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Abstract

This thesis develops a new approach for automating and analyzing the impact of
security incidents on company value. The method is based on detecting security
incidents in news articles and then using an event study to determine the change
in stock price resulting from the incident. Furthermore, the method tests if mod-
ern natural language processing models based on pre-trained neural networks
perform well with a classification task based in the cyber security domain. The
method shows promise with calculated impact in line with previous studies at a
4 per cent loss in company value 50 days after a security incident is present in
news articles. However, the modern natural language processing techniques used
to classify security incidents did not outperform simpler statistical models, which
performed exceptionally well.
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Sammendrag

Denne oppgaven utvikler en ny tilnærming for å analysere og automatisere kost-
naden av sikkerhetshendelser på selskapets verdi. Metoden er basert på å oppdage
sikkerhetshendelser i nyhetsartikler og deretter bruke en hendelsesstudie for å be-
stemme endringen i aksjekursen som følge av sikkerhetshendelsen. Videre tester
metoden om moderne naturlig språkbehandlingsmodeller basert på forhåndstrente
nevrale nettverk fungerer godt med klassifiseringsoppgave basert i cybersikker-
hetsdomenet. Metoden virker lovende med en kalkulert effekt i tråd med tidligere
studier. Det kalkulerte resultatet ble en 4 prosent tap i selskapsverdi 50 dager et-
ter at en sikkerhetshendelse er nevnt i nyhetsartikler. De moderne prosessering-
steknikkene for naturlig språk som ble brukt til å klassifisere sikkerhetshendelser
overgikk imidlertid ikke enklere statistiske modeller, som presterte eksepsjonelt
bra.
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Chapter 1

Introduction

Companies are affected by cyber security incidents all the time. News articles
about hackers, data leakage, or downtime due to ransomware attacks are increas-
ingly becoming part of the news cycle. At the same time, companies, in general,
are increasingly transforming more and more into IT companies as information
technology plays an ever-increasing role in the world and everyday operations.
This integration of IT systems means that companies must allocate resources to
securing their cyberinfrastructure. This allocation process is an exercise in risk
management and, ultimately, a cost-benefit analysis that everyone with a digital
footprint must perform. However, estimating the actual cost of security incidents
is complicated since significant security incidents are so rare for an individual
company that it is difficult to get reliable data.

Additionally, many different areas incur costs whenever a cyber security in-
cident occurs. Examples of such areas are tangibles, like lower earnings due to
recovery costs, reduced productivity due to unavailability, or fines from regulat-
ory bodies. Still, there are also intangible costs such as loss of consumer trust,
reputation damage, etc. Furthermore, many of the companies impacted by major
security incidents choose to share as little information as possible from the in-
cidents and, if possible, might decide not to disclose anything at all. This secrecy
makes it difficult to extrapolate costs.

Therefore looking at the movement in stock market prices could be interesting
for deriving the potential costs. A company’s stock price can be viewed as the fu-
ture expected returns and a discount rate based on how far into the future those
returns are expected. All active participants in the stock market are effectively
competing to estimate the value of a company, in real-time, based on public in-
formation. Therefore, market participants are financially incentivized to take into
account all impacts on both tangibles and intangibles and produce a best-effort
analysis of the total effect of the security incident as quickly as possible based
on all available information. Furthermore, listed companies are legally required
to disclose events of material impact to shareholders; therefore, the average ef-
fect on listed companies should function as a reasonable proxy/estimate of the
average cost of security incidents.

1
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1.1 Problem Statement

This thesis aims to develop a method to automate the analysis of security incidents’
impact on affected companies’ stock prices. This method requires a comprehensive
approach where steps from the collection, classification and the potential impact
are explored and studied. The results from this study will attempt to answer the
following hypotheses:

• h1 State of the art NLP models can be trained to classify text concerning
security incidents.
• h2 State of the art NLP models achieves better results when classifying news

articles concerning security incidents than more straightforward machine
learning methods.
• h3 News articles concerning security incidents can be used to conduct an

event study and give insight into the impact of security incidents on stock
prices.

1.2 Unique Contributions

The attempt to automate the security incident identification and classification pro-
cess using natural language processing (NLP) methods is novel. Previous studies
into security incident stock impact have primarily used handpicked or insurance
data due to the difficulty of manually reviewing all newsworthy events from 10s
of thousands of companies. As a result of this problem, most event studies into
security incidents’ impact on stock performance include a line stating that the
sample size should ideally be bigger. An example of this is the study "The Effect
of Data Breaches on Shareholder Wealth. Risk Management and Insurance Review"
by Gatzlaff and McCullough [1]. Which states: "Future research involving an even
larger sample ... would be useful in drawing broader conclusions" [1]. Such studies
usually have a sample size of 100-200 handpicked events.

Secondly, the application of automation in selecting samples might yield a
different result than samples chosen by humans, either because of other biases or
sample size.

Thirdly, suppose modern NLP models prove to be helpful in the domain of
cyber security. It might open the door to new avenues and applications as the
domain knowledge might transfer into different problems and applications within
the field.

Fourthly, gathering and labelling a dataset from news articles in the domain
of cyber security incidents is new.



Chapter 2

Related Work

2.1 Effects of Cybersecurity Incidents

Due to the lack of self-reporting, data regarding cyber security incidents are diffi-
cult to obtain. Such incidents, by their nature, can be expected to have a negative
short term impact on the stock price. This negative impact means that companies’
executives and decision-makers are incentivized not to publicize incidents because
they are often compensated based on stock performance. On the other hand, laws
such as General Data Protection Regulation (GDPR) require disclosing and noti-
fication if the incident affects personal/user data. On a similar note, most public
stock exchanges require companies to disclose events of material impact on the
company. However, given few incentives to announce such events, one can expect
companies to make a restrictive interpretation of what "material" means to reveal
as little as possible.

One of the first studies into the effect of incidents was The economic cost of
publicly announced information security breaches: empirical evidence from the stock
market by Campbell et al. (2003) [2]. They looked into the effect of incidents
published in major newspapers from 1995 to 2000. The total sample size obtained
over the period was 43 events from 38 public companies, where they studied the
price movement in a 3-day window surrounding the time of announcement. When
looking at all the samples, there was a slight indication of an adverse reaction
to incidents but not with a good p-value (p = 0.1393). When splitting the data
and only looking at incidents involving unauthorized access to data, they found
that the adverse reaction was much more pronounced and highly significant. The
authors suggest that the type of incident is of material importance concerning the
negative effect of the incident.

In the paper The effect of data breaches on shareholder wealth by Gatzlaff and
McCullough (2010) [1] they looked at the impact of incidents involving leakage of
personal information. The paper identified 77 events in the period 2004 to 2006
which was used in the study. They estimated the performance of a given stock
relative to the market using a 1-year window before the incident. This estimated
performance was compared to the stock’s performance up to 120 days after the

3
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incident became public. They found that the overall impact of disclosing such
events is negative and that the result is statistically significant, with a 0.84 per cent
loss in company value. Furthermore, they also found that the dropdown effects
occur for up to 40 days after disclosure before performance returns to normal and
starts tracking the market again. Additionally, they remark that growth stocks
(higher book to value) are more affected than other types of stocks.

In the paper Do Firms Underreport Information on Cyber-Attacks? Evidence from
Capital Markets [3] from Amir, Eli, et al. in 2018 dug a bit deeper into data about
security incidents and used it to estimate the likelihood of a security incident dis-
closure happening voluntarily from the affected company, as opposed to it being
disclosed by an unrelated 3rd party. They manually combined and verified data
from two sources and ended up with 276 samples from 2010 to 2015. Then they
divided the data into self-disclosed and discovered by others. Then they categor-
ized the data that was discovered by others into material and immaterial. They
show that the immaterial set does not affect the stock price meaningfully. They
argue that the samples present in the material set should have been reported/dis-
closed by companies. At the same time, the immaterial group did not warrant the
need for disclosure. They show that in cases where a firm rapidly discloses the
incident, the company’s value drops by 0.33% in the first three days and 0.72%
over the entire month after the breach. For the case where firms did not voluntar-
ily disclose the incident, but it was discovered by someone else, they find that the
drop in value is 1.47% and 3.56% for the first three days and the entire month, re-
spectively. Based on the data, the authors suggest that managers are more likely to
withhold severe incidents and only choose to disclose the incident when investors
already suspect(with a 40% confidence) that an incident has occurred.

The newest and most comprehensive paper with regards to sample size is the
paper A Comprehensive Analysis of Cyber Data Breaches and Their Resulting Effects
on Shareholder Wealth from 2020 by Hogan et al. [4]. They obtained data regard-
ing personal information leakage from a proprietary dataset from the insurance
data provider Advisen Ltd. claims that the samples in their cyber loss data have
been manually gathered and or verified. The Adivsen cyber loss data yielded 3991
samples, by far the largest of any known study. They also find that short term
adverse effects but not as pronounced as in some of the smaller earlier studies.
Furthermore, they also find significant negative long term results with an average
loss of 7.46% with a p-value < 0.0001, 250 trading days or about a year after the
incident.

As highlighted, several studies all conclude adverse effects as a reaction to se-
curity incidents. However, all studies ultimately depend on manually gathered an-
d/or proprietary data, except for Hogan et al.(2020), all studies use few samples.

2.2 Text Classification

There has been plenty of work on machine learning models to understand and
classify text. In the last ten years, there have been considerable developments in
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the usage of deep learning models for this task. Rashid and O’Keefe explored Bi-
directional Long Short-Term Memory (BiLSTM), Convolutional Neural Network
(CNN), and Recurrent Neural Network Models [5] in 2014 with promising res-
ults. However, the major disadvantage to these models is that they are slow to
train. Part of the reason behind the slowness is that input data needs to be pro-
cessed sequentially through the network. Sequential processing is necessary be-
cause the previous state’s inputs are required to process the current state. This kind
of sequential processing does not leverage modern computing hardware such as
graphics cards and multi-core processors, which are all designed to process data
in parallel for optimal efficiency; this is especially true for graphics cards. Trans-
former models came out of a Google research by Vaswani et al. in 2017 [6] in
the paper Attention Is All You Need. They present a new type of machine learning
model that does not rely on convolution and other recurrent mechanisms such as
the ones used by ALRashdi and O’Keefe. Instead, transformers rely solely on the
concept of attention. The advantage of transformer models is the training speed
which allows for larger models and the ingestion of more data. The transformer
architecture employs an encoder-decoder architecture similar to Recurrent Neural
Networks. The difference is that the input sequence is passed to the transformer
architecture in parallel. As an example, in a traditional neural network, a sentence
such as "The quick brown fox jumps over the lazy dog" is passed to the encoder
one word at a time. This is because the word embeddings has dependencies on
the word preceding them. In a transformer encoder, the entire sentence is passed
in at once, and the word embedding dependencies are calculated on the whole
sequence simultaneously. This process is called self-attention. A simplified explan-
ation is that an attention weight is calculated towards every other token in the
input sentence for every token in the input. This weight represents the influence
each word has on one another. The model developed by Vaswani et al. in 2017 [6]
was developed for the task of language translation. It works by taking a sentence
from the input language as input into the encoder block, which(from a high level)
computes word embedding containing the meaning of the sentence. This compu-
tation is then passed as input to the decoder. The decoder takes the previously
generated word in the target language and the output from the encoder and gen-
erates the following word in the target language. Thus one can extrapolate that
the encoder learns what word means and their context for a single language. In
contrast, the decoder learns how to map words/the meaning from the encoder to
the target language words. One way to convert such an architecture to a classifier
is to remove the decoder part and only rely on the encoder, which produces the
text’s " meaning ". Then add additional layers, which eventually collapse the result
to the classes one wants to classify.

Following transformer models, Google proposed The Bidirectional Encoder
Representation of Transformer (BERT) in a paper by Devlin et al. [7]. The idea
behind BERT is that it is pre-trained to connect bidirectional relations on unlabeled
text. Since human text/language transcends many domains and applications, the
pre-trained model can be deployed to many different scenarios with little addi-
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tional training and significant effect. The Bidirectional Encoder Representation
of Transformer (BERT) is en effect lots of encoder blocks as seen was introduced
by Vaswani et al. in 2017 [6] stacked together. Creating a BERT model for a spe-
cific task can then be split into two. Firstly the model undergoes pretraining. This
training is done by training BERT on two tasks simultaneously. One of the tasks
is masked language modelling (MLM), and the other is next sentence prediction
(NSP). The MLM task is to predict a masked word in a sentence. The NSP task is to
predict the following sentence in a paragraph. The NSP training is accomplished
by feeding BERT two sentences and having the model output a 0 or 1 depend-
ing on whether the second sentence is the following sentence. Note that sentence
in the BERT context is not an actual sentence but a sequence of words that can
contain 0 or multiple "human" sentences. The output of the pretraining is that,
hopefully, the BERT model has some generalized understanding of the language.
After the BERT model has undergone pretraining, the next step is to fine-tune the
model. The fine-tuning is done by training the model on a task that is not the
MLM or NSP task. In a generalized sense, the process identifies the task, creates a
new dataset, connects some untrained network layers at the end of the pre-trained
BERT model, and trains the model using the new dataset. In theory, this process
should be fast as the model is already trained on the pretrained, and one is only
interested in updating the weights on the new layers to suit the new task.

Another development in the field is the Generative Pre-trained Transformer
(GPT), such as GPT-2 [8]. GPT models are like BERT models, attention-based
transformers. There are some differences; more specifically, BERT comprises trans-
former encoder blocks while GPT uses transformer decoder blocks. One of the sig-
nificant differences between the two is that GPT is auto-regressive. Auto-regression
means that each token (word) has the context of the previous tokens (words)
when predicting text. This context implies that GPT operates one token at a time.
On the other hand, BERT works on all the text at once. As a result, when BERT is
"learning", it has the context of the words ahead and behind, but it uses a dropout
rate to limit the information available to the model. In contrast, GTP can only look
back but has the context of all the words behind the current token. Delvin et al.
argue in their paper [7] on BERT that this lack of context on what lies ahead is a
significant weakness of GPT models. They highlight question answering problems
where they believe that giving the model the context of what lies ahead is a con-
siderable strength. Even when compared to models such as the BiLSTM, which in
effect are separately learning left to right and right to left and then concatenating
the results and thus are not truly bidirectional.

The application of large transformer models as a classifier of security incid-
ents in the news is unexplored territory. Still, BERT has shown great improve-
ments in various NLP tasks. BERT or BERT derivatives occupy many spots on the
General Language Understanding Evaluation (GLUE) benchmark1; therefore, this
model is probably a good fit for the suggested classification task. An example pa-
per demonstrating BERT as a classifier is the CrisisBERT paper [9]. In this paper,

1https://gluebenchmark.com/leaderboard

https://gluebenchmark.com/leaderboard
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the researchers used BERT together with text from social media to identify crisis
events with great accuracy.





Chapter 3

Method

3.1 Data Collection

3.1.1 News Articles

Due to the topic’s novelty, there is no good dataset or a standard approach to data
collection for classifying security incidents from news articles. Therefore, data
collection must be done from scratch and due to the volume, this data collection
must be done programmatically. At a high level, this can be described with the
following steps:

• Download a list of all New York Stock Exchange (NYSE) and Nasdaq tickers.
• Query Reuters for the company’s page based on the ticker.
• Iterate through the news articles on the ticker’s page and extract the URL.
• Download the news articles using the URL and the Newspaper Library.1

• Save the article as a JSON file containing the article’s title, URL, publish
date, stock ticker, and text.

Reuters removes news articles that are older than 2-3 years. Therefore, the result-
ing dataset is limited to this time frame.

3.1.2 Labeling News Articles

Due to the expected volume of the dataset, manual labelling of the news articles
is unfeasible. Therefore, all news articles will be labelled as "not a security incid-
ent". A keyword/sub-string search combined with a manual review will determine
which articles are security incidents. This approach means that there is the possib-
ility of false negatives, but all positives should be true positives. Furthermore, the
true positives are expected to have quite distinct keywords, making them unique.
The actual negatives are expected to outnumber the false negatives massively;
thus, the false negatives will only represent a tiny fraction of the negative class.

1https://github.com/codelucas/newspaper

9
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Given the likely resulting imbalance of the dataset, this approach, while not per-
fect, is still a good approach given the constraints of the problem, especially since
we are most interested in the positives.

An analysis of the inherent properties in the resulting dataset and possible
implications on both NLP classification and event study will also be performed.

Defining Security Incident

When doing this manual labelling, the definition used will be security incident as
defined by the National Institute of Standards and Technology (NIST):

An occurrence that actually or potentially jeopardizes the confidentiality,
integrity, or availability of an information system or the information the
system processes, stores, or transmits or that constitutes a violation or
imminent threat of violation of security policies, security procedures, or
acceptable use policies.2

This definition means that security incidents include data breaches, data leaks,
DDoS attacks, ransomware attacks, insider breaches, espionage, etc. Note that
there will not be an attempt to determine the relationship between the compan-
ies mentioned in the security incident. As a result, victims of security incidents
will represent a subset of the identified security incidents. For example, an article
might mention a company assisting with the security incident or describe how
a company has discovered a hacking campaign. As a result, a "security incident"
label will not imply that the companies mentioned in the article are victims of
the security incident. Instead, the victims will be a subset of the identified articles
containing security incidents. The intention behind this is to simplify the machine
learning task. Furthermore, no distinction is made with the labelling of articles
concerning the same security incident. For example, one data breach might have
multiple articles written about it as new information becomes available, but it
only represents one security incident. This lack of granularity in the labelling can
have the effect of overweighting the specific incident in the event study, as there
will be events that are counted twice when calculating the average impact of all
the incidents, assuming that the related articles are within the studied time win-
dow. If, on the other hand, the associated news articles are not within the studied
time window, the effect would be a reduction in the aggregate impact. However,
in aggregate, the negative signal should still exist as the unrelated events will be
a random walk around the market return and effectively cancel each other out.

Thus the expected effect is difficult to assume as there are situations that will
both increase and decrease the aggregate impact of security incidents with mul-
tiple news articles. Still, as more severe incidents are more likely to have numerous
news articles in the time shortly after disclosure, one might expect the overweight-
ing to happen more often.

2https://csrc.nist.gov/glossary/term/security_incident

https://csrc.nist.gov/glossary/term/security_incident
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3.1.3 Stock Prices

Stock prices will be downloaded from the alpha vantage API from the TIME_SERIES_DAILY
dataset3, in which the daily closing price is extracted and used as the stock price
for a given date.

3.2 Data Classification

3.2.1 Creating the Classification Model

Pre-processing the Data

The text used for classification will be retrieved from the downloaded articles and
will be a combination of the title+ the text of the article. Typically in NLP tasks, the
input text undergoes extensive pre-processing. Due to BERT usage, pre-processing
techniques such as removal of stop words, stemming and lemmatization are not
used. This is because BERT is a contextual model; thus, stop words and stems can
provide information about the context of the text. In the paper "Understanding the
Behaviors of BERT in Ranking" [10], the authors looked at what kind of "words"
BERT gives attention to. The authors found that stop words receive just as much
attention as non-stop words suggesting that BERT finds them important. On the
other hand, the authors also found that the removal of stop words did not affect
the model’s performance in some tasks. Thus, pre-processing is limited to loading
the text and tokenizing it using the BERT tokenizer.

The BERT tokenizer contains several options on how to tokenize the text. The
tokenizer can be set to lowercase, remove punctuation, remove stop words, re-
move digits, remove special characters, etc. Ultimately the task of the tokenizer is
to convert "human" text into a sequence of tokens which is understandable by the
BERT model. Here there is the possibility to do a sweep of different tokenization
options and find the best set of options. But due to time constraints, this will not
be done. The tokenizer will be configured to use the uncased version meaning that
all capitalization information will be removed. Furthermore, the BERT model is
trained to handle 512 input tokens. This limitation means that it can not look at
more than 512 tokens at a time. As a result, the text will be truncated to the first
512 tokens and discarding the rest of the text from a given article. This truncation
means that the model will not be able to look at the text after the 512 first tokens,
but hopefully, this will not affect performance much. Another option would be to
split the text into multiple 512 token chunks and feed them to the model. Then
perform averaging or a combination with the subsequent 512 tokens for each art-
icle. This would be a more complex task and would require more time, and will
therefore not be explored.

Note that a character is not equivalent to a token. A token is a numerical rep-
resentation of "something" that the BERT model can understand. This "something"

3https://www.alphavantage.co/documentation/#daily

https://www.alphavantage.co/documentation/##daily
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can be a complete word or a part of a word. BERT uses WordPiece embeddings
which were presented by Wu et al. in the paper "Google’s Neural Machine Trans-
lation System: Bridging the Gap between Human and Machine Translation" [11].
The total vocabulary size is about 30000 tokens. This means that all the characters
are converted into tokens representing one or more characters. Therefore, it is dif-
ficult to quantify the average percentage of an article that will be passed on to the
model. At the very least, some news articles will be truncated when encoded. It
is also worth noting that if no mapping of characters to token exists, the encoded
characters will be encoded using a UNK or unknown token.

Building the Model

When fine-tuning BERT on a new task, starting with a model trained on another
task is usual. In this case, we will use the DestilBERT model. The DestilBERT model
was created by Sanh et al. [12] in an effort to improve the performance and re-
duce the size of the traditional BERT model. All the pre-trained layers are locked,
and new layers are added to the end of the model. This is done to allow the model
to learn the new task without having to rewrite the existing neurons. The model is
configured with a dropout of 0.2. This dropout is used to prevent overfitting. This
is accomplished by randomly dropping out a certain percentage of the neurons.
This means that the model is forced to send the signals which represent the de-
sired information on multiple neurons which should make the signal more robust
and ensure that it looks at more of the input. The final layer contains a single
neuron which is the output layer. The output layer is a sigmoid function. Usually,
the output layer is a softmax function, but the softmax function is, in effect, an
extension of sigmoid for multiclass logistic regression. However, since we are do-
ing two-class logistic regression, the sigmoid function is sufficient. Sigmoid gives
an output between 0 and 1, which in this case represents the probability that the
text is about a security incident according to the model.

Training the Model

Once the pre-trained model has been combined with blank layers and configured
for our needs, the next step is to start training the model. The goal of this training
is to influence the new layers to learn to represent the new task better. This is
done by running the one sample of the training set forwards through the model.
Then the correct output is backpropagated through the model. There are several
methods and algorithms that need to be selected when training the model. One
such parameter is the optimization algorithm; examples include Adam, stochastic
gradient descent (SGD), Ftrl, and RMSprop. For this model, Adam was used. Adam
is a recent optimization algorithm and has shown promising results when com-
pared to other alternatives. According to Kingma et al. [13], Adam is "computa-
tionally efficient, has little memory requirement, invariant to diagonal rescaling of
gradients, and is well suited for problems that are large in terms of data/parameters".
This matches the model’s requirements quite well.



Chapter 3: Method 13

Another parameter is the loss function. This function represents the quantity
that the model should seek to minimize during training. In this case, the loss
function used is the binary cross-entropy loss function. This function is intended
for binary classification applications, which is what we are doing. The binary cross-
entropy loss function is given by the following equation:

Binary Cross-Entropy Loss= −(y log(p) + (1− y) log(1− p))

Some of the other parameters that are used in training the model are the
learning rate, the number of epochs, and the batch size. The learning rate is the
amount of change that is applied to the model during training. The learning rate
will be set to 0.00002. This learning rate is relatively low compared to what is
standard for untrained models. This is because we want to fine-tune the last lay-
ers, not re-train the model. The number of epochs is the number of times the
training set is used to train the model. For this project number of epochs used will
be 10. The optimal number of epochs is reached by when the validation perform-
ance starts to diverge from the performance on the training data. The batch size
is the number of samples that are used to train the model at a time. The batch size
used during the training of this model was 32. The effect of adjusting the batch
can vary depending on the model and dataset. Some papers looking into this are;
Don’t decay the learning rate, increase the batch size by Smith et al. [14], and Train
longer, generalize better: closing the generalization gap in large batch training of
neural networks by Hoffer et al. [15]. Generally, there is some optimal batch size
between 1 and the number of samples in the training set. There are several forces
impacting what might be optimal. Larger batch sizes allow for greater computa-
tional efficiency(parallelism in hardware), and in convex optimization problems,
larger batch sizes can lead to better solutions and a batch size of the entire data-
set guarantees convergence to the global optima. However, this also dramatically
increases the chance of overfitting, and this is especially true for non-convex op-
timization (neural networks), which are more prone to overfitting. Therefore the
selection of batch size has many comparisons to training with regards to under-
fitting and overfitting, but it is not precisely the same. For this model, the batch
size used that will be used is 32. This still represents a relatively small batch size
when compared to the total number of samples in the training set. This batch size
is standard, and if it is much larger, one quickly runs into hardware constraints
due to GPU memory usage. The GPU will be an Nvidia GTX 1070 with 8GB of
memory.

3.2.2 Evaluating the Trained Model

Evaluation of the trained model is a key step in analyzing the viability of the
proposed method. Traditionally classification models are evaluated using the fol-
lowing metrics:

• Accuracy
• F1-score
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• Precision
• Recall
• ROC AUC

The results will also be displayed in a confusion matrix. Furthermore, a com-
parison of the performance of the model with other techniques will be made. The
different metrics are the result of the True-Positive (TP), False-Positive (FP), True-
Negative (TN) and False-Negative (FN) predictions in the following equations:

Accuracy =
T P + T N

T P + T N + F P + FN

F1=
2 ∗ Recall ∗ Precision

Recall + Precision

Precision =
T P

T P + F P

Recall =
T P

T P + FN
Furthermore, an analysis with regards to overfitting and underfitting will be

done. Overfitting is the result of the model being too specific to the training data
and causing a resulting drop in performance on validation and testing data. Un-
derfitting is the result of the model being trained enough on the data mining that
there is still performance to be extracted if more training is done. This will be done
by graphing the model performance on the training data and the performance on
the validation data over the training epochs. Additionally, the model performance
will be compared to a Naive Bayes classifier and a logistic regression classifier.
Given the likely imbalance of the dataset, a more discretionary assessment will
also be performed as it is highly relevant with regard to the practical viability of
the model.

3.3 Event Study

To understand the impact of security incidents on stock prices and thus to discover
if there are any significant changes in the stock price due to the security incident,
an event study is performed. The list of security incidents generated in the pre-
vious section is used as the event list for this study, and it will be assumed that
the classifier is able to classify all security incidents identified in the news articles
correctly. This is due to the limited amount of data and the fact that the classifier is
trained on the majority of the data. Furthermore, this assumption also allows for
an analysis of the viability of the classification and event study parts separately.

An event study is, in essence, based on the efficient market hypothesis, which
states that all publicly available information will be incorporated into the price
of a stock as it becomes available [16]. When performing the impact analysis,
traders have to effectively make a best-effort estimate of the total impact of the
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event, including intangibles such as reputation and so on. Therefore, the daily
changes in the price of a particular stock should reflect the perceived total im-
pact of daily events and information on the stock’s expected current and future
performance. Hopefully, this analysis will remove random movements and impact
from unrelated events and isolate the studied event when performed on multiple
events across multiple stocks.

Fama, Fisher, Jensen, and Roll defined the traditional event study methodology
in the 1969 paper The Adjustment of Stock Prices to New Information [16]. This
methodology is essentially the same as today(with some minor modifications).
This event study will follow the method described by Mackinlay, A in the paper
Event Studies in Economics and Finance in 1997 [17]:

1. Calculate the daily abnormal returns (ARs) for each stock in the days sur-
rounding the event. There are multiple models for calculating the ARs:

• The Market Model, which looks at what the market return is over the
same period.
• The Constant Mean Return Model, which looks at what the market

return is on average over a more extended period than the event itself.
• The net-of-characteristic matched portfolio return adjusts the compar-

ison portfolio such that the characteristics of the included companies
are similar to the ones that make up the events.
• An equilibrium asset pricing model which does not use stock price;

instead, it uses an asset pricing model and then looks at the price
changes; an example of such a model is the capital asset pricing model
(CAPM).

The AR model’s purpose is to estimate the stock’s expected return over the
studied time horizon. Thus one can compare the actual return with the ex-
pected return to get the abnormal return.
This study will use the market model to estimate the market return. The
market model is simply the market’s return, also called the market port-
folio. The market model is the most common and also fits well with our
data as the events can occur in a wide range of businesses with different
characteristics.
The market model calculates the expected return of stock i at time t relat-
ive to the market return at time t. This can be expressed in the following
equation:

E
�

Ri,t

�

= b0 + b1 · E
�

RM ,t

�

b0 and b1 represents the estimation window, which is usually from -225 days
to -25 days before the studied event. Their value can be found by performing
a least-squares regression on the stock returns. This allows us to estimate
how the stock typically moves. This, in turn, allows for plugging in the return
of the market in the event window to get the predicted return of the stock
using the market model. R is the return, E is the expected return, and M is
the used model.
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The market model gives the expected return of the stock; when comparing
this to the actual return of the stock, we can get the abnormal return(AR).
This can be expressed in the following equation:

ARi,t = Ri,t − E
�

Ri,t

�

2. Calculate the average abnormal return (AAR) for each day in the event win-
dow. This aggregation is done by taking the average of the ARs for all stocks
to find the average AR for a given time in the event window. This is given
by the following equation:

AARt =
1
N

N
∑

i=1

ARi,t

Where N is all the stocks in the event window, this can help eliminate idio-
syncratic differences in the stock returns due to individual stocks.

3. Sum the AAR for each day in the event window. This is the total abnormal
return for the event. This can be expressed in the following equation:

CAART =
T
∑

t=1

AARt

The CAAR helps in understanding the aggregate effect of the stock returns.
This is the total abnormal return for the event. This is particularly useful
if the event window is not exclusively on the event date itself. This can be
expected to be the case for security incidents in the news. This is because
it is unlikely that the news agencies are the first to discover the incident.
Furthermore, more information can become available without warranting a
new news article.

This CAAR, along with metrics such as the T-stat, P-value, and confidence in-
tervals, will be analyzed during the event window. Note that AR and connected
CAAR numbers will be calculated using the log return, making the maths more
straightforward when aggregating across periods. For minor return figures, which
is expected for this event study, log returns are effectively interchangeable with
percentage returns.
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Results

4.1 Data collection

4.1.1 List of Tickers

First, the list of tickers was downloaded from Nasdaq as shown in 4.1. Then du-
plicates and non-stock tickers were removed, which produced a list of 8331 stock
tickers. Then each ticker in that list was used as a parameter in a search on Re-
uters. This search was able to find 7993 matches on Reuters, meaning that 338
tickers did not map directly to a company on Reuters. The tickers that were not
found are listed in appendix A. A sample review shows that most of the tickers in
appendix A represent small companies and, as a result, probably do not have any
news articles on Reuters. However, there are some exceptions, particularly with
shares with multiple classes where mapping listed ticker to Reuters ticker does
not work. An example of this is BRK (Berkshire Hathaway) which has both A and
B class shares, but Reuters does not find the company when searching on either
ticker. Nevertheless, this represents a relatively small portion of the total number
of tickers; therefore, it was not attempted to correct this mismatch. Instead, the
list tickers used will be the 7993 tickers available without issues.

Code listing 4.1: Retrival of tickers from Nasdaq

# excerpt from GenData.ipynb

def downloadFTPData(ftp_url, file_name):
ftp = ftplib.FTP(ftp_url)
ftp.login()
ftp.cwd("symboldirectory")
ftp.retrbinary("RETR␣" + file_name, open(file_name, "wb").write)
ftp.quit()

if not os.path.exists("nasdaqlisted.txt"):
downloadFTPData("ftp.nasdaqtrader.com", "nasdaqlisted.txt")

if not os.path.exists("otherlisted.txt"):
downloadFTPData("ftp.nasdaqtrader.com", "otherlisted.txt")

17
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4.1.2 News Articles

News articles were scraped on a per ticker basis from Reuters. The implementation
follows the steps described in 3.1.1. Due to limitations in how fast Reuters allows
requests and the usage of a full browser client, the scraping process was relatively
slow. It took between 2-3 days to scrape all stock tickers for articles and enrich
them. Reuters only keeps articles for three years; therefore, all articles are in that
timeframe. 4448 of the 7993 tickers had articles in the last three years. The articles
were saved as JSON files, one for each ticker with the structure as seen in listing
4.2. When de-duplicating on the combination of URL and ticker, the total number
of articles becomes 63126. When de-duplicating on text, that number drops to
55327. The total size of the dataset is 259,2 MB of text content.

Code listing 4.2: Example News Article

1 {
2 "authors": [
3 "Reuters Staff"
4 ],
5 "keywords": [
6 "company",
7 "..."
8 ],
9 "publish_date": "12/01/20",

10 "stock_ticker": "ERJ",
11 "summary": "FILE PHOTO: An Embraer E-175 jet sits outside...",
12 "text": "FILE PHOTO: An Embraer E-175 jet sits outside...",
13 "title": "Brazil planemaker Embraer says hackers gained...",
14 "url": "https://www.reuters.com/article/us-brazil..."
15 }

4.1.3 Labeling News Articles

The data was labelled as described in 3.1.2. The keywords "Cyber attack", "Cy-
berattack", "data breach", "ransomware", "hacker", "security flaw", and "gained ac-
cess" was used to identify articles for manual review. In total, this yielded 217
news articles classified as a security incident. De-duplicating the events on text
reduced the number of security incidents to 204. De-duplicating security incid-
ents on ticker and date reduced the number to 170. This gives a highly skewed
distribution of events where only 0.4% of events are security incidents, as seen in
figure 4.1.

4.1.4 NLP Classification Viability

The length distribution of the two classes is shown in figure 4.2. There is a pro-
nounced difference between the two classes as there is a significant spike of events
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Figure 4.1: Distribution of labels in the dataset

labelled as not a security incident in the interval of 0-1000 characters. This spike
is due to a particular type of article connected to earnings announcements that
will never contain security incidents. Of the longer news articles, which presum-
ably have more natural language and represent news in general, there does not
seem to be much difference between the two classes.

Figure 4.2: Distribution of text length for the two classes of news articles

When looking at the frequency of words in the two classes (with stopwords
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Figure 4.3: Word cloud of all words in non-security-related news

removed), we get the word clouds in figure 4.3 for non-security news and figure
4.4 for security-related news. This difference indicates dissimilarities between the
two classes, which bodes well for training a classifier on the data.

4.1.5 Event Study Viability

When conducting an event study, there are only two data points which are of
interest, the date and the stock ticker; an example of the data identified and pro-
cessed for an event study is shown in table 4.1. One of the drawbacks of the
collected data is that there is no way of knowing if the article’s date represen-
ted when the security incident became public knowledge. Furthermore, there is
no guarantee that the mentioned company is the victim of the security incident.
Nevertheless, the article’s date is used as a best-effort proxy for the date of the se-
curity incident. Another drawback is that the collected events do not necessarily
represent unique events. A given event may be associated with multiple articles,
and new news articles can be written years after the security incident as fallout,
such as litigation, comes to a close.

Table 4.1 shows an excerpt from the collected data. In the table, we can ob-
serve that the ticker MGM has two articles within two days. This proximity of
dates makes it highly probable that the events are related. Similarly, there is a
high probability that several of the events associated with the MAR ticker are re-
lated to the same security incident. No attempt at correcting this will be made as
the goal is to see if the automated method is viable. Furthermore, the identified
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Figure 4.4: Word cloud of all words in the security-related news

drawbacks will not make the impact signal disappear. It might reduce the aggreg-
ate observed impact, but it should still be possible to observe some of the effects,
as removing and isolating the random noise is one of the strengths of an event
study.
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Table 4.1: Table of excerpt events

Ticker Date
HD 2020-11-24
IBM 2021-04-14
IBM 2020-12-03
INTC 2019-05-14
KR 2021-07-01
MAR 2021-03-04
MAR 2020-03-31
MAR 2019-07-09
MAR 2019-08-05
MAR 2020-08-19
MAR 2020-10-30
MCD 2021-06-11
MCO 2019-06-27
MGM 2020-02-20
MGM 2020-02-22
MIME 2021-01-12
MPC 2021-05-10
MRNA 2020-12-15
MS 2021-07-08

4.2 Data Classification

4.2.1 Evaluating Model Performance

Figure 4.5 shows the confusion matrix for the trained model. Unfortunately, the
model’s performance is not ideal. We can see that of the entire set; the model
had a 0.07 per cent false-negative rate and a 0.36 per cent true positive rate. This
performance means that model misses one out of every six security incident. Fur-
thermore, the number of false positives is 1.92 per cent, meaning that a predicted
positive is more than five times as likely to be a false positive than a true posit-
ive. It is possible to play around with thresholds to adjust the model to increase
precision, but that would also increase the false-negative rate.

The test set suffers from a low sample size. The dataset was split into an 80
15 5 division between the training, validation, and test data, which means that
the total number of positive samples in the test set is only 12. As a result, there is
a large degree of uncertainty in the resulting performance metrics due to a single
false negative or true positive massively impacting the calculated performance of
the model.

The performance metrics of the model can be seen in table 4.2. We can also
see the performance metrics for classification using a naive Bayes classifier and
logistic regression. The confusion matrix for the naive Bayes classifier is shown
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in figure 4.6. The logistic regression model is shown in figure 4.7. Interestingly,
the naive Bayes model predicts all events to be negative. The logistic regression
model almost predicts everything to be negative except for two samples which are
predicted to be positive, one which is a false positive, and one is a true positive.
This negative prediction bias is because both models do not handle the imbalance
in the dataset well.

When adjusting the logistic regression model to handle the imbalance in the
dataset, the model was able to improve the performance metrics substantially, as
seen in table 4.2 and the resulting confusion matrix is shown in figure 4.8.

The logistic regression model performs better than the trained BERT model by
avoiding the large number of false positives predicted by the BERT model. This
performance advantage makes sense as more traditional statistical models tend to
perform better when the sample size is smaller. In contrast, transformer models
tend to gain the edge when the complexity of the task increases and the number
of data samples is large.

There are two possible explanations for the performance advantage seen in
the logistic regression model. Firstly, the sample size might be so small that the
model cannot learn and generalize the meaning of what text constitutes a secur-
ity incident. Secondly, the complexity of the data might be so low that the more
straightforward statistical methods can accurately identify and model the mean-
ing. Thus the complexity of the BERT model only results in the fact that more data
is required to model the same meaning. We can see some indication of this in the
word clouds in figure 4.3 and 4.4, where there is a clear distinction in words used
between the two classes. This distinction suggests that a significant amount of in-
formation can be derived from the words used rather than the context in which
they are used, making the classification task simpler.

Ultimately, the results indicate that state of the art NLP models can be trained
to classify text concerning security incidents as stated in h1 in 1.1, but not in a
strong sense and not necessarily with good enough accuracy to be used for the
proposed method of automated security incident impact analysis. Furthermore,
h2 was disproven as the better performance was achieved using logistic regres-
sion. However, a better result might have been achieved given more data or better
tuning of the BERT model, but this depends on whether the result was mainly due
to the simplicity of the attempted classification class of security incidents or the
low sample size.

Model Accuracy F1 Precision Recall ROC AUC
BERT Fine-tuned 0.9801 0.2667 0.1587 0.8333 0.9070
Naive Bayes 0.9957 0.0000 0.0000 0.0000 0.5000
Logistic Regression(LR) 0.9957 0.1429 0.5000 0.0833 0.5415
LR weighted 0.9957 0.7586 0.6471 0.9167 0.9572

Table 4.2: Model Performance
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Figure 4.5: Confusion Matrix for BERT model

Figure 4.6: Confusion Matrix for Naive Bayes model
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Figure 4.7: Confusion Matrix for Logistic Regression model

Figure 4.8: Confusion Matrix for Logistic Regression model with class imbalance
adjustments
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4.2.2 Model Architecture and Training

Figure 4.9 and figure 4.10 shows the accuracy and the loss of the model over
the training epochs. As we can see from the graph, the model undergoes signi-
ficant improvement in accuracy over the first couple of epochs. We see a gradual
and steady reduction in the loss over the training period. The accuracy figure 4.9
converges and flattens towards the end of the training period. This behaviour is
usually a good thing as it indicates that the model has generalized itself such that
the performance on the training data is transferred to the validation data. It will
be a sign of overfitting if we see the validation performance drop while the accur-
acy increases; this behaviour is not present in the result. The loss graph in figure
4.10 is steadily decreasing, which again is a good sign that the training is effective.
It is worth noting the difference between accuracy and loss. Validation accuracy
measures the differences between the model’s predictions and the actual label. In
comparison, loss measures the absolute difference between the predicted value
and the actual label. For example, if the model predicts a 0.85 security incident in
its last neuron, it will be rounded to 1 and compared to 1 when measuring accur-
acy; this gives no negative impact. However, when measuring loss, the absolute
value of 0.85 is used, and thus the loss is 0.15 even if the prediction would have
been correct. The model is training on accuracy; therefore, it is possible to have a
situation where the loss is increasing, but the model’s predictive accuracy is still
growing.

Figure 4.9: BERT Model Accuracy over Epochs

The final model architecture can be seen in figure 4.11. It consists of a single
768 neuron layer before collapsing to a single neuron layer which indicates the
class. Multiple more complex architectures with additional layers were tested, but
they all had equal or worse performance. This again indicates either a lack of data
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Figure 4.10: BERT Model Loss over Epochs

or a lack of complexity in the classification task.

Figure 4.11: Final Bert Model Architecture

4.3 Event Study

4.3.1 All Events

Overall, the event study shows that the impact of security incidents on stock prices
is negative, with a p-value of 0.01. The CAAR for all the 170 identified unique
events was -2.3 per cent after ten days and -4.3 per cent after 50 days. This can be
seen in table 4.3 and figure 4.12 for the 15 day event window, and table 4.4 and
figure 4.13 for the 75 day event window. The asterisk behind the CAAR number
indicates a significance level >99 for ***, >95 for **,and >90 for *. Interest-
ingly, as can be seen from figure 4.12 the impact is notable sometime before the
event date. There are two possible explanations for the earlier observed impact.
The first is that news agencies are not the first to discover the information re-
garding security incidents. The second is that one security incident might contain
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multiple news articles, thus shifting the aggregate observed impact on the event
window timeline. Both explanations are likely to be present in this dataset. The
event study also shows what we would expect regarding removing random noise.
When looking at the 75-day event window in figure 4.13 the CAAR line tracks the
market until it gets close to the event date, and then it starts to drop until it again
stabilizes and starts tracking the market again.

Figure 4.12: CAAR of all events. Event window: (-5, 10)

4.3.2 Big Cap Tech Stocks

A quarter of the input events are about large-cap tech firms. When reviewing
the news articles that make up these events, they do not seem to represent a
security incident in which the large-cap firms are heavily involved or affected.
When isolating the events affecting these firms (Microsoft, Apple and Google),
we get 46 events. When performing an event study on these events, we get table
4.7 and figure 4.14, which shows that there is no statistically significant impact
from the events on the stock price. This observation also holds true when looking
at a longer event window as can be seen in figure 4.15 and table 4.8.

Furthermore, when performing an event study with the events from large-
cap tech stocks (Microsoft, Apple and Google) removed, see figure 4.16 and table
4.5. This observation of no effect also holds true when moving to longer event
windows as can be seen in figure 4.17 and table 4.6. These results show that the
impact of the events on the stock price is not significant for the larger firms that are
heavily involved with technology. This fact also coincides with the observation that
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Table 4.3: Event study of all events. Event window: (-5, 10)

Day AAR Std. E. AAR CAAR Std. E. CAAR T-stat P-value
-5 -0.003 0.00208 -0.003 0.00208 0.12 0.83
-4 -0.001 0.00208 -0.004 0.00294 0.15 0.71
-3 -0.003 0.00208 -0.001 0.00360 0.22 0.83
-2 -0.002 0.00208 -0.002 0.00415 0.37 0.71
-1 -0.001 0.00208 -0.002 0.00464 0.53 0.59
0 -0.005 0.00208 -0.007 0.00509 1.37 0.17
1 -0.013 0.00208 -0.02 *** 0.00549 3.66 0.00
2 -0.000 0.00208 -0.02 *** 0.00587 3.47 0.00
3 0.001 0.00208 -0.02 *** 0.00623 3.18 0.00
4 -0.003 0.00208 -0.022 *** 0.00657 3.41 0.00
5 0.001 0.00208 -0.021 *** 0.00689 3.04 0.00
6 0.001 0.00208 -0.02 ** 0.00719 2.74 0.01
7 -0.000 0.00208 -0.02 ** 0.00749 2.63 0.01
8 -0.003 0.00208 -0.023 *** 0.00777 2.90 0.00
9 -0.001 0.00208 -0.024 *** 0.00804 2.97 0.00
10 0.001 0.00208 -0.023 ** 0.00831 2.72 0.01

actual news events did not have the large tech firms as victims or heavily affected.
This connection strengthens the hypothesis that we can retrieve security incidents
from news articles and that the news articles are not just random noise. Still, at
the same time, it highlights a case where the assumption that a large portion of
events represents security incidents of material impact on the mentioned firm is
not true.

4.3.3 Reliability of Results

The results seem reliable; however, it is worth noting that the t-value is a bit
misleading. This is because the security incidents impact the market a bit before
the studied event date. Therefore the t-value is, in fact, more significant than
what is shown in the calculations. As an example, we can see in table 4.6 that the
t-value starts somewhere around two and moves to somewhere around -2; thus,
the actual t-value, if the event date is adjusted to when the impact in the market
appears, is going to be more significant.

The P-value is at 0.01 for both the studied event windows and the set including
all stocks and the set with large-cap tech stocks removed. This indicates that the
event study is reliable and that the signal we wanted to retrieve is indeed present.
Furthermore, the fact that this result is not present in the large-cap tech stocks
matches the expected results when looking at the contents of the news articles
that make up the event study.

Hogan et al. [4] conducted an event study looking into data breaches which
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Figure 4.13: CAAR of all events. Event window: (-25, 50)

is a subset of the events that are studied here. The results can be seen in table
4.9. The loss percentage of 2% and 4% in the event windows of (-5, 10) and (-
25, 50) are somewhat in line with previous studies. Hogan et al. looked at events
that occurred until 2019, while the event study we are conducting looks at events
from march 2019 to march 2022. Therefore there is likely little overlap between
the two event studies regarding input events. Nevertheless, the results are very
similar. They both have a slow initial loss, followed by a more significant loss
over an extended period. The time this occurs is shorter in the event study we
are conducting. One possible explanation for this is that the market is becoming
more efficient and can more quickly and accurately price the impact. Hogan et
al. found a more significant loss percentage is also expected. There are several
possible explanations for this:

1. Companies are becoming more mature and therefore do not have as signi-
ficant losses when a security incident occurs as they did in the past.

2. There is an increase in disclosure laws that are more strict than in the past,
forcing companies to disclose incidents that would not have been disclosed
in the past.

3. The subset of events that Hogan et al. are looking at (data breaches) is more
severe in terms of costs than the broader term security incidents.

4. This event study will likely have events where the studied company was not
affected, which will reduce the loss percentage.

These effects are likely to be present in the event study. However, determining
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Table 4.4: Event study of all events. Event window: (-25, 50).

Day AAR Std. E. AAR CAAR Std. E. CAAR T-stat P-value
-25 -0.003 0.00214 -0.003 0.00214 1.39 0.16
-24 -0.001 0.00214 -0.004 0.00302 1.43 0.15
-23 -0.002 0.00214 -0.002 0.00370 0.61 0.54
-22 0.003 0.00214 -0.005 0.00427 1.22 0.22
-21 -0.003 0.00214 -0.002 0.00478 0.37 0.71
... ... ... ... ... ... ...
46 -0.003 0.00214 -0.043 ** 0.01813 -2.36 0.02
47 -0.002 0.00214 -0.045 ** 0.01825 -2.45 0.01
48 0.002 0.00214 -0.043 ** 0.01838 -2.34 0.02
49 0.002 0.00214 -0.041 ** 0.01850 -2.21 0.03
50 -0.002 0.00214 -0.043 ** 0.01862 -2.32 0.02

how much each of these effects contributes to the loss percentage is not easy. Also,
looking into more long-term effects is impossible due to the recency of most of the
events. There is also a possibility that the news as a source will bias events to be
more severe since the more severe an event is, the more likely there is for a news
article to be written. Similarly, a more severe event is more likely to have multiple
news articles; if these all fall within the studied event window, the expected effect
is an increase in the weighting of the event by the number of articles written when
the average impact is calculated.

Ultimately it appears that the event study supports hypothesis h3 as described
in 1.1 and that events extracted from news articles can be used in an event study
to gain insight into the cost impact of security incidents. Furthermore, the results
fall in line with previous studies, which further strengthens the confidence in h3.
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Figure 4.14: CAAR of big tech stock events. Event window: (-5, 10)

Figure 4.15: CAAR of big tech stock events. Event window: (-25, 50)
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Figure 4.16: CAAR without big tech stock events. Event window: (-5, 10)

Figure 4.17: CAAR without big tech stock events. Event window: (-25, 50)
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Table 4.5: Event study without big tech stock events. Event window: (-5, 10)

Day AAR Std. E. AAR CAAR Std. E. CAAR T-stat P-value
-5 0.003 0.0026 0.003 0.00260 1.29 0.20
-4 0.002 0.0026 0.005 0.00368 1.36 0.17
-3 -0.004 0.0026 0.001 0.00450 0.25 0.80
-2 -0.002 0.0026 -0.001 0.00520 -0.26 0.79
-1 -0.001 0.0026 -0.003 0.00581 -0.46 0.64
0 -0.005 0.0026 -0.008 0.00637 -1.25 0.21
1 -0.017 0.0026 -0.025 *** 0.00688 -3.69 0.00
2 -0.001 0.0026 -0.026 *** 0.00735 -3.56 0.00
3 -0.000 0.0026 -0.027 *** 0.00780 -3.41 0.00
4 -0.003 0.0026 -0.03 *** 0.00822 -3.61 0.00
5 0.002 0.0026 -0.028 *** 0.00862 -3.22 0.00
6 0.001 0.0026 -0.026 *** 0.00901 -2.93 0.00
7 0.000 0.0026 -0.026 ** 0.00937 -2.80 0.01
8 -0.004 0.0026 -0.03 *** 0.00973 -3.07 0.00
9 -0.002 0.0026 -0.031 *** 0.01007 -3.13 0.00
10 0.001 0.0026 -0.031 *** 0.01040 -2.95 0.00

Table 4.6: Event study without big tech stock events. Event window: (-25, 50)

Day AAR Std. E. AAR CAAR Std. E. CAAR T-stat P-value
-25 0.004 0.0027 0.004 0.00270 1.61 0.11
-24 0.001 0.0027 0.005 0.00382 1.31 0.19
-23 -0.002 0.0027 0.003 0.00468 0.54 0.59
-22 0.005 0.0027 0.007 0.00540 1.32 0.19
-21 -0.004 0.0027 0.003 0.00604 0.56 0.58
... ... ... ... ... ... ...
46 -0.003 0.0027 -0.06 ** 0.02290 -2.62 0.01
47 -0.002 0.0027 -0.061 ** 0.02306 -2.67 0.01
48 0.002 0.0027 -0.06 ** 0.02322 -2.57 0.01
49 0.002 0.0027 -0.057 ** 0.02338 -2.46 0.01
50 -0.003 0.0027 -0.06 ** 0.02353 -2.57 0.01
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Table 4.7: Event study with big tech stock events. Event window: (-5, 10)

Day AAR Std. E. AAR CAAR Std. E. CAAR T-stat P-value
-5 0.003 0.00307 0.003 0.00307 0.90 0.37
-4 -0.001 0.00307 0.002 0.00434 0.50 0.62
-3 -0.002 0.00307 -0.0 0.00531 -0.04 0.97
-2 -0.002 0.00307 -0.002 0.00614 -0.33 0.74
-1 0.000 0.00307 -0.002 0.00686 -0.27 0.79
0 -0.002 0.00307 -0.004 0.00752 -0.56 0.57
1 -0.001 0.00307 -0.005 0.00812 -0.67 0.50
2 0.001 0.00307 -0.004 0.00868 -0.50 0.62
3 0.003 0.00307 -0.001 0.00921 -0.10 0.92
4 -0.001 0.00307 -0.002 0.00970 -0.23 0.82
5 0.000 0.00307 -0.002 0.01018 -0.19 0.85
6 0.001 0.00307 -0.001 0.01063 -0.12 0.90
7 -0.000 0.00307 -0.001 0.01106 -0.14 0.89
8 -0.001 0.00307 -0.002 0.01148 -0.19 0.85
9 -0.001 0.00307 -0.003 0.01188 -0.23 0.82
10 0.003 0.00307 -0.0 0.01227 -0.01 0.99

Table 4.8: Event study with big tech stock events. Event window: (-25, 50)

Day AAR Std. E. AAR CAAR Std. E. CAAR T-stat P-value
-25 -0.001 0.00309 -0.001 0.00309 0.81 0.37
-24 0.003 0.00309 0.003 0.00437 0.59 0.55
-23 -0.001 0.00309 0.002 0.00535 0.30 0.77
-22 -0.001 0.00309 0.0 0.00618 0.03 0.98
-21 -0.003 0.00309 -0.003 0.00691 -0.37 0.71
... ... ... ... ... ... ...
46 -0.002 0.00309 0.003 0.02622 0.12 0.91
47 -0.003 0.00309 0.0 0.02641 0.01 0.99
48 0.002 0.00309 0.002 0.02659 0.07 0.94
49 0.001 0.00309 0.003 0.02677 0.12 0.90
50 -0.000 0.00309 0.003 0.02694 0.10 0.92

Table 4.9: Event study results from Hogan et al. [4].

Day CAR p-value
-1,+30 -0.22% 0.099
-1,+60 -0.81% 0.001
-1,+180 -3.64% 0.001
-1,+250 -7.46% 0.001





Chapter 5

Future Work

The primary drawback of this study is the resulting positive sample size, which
was around 200, and has the possibility of some impurity in the dataset. Therefore
the most important thing to look into when iterating on this work is increasing
the sample size. Particularly concerning improving the performance of the BERT
model, this could provide significant improvements. Furthermore, looking into
different parameters and configurations of BERT model could provide additional
insights.

Another major drawback of this study is the lack of a fully integrated approach.
This integrated approach would entail starting with unclassified news articles,
classifying them as security incidents, and passing the positive events into an event
study. This approach would also entail using test data from start to finish. Not
attempting an integrated result was done due to the limited sample size. Still, it
would be fascinating to examine how both the BERT and the logistic regression
models perform when the raw predictions are passed to an event study where the
sample size is large enough to provide a statistically significant result.

Another avenue worth looking into is revisiting the current data later and
looking at longer event windows, as the repercussions of security incidents often
play out over long time horizons.

The event study is quite decent, but possible improvements could be using a
complete market benchmark, a Fama 5-factor benchmark, or a representative peer
benchmark based on the victim companies.
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Chapter 6

Conclusion

The primary goal of this thesis was to develop a method to analyse the impact of
security incidents automatically. The technique developed in this thesis covers the
following steps:

• How to acquire the data of which a subset is security incidents.
• How to extract security incidents from the data.
• How to compute the impact from the extracted incidents.

Overall the method shows promise and would be interesting to revisit with
out-of-sample data.

Additionally and related, the thesis investigated the following hypothesises:

• h1 State of the art NLP models can be trained to classify text concerning
security incidents.
• h2 State of the art NLP models achieve better results when classifying news

articles concerning security incidents than more straightforward machine
learning methods.
• h3 News articles concerning security incidents can be used to conduct an

event study and give insight into the impact of security incidents on stock
prices.

Confidence in the first hypothesis(h1) was strengthened, but the resulting per-
formance was worse than what would be ideal.

The second hypothesis(h2) was refuted, as better performance was achieved
using logistic regression. This worse performance indicates that the classification
task is simple or that the sample size of positive samples was too small.

Confidence in the third hypothesis(h3) was strengthened, and the results were
in line with previous studies.

39





Bibliography

[1] K. M. Gatzlaff and K. A. McCullough, ‘The effect of data breaches on share-
holder wealth,’ Risk Management and Insurance Review, vol. 13, no. 1, pp. 61–
83, 2010.

[2] K. Campbell, L. A. Gordon, M. P. Loeb and L. Zhou, ‘The economic cost
of publicly announced information security breaches: Empirical evidence
from the stock market,’ Journal of Computer security, vol. 11, no. 3, pp. 431–
448, 2003.

[3] E. Amir, S. Levi and T. Livne, ‘Do firms underreport information on cyber-
attacks? evidence from capital markets,’ Review of Accounting Studies, vol. 23,
no. 3, pp. 1177–1206, 2018.

[4] K. M. Hogan, G. T. Olson and M. Angelina, ‘A comprehensive analysis of cy-
ber data breaches and their resulting effects on shareholder wealth,’ Avail-
able at SSRN 3589701, 2020.

[5] J. Pennington, R. Socher and C. D. Manning, ‘Glove: Global vectors for word
representation,’ in Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), 2014, pp. 1532–1543.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł.
Kaiser and I. Polosukhin, ‘Attention is all you need,’ in Advances in neural
information processing systems, 2017, pp. 5998–6008.

[7] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, ‘Bert: Pre-training of
deep bidirectional transformers for language understanding,’ arXiv preprint
arXiv:1810.04805, 2018.

[8] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., ‘Lan-
guage models are unsupervised multitask learners,’ OpenAI blog, vol. 1,
no. 8, p. 9, 2019.

[9] J. Liu, T. Singhal, L. T. Blessing, K. L. Wood and K. H. Lim, ‘Crisisbert: A
robust transformer for crisis classification and contextual crisis embedding,’
in Proceedings of the 32nd ACM Conference on Hypertext and Social Media,
2021, pp. 133–141.

[10] Y. Qiao, C. Xiong, Z. Liu and Z. Liu, ‘Understanding the behaviors of bert
in ranking,’ arXiv preprint arXiv:1904.07531, 2019.

41



42 Johan Selnes: Automated Analysis of the Impact of Security Incidents on Company Value

[11] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,
Y. Cao, Q. Gao, K. Macherey et al., ‘Google’s neural machine translation
system: Bridging the gap between human and machine translation,’ arXiv
preprint arXiv:1609.08144, 2016.

[12] V. Sanh, L. Debut, J. Chaumond and T. Wolf, ‘Distilbert, a distilled version of
bert: Smaller, faster, cheaper and lighter,’ arXiv preprint arXiv:1910.01108,
2019.

[13] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization,’ arXiv
preprint arXiv:1412.6980, 2014.

[14] S. L. Smith, P.-J. Kindermans, C. Ying and Q. V. Le, ‘Don’t decay the learning
rate, increase the batch size,’ arXiv preprint arXiv:1711.00489, 2017.

[15] E. Hoffer, I. Hubara and D. Soudry, ‘Train longer, generalize better: Closing
the generalization gap in large batch training of neural networks,’ arXiv
preprint arXiv:1705.08741, 2017.

[16] E. F. Fama, L. Fisher, M. Jensen and R. Roll, ‘The adjustment of stock prices
to new information,’ International economic review, vol. 10, no. 1, 1969.

[17] A. C. MacKinlay, ‘Event studies in economics and finance,’ Journal of eco-
nomic literature, vol. 35, no. 1, pp. 13–39, 1997.



Appendix A

Listed Tickers Not Found on
Reuters

• ABVC
• ADN
• AGGR
• AGRI
• AIP
• AKU
• ALRM
• ALR
• AMZN
• ANGI
• APAC
• ASAX
• ASO
• AUR
• AVCT
• AXON
• BFI
• BIOS
• BLU
• BNR
• BRPM
• BSY
• BTB
• BWV
• CALT
• CCB
• CENN
• CERT

• CHRW
• CHX
• CIFR
• CLST
• CMMB
• COOP
• CYN
• CYT
• DAVE
• DDI
• DH
• DICE
• DISA
• DSP
• EAR
• ECOR
• EMBC
• EPAY
• ERIC
• EVO
• FCNCA
• FCCO
• FBMS
• FFHL
• FLWS
• FRBA
• FSTR
• GATE

• GBS
• GDS
• GEG
• GET
• GGR
• GP
• GRAY
• GREE
• GROW
• GROM
• GTH
• HERA
• HOUR
• HYW
• IBCP
• IBRX
• IBEX
• INDI
• INAB
• INDB
• INM
• INVO
• IRCP
• ISLE
• IVA
• JD
• JRSH
• KRON

• KSCP
• KSI
• LI
• LIAN
• LUNG
• LUXA
• MACA
• MACAU
• MASS
• MAYS
• MF
• MILE
• MNMD
• MOGO
• MON
• MOR
• MQ
• MTP
• NARI
• NEXI
• NVAC
• OB
• OLB
• ONYX
• OPEN
• ORIA
• OSTK
• OTEC
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• OXAC
• PARA
• PBHC
• PCOM
• PCX
• PEAR
• PECO
• PFC
• PIK
• PNT
• POET
• PRLD
• PROC
• PROF
• PRSO
• PRVA
• QSI
• RAIN
• RCRT
• RENO
• RGF
• RIDE
• RILY
• RILYG
• RILYN
• RILYO
• RILYP
• RILYZ
• RMCF
• ROSE
• SAGAR
• SANB
• SANG
• SEAT
• SERA
• SEV
• SHC
• SLAM
• SNT
• SOFI
• SOHU
• SRSA
• SSAA
• SSP

• STAB
• STRC
• STRN
• SV
• TASK
• TATT
• TCFC
• TCOM
• TERN
• TIGO
• TIL
• TMC
• TROW
• TSP
• UCL
• UK
• UPC
• VELO
• VEON
• VIEW
• VIRC
• VLON
• VS
• WIX
• WMG
• WRAP
• XM
• XTLB
• ZEAL
• ADEX
• AGM.A
• AKO.A
• AKO.B
• AKA
• ALLG
• AMR
• AMUB
• AOS
• APN
• ATCO
• ATC
• ATEK
• AUD
• AUS

• BDCZ
• BEKE
• BF.A
• BF.B
• BH.A
• BHG
• BILL
• BIO.B
• BITE
• BODY
• BRD
• BRK.A
• BRK.B
• BRMK
• BROS
• BUR
• CARR
• CARS
• CCO
• CELG^
• CIG.C
• CION
• CLAS
• CLIM
• CMCL
• CND
• COMP
• COOK
• COUR
• CRD.A
• CRD.B
• CRM
• CTK
• CWEN.A
• DC
• DDL
• DEN
• DESP
• DGP
• DGZ
• DHI
• DLY
• DMS
• DNZ

• DTC
• DZZ
• EBR.B
• ELF
• EP
• EURN
• FACT
• FBGX
• FEDU
• FNB
• FSR
• FVT
• GEF.B
• GENI
• GFX
• GIA
• GIC
• GTN.A
• HEI.A
• HIMS
• HPX
• HSBC
• HUGS
• HVT.A
• IAA
• IBO
• IDW
• IH
• IHS
• INFA
• IVT
• JILL
• JOE
• KD
• KIND
• LEAP
• LEN.B
• LEV
• LGF.A
• LGF.B
• LTH
• LU
• MDH
• MIO
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• MIT
• MKC.V
• ML
• MLPB
• MOG.A
• MOG.B
• MP
• MSC
• NAPA
• NETC
• NETI
• NILE
• NTB

• NWG
• NYC
• OLO
• OPA
• ORLA
• OSI
• OTIS
• OWL
• OZ
• PAY
• PBR.A
• PICC
• POLY

• PTA
• PV
• QS
• RAAS
• RBA
• RCC
• RCFA
• RDY
• RMO
• ROSS
• SAK
• SII
• WDI

• WE
• WNS
• WOLF
• WRB
• WSO.B
• YETI
• YSG
• ZTEST
• ZTO
• ABVC
• BON
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