kohn-Sham equations [5, p. 12]. We see an almost

identical structure to that of the many-body Schrödinger equation in Section 2.1,
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but notice the lack of summations. The last term inside the brackets will hereby

be referred to as the exchange-correlation potential, and it is defined as

VXC =
δEXC(r)

δn(r)
, (2.14)

denoting the functional derivative of the exchange-correlation energy EXC(r) with

respect to n(r). The sum of the potentials in Eq. 2.13 is often referred to as the

effective potential

Veff(r) = V (r) + VH(r) + VXC(r). (2.15)

The flowchart in Fig. 2.2 shows the procedure of solving Kohn-Sham equations.

It is similar to the SCF method presented in Fig. 2.1, but instead of starting with

an ansatz for spin-orbitals χj, we use the electron density n(r) directly.

Ansatz for

n(r)

Calculate Veff(r)

(Eq. 2.15)

Solve for ψi(r)

(Eq. 2.13)

Given form

of VXC(r)

Find new n(r)

(Eq. 2.8)

Self-consistent with

previous cycle?
Convergence

criteria

Use new n(r)

True n0(r)
Calculate E0

(Eq. 2.13)

Yes

No

Figure 2.2: The Kohn-Sham equation calculation scheme. Calculates the ground

state energy E0 based on input quantities from the red boxes. The given exchange-

correlation potential in the yellow box always applies in the calculation of Veff(r).
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2.4 Exchange-Correlation Functionals

The difficult part of solving the Kohn-Sham equations is to define what the

exchange-correlation energy contribution actually looks like. In theory, there

should exist a functional EXC[n(r)] that contains all information about non-

Coulombian electron-electron interaction energy contributions, but as of today it

is yet to be found. Instead, we can approximate the effect of this functional by

looking at situations where it can be derived exactly.

In the case of a uniform electron gas we can set the electron density n(r) to be

constant at all points in space. If we use this approximation at points r in our

system where n(r) is given, we can then define the exchange-correlation potential

locally as

VXC(r) = V gas
XC [n(r)], (2.16)

where V gas
XC is the exchange-correlation potential for a uniform electron gas given the

value of n(r). This simple approach to defining the exchange-correlation functional

is known as the local density approximation (LDA))[11].

A more sophisticated approach that builds on the LDA functional is described

in the generalized gradient approximation (GGA), which in addition to the local

electron density takes into account the local gradient of n(r) as

V GGA
XC (r) = VXC [n(r),∇n(r)] . (2.17)

Due to the inclusion of more physical information about n(r), GGA functionals are

generally preferred over LDA. However, this approach is more computationally in-

tensive, and it does not guarantee more accurate results. There are many different

ways of incorporating the local electron density gradient into the approximation,

and thus many variants of the GGA functional have been suggested. One of the

most widely used GGA variants is the PBE functional proposed by Perdew, Becke

and Ernzerhof in 1996 [12], which employs a non-empirical approach. The PBE

functional has later been revised and made more accurate by Zhang and Yang

[13], with the proposed name revPBE. There are functionals that include even

more physical information, but for the purposes of this report we will mostly be

focusing the GGA-PBE approach.
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2.5 Dispersion Correction Methods

One of the shortcomings of the exchange-correlation functionals discussed so far

is the disregard for weak forces, such as the van der Waals interactions between

atoms. These dispersion interactions are inherently long-range, and they are thus

not considered in the semi-localized approaches such as for the GGA and LDA

functionals. If we want to take into account the effect of dispersion interactions

we have two options; we either aim to construct a non-localized functional or we

try to apply an empirical dispersion correction to the Kohn-Sham energy.

2.5.1 Non-localized van der Waals Functionals

The concept of a non-local van der Waals density functional (vdw-DF) has been

under development since the early 2000s, carried forward by the efforts of Dion,

Rydberg and others [14], [15]. The idea is in general terms to construct a cor-

relation functional Ec[n] which can then be coupled with the exchange part of

a semi-local GGA functional such as revPBE. The early steps of defining Ec[n]

involve dividing up the total correlation functional as

Ec = E0
c [n] + Enl

c [n], (2.18)

where the first term is approximated with a localized LDA approach, and the

second term encapsulates the non-local correlation energy. The simplest form of

the energy in the latter term is here expressed as

Enl
c =

1

2

∫
d3r d3r′ n(r)φ(r, r′)n(r′), (2.19)

where φ(r, r′) is some function dependent on difference vectors r− r′ and the local

values of n around the respective coordinates. The process of finding a suitable

expression for φ is quite complicated, and it involves the use of various models

and parameters [15]. These details are beyond the scope of what we will discuss

here, but we now have a general understanding of the concepts in the non-localized

functional approach. Similarly as for the PBE functional, the vdW-DF approach

has been updated with new parameter values in the vdW-DF2 functional.
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2.5.2 Grimme’s DFT-D Method

The dispersion correction approach has also been explored since the mid-2000s in

the development of Stefan Grimme’s semi-empirical DFT-D method [16], [17]. His

approach has later been refined in the DFT-D3 method [18], which we will now

take a closer look at. The contributions to the total DFT-D3 energy is expressed

with a dispersion correction as

EDFT-D3 = EKS-DFT + Edisp. (2.20)

The first term on the right side is here referring to the self-consistent Kohn-Sham

energy from a chosen density functional, while the dispersion correction term is

further modeled as

Edisp = E(2) + E(3). (2.21)

The dispersion energy is here split up into a two-body term and a three-body term,

where the most important two-body term reads as

E(2) =
∑
AB

∑
n=6,8,10,...

sn
CAB
n

rnAB
fd,n(rAB). (2.22)

The atoms are here pairwise denoted as AB, where rAB is the distance between

the two atoms. We note that this expression includes a damping factor fd,n(rAB),

a scaling factor sn, and an averaged dispersion coefficient CAB
n for a given atom

pair. The dispersion coefficients are computed ab initio from the Casimir-Polder

formula, while the damping factor is modeled from a proposed variant by Chai

and Head-Gordon [19].

Using the same damping function as for the two-body term, we now express the

three-body term as

E(3) =
∑
ABC

fd,(3)(r̄ABC)EABC , (2.23)

where ABC denotes the triplet of atoms that interact with each other, and r̄ABC

the averaged radii between them. The factor EABC is here a triple dipole term

derived from third-order perturbation theory.

It is worth noting that there have been other efforts to introduce dispersion

corrections, examples being the Exchange-hole dipole-moment model [20], the
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Tkatchenko-Scheffler method [21], and the many-body dispersion (MDB) frame-

work [22]. However, due to it being easier to implement for our software choices,

we will only be concerned with Grimme’s DFT-D3 method in this thesis.

2.6 Periodicity in DFT

In this section we will investigate how modeling our systems as periodic structures

can lead to simplifications for more efficient DFT calculations. We will consider

both the theory behind it, and how it can be implemented computationally.

2.6.1 Reciprocal Space and Bloch’s Theorem

To further simplify the process of describing the dynamics of electrons in a many-

body system, we can make use of the theory behind crystalline structures in solid

state physics. The periodicity of crystals can be explained as a repeating lattice

with corresponding lattice vectors a1, a2 and a3 that define the unit cell in real

space. This can also be expressed by the atomic coordinate R = n1a1+n2a2+n3a3,

where the integers ni are free to be chosen arbitrarily.

Fourier transforming the unit cell lattice structure gives us the corresponding

representation of the crystal in reciprocal space, often referred to as k-space. We

consider the equivalent lattice vectors in k-space as G = m1b1 + m2b2 + m3b3.

The connection between real space and k-space unit cell representations is given

by the plane wave relation eiG·R = 1. This is the same as writing ai · bj = 2πδij,

where δij is a Kronecker delta [23, p. 29]. The reciprocal lattice vectors may now

be expressed by the real space vectors as

b1 = 2π
a2 × a3

a1 · (a2 × a3)
, b2 = 2π

a3 × a1

a2 · (a3 × a1)
, b3 = 2π

a1 × a2

a3 · (a1 × a2)
. (2.24)

The reciprocal unit cell that these lattice vectors define in k-space is known as the

first Brillouin zone, which plays a central role in band theory. We note that the

relation between the volumes of the Brillouin zone (BZ) and the real space unit

cell can be found as

VBZ =
(2π)3

Vcell

,
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indicating inverse proportionality in length between the two spaces.

To see the importance of periodicity in the context of describing electrons, we

apply the solid state physics theory to the Schrödinger equation. The result of

this is known as Bloch’s theorem, which states that wave functions of electrons in

a periodic potential must be of the form

ψk(r) = eik·ruk(r), (2.25)

where uk is a function with the same periodicity as the potential [6, p. 214]. The

periodic form of such Bloch states implies that the first BZ should contain all

physical information about the material. An illustration of the construction of a

Bloch state is shown in Fig. 2.3.

Figure 2.3: The real part of a one-dimensional Bloch function [24]. The Bloch

state (black line) is a product of a plane wave (dashed blue line) and a periodic

potential uk (green line). The distribution of atoms is indicated by grey circles.

2.6.2 Sampling of k-points

DFT calculations for periodic systems often involve functions of the form

ḡ =
Vcell

(2π)3

∫
BZ

g(k)dk, (2.26)

where we need to integrate over the Brillouin zone in reciprocal space [5, p. 53].

In order to evaluate this integral efficiently, we discretize the space into a grid of

k-points. Both the accuracy and computational cost of a given DFT calculation is

proportional to the number of k-points in our grid. This means that we must allow

some error if we want to achieve results in a reasonable amount of time. We can
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use a convergence test to decide the optimal size of our k-points grid; we say that

we are satisfied whenever increasing the number of k-points leaves the calculated

energy unchanged up to some predetermined tolerance error.

The sampling of k-points can be done in different ways. If we want to distribute

the k-points evenly in reciprocal space, the method proposed by Monkhorst and

Pack makes sense [25]. Their approach revolves around specifying the number of

k-points along each reciprocal lattice vector as M1×M2×M3, where we adjust the

indices based on the length of each lattice vector. We mentioned earlier that there

is an inverse proportionality in length between real space and reciprocal space,

which means we can decide on the Monkhorst-Pack grid based on our real space

unit cell; if we consider two real space lattice vectors where |a1| > |a2|, we can then

select indices M1 < M2 to get an even k-points distribution in reciprocal space.

2.7 Geometry Optimization

When we want to calculate the potential energy of a molecular system, we need

to consider more than just the electrons. So far we have considered the nuclei of a

many-body system to be stationary in a given structure of positions R1, . . . ,RM .

However, in order to reach an overall stable state, we need to optimize these

coordinates in such a way that we can minimize the total energy of the system.

2.7.1 Potential Energy Surfaces

The concept of a potential energy surface (PES) refers to the idea that for every

structural configuration of a molecule, we have a corresponding energy landscape

that is unique to this geometry. Finding the local minima of the PES corresponds

to a geometry optimization for the molecular structure.

The dimensionality of the PES for a system ofM atoms is given as 3M−6, where

we have subtracted the degrees of freedom related to translation and rotation.

From this, we can already note that the process of finding energy minima is a

non-trivial task. As a first step, knowing the curvature of the PES can help to

make the process easier. We describe the curvature of a system with M atoms by
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considering the second derivative of the potential energy at each individual atomic

coordinate. The resulting Hessian matrix H is written as

H =


∂2E
∂x21

∂2E
∂x1∂x2

. . . ∂2E
∂x1∂x3M

∂2E
∂x2∂x1

∂2E
∂x22

. . . ∂2E
∂x2∂x3M

...
...

. . .
...

∂2E
∂x3M∂x1

∂2E
∂x3M∂x2

. . . ∂2E
∂x23M

 , (2.27)

where all 3M positional coordinates are taken into account. Whenever all non-

zero eigenvalues λi of the Hessian matrix are positive, we know that the structure

is close to a local minima, while cases with negative eigenvalues indicate local

maxima [26]. The physical interpretation of the eigenvalues λi is that they help

to define the characteristic vibrational frequencies

νi =
1

2π

√
λi
m
, (2.28)

known as the normal modes of the system. We recognize that depending on the

system we are looking at, the behavior of normal modes can be an interesting

property to consider, but we will not be elaborating any further on this topic in

the remainder of this thesis.

When discussing strategies for geometry optimization we are often interested

in the transition state (TS) between two local minima. Transition states can

be categorized as having a Hessian matrix with exactly one negative eigenvalue,

acting as a maxima along an otherwise minimized energy path. The illustration

in Fig. 2.4 shows how two minima A and B are separated by a transition state

TS acting as an energy barrier along the minimum energy path between the two

minima. We define the activation energy Ea required to cross this barrier as

Ea = E(TS)− E(A), (2.29)

assuming that the path starts at A and ends at B. The concept of an activation

energy over a transition state is most often associated with chemical reactions,

where the A refers to the the reactants and B refers to the products. However, in

our case we are only interested in understanding the PES concepts in the context

of geometry optimizations for molecular strucures.
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Figure 2.4: One-dimensional minimum energy path between two energy minima,

going from A to B. The transition state TS is labelled along with its associated

activation energy Ea.

2.7.2 The Hellmann-Feynman Theorem

Looking back to Section 2.2 and Section 2.3, we remember how both the Hartree-

Fock SCF method and the Kohn-Sham approach are reliant on some form of the

variational principle. We can expand upon this principle by introducing parameter

dependencies in the Hamiltonian. For a given parameter λ, we may express the

energy expectation value Eλ of the parameter-dependent Hamiltonian as

Eλ = 〈ψλ|Ĥλ|ψλ〉, (2.30)

where the solution ψλ is the normalized wave function in Dirac notation [27]. If we

try to differentiate this equation we end up with two terms, one of which vanishes

by the variational principle [9, p. 9]. This leaves us with the expression

dEλ

dλ
=

〈
ψλ

∣∣∣∣∣∂Ĥλ

∂λ

∣∣∣∣∣ψλ
〉
, (2.31)

known as the Hellmann-Feynman Theorem [28]. The terms in the Hamiltonian

that involve interactions with the nuclei are inherently dependent on the atomic
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positions RI . Since we have built our models around keeping these positions fixed,

we can consider the coordinates as being parameters for the Hamiltonian. With

the parameter-dependency λ = RI we now use Eq. 2.31 to get the relation

FI = − ∂E

∂RI

=

〈
ψ

∣∣∣∣∣−∂Ĥλ

∂RI

∣∣∣∣∣ψ
〉
, (2.32)

giving us the Hellmann-Feynman forces acting on a given nucleus I.

2.7.3 Relaxation Scheme

Optimizing the geometry into an equilibrium is now a similar procedure to the

variational approach for SCF cycles; in order to find the most stable state, we

can repeatedly inact variations on the positions RI until we are in a PES minima

with forces FI = 0 for all nuclei. For each step in the optimization process we

need to calculate the relevant properties required to proceed; this means running

a self-consistent DFT-calculation on the electrons at each step, given the current

molecular structure. Since we are aiming to optimize the structure into a state

that is more energetically favorable, we often refer to geometry optimizations as a

relaxation of the system. The relaxation scheme in Fig. 2.5 illustrates how we can

relax an initial geometry into a final ground state.

Initial

geometry
SCF cycle

Relaxed?
Convergence

criteria

Relaxation

step

Final ground

state

Yes

No

Figure 2.5: Geometry optimization scheme from the initial geometry to the final

ground state. We apply criteria for energy convergence and acceptable force values.
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CHAPTER

COMPUTATIONAL APPROACH

As we have seen so far, the DFT framework includes many sophisticated models

and approximations that help describe the interactions within many-body systems.

However, to apply all this theory in actual calculations on real systems, we also

need to accept some numerical limitations. In this chapter we will present the

plane wave pseudopotential approach to solving the Kohn-Sham equations, and

explain how we can optimize the geometry of systems within this method.

3.1 Plane Wave Method and Energy Cutoff

We consider a system where the electron wave functions obey Bloch’s theorem as

described in Eq. 2.25. The function uk(r) has the same periodicity as the potential

that the given electrons are moving in, and can thus be expanded using a basis set

of plane waves as

uk(r) =
∑
G

cGe
iG·r, (3.1)

where we sum over all vectors G defined in reciprocal space [5, p. 61]. If we put

this back into Eq. 2.25 we get the expression

ψk(r) =
∑
G

ck+Ge
i(k+G)r, (3.2)

which still contains an infinite sum over the G-vectors. Having an infinite sum in

our expression does not seem promising for calculations, but upon closer inspection

we may recognize that this form of the wave function is a simple solution to the

Schrödinger equation, where the kinetic energy is given by

E =
~2

2m
|k + G|2. (3.3)
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With the physical interpretation of the wave function as a combination of high-

energy and low-energy plane waves, we can try to approximate the full solution

by excluding some of the high-energy terms. With an upper bound cutoff energy

given as

Ecut =
~2

2m
G2

cut, (3.4)

we can now truncate the sum in Eq. 3.2, so that it only includes the terms that

satisfy the relation |G + k| < Gcut. Software implementations of this concept

usually come with a recommended energy cutoff for each element in the periodic

table. In situations with different types of atoms, we choose the cutoff energy that

matches the highest value from the respective atom types, and we should always

use the same cutoff energy when comparing energy differences between systems.

3.1.1 Alternative Basis Sets

In situations where we are modeling our systems to be non-periodic, we require a

different type of basis set to describe the electron wave functions. We have already

seen how the electron wave function expressed in Eq. 2.9 uses a linear combination

of atomic orbitals (LCAO) to approximate the spin-orbital representation of the

wave function, so we now only need to specify the basis functions ηi.

Among the most commonly used basis functions we find Gaussian type orbitals

(GTO) and Slater type orbitals (STO). The GTO basis set uses atomic orbitals of

the form

ηGTO
i = Crβe−αr

2

, (3.5)

which can be easily implemented in its analytical form. The Slater type orbitals

are defined as

ηSTO
i = C ′rβe−αrYlm(θ, φ), (3.6)

where the function Ylm(θ, φ) is a spherical harmonic with quantum numbers l and

m. We can use multiple STOs in a given basis set to increase the accuracy of

calculations; the minimal basis set is referred to as SZ (single zeta), followed by

the doubled basis set DZ (double zeta), then TZ (triple zeta) and so forth. These

basis functions can then further be augmented with polarization functions as TZP,

TZ2P, etc.
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3.2 Pseudopotentials

Using plane waves as a basis set is practical, but there are a couple of concerns

that need to be addressed. The electrons that are tightly bound to the core of a

nucleus are associated with rapid oscillations in the wave function [5, p. 63-64].

Consequently, the all-electron wave function ΨAE inherits this behavior near an

atomic core. This means that if we wanted to describe the wave function accurately,

we would have to include high-energy plane waves, which in turn would require a

high cutoff energy, making our calculations more costly and less efficient.

The core electrons are computationally problematic, but we also know from a

physical standpoint that the core electrons are not as interesting as the valence

electrons. This gives us the motivation to try approximating the wave function

near the core of each nucleus. The approach illustrated in Fig. 3.1 shows how we

can replace the nuclei-electron potential V with a non-diverging pseudopotential

in order to smoothen the all-electron wave function within a cutoff radius near

the core. The system will then remain unchanged outside the range of the cutoff

radius, while getting the benefit of a greatly reduced the requirement for the cutoff

energy. Pseudopotentials were first introduced by Hans Hellmann in 1934 [29].

The plane wave pseudopotential approach is often combined with the so-called

frozen core approximation, which aims to keep the properties of the core electrons

fixed throughout calculations. There are also varying levels of ”hardness” across

different types of pseudopotentials, meaning some have smoother potentials and

wave functions associated with them than others. The cutoff radius can also be

adjusted depending on the needs and assumptions for different systems.

One of the most popular types of pseudopotentials are the so-called ultra-soft

pseudopotentials (USPPs). They are designed to require comparably lower cutoff

energy values, while relying more on empirical parameters. An arguably more

reliable alternative to USPPs is the projector augmented-wave method (PAW),

which tends to give similar results to USPPs, but with better accuracy for some

materials [5, p. 64-65]. The PAW method takes root in transformation theory,

and was first introduced by Blöchl in the mid 1990s [30]. Its implementation for

plane wave calculations was later carried out by Kresse and Joubert [31].
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Figure 3.1: The concept of a pseudopotential (modified from [32]). The nuclei-

electron potential V is replaced by the pseudopotential Vpseudo inside the bounds

of the cutoff radius rc. The all-electron wave function ΨAE is as a result of this

smoothened into the wave function Ψpseudo.

3.3 The BFGS Algorithm

In Section 2.7 we discussed the idea behind the process of structural relaxation,

but we have yet to show a way to implement this numerically. With this in mind,

we will now present some of the theory behind an efficient algorithm to be used

for numerical optimization.

As a starting point, we consider Newton’s method for numerical optimization.

Newton’s method is a well-known algorithm designed to find the roots of a given

real-valued function in an iterative manner. Given the function f(x) and its first

derivative f ′(x), we define the iteration scheme for Newton’s method as

xk+1 = xk −
f(xk)

f ′(xk)
, (3.7)
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where each step is bringing us closer to a root of f(x). If we now consider the

function f(x) to be twice differentiable, we may replace f(x) with f ′(x) in Eq. 3.7 to

instead approximate the points x at which f ′(x) = 0. Generalized to n dimensions,

we now write the minimizing scheme

xk+1 = xk − [Hf (xk)]
−1∇f (xk) , (3.8)

where Hf (x) is the Hessian containing all second-order partial derivatives of f(x).

Next, we consider the optimization approach of the quasi-Newton methods. This

class of optimization methods aims to modify Newton’s method by approximating

the Hessian matrix Hf (x) using a positive-definite matrix B [33]. The nature of

B is dependent on which quasi-Newton method we choose, but we always require

that it satisfies the relation

Bk+1 [xk+1 − xk] = yk = ∇f (xk+1)−∇f (xk) . (3.9)

Now that we have defined the framework for all quasi-Newton methods, we can

finally specify our method of choice. The BFGS algorithm is defined by the update

formula for the matrix B given as

Bk+1 = Bk +
yky

T
k

yT
k ∆xk

− Bk∆xk (Bk∆xk)
T

∆xT
kBk∆xk

(3.10)

The computational complexity of the BFGS method can be shown to be O(n2),

which compared to O(n3) for Newton’s method is significantly more efficient. The

BFGS method was developed in 1970 through the combined effort of Broyden [34],

Fletcher [35], Goldfarb [36] and Shanno [37], hence the acronym BFGS.

With an optimization method in place, we can now contextualize its utility in

the case of geometry relaxation. If we interpret the function f(x) as representing

the potential energy in the system, we can draw parallels to the PES discussion

in Section 2.7.1. The matrix B is here an approximation of the Hessian matrix in

Eq. 2.27, leading us to a minimization of potential energy into a local minima.

3.4 Parameters and Convergence Factors

We have now introduced the main methods and approximations that are used for

plane wave pseudopotential calculations and system relaxations. The approach we
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have chosen relies on a few different parameters that can be adjusted depending

on our needs; we can adjust the cutoff energy Ecut for our plane wave basis, the

number of k-points in our Monkhorst-Pack grid, and we can adjust the shape of

our unit cell with the choice of real space lattice vectors ai. We can also choose

between different types of pseudopotentials to smoothen the wave function, select

density functionals that are either local, semi-local or non-local, and we can even

choose to add dispersion corrections on top of our Kohn-Sham energy.

The most important parameters that we need to specify are the convergence

criteria. The flowcharts shown in Fig. 2.1, Fig. 2.2 and Fig. 2.5 all require that we

supply the self-consistency cycles with definite tolerance values for discrepancies

between iterations. We may for instance specify a threshold energy Ethr = 10−7 eV,

and define a convergence criteria where we demand that the energy difference ∆E

between SCF iterations should fulfill the relation ∆E ≤ Ethr. A similar criteria

can be specified for the Hellmann-Feynman forces, where we instead monitor the

deviations from FI = 0.

When doing SCF calculations and relaxation simulations we may sometimes

end up in a situation where the energy oscillates between iterations, and thus

does not converge as expected. This can indicate that we need to change the

pseudopotential, adjust parameters like Ecut, Ethr, or increase the number of k-

points, etc.

3.4.1 Occupation Number Smearing

In systems with significant band gaps, the positioning of the Fermi level plays a

crucial role in determining electrical properties. If the Fermi level is inside of a

band gap, we get a discontinuity in the occupation numbers at the Fermi surface.

Whenever we try to apply the plane wave pseudopotential method to these kinds

of systems, we are prone to run into issues with computations in reciprocal space;

due to the discontinuous nature of the Fermi surface, the integrals presented in

Eq. 2.26 can become problematic.

To remedy this situation we introduce the concept of smearing functions. The

point of these functions is to help ”smear out” the occupancies at the Fermi sur-
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face to extend over a larger area, allowing for fewer k-points to be necessary for

the detection of energy contributions. As shown in Fig. 3.2, using a Gaussian

type smearing function can distribute the occupation numbers more smoothly

around the Fermi level. Other smearing function options include the Fermi-Dirac

distribution, Methfessel-Paxton first-order spreading [38] and Marzari-Vanderbilt-

DeVita-Payne cold smearing [39].

We note that smearing functions are only used as a mathematical trick to better

the rate of convergence in calculations, and that it should not affect the underlying

physics of the system.

Figure 3.2: Comparison of distribution functions at the Fermi level [40]. The

sharp Dirac step function Θ on the left vs. the smooth Gaussian function f on

the right. The width of the Gaussian spread is here denoted by σ.
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CHAPTER

SOFTWARE CHOICES

There are many different DFT software options that support the plane wave

pseudopotential approach in way we have described in this thesis. Some simulation

softwares are open-source, while others require a license. In this chapter we will

look at two different types of open-source DFT softwares, going through the script

structures and how we can run calculations efficiently from a Linux terminal.

Lastly, we will also briefly discuss how to model a fluorohectorite clay system

within this framework.

4.1 Quantum ESPRESSO

The first software we have chosen to look at is the open-source suite known as

Quantum ESPRESSO (QE). This simulation software is based entirely in the

plane wave pseudopotential approach described in this thesis, and is thus it is

inherently limited to periodic models. Although it offers some options for two-

dimensional slab calculations, we must always assume the system to be periodic

in at least two spacial directions. The QE suite is able to perform ground-state

calculations, structural optimizations and molecular dynamics simulations, find

response properties and spectroscopic properties, look at quantum transport, and

more [41]. The default units for lengths and energies are in this software set as

a.u. and Ry respectively. In this section we will look at self-consistent plane wave

calculations (PWscf) in the context of structural optimizations, starting with a

discussion around the pseudopotentials and input scripts that go into the plane

wave calculation program pw.x within the QE suite.
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4.1.1 Pseudopotential Resources

The QE suite only accepts potentials formatted in the Unified Pseudopotential

Format (UPF). Generated UPF files can be found listed in several different online

libraries. The best places to look for pseudopotentials are either in the PSlibrary

resource listed on the QE home page, or in the more actively updated library of

standard solid-state pseudopotentials (SSSP) at the materials cloud webpage [42].

Depending on the element, we use either USPPs or PAW potentials, both of which

can be found in the SSSP Efficiency library. Whenever we run PWscf calculations,

the density functional is chosen based on the data found in the pseudopotential.

4.1.2 Input Script Structure

When using the pw.x program for PWscf calculations, our main input quantities

are the shape of the unit cell, the positions of atoms within said unit cell, and

the types of pseudopotentials that are used for each of the respective elements.

The geometrical properties can be written directly in the input script, while the

pseudopotentials require that we specify the name and path to the UPF files.

The structure of a pw.x input script consists of a set of namelists and cards

that categorize the parameter specifications related to the electrons, ions, atomic

positions, distribution of k-points, etc. In order to explain what each namelist and

card is responsible for, we consider a simple PWscf relaxation calculation example

for a single CO2 molecule in a large unit cell. We start with the &control namelist,

which in our SCF calculation takes the following form:

&control

calculation='relax',

restart_mode='from_scratch',

prefix='co2-relax',

pseudo_dir='../pseudo/',

outdir='/work/temp'

The calculation parameter lets us choose between different types of simulations;

the string ’scf’ corresponds to a simple SCF calculation, whereas writing the string
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’relax’ will result in a geometry optimization for the molecular structure. We can

also choose the calculation type ’vc-relax’, which in addition to the geometry also

tries to optimize the lattice vectors in the unit cell with a variable cell approach.

The prefix parameter, here specified by the string ’co2-relax’, is used to label our

system so that we can find the corresponding temporary files in a directory with

this label. The two parameters pseudo dir and outdir specify the path to our

pseudopotentials and temporary files respectively. As demonstrated above, paths

can both be specified locally (’../pseudo’) or defined with an absolute path from

the root directory (’/work/temp’). We can set the restart mode to ’restart’ to

recover a stopped calculation.

Next, we consider the &system namelist. As seen in the snippet below, this

is where parameters such as the number of atoms nat and the number of types

of atoms ntyp are defined. The cutoff energies ecutwfc and ecutrho should be

set to the recommended values for the given pseudopotentials; in this case the

values are based on the PAW potential for oxygen found in version 1.1.2 of the

SSSP Efficiency library. We have applied a Gaussian smearing method through

the specifications of occupations and smearing, with a spread value given as

degauss = 0.01 Ry. The ibrav parameter specifies the nature of our unit cell;

the values 1, 2 and 3 correspond to simple cubic, face centered cubic and body

centered cubic structures respectively. We have here chosen ibrav = 0, which

means we to have to specify the unit cell later on in the script. It is also possible

to include dispersion in the &system namelist, either by changing the functional

as input dft=’vdW-DF2’ or by adding a correction term vdw corr=’DFT-D3’.

&system

ibrav=0,

nat=3,

ntyp=2,

ecutwfc=50,

ecutrho=400,

occupations='smearing',

smearing='gaussian',

degauss=0.01
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The &electrons namelist specifies the parameters that are related to the actual

SCF calculations. In the snippet below we have defined the SCF cycle convergence

criteria as conv thr = 10−8 Ry, and required through electron maxstep = 100

and scf must converge that a given SCF cycle must converge within 100 SCF

steps. The value of electron maxstep is by default already set to 100, but we

include it here to get a better overview of which parameters are involved.

&electrons

electron_maxstep = 100

scf_must_converge = .TRUE.

conv_thr = 1.0d-8

The &ions namelist is only relevant whenever we are running a geometry relaxation

or some other form of molecular dynamics. In the snippet below we have specified

the ion dynamics to run the BFGS algorithm, as described by the theory in

Section 3.3. The QE suite also offers other methods, such as the FIRE algorithm

using a semi-implicit Euler integration scheme [43].

&ions

ion_dynamics='bfgs'

We now consider the two cards that define the atoms and their positions within

the unit cell. The ATOMIC SPECIES card specifies the symbol, mass and pseudo-

potential associated with the different types of atoms in the system, and the

ATOMIC POSTITIONS card defines the coordinates of each of these atoms in units

of Angstroms. We have in the snippet below named our two pseudopotential files

’C-PAW.UPF’ and ’O-PAW.UPF’, and placed them in the directory ’../pseudo/’

so that the pw.x program is able to find and read the data.

ATOMIC_SPECIES

C 12.0107 C-PAW.UPF

O 15.9990 O-PAW.UPF

ATOMIC_POSITIONS {angstrom}

C -5.9811199593 1.4385953275 -6.9996149920

O -7.0912251134 1.0617547448 -6.9996202962

O -4.8711439886 1.8153981458 -6.9996001485
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We now finally consider the last two cards, namely the CELL PARAMETERS and

K POINTS cards. The CELL PARAMETERS card lets us directly define the three lattice

vectors that make up the unit cell, acting as the alternative to the definition using

the ibrav parameter discussed earlier. For this system we chose a 10×10×10 unit

cell, where we again specified Angstroms as the unit of length. Due to it being

such a small system, we set the k-points distribution to only the gamma point.

CELL_PARAMETERS {angstrom}

10 0 0

0 10 0

0 0 10

K_POINTS {gamma}

For larger systems we can replace the {gamma} argument with the {automatic}

keyword, as shown in the snippet below. We can then instead specify the three

Monkhorst-Pack parameters nk1, nk2 and nk3, and set the three offset values sk1,

sk2 and sk3 to zero.

K_POINTS {automatic}

nk1 nk2 nk3 sk1 sk2 sk3

4.1.3 Parallel Runs

To run a pw.x simulation we need to make use of the Linux terminal. In general,

for a given input script system.in and output file system.out, we can run a

PWscf calculation on our system by writing the command

$ pw.x -in system.in > system.out

Writing it this way will only occupy one of the cores on our computer. We can

drastically improve calculation time if we have a way to run calculations in parallel

over multiple cores at once. With a version of Open MPI installed on our computer,

we can write the command for a parallel run over N cores as

$ mpirun -np N pw.x -in system.in > system.out
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4.1.4 Using Shell Scripts

So far we have assumed that we need to write commands directly in the terminal

to start calculations, but this is typically not very efficient. If we wanted to run

a convergence test over one of the parameters in the input script, we would have

to type out the commands for every time we changed the parameter. Instead, we

introduce shell scripts that can automate some of this work for us.

As an example, let us consider a convergence test of the cutoff energy for

the CO2 molecule. In the shell script ’co2-cutoff.sh’ we can then write out the

commands we want to run using the syntax of the command language BASH

(Bourne-Again Shell), and loop over the system with varying values of ecutwfc

and ecutrho. At the start of the shell script shown on the next page, we see an

expression consisting of a shebang followed by the path to the shell ’/bin/sh’; this

is how we can identify that it indeed is a shell script. Throughout the loop in

the shell script we are defining variables that go back into the pw.x input script

definition. We are only running SCF calculations here, without any relaxation for

the ions. The calculations are performed using 8 cores.

For each loop we are only interested in the total energy in the output files.

The pw.x output files are constructed in a way where this self-consistent energy is

always marked with an exclamation mark. Instead of scrolling through each output

file manually, we use the grep command to look lines that follow this pattern. After

the total energy is found, we can then write the results of the given cutoff energy

to a data file.

In order to run a shell script with Bash, we need to revisit the Linux terminal.

We continue with the shell script ’co2-cutoff.sh’ in the CO2 cutoff convergence

example, and write the following into the terminal:

$ bash 'co2-cutoff.sh'

We should now have the most recent input and output files available, and a filled

out relation between the cutoff energy and its corresponding SCF energy at the

given geometry of the system.
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#!/bin/sh

# Varying the cutoff energy

for cutoff in 10 20 30 40 50 60 70 80; do

# Define new cutoff values

ecutwfc=$cutoff

ecutrho=$(($cutoff * 10))

# Making a SCF calculation input script

cat > 'co2-cutoff.in' << EOF

&control

calculation='scf',

...

/

&system

ecutwfc=$ecutwfc,

ecutrho=$ecutrho,

...

...

K_POINTS {gamma}

EOF

# Performing calculations in parallel on 8 cores

mpirun -np 8 pw.x -in 'co2-cutoff.in' > 'co2-cutoff.out'

# Obtaining total energy from output file

etot=`grep -e ! $output_name | awk '{print $(NF-1)}' | tail -1`

# Writing results to data file

echo $cutoff $etot >> co2-cutoff.data

done

exit 0
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4.2 GPAW

GPAW is a DFT Python code based on the projector augmented wave approach

for calculating the self-consistent ground state total energy. It is usually used in

combination with the atomic simulation environment (ASE), which is a framework

that allows for structural optimizations and calculations of other properties. In

contrast to calculations in the QE suite, the GPAW software has the capability to

use other approaches such as finite-difference methods or the LCAO approach for

non-periodic systems. We can here replace the plane wave basis set with atom-

centered basis functions constructed as a radial part multiplied with spherical

harmonics. The GPAW code replaces the concept of pseudopotentials with what

are known as atomic PAW setups ; similarly to pseudopotentials, setups are data

sets that aim help to represent the nature of atoms in the frozen core approxima-

tion. The default units for GPAW are Angstroms and electron volts eV for lengths

and energies respectively.

4.2.1 Script Structure

Since GPAW and ASE are based in Python, we can easily install them as Python

packages. The structure of GPAW scripts are no different from that of a usual

Python project; we import the desired modules and take advantage of the objects

and functions that are readily implemented within these modules. As shown in

the snippet below, we can import ASE resources to represent Atoms, and allow for

parallel calculations with a single output file made accessible with paropen. We

will follow the same type of BFGS optimization as we did for QE; a relaxation of

a periodic CO2 system in a large unit cell. Since we have a periodic system, we

import the plane wave method PW alongside our GPAW calculator.

from ase import Atoms

from ase.optimize import BFGS

from ase.parallel import paropen

from gpaw import GPAW, PW

Next, we look to make the same system specifications as we did using the QE
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suite. As seen in the next snippet, we define our system in a single object separate

from the parameters related to the SCF calculations. We specify the symbols and

positions of our atoms, and we define the shape of the unit cell. We want the

system to be periodic in all spacial directions, so we specify the periodic boundary

conditions pbc to be ”turned on” in all three directions with values of 1. All this

information is then stored in the ASE Atoms object that we called system.

# System specifications

system = Atoms(symbols=['C', 'O', 'O'],

positions=[

[-5.9811199593, 1.4385953275, -6.9996149920],

[-7.0912251134, 1.0617547448, -6.9996202962],

[-4.8711439886, 1.8153981458, -6.9996001485]],

cell=[

[10, 0, 0],

[0, 10, 0],

[0, 0, 10]],

pbc=[1, 1, 1])

We now want to define the parameters that go into the SCF calculation models.

The dft object in the snippet below is a GPAW type calculator based on the same

parameters as in the general input script for QE calculations. We have here defined

a cutoff energy of 700 eV for the plane waves, which is roughly comparable with

the previous QE cutoff energy. We have chosen the Fermi-Dirac distribution as

our smearing function, and a k-points distribution of only the gamma point.

# GPAW DFT calculatior (PBE functional)

dft = GPAW(mode=PW(700),

xc='PBE',

label='co2-relax',

setups='paw',

txt='co2-relax.out',

occupations={'name': 'fermi-dirac','width': 0.05},

kpts={'size': (1, 1, 1), 'gamma': True})
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We note that the atomic setups obtained from setups = ’paw’ in the snippet

above are included in the installation of GPAW, and it is therefore not necessary

to download files from online libraries, like we do with QE.

The next step is to attach the GPAW calculator to the system through the

methods allowed by the ASE Atoms object, and start the geometry optimization

using the BFGS algorithm.

# Attaching the calculator to the system

system.calc = dft

# Preparing for geometry optimization

relax = BFGS(atoms=system,

trajectory='co2-relax.traj',

logfile='co2-relax.log')

# Doing the relaxation calculation

relax.run(fmax=0.005)

Instead of looking through the output file ’co2-relax’, we may now obtain the

properties of our system simply by calling methods such as get positions() and

get potential energy():

# Obtaining the final state of the system

geometry = system.get_positions()

energy = system.get_potential_energy()

# Writing the results to a data file

f = paropen('co2-relax.data', 'a')

print(f'Geometry:\n', gepmetry, file=f)

print('Energy (eV):', energy, file=f)

f.close()

This concludes the brief introduction to how we can carry out calculations for

structural relaxations using a GPAW Python script.
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4.2.2 Parallel Runs

We can do parallel runs for GPAW scripts in a similar fashion to how we ap-

proached the QE input scripts. For a given number of cores N and a GPAW script

’system.py’, we can write the Linux terminal command as

$ mpirun -np N gpaw python 'system.py'

In some cases where the computer architecture is different, we might be required

to oversubscribe in the following way:

$ mpirun --oversubscribe -np N gpaw python 'system.py'

Similarly to what we discussed for QE input scripts in Section 4.1.4, we can

use shell scripts to automate parts of a convergence test using GPAW. It can in

essence be constructed in the exact same way for GPAW as we did for QE, and so

we will not discuss it any further.

4.3 Clay Calculations

In this section we will implement the clay structures discussed in Section 1.1,

and do some minor testing in the Quantum ESPRESSO suite. The structure of

fluorohectorite includes a total number of atoms nat = 38 within each unit cell,

distributed in layers stacked upwards along the z-direction. As shown in Fig. 4.1,

we can recognize the middle-most octahedral layer dominated by Mg atoms, and

the tetrahedral layers of Si atoms on either side.

We have here run a variable cell relaxation calculation (vc-relax) to find a more

optimized unit cell. Grimme’s DFT-D3 dispersion correction has been included

alongside pseudopotentials for the PBE functional. We chose a kinetic cutoff

energy of 70 Ry, with applied Gaussian smearing at the Fermi level. Approximately

150 k-points were used. The entirety of the calculation took around 8 hours using

an 8-core AMD Ryzen 7 5800X Prosessor.
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Figure 4.1: Optimized structure of fluorohectorite in the xz-plane. There are no

intercalated ions present. The thin lines indicate the bounds of each unit cell.

Fig. 4.2 shows the effect of varying the distance d001 between layers in a fluoro-

hectorite system with no intercalated ions. With the DFT-D3 dispersion correction

added, we notice the Lennard-Jones-like shape of the function.

Figure 4.2: The total energy as a function of the distance d001 between layers.
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Lastly we consider a clay system with two intercalated Li+ ions and a CO2

molecule. To compensate for the added charges in the system, we have replaced

two of the Mg2+ ions in the octahedral layer with Li+ ions. We simulated another

variable cell geometry optimization over 135 SCF cycles until the system converged.

This calculation took approximately 20 hours with the same hardware setup as for

the clay-only calculations above. Fig. 4.3 shows the comparison between (a) the

initial geometry and (b) the final relaxed state.

(a) Initial state of the system.
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(b) Final relaxed state.

Figure 4.3: Structural optimization of a Li2-Li2-fluorohectorite system with an

intercalated CO2 molecule and a variable unit cell. The Li+ ions are moving away

from the center to become part of the clay structure, while the CO2 molecule

remains central.
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CHAPTER

CONCLUSION

5.1 Concluding Remarks

We have now extensively discussed how the DFT method can help us find the

ground state solution of the time-independent Schrödinger equation for many-

body systems. Motivated by the need for simplifications in this problem, we have

discovered many sophisticated methods from the fields of quantum chemistry, solid

state physics and mathematical optimization theory. We have presented a way to

set up self-consistent field calculations on the electron density, and seen how we

can combine this with quasi-Newtonian numerical relaxation schemes to estimate

local energy minima. The importance of periodicity in the plane wave basis set

approach has been utilized in calculations to test out two different open-source

DFT softwares. We have modeled the fluorohectorite smectite in the context of

applying dispersion corrections to the Kohn-Sham energy in the DFT method, and

we have seen the evolution of a relaxing clay structure with intercalated ions and

molecules.

5.2 Future Work

In order to more thoroughly test the performance of the simulation softwares

presented in this thesis, a good starting point can be to try and reproduce the

results previously found with licensed software, particularly within the world of

layered clay materials. Trying out non-periodic DFT calculations in the LCAO or

finite difference approach might also be an interesting exercise for the future.



44 5.2. FUTURE WORK

An active research topic here at NTNU is the study of CO2 adsorption in

fluorohectorite. It has been experimentally shown that intercalated Ni2+ ions can

adsorb CO2 better than most ions from group I and II. A suggested theory for

this is that the Ni2+ ions will combine to form hydroxides connected to the layered

clay surfaces. Testing this theory numerically with DFT calculations is definitely

an interesting topic for the future.
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