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Abstract

This thesis comprises a collection of four case studies, each of which combines
an experimental and theoretical approach. The case studies are largely based
on the same experimental techniques, photoemission spectroscopy, the same
theoretical framework, density functional theory, and photoemission simula-
tion. The first two studies are concerned with the electronic properties of a
unique low-dimensional surface of bismuth and antimony, and in particular
the existence of spin-polarized surface states. These low-dimensional electronic
states are split by the spin-orbit interaction and the broken inversion symmetry
of the surface, resulting in peculiar transport properties which are of interest in
spintronic applications. Such applications include spin-filtering or the genera-
tion of a spin-polarized electric current. In addition, the experimental findings
may shed new light on the validity of topological band theory in the specific
case of topologically protected surface states on materials that are not properly
insulating but exhibit a projected partial band gap. The third study investi-
gates different growth procedures for atomically thin metallic layers, known
as delta-layers, embedded in a single crystal of silicon. Delta-layers have been
found to display interesting electronic properties due to the confined natu-
re of the charge carriers and serve as a testbed for studying two-dimensional
electron gases [1]. Materials that have not been previously used for delta-layer
growth was investigated here, which may result in different properties of the
two-dimensional electron gas. The last of the four studies is a search for corre-
lation effects in nickel beyond the Fermi liquid description. Couplings between
electrons and bosonic modes were identified by analysis of the quasiparticle
self-energy. In particular couplings between electrons and magnons, which is
vital in the understanding of magnon-mediated superconductivity [2]. All re-
sults from this thesis contribute to ongoing research that is planned to continue
after the time of writing, with possibilities of future research prospects also
commented upon.





Sammendrag

Denne avhandlingen består av en samling av fire prosjekter, hvor hver kombine-
rer en eksperimentell og teoretisk fremgangsmåte. Prosjektene er hovedsakelig
basert på de samme eksperimentelle teknikkene, fotoemisjonsspektroskopi, og
det samme teoretiske rammeverket, tetthets-funksjonell teori og fotoemisjons-
imuleringer. De to første prosjektene tar for seg de elektroniske egenskapene
til en unik lavdimensjonal overflate av vismut og antimon, og mer spesifikt om
det eksisterer spinnpolariserte overflatetilstander. Disse lavdimensjonale elekt-
roniske tilstandene er splittet av spinn-banekobling og den brutte inversjons-
ymmetrien på overflaten, noe som fører til ekstraordinære transportegenskaper
som er av interesse for applikasjoner innen spinntronikk. Slike applikasjoner
inkluderer spinnfiltre og produksjon av spinnpolarisert elektrisk strøm. I til-
legg kan de eksperimentelle funnene kaste nytt lys på validiteten til topologisk
båndteori i form av prediksjoner av topologisk beskyttede overflatetilstander
på materialer som ikke er helverdige elektriske isolatorer, men som har et delvis
båndgap. I det tredje prosjektet undersøkes forskjellige vekstforhold for ato-
mært tynne metalliske lag, kjent som deltalag, begravet i en silisiumkrystall.
Deltalag har vist seg å ha interessante elektroniske egenskaper på grunn av
den lokaliserte tilstanden til ladningsbærerne, og fungerer som en arena for å
undersøke todimensjonale elektrongasser [1]. Materialer som ikke tidligere har
vært anvendt i vekst av deltalag har blitt undersøkt her, noe som kan føre
til nye egenskaper for den todimensjonale elektrongassen. Den siste av de fire
prosjektene undersøker korrelasjonseffekter i nikkel utover Fermivæskemodel-
len. Koblinger mellom elektroner og bosoner har blitt identifisert gjennom en
analyse av selvenergien til kvasipartiklene. Mer spesifikt undersøkes interaksjo-
nen mellom elektroner og magnoner, noe som er særdeles viktig i forståelsen av
magnonbasert superledning [2]. Alle resultatene fra denne avhandlingen bidrar
til pågående forskning som er planlagt å fortsette i tiden etter avhandlingen
skrives, og muligheter for fremtidige forskningsprospekter vil bli diskutert.
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1 Introduction

The field of surface science has evolved rapidly in the past ten years due to immense
developments in experimental techniques and equipment. The conditions that one works
with daily in the modern laboratory of solid-state physics is unprecedented; ultra-high
vacuum chambers with pressure lower than that in "empty" space, radiation sources one
billion times brighter than the surface of the sun, and microscopes with atomic resolution.
Experimentalists are now able to probe materials in new ways and the findings continue
surprising the scientific community with complex and colorful phenomenon within the
workings of solid state systems. When looking closely at electrons inside a material one
enters the realm of quantum mechanics due to the smallness of the atomic length scale,
and the realm of relativity due to the near light speed of electrons. Many complicated
system, such as those of strongly correlated quasiparticles, continue to puzzle physicists
for years after their discovery. Examples of such are superconductivity, magnetism and
the Mott insulator.

Quantum leaps in theoretical solid state physics has also led to entirely new fields of
research, such as topological band theory. The key to understanding these systems lies in
experimental evidence and new daring theoretical models, which is important not only
for the fundamental understanding, but for numerous technological applications. One
such application is the emerging field of spintronics, which utilizes the spin of the elec-
tron and it’s interaction with other degrees of freedom. Spintronics has the potential to
reduce power consumption of computer processing by low dissipation spin-currents [3],
and enhanced memory capabilities using nano-sized spin-valves that rely on giant magne-
toresistance [4]. The first two case studies of this thesis investigate two semimetals that
are promising candidates for spintronic applications due to their strong spin-orbit inter-
action. The study also touches upon the field of topology in condensed matter physics,
which is a relatively new field with ongoing development. Topological classifications of
materials have successfully predicted many properties, such as topologically protected
surface states on topological insulators. But it is less known how this theory extends to
non-insulators, and in particular semimetals [5], which are on the limit between being an
insulator and a metal.

Another important development for experimental solid-state physics in recent years is
the improved energy- and momentum-resolution of photoemission spectroscopy, a tech-
nique that allows direct measurement of the electronic band structure. A much more
detailed analysis of the inner workings of the electrons in a material is now possible.
In particular, many-body interactions can be identified, providing important evidence
for the mechanism behind strongly correlated systems such as superconductors. One
such proposed mechanism is magnon-mediated superconductivity, which arises from the
interaction between electrons and magnons [2]. Identifying the nature of these inter-
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actions is an important step towards the ultimate goal of superconductivity, a room
temperature superconductor. Identifying the energy scale and renormalization effects of
electron-magnon couplings in a ferromagnet is the goal of the fourth case study in this
thesis.

Before presenting the results of these four case studies, principles of the experimental
techniques are briefly revised, as well as the underlying theory of the first principles
calculations and renormalization due to correlation effects. As each of the mentioned
techniques alone comprise large fields of research which are still under development, the
emphasis will be on the basic concepts and specific aspects relevant for the case studies.
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2 Theory

Photoemission spectroscopy refers to different experimental techniques utilizing the pho-
toelectric effect, the phenomenon that electrons can be emitted from a material upon
interaction with light. Though discovered in 1887, the photoelectric effect was not well
understood until 1905 [6], when A. Einstein hypothesised that light comes in discrete
energy packages known as photons, marking the birth of quantum mechanics. The pho-
ton energy is proportional to it’s frequency, and thus only photons with frequency above
a certain threshold may emit electrons from a solid. In order to get emission, the elec-
trostatic potential barrier known as the work function, Φ, must be overcome, which is
typically 3-6 eV. The photoelectron will have kinetic energy Ekin = hν − Φ − Eb in
vacuum, here Eb is the binding energy inside the solid. Before leaving the material, the
electron may undergo inelastic scattering with impurities, phonons or other electrons.
Scattering rates are material specific and depend on electron kinetic energy, the result of
scattering is loss of energy for the photoelectron, or it may hinder the emission process all
together. The typical length scale over which an electron travels before being scattered is
known as the inelastic mean free path, λ, which is typically 3−100Å. Since the inelastic
mean free path severely restricts the probing depth of photoemission experiments, such
techniques are inherently surface sensitive.

Figure 2.1: Illustration of photoemitted electrons entering a NanoESCA double hemi-
spherical energy analyser
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2.1 X-Ray Photoemission Spectroscopy

The powerful spectroscopic technique XPS allows for identification of elements in a ma-
terial, characterization of chemical bonds between them, and a measure of surface clean-
liness. As binding energies of core electrons are highly characteristic of the element to
which they belong, one can with high precision determine the composition of elements by
plotting photoelectron intensity versus binding energy. To determine the relative concen-
tration of elements, the photoemission differential cross-section must be known, which is
given by Fermi’s Golden Rule [7]

dσ

dΩ
∝|

∫
ΨN

f (r⃗)ĤΨN
i (r⃗)d3r |2 δ(Ef − Ei − hν). (2.1)

Subscripts i and f indicate the N -electron initial and final states, Ĥ is the Hamiltonian
of the light-matter interaction treated as a small perturbation. In the so-called dipole
approximation the perturbation is given by Ĥ ∝ A⃗0 · r⃗, A0 being the amplitude of the
vector potential. Integrating over all solid angles Ω gives the total scattering cross-section
σ, which has been tabulated for core level electrons of common elements [8].

Substrate

Thin film

Overlayer t2 t1

(a) Ball and stick model of a thin film, two atomic layers thick,
embedded in a substrate seven atomic layers beneath the
surface.

εF

ε
φ

Core

Levels

Valence

Band

hν

υ(ε)

(b) The density of states in a
metal, and emission of a core
level electron into vacuum.

Figure 2.2

Photons in the x-ray spectrum can penetrate several cm in most solids, and thus the
intensity reaching each atomic layer near the surface is approximately equal. The electron
mean free path, however, restricts the photoemitted electrons to originate from the first
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few atomic layers. This allows for accurate measurement of film thickness in the case
of a thin film buried close to the surface inside a clean substrate. An electron excited
at depth z, with emission angle θ to the surface normal, will leave the sample with a
probability p(z) = e−z/(λ cos(θ)) [9]. the total photoemission intensity from a core level in
the substrate at normal emission (θ = 0) is thus given by

Is = σsNs

∫ ∞

t2

e−z/λsdz = σsNsλs e
−t/λs . (2.2)

Here t2 is the distance from the surface to the bottom of the buried thin film as
shown in figure 2.2a. The photoelectron cross-section is denoted σs and Ns is the atomic
density. Similarly, the total photoemission intensity from a core level in the film and in
the overlayer will be

If = σfNf

∫ t2

t1

e−z/λsdz = σfNfλs

(
e−t1/λs − e−t2/λs

)
, (2.3)

Io = σsNs

∫ t1

0
e−z/λsdz = σsNsλs

(
1− e−t1/λs

)
. (2.4)

Adding (2.2) and (2.4) gives the total intensity from the substrate material. Divid-
ing by (2.3) gives the following transcendental equation for the thin film and overlayer
thicknesses

(Is + Io)σfNf

IfσsNs
=

1

e−t1/λs − e(t−t1)/λs
− 1. (2.5)

Where t ≡ t2 − t1 is the thickness of the thin film. In the special case where the thin
film is located on the surface of the substrate t1 = 0 such that (2.5) can be rewritten to
give the celebrated Hill equation [9]

t = λs ln
(
1 +

IfσsNs

IsσfNf

)
. (2.6)

If the thin film is situated below the substrate surface the overlayer thickness can be
found if t is known,

t1 = λsln
[(

(Is + Io)σfNf

IfσsNs
+ 1

)(
et/λs − 1

)]
− t. (2.7)

Thus, both the thickness of the overlayer and the thin film may be found from combin-
ing XPS spectra taken after thin film growth and overlayer growth. The inelastic mean
free path of electrons in different materials has been calculated by Tanuma, Powell and
Penn [10] for a large range of kinetic energies.
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2.2 Angle-Resolved Photoemission Spectroscopy

Undoubtedly one of the most important experimental techniques in condensed matter
physics for probing electronic properties, ARPES gives direct information about the dis-
persion in energy and momentum of occupied electronic states. In the case of systems
with weakly interacting electrons, the dispersion measured with ARPES is that of quasi-
particles, which can be seen as collective excitations of electrons, explained by Landau’s
theory of Fermi liquids [11]. Many-body effects play an important role in many ma-
terials currently under investigation, and may also be probed by ARPES, though the
interpretation of data is often more challenging.

Consider again equation (2.1) for the photoemission differential cross-section. The
overlap integral of the initial and final many-body state may be split up into a one-
electron part, representing the photoemitted electron, multiplied by the (N −1)-electron
part of the remaining Fermi liquid,

⟨ΨN
f |Ĥ|ΨN

i ⟩ = ⟨ϕf (ϵf , k⃗)|Ĥ|ϕi(ϵi, k⃗)⟩ ⟨ΨN−1
f |ΨN−1

i ⟩ . (2.8)

In the dipole approximation, the one-electron matrix element simplifies to M k⃗
i,f =

⟨ϕf (ϵf , k⃗)|A⃗0 · r⃗|ϕi(ϵi, k⃗)⟩. Variations in M k⃗
i,f modulate the angular and radial distribu-

tion of the photoemission intensity, and is known as matrix element effects. Such effects
may complicate the analysis of an ARPES spectrum, as it is often difficult to disentangle.
If accounted for correctly however, the matrix elements contain additional information
about the initial and final states of the single electron wave function. As the matrix
elements are dependent on the photon polarization, given by A⃗0, matrix element effects
can be studied by varying the polarization, or by rotating the sample relative the light
source.

The total ARPES intensity is obtained by summing over all initial and final states,

I(ν, k⃗) ∝
∑
i,f

| M k⃗
i,f |2 | ⟨ΨN−1

f |ΨN−1
i ⟩ |2 δ(k⃗f − k⃗i − G⃗)δ(Ef − Ei − hν), (2.9)

where conservation of energy and momentum is ensured by the two delta-functions, G⃗
is any reciprocal lattice vector connecting k⃗i and k⃗f . The many-body part of equation
(2.9) is the overlap between the initial and final state of the system with the photoelectron
removed. If many-body effects are neglected, |ΨN−1

i ⟩ = ĉ
k⃗
|ΨN

i ⟩ will be an eigenstate of
the unperturbed Hamiltonian of the solid, and the overlap gives a delta-function. The
ARPES spectrum will in this case show a sharp dispersion in energy and momentum
wherever the matrix elements are non-zero. In strongly correlated systems, however, the
initial (N − 1)-particle state after removing an electron will not be an eigenstate of the
unperturbed Hamiltonian. There will be a finite transition probability to an excited state
|ΨN−1

m ⟩ given by

| Cm,i |2=| ⟨ΨN−1
m |ΨN−1

i ⟩ |2=| ⟨ΨN−1
m |ĉ

k⃗
|ΨN

i ⟩ |2 . (2.10)
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Examples of interactions that renormalize the final state are electron-electron, electron-
phonon and electron-magnon coupling. Summing over all excited states m gives the
spectral function

A(ν, k⃗) =
∑
m

| ⟨ΨN−1
m |ĉ

k⃗
|ΨN

i ⟩ |2 δ(hν − Em − Ei). (2.11)

The result of the spectral function on the ARPES intensity is typically three-fold.
The quasiparticle peaks become broader and are shifted to lower binding energy, and the
dispersing bands receive a broad tail at higher binding energy corresponding to the many-
body excitations in the system. Only occupied states contribute to the photoemission
intensity, this can be accounted for by multiplying equation (2.12) with the Fermi-Dirac
distribution, nf [ϵ(k⃗)]. The final form,

I(ν, k⃗) ∝
∑
i,f

| M k⃗
i,f |2 A(ν, k⃗)nf [ϵ(k⃗)] δ(k⃗f − k⃗i − G⃗) (2.12)

includes four terms. Firstly, the matrix elements describe the light-matter interaction
with the geometrical implications of the light polarization, secondly, the spectral function
accounts for conservation of energy and the renormalization of the quasiparticle disper-
sion due to correlation effects, the Fermi-Dirac distribution takes care of the electron
occupation probability, and lastly the conservation of momentum is found in the delta-
function. Again, in the case of negligible many-body interactions, the spectral function
reduces to a simple delta-function in energy.

2.3 Spin-Resolved ARPES

The spin state of electrons in a material is vital in phenomenon such as magnetism,
spin-orbit interaction and correlated systems. In systems where scattering processes are
not highly spin-dependent, electrons remain largely in the original spin state of the solid
upon photoemission. This allows for measurement of the spin-polarization in a material
by a spin polarimeter in the optical path of the photoelectron beam after the energy
filter. This most commonly used technique is by a spin-dependent scattering process of
electrons hitting a single crystal target. The scattering asymmetry emerges from spin-
orbit coupling or by exchange interaction, resulting in different scattering potentials for
electrons with opposite spin.

A spin-dependent scattering process governed by spin-orbit interaction is observed in
low energy electron diffraction on Ir(001) [12]. The scattering rate varies for the two
spin channels as a function of electron kinetic energy. Electron energy can be varied
by retardation of all electrons and subsequent acceleration by applying an electrostatic
potential to the target. This allows for the target to be used as a mirror with a coefficient
of reflectivity R dependent on the electron spin and applied potential, V . The iridium
crystal can be coated with a monolayer of gold to avoid degradation by absorption. A
typical working point energy is 10 eV and only the momentum conserving (0 0) LEED
spot is used to form the spin-polarized image. The spin-polarization can be found as
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P (E, k⃗) =
1

S

I1R2 − I2R1

I1R2 + I2R1
. (2.13)

Where I1 and I2 denote intensities measured with applied crystal voltages V1 and V2,
respectively. The ratio of R1 to R2 can be found by integrating the intensities measured
for an unpolarized sample. The Sherman-function S describes the asymmetry of the
scattering process, and is typically found using a sample with known polarization.

A second commonly used method for spin-filtering is by low energy electron diffraction
on a magnetic target such as Fe(001) [13]. In this case the exchange interaction is the
dominant asymmetric scattering process. The target magnetization is switched along
the easy-axis by electromagnets such that both spin channels can be probed. By using
multiple targets with different magnetization vectors one can probe the full three dimen-
sionality of the spin vector. The polarization for each component is found by equation
2.13, but with I1 and I2 being the intensities for opposite polarization of the target. In-
coming electrons on the target are retarded to the same energy of ∼ 6.3 eV and thus R1

= R2 falls out of the equation. A complication arises when photoemission cross-sections
for opposite spin depend differently on the polarization of incoming photons. This may
be investigated by performing multiple measurements with varying photon polarization.

2.4 Density Functional Theory

The ground state wave function of a solid with Ne electrons and Nn nuclei is found, in
general, by solving the Schrödinger equation with the Hamiltonian

Ĥ = −
Ne∑
j=1

ℏ2

2m
∇2

j +
1

2

Ne∑
i ̸=j

e2

| r⃗i − r⃗j |
−

Ne∑
j=1

Nn∑
i=1

Zie
2

| r⃗j − R⃗i |
+ V̂SO, (2.14)

where V̂SO is the spin-orbit coupling and Zi denotes the charge of nucleus i. The
main challenge in solving this problem lies in the Coulomb repulsion between electron
and in the shear dimensionality of the Hilbert space in which the wave function resides,
which scales exponentially with Ne. Ne is typically on the order of 1023 in macroscopic
materials, meaning a general solution to this problem is never feasible. Bloch’s theorem
of a single particle wave function in a periodic potential vastly simplifies this problem for
crystals, it states that the wave function can always be written on the form

Ψ
n,⃗k

(r⃗) = u
n,⃗k

(r⃗)eik⃗·r⃗. (2.15)

Where un,k(r⃗) has the same periodicity as the potential. Another great step forwards in
solving the electronic structure problem was made in 1964, when Hohenberg and Kohn
showed that any property of an Ne-electron system can be obtained from its ground
state electron density n0(r⃗) [14]. The resulting calculation scheme is known as DFT,
which is an iterative minimization of the system energy, E[n] = ⟨Ψ|Ĥ|Ψ⟩, by varying
n(r⃗) =

∑Ne
j=1 | ϕj(r⃗) |2.
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E[n] = − ℏ2

2m

Ne∑
j=1

⟨ϕj |∇2|ϕj⟩+
1

2

∫
e2

n(r⃗)n(r⃗′)

| r⃗ − r⃗′ |
d3rd3r′

−
Nn∑
i=1

Zie
2

∫
n(r⃗)

| r⃗ − R⃗i |
d3r + ESO[n] + EXC [n]. (2.16)

In the above, the exchange energy coming from the Pauli exclusion principle, and the
correlation energy of the the electron-electron interaction has been put into the exchange-
correlation functional EXC [n]. This is necessary because the first line of equation 2.16
does not take into account the antisymmetric nature of |Ψ⟩, which is in general written as
a Slater determinant. By varying the electron density, one obtains a set of 2Ne coupled
single particle equations known as the Kohn-Sham equations

[
− ℏ2

2m
∇2 + Veff (r⃗)

]
ϕj(r⃗) = ϵjϕj(r⃗), (2.17)

Veff (r⃗) =

∫
en(r⃗′)

| r⃗ − r⃗′ |
d3r′ +

Nn∑
i=1

Zie

| r⃗ − R⃗i |
+ µXC + µSO. (2.18)

Here µSO and µXC are the functional derivatives of the spin-orbit and exchange-
correlation energies. The single particle equation (2.17) is solved for an initial guess of
the effective potential, which can then be iterative updated in (2.18) until convergence
is reached. The exchange-correlation energy is in general an unknown quantity, and
must be approximated. In the local density approximation (LDA), EXC [n] is assumed
to be a function only of the local charge density. One may use the exchange-correlation
functional of a uniform electron gas, which is known exactly. In more sophisticated
models, Quantum Monte Carlo methods are used to obtain a more accurate form of the
exchange-correlation functional. The Kohn-Sham equations also require the choice of
a set of basis functions, for band structure calculations of periodic crystals a common
choice is the complete basis formed by plane waves.

2.5 Free-Electron Final-State Approximation

The dispersion relation of a photo-emitted electron in vacuum is that of a free particle,

k⃗vac =

√
2mϵvac

ℏ2
(sin θm cosϕm, sin θm sinϕm, cos θm) . (2.19)

Where ϵvac is the kinetic energy of the electron in vacuum, and θm, ϕm are the detection
angles in the ARPES experiment. In theoretical calulations, the photoemission process
is often approximated by the three-step model [15] which can be described as follows.
Firstly the electron is excited into an unoccupied final state with hν higher energy,
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secondly it moves to the surface of the crystal undergoing elastic and inelastic scattering.
Lastly it penetrates the surface, leaving the solid as a free electron in vacuum. Inside
and outside the solid k⃗ forms a set of good quantum numbers, but upon leaving the
surface, the translational symmetry of the crystal is broken in the direction normal to
the surface. The result is that the out-of-plane component of the crystal momentum is
not conserved, the electron undergoes refraction. The index of refraction is determined
by the electrostatic potential step at the surface, known as the inner potential V0 [7].

k∥

k⟂

θ

θm
k⟂

vac

k∥
vac=k∥

≠k⟂

Vacuum

Solid

Figure 2.3: Electron undergoes refraction upon passing through the surface of the crystal

In the free-electron final-state approximation the photoelectron inside the solid is ap-
proximated by a free electron wave function with a reference energy shifted by V0 com-
pared to the vacuum potential,

k⃗ =

√
2m(ϵvac + V0)

ℏ2
(sin θ cosϕ, sin θ sinϕ, cos θ) . (2.20)

Since the in-plane component of the momentum is conserved, this gives

ϕm = ϕ, sin θm =

√
ϵvac + V0

ϵvac
sin θ.

The implication is that only electrons with k⊥ >
√

2mV0
ℏ2 may pass through the surface,

the rest is internally reflected. Note also that the zero point energy in vacuum is shifted
by the work function Φ compared to the zero point energy in the solid.
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Figure 2.4: Constant energy surface of bismuth at Eb = 3eV in the extended zone scheme.
The Gamma-point is shown by a red dot, and the red stippled line shows the
surface of the final-state free electron with energy 21.2eV. Photoemission is
allowed only for bound states which coincide with the sphere.

Finally, in order to conserve energy, the initial and final state of the electron within
the solid must differ by the photon energy. Assuming the photon momentum to be
insignificant this gives

ϵi(k⃗, s) = ϵf (k⃗, s). (2.21)

At the surface, the energy of the final state electron in the solid must match that of
the free electron outside, thus

ϵf (k⃗, s) = ϵf (k⃗f + G⃗, s) =
ℏ2k2f
2m

. (2.22)

Where G⃗ is any reciprocal lattice vector connecting k⃗ and k⃗f . This condition is visu-
alized in figure 2.4, which shows a constant energy surface in bismuth at Eb = 3eV. Only
bound states that coincide with the sphere of the final-state free electron will contribute
to the photoemission intensity.

2.6 Band Structure Projection

Given the eigenvalues of an electron in a bulk crystal, one may project onto a crys-
tallographic plane by summing over all out-of-plane momenta within the first Brillouin
zone. In order to account for thermal smearing the intensity should be weighted by the
Fermi-Dirac distribution nf [ϵ(k⃗, σ)], this gives an intensity
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I(E, k⃗∥, s) =
∑
k⊥

nf

(
ϵ(k⃗, s)

)
N

(
ϵ(k⃗, s)− E, σ

)
. (2.23)

The Gaussian distribution

N (x, σ) = exp

(
− x2

2σ2

)
(2.24)

picks out energy eigenvalues σ-close to E. Here k⃗∥ (k⊥) is the crystal momentum
parallel (perpendicular) to the plane. ϵ(k⃗, s) is the energy eigenvalue of the single elec-
tron state, and s ∈ {↓, ↑} the spin state. When simulating ARPES spectra one should
additionally consider the availability of free electron final states in equation 2.23. The
sum then becomes restricted to only include values of k⊥ that match with that of the
final state, as explained in the previous subsection. In the case of surface states the sum
reduces to a single term due to the lack of dispersion in the out-of-plane direction.

2.7 Topology in Band Theory

Topology is a field of mathematics concerned with properties of objects that are con-
served under continuous deformation. Objects in a topological space are distinct if they
cannot be transformed into one another by the allowed operations. Examples of such
operations are stretching, twisting and bending. A classical example of two objects that
are topologically distinct are the torus and the trefoil knot. One cannot be transformed
into the other by continuous transformations without passing through itself. To quantify
the distinction between objects one typically defines a topological invariant, which takes
on equal value for all non-distinct objects and different value for all distinct objects.
One example of a topological invariant is the number of holes through a object in E3,
known as the genus. Similarly, topological band theory aims to classify crystal structures
according to topological invariants. I.e to distinguish between solids that cannot be con-
tinuously deformed into one another. A widely successful application is the topological
classification of insulators. The characteristic of an insulator is the existence of a band
gap in the ground state. This invites the definition of two insulators being topologically
different if they cannot be continuously transformed into one another without closing
the gap. Therefore, if two topologically distinct insulators are connected in space, there
exists metallic surface states in the interface between them. This is a necessity because
translation across the interface can be seen as a continuous transformation. The surface
states are said to be topologically protected, as they cannot be removed without changing
the topology of the bulk band structure in either material. The phenomenon is known as
the bulk-boundary correspondence and has been observed in a range of materials with
strong spin-orbit coupling such as Bi2Se3, Bi2Te3 and Bi1–xSbx [16]. Theoretically, the
simplest example of topologically protected states are the edge states that emerge in the
Haldane model of graphene [17], this model will be described in the following.
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(a) Band structure of graphene
from the tight binding
model in the 1st BZ. The
dispersion near the two
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(c) A TES connects the two
Dirac points at the in-
terface between one sheet
with broken P-symmetry
and another with broken T-
symmetry.

Figure 2.5

The tight binding model of graphene with pz orbital nearest neighbour hopping has a
well known analytical solution. The band structure, shown in figure 2.5a consists of a
conduction and valence band touching in single points at K and K′, known as the Dirac
points. Near these points the band dispersion is linear, ϵ = ±ℏvF |⃗k|, and is described by
the 2D massless Dirac Hamiltonian,

Ĥ =
∑
i=1,2

∑
k

Ψ†
i (k⃗)hi(k⃗)Ψi(k⃗), (2.25)

h1,2(k⃗) = ℏvF (∓kxσ
x + kyσ

y) . (2.26)

Where vF is the Fermi velocity, σi denotes the Pauli matrices. Ψi describe the elec-
trons around the Dirac points, which have two components describing the valence and
conduction bands. This Hamiltonian evidently describes a metal, but an energy gap
can be opened by adding a staggered chemical potential leading to an additional term
∆hP1,2 = VPσ

z in 2.26. The dispersion becomes

ϵ = ±
√
(ℏvF |⃗k|)2 + V 2

P (2.27)

near the Dirac points. The resulting band structure is shown in figure 2.5b. Physically
this corresponds to replacing every second carbon atom by an element with different zero
point energy, it is important to notice that this explicitly breaks inversion (P) symmetry.
In the Haldane model, one instead breaks time reversal (R) symmetry by introducing an
alternating magnetic field, with constant magnitude but opposite sign for neighbouring
atoms. This can be incorporated by adding the term ∆hT1,2 = ∓VTσ

z to 2.26. The
dispersion realtion takes on the same form as that of the staggered potential, but the
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energy terms ∆hT1,2 and ∆hP1,2 have opposite signs in one of the two Dirac points. If one
were to physically join the two materials this energy term must change sign across the
interface, and must thus reach zero. Since ∆h1,2 = 0 is the Hamiltonian of graphene this
ensures the existence of metallic edge states at the interface. An example of how a TES
may connect the two Dirac points is shown in figure 2.5c.

2.8 Topological Semimetals and the Z2 Invariant

The Haldane model requires the breaking of T-symmetry, but a different type of topo-
logically protected boundary states may appear in materials with spin-orbit coupling
which obeys all crystal symmetries. According to Kramer’s theorem, all eigenstates of a
T-invariant system of spin-1/2 particles are at least doubly degenerate [18],

T : ϵ(kx, ky, kz, ↑) = ϵ(−kx,−ky,−kz ↓). (2.28)

Away from the T-invariant momenta of a crystal, states may be split in energy by
spin-orbit coupling if P-symmetry is broken, but at the T-invariant momenta the states
must always connect due to Kramer’s degeneracy. Figures 2.6a and 2.6b show the two
ways boundary states can connect in a band gap between two high symmetry points,
singly or pairwise. In 2005 Kane and Mele showed that the two cases are distinct by the
topological classification of the bulk crystal [19], more specifically, the two cases can be
differentiated by the topological Z2 invariant ν for 2D materials. The model describes
a new phase of matter known as the quantum spin-Hall phase, it has a charge-Hall
conductance of zero and a spin-Hall conductance of 2. 3D materials are characterized
by four Z2 invariants (ν0; ν1ν2ν3). For the case in 2.6a the number of states crossing
the Fermi level is even such that the states may be pushed out of the band gap. This
corresponds to an interface between two materials with ∆ν = 0, i.e the two materials
are not topologically distinct. For the case in 2.6b there is no way to open a band gap,
meaning the states are topologically protected, this corresponds to an interface between
two materials with ∆ν = ±1. The Z2 invariant of a crystal with P-symmetry is given by

(−1)ν =

4∏
a=1

δa, (2.29)

δ(Λa) =
∏
m

ξm(Λa). (2.30)

Where ξm(Λa) = ±1 is the parity eigenvalue at the high symmetry point Λa of occupied
eigenstate m, the Z2 invariant has been calculated for several crystals containing heavy
elements [20]. Similar to insulators, metals may host topological edge states within a
project bulk band gap [21]. Since this requires a complete band gap between two high
symmetry points, this rarely happens in normal metals, but may happen in semimetals
due to the low DOS at the Fermi level.
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(a) Topologically trivial surface states are
pairwise connected at the T-invariant mo-
menta and can therefore be moved away
from the Fermi level.
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(b) Topologically protected surface states
within a bulk band are singly connected
at the T-invariant momenta.

Figure 2.6: The two ways to connect spin-orbit split surface states are distinct by the
Z2-invariant.
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3 Methods

3.1 Sample Preparation

A clean Bi(112) surface was prepared by subjecting a bulk crystal to repeated cycles
of Ar+ ion sputtering at 200-400 eV to remove contaminants from the surface, such as
oxygen and carbon. The sputtering results in a rough non-crystalline surface and was thus
followed by annealing to T ≈ 70 °C for 20 minutes to recover a highly crystalline surface.
The crystallinity of the surface was confirmed using low energy electron diffraction. The
Sb(112) surface was prepared in a similar fashion as bismuth, but Ar+ ion sputtering
energy was reduced to 150-300 eV and annealing temperature increased to T ≈ 240 °C.
The change in preparation parameters is justified by the lower mass and higher melting
point in antimony relative bismuth. The Ni(111) surface was sputtered at 800-1000 eV
and annealed to T ≈ 500 °C for 40 minutes. Clean Si(001) surfaces were prepared by
annealing to T ≈ 500 °C for several hours followed by flashing to T ≈ 950 °C a few times.
The cleanliness of all samples was verified using low energy electron diffraction and X-ray
photoelectron spectroscopy of the relevant core levels.

In-situ antimony deposition was performed by direct current thermal evaporation from
a tantalum foil “candy wrapper” filled with antimony pellets. Aluminium deposition was
performed in a similar manner, but using instead a ceramic crucible to hold the evaporant.
Source calibration was done according to equation 2.6 by depositing onto a clean silicon
wafer. The deposition rate was 0.12Å/min at 5.5W for anitmony and 0.3Å/min at
28.9W for aluminium.

3.2 Momentum Microscope Band Structure Measurements
at NTNU

Band structure measurements of Bi(112), Sb(112) and Ni(111) were performed at the
Norwegian University of Science and Technology using a NanoESCA III aberration
corrected EF-PEEM. The instrument is equipped with a He I photoexcitation source
(hν = 21.22 eV), using pass energy EP = 25 eV and a 1.0mm entrance slit to the energy
filter. Samples were cooled to T ≈ 115K when measuring. With the given settings, the
instrument had an overall energy and momentum resolutions of approximately 100meV
and 0.01 Å−1, respectively. Spin resolution was achieved by subjecting energy-filtered
electrons to an asymmetric spin dependent scattering process on a Ir(001) crystal coated
with gold.

The XPS and LEED was performed in a sample preparation chamber connected to the
NanoESCA by vacuum to avoid exposure to air. The XPS setup includes a XR 50 Al Kα
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X-ray source (hν = 1486.6 eV) and PHOIBOS 150 energy analyzer. The analyzer was
operated at pass energy 40eV and entrance slit 2mm giving an overall energy resultion
of 100meV. LEED was measured using a BDL600 producing electrons of kinetic energy
up to 750 eV.

3.3 High Resolution Band Structure Measurements at
APE-LE

Higher resolution band structure measurements of Bi(112) and Ni(111) were performed
at the Advanced Photoelectric Effect Low Energy (APE-LE) endstation at Elettra Syn-
chrotron, Trieste. APE-LE provides variably polarized light in the energy range 8-120 eV
and energy resolution 30 × 103 E/dE. A VG SCIENTA DA30 analyzer was used with
pass energy 20 eV and entrance slit 0.5mm resulting in an overall energy and angular
resolution of 30meV and 0.2 °, respectively. Samples were prepared in-situ and cooled
to T ≈ 77K whilst measuring.

Spin measurements were performed using two three-dimensional vectorial spin po-
larimeters consisting of magnetic Fe(001) targets operated in the very low energy electron
diffraction (VLEED) regime [22]. From the spin signals detected of the two VLEED spin
detectors it is possible to reconstruct the full three-dimensional spin vector carried by
the emitted photoelectrons.

3.4 X-Ray Photoelectron Spectroscopy at AU-MatLine

High energy resolution XPS measurements of antimony and aluminium δ-layers in Si(001)
were performed at AU-MatLine on ASTRID 2 Synchrotron, Aarhus. MatLine is equipped
with a SCIENTA SES-200 analyzer and SX700 monochromator. Core levels Al 2p, Si
2p, O 1s, Sb 3d and Sb 4d were collected with photon energies 130-650 eV giving energy
resolutions 100-900meV. Valence band measurements were done with photon energies
65-185 eV, giving energy resolutions 70-150meV. Photon energies were calibrated using
the Si 2p core level peak from second order harmonic light. Samples were prepared in-situ
by electron beam heating and checked with LEED.

3.5 Software for Density Functional Theory

First principles calculations of Bi(112), Sb(112) and Ni(111) were performed with the
open-source software package QuantumESPRESSO. A plane-wave basis was used with
fully relativistic ultrasoft pseudopotentials and the local density approximation (LDA)
for the exchange-correlation energy. Bulk calculations were performed self-consistently
on an infinite crystal with cut-off energy 40Ry and convergence threshold 1 × 10−8Ry.
Sampling of k-points was done using a Monkhorst-Pack grid of 12×12×12. Surface states
were calculated using a slab geometry with 24 atomic layers and a separation of 15Å



3. Methods Page 18

between slabs. Sampling of k-points was done using a Monkhorst-Pack grid of 10×10×1.
The cut-off energy was 40Ry and convergence threshold 1× 10−6Ry.
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4 Results

4.1 Spin Texture of Edge States on Bismuth

4.1.1 Electronic Properties of Bismuth

Bismuth was long believed to be the heaviest stable element, but in 2003 researchers at
Institut d’Astrophysique Spatiale were able to measure the slow alpha decay of bismuth-
209 into thallium-205, with an astounding half-life of 1019 years [23]. The heavy atomic
core causes a strong spin-orbit coupling which dramatically influences the electronic band
structure and thus many material properties. Bismuth has been extensively studied for
spintronic applications and used in alloys such as bismuth-chalcogenides for creating
some of the first topological insulators [16]. Many bismuth compounds exhibit interesting
thermoelectric properties and are therefore widely produced for commercial applications.
Belonging to the group V semimetals, it has one of the highest thermal and electrical
resistivities of all metals, even becoming a small gap semiconductor when grown as a
thin film [24].

At atmospheric pressure, bismuth crystallizes in the rhombohedral lattice with space
group R3̄m and two atoms in the basis. The crystal structure can be described as buckled
hexagonal sheets stacked in the (111)-direction and weakly bound together by Van-der-
Waals forces. Within a sheet, the atoms bond covalently, and the crystal therefore
preferentially cleaves along the (111)-plane. Figure 4.1a shows the Fermi surface of bulk
bismuth, which is composed of small electron pockets at the high symmetry L-point and
hole pockets at the T-point. The electron and hole pockets lift the DOS slightly above
zero at the Fermi level, seen also in the integrated DOS in 4.1b. The partially gapped
band structure leaves a large room in k-space for surface states to exist, which requires
an energy gap for all values of out-of-plane momentum. The large influence of spin-orbit
coupling on the band structure is demonstrated in figure 4.1c, where the calculated bands
between several high symmetry points are shown with and without spin-orbit coupling
included in the calculation. When including spin-orbit coupling, the entire electron liquid
is renormalized with an energy shift of more than 1 eV for most values of k⃗. As bands
close to the Fermi level have predominantly p-orbital character, all bands are affected
by the inclusion of spin-orbit interaction. Deeper in the band structure the states derive
from s-orbitals and are therefore not affected. The maximum spin-orbit energy shift is
found between Γ and L, and is around 1.61 eV. It is also apparent that the spin-orbit
interaction reduces the DOS at the Fermi level due to separation of the bands between
T and B, which would otherwise cross the Fermi level.

The electronic structure of several surfaces of bismuth has been extensively studied
by ARPES and computational methods and it is indeed found that many exhibit two-
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(a) The Fermi surface of bulk bismuth
in the first BZ calculated from
DFT including spin-orbit interac-
tion, with high symmetry points
highlighted. Electron pockets are
colored in red and green, hole pock-
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(b) The electronic density of
states of bulk bismuth in-
tegrated over the first BZ,
from DFT with and without
spin-orbit interaction.
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(c) Bulk band structure of bismuth from DFT with and
without spin-orbit interaction. The path is between
high symmetry points marked in figure 4.1a

Figure 4.1
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dimensional states within the partially gapped bulk band structure [25]. This makes
bismuth a prime candidate for investigating low-dimensional electronic systems and sur-
face transport properties. Understanding the surface behavior is important in structures
with large surface area, such as nanomaterials, because the surface generally determines
the chemistry of the material. The strong spin-orbit coupling and T-invariance in bismuth
also renders it an excellent material for studying spin texture in a spin-split non-magnetic
system, highly relevant for spintronic applications [3]. The bulk crystal is P-invariant,
such that

P : ϵ(kx, ky, kz, ↑) = ϵ(−kx,−ky,−kz, ↑) (4.1)

holds for all k⃗. Together with T-invariance, this means that all eigenstates are doubly
degenerate in spin and there are no spin-orbit split bands in the bulk, i.e. all bulk states
have ⟨Ψ| σ⃗ |Ψ⟩ = 0, where σ are the Pauli matrices. There are several ways to break
P-symmetry, for example by substituting some bismuth atoms with a different atomic
species or by adding a dopant to the crystal. However, at the surface of a truncated bulk
crystal, P-symmetry will always be broken, thus any surface states may be spin-split
away from the high symmetry points.

4.1.2 Surface Atomic Structure of Bi(112)

The (112)-surface of bismuth is a particularly low-symmetry vicinal surface that consists
of one-dimensional rows of atoms. These rows are only weakly coupled by Van-der-Waals
forces and thus form quasi-one-dimensional electronic systems that interact weakly. The
(112)-direction is at a 37.4° angle relative to the (111)-direction, so the surface can be seen
as composed of stacked sheets of atoms that are cut at a 37.4° angle. The edges of these
sheets are what make up the one-dimensional rows of the surface. Since P-symmetry is
broken, there exists only one spatial symmetry, a mirror plane normal to the 1D atomic
rows. A ball and stick model of the surface is shown from a side view in figure 4.2a and
from a top view in figure 4.2c. The interatomic spacing within a row is a1 = 4.56Å and
the spacing between rows is a2 = 6.58Å, the ratio is a2

a1
= 1.44. In figure 4.2c the mirror

plane of the truncated bulk crystal is indicated by a stippled line.
From the figures, it is clear that cleaving the crystal in this direction leaves one atom in

the first layer (drawn in orange) with two dangling bonds. For most semiconductors, such
as silicon and germanium, it has been observed that cleaving which leaves dangling bonds
generally leads to reconstructions such that dangling bonds are removed and the surface
remains insulating. For metals, it is less common to see large surface reconstructions, and
the surface electronic properties often resemble that of the bulk. Due to the semimetallic
nature of bismuth, it is difficult to know in advance whether the surface will undergo
reconstruction to reduce the surface energy. In order to address this question, a relaxation
calculation of the (112)-surface was performed using first principles. It was found that
the surface undergoes a minor relaxation, in which the first atomic layer moves down
into the bulk and the second layer moves up. The relaxed surface is shown in figure 4.2b
with the relative change in bond lengths. The relaxation removes the dangling bonds by
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reducing the space between the first and second layer, but the one-dimensional character
remains intact.

Figure 4.2d shows a LEED image of a clean surface taken with electron energy 40 eV,
revealing the 1D character of the surface. The LEED pattern represents the reciprocal
lattice of the surface and the lines seen in the LEED pattern are thus directed perpendic-
ular to the 1D rows of atoms in real space. From the spacing between lines in the LEED
pattern, a1 was estimated to be 4.58± 0.03Å. The appearance of lines instead of spots
in the LEED pattern is typical for quasi-1D surfaces and is likely the result of steps on
the surface with varying spacing. This, however, does not destroy the one-dimensionality
of the surface as the steps are parallel to the atomic rows. Similar relaxations of other
bismuth and antimony surfaces have been reported previously [26].

[111] [112]
a2

(a) Bi(112) side view, atoms colored
according to depth. The stip-
pled lines indicate the separation
between weakly bound sheets of
atoms. Arrows show the high sym-
metry (111)-direction and the sur-
face normal (112).

a2-2% -8%

(b) Relaxed surface structure showing
the slight decrease in bond length
between the first and second atomic
layers, and an increase between the
second and third layer.

a2

a 1

(c) Bi(112) top view with surface lattice
vectors a1 and a2, the color scheme
is the same as in 4.2a. The mirror
plane is drawn as a stippled line.

(d) LEED pattern of Bi(112) at
electron energy 40 eV.

Figure 4.2
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4.1.3 Bi(112) Bulk Band Structure

The surface Brillouin zone (SBZ) was found by projecting the bulk Brillouin zone (BBZ)
onto the (112)-plane, schematically shown in figure 4.3a. This results in a rectangle
with side lengths b1 = 1.378Å−1, b2 = 0.955Å−1 and four high-symmetry points. The
mirror plane of the bulk crystal projects onto a line between Γ̄ and X̄2, which divides
the SBZ in half. When the mirror symmetry is combined with time-reversal symmetry
in the SBZ, one finds that there is, in fact, a second "effective" mirror plane that lies
on the line between Γ̄ and X̄1. However, since the mirror operation flips spin which is
not orthogonal to the mirror plane, states on either side of the mirror plane are only
degenerate when spin is not considered, shown in figure 4.3b. This becomes important
when analyzing the spin texture of surface states and will be explained in more detail
later.

T

X

L

X

X

X

L

T

X1
X2

M

(a) Projection of the bulk Bril-
louin zone of bismuth onto the
(112)-plane, labelled with high-
symmetry points. The mirror
plane goes through Γ̄ and X̄2.

Time-reversaly

x

Mirror plane

(b) A mirror plane along the y-axis
flips a spin pointing in the y-
direction, but does not flip a
spin pointing in the x-direction.
Time-reversal flips spin in both
directions.

Figure 4.3

The band structure of a Bi(112) single crystal was measured with angle-resolved pho-
toemission spectroscopy. Data from this measurement can be visualized as a three-
dimensional data cube with two axes for the in-plane momenta and one axis for the
energy. The data cube with ARPES intensity from the Bi(112) sample is shown in figure
4.4. There are two common ways to display the information from such a data cube. By
slicing horizontally one gets a two-dimensional momentum distribution of the ARPES
intensity at constant energy. By slicing vertically one gets an energy and momentum dis-
tribution along a path in reciprocal space, i.e. E-vs-k. In figure 4.4, the constant energy
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1 1

Figure 4.4: Overview of the ARPES data cube of Bi(112) with a horizontal cut showing
the Fermi surface and a vertical cut showing the dispersion in kx at ky = 0.
Figure courtesy of H. Røst.

surface at the top of the data cube is the Fermi level (Eb = 0 eV). The Fermi surface
has a remarkable one-dimensional character seen as lines parallel to k̂y. An E-vs-k plot
of these one-dimensional states along k̂x shows that the lines split below the Fermi level
into two steep, almost linear, dispersing states. The one-dimensionality was investigated
by integrating the states along ky, and it was found that there is almost no dispersion
in this direction. The spectra were all taken with the NanoESCA III at NTNU, using
photon energy 21.2 eV, whilst cooling the sample to 120K for improved resolution.

Three constant energy surfaces from the same data cube are shown in the right col-
umn of figure 4.5. The surface Brillouin zone and high symmetry points are drawn onto
the ARPES spectra. From these plots it is clear that the high-intensity one-dimensional
states are accompanied by several faint features, resembling crosses, that are not one-
dimensional. As the field of view in the measurement is 4Å−1, it covers several SBZ in
both directions. Surface localized states are expected to repeat with each SBZ, but bulk
states do not, due to the k⊥-dispersion. The one-dimensional line, which stretches from
Γ̄ to X̄2, looks to be periodic with the SBZ, and may therefore be an edge state. The
other features are not periodic with the SBZ, and it is therefore likely that they derive
from the projection of the bulk band structure. At higher binding energy, the measure-
ment shows increasing higher-dimensional features, and the one-dimensional states seem
to vanish. An accurate separation of surface and bulk states is, however, not possible
from the measurement alone because matrix element effects can cause a variation in pho-
toemission intensity between different SBZ even for surface states. To better explain the
measurement, the bulk band structure was calculated from first principles. Geometri-
cally, this calculation corresponds to a spherical cut through reciprocal space, similar to
the depiction in figure 2.4. The result is shown as constant energy surfaces in the left col-
umn of figure 4.5. The intensity is plotted according to 2.23 with σ = 0.1 eV. Availability
of free-electron final states has been taken into account using 2.22. The calculation was
performed with periodic boundary conditions, enforcing an infinite lattice. Surface states
are therefore not included in the calculation. The inner potential was calculated by first
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principles to be V0 = 8.0 eV and the work function was measured to be Φ = 4.35 eV
using ARPES. These values were used in the free-electron final-state approximation.

Several features from the ARPES spectra are reproduced by the calculation, most
noticeably the features marked with arrows. The calculation proves that some of the
states in the measurement originate from the bulk and that many-body interactions
are not strong enough to destroy the Fermi liquid behavior. The one-dimensional lines
are not seen in the calculation, which is expected if these states are surface localized.
The overall agreement between measurement and calculation is judged to be good, but
since there are also clear discrepancies, one is left to conclude that the simple bulk state
projection is not adequate to describe the full ARPES spectrum.

To separate surface and bulk states, high-resolution ARPES measurements were per-
formed at Elettra synchrotron in Italy. By varying the photon energy, one effectively
changes k⊥ of the outgoing electrons. Since only the bulk bands disperse in k⊥, surface
states may be identified as the non-dispersing bands when the photon energy is changed.
The measurement results are presented in figure 4.6 as vertical cuts through the data
cube from Γ̄ to X̄1. Calculation of the bulk bands from first principles has been over-
layed on the ARPES spectra. The calculation parameters, V0 and Φ, are unchanged
from the previous calculation. The ARPES spectra were all taken at T ≈ 77K and the
photon energies are indicated in the figure. At binding energies larger than 200meV,
the bands show a clear dispersion in k⊥, and must thus derive from the bulk. There is
also an excellent agreement of these bands with the calculation for most photon energies.
Projection of the calculated states onto atomic orbitals shows that they derive almost
entirely from the 6p-orbitals, plus a small mixing with the 6s-orbital of 3 ∼ 5%. Dif-
ferent states have a varying contribution from the three 6p-orbitals, and it is therefore
expected that the photoemission intensity should vary with light polarization. This effect
was indeed observed when switching between horizontal and vertical linear polarization,
seen as intensity variation between figure 4.6c (horizontal) and figure 4.6d (vertical). In
addition to the k⊥-dispersing bulk bands, there are one or several bands closer to the
Fermi level that are not reproduced by the calculation. The intensity of these bands
changes with photon energy, but there is no dispersion. Thus both the measurement and
calculation indicate that these are edge states localized on the surface. The edge states
may be described as nearly one-dimensional Dirac crosses, in analogy with the Dirac
cones seen in graphene. The crossing point is located at Γ̄, as is required by the mirror
symmetry, and the dispersion is linear at this point. At photon energies 21 eV and 80 eV,
a crossing point is seen at Eb = 50meV. At photon energy 32 eV, a crossing point is seen
at Eb = 180meV. Upon closer inspection, it is clear that there are two Dirac crosses, and
only the relative intensity of these varies with the photon energy, likely due to matrix
element effects.

4.1.4 Calculation of Bi(112) Edge States

The Dirac crosses close to the Fermi level are confirmed to be edge states by their lack of
k⊥-dispersion and by comparison with bulk calculation. Due to a pronounced spin-orbit
interaction, this naturally raises the question of whether these states are spin-degenerate
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Figure 4.5: Left column shows the calculated Fermi surfaces, right column is the measured
constant energy surfaces at the same binding energies. The surface Brillouin
zone is shown as a stippled rectangle. Some of the features reproduced by
the calculation are indicated by arrows at Eb = 600meV.
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Figure 4.6: ARPES spectra with varying photon energy showing the energy dispersion

between Γ̄ and X̄1. The measurement is overlayed with calculated bands
from DFT. Figure courtesy of A.C. Åsland and the author

or spin-split into non-degenerate bands. Due to the breaking of P-symmetry at the
surface, spin-polarized states are allowed by symmetry operations. There are, however,
restrictions on the spin texture imposed by T- and Mx-symmetry. In figure 4.5 the axes
are defined such that the mirror plane is at kx = 0. It is important to notice that
this mirror plane flips the y- and z-components of spin, but not the x-component. This
implies that

Mx : ϵ(kx, ky, kz, σx, σy, σz) = ϵ(−kx, ky, kz, σx,−σy,−σz). (4.2)

Any spin-polarized edge state must have opposite expectation value of the y- and z-
components of spin on either side of the mirror plane. Moreover, the combination of Mx

with T ensures that any y- and z-components of spin must be the same at ±ky. In other
words, there is an effective mirror plane at ky = 0 that only flips the x-component of
spin,

M
′
y : ϵ(kx, ky, kz, σx, σy, σz) = ϵ(kx,−ky, kz,−σx, σy, σz). (4.3)

The prime indicates that this is not an actual mirror operation, but a combination of
Mx and T. A visualization of this argument is given in figure 4.3b.

Another important restriction on the edge states comes from the topological classifi-
cation of bismuth. As explained previously, the number of Kramer’s degenerate states
crossing the Fermi level between two high symmetry points in the SBZ is given by the Z2

invariants. This claim should hold as long as there exists a projected bulk band gap be-
tween the high symmetry points. The Z2 invariants of bulk bismuth have been calculated
by Fu and Kane to be ν = (0; 000) [20], meaning that bismuth is a so-called topologically
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trivial material. There must therefore be an even number of Fermi level crossings be-
tween any two high symmetry points of the SBZ. More specifically, all edge states must
be pairwise connected, as is the case in figure 2.6a, and therefore no boundary states are
topologically protected. This does not imply that there are no surface states on bismuth,
only that surface states are not topologically protected against external perturbations.
Interesting spin transport properties can still arise on the surface. In order to identify
the details of the surface states, further calculations and measurements are presented
below.

Surface states of Bi(112) were calculated from first principles within a slab geometry,
and expectation values of the spin operators were evaluated. Separation of the surface
localized states from bulk states was done by projecting the entire bulk band structure
onto the (112)-plane to see which states remain within the bulk band gap. Based on
the calculation, several surface states with interesting spin texture are predicted to exist
between high-symmetry points within the band gap. The surface states are shown in
figure 4.7 along a specific path in the SBZ, and have been coloured according to their
spin expectation values. Since there are three components of spin, the same surface
states are shown three times, but with different color schemes. Firstly, notice that the
surface states that exist mainly within a bulk band gap stretch from Γ̄ to X̄1, and from
X̄1 to M̄. The remaining states extend into the bulk and should therefore be termed
surface resonances rather than surface states. It was found from the calculation that
even the surface states that exist fully within a bulk band gap extend unusually far into
the bulk, around 3 − 4 nm. Therefore, a slab thickness of 24 atomic layers or more was
needed for the states on opposite surfaces to not interact strongly, which would lead to
a hybridization. This proved to be a numerical challenge because of the computational
complexity of defining such a large unit cell (48 atoms or more). It is believed that an
even thicker slab would give a higher numerical accuracy, but this was not feasible with
the methods used, and would be more easily analysed by defining a tight binding model.
Such a model was implemented at the time of writing by E. Thingstad, showing similar
characteristics as the surface states shown here, but with slightly different dispersion
relation. These results will be available in an upcoming publication of the project.

Looking at figure 4.7, the largest spin expectation value, of around 95%, is observed
for the y-component of states between Γ̄ and X̄1. This corresponds to the same cut in
reciprocal space as in figure 4.6. Moreover, these calculated states resemble the mea-
sured Dirac crosses in terms of dispersion and binding energy. As was also seen in the
measurement, the dispersion is nearly linear close to Ef and forms a cross at Γ̄. The
spin polarization is mainly in the y-direction, which corresponds to a Rashba-type po-
larization for electrons moving along the 1D atomic rows on the surface. There is also a
weak out-of-plane polarization. The spin polarization changes sign above and below the
crossing point, and it also changes sign between the left and right side of the crossing
point. The cross at lowest binding energy has opposite sign of the y-component of spin
than the cross at higher binding energy. The dispersion is also less steep and is not linear
close to Γ̄, in this sense it deviates from the upper Dirac cross in the measurement. The
surface states described so far have zero spin in the x-direction, this is in fact a symmetry
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(a) Surface localized states colored
according to spin expectation
value in the y-direction. This
corresponds to Rashba type spin-
polarization for electrons moving
along the 1D atomic rows on the
surface. The states between Γ̄ and
X̄1 are noticeably polarized along
this axis, with a maximum polar-
ization of 95%. States between M̄
and X̄2 are also weakly polarized.
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(b) Surface localized states colored
according to spin expectation
value in the z-direction. This
corresponds to out-of-plane spin-
polarization. The states between
M̄ and X̄2 are noticeably polar-
ized along this axis, with a maxi-
mum polarization of around 88%.
States between Γ̄ and X̄1 are also
weakly polarized.

X1 X2M
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(c) Surface localized states colored ac-
cording to spin expectation value
in the x-direction. This corre-
sponds to spin-polarization nor-
mal to the 1D atomic rows on the
surface. The states between X̄1

and M̄ as well as between X̄2 and
Γ̄ are noticeably polarized along
this axis, with a maximum polar-
ization of around 79%.

Figure 4.7: Surface states calculation of Bi(112) from first principles. The gray shaded
area is the bulk continuum of states projected onto the (112)-plane. Surface
localized states are colored according to the spin-polarization in all three
directions.
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protected property because of the M′
y-symmetry explained above. For exactly the same

reason, the surface states stretching from X̄1 to M̄ and X̄2 to Γ̄ have zero spin in the y-
and z-directions. These states may therefore only be polarized in the x-direction, which
is also seen in the calculation. Projection of the edge states from Γ̄ to X̄1 onto atomic
orbitals show that all four states have around 50% overlap with the 6px-orbital and a
50% overlap with the 6pz-orbital, but almost no trace of 6py.

In terms of topology, the behavior of the surface states is as expected for a topologically
trivial material. All the states that exist within a bulk band gap connect pairwise at
the high symmetry points, meaning there is an even number of Fermi level crossings.
But even though the states are not topologically protected, they seem to be a robust
property of the surface, considering the existence of four states over a wide range of k⃗. In
order to assess the robustness of the surface states, different perturbations were applied
to the surface in the calculation to see whether the states would persist. Firstly, fluoride
atoms were placed on the surface of the slab, one for each bismuth atom with dangling
bonds. The idea is that by relaxing the surface structure, the fluoride might be absorbed
and influence or even destroy the surface states. The reason for choosing fluoride is
its high electronegativity making it one of few elements that reacts with bismuth. The
fluoride atoms were found to bond with the top-most bismuth atoms without causing
any significant reconstruction of the bismuth surface. The resulting surface states with
fluoride absorption is shown in figure 4.8b. The surface states of the truncated bulk
without fluoride is shown in figure 4.8a for reference. The dispersion of the surface states
is significantly altered and the spin texture is different, but there is still a considerable
Rashba type splitting. Interestingly, the fluoride absorption causes a breaking of the
mirror symmetry which was seen to result in a small polarization of the x-component
of spin. The edge states were also studied with the geometry of the relaxed surface,
results are shown in figure 4.8c. The relaxation process has only a minor influence on
the dispersion relation and spin texture of the edge states. From this perturbation it is
clear that the edge states are remarkably robust to absorption and reconstructions of the
surface, and cannot be easily removed despite not being topologically protected. One
reason might be because of the large penetration depth of the edge states into the bulk,
which make them less sensitive to changes on the surface.

4.1.5 Measurement of Bi(112) Edge States

The calculations presented above predict the existence of spin-polarized edge states with
a large Rashba-type polarization between Γ̄ and X̄1. The states are predicted to form
two crosses at Γ̄, one at the Fermi level and one slightly above.

The actual spin texture was measured using spin-resolved ARPES and will now be
presented and compared to the calculation. Some of the spectra were taken with the
NanoESCA III at NTNU, and some were taken at the Elettra synchrotron facility. At
NTNU, the measurements were performed with a Ir(100) scattering target able to re-
solve one component of the in-plane spin, and the photon energy was 21.2 eV. These
measurements will be presented as constant energy surfaces colored according to the
spin-polarization, which gives a good overview of the spin texture. Higher resolution
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Figure 4.8: Calculated Edge states of Bi(112) for different surface terminations, colored
according to the y-component of spin.

measurements with variable photon energy were performed at Elettra, using two mag-
netic target spin polarimeters which are able to resolve spin in all three directions. These
measurements will be presented as plots of spin-polarization along momentum dispersive
curves, which gives more quantitative information about the direction and strength of
spin-polarization.

All the measurement results are presented in figure 4.9. Figures 4.9a and 4.9b show
constant energy surfaces with an inset colored according to the spin-polarization in the
y-direction, i.e. the Rashba-component. It is clear that the edge states are strongly
spin-polarized in this direction, which is exactly what the calculation also showed. The
binding energy of figure 4.9a is 120meV, i.e. slightly above the crossing point, and
the binding energy of 4.9b is 720meV, which is below the crossing point. It is clear
from these measurements that the polarization changes sign between the left and right
side of the Dirac cross due to the mirror symmetry, and also changes sign above and
below the crossing point. The spin-polarization is nearly constant along ky, and the
spin texture is qualitatively the same as that of the first principles calculation. Figures
4.9f and 4.9g show higher resolution measurements of the Rashba-component at the
same photon energy, at ky = 0. This measurement confirms the spin-splitting and
more accurately determines the polarization to be 100%±40% at Eb = 0.355 eV. The
Rashba-type polarization is remarkably strong, a feature that has also been observed on
other vicinal surfaces of bismuth [27][28][29]. At photon energy 32 eV, the Dirac cross at
Eb = 180meV is visible. The measured y-component of spin is shown in figures 4.9c, 4.9d
and 4.9e. With a spin-polarization of around 40%±20%, this state is slightly less Rashba-
polarized than the first Dirac cross, but there is also an out-of-plane polarization of
around 10%, though this component could not be resolved confidently. The x-component
of spin was found to be zero for both Dirac crosses, as was also seen in the calculation.

The overall agreement between the measurement and calculation is judged to be good,
but two discrepancies should be commented on. Firstly, the measurement shows a much
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Figure 4.9: Spin-ARPES measurement of the edge states on Bi(112). Figures a and b
show constant energy surfaces and the Rashba-type spin polarization in the
first BZ. The remaining figures show the Rashba-component of the two Dirac
crosses. Figure courtesy of A. C. Åsland.
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more one-dimensional character of the edge states than in the calculation. A possible
explanation is that steps on the surface destroys the periodicity in the y-direction, causing
a weaker coupling of the atomic rows on the surface, such an effect has been observed
on another vicinal surface of bismuth [28]. Secondly, the spin of the two Dirac crosses is
opposite in the calculation, while they are equal in the measurement. This discrepancy
may be explained by an inaccuracy in the calculation caused by the slab not being thick
enough, which is limited by the computational complexity, as explained above.

4.1.6 Conclusion and Possible Spintronic Applications

Spin-integrated and spin-resolved ARPES measurements of Bi(112) were performed with
variable photon energy and photon polarization. Bulk and surface states were calculated
using first principles, including quantification of spin-polarization and orbital charac-
ter. Measurements and calculations were compared to separate bulk and surface states.
The calculated bands, with application of the free-electron final-state approximation,
shows a good agreement with measurements for a wide range of photon energies. One-
dimensional edge states with nearly linear dispersion, the Dirac crosses, were investi-
gated with spin-resolved ARPES. These were found to be highly spin-polarized by a
Rashba-type splitting, showing a quantum spin-Hall-like behavior in a topologically triv-
ial material. Details of the edge states were compared with first principles, which showed
a relatively good agreement. The edge states were found to derive from the 6px- and
6pz-orbitals. Lastly, the edge states robustness was investigated by allowing a surface
relaxation and by fluoride absorption on the surface. The edge state existence was found
to be robust under such perturbations, but the details of the bands were influenced.

Because of the small DOS at Ef of bulk bismuth, room temperature transport prop-
erties of a sufficiently thin Bi(112) crystal will be dominated by the edge states. The
spin-splitting and one-dimensionality could make it a candidate for a spin-filter or spin-
generator, essentially allowing only electrons in a specific spin-state to move along the
atomic rows on the surface. It has been shown that the edge states are a robust property
of Bi(112), and it is likely that the same is true for other vicinal surfaces of bismuth.
Based on first principles calculations, one can tailor the spin-polarization and dispersion
of the edge states by cleaving in certain directions to obtain a spin-filter with the desired
properties. Surface transport properties could also be improved further by replacing
some atoms with antimony, creating the insulator Bi1–xSbx, which would lead to an even
higher surface contribution to the transport properties than in pure bismuth. This also
has the advantage that there is no backscattering of the edge states into bulk states,
allowing low-dissipation transport.

4.2 Topological Edge States on Antimony

4.2.1 Electronic Properties of Antimony

Situated one row above bismuth in the periodic table, antimony has the same rhombohe-
dral lattice, but with a 4.3% shorter bond length. The crystal structure can therefore also
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be described as buckled hexagonal sheets stacked in the (111)-direction, weakly bound
together by Van-der-Waals forces. Antimony has been widely used as an n-type dopant
in silicon since the 1990s and has recently gained attention within microelectronics, e.g
for phase-change memory [30]. In addition, antimony was used in many of the first
topological insulators due to its interesting topological nature [31].

Because of its low DOS at the Fermi level, antimony is a poor electrical conductor and
therefore commonly termed a semimetal. The DOS is shown in figure 4.10b, calculated
here from first principles with and without spin-orbit coupling. With atomic number 51,
antimony exhibits a much weaker spin-orbit coupling than bismuth, which has atomic
number 83, but the electronic structure is otherwise similar in many ways. The con-
duction electrons derive mainly from s- and p-orbitals, and just like in bismuth there is
an electron pocket stretching down and a hole pocket stretching up to the Fermi level.
This is seen in the Fermi surface plot in figure 4.10a. The reduced strength of spin-orbit
coupling in antimony compared to bismuth results in antimony exhibiting a somewhat
larger DOS at the Fermi level. This is because the spin-orbit coupling causes a decrease
in the DOS at Ef which is smaller in antimony, and in turn makes antimony a slightly
better room temperature conductor than bismuth. One important consequence for this
case study is that it leaves less room in k-space for the existence of surface states. Figure
4.10c shows the bulk band structure along several high-symmetry directions with and
without spin-orbit coupling. The electron pockets are located at the L-point and hole
pockets between Γ and F. States close to the Fermi level derive mainly from p-orbitals
and experience a maximum spin-orbit energy shift between Γ and L of around 0.38 eV,
i.e. less than half of that seen in bismuth. States at binding energy higher than 5 eV
derive from the s-orbital and are not affected by spin-orbit coupling. Due to P- and
T-symmetry, all bulk states are two-fold degenerate.

4.2.2 Surface Structure of Sb(112) and Topological Classification

The atomic surface structure of the Sb(112) surface is similar to Bi(112), shown in figure
4.2a, but with a slightly smaller unit cell. The interatomic spacing within the 1D rows
of atoms is a1 = 4.39Å and the spacing between rows is a2 = 6.37Å, the ratio is
a2
a1

= 1.45. Figure 4.12a shows a LEED image of clean Sb(112) taken with electron
energy 17.9 eV. The ratio of the spacing between LEED spots is 1.48, i.e. only ∼ 2%
larger than the theoretical value, showing that the surface is atomically clean and periodic
in both directions. This is in contrast to Bi(112), which showed an aperiodicity in one
direction. LEED spots matching the periodicity of the truncated bulk structure indicate
that there is no significant reconstruction of the surface.

The topological Z2-invariants of antimony and bismuth, determined by the parity
eigenvalues at the eight high-symmetry points according to equation 2.30, are shown in
table 4.1. All four Z2-invariants of bismuth are zero, making it a topologically trivial
material. For antimony, however, all four Z2-invariants are 1 due to the parity eigenvalue
at L of the highest occupied band ξh(L) = 1 [31]. Antimony is thus classified as a strong
topological semimetal. The surface parity eigenvalues at all four TRIM of the SBZ are
given by the product of the projected bulk eigenvalues. Projecting onto the (112)-surface
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the high symmetry points marked in figure 4.10a.

Figure 4.10
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δ(Γ) δ(L) δ(T ) δ(X) (ν0; ν1ν2ν3)

Bismuth -1 -1 -1 -1 (0;000)
Antimony -1 +1 -1 -1 (1;111)

Table 4.1: Product of the parity eigenvalues at each TRIM according to equation 2.30
and the Z2-invariants of bismuth and antimony, taken from [31].

δ(Γ̄)(ΓX) δ(X̄1)(XX) δ(M̄)(LL) δ(X̄2)(LT )

Bismuth +1 +1 +1 +1
Antimony +1 +1 +1 -1

Table 4.2: Surface parity eigenvalues of bismuth and antimony at each surface TRIM
given by the bulk eigenvalues in table 4.1. The bulk TRIM that project onto
the surface are written in parenthesis.

δ(T)=-1

δ(X2)=-1

δ(L)=+1

δ(T)=-1

δ(L)=+1

δ(X)=-1

δ(X)=-1

δ(X)=-1

δ(X)=-1

δ(  )=+1

δ(M)=+1

δ(X1)=+1

Figure 4.11: Projection of the bulk BZ of antimony onto the (112)-plane with bulk and
surface parity eigenvalues at the TRIM.
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(a) LEED image of clean
Sb(112) with electron en-
ergy 17.9 eV.
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(b) ARPES spectra of Sb(112) from the NanoESCA III at NTNU,
using photon energy 21.2 eV. The right figure shows an E-vs-
k plot at ky = 0.

Figure 4.12

results in the surface parity eigenvalues in table 4.2, the projection is shown schematically
in figure 4.11. For Bi(112), all surface TRIM have the same parity eigenvalue due to the
topologically trivial nature, but for Sb(112), the single positive bulk eigenvalue at L
causes X̄2 to have opposite parity of the other three surface TRIM. Sb(112) is therefore
expected to have at least one topologically protected surface state between X̄2 and any
other TRIM given that there is a projected bulk band gap, guaranteeing an odd number
of Fermi level crossings. Between any other TRIM there will be an even number of
Fermi level crossings because all remaining TRIM have equal parity. The existence of
a projected band gap is important for this argument to hold since this is a necessary
condition for the existence of surface states.

4.2.3 Sb(112) Bulk Band Structure

Projection of the BBZ onto the (112)-plane results in a rectangular SBZ similar to that
of Bi(112), but with side lengths b1 = 1.43Å−1 and b2 = 0.99Å−1. The crystal has
the same symmetries as Bi(112), including the Mx mirror plane through Γ̄ and X̄2.
This implies that any surface states must be degenerate, but with opposite y- and z-
components of spin for ±kx. Combined with T-symmetry, this also means that surface
states are degenerate for ±ky, but with opposite x-component of spin. A more detailed
explanation of these symmetries was given in section 4.1.4.

ARPES spectra of Sb(112) will be presented in the following section, all of which
were obtained using the NanoESCA at NTNU. The sample was kept at 120K during
measurement for improved signal to noise ratio. Cooling was particularly important for
this sample due to the low Debye temperature of antimony of 200K, resulting in a large
decrease in thermal broadening from phonon scattering upon cooling. In order to better
understand the nature of the measured bands, DFT calculations of the band structure
were performed and availability of final states taken into account using the free-electron
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Figure 4.13: The left figure shows the band structure at ky = 0 with the calculation
overlayed in blue. The inset to the right shows a close-up of the states near
Γ̄ with the MDC at Eb = 0.58 eV peak fitted by three Lorentzian curves.

final-state approximation. Intensity was plotted according to 2.23, with σ = 0.1 eV,
Φ = 4.5 eV (measured) and V0 = 5.75 eV (calculated). The data cube of the measurement
is shown in figure 4.12b along with an E-vs-k plot at ky = 0. Interestingly, the Fermi
surface shows a highly 1D character similar to the Fermi surface of Bi(112). The one-
dimensionality is seen as lines through Γ̄ and X̄2 that have very little dispersion in ky.
The lines are most clearly seen in the first SBZ, in the second SBZ they appear to overlap
with higher-dimensional features. The spacing between these lines was measured to be
∼ 1.46Å−1, which matches well with the SBZ periodicity, indicating that these features
are likely due to surface states. In addition to the high intensity line through the center
of the SBZ, there are two parallel, fainter lines halfway between Γ̄ and X̄1. Due to the
overlapping bulk features in the second SBZ it is unclear whether these are also periodic
with the SBZ. In order to better understand the nature of these states, the ARPES
spectrum through ky = 0 was overlayed with bulk bands calculated from first principles,
the result is shown to the left in figure 4.13. The overall agreement between measurement
and calculation is judged to be good. Evidently most of the ARPES intensity derives from
bulk bands, but certain discrepancies indicate the existence of surface localized states. In
the second SBZ, i.e. at |kx| > 1Å−1, the calculated bands almost perfectly reproduce the
high intensity features for Eb > 0.1 eV, but the faint feature closer to Γ̄ is not present.
In the first SBZ, the calculation explains the bands appearing at Eb > 0.6 eV, but at
lower binding energy there is noticeable discrepancy. This is more easily seen to right in
figure 4.13, showing a close-up of the ARPES spectrum in this region. The momentum
dispersive curve (MDC) at 0.58 eV has been peak-fitted with three Lorentzian curves
centered at kx = −0.33Å−1, 0.02Å−1 and 0.34Å−1. The two peaks away from Γ̄ may
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derive from the bulk, as these are also seen in the calculation, but the state emerging in
the center, which stretches from Eb = 0.6 eV to the Fermi level, is not explained by the
calculation and is therefore likely a surface state. It shows a sharp dispersion up to the
Fermi level indicative of a spin-orbit split band, but higher quality ARPES is needed to
comment on the details of this band. Further comparison between the measurement and
calculation is shown in figure 4.14 as constant energy surfaces at several binding energies.
The agreement is judged to be good apart from the one-dimensional features, showing
that the bulk bands are well described by Fermi liquid theory and that the photoemission
process is within the framework of the three-step model.

4.2.4 Sb(112) Surface States Calculation

Surface states of Sb(112) were calculated from first principles within a slab geometry,
and expectation values of the spin operators were evaluated. Separation of the surface
localized states from bulk states was done by projecting the entire bulk band structure
onto the (112)-plane to see which states remain within the bulk band gap. Based on
the calculation, several surface states with interesting spin-texture are predicted to exist
between high-symmetry points within the projected bulk band gap. The surface states
are shown in figure 4.15 along a path between high-symmetry points in the SBZ, which
is the same path as for Bi(112). The surface states have been coloured according to their
spin expectation values. The projected bulk band gap of Sb(112) is evidently smaller
than that of Bi(112), leaving less room in k-space for surface states. As explained above,
the only surface TRIM with odd parity is X̄2, thus all surface states connected to this
point should be topologically protected with an odd number of Fermi level crossings.
From X̄2 to Γ̄ there is no projected band gap and states seen here are therefore surface
resonances and not described by topological band theory. From M̄ to X̄2 there is,
however, a projected band gap. As is seen in figure 4.15, it holds a single spin-split
surface state that crosses the Fermi level only once. This topological surface state is
polarized only in the y- and z-directions, as polarization in the x-direction is forbidden
by M′

y-symmetry. With a 50% out-of-plane-polarization and 50% Rashba-polarization,
the spins point along the 1D states with a 45° angle to the surface. The topological surface
state can not be clearly made out in the ARPES spectra because of the high background
intensity in this region, thus higher quality measurements are needed in order to confirm
its existence. In addition to the topological surface state there are topologically trivial
surface states in the band gap between Γ̄ to X̄1 and between X̄1 to M̄. These states are
also highly spin-polarized, most noticeably the states close to Γ̄, which exhibit a near
100% Rashba-polarization. In terms of binding energy and dispersion they match well
with the edge states seen in the ARPES spectra of figure 4.13. Both in the measurement
and calculation they appear to disperse steeply towards high binding energy away from
Γ̄ within the energy range Eb = 0.1 eV ∼ 0.4 eV.

It is interestingly that the measurement shows surface localized states that are much
more one-dimensional than what is expected from the calculation, as this was also the
case for Bi(112). One possible explanation is that this behavior arises from many-body
effects, which are not accounted for in the DFT calculation. Both bismuth and antimony
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Figure 4.14: Left column shows two calculated constant energy surfaces. Right column
is the measured surfaces at the same binding energies. The surface Brillouin
zone is shown as a stippled rectangle. Some of the features that are repro-
duced by the calculation are indicated by arrows.
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(a) States colored according to the
y-component of spin. This cor-
responds to Rashba type spin-
polarization. The states between
Γ̄ and X̄2 are noticeably polarized
along this axis, with a maximum
polarization of 95%. States be-
tween M̄ and X̄2 are also weakly
polarized.
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(b) States colored according to the
z-component of spin. This cor-
responds to spin-orbit type spin-
polarization. The states between
M̄ and X̄2 are noticeably polar-
ized along this axis, with a maxi-
mum polarization of 80%. States
between Γ̄ and X̄2 are also weakly
polarized in this direction.
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(c) States colored according to the x-
component of spin. This corre-
sponds to spin-polarization along
the 1D edge states seen in the
ARPES spectra. The states be-
tween X̄1 and M̄ as well as be-
tween X̄2 and Γ̄ are noticeably
polarized along this axis, with a
maximum polarization of 72%.

Figure 4.15: Surface states of Sb(112) calculated from first principles. The gray shaded
area is the bulk continuum of states projected onto the (112)-plane. Surface
localized states are colored according to the spin-polarization in all three
directions.
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are in fact predicted to host non-negligible electron-electron correlations due to the low
DOS at the Fermi level. In most metals the screening of electric charge by redistribution
of electrons upon an external potential causes a weakening of the Coulomb repulsion
between electrons. One may thus treat the Coulomb interaction as a perturbation to
the non-interacting electron gas. The screening length of a material, which is the typical
length scale over which electric fields are screened, from first order perturbation theory
is

λ =
1√

2κν(ϵF )
. (4.4)

Where κ = e2

4πϵ0
, ϵ0 is the vacuum permittivity and ν(ϵF ) is the DOS at the Fermi level.

As bismuth and antimony have low DOS at ϵF , one expects the screening length to be
large, meaning that electron interactions become long-ranged and thus more important.
This in term may cause a large renormalization of the quasiparticle energy levels or
destroy the quasiparticle picture all together. Other many-body effects such as electron-
phonon coupling are also present, but due to the low DOS at Ef , the electron-electron
repulsion is likely the dominating effect. This is one possible explanation that may
account for the unusually one-dimensional character of the surface states, but further
research is needed in order to investigate this.

4.2.5 Conclusion and Outlook

The band structure of Sb(112) was measured with ARPES and compared with first
principles calculations of the bulk and surface states. The measured bulk states show
a good agreement with the calculation, but certain discrepancies indicate that there
are additional states belonging to the surface. The measured surface states show a
remarkable 1D character, similar to that seen in Bi(112). Possible explanations for
the one-dimensionality are presented, including correlation effects from electron-electron
interactions or from steps in the atomic structure of the surface.

Spin-resolved calculations predict the existence of highly spin-polarized surface states
that match qualitatively with the surface states in the measurement. In addition, the
calculations predict the existence of a topologically protected surface state within the
bulk band gap between M̄ to X̄2 with a Rashba-type and out-of-plane spin-polarization.

In order to confirm or disprove the results from the calculation, it is necessary with
a higher resolution spin-resolved measurement of the band structure. This is planned
to take place in an upcoming beamtime at the Elettra synchrotron facility shortly after
the time of writing. Hopefully, this will allow the detection of a topological surface
state and reveal the spin texture of the 1D states. Investigating further the existence
of a topological surface state will be particularly interesting because this would provide
evidence in topological band theory for semimetals.
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4.3 δ-layers in Silicon

4.3.1 2DEG and Si(001) Surface Properties

Two-dimensional electron gases (2DEG) embedded in crystals have been widely studied
by theorists and experimentalists as a way of simulating 2D quantum systems. Direct
measurement of the electronic band structure of a 2DEG was demonstrated in 2013 by
growing a 1/4 monolayer of phosphorus on Si(001) and burying this structure under several
layers of silicon [1][32]. The heavy n-type doping pushes the Fermi level above the silicon
conduction band minimum resulting in a macroscopic filling which is highly localized to
the phosphorus sheet. 2D sheets like these are termed δ-layers due to their large surface
to thickness ratio. They have been proposed for quantum computation applications [33]
and it is therefore of technological interest to understand the physics of these systems.
Several types of materials have been used for growing δ-layers in silicon, such as B [34]
and NiSi2 [35], which result in different properties of the confined electrons. The following
sections assess the possibility of growing δ-layers in Si(001) using antimony or aluminium,
which have not previously been reported. Aluminium is a commonly used p-type dopant
in bulk silicon, and is an especially interesting candidate as there are no other reported
band structure measurements of p-doped δ-layers. Antimony is a commonly used n-type
dopant in silicon due to it’s small diffusion coefficient, which also renders it promising as
a δ-layer material. In addition, the large SOC in antimony might allow for the study of
spin-splitting in a 2DEG.

Silicon crystallizes in the face-centered cubic (fcc) lattice with two atoms in the basis,
the so-called diamond lattice. Cleaving along the (001)-surface leaves each of the topmost
atoms with two dangling bonds which is energetically unfavourable. The surface therefore
prefers to undergo a (2×1) reconstruction involving a dimerization of neighboring atoms
in the topmost layer. Since silicon easily oxidizes, this reconstruction is however only seen
for atomically clean surfaces in vacuum. Figure 4.16 shows a XPS spectrum of Si(001)
that has been cleaned in vacuum by flash annealing to T ≈ 950 °C. The narrow scan of
Si2p in the inset shows that the spectrum is fitted by three Voigt curves on a Shirley
background, two components are from the spin-orbit splitting in bulk silicon and one is
from the silicon on the surface, which has binding energy ∼ 1 eV lower than the bulk.
Ball and stick figures display the crystal structure of the truncated bulk structure and
the reconstructed surface, calculated here from first principles by a relaxation process.

4.3.2 Growth of Antimony δ-layers

Antimony was grown as a thin film at room temperature on clean Si(001)-(2×1) by direct
current thermal evaporation with a deposition rate of ∼ 0.12Å/min. The XPS spectra
of Si2p and Sb3d after growth are shown in figure 4.17. The thickness was estimated,
by equation 2.6, to be ∼ 1.9Å, which is slightly less than a monolayer. It is clear from
the Si2p scan that the surface component has now vanished and only the spin-split bulk
components are left, this is caused by the overlayer of antimony which destroys the (2×1)
surface reconstruction. LEED images show that the antimony monolayer has no ordered
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Figure 4.16: XPS spectrum of clean Si(001) at photon energy 550 eV with emission peaks
labelled. The inset to the left shows a ball and stick model of the surface
before and after reconstruction. The inset to the right shows a peak fitted
narrow scan of Si2p at photon energy 160 eV.

structure directly after deposition and annealing is therefore required. It was found that
flash annealing to 350 °C was enough to create an ordered overlayer matching with the
lattice spacing of unreconstructed Si(001), the LEED patterns are shown in figure 4.18.
There are no additional XPS peaks observed in the silicon and antimony core levels,
indicating only weak bonding between them, which may cause antimony to evaporate
even at moderate annealing temperatures. In order to asses the temperature stability of
the overlayer, the sample was heated in steps of 50 °C from 250 °C to 600 °C for 10min
at each step. The inset in the middle of figure 4.17 shows the integrated intensity of
the Si2p and Sb3d peaks as a function of annealing temperature. It is clear that at
600 °C, which is only 30 °C below it’s melting point, antimony quickly disappears from
the surface. Because antimony has such a small diffusion coefficient in silicon it is believed
that it tends to evaporate at this temperature. At temperatures around 250 − 350 °C
antimony evaporates much slower, it is thus safe to flash-anneal to this temperature
without destroying the overlayer.

Samples with structured antimony thin-films of thickness ∼ 2.0Å were buried by de-
positing silicon via direct current thermal evaporation with a deposition rate of 0.4Å/min.
Two samples were grown, with silicon overlayer thicknesses 3.6Å and 8.2Å. The surfaces
were initially found by LEED to be amorphous, but after flash-annealing to 350 °C the
(1×1) pattern of Si(001) reappeared. The ratio of integrated intensity between Si2p and
Sb3d remained unchanged during the annealing, indicating that the antimony concen-
tration remains constant. Given the evidence against diffusion of antimony in silicon, it
is likely that the buried layer remains intact during annealing, but the structure of the
buried layer can not be probed with the current experimental setup. The existence of
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Figure 4.17: XPS spectra from Si(001) with a 1.9Å overlayer of antimony, Si2p and Sb3d
at photon energy 160 eV and 590 eV, respectively. The peaks are fitted
to asymmetric curves with spin-orbit splitting 0.6 eV for Si2p and 9.4 eV
for Sb3d. Photon energies are chosen such that the kinetic energy of the
outgoing electrons are equal for both core levels meaning also the effective
attenuation length λ = 2.97Å is constant. The inset in the middle shows the
integrated intensities of these peaks as a function of annealing temperature.

Figure 4.18: LEED pattern of Si(001) at 60.0 eV before and after antimony deposition.
Before deposition (left), the (2×1) spots indicate an atomically clean recon-
structed surface. After deposition the pattern turns amorphous due to the
unstructured overlayer (not shown). Subsequent annealing to 350 °C creates
a structured overlayer with a periodicity matching that of Si(001)-(1×1),
shown in the right figure.
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additional states introduced by the δ-layer was investigated by scanning the valence band
with XPS over a range of photon energies. As the photon energy determines kz of the
outgoing electrons, the scan shown in figure 4.19 essentially traces a path in reciprocal
space normal to the surface. Photon energies in the range 65 ∼ 185 eV correspond to a
path in reciprocal space Γ → X → Γ. The analyzer acceptance angle of the incoming
electrons was ±3°, corresponding to a maximum in-plane momentum of ±0.36Å−1 at
185 eV. The valence band indicated with a green line derives from silicon, which is not
filled to the band maximum because of the bulk p-type doping. The sharply dispersing
band at kz ≈ −0.5Å−1 is the Si2p core level from the second order light of the syn-
chrotron. Unfortunately, there are no apparent bands above the valence band of silicon
and thus no bands that can be attributed to the antimony δ-layer. One reason may be
that the measurement only probes a limited region of reciprocal space due to the lack of
angle resolution. The project will therefore be repeated at a later point in the NanoESCA
setup at NTNU, which allows for band structure measurements at a larger range of kx
and ky. A second reason may be that the silicon substrate is too heavily p-doped. Since
antimony acts as a n-dopant in silicon, the conduction band is expected to shift below
the Fermi level, but if the silicon is too heavily doped from before, this will counteract
the shift.

X
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1.0

2.0

-2.0

Binding Energy [eV]

Perpendicular momentum kz [Å-1]0.0-0.5-1.0 0.5 1.0

Figure 4.19: Band structure measurement of Si(001) with a 1.9Å thick antimony δ-layer
buried with 3.6Å silicon. The green line is meant as a guide for the eye. X
has been defined as the value of kz = 0Å−1. The Fermi level was found by
peak fitting to a Fermi-Dirac distribution convoluted with a Gaussian for
instrumental broadening.
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Figure 4.20: XPS spectra from Si(001) with a 0.83Å overlayer of aluminium at photon
energy 130 eV. The peaks are fitted to asymmetric curves with spin-orbit
splitting 0.42 eV. The inset in the top left corner shows the LEED pattern
after annealing to 350 °C, it is similar to that of Si(001)-(1×1).

4.3.3 Growth of Aluminium δ-layers

Aluminium was grown as a thin film at room temperature on a clean Si(001)-(2×1)
by direct current thermal evaporation with a deposition rate of ∼ 0.3Å/min. An XPS
spectrum of Al2p is shown in figure 4.20, two curves belong to the spin-split Al-Al bonds
and the third component at ∼1.0 eV larger binding energy is attributed to aluminium
oxide. The oxygen was however found to bond exclusively to aluminium and not with
the silicon substrate. It could not be removed from the deposition even after 24 hours
of degassing the evaporator and depositing at p < 1 × 10−9 mbar. Since the oxide
concentration is less than 1/4 of the aluminium, it hopefully does not destroy the existence
of metallic states even though aluminium oxide is highly insulating. The aluminium film
thickness was calculated to be 0.83Å, which is around 1/3 of a monolayer. In order to
obtain an ordered thin-film, the sample was annealed to 350 °C for 10 sec, resulting in
the LEED pattern shown in the inset of figure 4.20. The periodicity matches that of
Si(001)-(1×1), as was seen also for the annealed antimony thin-film. XPS spectra from
before and after annealing were integrated and is shown in table 4.3 together with the
calculated aluminium film thickness. The total intensity of both peaks increase by a
factor of nearly 3 after annealing, this is attributed to the relaxation of the surface from
amorphous and uneven to ordered and smooth, causing an increase in the photoemission
cross-section. The ratio of Si2p to Al2p stays almost constant during annealing and the
calculated film thickness therefore remains unchanged, this indicates that the aluminium
thin-film does not evaporate from the surface or diffuse significantly at this temperature.

The aluminium thin-film was buried in 6.9Å silicon by thermal evaporation, with no
additional oxygen seen on the surface from the silicon deposition. The LEED pattern
of the sample showed a disordered surface after deposition and several annealing steps
were carried out to obtain an ordered structure. It was found that annealing to 450 °C
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Before Anneal After Anneal Ratio
Si2p Intensity [kc] 117 316 2.70
Al2p Intensity [kc] 20 57 2.85
O1s Intensity [kc] 2.6 3.4 1.31
Al Film Thickness [Å] 0.83 0.88

Table 4.3: Integrated intensity of the Si2p and Al2p XPS peaks from an aluminium thin-
film on Si(001) with photon energy 250 eV. The spectra were taken before
and after annealing to 350 °C and the calculated aluminium film thickness was
calculated using equation 2.6.

for 10 sec was sufficient to relax the surface to the Si(001)-(1×1) structure. Integrated
XPS spectra of Si2p and Al2p before and after annealing are shown in the upper part of
table 4.4 together with the calculated silicon overlayer thickness. The tabulated values
show that annealing causes the Al2p intensity to increase and the Si2p intensity to
decrease, indicating that that the aluminium tends to diffuse towards the surface at this
temperature and thus reduce the silicon overlayer thickness. This is a problem for the
δ-layer growth as it means that the aluminium is no longer confined in the z-direction.
In order to limit the diffusion process, a lower annealing temperature is needed, but it
is also necessary to have an ordered overlayer of silicon. A second sample was prepared
with an aluminium layer of similar thickness, but with a silicon overlayer of only 4.79Å.
The idea is that a thinner silicon overlayer will relax at a lower annealing temperature.
It was indeed found that annealing to 350 °C for 10 sec was sufficient to relax the surface
to a Si(001)-(1×1) structure. The integrated XPS spectra from this sample, taken before
and after annealing, is shown in the lower part of table 4.4. No significant change in
the silicon overlayer thickness is observed when annealing to 350 °C, it is thus likely that
the δ-layer remains intact. In order to follow the development of the states close to the
Fermi edge, the DOS was scanned by XPS with a large angular acceptance at every step
during growth, the result is shown in figure 4.21. With a photon energy of 78 eV, the
effective attenuation length of the electrons within the energy range shown is λ = 3.1Å,
meaning the intensity comes mainly from the first few atomic layers. The DOS close
to the Fermi level is seen to decrease with the deposition of aluminium and also after
the silicon overlayer growth. This means that the sample is effectively being p-doped
by the addition of the aluminium close to the surface. There are no additional states
appearing close to the Fermi level, but in order to access the full band structure an
ARPES measurement will be done at a later point.

4.3.4 Conclusion and Future Prospects

Antimony and aluminium δ-layers of varying thickness were successfully grown by thermal
evaporation on atomically clean Si(100)-(2×1) and buried by a silicon overlayer. The
aluminium δ-layer growth procedure has shown that in order to produce an ordered
structure it is necessary to anneal the sample after aluminium and silicon deposition. If
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450 °C Anneal Before Anneal After Anneal Ratio
Si2p Intensity [kc] 183 121 0.66
Al2p Intensity [kc] 5.3 9.5 1.79
Si Overlayer Thickness [Å] 6.90 2.57

350 °C Anneal Before Anneal After Anneal Ratio
Si2p Intensity [kc] 124 129 1.04
Al2p Intensity [kc] 5.8 6.0 1.04
Si Overlayer Thickness [Å] 4.79 4.80

Table 4.4: Integrated intensity of the Si2p and Al2p XPS peaks from an aluminium δ-
layer in Si(001) with photon energy 250 eV. The spectra were taken before
and after annealing to 350 °C and 450 °C, the silicon overlayer thickness was
calculated using equation 2.5.
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Figure 4.21: XPS scan of the valence band at each step during the aluminium δ-layer
growth procedure, taken with photon energy 78 eV.
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the silicon overlayer is thinner than ∼ 5Å an annealing temperature of 350 °C is sufficient
to relax the surface structure and the aluminium layer stays localized within the silicon.
The antimony showed a tendency to evaporate from the surface at temperatures larger
than ∼ 400 °C, but flash annealing to 350 °C was sufficient to form an ordered surface
structure with a high degree of confinement in z. The exact structure of the δ-layers is
important for further growth description, but could not be probed with the techniques
used in this project. It has been proposed to be accessible with photoelectron diffraction
and is considered as a follow-up project. In order to asses the existence of 2D metallic
states in the sample, the valence band was scanned over the same range of photon energies
at different stages of the growth procedure. Though no additional states were found in
vicinity of the Fermi energy it is likely that this is only due to the lack of an angle-resolved
measurement, the project will therefore be continued in a setup which allows a larger
reciprocal space probing. Lastly, changing the doping type and carrier concentration of
the substrate is likely to influence the δ-layers and is considered a variable that is worth
exploring further.

4.4 Electron-Magnon Couplings in a Ferromagnet

4.4.1 The Ferromagnetic Phase in Nickel

Nickel is one of four elements that are naturally ferromagnetic in pure form. Because
its also highly abundant on earth, it is widely used in alloys for permanent magnets.
In fact, the earth’s core is largely made up of a nickel-iron alloy which is responsible
for the earth’s magnetic field. Nickel belongs to the 3d transition metals, which have
been widely studied by ARPES for their rich many-body physics originating from the
surprisingly small radial extent of the d-orbital electrons. The tight confinement causes
a large exchange interaction between electrons on the same lattice site due to Coulomb
repulsion. This causes a mixing of the charge and spin degrees of freedom which is the
origin of the strongly correlated behavior, ultimately resulting in exotic phases of matter
such as the Mott insulator, d-wave superconductor and ferromagnet. The latter can be
described as an uneven filling of the up and down spin-states in the d-orbitals, producing
an overall magnetic moment. The energy gain of the ferromagnetic spin configuration
comes from the Pauli exclusion principle, which does not allow aligned spins to hop
onto the same lattice site, thus reducing the on-site Coulomb repulsion. The direction
of preferred spin alignment, called the easy-axis or easy-plane, is decided by the spatial
arrangement of the atomic orbitals due to the coupling between spin and orbital degrees
of freedom (SOC). Relativistic effects such as SOC are typically weak in light materials
like nickel, but the anisotropy nonetheless causes a favourable direction of spin alignment.

Figure 4.22b shows the DOS of the two directions of spin along the easy-axis, which
is (111) in nickel. The ferromagnetic split bands are denoted as minority and majority
spin bands due to the unequal filling. It is no coincidence that the two DOS functions
appear similar in shape but shifted in energy, the dispersion relations of the minority and
majority bands are very closely related. There are a few factors that give the minority
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Figure 4.22

and majority bands slightly different dispersion relations, such as the orbital character
and the magnetic anisotropy. Most importantly, bands with different orbital character
show different momentum dependence of the spin-splitting. Orbital projections of the
bands along several high-symmetry directions, shown in figure 4.22c, explain this effect.
Within the energy range of a few eV from the Fermi level, the bands derive either from
sp3-hybridized orbitals of the extended 3p and 4s electrons or from the localized d-
orbitals of the 3d electrons. The d-orbital electrons show a tendency to hybridize either
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as |eg⟩ = 1/
√
2 |dz2⟩+ 1/

√
2 |dx2−y2⟩ or |t2g⟩ = 1/

√
3 |dxy⟩+ 1/

√
3 |dxz⟩+ 1/

√
3 |dyz⟩ as shown

by the calculation. It is clear that the d-orbital electrons dominate the DOS close to
the Fermi energy, especially in the minority bands. It is also these electrons that show
the largest spin-splitting, not surprising since the ferromagnetic state is a result of the
Coulomb repulsion between them, and the spin-splitting of the sp3 electrons is a bi-
product of the resulting magnetic moment. Notice also that the sp3 electrons show a
much steeper dispersion than the d electrons, this is because of the localized nature of the
3d-orbitals, the small orbital overlap of electrons on different lattice sites give the states
a small bandwidth. Upon closer inspection of the band structure it is clear that there
is spin-splitting everywhere except for the sp3 states at certain high-symmetry points,
notably Γ and L. Looking again at the DOS, notice that in both spin bands there
is a large decline in the DOS above the Fermi level, but because the majority bands
are shifted to higher binding energy than the minority bands, the DOS of the majority
bands is much smaller at Ef . This means that low-energy transport properties will be
dominated by the minority bands and any electric current will be largely spin-polarized.
The relatively low-area Fermi surface of the majority band at Ef is shown in figure 4.22a,
with several high-symmetry points of the fcc lattice indicated, the orbital character of
this Fermi surface is partly sp3 and partly d. From the calculation it was found that the
spontaneous magnetization is 0.65 µB/atom, which is 5% larger than the experimentally
measured value [36].

4.4.2 Correlation Effects in Ni(111)

ARPES measurements of Ni(111) will be presented in the following sections, most of
which were performed with the NanoESCA at NTNU, and one supporting scan taken
at Elettra synchrotron facility. The sample was kept at 115K during measurement for
improved signal to noise ratio and the three-fold symmetry of the crystal was exploited
to average out matrix element effects by rotating and superimposing the ARPES spectra.
In order to understand the nature of the measured bands, DFT calculations of the spin-
resolved band structure were performed and specific bands selected according to the free-
electron final-state approximation. Intensity was plotted according to equation 2.23 with
σ = 0.1 eV, Φ = 4.9 eV (measured) and V0 = 10.7 eV (from [37]). Figure 4.23 shows a
comparison between the measured and calculated Fermi surface projection, minority and
majority bands are indicated by red and blue, respectively. The spin-splitting of several
states in the ARPES spectrum is clearly visible by comparison with the calculation. The
hexagon encircling Γ̄ shows one such splitting on the stippled line marked 2, and the
three goggle-like features on the outer part show a similar splitting. There is only one
noticeable discrepancy between the measurement and calculation worth commenting on
at this points, that is the oval shape appearing on the stippled line 3. This feature is
clearly more faint in the measurement, which is attributed to matrix element effects.
It is interesting to note that the matrix element effects are seen to mainly reduce the
intensity of the bands deriving from the eg-orbitals. The excellent overall agreement
shows that the states close to Ef are well defined quasiparticles with a long lifetime,
thus relatively undisturbed by correlation effects. Secondly, one may conclude that the
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Figure 4.23: The Fermi surface of Ni(111) (Eb = 60meV). ARPES spectrum on the
left and calculation on the right. The stippled lines indicate directions in
reciprocal space displayed in the following figures.

photoemission process is well described by the three-step model and the free-electron
final-state approximation at low binding energy.

Looking at the band structure at higher Eb, it is clear that the quasiparticles quickly
become dressed with correlation effects. Figure 4.24 shows the band dispersion along line
1 together with the calculated states marked with their dominant orbital character, which
is either sp3, eg or t2g. Note however that several bands have a partial overlap with all
of these, but only the dominant overlap is shown. The sp3-bands are again recognized as
the most sharply dispersing bands while the d-bands have a smaller slope. At the Fermi
energy, the calculated bare bands are seen to overlap well with the measured bands, but
at higher Eb there is a gap opening between them that becomes larger further down
in the band structure. The gap is a result of correlation effects that renormalize the
quasiparticle dispersion such that the measured states appear shifted to lower binding
energy. The size of the gap is directly related to the spectral function via the real
part of the self-energy ΣR = Re(Σ), which is indicated in figure 4.24 as an arrow. The
imaginary part of the self-energy ΣI = Im(Σ), which is related to ΣR through the Krames-
Kronig relation, causes a broadening of the spectral function and may be extracted from
the full-width at half-maximum (FWHM) of the measured bands. Disentangling the
correlation effects that are responsible for dressing the quasiparticles is no trivial task as
these typically originate from several different many-body interactions such as electron-
electron, electron-phonon or electron-magnon. There are, however, characteristic traits
of some of these couplings that may enable one to pinpoint them by studying the self-
energy from the ARPES spectrum in comparison with the bare bands calculation. Most
importantly for this analysis, the coupling between electrons to a bosonic mode such as
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Figure 4.24: E-vs-k plot of Ni(111) along line 1. The left side shows the band structure as
measured and the right side is a mirror image with the calculation overlayed
on top. Several of the calculated bands are marked with their dominant
orbital character.

electron-phonon or electron-magnon are often seen as kinks in the real and imaginary
parts of the self-energy. These kinks are expected to appear at the binding energy of the
bosons [38]. In the following section, the self-energy analysis will be carried out in order
to try to disentangle the many-body effects of the electron liquid in Ni(111).

4.4.3 Electron-Electron Interactions

Looking closely at figure 4.24, it is clear that the quasiparticle renormalization ΣR is
much larger for the majority bands than for the minority bands. This phenomenon has
been observed previously in ferromagnets [39] and is closely related to the particle-hole
excitations of the electron liquid. When a photohole is created in the photoemission pro-
cess, this leaves the electron liquid in a state which is generally not the ground state of
the system, but a superposition of excited states. The electronic part of the many-body
response will be in the form of particle-hole excitations in the material. In ferromagnets,
however, there is an asymmetry between the available phase-space of particle-hole excita-
tions in the majority and minority bands, as seen in the DOS. The available phase-space
determines how effectively the photohole is screened, which in turn determines how much
extra energy is carried away by the photoelectron. When a photohole is created, either
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in a minority or majority band, the resulting particle-hole excitations in the system will
dominantly appear in the minority bands. If the photohole is also within a minority
band, this will leave a smaller available phase space for screening than if the photohole
was within a majority band. For this reason the minority bands will exhibit a smaller
renormalization ΣR. In terms of the quasiparticle imaginary self-energy, it has been
shown rigorously that electron-electron interactions in a normal Fermi liquid result in
the relation ΣI ∝ ϵq(ω, k⃗)

2, where ϵq is the quasiparticle binding energy [38]. Since ΣI is
the half width at half maximum of the spectral function, the bands seen in the ARPES
spectra are expected to also broaden with the square of the quasiparticle energy.

4.4.4 Bosonic Couplings

With the knowledge of how electron-electron interactions affect the quasiparticle self-
energy, the next step in the search for electron-boson couplings necessitates a more
quantitative analysis of the self-energy. As explained above, the presence of kinks in the
real and imaginary parts of the self-energy is a strong indicator of bosonic couplings.
Because these kinks appear at the energy of the bosonic mode, one may identify the type
of boson by considering the energy scale of different bosons present in the system.

Figure 4.25 shows the measured and calculated bands along line 2. Also in this direc-
tion in reciprocal space one notices the large energy renormalization of the quasiparticle
dispersion in the majority bands, especially pronounced in the band with t2g orbital
character. The spin-split bands close to Ef have also been scanned with photon energy
29 eV, displayed in the lower part of the figure. For both scans, at 21 eV and 29 eV,
the minority state has been peak fitted by Lorentzian distributions to the MDCs. The
Lorentzian peak centers are shown as green lines overlayed on the measurement, and
ΣI was extracted from the FWHM of the Lorentzian peaks by the following relation
ΣI = FWHM

2 × dϵ
dk [40]. The two plots of ΣI extracted here show similar trends, firstly,

the broadening increases with binding energy, consistent with the electron-electron in-
teractions explained above. Secondly, there are two relatively broad kinks present at
Eb = 70± 30meV and Eb = 300± 50 eV, indicative of couplings to two bosonic modes.
The apparent divergence of the self-energy at Ef is a numerical artefact originating from
the steep dispersion which causes dϵ

dk to blow up at Ef and should not be considered an
actual property of the quasiparticles.

It remains now to identify bosonic modes in Ni(111) that may explain the couplings
seen in the self-energy, possible candidates are phonons and magnons, which may be
either acoustic or optical. Calculated and measured phonon dispersion relations in nickel
have been tabulated in [41], showing predominantly acoustic phonons with a peak in the
DOS at Eb = 30 ∼ 40 eV. Kink 1 may thus be explained by electron-phonon coupling
at this energy. Though the energy is not an exact match, this can be explained by the
rising background from the electron-electron interaction that confuses the exact position
of the kink. It is quite clear, however, that kink 2 cannot be explained by coupling
to phonons and one must consequently consider electron-magnon couplings. Neutron-
scattering experiments by Mook & Paul [42] show that the relevant energy range of
magnons in nickel is 0 ∼ 250meV, matching relatively well with the binding energy of
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kink 2. The magnon DOS vanishes rapidly below 150meV, and it is therefore unlikely
that kink 1 originates from electron-magnon coupling.

The electron-boson coupling strength will naturally depend on the value of k⃗ of the
scattered electron, not only because of the dispersion relation of the electrons, but also
because the bosonic modes disperse in momentum. It is therefore interesting to see how
the couplings change for a different direction in reciprocal space. The band structure
along line 3 is shown in figure 4.26. The minority band close to the Fermi level with
orbital character t2g has been peak fitted, shown as a stippled green line in the inset.
The imaginary part of the self-energy was extracted from the FWHM of the band, at
photon energy 21 eV and 29 eV. Two kinks can be made out from this plot, one very
broad kink at Eb = 70 ± 50meV, and a second less broad kink at Eb = 210 ± 30meV.
The first kink is at similar binding energy as in cut 2, which matches well with the energy
range of the acoustic phonons in nickel. The huge broadening of this kink indicates that
there is a coupling to acoustic phonons within a large range of k⃗. The kink at higher
binding energy can not be seen in the scan at photon energy 29 eV due to low intensity,
but is clearly visible in the scan at 21 eV. It is close to the magnon DOS maximum, and
is there attributed to an electron-magnon coupling. Interestingly, the binding energy is
90meV lower than that of the electron-magnon coupling seen in cut 2. This is likely a
result of the anisotropy of the crystal, causing a coupling to different magnon modes for
different directions in reciprocal space. In order to verify the correlation effects, the real
part of the self-energy was extracted by subtracting the binding energy of the calculated
bare band from the peak position of the measured band at photon energy 21 eV. There
are two kinks present in this plot at Eb = 70 ± 20meV and Eb = 240 ± 30meV, i.e.
relatively close to the peak positions extracted from the FWHM. Having found the same
kinks in both the real and imaginary parts of the self-energy provides good evidence for
the bosonic couplings.

4.4.5 Surface States

Nickel in its pure form has a strong tendency to oxidize in air, and it was found during the
measurement procedure that a high degree of cleanliness was required in order to obtain
an unoxidized surface. This was especially important upon cooling the sample, which
speeds up the oxidation process to such an extent that degradation was observed within
a few hours of sputtering and annealing. Note that the measurement was carried out at
pressure below 5×10−10mbar, showing how remarkably fast nickel oxidizes. Degradation
of the sample showed in some measurements the appearance of surface states close to the
Fermi surface, possibly originating from absorbed gas, such as oxygen or carbon monox-
ide. An example of absorption induced surface states on Ni(111) is shown in figure 4.27,
additional states are observed within the projected bulk band gap close to Γ̄ after three
hours of cooling the sample. The states are three-fold rotationally symmetric, indicating
the occupation of an adsorbate with a (

√
3 ×

√
3) periodicity, something that was also

reported in [43]. The states were found to be stable over a large temperature range, and
remained visible upon reheating the sample to room temperature. For the particularly
clean sample measured shortly after annealing, another surface state was found that is
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Figure 4.25: E-vs-k plot of Ni(111) along line 2. The top figure shows the band structure
as measured, with the calculation overlayed in blue and red. The bottom left
figure shows a higher resolution measurement taken at Elettra synchrotron.
Green bands have been peak fitted and the extracted self-energy is shown
in the bottom right.



4.4. Electron-Magnon Couplings in a Ferromagnet Page 58

Figure 4.26: E-vs-k plot of Ni(111) along line 3. The top figure shows the band structure
as measured, with the calculation overlayed in blue and red. The bottom
figures show the self-energy of the band in the inset overlayed in green.

believed to originate from the pure Ni(111) surface. This state appears similar to the
Shockley surface state reported in [44], and is shown in figure 4.28. The measured Fermi
surface is compared to a first principles calculation within a slab geometry, where one
can clearly make out the measured surface state as a ring encircling Γ̄. The calculation
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was performed for a clean surface without adsorbates, it also shows that this 2D state is
spin-polarized, belonging to the majority spin.

Figure 4.27: The Fermi surface of Ni(111) shortly after annealing and after three hours
of LN2-cooling, figure courtesy of H. Røst.

4.4.6 Conclusion

The band structure of Ni(111) was measured with ARPES and spin-resolved first prin-
ciples calculations performed, which shows excellent agreement. By comparing the mea-
surements and calculation, the spin-texture and orbital character of the states was iden-
tified, which revealed a large renormalization of the majority spin-bands. The renormal-
ization was explained as a result of correlation effects which is different for the majority
and minority bands due to the large difference in the DOS at Ef . An in-depth analysis
of further correlation effects, in particular electron-boson couplings, was performed by
extracting the quasiparticle self-energy from the spectral function of the ARPES mea-
surement. The imaginary part of the self-energy was found by peak fitting MDCs of
several bands to Lorentzian curves and extracting the FWHM, the real part of the self-
energy was found by looking at the quasiparticle energy shift relative to the calculated
bare bands. One electron-phonon coupling at Eb = 70meV and two electron-magnon
couplings at Eb = 240meV, 300meV where identified. Lastly, a Shockley surface state
originating from the clean Ni(111) surface were measured and shown by first principles
calculations to be a rotationally symmetric state of the majority spin-bands.
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Figure 4.28: The measured Fermi surface of Ni(111) shortly after cleaning, revealing a

Shockley surface state close to Γ̄. The calculation reveals that this a surface
state with majority spin exhibiting rotational symmetry, figure courtesy of
H. Røst and the author.
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