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Abstract

In this master thesis we present a new way of building decentralized anonymous peer-
to-peer networks. Utilizing the Tor network relays in a novel way, we are able to build
our network atop of existing infrastructure. The system is tested both in its ability to
transmit data between peers and how it can be combined with progressive routing
strategies. We isolate our tunnel protocol by testing it locally between Tor relays we
control. We also run the test on the live network to verify our initial findings and to
have a real world example. Security properties of the system are discussed in light of
the networks architecture.

We implement a prototype of our design on Tor rendezvous points mechanisms,
allowing for a decentralized bootstrapping functionality. Our design allows for a two
hop relay chain between the peers in our network. With further work this could likely
be decreased to one. This is the minimum of possible relays with our system, but
several relays are recommended when a strong degree of anonymity is desired. The
performance tests showed a throughput maximum in our implementation when tested
on local relays. However, the results from the real world did not diverge that much
from the local test, showing that we are able to utilize the live Tor relays in an efficient
way. We show that with a proper implementation, the network design would likely
yield consistently better results.
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Sammendrag

I denne masteroppgaen blir det presentert en metode for å opprette desentraliserte
likemannsnettverk. Ved å benytte Tor rutere på en ny måte vi kan bygge et nettverk
ovenpå eksisterende infrastruktur. Systeme blir testet både i sin evne til å sende data,
men også hvordan det kan kombineres med progressive rutingstrategier. Vi isolerer
tunnelprotokollen ved å teste den lokalt mellom Tor routere som er i våres hende.
Testen utføres også på det offentlige Tor nettverket for å verifisere funn og prøve
det i den ekte verden. Sikkerhetsegenskapene til systemet blir diskutert i lyset av
nettverksarkitekturen.

Systemets design resulterte i en prototype bygget oppå Tor sin rendezvouspunkt
mekanisme. Dette gjorde oss i stand til å desentralisert oppkoble systemets likemenn.
Designet tillater for to hopp i relékjeden mellom likemenn i nettverket. Fremtidig
arbeid kan resultere i støtte for ett hopp. Dette er minimum av hva løsningen støtter,
og flere hopp er ofte ønskelig og anbefalt i brukstilfeller hvor anonymitet verdsettes.
Ytelsestestene avslørte en tydelig topp i vår implementasjon, når testet lokalt i op-
timale forhold. Resultatene fra den ekte verden divergerte ikke så mye fra denne
toppen, som tyder på at vi evner å utnytte Tor ruterene på en effektiv måte. Dette kan
bety at vi ved en bedre implementasjon kan oppnå enda bedre resultater som ikke
begrenses av Tor nettverket.
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Chapter 1

Introduction

Inspired by the relaying functionality in the Tor project and decentralized peer-to-peer
overlay network concepts, we create a semi-anonymous peer-to-peer network design.
Utilizing Tor relays gives us the added benefit of an already deployed anonymity
network. To be able to use these in a novel way is crucial for creating an efficient
network topology. This is because of the extra connectivity required by a peer-to-
peer network.

This thesis should be seen as a further exploration of the work done at Harvard by
Geoffry Goddel et al.[1]. They designed and developed the Blossom network, which
bears many similarities to our proposed design. They urge to further investigation,
specifically in regard to performance and network propagation. After we have imple-
mented our own version of the network, we test some of the metrics they mention.

By creating a peer-to-peer overlay network we allow users to communicate dir-
ectly with each other, while still being able to achieve anonymity. The benefit of an
overlay network is the ability to route traffic in a logical way on top of the underly-
ing network. It is this property we utilize in our system by allowing the users of the
network to send their traffic indirectly to the recipient, forwarded through a selected
number of relays and overlay routers. This enables applications to craft tunnels to
fulfill its own requirements in regard to anonymity.

We investigate traffic analysis attacks and mitigations in regard to our network.
Low latency networks have historically been vulnerable to traffic analysis, due to
the use of correlation algorithms[2][3][4]. We also implement different methods to
combat an adversary that has eavesdropping capability.

Finally we test our implementation with common network performance tests.
These tests give us an indication of what such a network can achieve, but also verify
that such a network can be realized on top of existing infrastructure.

1.1 Keywords

Peer-to-peer, Tor, onion routing, overlay networks, anonymous, latency, Blossom,
decentralized, traffic analysis

1
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1.2 Problem description

There exist few active peer-to-peer networks that provide both a decent amount of
anonymity and low latency. In academic papers, we find a plethora of proposed
solutions[5] [6] [7]. Although these generally provide good guarantees of anonymity
when they reach a critical mass of users, few or none have reached this point, making
deanonymization a real possibility. Tor, on the other hand has massive adoption, but
is not strictly speaking a peer-to-peer network as seen from the users’ perspective. In-
visible Internet Project (I2P) also has a large amount of routers, but has undesirably
high latency.

The Tor network is composed of relays which forward traffic on behalf of its users
in an unpredictable way for an external observer. When using the official Tor client, it
creates circuits which adheres to the client-server model, and not a peer-to-peer struc-
ture. Since each relay only forwards data, it should be possible to instruct the relay to
forward traffic in other ways than its default configuration. To be able to utilize this,
we need to take a deep dive into how the Tor relays function, with a particular focus
on how they can be orchestrated in a way that allows for nontraditional data flow.

Functionality for hosting anonymous services in the Tor network is already im-
plemented in the form of a Hidden service (HS), which can supply the Tor users with
functionality to communicate with each other through a central anonymous service.
The HS follows the client-server model and as such contains several potential vulner-
abilities, some of which have been used to locate and deanonymize the service. This
poses a threat to all the users of the service, since a hostile takeover could potentially
expose the users.

1.3 Justification, motivation and benefits

The intended users of the presented solutions are individuals that have a need to
communicate anonymously in a decentralized fashion. Tor users today are forced to
broadly follow the client-server model with other users on the Tor network when
wanting to communicate on the dark net. This is because of how hidden services are
incorporated in the network. When a hidden service is taken down or unavailable,
the entire user group is unable to communicate. With a decentralized topology, or
multiple central relaying nodes, the users are able communicate even if some nodes
are disconnected. IRC[8] provides an example which consists of a central server re-
laying the chat to the clients. Should the server become unavailable, all clients would
be unable to communicate. If each client was able to directly communicate with each
other, they could send messages independently of a central server. In short, our im-
plementation is intended for use cases where data should flow directly between the
participants, and anonymity is critical.

Using existing infrastructure to create new and potentially better suited topologies
could prove to be an efficient approach compared to deploying a new one. It could
be possible to deploy such a network faster, due to the existing infrastructure. In
addition, use cases which historically could not efficiently be transferred through
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an anonymizing network, could with some tweaking be enabled to. Online video
conferences, audio calls and gaming are amongst some time crucial applications that
historically would have bad performance in a large relaying setup.

In later years, the need for anti blocking and censorship circumvention has shown
itself crucial for the modern web, particularly in certain countries during times of
emergency and crisis. When flow of information is needed the most, some ISPs are
forced by their governments to choke the connection. Tor is already an existing solu-
tion to this problem. However, Tor does not have said native peer-to-peer support.

By implementing a way for users to communicate directly with each other on
Tor, we can combine the anonymous properties of Tor with peer-to-peer architecture.
We consider multiple ways to create the network in an effort to utilize Tor relays in
the most efficient way possible. Creating a protocol for peers to connect will also
make it possible to eliminate the need for any central entities that are vulnerable to
attacks. For some features, a central directory server is preferable, but by avoiding it
we minimize the attack surface of the peer-to-peer network.

Even though anonymous peer-to-peer systems already exist, none of them dir-
ectly utilize the Tor network[7]. Tor is among the largest overlay networks accessible
to any user. This kind of infrastructure is valuable in regards to censorship and correl-
ation attacks. Instead of proposing something new, we can use existing infrastructure
to deploy our network, which maximizes the chance it ends up as something that gets
implemented. To build such a network from the ground up can be challenging. An
overlay network is dependant on routers deployed on geographically diverse loca-
tions. To mitigate against surveillance and correlation attacks, these severs can not
belong to any single entity. To build a global network that is voluntarily operated is
therefore a time consuming and difficult task. Luckily, the Tor project already com-
pleted this task.

1.4 Research question

1. How can existing anonymous networks facilitate a peer-to-peer overlay net-
work structure?

2. Is it possible to bootstrap the individual tunnels between peers in a decentral-
ized fashion?

3. What performance can such a network achieve between single peers and in
more complex configurations?

1.5 Scope and contributions

This thesis will primarily contribute three things. Firstly, a design for a peer-to-
peer network that utilizes Tor relaying nodes. This includes a tunnel design, used
between each peer, but also a bootstrapping mechanism that makes the network able
to communicate autonomously. The second is the proof-of-concept software we cre-
ate, which demonstrates that this approach is feasible. Finally we carry out a set of
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performance tests on the software we have deployed. These results are only meant as
an indication of what such a network can do, both performance and topology wise.

The focus of this thesis is the design and security properties of the proposed
network. Trust and distribution of preshared secrets are therefore considered out of
scope. However, well tested solutions to these problems exist, as the literature study
shows. Advanced automated routing in the overlay network is only briefly discussed,
and the thesis uses a simple routing approach. Since we create a standard IP network,
regular routing protocols should integrate without massive investment.

1.6 Ethical considerations

Using Tor relays in a different way than intended could prove to be dangerous in
regard to anonymity. There exists research regarding what anonymity Tor can provide
with the default configuration[9] [10]. Since we use a different setup it is likely that
these proved properties no longer hold. The developed system can therefore not be
recommended before a thorough investigation is performed, with focus on which
properties and configuration give a tolerable amount of anonymity.

1.7 Thesis outline

In chapter 2 we present the background of overlay networks with a special focus
on the Tor network. More specifically, we investigate peer-to-peer networks with an
emphasis on those that support anonymity-enhancing methods. Tor is presented as
a network that can be used to facilitate our implementation. Chapter 3 presents the
method by which we realize our implementation and how we execute the perform-
ance tests. Chapter 4 presents different designs and possibilities for how to create a
peer-to-peer network atop of Tor. We also present different network topologies where
we can conduct different tests. In chapter 5, we present the results from the chosen
design and performance tests. In chapter 6 we discuss performance results, limita-
tions and possibilities with our prototype. Finally we present a conclusion in chapter
7, followed by suggestions for further research in chapter 8.



Chapter 2

Background

We present here relevant technologies and earlier efforts at similar experiments. Con-
cepts such as overlay networks and peer-to-peer networks create the platform that
we intend to further develop. We intend to utilize Tor to realise our experiment, so
we present both Tor at a glance, but also the Tor building blocks relevant for our
prototype. This is presented in more details in section 2.3.

Central terms in our work are decentralized and anonymity. For the prior we will
use the same definition as presented by Radner [11]. Decentralized is presented as a
lack of central or coordinating entity, that leads to decision making based on a limited
set of available information. It has a special meaning for overlay networks, but this
definition works as a general approach. Anonymity is somewhat related to decentral-
ization, since decentralization can offer a higher degree of anonymity. Anonymity can
be sub grouped into two categories: data anonymity and connection anonymity[12].
Data anonymity is concerned with the ability to correlate a data set to an originator.
Connection anonymity is related to detecting the originator and receiver of a data
stream. It is the latter that is the primary focus of this thesis. When mentioning an-
onymity, we refer to the connection anonymity unless specified otherwise. Another
relevant term used is dark net. It is a loosely defined popular term for everything that
is not directly accessible on the internet[13]. To be able to reach it, you need specially
crafted software.

2.1 Overlay networks

An overlay network is, as the name implies, a network built on top of another existing
network[14]. The supporting network underneath, often referred to as the substrate
network, is the foundation for the overlay. The substrate network may perhaps route
and shape traffic in an unwanted way. By placing routers in central places in the
substrate, we gain the ability to control where traffic flows and distributes. There
are not many requirements for the substrate network, other than it must be able to
transfer data between the logical routers of the overlay network. The overlay routers
should be placed in a logical way, to best suit the users and the purpose of the overlay
network. The raison d’être for overlay networks is their ability to route traffic in an

5
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abstract way, independent of the network it is built upon. Another reason is the ability
to build an abstraction layer on the existing network. An example of this is how the
packet switched internet was delivered over existing line switched telephone lines.

Overcast is among the first described overlay networks that uses internet as a
substrate. The overcast network was built to achieve multicast across the internet in
an efficient way[14]. By placing nodes at practical locations in the world, they were
able to stream data to large geographical areas without using multiple streams from a
central server. Instead they relayed traffic to overlay nodes, that distributed it further
to the clients. This meant that a lot of users could stream video without overloading
the network with a magnitude of individual streams to the one central server.

A peer-to-peer network is a subset of an overlay network[15]. This is a decent-
ralized approach to building overlay networks. Instead of one entity placing nodes at
logical locations, as with Overcast, each peer composes the network. Meaning that
each peer will both consume and contribute to the network. As described in the 2005
survey[15], there exists two categories of peer-to-peer networks; unstructured and
structured. The structure is referring to how the peers structure themselves in the net-
work. In an unstructured network, peers connect and disconnect in an ad hoc fashion.
In a structured network there exists some form of hierarchy that the peers must adhere
to. Through this structure, a distributed hash table is often formed for many networks.
This hash table will allow the peers to cooperate on a common database that is not
centrally stored.

Onion routing is another concept closely related to overlay networks[16]. Onion
routing is created to offer a way to achieve anonymity in a possibly eavesdropped net-
work. Onion refers to a layered approach to routing the traffic. By having layers with
encrypted routing information, it tries to distantiate the originator from the content.
To be able to connect the data to the user, you would need to record traffic at all the
places it is relayed. Schlegel and Wong[17] have identified that existing anonymising
networks, such as Tor, suffer from low bandwidth and higher latency. As for Tor, it
can be attributed to how anonymity is achieved through a relay chain and sometimes
overworked relays. They also argue that this introduces a degraded usability for the
application that these existing solutions actually manage to relay over the network.

2.1.1 Existing hidden overlay networks

A paper from 2007 presents multipath onion routing[18]. In an effort to solve traffic
analysis and overloaded relays, the system uses not a single route for the traffic. It
distributes traffic across multiple paths, while still preserving anonymity with onion
routing. Their own system, MORE, has features which resemble Tor’s, but according
to them can perform just as good, but with better distribution of the load. Unfortu-
nately this is an entirely new system. In the paper, some active deployment of the
system is described. The ability to use multiple paths to the recipient is something
we should pursue in our experiments. Which could allow us better performance and
combating traffic analysis at the same time.
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2.1.2 Anonymous peer-to-peer networks

There exist a plethora of articles that discuss the possibility of anonymous peer-to-
peer overlay networks. In one paper by Schlegel in 2012, a new overlay network
scheme is presented[5]. They argue that anonymous networks traditionally have had
degraded performance, such as low bandwidth, high latency and a somewhat lacking
support for routing algorithms. By creating an IP routed network on top of an ex-
isting one, they are able to get 50% better performance than existing solutions such
as Tor. This overlay IP network is completely disjoint from the substrate network
beneath. Some implementation specific problems were identified, such as the need
for namespaces and geographical awareness. The latter is for minimizing the delays
when relaying the overlay data between substrate routers. They discuss some of the
problems when introducing unauthenticated routers in an anonymous network. To
combat this, a concept of authenticated routing is introduced in addition to the net-
work. Leaking of network information was unwanted, and kept to a minimum, while
packets were able to be relayed to the right router.

A peer-to-peer network, Clouds, was designed and created with anonymity and
blocking resistance in mind[6]. Many hurdles, regarding efficiency without directly
connecting peers and trust without previously exchanging keys were solved. As with
some of the other technologies, it depends on large scale deployment of relays on the
internet. However, their principles are said to work on any unstructured peer-to-peer
network, which is interesting when regarding our experiment. This means we should
be able to deploy their system on top of one we create or facilitate.

A massive actor in the anonymous peer-to-peer network domain is the I2P net-
work[7]. This network started as a fork of another renowned network, Freenet, in
2003. I2P is originally built using many of the same concepts as Tor. These concepts
are pivoted toward peer-to-peer setup, compared to how Tor uses them. The most not-
able difference is how I2P does not use circuits, as Tor does with its Onion routing.
Instead, garlic routing is used, which is derived from onion routing. Multiple data
segments are encapsulated in a garlic clove, and sent to the routers of the network. In
Tor, each data segment is padded to a prefixed length, while in garlic routing these
prefixed cells are actually concatenated and distributed. The attribute specifies for
how long each router should delay the forwarding of a packet. This, in addition to
the delay of accumulating cells in a clove, introduces a certain amount of intended
latency.

2.1.3 Defending against traffic analysis

Traffic analysis is the act of collecting data, and only using the metadata associated
with the collected traffic[19]. This is often used when the traffic is encrypted, since
the eavesdropper can not see the raw unencrypted payload. By using traffic analysis,
the eavesdropper can use statistical models to correlate sender and receiver.

An interesting way of defending against traffic analysis was proposed by Beitol-
lahi and Deconinck[20]. By creating a "routing circle" that all the data is sent into,
it becomes difficult for an eavesdropping third party. This is due to tha fact that all
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the data is relayed in a circular fashion, and not the linear direct link as the standard
Tor circuits are. Even though this idea is an interesting take on the traffic analysis
problem, it introduces a potential for higher latency. In addition it demands a total
refactoring of how circuits are established.

There exists efforts to implement traffic analysis resistance in existing applica-
tions, such as BitTorrent[21]. Using a rendezvous point central in the network, they
apply a multipath approach. This approach can remind of an enormous mixer that in-
tercepts all streams, and makes it difficult to correlate inward and outward streams. In
this way, the data you intend to send or receive gets distributed across many streams
before approaching either endpoints. Through this traffic distribution, they achieve
high bandwidth, low latency and better traffic analysis resistance.

To reach lower delays in the Tor network M. AlSabah et al. presented a new way
of building onion circuits[22]. The idea is to actively having a state over the latency
each individual relay contributes. This makes it possible to compose a route which
is crafted for the desired latency. As a consequence of this approach, a decrease of
anonymity is expected. They tested the system on the Tor network. By preferring
other relays than the low bandwidth ones, the system achieved better latency than the
original client. Since the circuit throughput is only as fast as the slowest in the chain,
one slow relay is enough to make the user experience bad.

Müller performed multiple correlation experiments on the Tor network in 2015[23].
He did not only show how it was possible, but also that it can be defended against
with a cost that is acceptable for the Tor network. This is achieved by creating dummy
traffic to disturb the traffic analysis sensors.

2.2 Blossom

Due to a fragmented internet, Geoffry Goddel et al. presented Blossom[1]. Blossom
is an unstructured peer-to-peer overlay network. It is an effort to create connectivity
on a layer on top of the internet. Blossom is treating different logical internet islands
as a fragment. These islands are what the technology tries to connect[24]. There are
different aspects that define these fragments. Some ISPs block certain content, which
this solution would help prevent. Another advantage is that the internet behaves dif-
ferently, depending on where you originate. This is one of the primary things Blos-
som tries to mitigate. In the network you are able decide where you originate from
when browsing the web. Utilising the Tor network as a substrate, Blossom achieves a
worldwide deployment without needing to buy or acquire servers globally. By having
these relays in many places, the network is able to circumvent censorship technolo-
gies. Content filters, IP address based blocking and network address translation are
some technologies it could penetrate.

Architecture wise, it is built as a middleware between the client application and
the Tor client. The stack is as follows:

• Client (e.g Firefox)
• Blossom application proxy
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• SOCKSifying application (e.g Privoxy)
• Tor Client
• Tor network

In addition to the Blossom application proxy, the software also connects to the Tor
client, through a software controller. This controller is what instructs the Tor client
to use different relays in the circuit. In its prototype, they utilize the Tor network, not
primarily to make it anonymous, but due to the network’s extensive reachability. This
use of Tor was acknowledged in the anonymity design document by Dingledine and
Mathewson in 2006[25].

2.3 Tor

Interest in anonymous routing and information access saw a steady increase during
the late 1990s, both in academia and industry. At the Naval Research Laboratory
some thoughts was formalized by Paul F. Syverson et al.[16]. In the paper they present
a working prototype of what they call "Onion routing". They had created a design for
layered packets that travel through a set of proxies before they reach their intended
recipients. This worked on multiple protocols, web browsing, remote logins and e-
mail. This work created the foundation for the modern anonymity network Tor.

Tor, also referred to as the second generation onion router, was proposed by Roger
Dingledine et al. in 2004[26]. The name was originally intended as an abbreviation
for "The Onion Router". It was presented as a crowdsourced way of distancing the
users of a network with the data they are requesting and producing. It is defined by
open specifications[27]. The idea was to relay the data over routers before they exit
the network. Each relaying node only observes the previous and next routers, and is
only able to decrypt headers that it is intended to relay. Eavesdroppers only observe
a part of the chain at a certain location since packages are not taking the shortest
path. The Tor network needs a central database over the nodes and the parameters
to function properly[28], but having a central actor could lead to compromise of the
network. Trust in a single point of failure could lead to a corrupted network. The
solution is instead a voting system, where central nodes known as directory servers,
agree in cooperation and settles on a consensus document.

Most regular users access the Tor network through the official Tor client[29].
This client is configured in a tested and presumably secure way, making it a preferred
way of connecting to the Tor network. It exposes multiple interfaces for incoming
connections.

When a user wants to request a resource on the internet, their client first create
what is referred to as a Tor circuit. A circuit is, by default, composed of three relays,
guard/entry node, middle node and exit node[30]. The intention is to relay the traffic
through all of these nodes, with layered encryption, so that each relay only knows the
node it was sent from, and where it should be routed to. By doing this, onion routing is
able to separate the originator and the information being sent. The last relay, the exit
node, is tasked with connecting to the resource on the internet. It is the client of the
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network that builds this circuit. The circuit is built one relay at the time. Onion skin
is what Tor calls the encryption layer, between each relay. This onion skin consists of
cryptographic keys, which needs to be negotiated with each relay in the circuit. Once
one skin negotiated, the circuit encrypts all data en uses it to tell the relay to forward
the traffic to the next relay it needs to connect to. This enables the client to build as
long circuits as needed.

Inside the circuit multiple streams can be operated. These streams bear close re-
semblance to TCP streams[31]. A difference is that when creating a stream, you can
actually either use a domain name or an IP address. The intention behind this is to
not leak a DNS requests outside of the Tor session. Tor operates using TCP protocol,
and this is not compatible with DNS queries, which is sent over UDP. Therefore, Tor
has fixed this with their own stream specification. For the clients of Tor, this happens
transparently. SocksV5 is the most common protocol to interface with the Tor client.
Socks5 is a protocol for proxying traffic. The clients wrap the data it intends to trans-
mit in a Socks5 session, and sends it to Tor. Both name resolution and what happens
beyond this point is not exposed to the client program.

These streams built of Tor cells. These cells are used both to set up streams,
establish rendezvous points, but also to relay data. Each relaying data cell is padded
to fit 512 bytes; in an effort to not leak data through some forms of traffic analysis.

Latency in the Tor network

Dhungel et al. documented significant latency in the Tor network[32]. Due to Tor’s
distributed and heterogeneous nature, it varies in the network. Since the Tor protocol
also chooses at random which relays it uses, the kind of service you are getting is
arbitrary. They showed that at any time, 11% of all Tor routers were overloaded,
and introduced delays. These delays fluctuated greatly, but could get as high as a
few seconds. With time critical applications, that’s not feasible. They also identified
guard nodes as a weak point that could introduce a lot of delay due to overwork. They
propose making circuits based on delays that the onion proxy has recorded historic-
ally. This can introduce circuits that always choose the same router, and sacrificing
anonymity.

Palmieri and Pouwelse[33] present a way of distributing the onion routers public
keys in a Distributed hash table (DHT) instead of the central server it is today. By do-
ing this they argue that Tor could transition closer to a true peer-to-peer unstructured
network. However, a problem arises with this approach. By having an unstructured
peer-to-peer network, you no longer know which relays know of each other. They
solve this issue by applying a bloom filter[34], so that the paths being chosen do not
disclose which relay that know of each other. This is an interesting approach, and
makes the Tor network even more blocking resistant, by not maintaining a central
directory over all participants in the network.
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2.3.1 Hidden services

Hidden service (HS) is the name Tor has given its services that are only available over
the Tor network. Traditional use of Tor consists of relaying traffic from the user, over
two relays, and exits from the network at an exit node. At this exit node the traffic
is completely peeled of onion skin and exposed to the internet. A hidden service is
not a service that the exit node can reach by regular measures. The hidden service is
reachable through its onion address. This address functions both as its domain name,
when postfixed with .onion, and as its key to prove its identity. When you want to
reach the hidden service, both parties establish a circuit. The client also establishes a
Rendezvous point (RP) at its last relay in the circuit. Through a temporary channel,
to an Introduction point, the client signals to the server to connect to the RP.

The current protocol for connecting to hidden services is defined in the "Tor
Rendezvous Specification - Version 3"[35]. The intention behind the protocol is that
neither the client nor the service are supposed to leak information from the channel.
This is enabled by creating two Tor circuits from each end point, and splicing them
in the middle. As a consequence, the server is unable to identify the clients, and the
clients are unable to identify their service. Since the address also is the key, the users
are able to cryptographically verify that the server is the one that possess the address.

When a hidden service is created, the server generates keys and addresses associ-
ated with the service. After these keys are generated, it elects some relays to work as
introduction points. This list and connection information is encapsulated in a hidden
service descriptor and published to the HSDir, also known as the hidden service dir-
ectory. These introduction points are dedicated relays that coordinate the connection
between clients and the hidden service. The introductions points are not responsible
for any payload data. When a client wants to connect to the hidden service, it firstly
creates a circuit and fetches the descriptor from the HSDir. Afterward it creates a
second circuit that it uses to establish the rendezvous point. And finally it creates
another circuit that it connects to the introduction point and informs the HS about
a pending connection at the rendezvous point. The hidden service connects to the
rendezvous point with the parameters received from the introduction point.

An existing chat software, Briar, already utilizes HS for reaching other clients[36].
In Briar you create a HS when you create a user in the peer-to-peer network. The hid-
den service address is your identifier and is how other users find you when they want
initiate a chat session. The Briar network is however limited to chat, forum and blog.
No low latency use cases have been implemented. But it is an interesting example of
how decentralized communication can be implemented using HS.

2.3.2 Rendezvous points

When Tor connects the HS and client, it utilizes a RP. The RP is unaware of which
client and which HS is performing the splice. It only gets a Rendezvous cookie (RC)
and patiently holds the circuit alive while waiting for the HS to connect. This cookie
is a 20 byte value that uniquely identifies the client which intends to connect. This
cookie is sent to the introduction point, so that the HS can connect to the RP.
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To enable secure dialogue between two circuits, a relaying entity is needed. This
entity is known as the rendezvous point. The overall intention of this functionality
is that the rendezvous point should be an unbiased randomly chosen router. The
destination of the data is unknown, as the Hidden service name implies. In nor-
mal operation it is the client side that initiates the session, by sending an ESTAB-
LISH_RENDEZVOUS_POINT cell to a random selected onion router. This makes
the randomly chosen onion router prepare for the job as RP for the session. An im-
portant distinction is that it is the client that decides which onion router to use as
RP.

The protocol

In 2021 a new specification version of how connections to hidden services in Tor
was effectuated in the network[35]. New cryptographic checks were introduced and
longer onion addresses were enforced.

A common negotiation is presented (most cryptographic checks are neglected in
this example). Alice is the one wanting to connect to a hidden service operated by
Bob. This protocol enables a secure way of Alice and Bob to communicate without
knowing where or who each other are.

1. Alice establishes a circuit which terminates at an RP with a RC.
2. Alice builds a separate circuit to one of Bob’s introduction points, and notifies

which RP she has established connection to.
3. Bob builds a 3 hop circuit to Alice’s chosen RP and sends a

RELAY_COMMAND_RENDEZVOUS1 containing RC and cryptographic keys
and digest.

4. If the RP recognizes the RC, it relays the rest of the cell down the corres-
ponding circuit in a RELAY_COMMAND_RENDEZVOUS2 containing the
cryptographic keys and digest.

5. Alice receives the RELAY_COMMAND_RENDEZVOUS2, and calculates cryp-
tographic values. If these values do not match the expected, the message is
discarded and closes the circuit.

6. Opening stream: Alice sends RELAY_COMMAND_BEGIN with empty ad-
dress and a chosen port. Bob selects destination IP address and port based on
configuration. Then the stream is treated as a regular Tor exit connection.

Challenges to hidden services

When the Hidden service functionality was deployed in 2004, it was the first of its
kind at this scale. The ability for both the user and the server to stay hidden was
a novel feature at the time. Appraised by organizations working with dissidents and
freedom of speech. However, this functionality was vulnerable to intersection attacks,
as noted by Øverlier and Syverson[37]. Due to the missing notion of guard nodes, the
hidden server would over time leak its location due to the random path it selected.
With the guard node functionality it would still be possible to perform the described



Chapter 2: Background 13

attacks, but at a significantly slower rate. An adversary that owns two or more nodes
will have the possibility of deanonymizing the hidden service or the user[38]. By not
selecting these paths at total random, but with some added functionality, like perman-
ent guard/entry nodes, one minimizes the possibility of a successful attack.

We have now described some central topics in regard to the peer-to-peer structure
and anonymous networks. This will be heavily built upon in further chapters, where
this knowledge creates the development platform.





Chapter 3

Method

As we have now presented relevant literature, we present how we approach the re-
search questions. This has been separated into three major parts. Each part needs to
be solved before the next can be initiated.

To verify both the possibility and properties of using Tor to create a peer-to-peer
routable network, we create software that realizes this tunnel. The tunnel software is
then used in a sequence of performance tests. These tests intends give a guideline of
what is possible to achieve using Tor in the elected configuration.

The developed software creates a network that can be possibly deployed using
existing infrastructure, and eventually facilitate solutions as those peer-to-peer net-
works described in the literature. The literature presents new solutions that demand
a critical mass of nodes to operate correctly. By supplying a solution based on the
already populated Tor network, we close a gap between Tor and peer-to-peer net-
working. The solution makes it possible for clients alone to connect and start using
the network without the need for volunteers to setup a relay, since Tor already pos-
sess a lot of such relays. This enables the use of existing infrastructure to bootstrap
and facilitate the next generation of overlay networks. As a consequence of this, we
focus more on creating a peer-to-peer platform than connecting fragments, as was
done with Blossom.

3.1 Tunnel designs

The Tor network allows for multiple ways to create and design circuits between two
clients. Therefore, we create an outline for the different identified ways to create con-
nectivity between two peers. The most suitable configuration, in regard to flexibility,
is elected and used to perform the performance tests.

A system where it is possible to configure the number of hops might be prefer-
able, especially in use cases were low latency is prioritized over high anonymity. The
user connecting is responsible for using a number of hops that corresponds to its re-
quirements. In a regular Tor circuit, this number is three, but it might be preferential
to alternate for different peer-to-peer applications.

15
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3.2 Peer connection designs

After the tunnel mechanism is established, we need to deduce a plan for when and
how these tunnels are connected. Before the peers have an active connection, we
need a way for them to both find and connect to each other in a decentralized way.
This protocol is something each peer needs to know, and is a central part of how the
overlay network works. This bootstrapping is needed, so that an overlay network can
start without any peers connected. A shared secret is perhaps needed to create initial
contact with new peers. As more and more peers connect to the network, these secrets
can be forwarded by other peers.

3.3 Performance tests of the chosen design

When the building blocks for the overlay network have been figured out, we execute a
series of performance tests. The intention behind these tests is to create an estimate of
what the network can deliver. As an indication of what is possible we test the proof of
concept software with standardized link tests, extracting both latency and throughput
information. In addition, we set up five peers that communicate and forward traffic in
the network.

To test performance in a network, the modern tool iperf3[39] is a popular option.
It is a common tool for testing network throughput, both in academia[40] [41] [42]
and in the industry. It is also in use for generating traffic, without the purpose of
testing the bandwidth[43]. For testing latency, the native ping command found in
Linux is a feasible choice. This command utilizes the ICMP protocol, and it reports
back the time the packets used to travel from one address to another.

In this chapter we prepared a method for both creating a prototype and executing
valid tests for it. This is the basis for the next chapter when we realize these plans.
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Experiment

In this section we describe the steps needed in designing the channel and peer-to-peer
network as a whole. Since we use the Tor network as a substrate we need to initially
create a client for this interface. Afterward we describe how the tests will be executed
and metrics collected.

4.1 Framework and software

To develop our prototype we need to utilize the Tor network. There exists multiple
ways of doing this. One is to utilize the official Tor client. The client for Tor is pro-
grammed in C, but forking this could introduce an extended development period.
There exists an implementation in Python, named TorPy[44]. This client is both out-
dated and missing key features, but is a possibly better base than other frameworks.
There also exists a framework for orchestrating the original C-client, Stem[45], that
was inspected. However, this turned out to be inapplicable to our case, as the original
client does not support the granularity high enough for our use case.

The software we developed and used is freely available at:
https://gitlab.com/fredfall/rtun/

4.2 Establishing connections between peers

We need to create a tunnel in which we can relay the traffic. There are multiple ways
to create the tunnel in Tor, as will be presented shortly. Inside the Tor streams we
need to be able to effortlessly send data. To achieve this, an encrypted OpenVPN
session is established. This makes it trivial to relay data seamlessly. This is because
a native Linux tunneling device is created by the software. OpenVPN also enforces
certificates and encryption which we will for simplicity use as the primary encryption
and verification between peers.

To be able to build an anonymous overlay network, we need connections between
the peers. It is this task that this sections seeks to answer. We need to be able to
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place routers in the substrate network that anonymously communicate. We present
four different approaches to this, using the Tor network in slightly different ways.
The decided solution will dictate how the protocol for connections function. Some
preliminary parameters can be assumed exchanged out of bounds. An identifier or
something unique of other peers can be assumed. In our experiment we denote these
factors as peer1, peer2, and so on. The protocol we develop will also be assumed
knowledge, since it is in this frame we establish the channel.

4.2.1 Possible configurations

The official Tor client enables safe and tested options for connecting to the network.
Still, by designing our own client we are able to configure tunnels to a greater ex-
tent. For the overlay routers to communicate, we need to build a channel for them to
communicate directly. In this section we explore different ways of building tunnels in
Tor between two peers. P1 and P2 denote the peers that intend to communicate. We
start with the shortest possible relay chain, since its requirements give the minimal
possible setup.

An important thing to note is that between each official Tor relay there exist a TLS
session when information is exchanged. This encrypted stream is wrapped around any
data or already encrypted streams going between the relays. If we create a chain of
relays, this encryption would add an additional layer. For the clients of the network,
this happens transparently and no special steps is needed due to this. Therefore, this
TLS layer of security is not illustrated in our figures.

One hop

P1 RP P2

Figure 4.1: Peer P1 and P2 communicates through the rendezvous point RP

One hop configuration is the shortest possible. Where two peers communicate through
a single relaying entity. This configuration defeats Tor core principles[27]. The onion
routing, which is the heart of Tor, is built on the assumption that the cells are re-
layed across multiple relays. When only using one hop, many of the implemented
mitigations are rendered obsolete. P1(fig. 4.1) is a client, and not a part of the Tor
network. The onion router (RP) checks this. Since every public router should exist in
the consensus document, it is trivial to get the fingerprint from the connecting router.
The reason it does this check is because of denial of service protection. The insecure
connections are not the main reason for it. If you could allocate resources with min-
imal effort, it would be possible to do a massive scale attack with minimal resources.
As we will see in the next configuration, it is possible to make this tunnel with two
relays. The attack, in this sense, does not scale that massively when you need to pipe
it through guard nodes as we will see.
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The primary initial reason a one hop configuration is forbidden, is due to the
intersection attacks it enables. In the paper discussing this[37], we see how hidden
servers could be located by allowing a one hop configuration.

From the relay perspective, one could enable the option "SingleHopRendezvous".
This could solve the problem with single relays between peers. A disadvantage is that
the relays in the Tor network do not by default have this option set, so we limit our
available routers unnecessarily.

The Tor protocol specification[27] also prohibits this use of relays:

ORs SHOULD also tear down circuits which attempt to create:
* streams with RELAY_BEGIN, or
* rendezvous points with ESTABLISH_RENDEZVOUS,

ending at the first hop. Letting Tor be used
as a single hop proxy makes exit and rendezvous
nodes a more attractive target for compromise.

Because of the potential abuse of resources this could cause and therefor contribute
to a DoS attack on its relays.

Two hops

P1 GN RP P2

Figure 4.2: Peer P1 and P2 communicate through a guard node, GN, and a rendez-
vous point, RP

This configuration is similar to the previous one, but an additional guard node is
introduced between P1 and the rendezvous point. This makes it possible for P1 to
connect to the RP without masquerading as an onion router (since it is technically the
guard node that relays the cells that establish the point). In many aspects, this is the
same as a one hop. The difference is the forced guard node, which is not possible to
remove without further development. An additional node will ensure that the minimal
amount of anonymity is better than with only one node between peers.

4.2.2 Three hops, both peers using guard nodes

P1 GN MN GN P2

Figure 4.3: Peer P1 and P2 communicate through a guard node, GN, a middle node,
MN, and a second guard node.

The RP can check if both the establisher and the connector are onion routers. If it
checks both circuits, then the setup in figure 4.3 can mitigate this. By having a guard
node before the RP in each directions, the RP is unable to block circuits. As we



20 F. Fallang: Security of dark net overlay networks

discovered, it blocks the establishing part of the RP if it does not originate from an
onion router, so it is possible to do this check on the connector side as well.

4.2.3 Four hops, official client through an HS

P1 GN MN RP GN P2

Figure 4.4: Peer P1 and P2 communicate through a guard node, GN, a middle node,
MN, a rendezvous point, RP, and a guard node, GN.

Four hops is a minimized version of the official connection used by HS. This altered
version is achieved by not using complete circuits at each end. HS originally consists
of six hops, two onion routers before the RP on the connector side. The HS connects
to the RP with a circuit consisting of three relays, since there exists no trust to the
connector chosen RP.

To achieve this four hop circuit, we need to first create a regular hidden service.
In the settings, we enable the experimental "one hop"-option. This enables us to use
the official client, and no development is necessary. So the connector creates a regu-
lar circuit, but the HS-part of the connection only gets one guard node before the RP.
This creates some overhead, with introduction points and a second guard node com-
pared to the 2 hop solution. If we use our own encrypted tunnel inside the tunnels, all
the onion skin cryptography might lead to unnecessary performance loss. This four
hop option implies no major development since it is only a configuration of the client
that is necessary.

Utilizing HS functionality in this fashion is something the Briar project [36] does,
as mentioned in the literature study.

The selected configuration

In our experiment we intend to use the two hop solution, as described in 4.2.1, as
this seems to be a good balance between anonymity and latency. This configuration
is also great for expanding a middle node after the guard node, which gives the same
number as the Tor official client (three), but avoiding exit nodes.

4.2.4 Splicing the circuits with a rendezvous point

Using the old version 2[46] and new version 3[35] of the Tor rendezvous protocol
specification as inspiration, we intend to create a client that can directly use the ren-
dezvous protocol for traffic transmission.

Tor-1 denotes the onion router intended as guard node, and tor-2 is the router
which is used as the RP. Other abbreviations used in the figure for long message
names given in the Tor specification are:

• REND_EST - RELAY_COMMAND_RENDEZVOUS_ESTABLISH
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◦ The establishment of an RP using a RELAY_COMMAND type channel.

• REND_ESTB - RELAY_COMMAND_RENDEZVOUS_ESTABLISHED

◦ Response from an onion router that the RP is successfully established.

• REND1 - RELAY_COMMAND_RENDEZVOUS1

◦ When a hidden service wants to connect to an established RP this type
enables the splicing of circuits.

• REND2 - RELAY_COMMAND_RENDEZVOUS2

◦ This notifies establisher of an RP that someone have connected the other
end of the line.

• RELAY_BEGIN

◦ This cell opens a data stream inside the circuit to the other end. This is
the same cell type that is used in regular Tor traffic.

• RELAY_CON - RELAY_CONNECTED

◦ The response that the other part of a circuit is ready to receive data cells
in the stream.

peer-1 tor-1 tor-2 peer-2

[REND_EST] REND_EST

REND_ESTB[REND_ESTB]

REND1

REND2[REND2]

[[RELAY_BEGIN]] [RELAY_BEGIN] RELAY_BEGIN

[[RELAY_CON]][RELAY_CON]RELAY_CON

Figure 4.5: The protocol we intend to use to create the tunnel

The square brackets in figure 4.5 denote each layer of onion skin that is applied.
To create a rendezvous point and connect to it, multiple cells need to be encrypted

and packaged correctly. The entire session starts with peer-1 creating a TLS session
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with tor-1. As mentioned before a TLS session is the base between all Tor relays
or clients wanting to communicate. It is not showed in figure 4.5, but it is estab-
lished between all entities. Peer-1 establishes connection with tor-1 and extends to
tor-2. This is done with RELAY_EXTEND cells, and is part of regular Tor circuit
establishing. When the circuit is extended to tor-2, we use the onion skin to encrypt
a RENDEZVOUS_ESTABLISH packet that is sent to tor-2. Tor-2 establishes the
rendezvous point with the attached rendezvous cookie. Consequently, tor-2 sends a
confirming RENDEZVOUS_ESTABLISHED cell back to peer-1.

Everything is now set in place for peer-2 to connect to the rendezvous point.
It does this by sending a rendezvous cookie packaged in a RENDEZVOUS1 cell
to tor-2. Tor-2 responds to this by sending a RENDEZVOUS2 package to peer-1
to notify of the circuit’s completion. Peer-1 immediately sends a RELAY_BEGIN
cell to tor-2 which relays it. Onion skin between the peers is not established, since
there will be an OpenVPN session inside the tunnel. Finally peer-2 responds with a
RELAY_CONNECTED, and data can flow between the peers.

Relaying data

In order to relay the data coming from inside the tunnel, the peer-2 needs to relay
it. To accomplish this, we mimic how the exit nodes function in the original Tor
network. By creating a socket loop that creates new sockets to the intended address
when receiving a RELAY_BEGIN with an address and port. In our case, the address
is the local interface exposing an OpenVPN service.

Establishing the OpenVPN tunnel

When the RP has spliced the connections, there exists a prolonged onion circuit,
which we can send data over. On the initiator side, we expose a SocksV5 interface that
relays data to the other side of the tunnel. This mimics the behaviour of the regular
Tor client, as described in section 2.3. On this SocksV5 interface we immediately
start an OpenVPN session that tries to connect to 127.0.0.1 on the other side. This
tries to connect to the loopback interface on the other side of the tunnel. On this
loopback interface we expect an OpenVPN listener. The tunnel is presumably able to
connect, and a tun-device is created on each side of the tunnel. In our minimal test,
all keys and certificates are the same for all sessions.

4.3 Autonomous bootstrapping of the network

Establishing tunnels across the new overlay network demands a scheme for knowing
how and where to establish connections to each other. Due to the nature of rendezvous
points, both parties in a tunnel setup need to know where and when to establish the
initial contact(in addition to a 20 byte cookie). When initial contact is made, it is
possible to coordinate further routers to jump to. Since this is not possible before
initial contact, we need a plan for where to have the initial RP.



Chapter 4: Experiment 23

4.3.1 Shared state of available relaying nodes

We need a shared state to derive the chosen RP router from. This shared state needs
to be easily available and contain both the same list and sequence, no matter where
the request originates.

From this state we can derive selected nodes through a scheme. This scheme
needs to always output the same entity. It is imperative for the scheme that the input
is the same, in order to produce equal output.

In the Tor network, this shared state is already required by the network, and is
known as the Consensus[27]. This document is achieved through a semi-decentralized
voting system. Central servers in the Tor network achieve this consensus over a period
of time[27]. This list contains a plethora of information, relative to our case. The most
relevant for us is the list of all the onion routers that are accepted in the network. This
list can be used as an index for all the available RP.

Some preliminary filters is probably a good idea, since not all servers have our
preferred properties. If there is a lack of available exit nodes, we do not need to use
their limited bandwidth. If network latency plays a crucial part to us, then geograph-
ical location could be another filter to apply. The gained anonymity is directly linked
to what kind of filter we apply to this list.

4.3.2 Connection schemes

The goal of the scheme is for the two peers to know time and place of connection.
There are at least two different ways of doing this. Either by having dedicated plans
for each peer pair, or only having a unique plan for connecting to each individual
peer. The first we call pairwise, which indicates that each peer pair have their own
dedicated scheme for electing a relay to connect to. The second is that each peer have
their own scheme for other peers that want to connect to it.

We now present the different ways of connecting to each other using rendezvous
points. To clarify, this is before any initial communication has taken place, and is a
plot to achieve communication without the need for a central server. In the figures
OR is used as an abbreviation for onion router.
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Pairwise allocation

Figure 4.6: Pairwise allocation of RP

Each pair of peers that intend to communicate at some point have their own scheme
(e.g if peer x wants to talk to peer y, y or x needs to have a dedicated rendezvous
point set up for the other part). Given a continuous connection, this is a great way
of always allocating resources. If there exists a lot of peers that are unused, a lot of
allocated rendezvous points remain unused.

If the overlay network intends to have all peers connected to each other, you get
an enormous increase in the number of rendezvous points needed, as symbolized by
figure 4.6. The growth of allocated rendezvous points follows the current format after
the third peer:

RPX = RPX−1 + pX−1

Where p is the number of peers introduced in the network.

It should be predictable where the peer-to-peer connection is taking place. Since
both peers have a personalized scheme between them, it is naturally denial of service
resistant. Given that only the 2 peers are able to calculate which router to choose as
meeting place.

If a user connects to the network with the intention of communicating with its
peer, then it tries to connect at the node using the scheme. If no rendezvous point
exists, then it is clear that the other part is not connected yet. This means you need to
establish a rendezvous point in hope of the other part connecting in the future.

Since each peer can not be sure if it is the first or second to try to establish
a connection, they will have to always try to establish a rendezvous point. If this
establishment is successful, it means you are the first. If it returns an error, it means
the rendezvous is already established. This means the other peer is already connected
and that you send a REND1 message and not a REND_EST cell. A probing like this
is necessary since it is difficult to know if you are the first to try to initiate contact.
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Recipient based allocation

Instead of creating an RP for each peer you intend to communicate with, it is pos-
sible to create one RP for everybody that wants to connect to you, but displace the
connections in time. This approach assumes that not every peer wants to connect to
each other at the same time. The general idea is that each peer that wants an incom-
ing connection, sets up an RP, as shown in figure 4.7. This approach should utilize a
faster RP rotation time than the pair approach. The reason for this is that if someone
connects to the RP, then it is unable to accept new connections before rotating to a
new onion router.

Figure 4.7: Recipient based allocation of RP

To mitigate the problem with RPs, it is possible to employ a scheme which yields
multiple possible entry points. By having multiple routers to choose from in each time
frame, it is possible to connect to a peer that already has an established connection
to someone else. If one router is occupied, it is possible to retry on one of the others
routers it should be reachable on.

What is special about this approach is that there is a far less need for allocating
rendezvous points. Instead of reserving one for each pair of nodes in the network,
you only allocate one for yourself, and hope the other are able to connect to it.

Cookie content

When establishing an RP, you need to supply a 20 byte rendezvous cookie. This
cookie is what identifies your channel, and enables that multiple RPs can take place
on the same relay. The content of the cookie is something that only the two particip-
ating parties should know.

Multiple duplicate cookies on the same onion router throws an error, as seen in
the current source code[47]:

Code listing 4.1: Tor source code checks if it is an already existing RENDEZVOUS
cookie

if (hs_circuitmap_get_rend_circ_relay_side(request)) {
log_fn(LOG_PROTOCOL_WARN, LD_PROTOCOL,
"Duplicate rendezvous cookie in ESTABLISH_RENDEZVOUS.");
goto err;
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Element selection from shared state

In general, the shared state consists primarily of a filtered list, which contain all the
current routers we are able to utilize. From this list we need to be able to select the
same element from both peers. A general approach is as follows:

Let the length of the list, l, be an integer, and the chosen time resolution be g. If
g = 1hour, and the current time is 2022-03-02 12:23, we round off to the closest g,
in this case 2022-03-02 12:00 and convert it to the Unix timestamp representation.
Lastly we summarize the namespace, the logical address of the destination and the
timestamp. This summarized value is then hashed and converted to the integer rep-
resentation of the hash, and finally take the modulo the length l. As time progresses,
different rendezvous points are automatically elected for every g. The first 20 bytes
of the summarized value is used as the cookie.

In our experiments we simply use the peer names as the tunnel name, so the string
representation of this is composed of "peerX"+"peerY". For example peer1 and peer2
become "peer1peer2". Namespaces are meant as a way to avoid collisions where
multiple users participate on different networks. In our experiments we use "default"
as the namespace. Both the tunnel name and the namespace should be secrets in a
real world network, and not predictable. In our experiments we have chosen values
which are guessable, and therefore not appropriate in a real world context. If used in
the real world, these values should be somewhat random and exchanged before the
initial connection.

In our implementation we would end up with something like this:

k = "2022-03-02T12:00defaultpeer1peer2"

index = int(sha256(k))%num_rela ys

It is also possible to design a backup solution, in case the elected node is unavail-
able or does not respond. One could for example multiply the summarized number
with a pre-agreed number, it would produce an offset in the list.

4.4 Performance tests

We will primarily test the network in three scenarios. The first without Tor, consists
of only a direct connection between the OpenVPN instances. This is what might be
the regular usage today, where the peers are directly connected. A third party could
intercept and analyze the traffic going between them. The second is the system we
have presented in 4.2.1; OpenVPN through the Tor tunnel consisting of 2 nodes we
have control over. The last setup is the same, but with Tor routers which are already
existing in the network. Greater latency and throughput is to be expected here.

All experiments utilizing Tor will be conducted with the two hop connection
configuration between the peers, as described in 4.2.1.
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4.4.1 Latency and throughput

Our prototype could yield a degraded performance, compared to the official client
in a regular circuit as mentioned in 4.1. A client to hidden service setup normally
involves six relaying nodes with standard configuration. Our proposed system is able
to minimally use two nodes, and this is the setup we are intend to test. We sacrifice
anonymity for better network properties. The accumulated latency is heavily depend-
ant on the two routers geographical distance and the link capacity between them. The
accumulated latency is composed of the four network hops between all the devices.
In our test setup, we have the ability to test the latency between each host unbiased
by onion routing. This will be used to create a baseline for the tests. By running tests
and removing the physical link latency, we get the latency created by Tor and our
implementation. To get a best case scenario, we also intend to run OpenVPN without
our Tor tunnel. This will be a direct connection between the two nodes, and should
inherit a drastically lower latency in comparison.

The throughput can be tested in much the same regard as the latency. It has a
closer dependency on the software implementation. Our prototype is as noted imple-
mented in a high level language. The actual maximum bandwidth of the link is not to
be expected through our tunnel.

The tool for testing both latency and bandwidth is the iPerf3-tool[39].

An interesting note regarding figure 4.8 is that between GN and RP there exists
or is created a TLS connection, which must exist for the two relays to communicate.
Over this TLS connection the forwarded data is encrypted and transferred, so there
exists a layer on top of what is drafted in the figure.

Peer2 onion skin

RP onion skin
GN onion skin

Guard node (GN)

Rendezvous point(RP)

Peer1

Peer2

Figure 4.8: How the Tor circuit is built when a tunnel is established
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Figure 4.9: Systems on the peers associated with the tunnel

We see in figure 4.9 how the intended designs components interact. Peer1, on the
left side, uses Socks5 when connecting through our tunnel software. This terminates
at the peer2 tunnel software as a regular socket. The number three on the left side
symbolises the minimum number of onion skins.

4.4.2 Routing and resilience

We are going to extend the network by a third node. By having three nodes, we can
implement routing strategies, which allows us to build resilience against blocking
mechanisms. The intention is that the routers of the created overlay network should
be able to route traffic that it not necessarily is connected by a tunnel to.

We intend to connect the nodes as shown below in 4.10:

1

RP

3

RP

2 RP

Figure 4.10: Setup of 3 peers with rendezvous points included
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Since this is a rather small example, we create a static routing table for each node.
In a larger scale, it would be more efficient with a routing protocol that created these
tables automatically, but due to limited time time that is deemed out of scope for this
thesis.

Routing table for node 1:

10.0.2.0/24 via 10.0.0.2 metric 100 # Default for 2 subnet
10.0.3.0/24 via 10.0.0.3 metric 100 # Default for 3 subnet
10.0.2.0/24 via 10.0.0.3 metric 1000 # If link to 2 is down
10.0.3.0/24 via 10.0.0.2 metric 1000 # If link to 3 is down

The other nodes will follow the same format, prioritizing direct connections, but
having a backup through the other available node.

To test the desired functionality, we will enforce the situation showed in figure
4.11 on the overlay network.

1

32

Figure 4.11: The 1-3 connection is disrupted, and data flows through 2 from 1

4.4.3 Scale up to 5 peers

To further investigate the scalability of the network, we intend to test it in a 5 peer
network. This 5 peer network will be an expansion of the 3 peer network, as seen
in figure 4.12. An intention behind the setup is to create a chain of peers that can
forward traffic on behalf of the network. The network need to be able to relay the
packets through all the peers, including their respective RP’s.

1

RP

3

RP

2 RP

4RP

RP

5

Figure 4.12: Setup of 5 peers with rendezvous points included



30 F. Fallang: Security of dark net overlay networks

4.4.4 Load balancing

In addition to these routing challenges, we intend to shape the traffic to optimize it
for certain scenarios. A simple setup of two nodes is sufficient to verify that these
technologies can be applied. By having two tunnels connecting the peers at any time,
we enable simultaneous use. The first test is to simply distribute the traffic across the
tunnels in a round robin fashion, as visualized by figure 4.13. In this way, we may
be able to utilize the two tunnels equally. The second solution is to send the traffic
asynchronously. This can be done by one peer utilizing one tunnel as upstream link,
and the other as a downstream. The counterpart peer will have to be configured in the
same way, only mirrored. In figure 4.14 peer1 will use the upmost RP as upstream,
and the other as downstream. Peer2 will use the lower as upstream, and the other as
downstream.

21

RP

RP

Figure 4.13: Traffic flow of 2 peers with round robin load balancing

21

RP

RP

Figure 4.14: Traffic flow of 2 peers with asymmetrical load balancing
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Results

The prototype and experiments gave us interesting results. First we present some
design choices regarding the prototype, and then some results from the performance
tests.

5.1 Design results

We were able to design and implement a peer-to-peer overlay network system. Through
utilizing the rendezvous point functionality in Tor we are able to build tunnels between
the peers.

5.1.1 Tunnel

We chose to test on the shortest minimal tunnel configuration. This was the tunnel
which allowed the most flexible circuit design. Instead of instrumenting the official
Tor client, as was done in the Blossom implementation, we are probably able to chose
a path and utilize the network to a greater extent.

5.1.2 Bootstrapping

A consequence of choosing the 2 hop rendezvous approach, there existed a need for
deciding which relays to be utilized as rendezvous points. This made it possible to
create a fully decentralized bootstrapping mechanism. As described in the previous
chapter, we were able to create a fully functioning scheme for choosing a relay out of
the consensus. In all our tests we utilize the pairwise bootstrapping mechanism due
to the minimal setup. An exception is when we only test a directly connected tunnel.

5.1.3 Prototype

The software we developed and used is freely available at: https://gitlab.
com/fredfall/rtun/
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5.2 Test results

All experiments were conducted on virtual machines running Debian GNU/Linux
11(Linux 5.10.0-13-amd64). The machines were equipped with 4 x Intel(R) Core(TM)
i5-3230M CPU @ 2.60GHz (1 Socket) and the other 4 x Intel(R) Core(TM) i7-4600U
CPU @ 2.10GHz (1 Socket). Each virtual machine had 1024MB of RAM. Between
the two hypervisors, 1GBe ethernet network cards were installed. The software was
locked at version:

• ping from iputils 20210202
• iperf 3.9 (cJSON 1.7.13)

Local abbreviations

• T1 - Tor 1 - Our configured relay number 1
• T2 - Tor 2 - Our configured relay number 2
• P1 - Peer 1 - A client/peer in the network utilizing our client
• P2 - Peer 2 - A client/peer in the network utilizing our client

5.3 Latency and throughput

For this test, five virtual machines were utilized, as visualized in figure 5.1. Latency
is always stated in milliseconds. A gateway and internet connection is needed to
fetch the consensus and descriptors. This is needed since we depend on the live Tor
network. Standard deviation is abbreviated to Mdev. T1 will be used as a guard node
and T2 as RP. So this setup is the same as the logical figure .

T1P1

GW1

Internet

Hypervisor1 Hypervisor2

P2T2

Figure 5.1: Setup for local tests
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5.3.1 Results from only using directly connected relays

Between the machines

Table 5.1: Latency(ms) between each individual machine

T1-P1 T1-T2 T2-P2

Loss 0 % 0 % 0 %
Minimum 0.247 0.587 0.838

Average 0.460 0.644 1.072

Maximum 0.574 0.688 1.272

Mdev 0.115 0.038 0.194

Table 5.2: Throughput between the machines

T1-P1 T1-T2 T2-P2

From (mbit/s) 2200 934 913

To (mbit/s) 2200 931 911

Peer to peer

Table 5.3: Individual connections between the peers(ms)

P1-P2 P1-P2 P1-T1-T2-P2
(Ovpn) (Ovpn+Tor)

Loss 0 % 0 % 0 %
Minimum 0.338 0.609 5.082

Average 0.526 0.887 5.568

Maximum 0.674 1.245 6.060

Mdev 0.123 0.204 0.314

Table 5.4: Throughput between the peers with different tunnel configuration

P1-P2 P1-P2 P1-T1-T2-P2
(Opvn) (Ovpn+Tor)

From (mbit/s) 934 123 6.49

To (mbit/s) 937 124 7.22
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5.3.2 Test on the live Tor network

We run the live tests in two different configurations. The first is a circuit that only
use national nodes. The test was conducted with machines presumably located in
Norway. We checked in the Relay search catalogue[48], that each node had at least
30mb/s advertised throughput, so that the network connection of the relay does not
choke the Iperf3 test.

For the national setup, these nodes were used:

1. RattyRelay - Norway - C0CBBD17F848C8F9A49104A96DB498013B30F14F
- 85.167.143.214:9001

2. PawNetBlue - Norway - 3A9559477D72F71215850C97FA62A0DA7380964B
- 185.83.214.69:443

For the international setup:

1. Poiuty - Germany - F6740DEABFD5F62612FA025A5079EA72846B1F67 -
116.202.155.223:443

2. Bigman - United Stated - 519351E3D54202933F85E608D88484A5DC4E4EF0
- 130.61.174.201:9001

In the table 5.5, the tests were executed from the perspective of peer1. So "From"
indicates from peer1 to peer2 through the Tor live network.

Table 5.5: Throughput in the live Tor network

National International

From (mbit/s) 6.73 6.20

To (mbit/s) 7.71 7.16

Table 5.6: Latency(ms) in the live Tor network

National International

Loss 0 % 0 %
Minimum 37.947 86.803

Average 41.439 92.946

Maximum 43.540 113.826

Mdev 2.025 10.463

5.4 Three router setup

These tests are conducted from peer1 to the others. The setup is explained in figure
4.10. The setup starts with all 3 peers being directly connected to each other with
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tunnels. After some time, the direct link between peer1 and peer3 is broken, and
at a later time reconnected. This test uses the pairwise rendezvous point selection
algorithm. This makes it somewhat random which relay is used as rendezvous point.

Table 5.7: Initial latency(ms) in the 3 peer setup

peer2 peer3

Loss 0 % 0 %
Minimum 69.868 344.485

Average 74.615 352.226

Maximum 81.955 374.347

Mdev 4.017 11.256

Table 5.8: Throughput between the peers in 3 peer setup

P1-P2 P1-P3 P1-P3
After reconnecting

From (mbit/s) 3.65 3.46 6.00

To (mbit/s) 2.89 2.89 5.00

Table 5.9: Latency(ms) during the tunnel breakdown and layover

P1 to P3

Loss 2.44 %
Minimum 86.138

Average 731.566

Maximum 6257.795

Mdev 1431.369

The link between peer1 and peer3 has around 90ms when the link is terminated.
The latency immediately jumps up to around 250ms, implying that the traffic is now
being routed through peer2. The tunnel is then reconnected. During this reconnection
phase, the latency skyrockets, as seen in table 5.9, with a maximum packet round trip
time of around 6257ms. After some seconds, this instability is eliminated, and the
result in table 5.10 is achieved. This session can be further inspected in appendix B.
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Table 5.10: Latency(ms) after tunnel reconnects

peer2 peer3

Loss 0 % 0 %
Minimum 70.364 153.276

Average 71.403 155.408

Maximum 72.619 158.054

Mdev 0.836 1.819

5.5 Five router setup

All tests are executed from peer5. The setup is as portrayed in figure 4.12.

Table 5.11: Latency(ms)

Peer 3 2 1 4

Count 5 5 5 5

Loss 0 % 0 % 0 % 0 %
Minimum 80.093 312.153 125.213 417.433

Average 82.781 341.566 131.674 427.655

Maximum 85.142 410.085 139.957 440.930

Mdev 1.954 35.189 5.844 9.231

Table 5.12: Throughput in the live Tor network

peer3 2 1 4

From (mbit/s) 2.75 1.70 2.30 1.29

To (mbit/s) 2.05 1.10 1.60 0.77

After 1-3 link is broken
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Table 5.13: Latency(ms)

Peer 3 2 1 4

Loss 0 % 0 % 0 % 0 %
Minimum 78.087 299.598 444.126 519.319

Average 82.818 344.295 569.361 576.861

Maximum 88.021 446.835 704.859 627.693

Mdev 3.198 56.332 91.762 39.355

Table 5.14: Throughput having to route through all peers

3 2 1 4

From (mbit/s) 3.57 1.32 1.20 0.75

To (mbit/s) 2.98 0.93 0.65 0.49

5.6 Load balancing

Table 5.15: Throughput utilizing multiple tunnels between two peers

Round robin Asynchronous
(2 tunnels) (2 tunnels)

From (mbit/s) 5.10 4.77

To (mbit/s) 4.17 3.87

In 5.15, both load balancing techniques utilized two tunnels. When using round robin,
each outgoing packet were transferred on alternating tunnels. When using the other
one, we must use two, since upstream and downstream is separated.
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Discussion

We are now done with the results from the experiment, and we have now gathered
enough data to make some preliminary conclusions.

6.1 General

Some general factors affected all the experiment. Some of these factors are active
choices we make, and others are consequences of how the Tor network is designed.

6.1.1 Testing with unoptimized software

The prototype(https://gitlab.com/fredfall/rtun/) is built using
technology that are not necessarily built for speed. Python as a language is well
known for being slow compared to compiled languages such as C. In addition to
this, we use an old framework, creating an unoptimized platform for high speeds and
large throughput. However, as stated, the goal of this work was to create a proof of
concept. The metrics need to be seen in light of these shortcomings, and only to be
taken as an indication of the possibilities.

By using our own implementation of an onion router, we use software that has
neither been security reviewed or tested by any external researchers. This makes the
software unsuited for real life scenarios that demands any serious privacy require-
ments. Even if the implementation is based on the principles of the original Tor net-
work, many properties regarding router selection is heavily changed, and potentially
creates insecure and short circuits.

6.1.2 Choice of tunnel configuration

We presented multiple tunnel configurations. These were presented ascending by the
hops they could support. The two hop solution was chosen, where the initiator first
connects to a guard node, before the rendezvous point is established at the next relay.
This is the shortest solution available, after the one hop solution was found unfit
without further development. This was due to the limitations in the Tor relay software.
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By enabling a solution which can be realized by only 2 nodes between peers, a
low latency is obtainable. Even though it does not pose as large gain as official Tor
circuits, it might be sufficient for some use cases. If we had chosen a three or four hop
solution, it would be impossible to achieve the same latency with the same available
relays. This is due to the missing ability to configure as few relays in the chain.

We thoroughly investigated the possibility of using only one hop. This, however
yielded little results. As one hop allows for intersection attacks and is potential for
DoS attack on the network nodes, it is not allowed in the Tor software. There are
checks in place to verify whether you are a client or a Tor router. Based on this check
the server denies or allows the establishment of RPs from Tor clients (our peers). One
can avoid this by having the peers act as Tor relays and not as clients, we can achieve
a single hop. This will have a symbiotic effect with the Tor network. We will gain the
ability to have a single hop between our peers. And the Tor network will be expanded
through all the peers in our network that now are relays. In order to realise this, we
need to implement the relay functionality into our clients. This could prove complex,
and it might be more realistic to implement our client into a fork of the official Tor
client, even though this is a lot of work.

The two hop gives us a more flexible and dynamic approach to generating tunnels,
as seen in the two different ways of electing a rendezvous point. This novel way
of choosing how to connect would not be possible if we used a three hop regular
circuit or a four hop. A major drawback with our solution is that it is dependant on
functionality that no software has support for as it requires prototyping. From the
performance results it is evident that more development is needed in order to achieve
the performance of the regular client. Both the three hop and four hop solution utilizes
technology that exists in the Tor network. By doing this, only a little orchestration of
the software is needed to create the tunnel. With one of these it would be enough to
configure and start Tor, and then start OpenVPN.

In the Blossom implementation the authors were able make use of the regular
Tor client. They utilized a control protocol attached to the Tor client. Through this
control protocol they orchestrated the client to the needs of the Blossom network.
We presented such an approach in 4.2.3. As this would set the minimum of nodes to
at least 4, these configurations were not prioritized in our experiments. Unlike our
implementation, their intention was to connect fragmented parts of the Internet. As
mentioned, our designs are more focused on peers than Blossom, and not aimed at
connecting fragments. It is therefore desirable to be able to minimize the number of
relays between peers. It should be mentioned that this is not necessarily a recommen-
ded setup for all applications, since it becomes vulnerable to surveillance.

The four hop solution (4.2.3) would in addition give a significantly longer es-
tablishing time. This proposal was exclusively based on HS functionality. The HS
connection protocol is based both on a query to a HSDir and a tunnel negotiation
through a introduction node. Compared to the chosen distilled rendezvous connec-
tion solution it gains a greater portion of overhead. The 4 hop solution also depended
on every peer to host a hidden service that every peer connected to, which is depend-
ant on a selected number of functioning introduction points. The solution we chose
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in our experiment is able to utilize all the available relays.

6.1.3 Our tunnel protocol implementation

Since our implementation of the Tor protocol is not as extensive as the official one,
some features are missing. Most notably the "SendMe" cell[27], which is used in both
directions for traffic management. This is used to either increase the flow of packets
or limit it. On the initiator side of the connection, this is actually implemented in
TorPy. On the receiver side of the rendezvous tunnel, the "SendMe" functionality is
not implemented. This cell is simply ignored in our prototype. Since we have used
the Rendezvous specification[35] to establish our protocol, it could be difficult to
distinguish our implementation from the original. The exception is the "SendMe"
cell that might give our tunnel an abnormal traffic flow.

The Tor software we developed exposes a SOCKSv5 interface, which is what we
used OpenVPN to communicate on top of. Standard Tor also exposes SOCKS inter-
face, which the Tor Browser uses to relay traffic. It could be possible to execute the
tests directly over this SOCKS interface, and not introduce the encryption layer that
OpenVPN adds. However, the applications themselves require support for sending
over a SOCKS proxy in that case. OpenVPN removes this requirement, by exposing
a native Linux network interface. To shorten the implementation time, OpenVPN was
chosen. It creates a native Linux interface which enables us to utilize native routing
capabilities of Linux. As a consequence of this, the onion skin between peer1 and
peer2 is rendered redundant. In our experiments we only set the onion skin keys to be
zeroes, and let OpenVPN have the live encryption keys for the peers. Further develop-
ment could potentially make OpenVPN superfluous, and only utilize the SOCKSv5
interface and the innermost onion skin.

In the Blossom paper[1] they used privoxy[49] to, as they put it, "SOCKSify"
the network traffic. Privoxy creates a SOCKS session for the regular traffic. This has
some limitations in regard to which protocols it supports, but it functions well for
HTTP traffic. In our implementation we used OpenVPN for this task. This arguably
creates more overhead, and introduces more complexity to the tunnels. However,
this allowed us to create an overlay IP network over the tunnels with ease. Whereas
Privoxy would wrap the traffic in the SOCKS protocol, OpenVPN created a network
interface on each peer, that was reachable across our network. Our OpenVPN was
set up in peer-mode, meaning it only communicated with another client. It is also
possible to configure OpenVPN in a way that allows multiple peers to communicate
over the same instance.

Another interesting concept that has emerged in the later years is the concept of
cryptokey routing. Presented by Donenfield in 2017[50], the concept is to associate
the allowed source IP addresses with a public key of the peer. The convenient con-
sequence of this is that a table with each peer will reveal which encryption key to use
for each peer. This corresponds with our decentralized architecture. In addition, this
will allow a flexible trust model which creates a peer that can self-configure which
peers to trust, and not a central key infrastructure that needs to be trusted.
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6.1.4 Bootstrapping

The two different bootstrapping approaches we present come with their own faults
and advantages. The one we primarily use in our experiments is the pairwise ap-
proach, which scaled sufficiently for our small setup. As mentioned, this require the
reservation for separate tunnels for each peer pair. In a setup with many users, this
approach could produce a lot of unnecessary overhead. An alternative solution to this
could be that when the peer is aware of over 50 peers, a switch is made to the recipient
based allocation, which use time as a multiplexer and not the channel.

6.2 Experiment

6.2.1 Directly connected relays

The first test intended to create a latency and throughput maxima. This maximum
would create a baseline of what the setup was capable of. The intention was also to
eradicate any unforeseen bottlenecks or misconfigurations. As seen in table 5.1, we
have an average latency between virtual machines of 1 milliseconds or less, which is
to be expected between machines that are almost directly connected. It is strange that
T2-P2 connection is the slowest of them all, but this might also be because of dif-
ferences in hardware. The features extracted from Hypervisor 1 is persistently better
than with number 2. However, this is the maximum, and the results from further tests
are expected to drop significantly.

The second test is end-to-end connectivity between the two peers. In three stages,
we test direct IP link, then direct with OpenVPN, and lastly over OpenVPN in com-
bination with our Tor tunnel. All traffic is only travelling locally in our own network,
except for fetching the consensus and descriptors. In table 5.3 and 5.4 we observe the
decline in performance as we add these tunneling protocols. Adding the OpenVPN
tunnel cause a doubling in terms of latency, probably due to the encryption step. An-
other reason could be that ping, which uses the ICMP protocol, is tunneled inside a
TCP protocol. The throughput is also heavily affected by the tunnel. A tenth of the
throughput is achieved. When we add our prototype, we get a latency 5 times as great
as that of OpenVPN alone. Lastly, the throughput is a merely 6,5 mbps. The latency
can be attributed to the fact that now, the traffic is transiting through 2 extra ma-
chines. Meaning it needs to be received by T1, sent from T1, received from T2, and
sent from T2. These extra steps are what the 5 millisconds primarily consist of. The
small throughput can be attributed to implementation and possibly due to hardware.

In the further tests, we should not expect any higher throughput than 6,5mbps.
This is either the maximum for our software, or the onion relays we have configured.

6.2.2 Live two peers on Tor official network

The latency uncovered by the national and international tests were not that surprising,
and shows that the distance the packets travel directly impacts the round trip time. For
the national, the average latency was around 40 milliseconds, which is not that great
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of a leap from the 5 milliseconds when testing locally. The international, where the
packets transited Germany and North-America showed over a doubling in latency.
This is natural, since the distance traveled is much greater.

A surprising result is that the throughput is relatively persistent in the upper ceil-
ing of what the technology is able to deliver. As shown in the initial test, 6.7, is ac-
tually higher than what we were able to achieve using our own hardware. This is an
indication that there exists untapped capacity in our implementation. It is not neces-
sarily limited by the latency and distance between relays. It should be noted that we
selected Tor relays with high capacity in an effort to not choke the Iperf3-tests. This
might not be representative of the network, since the relays usually are automatically
chosen, and there exist several slow relays[32].

The rest of the tests use the automatic selection of rendezvous point and guard
nodes. This will directly impact both latency and throughout. This is however a rep-
resentation of how the network actually operates. This is the same flaw as the official
client possess. If you choose a path in the network, you automatically decrease the
amount of anonymity it gives you. This makes you vulnerable to surveillance attacks
over time.

6.2.3 Three router setup

In an effort to create a simple setup that utilized routing, we created a star shaped
topology. During the breakdown of the peer1-peer3 direct tunnel, the connection was
unstable. In this period we experienced deviations as long as a second on the latency
tests. As noted in the result, it was during reconnection that the packets got delayed
the most. This may be eradicated by having two tunnels functioning at the same time,
switching immediately when a tunnel is disconnected.

An interesting artifact was that when the tunnel got reconnected, the latency was
actually lower than when the experiment started. As seen in table 5.10 it is 150ms,
while it started with around 350ms. The choice of relay have a drastic effect on the
performance.

6.2.4 Five router setup

As an example of a more complex network, we introduce five peers, but unlike the
three peer setup, not all peers are connected to each other. This advanced setup un-
derlines that the network is dynamic, and have very few requirements in terms of
minimal connectivity. Through the static routes defined at each peer, they are able
to route traffic to everybody. As with the previous example, we terminate the peer1-
peer3 link. This is forcing all the traffic to be routed through peer2. As we can see in
table 5.13, both the latency and throughput have decreased in performance. However,
it proves the resilience of the system. It is not dependant on a single link if enough re-
dundancy is established. Each peer can themselves establish extra tunnels, to achieve
the redundancy they need. If you know that you are going to exchange a lot of data,
it could be an idea to establish a tunnel to that peer. Or even better, multiple, as we
will see in 6.2.5.
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6.2.5 Load balancing

Two different load balancing techniques were presented. The first was a round robin
approach, alternating which rendezvous tunnel when sending data. The second tech-
nique utilized two tunnels, using one tunnel for each direction of traffic. Both using
multiple tunnels between the same peers to convey traffic. As seen in the table 5.15,
this did not yield great results compared to using a single tunnel. This is possibly be-
cause we got slow Tor relays. If larger tests were conducted, spanning a large number
of relays, this should be possible to investigate further. The same possibly happened
with the routing tests in the previous table. If you are unlucky with either the guard
or the rendezvous point, throughput can be severely limited.

Another approach to improve the throughput, is to use the approaches described
in the literature study[32]. This may be solved by doing preliminary tests when es-
tablishing a connection. It is possible to start with 3 initial tunnels, and choose the
fastest one of the three after a quick speed test. This is a combination of prioritizing
faster relays, but only on a subset of the entire list, and not the entire directory.

A fortunate side effect of trying to achieve higher throughput through load bal-
ancing, is that traffic is distributed to more routers. This may in turn make traffic
analysis and correlation difficult for a passive surveillance party. If the threat actor
only sees a subset of your traffic, then this can make it difficult to detect what kind
of traffic you produce. The technique is to send upstream traffic to one rendezvous
point and downstream to another. If the threat actor is only able to see one of them,
it actively limits the material that can be analyzed. This effect will be increased for
each relay included in this setup.

6.3 Security

6.3.1 Routing

A untrusted approach to routing algorithms is to implement it in a way which dis-
tributes routing information across all the nodes of the network. If there is absolute
trust in the network and the servers that are connected to it, then this is a possible
solution. If this network is open to untrusted parties, then leaking routing informa-
tion is probably unwanted. This can lead to full insight into the entire network. Since
we only presented the building blocks of the network, we have not tried to solve this
issue. When the namespace is generated, this could be a parameter to declare. If there
is trust between each peer, then all routing information can flow freely. In addition
each peer decides themselves whether they want to route traffic for other users of
the network. In a trusted setup, it would be natural to forward all traffic. But in an
untrusted network, one may force the peer to directly connect to the one they want
to communicate with. Another reason for not forwarding is that the router does not
have a direct route to the intended peer.

In the performance tests, the peers acted as routers when three or more peers were
connected. Utilizing a static routing table to forward traffic to the correct peer. As a
continuation of this, it is possible to create subnets behind these peers, and treat them
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as routers. By doing this, the architecture bears a strong resemblance to the Blossom
network. These subnets can be treated as islands that contain a fragmented set of the
overlay network, which are connected to the overlay network through the peers. In the
Blossom network an important feature was that you could retrieve network services
as a function of where you wanted to exit. This setup supports aforementioned func-
tionality if you enable NAT at the peer. The peers could offer access to the internet,
but translating your client address when escaping the peer-to-peer overlay network.

10.1.0.0/24

1

3 10.3.0.0/24210.2.0.0/24

Figure 6.1: Subnets which are accessible behind each peer

6.3.2 Anonymity

No matter where an eavesdropping adversary is located along the Tor circuit, it will
know one peer of the connection when only using 2 relaying nodes. This is an effect
of our configuration in our experiments. There is no upper limit to how many relays
are placed before the rendezvous point. This can be done both from the rendezvous
establisher and the connector.

Our overlay network is isolated from the internet. All the parties wanting to parti-
cipate in the overlay network need to make use of our specially designed Tor gateway.
The gateway is technically terminated at the localhost of each peer, which ensures that
no clear net traffic can be eavesdropped along the connection.

6.3.3 Anti-Blocking

In a directly connected overlay network, it is possible to block connections between
the peers. Effectively terminating part of the transport links of the overlay network.
By using our network, it is both harder to detect who is communicating with whom,
but it is also impossible to block a single IP address to deter traffic going to the
overlay network. Our systems jump between all available Tor relays, which means
you either need to block all the nodes in the consensus and keep it updated or do
packet inspection and protocol detection as shown in [51].

A way to mitigate this blocking is through the use of Tor Bridges. This exist-
ing technology is already in use where Tor relays are blocked in a large scale. By
not distributing all the bridges to a single entity, it is possible to grant access to the
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network for a majority of the users. Bridges are also possible to use in our setup.
Since the bridges are hidden, and not in the central directory, they must be prepended
to an existing relay chain if they cannot be verified. They will therefore add a hop
independent of the existing planned circuit.

As with HS, the use of rendezvous points enable a natural NAT penetration. This
is due to both peers needing to establish a connection outwards from their private net-
works, to the relay that contains the rendezvous point. This is fortunate for individuals
needing to expose a service to the overlay network, without having to configure their
home network.

6.3.4 Vulnerabilities and limitations

Vulnerability regarding establishing RP

By first probing to see if the RP is established, we differentiate from the regular Tor
rendezvous protocol. This is especially relevant for the pairwise bootstrapping mech-
anism. The intention behind the functionality is that neither of the peers know if a
rendezvous point has already been established. Therefore, there is a need to "probe"
the relay for the cookie that the two have agreed upon. This probe will be possible
for the rendezvous relay to detect. If the Tor project deems this use of the network
unwanted, it can be patched through the detection of this probe. It is therefore pos-
sible to block this second connection attempt after the probe. This connection probe
can happen during a HS service protocol, if the client loses the connection to the
established rendezvous point. In this case, the hidden service will not immediately
establish a rendezvous point when the connection fail. Therefore it is possible for
the relay to deny establishment of a rendezvous point without destroying existing
functionality in Tor.

Predictive rendezvous establishment

If someone is able to figure out the tunnel name, it is possible to establish rendezvous
points just before the peers. Again it is the pairwise mechanism that is vulnerable
to this kind of attack. This would effectively deny the actual peers to establish a
tunnel, since the perpetrator already have reserved it. From the connecting peer this
would be perceived as an impersonation of the peer they thought was at the other end.
However, since OpenVPN is tunneled inside the rendezvous tunnel, it would decline
the certificate and key of the perpetrator. This would thereby only act as a denial of
service (DoS) for the peers.

In our experiments we used the tunnel name "peerXpeerY", which is not secure.
This is easily guessable for an outsider that knows our protocol. Therefor the tun-
nel name should be a secret shared between the two peers. Either out of bounds or
through a central directory server. Diffie-Hellman could also be utilized, as is done in
the original Tor Rendezvous protocol.
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No defaults

In our tests we use two jumps, which is few compared to default Tor. This is only
for test purposes, and is not a recommended setup for all use cases. Many of the
different configurations discussed in this thesis should not be left to the end user. The
different parameters should be further tested and configurations should be created by
the application that utilizes the overlay network. A use case is to transfer a file to
another peer. If there exists no time requirements, it is possible to send it through 6
relays and with a capped bandwidth. Either for the reason of deterring traffic analysis
or simply to avoid a strain on the Tor network.

6.3.5 Block unwanted RP use

The Tor project could identify this use of rendezvous points unwanted, either due to
security issues or unwanted traffic. If this is the case, it could be possible to demand
that you verify yourself as a HS when connecting to a rendezvous point. The estab-
lisher of rendezvous points are users, so it would not be possible to check it at this
end. When the hidden service connects to the rendezvous point, it would be possible
to demand some sort of authentication. However, this could also prove difficult, since
the HS should not at any point disclose which HS it is to the rendezvous point. Any
use of keys associated with an onion address is unwanted. Such a check would also
violate the principle of having out-of-bounds HS not published. Tor cannot do this
without reducing already existing features.

6.3.6 Traffic analysis

Due to the decentralized nature of our architecture, intersection attacks will not be
possible to effectively utilize. With the hidden service attack, this was possible to
initiate since one can personally connect to the service. This creates circuits that are
possible to analyse. In our setup there will exist circuits, but these are only possible
to initiate from the peers that have the common secret. In our experiment, this secret
were derived from the peer names and not a representative example of a secure con-
figuration.

6.4 Optimizations

6.4.1 Organic network expansion

We experienced in the 5 peer setup that both the latency and throughput were limited
when packets needed to be forwarded through 3 peers. In this case, peer5 should
have established a direct connection with peer4. This conclusion may the network
be able to make, and thereby automatically connect to peers it wants to communicate
with. This can for example be because of a need to communicate over prolonged time
or in such a quantity it puts unnecessary strain on the forwarding peers. It may use
other peers during the connection phase, to get a relatively good connection quick,
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and switch when the new tunnel is established. This demand driven tunnel generation
could help lessen the strain on the network. To have multiple routes would also help
build redundancy.

6.4.2 RP jumping during an ongoing session

As we discussed in 4.3.2, we utilize the different relays when waiting for a connection
to the RP. It is also possible to do this while the tunnel is established. Say we want to
change routes every 30 minutes to combat traffic analysis. It could be possible to send
a special packet that is interpreted by the created Tor client. In this packet the next
onion router to be used as RP could be defined, as well as when the switch should
be made. This can enable a seamless transition to the new RP, without the OpenVPN
tunnel detecting it. This would be especially good for recipient base allocation, since
there does not exist a relay plan between the peers.

6.4.3 Circular data flow

It is possible to only send data in one direction in a circular setup of the network, as
described in [20]. This will mitigate traffic analysis through receiving and forwarding
traffic not intended for you in the circle network. A solution like this is not based on
multiple paths, but everyone using the same path. The peers get organized in circle,
and forwards all traffic, no matter who is the recipient, to the peer to its left. This con-
figuration is achieved by defining the peer to the left as your default gateway. If every
peer has this configured, it will be sent in a circle. The last peer must define peer1 as
its default gateway to terminate the circle. Traffic that has you as a destination is not
forwarded. It should be noted that this will produce large delays, depending on the
size and quality of network.

6.4.4 Directory servers

Even though we prioritized decentralized solutions, one could possibly have a cent-
ral coordinating server in the peer-to-peer network. This is particularly helpful to
discover other peers. This server could listen on the same address in all namespaces.
The server either has a logical address or a name for all the routers that are accessible
in the network. Another approach is that this directory server could pair you with the
router you intend to communicate with. This is helpful when contact information has
not been exchanged prior to the first contact. Both of these solutions are not decent-
ralized and are vulnerable to attacks against the directory server which is something
we do not want.
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Conclusion

We managed to realize and test a peer-to-peer overlay network utilizing Tor relays.
By creating specially crafted circuits that utilize the rendezvous functionality in Tor,
we are able to create a fully decentralized bootstrapping mechanism for how the peers
connect to each other. This solution was selected after we investigated multiple ways
of creating tunnels between peers in a peer-to-peer structure. Due to the nature of
rendezvous points, we were able to bootstrap tunnels with few prior parameters.

We also show how data can be forwarded, minimizing the need for a tunnel
between all peers in the network. In addition, multiple tunnels between peers can
be utilized to possibly achieve higher throughput. This flexible use of tunnels and
forwarding can be used to further combat traffic analysis, by utilizing different routes
to the destination. In addition, the decentralized nature of both our solution and the
Tor network provides the network with built-in blocking resistance. With time, all
the relays available in the consensus will be utilized, skipping relays that are blocked
or unavailable. In this fashion, the network avoids having a single point of failure in
both network and available services.

Our implementation did not manage to utilize the relays to their full potential,
with a possible software bottleneck. This is probably due to the implementation, and
not because of limitations in the Tor network. Although the performance degraded
rapidly when introducing long paths in the topology, we presented methods by which
the peers can mitigate this. The performance is directly connected to geographical
location and available bandwidth of the onion relays.
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Future work

It is possible to expand this network in different directions, due to the dynamic inter-
facing capabilities. An interesting direction is to deploy a peer-to-peer application on
top of this network, for example BitTorrent[52], Skype[53] or InterPlanetary file sys-
tem (IPFS)[54]. Utilizing both the tunnels we presented in our paper and utilizing the
routing capabilities of the network. This enables data flow without each peer being
connected to each other.

Due to the limited bandwidth we were able to get from our prototype, it could
be interesting to utilize the official client for better performance. If it is possible
to use their library for tunnel performance and better protocol implementation, this
could yield a better utilization of the Tor network. This could yield a more stable
implementation. Better parsing of Tor cells and error handling is to be expected.

Another direction is to conduct a security review into how a relay chain can be
considered anonymous in a peer-to-peer setup. By combining research into peer-to-
peer network with our prototype, it could be possible to establish a configuration
which is suitable for a decentralized network. In this review, a special focus on an-
onymity should be prioritized. The review can build upon existing research and proofs
associated with the Tor project.
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