
A scalable approach to video indexing and search
Fredrik W

ilhelm
 Thon Reite

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Fredrik Wilhelm Thon Reite

A scalable approach to video
indexing and search

For use in the identification of fragmented and
transformed image/video files

Master’s thesis in Information Security
Supervisor: Lasse Øverlier
June 2022

M
as

te
r’s

 th
es

is

Fredrik Wilhelm Thon Reite

A scalable approach to video indexing
and search

For use in the identification of fragmented and
transformed image/video files

Master’s thesis in Information Security
Supervisor: Lasse Øverlier
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Abstract

Although a decade ago it was both feasible and normal to use standard relational
databases for most types of data storage, the amount of generated data has since
then grown exponentially, requiring new innovations to be made in the way of
both indexing and processing methods. This, to enable performing video iden-
tification at a sufficient enough scale. As such we have in this thesis developed
pyClipNSearchIt, which is a highly performant video identification method espe-
cially tailored for big data applications. Using a combination of smart architectural
design, as well as the cutting edge FENSHES technique for performing hemming
distance comparisons inside full-text NoSQL engines, we display in our approach
a significant improvement over earlier available video identification methods such
as PYVIDID. Specifically, in measureable areas such as speed, size reduction and
accuracy. The final result is a highly scalable and cost efficient system, which can
easily be used by professional and non-professional actors alike.

iii

Sammendrag

Selv om det for et par år siden var både mulig og normalt å bruke tradisjonelle
relasjonsdatabaser for de fleste typer datalagring, har det i de senere årene blitt
vanskeligere og vanskeligere å håndtere eksponentielt økende datamengder. Det
har derfor måttet blitt gjort nye innovasjoner innenfor video identifikasjons feltet,
for å muliggjøre både rask indeksering og behandling av data i større skala. En av
disse innovasjonene er pyClipNSearchIt, som er en ny video identifikasjonsmet-
ode skreddersydd for bruk i prosesseringen av "big data". Dette har vi oppnådd
gjennom en kombinasjon av smart design, samt bruk av metoden FENSHES for
å gjennomføre hemming distanse kalkulasjoner direkte i NoSQL søk. Konsekvent
har dette medført en betydelig forbedring innen målbare områder som hastighet,
størrelsesreduksjon og nøyaktighet i sammenligning med tidligere kjente metoder
som PYVIDID. Det endelige slutt resultatet er derfor et mer skalerbart og kostnad-
seffektivt video identifikasjons system, som enkelt kan benyttes av både profes-
jonelle og ikke-profesjonelle aktører.

v

Acknowledgements

I would first and foremost, like to thank my supervisor Lasse Øverlier for his many
thoughtful comments and feedback throughout the entire semester. This thesis
would not be possible without his help. I would also like to state my sincere ap-
preciation of Matylda Stefanska for taking the time out of her busy schedule to
review and correct my many, many rough drafts. Lastly, I extend a heartfelt thanks
to my Dad for his as always - unwavering support. Thank you all.

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgements . vii
Contents . ix
Figures . xiii
Tables . xv
Code Listings . xvii
1 Introduction . 1

1.1 Covered Topics . 1
1.2 IEEE Keywords . 1
1.3 Problem Description . 1
1.4 Justification, Motivation and Benefits 2
1.5 Research Questions . 2
1.6 Planned Contributions . 2

2 Background . 3
2.1 Content Identification . 3

2.1.1 Traditional . 4
2.1.2 Machine Learning . 6

2.2 Existing Solutions . 7
2.2.1 Griffeye . 7
2.2.2 PhotoDNA . 8
2.2.3 Youtube Content ID . 9
2.2.4 CLIPPED . 10
2.2.5 PYVIDID . 11

3 Methodology . 13
3.1 Research . 13

3.1.1 Collection . 14
3.1.2 Processing . 14
3.1.3 Presentation . 14

3.2 Setup . 14
3.2.1 Frontend . 15
3.2.2 Backend . 17

3.3 Dataset . 18
3.4 Experiments . 19

ix

x Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

4 Results . 21
4.1 Implementation . 21

4.1.1 Hashing . 22
4.1.2 Indexing . 26
4.1.3 Searching . 27

4.2 Source Code . 30
4.3 Experiments . 30

4.3.1 Size Reduction . 30
4.3.2 Speed . 31
4.3.3 Accuracy . 35

5 Discussion . 37
5.1 Experiments - Size Reduction . 38
5.2 Experiments - Speed . 39

5.2.1 Hashing . 39
5.2.2 Indexing . 40
5.2.3 Searching . 41

5.3 Experiments - Accuracy . 42
5.3.1 Fragmented . 42
5.3.2 Transformed . 43

5.4 Potential Applications . 44
5.4.1 Video Source Finder . 44
5.4.2 Forensic Investigations . 44
5.4.3 Copyright Enforcement . 45

6 Future Work . 47
6.1 Low-hanging Fruit . 47

6.1.1 Additional file metadata . 47
6.1.2 Native phash functionality . 48
6.1.3 Greater size-reduction . 48
6.1.4 Detection of temporal continuity 48
6.1.5 Graphical user interface . 48
6.1.6 Better error handling . 49

6.2 High-hanging Fruit . 49
6.2.1 C/C++ port . 49
6.2.2 Native FFmpeg functionality . 49
6.2.3 Better perceptual hashing algorithm 50

7 Conclusion . 51
Bibliography . 53
A Frontend setup script . 59
B Default pyClipNSearchIt configuration . 63
C Backend setup script . 65
D Elasticsearch nodes configuration . 69
E Multimedia Commons download script 77
F Tool - Count hashes script . 79
G Tool - Extract clips script . 81

Contents xi

H Tool - Transform videos script . 85

Figures

2.1 The user interface of GriffEye . 7
2.2 The official explanation of how PhotoDNA works according to a

Microsoft blog article . 8
2.3 The user interface of CLIPPED . 10

4.1 The number of hashes produced at different pyClipNSearchIt settings 31
4.2 The mean average measurements from hashing a single video 10

times . 32
4.3 The mean average measurements from indexing a dataset 10 times 33
4.4 The mean average measurements from searching for a specific video

10 times in the combined video + image dataset 35

5.1 The number of generated hashes from the video dataset before and
after applying intra-video duplicate hash removal 38

5.2 The mean average measurements from hashing a single video 10
times compared to PYVIDID . 39

5.3 The mean average measurements from indexing a video dataset 10
times compared to PYVIDID . 40

5.4 The mean average measurements from searching for a specific video
10 times in the combined video+ image dataset compared to PYVIDID 41

xiii

Tables

3.1 Desktop Windows specifications . 16
3.2 Virtual Ubuntu master node specifications 16
3.3 Virtual Ubuntu Elasticsearch node specifications 18

4.1 The accuracy for different types of fragmented clip searches 36
4.2 The accuracy for different types of transformed full clip searches . . 36

5.1 The best measured accuracy for fragmented clip searches compared
to PYVIDID . 42

5.2 The best measured accuracy for different types of transformed full
clip searches compared to PYVIDID . 43

xv

Code Listings

3.1 Frontend component of the pyClipNSearchIt configuration file . . . 16
3.2 Backend component of the pyClipNSearchIt configuration file 18

4.1 Excerpt from src/hasher/preprocess.py 23
4.2 Excerpt from src/util.py . 24
4.3 Excerpt from src/hasher/process.py . 25
4.4 Excerpt from src/database/index.py 26
4.5 Excerpt from src/database/search.py (query) 27
4.6 Excerpt from src/database/search.py (search) 28
4.7 Time measurement in src/hasher/__init__.py 32
4.8 Time measurement in src/database/__init__.py (indexing) 33
4.9 Time measurement in src/database/__init__.py (search) 34

A.1 Python script for setting up the desktop/master frontend environment 59

B.1 JSON file for configuring the pyClipNSearchIt settings 63

C.1 Python script for setting up the Elasticsearch backend environment 65

D.1 Elasticsearch.yml node-1 (master) configuration 69
D.2 Elasticsearch.yml node-2 (data, ingest) configuration 71
D.3 Elasticsearch.yml node-3 (data, ingest) configuration 73

E.1 Python script for downloading a small subset of the Multimedia
Commons dataset . 77

F.1 Python script for counting the number of hashes in a .pregenhashes
file . 79

G.1 Python script for extracting fragments/clips from videos 81

H.1 Python script for applying transformations to a video set 85

xvii

Chapter 1

Introduction

1.1 Covered Topics

In database systems the term "indexing" refers to the process by which data is
stored to improve data query and retrieval speed. The most common method by
which this is done is key-value association. Both traditional SQL databases and
new "NoSQL" databases support this type of indexing, but the latter is typically
more suited for the storage and processing of big data. This is because NoSQL
databases scale better horizontally at the cost of consistency; also known as the
concept of eventual consistency.

In this thesis, we wish to take advantage of the various benefits that a NoSQL
database brings over a traditional SQL database, presenting a new approach to
improving the scalability and speed of video/image content identification over
previously published research [1]. The topics covered by this project will therefore
range from perceptual hashing to data storage and size reduction of big data.

1.2 IEEE Keywords

Image recognition, Image databases, Multimedia databases, Scalability, Indexing,
Big data applications

1.3 Problem Description

Whilst a decade ago it was both feasible and normal to use a standard relational
database for most types of non-blob data storage, the volume of data has since
then grown exponentially [2], requiring new innovations to be made to meet the
storage and processing requirements of today. As such, the question of "Does it
scale?", i.e. scalability, is no longer a strange or unfamiliar concept, but rather
something all "Big Data" companies have to deal with on a daily basis. In particular,
scalability has been essential in the area of content indexing and identification,

1

2 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

something especially Youtube has experienced with its growth as a platform and
the development of the Content ID system [3]. However as it currently stands,
there are few or no easily accessible methods for creating systems of a similar size
and purpose that other companies and the open source community might take
advantage of.

1.4 Justification, Motivation and Benefits

One of the primary motivations for attempting to solve the problems listed in the
previous section, is to allow more sectors to make use of image/video content
identification systems. Existing products are either proprietary, struggle with a
large number of data, or only target a niche audience. This in turn, makes it harder
for companies to tailor a potential solution to their specific use-case without ex-
pending a large amount of resources. To remedy this, an open source solution
that easily scales in accordance with a company’s data size is a key candidate for
a master’s thesis.

1.5 Research Questions

In conjunction with the project supervisor the following research questions have
been defined as relevant to solve the research problem outlined in section 1.3:

R.1 Which effective techniques exist for performing content identification?
R.2 How do existing solutions tackle the problem of big data in terms of scalable

content identification and storage?
R.3 How can the overall size of indexed datasets be optimized?
R.4 What can be done to improve the hashing, indexing and search times for

very large datasets?

In essence the focus is on determining how others have tried to solve the prob-
lem, and how this project will differ in its solution. Therefore, the answers to the
latter two questions are key to the value and quality of the resulting thesis.

1.6 Planned Contributions

The intended end result of this master’s thesis is a better and more accessible
method of creating an easy-to-use scalable video/image indexing database for use
in the search and identification of fragmented and transformed files. Although
there already exist some frameworks and methodologies aiming to achieve the
very same goals, e.g. Griffeye [4] and PhotoDNA [5], this thesis will differ in its
open source approach based on new research [6], allowing a broader community
to make use of the final results.

Chapter 2

Background

In this chapter we discuss the background and related work underlying our thesis’
presented results, exhibiting how previously published papers and technical solu-
tions can come together to serve as the starting point for what is new and excit-
ing experimental research; as is the case with our approach to a scalable video
indexing and search method for use in the identification of fragmented and/or
transformed image/video files. In summary, this involved looking into what the
already established methods for performing content identification were, and then
researching how these methods were respectively used in different video/image
identification systems as GriffEye, Youtube Content ID, PYVIDID, etc. With re-
gards to the paper’s topic of scalability, we also investigated how each of these
systems were built to store and process - both successfully and unsuccessfully,
large amounts of data.

2.1 Content Identification

For ease of understanding, all of the available content identification methods that
we explore in this paper are divided into one of the following two categories:
Traditional methods and Machine Learning (ML) based methods. The first cat-
egory classifies methods that do not contain a prerequisite "learning" step, instead
identifying image/video files purely based on simple1 algorithms which extract
and then compare individual file features against each other. Machine learning
based methods on the other hand, will require the initial model to be trained on
a prior dataset, but can arguably give more accurate results by operating as black
boxes that retain knowledge over time. That’s not say that one approach is bet-
ter than the other - as speed, simplicity and scalability are also important factors
when contemplating a traditional versus machine learning based content identi-
fication approach. Notably, the latter may also reuse or combine elements from
the former to establish the features that are used to train the model.

1Here we are referring to the fact that they do not retain knowledge from run to run

3

4 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

2.1.1 Traditional

Watermark

One of the earliest known approaches to performing content identification is the
visual watermarking method that was first developed in Fabriano, Italy, in 1282
[7]. At the time of its invention, the process involved raising the thickness of prin-
ted paper whilst it was still drenched in water to create an opposing effect of
visible lighter and darker spots, making it easy to discern legitimate from illegitim-
ate prints. As time passed however, both the original watermark process and term,
evolved to encompass more than simple thickness variability. With the Dandy Roll
process invented by John Marshall in 1826 it became possible to impress water-
coated metal stamps onto paper, and the Cylinder Mould process developed in
1848 allowed users to create high precision greyscale prints of varying density.
The most recent innovation in the world of watermarking is digital watermark-
ing; the term coined by Andrew Tirkel et al. in the 1992 paper "Electronic Water
Mark" [8].

In contrast to traditional physically based watermarks, an electronic/digital
watermark can consist of more than just visual artefacts. For example, in one case
a digital watermark can be a simple binary blob that is hidden deep inside a file,
whilst in another it may appear as a semi-transparent logo in the corner of a di-
gital image or video frame. Most commonly, this type of watermark is used for
the purpose of enforcing material copyright protection, but there are also many
other examples of relevant use-cases such as military document classification and
forensics identification. In any case, digital watermarks can serve as a perfectly
valid option for content identification, even retaining the ability to identify frag-
mented clips from longer videos if the watermark is visual in nature. That being
said, the latter approach is definitely harder to detect algorithmically and at scale
without the help of machine learning. Additionally, it should be noted that visual
watermarks have been criticized by many researchers as being not robust and easy
to remove [9][10][11].

Signature

Another popular method for identifying digital content, is to transform a given
input’s individual and distinctive features into one or more (relatively speaking),
compressed signatures. For instance, by taking the binary content of a file and then
running it through a hashing function like SHA256, it is possible to generate an
unique 256 bit long signature that will always represent the contents of that par-
ticular file. However, as a potential following downside, the cryptographic nature
of SHA256 will result in any bit size changes to the original input creating an
entirely different output signature. This unfortunately makes the described type
of hashing function nigh unusable for comparing the contents of two similar but
not identical files. Therefore, as a work around to this problem, one instead has

Chapter 2: Background 5

to use a fuzzy type of hashing function.

Fuzzy hashing is a category of non-cryptographic algorithms that aims to pro-
duce similar hashes/signatures for inherently closely related inputs. In practice,
this means that the algorithms do not have a cryptographic diffusion property
to them, but may still to a small degree keep the ability to hide the relationship
between an originating entity and a produced hash. Commonly, the technique has
been used in everything ranging from malware classification and information clus-
tering to copyright enforcement and image similarity comparisons [12][13][14].
The latter use-case is often based around hemming distance comparisons2 and
operates on a sub-category of fuzzy hashes, namely perceptual hashes.

Perhaps the most widely known implementations of perceptual hashing are
aHash and pHash. Both of these methods run on a per. image/frame basis to com-
press the displayed visual content into a corresponding hash signature. aHash’s
approach is based around averaging the high and low frequencies of an image
by reducing its size and then converting the remaining pixels to grayscale. After-
wards, a 64 bit hash can then be calculated by comparing the color value of each
pixel in the now 8x8 image against the mean color of the image. Pixels with a
color value above the mean will have their bit set to 1, whilst those below will be
0. The act of generating a pHash is unfortunately a bit more complicated, but can
in return offer more much more robust and accurate results than aHash [15]. First,
the image is resized to 32x32 pixels before a Discrete Cosine Transform (DCT) is
applied to convert the image into a spectrum of frequencies. Only the top left 8x8
of the resulting scalars are then kept to construct the final 64 bit hash. This is done
the exact same way aHash does it, just this time substituting the pixel colors for
DCT frequency values.

With regards to scalability, hemming distance comparisons between percep-
tual hash signatures have traditionally been done on a single machine. Although
this is fine for small datasets, if the goal is to scale up a content identification
system to identify images inside a database consisting of potentially thousands
or millions of videos, processing and memory resources will quickly turn scarce.
As such, in 2019 some researchers decided to look into options for performing
r-neighbour searches in hamming space, directly inside of the backing database
cluster. This method is known as FENSHES, and takes advantage of the capabil-
ities offered by the NoSQL database ElasticSearch to process large datasets very
quickly and return the lowest scoring matches. [6].

2The hemming distance between two binaries of equal length is the number of bits/positions
at which they differ, https://en.wikipedia.org/w/index.php?title=Hamming_distance&oldid=
1079111331

https://en.wikipedia.org/w/index.php?title=Hamming_distance&oldid=1079111331
https://en.wikipedia.org/w/index.php?title=Hamming_distance&oldid=1079111331

6 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

2.1.2 Machine Learning

Classic

A classic machine learning approach to performing content identification involves
preprocessing some input by means of e.g. principal component analysis3 (PCA),
and then feeding the output through either a state vector machine (SVM), neural
network (NN), or other similar types of ml models to interpret the given data. Typ-
ically this interpretation may come in the shape of a fingerprint/signature [16],
a label classification [17] or a cluster [18], but other types of outputs can also
be expected depending on how the used model is implemented. The only real re-
quirement is that the result should in and of itself represent an understanding of
the input’s underlying features.

In the paper "A Comparative Study of Support Vector Machine and Neural
Networks for File Type Identification using n-gram analysis" from March 2021,
Joachim Sester et al. showcase in their experiments that although most classic
machine learning models can provide a high degree of accuracy when used for
content identification, many of them will struggle with regards to scalability [19].
As such, the authors ended up giving no clear preference to any of the tested
ml models in their final results. Instead, they concluded that deep learning was
the best candidate for any future and better content identification approaches;
specifically, file type content identification methods.

Deep Learning

Deep learning is a modern4 subset of the broader machine learning family, char-
acterizing multi-layered artificial neural networks (DNN) that consist of three or
more processing layers [20]. It is an attempt at replicating how biological systems
typically process and interpret information; spitting out predictions based on what
the learned most valuable data features are. In the human brain, this process of
learning is represented by the creation and interaction of neurons, whilst it in the
DNN is represented by the fitting of the model’s multiple layers (neurons) through
backpropagation and/or gradient descent5. This fitting is either done supervised
or unsupervised. The former approach operates on pre-labeled datasets, whilst
the latter operates on unlabelled datasets - discovering hidden patterns in the
processed data without requiring human intervention.

3This is commonly done as a way of reducing data dimensionality by projecting multiple data
points onto just a few principal components, https://en.wikipedia.org/w/index.php?title=
Principal_component_analysis&oldid=1088263743

4Relatively speaking with regards to the current machine learning trends anno 2022, https:
//www.marktechpost.com/2022/01/13/top-deep-learning-trends

5Gradient descent is an optimization algorithm for finding the minima(s) of a differentiable func-
tion, https://en.wikipedia.org/w/index.php?title=Gradient_descent&oldid=1087292976

https://en.wikipedia.org/w/index.php?title=Principal_component_analysis&oldid=1088263743
https://en.wikipedia.org/w/index.php?title=Principal_component_analysis&oldid=1088263743
https://www.marktechpost.com/2022/01/13/top-deep-learning-trends
https://www.marktechpost.com/2022/01/13/top-deep-learning-trends
https://en.wikipedia.org/w/index.php?title=Gradient_descent&oldid=1087292976

Chapter 2: Background 7

With this inherent capability for understanding data, along with recent ad-
vances made in GPU AI-enhanced computing [21], deep neural networks have
become a staple in many of the content identification systems used around the
world. China for example, has adopted a DNN model for recognizing the faces
of its citizens [22][23], and Facebook employs a similar method to automatic-
ally tag friends in uploaded pictures [24]. This goes to prove to a certain extent,
the current usability and scalability of DNN based content identification methods,
although with some associated ethical concerns [25].

2.2 Existing Solutions

To date, a wide variety of different solutions have been proposed to allow users
to identify fragmented and/or transformed images/videos from large datasets.
Many have already been employed to great success within fields such as digital
forensics and copyright enforcement [4][26], whilst others have remained relat-
ively unknown and unused, mostly consisting of purely theoretical approaches.
The primary differentiating factor however, remains the individual solution’s abil-
ity to be utilised at scale with a high degree of accuracy. As such, one of the ques-
tions we wanted to answer in our thesis was how existing solutions approached
these problems and attempted to solve them.

2.2.1 Griffeye

Figure 2.1: The user interface of GriffEye [27]

GriffEye Analyze is a professional video/image identification tool used by numer-
ous law enforcement agencies all around the world to aid with criminal forensic

8 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

investigations [4]. It was created to enable the processing, sorting and analysis of
large collections of data, supporting content indexing and identification through
features such as image content labeling, facial recognition and automatic classi-
fication of child sexual abuse [28]. Supporting the endeavour, is the Griffeye Pro-
cessing Engine, which consists of an AI component (GriffEye Brain) operating on
an interconnected network of databases named the "GriffEye Intelligence Data-
base" (GID). This network allows multiple different national and international
agencies to collaborate on cases by simply opting to share their individual data-
bases with each other, letting GriffEye take care of the necessary audit log proto-
cols and data boundaries [29].

To conform to the specific use-case, GriffEye Analyze is split into three differ-
ent suites of product: Analyze CS Enterprise, Analyze CS Operations and Analyze
DI Pro. Although named differently, all of them share the same underlying GPI en-
gine, GIDs, and graphical interface (see figure 2.1) which the end-user will make
use of. The only difference exists in the number of simultaneous users and cases
that each of the products support. Unfortunately, none of them are open source
making it hard or impossible to measure their performance in terms of scalability
and accuracy outside of black-box testing.

2.2.2 PhotoDNA

Figure 2.2: The official explanation of how PhotoDNA works according to a Mi-
crosoft blog article [30]

PhotoDNA, shown in figure 2.2, is a technology marketed by Microsoft for finding
and removing images and videos known to be associated with cases of child ex-
ploitation and pornography [5]. It was originally developed in partnership with

Chapter 2: Background 9

Dartmouth College in 2009 as a new (claimed) non-reversible type of percep-
tual hashing algorithm, creating unique photo signatures that digital investigators
could use to identify potential abuse victims [31]. Later the solution went on to
be donated to the National Center for Missing Exploited Children (NCMEC) in
the United States to allow other companies, such as Facebook and Apple, to also
integrate the system into their services [32][33]. However, supporting PhotoDNA
at such a large scale has not been easy, and Microsoft therefore only serves it as
an Azure Cloud Service [34]. To use the service, organizations must first be vetted
and qualified by a third-part vetting service. Then, afterwards, the organization
may upload images to the cloud to hash them and find out if a match exists in the
central NCMEC database.

Although the actual perceptual hashing algorithm that PhotoDNA uses has
never been disclosed to the public, a man by the name of Jan Kaiser managed in
August 2021 to recreate it through trial and error based on a telling blog article
published earlier that same August by the researcher Neal Krawetz [35][36]. In
his article, Krawetz revealed that whilst the PhotoDNA algorithm is claimed to
accurately generate similar hashes for visually similar inputs, changes to less than
2% of any of them will void any detection comparisons. Another flaw in the al-
gorithm is its claimed "non-reversiblity" which has been proven factually untrue
[37].

2.2.3 Youtube Content ID

Content-ID is Youtube’s copyright enforcement system, providing a closed-door
approach to content identification and management for various different types
of copyright owners. Using it, they are able to upload any digital media which
they own the rights to, and then tweak how the system will respond to videos
uploaded by users containing the aforementioned copyrighted content [38]; most
often without the original owner’s permission. Based on Youtube’s own descrip-
tion, this works on the basis of some type of audio and/or video fingerprinting
method, presumably backed by a deep machine learning AI that is responsible for
processing the vast amounts of user derived content on the website [26]. Though,
this last point primarily boils down to pure speculation with no official sources
disclosing in detail how the system actually works - not even to the copyright
owners themselves.

What is known however, is that Content-ID has proven to be highly scalable
- processing and matching against an estimated 500 hours of uploaded content
each minute [3]. How accurately it identifies content though, is another question -
with Joanne E Gray et al. as well as many partnered content creators voicing their
concerns relating to the removal rates of what can be considered fair and trans-
formative uses of identified snippets of content [39]. In the paper "Adversarial
Attacks on Copyright Detection Systems", authors Parsa Saadatpanah et al. also

10 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

regarded the system as vulnerable to possible perturbations with non-adversarial
random noise in audio tracks [40].

2.2.4 CLIPPED

Figure 2.3: The user interface of CLIPPED [1]

CLIPPED was a video identification program developed and published by Kjetil
Gardåsen in 2013 to submit and match short video clips against likely root file
sources [41]. It accomplished this task by comparing a given video input against
a number of indexed video frames which had previously been extracted, hashed
and stored in a HyperSQL6 database. The most likely video origin would then be
determined by picking the matched frame hashes with the lowest scoring hem-
ming distance between them. For the actual frame processing, the program used
FFmpeg7 to extract images at a rate of 1 frame per. second of video footage, and
then hashed the resulting output using pHash to produce 49 bit long frame sig-
natures.

Reportedly, CLIPPED managed to achieve a 100% true positive rate for the
few fragmented clips which Gardåsen matched against a 140 hour dataset in
his original experiments, but these results should be taken with a grain of salt

6A Java SQL relational database, https://en.wikipedia.org/w/index.php?title=HSQLDB&
oldid=1081719211

7A highly portable framework for decoding, encoding, transcoding, etc. different visual and au-
dio medias, https://ffmpeg.org/about.html

https://en.wikipedia.org/w/index.php?title=HSQLDB&oldid=1081719211
https://en.wikipedia.org/w/index.php?title=HSQLDB&oldid=1081719211
https://ffmpeg.org/about.html

Chapter 2: Background 11

considering the project is not available on Github anymore for reproducible test-
ing. Instead, the project has become entirely superseded by its spiritual successor,
PYVIDID.

2.2.5 PYVIDID

PYVIDID can be seen as a natural continuation of the previously presented CLIPPED
video identification project, and was created by Ola Kjelsrud to address some
of the issues present in the original implementation of the program [1]; with
Gardåsen’s blessing of course. In particular, Kjelsrud wanted to fix the multith-
reading issues causing CLIPPED to go into a deadlock upon hashing videos, and
attempt to improve the perceived general speed of the program. More extensive
testing was also performed to verify the suggested method’s robustness, accuracy,
speed and temporal localization ability, showcasing improvements in nearly all
areas over previous approaches.

In contrast to CLIPPED’s Java codebase, PYVIDID is primarily written in the Py-
thon programming language with an included specialized Java component solely
reponsible for speeding up video searches. As a new feature, Kjelsrud added sup-
port for temporal localization of fragemented clips in longer videos with incor-
porated timestamps, and made it easier to "swap" the used perceptual hashing
algorithm pHash for other similar functions such as aHash and dHash. However,
the program unfortunately does not carry over CLIPPED’s original graphical user
interface as shown in figure 2.3.

In terms of scalability, Kjelsrud’s program is not really an improvement over
CLIPPED. Both programs use a traditional SQL database to index processed videos8,
and both have to load the frame table into memory to perform the necessary hem-
ming distance similarity calculations. Therefore, at a very large scale, the proposed
solution will either slow down as a result of the number of SQL select statements
increasing, or the fact that hash comparisons may not easily be processed in par-
allel.

8Sqlite in PYVIDID’s case

Chapter 3

Methodology

The overarching purpose of this chapter is to provide a certain amount of credibil-
ity to the thesis by outlining a set of easy-to-reproduce requirements and steps by
which all of the results shown later in Chapter 4 can be tested. This ensures that
other researchers can utilize the same research methodology, setup, configuration
and dataset as the author in writing to verify any of the presented experimental
results. It also might be used to explain somewhat minor variations that can ori-
ginate from user-differences in crucial lab environment components such as:

• Frontend hardware
• Backend hardware
• Configurations

Below, the chapter has been divided into four different sections, each detailing
a separate aspect and part of the thesis’ workflow. First, the general research ap-
proach and philosophy is explained, specifically regarding how the related work
was found and later dissected and then utilized. Secondly, the setup specifications
and configuration for developing and testing the developed program is discussed,
showing how seemingly small changes to initial parameter values might impact
the overall speed and accuracy of the program. Lastly, a short description is given
of the downloaded dataset, as well as how it was processed to produce quanti-
fiable results for comparison with earlier available methods of fragmented video
and image identification, such as PYVIDID and CLIPPED.

3.1 Research

The core philosophy, or rather, methodology behind this thesis can best be de-
scribed and characterized as one of discovery, experimentation and verification.
More widely known, it is also referred to as the general scientific method, which by
the Oxford Dictionary is defined as "The approach that science uses to gain know-
ledge, based on making observations, formulating laws and theories, and testing the-
ories or hypotheses by experimentation" [42]. This means that by following the
method, it is possible to ensure that any given experimental results remain re-

13

14 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

producible and verifiable even in independent lab environments, thus increasing
their overall reliability.

We initially started our project’s research phase by performing a thorough re-
view of existing literature that could help us with understanding the outlined
research questions and problems. This entailed collecting useful information from
various different sources such as research papers, books and online websites. All
of the collected data was then processed to determine any valuable artefacts that
might help serve as a baseline for the actual content of the thesis. Finally, the util-
ized sources were presented in section 2 to substantiate the paper’s background
and give credit where credit is due.

3.1.1 Collection

To source knowledge of a high enough standard as well as ensure a trustworthy
origin, a combination of the on-campus library, Google, Oria1 and Google Scholar
were used to search for topics related to our IEEE keywords. The latter two search
engines allowed access to a wide variety of academic papers and articles from
all over the world, often with included notations for peer-reviews, citations and
references, which proved especially useful for later processing.

3.1.2 Processing

Verifying the collected data was mostly done using a qualitative approach, where
any findings or results were reproduced or tested locally to confirm their reliability
and validity. This helped differentiate real claims from fake ones, and reduced any
potential time spent chasing unrealistic goalposts.

3.1.3 Presentation

For the purpose of presenting the related work, relevancy was the factor that was
emphasized the most. This meant that some information had to be left out to
better highlight the major key points in the processed data. In particular, special
focus was put on displaying essential and relevant information instead of writing
simple high-level overviews/abstracts.

3.2 Setup

Although the project’s lab environment is very much an intertwined setup, it can,
for the sake of explanation be separated into what is essentially two primary com-
ponents: a frontend component and a backend component. The former encom-

1A search engine used by many Norwegian universities to provide access to various different
research materials, https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/
search?vid=BIBSYS

https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/search?vid=BIBSYS
https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/search?vid=BIBSYS

Chapter 3: Methodology 15

passes all of the tools and devices that were used to develop and employ the pro-
posed method and Python program, whilst the latter covers the interfaced data-
base that everything else was built around. For both components, NTNU Gjøvik’s
Openstack2 platform "SkyHiGh" was heavily made use of to satisfy the horizontal
scaling requirements of NoSql databases.

3.2.1 Frontend

The frontend setup consists of two different machines: an on-premise Windows
desktop and an off-premise Ubuntu node. For the development of the application,
the Windows platform was chosen due its large ecosystem of integrated devel-
opment environments (IDE), as well as a general sense of familiarity with work-
ing on the platform. General testing on the other hand, took place on the virtual
Ubuntu linux node to make inter-node communication within the Openstack net-
work easier, in addition to lacking the dedicated CPU/GPU resources required to
speed up the hashing phase of the program. Note however, that the last part is
both possible and recommended to amend in a production deployment, thus de-
creasing the number of frontend machines to just one; preferably only a Linux
node.

To set up the necessary software environment on a client, a simple Python
script named setup_frontend.py is provided. Depending on the operation system,
of which Windows and Debian based Linux distributions are supported, the script
will find, download and install all of the pip, apt and FFmpeg packages needed to
run the main program. A default configuration file is also created called config.json
to allow the user to tweak behavioural parameters of the program. The entirety
of the setup script can be viewed in appendix A.

Specifications

Below are two tables, 3.1 and 3.2, containing the exact specifications of the previ-
ously mentioned Windows and Linux clients. Notably, only the Python interpreter
version >3.9.1 is considered a hard requirement3, with the other requirements
being marked as optional or possible to substitute.

2An open source software for cloud infrastructure deployment, https://www.openstack.org/
3This is due to the use of the new dict merge functionality in 3.9, https://docs.python.org/

3/whatsnew/3.9.html

https://www.openstack.org/
https://docs.python.org/3/whatsnew/3.9.html
https://docs.python.org/3/whatsnew/3.9.html

16 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

Table 3.1: Desktop Windows specifications

Hardware Name
CPU Intel i5-9600K
GPU EVGA GeForce GTX 980 Ti SC GAMING ACX 2.0+
Ram Corsair Vengeance LPX DDR4 3000MHz 16GB
Storage WD Green SSD WDS480G2G0A
Storage ST1000DM003-9YN162
Software Name
OS Windows 10 Pro 19043.1645
IDE Visual Studio Code 1.62.3
Interpreter Python 3.9.2
Media Framework FFmpeg 5.0

Table 3.2: Virtual Ubuntu master node specifications

Hardware Name
CPU VCPU 2 Core @ 2099.998 MHz
GPU VGPU (Cirrus Logic GD 5446)
Ram VRAM 8 GB
Storage SSD 40GB
Software Name
OS Ubuntu 18.04.6 LTS
Interpreter Python 3.9.12

Configuration

Code listing 3.1: Frontend component of the pyClipNSearchIt configuration file

{
"ffmpeg": {

"use_hwaccel": false,
"capture_every_n_seconds": 1

},
"search": {

"max_size_response": 15,
"r": 5

}
}

In the context of configuration, there are 4 different settings in config.json that
affect or alter the behaviour of the frontend interface. Listing 3.1 displays which
ones these specifically are, with a respective explanation for each one given in the
list that follows:

Chapter 3: Methodology 17

1. use_hwaccel: Use Nvidia GPU hardware acceleration. Defaults to false be-
cause CPU processing is usually more accurate and faster.

2. capture_every_n_seconds: Capture an image frame every nth second of
the video. Defaults to 3 seconds to limit indexed document size, but setting
it to 1 or 2 can potentially make hashing and searching more accurate.

3. max_size_response: Determines the max number of hits returned by a
single image search. For videos, this limit applies on an individual frame
basis, with duplicate hits later being removed. Defaults to 15, but decreas-
ing it more can increase processing speed at the cost of accuracy.

4. r: The hemming distance threshold at which search hits are discarded. De-
faults to 5, but the value can be tuned higher to accommodate comparisons
between very different images at the cost of potential accuracy.

3.2.2 Backend

Contrary to the frontend portion of the lab environment, the backend setup is
entirely virtual and is made up of 3 hardware-identical Ubuntu nodes. Together,
these nodes combine to form a small Elasticsearch cluster consisting of one mas-
ter/data node and two data/ingest nodes. We opted to use Elasticsearch, largely
on the basis of its ingest pipeline features, scriptable queries, prevalence in aca-
demic papers and portability support4; but previous experiences with using the
official Javascript and Python client APIs also played an important role during the
consideration process.

To set up the requisite Elasticsearch indexes, pipelines and scripts, simply run
the setup_backend.py script attached in appendix C. Appending an additional –
force argument to the command line will result in any existing data being dis-
carded before the setup process starts.

Specifications

Table 3.3 shows the hardware and software specifications of the virtual Ubuntu
machines that make up the NoSQL Elasticsearch cluster. These specifications are
based off Elastic’s official recommendations for a small database deployment [43]
[44], but can be tweaked further to better accommodate the individual user’s
needs and resources. The only hard requirement is that a cluster must contain at
least one or more designated ingest nodes.

4Here we are referring to the index migration and sharing possibilities, https://www.elastic.
co/guide/en/cloud/current/ec-migrating-data.html

https://www.elastic.co/guide/en/cloud/current/ec-migrating-data.html
https://www.elastic.co/guide/en/cloud/current/ec-migrating-data.html

18 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

Table 3.3: Virtual Ubuntu Elasticsearch node specifications

Hardware Name
CPU VCPU 8 Core @ 1995.307 MHz
GPU VGPU (Cirrus Logic GD 5446)
Ram VRAM 32 GB
Storage SSD 40GB
Storage HDD 1TB
Software Name
OS Ubuntu 18.04.6 LTS
Database Elasticsearch 8.1.1

Configuration

Code listing 3.2: Backend component of the pyClipNSearchIt configuration file

{
"elasticsearch": {

"hosts": [
"https://localhost:9200"

],
"http_auth": [

"user",
"password"

],
"verify_certs": false,
"ssl_show_warn": false

},
"elasticsearch_index": {

"number_of_shards": 9,
"number_of_replicas": 1

}
}

The Elasticsearch configuration is split into two separate parts that must be
set up in a specific order for the backend to work properly. This involves first edit-
ing the elastichsearch.yml file present on each Elasticsearch node before starting
the service for the first time. Afterwards, the second part can be configured by
running setup_backend.py on a frontend client to finalize the rest of the cluster
setup. Note that the config.json5 settings displayed in listing 3.2 must have been
configured correctly to allow this script to run. As for the exact Elasticsearch node
configurations used in this thesis, these can be found attached in appendix D.

3.3 Dataset

During the initial stages of the research-processing phase, it quickly became ap-
parent that much of the related work first discussed in section 2.2, had forfeited

5The file produced on a frontend client by running setup_frontend.py

Chapter 3: Methodology 19

using any readily available datasets for testing and/or development; that, or they
at least failed to properly specify exactly which parts of the individual datasets that
were used. This has made the task of later replicating their exact measurements
much harder, possibly introducing a factor of bias to any presented experimental
results - especially if the chosen datasets were not well vetted in the first place.
Therefore, in an effort to combat the repeatability problem and ensure that similar
issues will not perforate the results of this thesis, we have opted to use a widely
known and publicly available dataset rather than creating our own.

The Multimedia Commons dataset, also known as YFCC100M, is currently
the largest available multimedia collection that is free to use for anyone under
the Creative Commons license (0) [45]. It consists of a total of 99 171 688 images
files and 787 479 video files, all of which were originally sourced from Flickr in
2016. As a subset of Amazon’s Open Data Sponsorship Program6, the dataset is
publicly available as an AWS bucket and can be downloaded using the AWS CLI
client without requiring a user account. However, due to its very large size it can
be somewhat difficult to download the entire dataset at once. Thus with pyClipN-
SearchIt, we have instead chosen to use a smaller subset of the larger collection
for all of our experiments.

Downloading the subset is done using the python script download_dataset.py,
which runs multiple instances of the AWS CLI in parallel to download 256 hex
named image folders (000 - 099), and 512 hex named video folders (000 - 1ff).
Respectively these contain 387 261 images (45.5 GB) and 55 290 videos (194 GB,
1997402 seconds, 554 hours). The script takes 1 single input argument which is
the output directory. A full copy of the script is available as an attachment in
appendix E, but the official AWS CLI must be installed for it to be usable [46].

3.4 Experiments

Aiming to create a series of statistics that could help better showcase the thesis’
end results, we ended up performing a variety of different experiments in section
4.3 to measure the actual performance of our suggested method implementation.
These measurements were done in areas deemed to be crucial to the project’s
goal of scalability, speed and accuracy, and were done in such a way that later
cross-comparisons with other approaches to video/image identification would be
possible.

As a baseline, all of the conducted experiments started off using the original
YFCC100M data subset described in section 3.3, but then either narrowed it down
or fragmented groups of videos from it depending on the type of test that was

6A sponsorship program for democratizing access to high-value datasets, https://aws.amazon.
com/opendata/open-data-sponsorship-program/

https://aws.amazon.com/opendata/open-data-sponsorship-program/
https://aws.amazon.com/opendata/open-data-sponsorship-program/

20 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

being done. Special care was taken to supply all of the utilised clips’ names, as
well as how they might have been potentially transformed or handled beforehand.

Chapter 4

Results

To enable a scalable approach to video indexing and search for use in the iden-
tification of fragmented and transformed image/video files, we propose in this
thesis a new method/program that we have aptly dubbed "pyClipNSearchIt". This
program is heavily based on research done by Cun Mu, Jun Zhao et al. in their
paper "Fast and Exact Nearest Neighbor Search in Hamming Space on Full-Text
Search Engines" [6], and is our attempt at iterating over previous perceptual iden-
tification approaches developed at NTNU e.g CLIPPED and PYVIDID, specifically
with regards to scalability. This is not to say that other approaches and solutions
have not been investigated or discussed, as they have in both section 2.1 and 2.2,
but rather that much of the necessary information surrounding methodology and
measurements is unavailable for closed source and proprietary systems such as
Youtube Content ID and PhotoDNA. As such, the experimental results presented
later in this chapter are mostly relevant for direct comparisons against other open
source image/video identification systems. However first, before doing any of this,
let us review the implementation of pyClipNSearchIt.

4.1 Implementation

Although Kjelsrud’s PYVIDID was a substantial improvement over the original
CLIPPED in many areas [1], it could in others, also be considered a downgrade. In
particular, Gardåsen had originally implemented a function for threaded hashing
in CLIPPED to speed up the image hashing step on larger videos and datasets [41].
However, due to some unspecified garbage collection bugs however, this feature
was completely removed from the PYVIDID iteration, instead opting for a single
threaded hashing approach. Thus for the sake of simplicity, the program’s possible
speed suffered along with its usability. Coupled with the fact that PYVIDID’s sliding
window matching technique is prone to search times that increase linearly with
the indexed data size1, this helped prove a motivating factor to create a better,

1Searches are performed by retrieving the entire indexed SQL dataset to memory, and then
matching every possible query clip to every possible video by looping through all the data

21

22 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

faster and more scalable method of hashing, indexing and searching for videos -
the result being pyClipNSearchIt.

pyClipNSearchIt is made up of a Python frontend and an Elasticsearch data-
base backend. In contrast to CLIPPED and PYVIDID, it supports both image (.png,
.jpg, .jpeg) and video (.mp4) searches, even going as far as to allow multiple dif-
ferent combinations of files to be grouped into a single index/search call at the
same time. Optionally, it is also possible for the data from processed files to be
outputted to a .pregenhashes file which can be used at another point in time. For
example, it might be desirable to first run the hashing step on a powerful local
host, and then defer the later indexing/searching steps to a weaker remote host.
This separation of responsibility is made possible by the fact that the latter steps
now mostly occur directly on the Elasticsearch nodes rather than the frontend
host. In turn, this allows pyClipNSearchIt to take advantage of the horizontal scal-
ing nature of NoSQL databases, enabling non-linear search times on potentially
much larger indexed datasets.

The details on how each of the program’s individual features are implemented
are documented below.

4.1.1 Hashing

Of the previously mentioned content identification methods in section 2.1, we
ended up choosing the already well established pHash perceptual algorithm to
hash and compare transformed and fragmented images/videos. Primarily this was
done to remove the dataset burden of training any potential neural identifica-
tion networks2, as well as facilitating new cutting-edge research based on tradi-
tional hemming distance comparisons. Additionally, compared with other simil-
arity based hashing algorithms such as aHash and dHash, pHash often came out
best in terms of accuracy and collision rates [15]. That being said, as the pHash
algorithm only works on an image basis rather than a video basis, we needed a
way to first extract the individual frames from a video before being able to process
them. This led us to use the multimedia framework FFmpeg to first convert any
detected .mp4 videos into multiple separate .jpeg files, and then hashing those
files.

On a technical level, the program’s file hashing is divided into 3 different
phases to simplify development and maintenance. Namely these are: preprocess-
ing, processing and size-reduction.

2Here we are referring to the fact that neural networks often require very large training datasets
to have a high accuracy

Chapter 4: Results 23

Preprocessing

In the preprocessing phase the initial CLI input argument (either a file or a folder)
is parsed and error checked. The program then recursively collects all of the de-
tected images, videos and pregenhashes at the specified path, and sorts them into
distinct buckets to help with later processing. This is done by checking each file’s
extension against predefined structures as shown in listing 4.1.

Code listing 4.1: Excerpt from src/hasher/preprocess.py

def _collect(path: str) -> tuple:
images = []
videos = []
pregen = []

for root, _, files in os.walk(path):
for file in files:

file_type = util.get_file_type(file)
path = os.path.join(root, file)

if file_type == structures.FileType.IMAGE:
images.append(path)

elif file_type == structures.FileType.VIDEO:
videos.append(path)

elif file_type == structures.FileType.HASHES:
pregen.append(path)

return images, videos, pregen

Processing

One of the primary factors limiting the speed of PYVIDID’s video hashing approach
was the program’s converter step. Kjelsrud identified this problem as FFmpeg hav-
ing to save all converted video frames to disk before they could be read by PYVIDID
for any further image processing. Therefore, as possible future work, he suggested
that a major bottleneck could be removed if frame extraction were to take place
entirely in memory instead of to-and-from disk. Although this problem certainly
applies to pyClipNSearchIt too, and has been presented with a future solution
in section 6.2.2, we have in our program identified and applied additional solu-
tions that are much easier to implement, with quantifiable speed gains over earlier
methods.

In a reply to a StackExchange post from 2018 [47], a user by the name of
"Gyan" suggested using a FFmpeg preprocessing filter instead of the -r argument
used in PYVIDID to capture a frame every n seconds from a video. This sounded
like an interesting idea to us, and thought it worth trying to see if it made any no-
ticeable difference to the processing speed. Luckily it did, and in testing the new
approach we managed to achieve an up to 1.5x speed boost over the previously
employed frame selection method, at no discernible cost to accuracy. Feeling em-

24 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

powered at this discovery, we tried to implement support for FFmpeg hardware
acceleration, but this time with disappointing results. Notably, using the setup de-
scribed in table 3.1, decoding on the GPU turned out to be much slower than on
the CPU; the support therefore stayed optional and defaults to off. For the full
FFmpeg launch command line used in pyClipNSearchIt see listing 4.2.

Code listing 4.2: Excerpt from src/util.py

def get_converter() -> str:
system_name = platform.system()

if system_name == ’Windows’:
converter = os.path.join(ROOT_DIR, "ffmpeg.exe")

elif system_name == ’Linux’:
converter = "ffmpeg"

conf = get_config()["ffmpeg"]
hwaccel_setting = conf["use_hwaccel"]
frame_capture_setting = conf["capture_every_n_seconds"]

hwaccel_arg = "-c:v␣h264_cuvid␣" if hwaccel_setting else ""
Source: https://superuser.com/questions/1486102/fast-way-to-extract-images-

,→ from-video-using-ffmpeg
This is faster than using the -r argument because it uses a select filter
mod(t,3) -> every 3 seconds
ld(2)+1 -> output 1 frame
filter_arg = f"-vf␣\"select=’if(not(floor(mod(t,{frame_capture_setting})))*lt(

,→ ld(1),1),st(1,1)+st(2,n)+st(3,t));if(eq(ld(1),1)*lt(n,ld(2)+1),1,if(
,→ trunc(t-ld(3)),st(1,0)))’\"␣"

return f"{converter}␣-nostdin␣-y␣-v␣0␣-vsync␣passthrough␣{hwaccel_arg}-i␣
,→ \"{{}}\"␣{filter_arg}-f␣image2␣\"{{}}\""

After the defined number of frames every n seconds have been extracted from
a video, the method and libraries utilized for hashing them is practically identical
to the ones employed in hashing singular images. In both cases, files are read from
disk in parallel using a multiprocessing pool with evenly divided "tasklets" con-
taining smaller lists of file paths. However in an effort to ensure scalability, video
tasklets stay smaller than image tasklets to allow for routine deletion of tempor-
ary images after they have been processed. This, to ensure that disk usage does
not get out of hand when the program is run on larger datasets with hundreds
of hours of video. Following the reading of a file, it is converted to a Image ob-
ject using the Pillow Python library, which in turn is passed on to ImageHash’s3

pHash function to generate a 64bit hash. The length of this hash is adjustable,
although smaller adjustments must be made to the Elasticsearch index mapping
and ingest pipeline, as well as the python indexer and searcher to accommodate
such changes. As the processor finishes, all generated hashes as well as potential
timestamps are merged into a single Python dictionary named hash_sets.

3Another Python library containing many different hashing algorithms, https://pypi.org/
project/ImageHash/

https://pypi.org/project/ImageHash/
https://pypi.org/project/ImageHash/

Chapter 4: Results 25

Size Reduction

A peculiar trait apparent in many videos, is that there often exists some sequences
in which the camera and/or scene do not move/change over a prolonged period
of time. Therefore when these frames are attempted hashed with a perceptual
algorithm such as pHash, the result is that several identical hashes are produced
for multiple different, albeit visually similar frames. Seen from a data analysis
perspective, if the goal is strictly visual identification, this indicates the presence
of possibly redundant data in the generated output. In an effort to avoid this
problem, we designed two principal methods of reducing the total number of re-
dundant indexed Elasticsearch documents:

1. Skipping frames: By increasing the capture_every_n_seconds setting in the
frontend config, FFmpeg will generate less frames per video, reducing the
number of identical and near-identical frames produced within a given time-
frame, possibly at the cost of accuracy.

2. Duplication removal: pyClipNSearchIt has a built-in mechanism for ensur-
ing per-video hash uniqueness in its internal memory structure. As seen in
listing 4.3, it is possible to verify that individual video hashes stay unique
at the same time as they are saved simply by treating them as keys in a Py-
thon dictionary. This removes the need for a separate post-processing step
wherein duplicate hashes are detected and removed, thereby speeding up
the video processing.

Code listing 4.3: Excerpt from src/hasher/process.py

def _p_hash_vid(files: list) -> dict:
hash_sets = defaultdict(dict)
_setting_frame_capture = util.get_config()["ffmpeg"]["capture_every_n_seconds"]

for file in files:
try:

image = Image.open(file)
name, frame = os.path.splitext(os.path.basename(file))
By using the hash as the key, we ensure that no duplicate frames are

,→ ever saved
effectively performing a uniqueness filter whilst processing!
#
The set value represents the frame timestamp -> (ffmpeg output digit

,→ - 1) * seconds skipped (see util.get_converter())
hash_sets[name][str(imagehash.phash(image, 8))] = (int(frame[1:]) - 1)

,→ * _setting_frame_capture
except:

pass

return hash_sets

def _hash_videos(pool: mp.Pool, videos: list, hash_sets: dict):
This is taken from the middle of the function
for result in pool.imap_unordered(_p_hash_vid, util.list_to_chunks(images, pool

,→ ._processes)):
for key in result:

26 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

existing_dict = hash_sets.get(key, None)

if existing_dict:
existing_dict |= result[key]

else:
hash_sets[key] = result[key]

4.1.2 Indexing

pyClipNSearchIt handles data in two similar, yet individual stages to accelerate the
indexation speed of potentially large hash_sets4 returned by the program’s hash-
ing phase. First, all of the videos and images that make up the hash_sets are run
through a bulk generator to generate an array of Elasticsearch index documents
that can be processed in parallel. Afterwards, this array is then passed on to the
cluster’s ingest pipeline, which represents the second stage of the indexation. In
this pipeline, the ingested document hashes are split into several 4 character long
keyword fields (fhash) for fast search filtering and additionally, converted to their
64bit binary representations (bhash, a signed long). The last step is necessary for
performing hemming distance calculations with the hmd64bit script described in
[6].

Listing 4.4 reveals how the first stage’s document generator is set up. Note
that here, the unique document _id is shown to be a combination of both the doc-
ument’s pHash and origin so that any attempts at indexing the same video/image
later on will yield a detectable error message.

Code listing 4.4: Excerpt from src/database/index.py

def _generator(hash_sets: dict):
for origin in hash_sets:

data = hash_sets[origin]

Image
if not type(data) is dict:

yield {
"_op_type": "create",
"_index": "hashes",
"_id": f"{origin[:16]}{data}",
"_source": {

"origin": origin,
"hash": data,

}
}

Video
else:

for hash_ in data:
yield {

"_op_type": "create",
"_index": "hashes",

4A dictionary with file origins, hashes and timestamps

Chapter 4: Results 27

"_id": f"{origin[:16]}{hash_}",
"_source": {

"origin": origin,
"hash": hash_,
"timestamp": data[hash_]

}
}

4.1.3 Searching

To take advantage of a NoSQL database’s inherent parallel processing capabilit-
ies, we needed a way to perform pHash comparisons directly inside of the Elastic-
search cluster to support fragmented and/or transformed video/image searches.
This meant creating a search method that could be interpreted simply from a
standard elastic query, and then returning any hits matching it upon completion.
We did this by implementing a variant of the FENSHSES5 approach briefly men-
tioned in section 2.1.1, fixing the encountered bugs and tailoring it to meet the
specific needs of our program.

Code listing 4.5: Excerpt from src/database/search.py (query)

def _generate_query(hash_):
return {

"function_score": {
"query": {

"constant_score": {
"boost": 0,
"filter": {

"bool": {
"should": [

{ "term": { "fhash.f1": hash_[0:4] } },
{ "term": { "fhash.f2": hash_[4:8] } },
{ "term": { "fhash.f3": hash_[8:12] } },
{ "term": { "fhash.f4": hash_[12:16] } },

]
}

}
}

},
"functions": [

{
"script_score": {

"script": {
"id": "hmd64bit",
"params": {

"field": "bhash",
The subcode must be sent as a signed long to

,→ match the indexed long type
"subcode": ctypes.c_long(int(hash_, 16)).value

}
}

}

5Without the permutation data preparation

28 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

}
],
"boost_mode": "sum",
"score_mode": "sum"

}
}

Listing 4.5 helps display how our variant differs from FENSHSES’s by remov-
ing the top-level min_score threshold, instead opting to discard weighted scores
above r on the frontend side of things - along with any duplicate hits. This was
done because the old method relied on the hmd64bit script returning a negative
weighted score, which actually turned out to be an unsupported feature in Elast-
icsearch that was removed from later versions [48]. As such, with Elasticsearch
currently not supporting an opposite max_score field, score thresholding on the
backend turned out be infeasible.

Code listing 4.6: Excerpt from src/database/search.py (search)

def run(hash_sets: dict):
client = connect()

for origin in hash_sets:
data = hash_sets[origin]
searching_for_video = type(data) is dict

try:
Image
if not searching_for_video:

results = _search_image(client, data)
Video
else:

results = _search_video(client, data)
except Exception as e:

logger.error(str(e))
continue

logger.info("---------------------------------------")
logger.info(f"Search␣results␣for␣’{origin}’:")

if not results:
logger.warning("No␣similar␣matches␣were␣found")

else:
match = results[0]
match_fields = match["fields"]

match_score = int(match["_score"])
match_origin = match_fields["origin"][0]
match_hash = match_fields["hash"][0]
match_timestamp = match_fields.get("timestamp", None)

additional_info = f"␣at␣the␣timestamp␣’{str(datetime.timedelta(seconds=
,→ match_timestamp[0]))}’" if match_timestamp else ""

logger.info(f"The␣best␣single␣hash␣match␣’{match_hash}’␣was␣’{
,→ match_origin}’,{additional_info}␣with␣a␣hemming␣distance␣score␣
,→ of␣’{match_score}’")

Chapter 4: Results 29

if searching_for_video:
if (match_hash in data) and data[match_hash] != match_timestamp[0]:

logger.info(f"Note␣that␣local␣timestamp␣’{str(datetime.
,→ timedelta(seconds=data[match_hash]))}’␣is␣not␣equal␣to␣
,→ the␣found␣timestamp␣’{str(datetime.timedelta(seconds=
,→ match_timestamp[0]))}’,␣but␣that␣this␣is␣likely␣due␣to␣
,→ both␣frames␣originating␣from␣a␣image␣sequence␣in␣the␣
,→ video␣that␣is␣visually␣similar")

if len(results) > 1:
best_origins = []
best_origins_timestamps = defaultdict(list)

for hit in results:
if int(hit["_score"]) != match_score:

break

match_fields = hit["fields"]
match_origin = match_fields["origin"][0]
match_timestamp = match_fields.get("timestamp", None)

if match_timestamp:
best_origins_timestamps[match_origin].append(

,→ match_timestamp[0])

best_origins.append(match_origin)

Count highest occurence and get seconds timestamps for those
best_origin, num_matches = collections.Counter(best_origins).

,→ most_common(1)[0]
best_origin_timestamps = best_origins_timestamps[best_origin]

best_origin_timestamps.sort()

Convert to string datetime timestamps
for i in range(0, len(best_origin_timestamps)):

best_origin_timestamps[i] = str(datetime.timedelta(seconds=
,→ best_origin_timestamps[i]))

logger.info(f"The␣most␣likely␣origin␣is␣’{best_origin}’␣with␣’{
,→ num_matches}/{len(best_origins)}’␣of␣the␣best␣scored␣
,→ matches")

logger.info("The␣matched␣timestamps␣(in-order)␣were")
logger.info(best_origin_timestamps)

Video searches in pyClipNSearchIt are sped up using the Elasticsearch Msearch
API6 to combine multiple different image hashes into a single API request. From it,
several queries can be concurrently read and processed by the cluster, keeping the
overall search time low for both shorter and longer video clips. From the result, the
most likely origin is chosen by counting the highest number of origin occurrences
with the lowest hemming distance scores; shown in listing 4.6.

6Specifically we are using the Elasticsearch Python client’s msearch function,
https://elasticsearch-py.readthedocs.io/en/v8.2.0/api.html?highlight=msearch#
elasticsearch.Elasticsearch.msearch

https://elasticsearch-py.readthedocs.io/en/v8.2.0/api.html?highlight=msearch#elasticsearch.Elasticsearch.msearch
https://elasticsearch-py.readthedocs.io/en/v8.2.0/api.html?highlight=msearch#elasticsearch.Elasticsearch.msearch

30 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

4.2 Source Code

The full source code of pyClipNSearchIt is available publicly as a Git repository
on Github under the user WilhelmThon [49]. For potential future work or pull
requests, refer to chapter 6.

4.3 Experiments

An essential component of the scientific method is confirming whether a given
hypothesis is actually correct, or not. To do this, we define a series of experiments
which the hypothesis can be tested on, and then later, verified by comparing the
produced experimental results against the expected results. If the former turns out
to disagree with the latter, we know as Richard Feynman once stated in one of his
lectures [50], that our initial assumptions and results must be wrong and that the
hypothesis should be adjusted or rejected thereafter.

For pyClipNSearchIt, we developed three different types of experiments and
hypotheses to test the scalability and reliability of the program:

1. Size Reduction The program is able to reduce the general indexed dataset
size

2. Speed The program is able to provide fast hashing, indexation and search-
ing of videos/images

3. Accuracy The program returns temporally and content accurate search res-
ults

4.3.1 Size Reduction

With very large datasets, a sizeable portion of hardware storage is almost always
required to store the necessary amount of data permanently to disk7. Naturally,
this brings to the table a discussion surrounding what the actual cost implications
of running a NoSQL or SQL type of database are, and correspondingly, how these
costs can best be mitigated through means of smart hardware and/or software
solutions. In the case of our program, we opted to go for the latter option by
reducing the initial dataset size on the frontend before sending it to the Elastic-
search cluster’s ingest and data nodes for storage.

To measure the efficiency of our approach, we used the video part of our data-
set and ran the exact same type of test three times to count the number of hashes
produced by pyClipNSearchIt at varying size reduction settings. Measurements
were done by running the Python script count_hashes.py attached in appendix F
on the .pregenhashes files output by the program. Below is list of all the settings

7Here, we refer to Hardware disk drives (HDD) and Solid state drives (SDD)

Chapter 4: Results 31

that were used with the corresponding test results being shown Figure 4.1.

a) Original number of hashes in video dataset, w/ duplicate hashes
b) pyClipNSearchIt output, capture_every_n_seconds=1 w/o duplicate hashes
c) pyClipNSearchIt output, capture_every_n_seconds=3 w/o duplicate hashes

0

500000

1000000

1500000

2000000

2500000

a b c

N
um

be
r

of
ha

sh
es

Settings

1997402
1888690

688953

Figure 4.1: The number of hashes produced at different pyClipNSearchIt settings

4.3.2 Speed

A key trait that characterises a fast and scalable computer system, is its ability to
readily process and handle large amounts of data within a relatively short period
of time. For a video and image identification system such as pyClipNSearchIt, this
meant measuring the speed at which the program was able to hash a given user
input, and correspondingly, how fast this input was then able to later be indexed
or searched. To perform the relevant measurements, we utilized the time_ns()
method from the Python time module and generated a total of 10 timestamps for
each of the individual tested components. The mean average of these is what has
been presented in the graphs below.

Listings 4.7, 4.8 and 4.9 show the numerous locations at which the time_ns()
methods were inserted for all of our tests.

32 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

Hashing

Code listing 4.7: Time measurement in src/hasher/__init__.py

logger.info("Generating␣hashes,␣please␣wait...")
time_before = time_ns()
hash_sets = process.run(images, videos)
time_after = time_ns()
time_result = time_after - time_before
logger.info("Finised␣generating␣hashes!")

The speed of the hashing component was tested using 3 separate videos of
varying lengths ranging from 11 seconds to 31 minutes of runtime. This made it
easy to visualize how the program handled longer versus shorter videos, and how
adjusting frontend settings such as the capture_every_n_seconds could impact the
hashing speed both negatively and positively.

Below is a list of the exact videos that we used, along with the corresponding
test results; shown in figure 4.2.

a) 16869d82c0513d34dfa19bf41e75883.mp4, 11 seconds
b) 168cef441261f67574855bbade76a9e.mp4, 3 minutes
c) 13cdd7751b3efe83622d412b4a1ca141.mp4, 31 minutes and 27 seconds

0

2

4

6

8

10

12

14

a b c

Ti
m

e
in

se
co

nd
s

Video

capture_every_n_seconds
set to 1
set to 3

0.68140.6256

1.91661.5457

12.0691

9.1446

Figure 4.2: The mean average measurements from hashing a single video 10
times

Chapter 4: Results 33

Indexing

Code listing 4.8: Time measurement in src/database/__init__.py (indexing)

logger.info("Indexing␣hashes,␣please␣wait...")
time_before = time_ns()
index.run(hash_sets)
time_after = time_ns()
time_result = time_after - time_before
logger.info("Finished␣indexing␣hashes!")

To test the indexing speed of our program, we wanted to see how fast a data-
set containing 387 261 hashes could be indexed compared to one containing e.g.
1 888 690 hashes. As such, we ended up defining three subsets of data from the
larger YFCC100M dataset described in section 3.3, which we repeatedly inserted
into our Elasticsearch database one at a time to test variations in speed; each time
making sure to drop the backing index before conducting a new test. In doing so,
we achieved the experimental results that are presented in figure 4.3.

a) image dataset, 387261 hashes
b) video dataset with capture_every_n_seconds=3, 688953 hashes
c) video dataset with capture_every_n_seconds=1, 1888690 hashes

0

5

10

15

20

25

30

35

40

a b c

Ti
m

e
in

Se
co

nd
s

Indexed dataset

8.3077

14.0760

33.1562

Figure 4.3: The mean average measurements from indexing a dataset 10 times

34 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

Searching

Code listing 4.9: Time measurement in src/database/__init__.py (search)

logger.info("Searching␣for␣matches,␣please␣wait...")
time_before = time_ns()
search.run(hash_sets)
time_after = time_ns()
time_result = time_after - time_before
logger.info("Finished␣search!")

In line with our goal of providing a fast and scalable approach for video
searches, one of the benchmarks that we created to measure pyClipNSearchIt’s
performance, was how fast it could identify a single video inside a dataset com-
prised of thousands of videos and images. In effect, this helped gauge the cost-
benefit of the new in-query search method described in section 4.1.3 versus the
old local in-memory search method employed in PYVIDID and CLIPPED.

For the experiment we used the input files enumerated in the list below and
plotted their respective results into figure 4.4.

a) 16869d82c0513d34dfa19bf41e75883.mp4, 11 seconds,
capture_every_n_seconds=1

b) 168cef441261f67574855bbade76a9e.mp4, 3 minutes,
capture_every_n_seconds=1

c) 13cdd7751b3efe83622d412b4a1ca141.mp4, 31 minutes and 27 seconds,
capture_every_n_seconds=1

Chapter 4: Results 35

0

0.2

0.4

0.6

0.8

1

a b c

Ti
m

e
in

Se
co

nd
s

Video

0.0701

0.1865

0.9352

Figure 4.4: The mean average measurements from searching for a specific video
10 times in the combined video + image dataset

4.3.3 Accuracy

Arguably one of the most important metrics by which a system intended for video
identification can be measured is its accuracy. Specifically, this refers to how con-
sistent the system is at returning the correct origin (filename) for any given set
of search inputs (images/videos); precondition being that a variant of the data is
already stored in the database. As such, a high degree of accuracy will indicate
that a video identification system is reliable, whilst a low accuracy on the other
hand, will indicate that it is unreliable.

To determine which of these classifications was most applicable in the case
of pyClipNSearchIt, we conducted two independent experiments to measure the
system’s ability to accurately identify both fragmented and transformed videos in-
side a larger dataset consisting of images and videos. The following list describes
all of the settings used at each step in the testing process:

a) r=5, capture_every_n_seconds=1 indexed dataset and query clip
b) r=5, capture_every_n_seconds=3 indexed dataset and =1 for query clip
c) r=10, capture_every_n_seconds=1 indexed dataset and query clip
d) r=10, capture_every_n_seconds=3 indexed dataset and =1 for query clip
e) r=20 capture_every_n_seconds=1 indexed dataset and query clip
f) r=20, capture_every_n_seconds=3 indexed dataset and =1 for query clip

36 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

Fragmented

Using the extract_clips.py script attached in appendix G, we extracted 3 sets of
clips from the 101 video dataset subfolder (196 videos) to test how accurately
our program could identify fragmented clips (5 seconds, 30 seconds, full length)
in longer indexed videos. We display the results from these tests in table 4.1.

Table 4.1: The accuracy for different types of fragmented clip searches

Clip length Matches - a Matches - b Matches - c Matches - d Matches - e Matches - f
5 seconds 100% (177/177) 61% (108/177) 100% (177/177) 75% (133/177) 100% (177/177) 75% (133/177)
30 seconds 100% (77/77) 95% (73/77) 100% (77/77) 94% (75/77) 100% (77/77) 94% (75/77)
Full length 100% (196/196) 99% (194/196) 100% (196/196) 99% (194/196) 100% (196/196) 99% (194/196)

Transformed

We tested 6 different transformations in total to determine pyClipNSearchIt’s skill
at identifying transformed video files. Table 4.2 shows which types of transform-
ations these were, along with the relevant result accuracy metrics. For the query
clips, we chose 13 videos from the 012 video dataset subfolder, and then ran them
through the transform_videos.py script attached in appendix H to apply any neces-
sary transforms. The clip lengths varied from 20 seconds to 1 minute.

Table 4.2: The accuracy for different types of transformed full clip searches

Transform Matches - a Matches - b Matches - c Matches - d Matches - e Matches - f
Brightness +25% 100% (13/13) 85% (11/13) 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13)
Brightness -25% 100% (13/13) 77% (10/13) 100% (13/13) 92% (12/13) 92% (12/13) 92% (12/13)
Contrast +25% 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13) 100% (13/13)
Contrast -25% 0% (0/13) 0% (0/13) 0% (0/13) 0% (0/13) 0% (0/13) 0% (0/13)
Rotate 10° clockwise 0% (0/13) 0% (0/13) 15% (2/13) 8% (1/13) 15% (2/13) 8% (1/13)
Crop +25% 0% (0/13) 0% (0/13) 0% (0/13) 0% (0/13) 0% (0/13) 0% (0/13)

Chapter 5

Discussion

Having finished presenting the results of our thesis, we can now move on to dis-
cussing their potential implications, as well as how they specifically relate to the
research questions stated in chapter 1. To answer the questions, we will first go
through all of them individually, referring to them by their acronyms, and then
draw parallels to sections of useful information or experiments providing relevant
context and background. As an implied necessity, this also means comparing how
our solution performs against others, and what the most suitable applications for
taking advantage of the demonstrated strengths are.

One of the first research questions we set out to answer were R.1 and R.2. In
a sense, the answers to both were inherently closely connected, sharing the com-
mon goal of discovering how previous techniques and solutions were designed and
implemented. This in turn, carried an effect on the general design philosophy con-
cerning our new method, as we attempted to work around and find solutions for
existing flaws and problems. For example, of the numerous content identification
techniques we researched, signature generation was found to be the most simple
and cost effective method for creating a scalable video identification system. This,
as the deep machine learning approach required too large of a front-up investment
in terms of training and implementation details. The simplicity of PYVIDID’s hem-
ming distance comparison approach also proved alluring, combining with FEN-
SHES’s Elasticsearch in-query processing to create a simple to understand, yet
highly scalable, fast and accurate solution.

Below, we demonstrate how pyClipNSearchIt’s image and video identification
method substantiates an improvement over Ola Kjelsrud’s earlier PYVIDID ap-
proach for large datasets, particularly in regards to its size reduction (R.3) and
speed (R.4).

37

38 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

5.1 Experiments - Size Reduction

0

500000

1000000

1500000

2000000

2500000

Before After

N
um

be
r

of
ha

sh
es

Intra-video duplicate hash removal

1997402
1888690

Figure 5.1: The number of total generated hashes from the video dataset before
and after applying intra-video duplicate hash removal

Though pyClipNSearchIt’s method of storing perceptual hashes as Elasticsearch
documents instead of SQL rows results in a larger data footprint when compared
to PYVIDID, the amount of indexed hashes is actually smaller. This, without hav-
ing any observable effect on the program’s measured search accuracy. By apply-
ing the intra-video duplicate hash removal method described in section 4.1.1,
we managed to achieve an approximate 5.44% reduction in the total number of
generated hashes by pyClipNSearchIt; shown in figure 5.1. Although this result
might appear inconsequential first, it is important to remember that it can vary
drastically depending on the indexed videos’ size and type, i.e. videos with little
movement in them will contain more duplicate hashes and therefore display a
higher size reduction. In any case, the number of hashes that need to be pro-
cessed for every image/video search remains consistently reduced for most longer
videos. Arguably, this possibility for faster processing times is also a better metric
for scalability than raw data size, as CPU power is a considerably more valuable
resource than permanent disk storage.

It is possible to realize even larger size reductions by increasing the capture_ev-
ery_n_seconds hash setting to skip video frames as shown in figure 4.1. However,
this might result in a lower search accuracy and as such, should be made in con-

Chapter 5: Discussion 39

sideration of our experimental results from table 4.1. That being said, we have
with this discussion proven our size reduction hypothesis from section 4.3 and
answered research question R.3.

5.2 Experiments - Speed

From the experimental results in section 4.3.2, we can with a high degree of cer-
tainty declare that our speed increase hypothesis was indeed correct. As to exactly
how, and on the topic of research question R.4, we refer to the ensuing discussions
below pertaining to each individual test result.

5.2.1 Hashing

0

5

10

15

20

25

11 sec 3 min 31 min, 27 sec

Ti
m

e
in

se
co

nd
s

Video length

Method
PYVIDID

pyClipNSearchIt

0.21540.6814
2.17411.9166

21.4946

12.0691

Figure 5.2: The mean average measurements from hashing a single video 10
times compared to PYVIDID

Utilising a preprocess FFmpeg select filter for extracting image frames instead of
the normal r argument used by PYVIDID, pyClipNSearchIt saw an up to 78% speed
increase over the previous approach. Shown in figure 5.2, this speed up is largely
dependent on the given input video’s duration, wherein the performance dispar-
ity gap will grow accordingly with the measured length of the runtime. In short:
our method best displays its superiority on longer types of videos. The only area in
which our method may be worse is if the initial input duration is below 3 minutes,
thus causing the filter initialization costs to offset all of the frame select benefits.

40 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

Though, this does not imply that our approach is always slower for shorter videos,
as our image hashing phase1 excels at handling collections of videos rather than
single file inputs; due to its multithreaded design.

As for how different capture_every_n_seconds configurations might impact the
processing speed, we observed in our tests that lower settings yield slower speeds
- although not at a rate which one might be expecting. The experimental results
plotted in figure 4.2 show that though the number of extracted frames is 3 times
higher at a setting of 1 compared to a setting of 3, the processing speed does not
increase linearly between them. Therefore, we suspect that the actual number of
frames extracted by the select filter is not the main bottleneck in FFmpeg.

5.2.2 Indexing

0

200

400

600

800

1000

1200

688953 1888690

Ti
m

e
in

se
co

nd
s

Number of hashes

Method
PYVIDID

pyClipNSearchIt

892.17

14.076

950.2

33.1562

Figure 5.3: The mean average measurements from indexing a video dataset 10
times compared to PYVIDID

Parallelizing the indexing operation through a combination of multithreading,
bulk queries and ingest pipelines has led to what can be described as nothing
short of a substantial leap in terms of speed and scalability. Processing a large
dataset consisting of 55 290 videos, pyClipNSearchIt is at its best 6238% faster
than PYVIDID at indexation. Notably, this is also using a linux frontend host with
only 2 virtual CPUs for testing our program, compared to testing Kjelsrud’s on a

1Note: not the FFmpeg image frame extraction

Chapter 5: Discussion 41

windows frontend host with a dedicated 6 core Intel i5-9600K CPU. Therefore,
it is theoretically possible to achieve an even greater disparity in performance
by scaling up the number of cores on the frontend host communicating with the
Elasticsearch cluster.

Figure 5.3 shows that the major bottleneck for PYVIDID is not the number of
hashes being indexed, but rather, the number of videos that are processed. This can
be explained by the fact that the program is designed to spread its indexed data
across two tables (VIDEO_NAMES, VIDEO_HASHES), substantiating the need for
separate SQL insertion statements. Furthermore, all of these statements are single
inserts instead of bulk inserts, creating a constant back-and-forth conversation
between the frontend and the backend database. Our method in contrast, divides
the processed videos and images across a number of different threads which asyn-
chronously send bulk queries to the Elasticsearch ingest pipeline. Thus, as seen
in figure 4.3, the speed of indexation does not increase linearly with the number
of hashes or videos/images, and scales well for large datasets; made evident by
example a) to b) constituting a 5x increase in the number of hashes, but only a
4x increase in processing time.

5.2.3 Searching

0

1

2

3

4

5

6

7

8

11 sec 3 min 31 min, 27 sec

Ti
m

e
in

se
co

nd
s

Video length

Method
PYVIDID-Java

pyClipNSearchIt
6.7298

0.0701

4.3017

0.1865

4.2163

0.9352

Figure 5.4: The mean average measurements from searching for a specific video
10 times in the combined video + image dataset compared to PYVIDID

42 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

In his thesis, Kjelsrud presented PYVIDID as a highly performant alternative to
CLIPPED, offering sub-second match times for both short (30 seconds) and long
(25 minutes) video searches. In the process of reproducing his experimental res-
ults for our own comparisons though, we discovered the latter claim to most likely
be highly exaggerated, at least when applied to very large datasets. The basis for
this assumption is that Kjelsrud only ever opted to test his program on a small,
yet lengthy selection of videos. Thus, the same type of SQL query problem high-
lighted in section 5.2.2 for indexing managed to become equally detrimental to
the search performance. That is, according to our analysis of the underlying Java
source code. Consequently, ranked against pyClipNSearchIt, PYVIDID performed
very poorly against our test dataset2, as exemplified in figure 5.4.

Ironically, as the search time for longer videos increases with our Elasticsearch
in-query comparisons, the opposite is true for PYVIDID’s in-memory comparisons.
This phenomenon can be explained by the number of short videos in the dataset
far outnumbering the number of long ones, proving advantageous for PYVIDID’s
search method which skips comparisons if the indexed video is shorter than the in-
put clip. However in the end, pyClipNSearchIt’s search speed still measures around
96 to 4.5 times faster than PYVIDID’s and remains consistent even if the quantity
of indexed data grows.

5.3 Experiments - Accuracy

Analysing the results from section 4.3.3, we can confirm that our stated accuracy
hypothesis is positively true for the fragmented experiments, but less so for the
transformed experiments. This mainly boils down to limitations with the used
perceptual hashing algorithm as we will explain later in this section.

5.3.1 Fragmented

Table 5.1: The best measured accuracy for fragmented clip searches compared
to PYVIDID

Clip length Matches - PYVIDID Matches (c) - pyClipNSearchIt
5 seconds 85% (151/177) 100% (177/177)
30 seconds 53% (41/77) 100% (77/77)
Full length 85% (167/196) 100% (196/196)

pyClipNSearchIt’s fragmented search accuracy can vary greatly depending on a
query clip’s duration, as well the used indexing and thresholding settings. This
is best exhibited in the tests a), b) and d) listed in table 4.1, showing that if the

2Note that we did not index any images in PYVIDID’s database for the comparison, as the pro-
gram does not support them

Chapter 5: Discussion 43

indexed dataset uses a high capture_every_n_seconds setting, the search hemming
distance threshold r must also be raised to compensate for possible discrepancies
in the query clip’s perceptual hashes versus the index ones. This, owing to the
compared hashes possibly being generated from visually dissimilar frames, im-
pacting both the match score and accuracy negatively. For lower frame capture
settings though, the r threshold may safely be kept small whilst still retaining an
overall 100% match accuracy for non-transformed clips.

Compared to PYVIDID, our search method is definitely the one that comes
out on top with regards to fragmented search accuracy. Whilst the former at best
returns 53%-85% accurate results for most videos, ours manages to return 100%
accurate results for all videos using a capture_every_n_seconds setting of 1; the
comparison being shown in table 5.1. We believe the most simple explanation
for this difference, is that the Java implementation of PYVIDID’s sliding windows
matching algorithm is bugged. Specifically the offending line is thought to be
if(matchhashes.size() <= dbhashes.size()-j+1), which causes all hash comparisons
but the first to be skipped in each video loop iteration.

5.3.2 Transformed

Table 5.2: The best measured accuracy for different types of transformed full clip
searches compared to PYVIDID

Transform Matches - PYVIDID Matches (c) - pyClipNSearchIt
Brightness +25% 77% (10/13) 100% (13/13)
Brightness -25% 92% (12/13) 100% (13/13)
Contrast +25% 69% (9/13) 100% (13/13)
Contrast -25% 0% (0/13) 0% (0/13)
Rotate 10° clockwise 46% (6/13) 15% (2/13)
Crop +25% 54% (7/13) 0% (0/13)

In testing how various different video transformations would effect the accuracy
of our search results, we noticed a familiar problem that has many times before,
plagued visual identification systems utilising a fuzzy hashing algorithm such as
pHash. In essence, since the perceptual hashes have to be noticeably similar to
draw meaningful comparisons, both the image shape and color must stay predom-
inantly consistent across any user applied transformations. Thus, changes heavily
affecting these identifying traits such as contrast shifts, rotations and cropping can
damage the system’s overall experienced reliability. Table 4.2 showcase this prob-
lem perfectly, where we observe that although brightness transformations have
no observable effect on the search accuracy, rotations do. Therefore as a coun-
termeasure, we increased the hemming distance threshold r between test a) and
c) to allow for greater distances between compared frame hashes to increase the

44 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

general accuracy.

Most notably, transformed video searches is the only area in which PYVIDID
has an edge over pyClipNSearchIt. This is most probably due to the per. video win-
dow sliding technique calculating a better average similarity score than our "all-
at-once" approach. For a complete accuracy comparison between the two methods
we refer to table 5.2.

5.4 Potential Applications

With the ability at which our new method of performing image and video iden-
tification can scale, there exists a wide variety of exciting applications and use-
cases whose requirements are now met and made possible by pyClipNSearchIt.
This does not however, imply that no corresponding previous solutions exist, but
rather that these solutions are either a) hard-to-implement, b) licensed or c) pro-
prietary as was discussed earlier in section 2.2. Therefore the listed applications
below should primarily be viewed in the light of the open source nature of our
approach, and judged thereafter.

5.4.1 Video Source Finder

Considering the popularity of the audio identification service Shazam, it is some-
what of a wonder that no similar alternative yet exists for identifying video sources.
On several occasions we managed to find users that had failed to track down the
origin of a particular movie scene they had seen or downloaded, and as a con-
sequence complained about it on a random internet forum. Knowing this, along
with the fact that there is a readily addressable market for an open video source
identification service, our scalable method could potentially prove the perfect fit
for the application.

5.4.2 Forensic Investigations

Similar to GriffEye Analyze, pyClipNSearchIt’s image and video identification met-
hod might prove useful for identifying victims of child abuse and pornography
in the setting of professional forensic investigations. Both systems support data
sharing3 across teams to encourage efficient cooperation, and both are designed
from the ground up to meet the big data processing requirements of today. As
such, with the added bonus of our system being both open source and free-to-use,
pyClipNSearchIt is not just a viable alternative to present forensic solutions, but
also a cost effective one.

3Using the Elasticsearch migration and snapshot features, actors can easily share data indexes
amongst themselves, https://www.elastic.co/guide/en/cloud/current/ec-migrating-data.
html#ec-migrating-data

https://www.elastic.co/guide/en/cloud/current/ec-migrating-data.html##ec-migrating-data
https://www.elastic.co/guide/en/cloud/current/ec-migrating-data.html##ec-migrating-data

Chapter 5: Discussion 45

5.4.3 Copyright Enforcement

A very common use-case for image and video identification systems is to help with
copyright enforcement. Instead of manually having to review reported content
on a case by case basis, it is much easier to simply feed it through a matching
algorithm to detect if the copyright has potentially been infringed upon. Most
popularly, this has for many copyright holders meant using Youtube’s Content ID
system, allowing them to block or monetize any videos on the platform containing
their copyrighted content. However, being that this system is solely limited to just
Youtube, it is desirable to have another solution such as pyClipNSearchIt to detect
infringements on other platforms as well.

Chapter 6

Future Work

Although the first experimental results from testing pyClipNSearchIt show a defin-
itive improvement over earlier available methods for fragmented and transformed
images/video identification (especially with regards to scalability), there still re-
mains a lot of areas in which the program may still yet be refined or reworked.
If lucky, some of these adjustments might just simply require a few lines of extra
code to be successfully implemented, whilst others may require larger and more
fundamental changes to be made to the codebase; perhaps even going as far as
porting the entire project to another programming language entirely. Therefore,
to simplify the task of improving pyClipNSearchIt for future researchers or col-
laborators, suggested areas of future work have been separated into two different
categories: Low-hanging fruit and High-hanging fruit. The first category is inten-
ded for changes that can be classified as easy-to-implement but still of moderate
value, most likely not already having been implemented due to a lack of time or
necessity. In contrast, the second and last category is intended for more major
and/or breaking changes to the underlying core concepts which will require an
in-depth knowledge of how the program works to be implemented successfully.
Thus, for the especially interested, suggestions in the latter category might be
thought of as core ideas for potential future papers, possibly granting very high
yields in observable factors such as speed, accuracy and data size. Note however,
that pyClipNSearchIt is licensed under the GPL 3.0 license [51].

6.1 Low-hanging Fruit

6.1.1 Additional file metadata

Whilst the current iteration of the program does index some basic metadata from
processed files, namely names, types and video frame timestamps, there still re-
mains leftover metadata that can prove useful in specialized applications such as
forensic investigations and image-document identification. Particularly, the cre-
ated, modified and accessed timestamps as well as file size are useful for tracking
the age and relevancy of indexed files. Unfortunately, small but non-backwards-

47

48 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

compatible changes must be made to the current storage format to save and index
this additional data. Though, this might be a small price to pay for additional valu-
able information.

6.1.2 Native phash functionality

Currently two external python libraries, Pillow and ImageHash, are used in con-
junction to generate the pHashes used by pyClipNSearchIt for indexing and search-
ing. This is less than ideal considering the overhead presented by their corres-
ponding implementations, which in ImageHash’s case means a heavy reliance on
python lists and general ineffective memory usage. Consequentially, this has the
effect of incurring a non-negligible speed penalty on the program’s hashing step,
which slows down the processing of larger datasets. As such, a direct implement-
ation of pHash in an independent c/c++ python module would likely return sig-
nificant results in terms of improving the hash processing speed.

6.1.3 Greater size-reduction

It is possible to further reduce the size of indexed data by implementing a post-
processing step to remove nearly identical hashes present in the processed videos.
By comparing the generated hashes against each other on a per-video basis with
a set hemming distance threshold t, groups will naturally form in which the mem-
bers’ hash similarity lies below the threshold. Then, from these groups, only a
single member needs to be retained for the indexation step - optionally with the
other members’ timestamps appended. Though, know that this will most likely
impact the match accuracy of searches, and only works if the hemming distance
search threshold r is higher than or equal to the post-processing threshold t.

6.1.4 Detection of temporal continuity

Given that the program already returns matched frame timestamps for video sear-
ches in a sorted order, it should also be possible to highlight temporal continuity
based on a set time threshold. For example, if three timestamps are evenly split 3
seconds apart, it would indicate a continuity of 6 seconds of footage. Highlighting
this in the final output would make it easier for a user to determine if the query
video is a single continuous clip from the original video, or, a montage of multiple.

6.1.5 Graphical user interface

A graphical user interface would help make pyClipNSearchIt much more access-
ible by lowering the barrier of entry for less tech-savyy users. Additionally it would
serve as an important step towards improving production-readiness for any poten-
tial future applications described in section 5.4. The most straight forward imple-

Chapter 6: Future Work 49

mentation would be to use an existing Python framework such as wxPython1 to
present the program’s functionality in an easy-to-use GUI shell, however a javas-
cript wrapper could also work if the desire is to expose user input and output
directly in a web-interface.

6.1.6 Better error handling

Despite there already being extensive error checking in-place for argument pars-
ing and path handling, there are still some cases where the program might fail if
files are corrupted or the database search query times-out. To better handle these
errors, it would therefore make sense to check a file’s magic number [52] in ad-
dition to its extension to ensure that the correct file format is being parsed, and
re-try any failed search queries n set of times.

6.2 High-hanging Fruit

6.2.1 C/C++ port

Porting the source code of pyClipNSearchIt to a compiled language such as C or
C++ instead of a dynamic language like Python, would yield substantial speed
improvements over today’s current version. This is due to the interpreted and al-
location heavy nature of Python, along with the caveats it carries surrounding
multi-threading and function calls. As an example, true threading in Python re-
quires using the multiprocessing module to avoid hitting the global interpreter
lock, which creates large overheads for sharing data between processes. Further-
more, it is not possible to change strings in-place without creating any copies
which is bad for heavy string operations. Luckily most of these grievances are not
really problems in the suggested language ports, with added possibilities for arena
memory allocators and string views; at the added cost of potential new vulner-
abilities if not careful. Nevertheless, porting the project is a task for the special
enthusiast.

6.2.2 Native FFmpeg functionality

Because reading and writing files from/to disk is substantially slower than hand-
ling them in memory, using the FFmpeg libavcodec c library rather than opting to
run a separate process would most likely provide a significant speed boost over
the current video frame extraction method [53]. Either this can be thought im-
plemented as part of the previously mentioned C/C++ port of the project, or as
a smaller c module library called directly from Python. This is similar to how a
FFmpeg process is launched through the subprocess module today. As an added

1wxPython is a cross-platform tookit for creating graphical user interfaces in the Python pro-
gramming language, https://www.wxpython.org/pages/overview/

https://www.wxpython.org/pages/overview/

50 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

bonus, this would also circumvent the need to keep track of and clean FFmpeg
extraction remnants every 20 or so video passes.

6.2.3 Better perceptual hashing algorithm

As it stands, the perceptual hashing algorithm utilized in the thesis, pHash, does
not really deal well with differentiating larger blocks of colors due to its linear
color averaging approach. This can impact the overall accuracy of any retrieved
search results and should thus be seen as a shortcoming with the algorithm. To
work around this issue, a new open-source perceptual hashing algorithm with
comparable metrics to pHash should therefore be attempted found or created to
lessen any potential false positives. Notably, there already exists some alternatives
to pHash such as PhotoDNA by Microsoft, although both it and several other al-
gorithms are locked under proprietary licenses rendering them unusable in open
source projects.

Chapter 7

Conclusion

In this master’s thesis we have discussed the challenge of scalability, as well as
how it relates to our topic of video identification. We highlighted that many of
the existing video identification systems today struggle with ever increasing data
volumes, and how none of them really appear viable for use in actual production
settings. This is a consequence of them either being too slow to operate in real
time on big data, or simply classifying as proprietary in nature and thus restrict-
ing their potential public adoption. Therefore, in response we set out to create a
more open and scalable approach to performing video identification, which could
be used to efficiently identify both fragmented and transformed image/video files
in very large datasets; the end result of this work being pyClipNSearchIt.

pyClipNSearchIt is a highly performant and scalable video identification meth-
od that is specifically tailored for big data applications. It is heavily inspired by
PYVIDID, which uses a perceptual hashing algorithm - pHash - and hemming dis-
tance comparisons to accurately identify video clips within a pre-indexed dataset.
However in contrast to PYVIDID’s in-memory sliding window matching technique,
our approach instead leverages the new FENSHES in-query technique to perform
hash comparisons directly inside of a ElastichSearch cluster’s data nodes. This
speeds up the search times by approximately 96 to 4.5 times over the previous
approach, when tested on a dataset consisting of 55 290 videos and 387 261 im-
ages. This measurement of course, will vary depending on the given input clip’s
runtime duration.

As another achievement, pyClipNSearchIt is also able to easily identify and
remove intra-video duplicate hashes at no additional cost to the program’s hash-
ing step. This helps reduce the total number of generated frame hashes by around
5.44% and decreases the overall size of the indexed dataset. For the data indexa-
tion process itself, we managed (through the application of multithreading, bulk
indexing APIs and ElasticSearch ingest pipelines) to achieve a substantial 6238%
speed improvement over PYVIDID. This just goes to demonstrate the improved
scalability and viability of our new approach compared to earlier ones.

51

52 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

We believe that the most suitable application of pyClipNSearchIt is as a video
alternative to the audio identification service Shazam - However, pyClipNSear-
chIt stands equally tall on its own as yet another stepping stone in the pursuit of
providing knowledge for a better world; as is NTNU’s official motto.

Bibliography

[1] O. Kjelsrud, ‘Using perceptual hash algorithms to identify fragmented and
transformed video files,’ Gjøvik University College, 2014.

[2] B. Berisha and B. Mëziu, Big data analytics in cloud computing: An overview,
Feb. 2021. DOI: 10.13140/RG.2.2.26606.95048.

[3] Statista, Youtube: Hours of video uploaded every minute 2020, https://
www.statista.com/statistics/259477/hours-of-video-uploaded-to-
youtube-every-minute/, (Accessed on 20/04/2022), Feb. 2020.

[4] Griffeye Technologies, Griffeye analyze | an open and modular software plat-
form for your digital media investigations, https://www.griffeye.com/,
(Accessed on 19/04/2022), Apr. 2022.

[5] Microsoft, Photodna, https://www.microsoft.com/en- us/photodna,
(Accessed on 19/04/2022), Apr. 2022.

[6] C. Mu, J. Zhao, G. Yang, B. Yang and Z. Yan, ‘Empowering elasticsearch with
exact and fast r-neighbor search in hamming space,’ CoRR, vol. abs/1902.08498,
2019. arXiv: 1902.08498. [Online]. Available: http://arxiv.org/abs/
1902.08498.

[7] P. B. Meggs, A History of Graphic Design. John Wiley Sons, Inc, 1998.

[8] A. Tirkel, G. Rankin, R. Schyndel, W. Ho, N. Mee and C. Osborne, ‘Electronic
water mark,’ DICTA–93, pp. 666–672, Dec. 1993.

[9] J. Law-To, L. Chen, A. Joly, I. Laptev, O. Buisson, V. Gouet-Brunet, N. Boujemaa
and F. Stentiford, ‘Video copy detection: A comparative study,’ Jul. 2007,
pp. 371–378. DOI: 10.1145/1282280.1282336.

[10] P. Jiang, S. He, H. Yu and Y. Zhang, ‘Two-stage visible watermark removal
architecture based on deep learning,’ eng, IET image processing, vol. 14,
no. 15, pp. 3819–3828, 2020, ISSN: 1751-9659.

[11] C. Gao, A. Saraf, J.-B. Huang and J. Kopf, ‘Flow-edge guided video com-
pletion,’ in Proc. European Conference on Computer Vision (ECCV), 2020.

[12] P. C. Bjelland, K. Franke and A. Årnes, ‘Practical use of approximate hash
based matching in digital investigations,’ eng, Digital investigation, vol. 11,
no. 1, S18–S26, 2014, ISSN: 1742-2876.

53

https://doi.org/10.13140/RG.2.2.26606.95048
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.griffeye.com/
https://www.microsoft.com/en-us/photodna
https://arxiv.org/abs/1902.08498
http://arxiv.org/abs/1902.08498
http://arxiv.org/abs/1902.08498
https://doi.org/10.1145/1282280.1282336

54 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

[13] A. A. Taha and S. J. Malebary, ‘Hybrid classification of android malware
based on fuzzy clustering and the gradient boosting machine,’ eng, Neural
computing applications, vol. 33, no. 12, pp. 6721–6732, 2020, ISSN: 0941-
0643.

[14] N. D. Gharde, D. M. Thounaojam, B. Soni and S. K. Biswas, ‘Robust percep-
tual image hashing using fuzzy color histogram,’ eng, Multimedia tools and
applications, vol. 77, no. 23, pp. 30 815–30 840, 2018, ISSN: 1380-7501.

[15] Content Blockchain, Testing different image hash functions, https://content-
blockchain.org/research/testing-different-image-hash-functions/,
(Accessed on 05/04/2022), May 2022.

[16] M. C. Amirani, M. Toorani and A. Beheshti, ‘A new approach to content-
based file type detection,’ in 2008 IEEE Symposium on Computers and Com-
munications, IEEE, Jul. 2008. DOI: 10.1109/iscc.2008.4625611. [Online].
Available: https://doi.org/10.1109%5C%2Fiscc.2008.4625611.

[17] E. Barfian, B. H. Iswanto and S. M. Isa, ‘Twitter pornography multilingual
content identification based on machine learning,’ eng, vol. 116, pp. 129–
136, 2017, ISSN: 1877-0509.

[18] C. Nicholson, L. Beattie, M. Beattie, T. Razzaghi and S. Chen, ‘A machine
learning and clustering-based approach for county-level covid-19 analysis,’
eng, PloS one, vol. 17, no. 4, e0267558–e0267558, 2022, ISSN: 1932-6203.

[19] J. Sester, D. Hayes, M. Scanlon and N.-A. Le-Khac, ‘A comparative study
of support vector machine and neural networks for file type identification
using n-gram analysis,’ Forensic Science International Digital Investigation,
vol. 36, Mar. 2021. DOI: 10.1016/j.fsidi.2021.301121.

[20] IBM Cloud Education, What is deep learning? https://www.ibm.com/
cloud/learn/deep-learning#:~:text=Deep%20learning%20is%20a%
20subset,from%20large%20amounts%20of%20data., (Accessed on 19/05/2022),
May 2020.

[21] J. Kobielus, Gpus continue to dominate the ai accelerator market for now,
https://www.informationweek.com/ai-or-machine-learning/gpus-
continue-to-dominate-the-ai-accelerator-market-for-now, (Ac-
cessed on 19/05/2022), Nov. 2019.

[22] ‘State intellectual property office of china releases univ jiliang china’s pat-
ent application for face recognition based on depth neural network multi-
layer feature fusion,’ eng, Global IP News. Information Technology Patent
News, 2020.

[23] W. Song, C. Chen, Q. Zhao and F. Liu, ‘Spatial-temporal representation for
video reidentification via key images,’ eng, IET computer vision, vol. 14,
no. 6, pp. 399–406, 2020, ISSN: 1751-9632.

https://content-blockchain.org/research/testing-different-image-hash-functions/
https://content-blockchain.org/research/testing-different-image-hash-functions/
https://doi.org/10.1109/iscc.2008.4625611
https://doi.org/10.1109%5C%2Fiscc.2008.4625611
https://doi.org/10.1016/j.fsidi.2021.301121
https://www.ibm.com/cloud/learn/deep-learning##:~:text=Deep%20learning%20is%20a%20subset,from%20large%20amounts%20of%20data.
https://www.ibm.com/cloud/learn/deep-learning##:~:text=Deep%20learning%20is%20a%20subset,from%20large%20amounts%20of%20data.
https://www.ibm.com/cloud/learn/deep-learning##:~:text=Deep%20learning%20is%20a%20subset,from%20large%20amounts%20of%20data.
https://www.informationweek.com/ai-or-machine-learning/gpus-continue-to-dominate-the-ai-accelerator-market-for-now
https://www.informationweek.com/ai-or-machine-learning/gpus-continue-to-dominate-the-ai-accelerator-market-for-now

Bibliography 55

[24] J. Q. Candela, Building scalable systems to understand content - engineering
at meta, https://engineering.fb.com/2017/02/02/ml-applications/
building-scalable-systems-to-understand-content/, (Accessed on
19/05/2022), Feb. 2017.

[25] K. Johnson, The efforts to make text-based ai less racist and terrible, https:
/ / www . wired . com / story / efforts - make - text - ai - less - racist -
terrible/, (Accessed on 19/05/2022), Jun. 2021.

[26] Youtube creators, Youtube content id, https://www.youtube.com/watch?
v=9g2U12SsRns, (Accessed on 22/05/2021), Sep. 2010.

[27] Griffeye Analyze Platform, Using griffeye technology to increase efficiency
and results, https://www.youtube.com/watch?v=9C7HrUd-Uto?t=708,
(Accessed on 18/05/2022), Aug. 2018.

[28] Griffeye Technologies, Griffeye analyze di pro, https://www.griffeye.
com/analyze-di/, (Accessed on 22/05/2022), May 2022.

[29] Griffeye Technologies, Griffeye intelligence database, https://www.griffeye.
com / griffeye - intelligence - database/, (Accessed on 22/05/2022),
May 2022.

[30] J. Langston, How photodna for video is being used to fight online child ex-
ploitation – on the issues, https://news.microsoft.com/on-the-issues/
2018/09/12/how- photodna- for- video- is- being- used- to- fight-
online-child-exploitation/, (Accessed on 18/05/2022), Sep. 2018.

[31] H. Farid, ‘Reining in online abuses,’ English, Technology and Innovation,
vol. 19, no. 3, pp. 593–599, 2018, Name - Dartmouth College; Copyright
- Copyright National Academy of Inventors 2018; Last updated - 2021-09-
11; SubjectsTermNotLitGenreText - United States–US. [Online]. Available:
https://www.proquest.com/scholarly-journals/reining-online-
abuses/docview/2013546711/se-2?accountid=12870.

[32] J. Meisner, Facebook to use microsoft’s photodna technology to combat child
exploitation, https://blogs.microsoft.com/on-the-issues/2011/05/
19/facebook-to-use-microsofts-photodna-technology-to-combat-
child-exploitation/, (Accessed on 22/05/2022), May 2011.

[33] A. Orr, Apple now scans uploaded content for child abuse imagery (update),
https://www.macobserver.com/analysis/apple- scans- uploaded-
content/, (Accessed on 22/05/2022), Aug. 2021.

[34] Microsoft, Photodna cloud service, https://www.microsoft.com/en-us/
PhotoDNA/CloudService, (Accessed on 22/05/2022), May 2022.

[35] J. Kaiser, Cli java wrapper for the photodna library, https://github.com/
jankais3r/jPhotoDNA, (Accessed on 22/05/2022), Aug. 2021.

[36] N. Krawetz, Photodna and limitations - the hacker factor blog, https://
hackerfactor.com/blog/index.php?/archives/931-PhotoDNA-and-
Limitations.html, (Accessed on 22/05/2022), Aug. 2021.

https://engineering.fb.com/2017/02/02/ml-applications/building-scalable-systems-to-understand-content/
https://engineering.fb.com/2017/02/02/ml-applications/building-scalable-systems-to-understand-content/
https://www.wired.com/story/efforts-make-text-ai-less-racist-terrible/
https://www.wired.com/story/efforts-make-text-ai-less-racist-terrible/
https://www.wired.com/story/efforts-make-text-ai-less-racist-terrible/
https://www.youtube.com/watch?v=9g2U12SsRns
https://www.youtube.com/watch?v=9g2U12SsRns
https://www.youtube.com/watch?v=9C7HrUd-Uto?t=708
https://www.griffeye.com/analyze-di/
https://www.griffeye.com/analyze-di/
https://www.griffeye.com/griffeye-intelligence-database/
https://www.griffeye.com/griffeye-intelligence-database/
https://news.microsoft.com/on-the-issues/2018/09/12/how-photodna-for-video-is-being-used-to-fight-online-child-exploitation/
https://news.microsoft.com/on-the-issues/2018/09/12/how-photodna-for-video-is-being-used-to-fight-online-child-exploitation/
https://news.microsoft.com/on-the-issues/2018/09/12/how-photodna-for-video-is-being-used-to-fight-online-child-exploitation/
https://www.proquest.com/scholarly-journals/reining-online-abuses/docview/2013546711/se-2?accountid=12870
https://www.proquest.com/scholarly-journals/reining-online-abuses/docview/2013546711/se-2?accountid=12870
https://blogs.microsoft.com/on-the-issues/2011/05/19/facebook-to-use-microsofts-photodna-technology-to-combat-child-exploitation/
https://blogs.microsoft.com/on-the-issues/2011/05/19/facebook-to-use-microsofts-photodna-technology-to-combat-child-exploitation/
https://blogs.microsoft.com/on-the-issues/2011/05/19/facebook-to-use-microsofts-photodna-technology-to-combat-child-exploitation/
https://www.macobserver.com/analysis/apple-scans-uploaded-content/
https://www.macobserver.com/analysis/apple-scans-uploaded-content/
https://www.microsoft.com/en-us/PhotoDNA/CloudService
https://www.microsoft.com/en-us/PhotoDNA/CloudService
https://github.com/jankais3r/jPhotoDNA
https://github.com/jankais3r/jPhotoDNA
https://hackerfactor.com/blog/index.php?/archives/931-PhotoDNA-and-Limitations.html
https://hackerfactor.com/blog/index.php?/archives/931-PhotoDNA-and-Limitations.html
https://hackerfactor.com/blog/index.php?/archives/931-PhotoDNA-and-Limitations.html

56 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

[37] A. Athalye, Inverting photodna, https://www.anishathalye.com/2021/
12/20/inverting-photodna/, (Accessed on 22/05/2022), Dec. 2021.

[38] Youtube, How content id works - youtube help, https://support.google.
com/youtube/answer/2797370?hl=en, (Accessed on 22/05/2022), May
2022.

[39] J. E. Gray and N. P. Suzor, ‘Playing with machines: Using machine learn-
ing to understand automated copyright enforcement at scale,’ Big Data
& Society, vol. 7, no. 1, p. 2 053 951 720 919 963, 2020. DOI: 10.1177/
2053951720919963. eprint: https://doi.org/10.1177/2053951720919963.
[Online]. Available: https://doi.org/10.1177/2053951720919963.

[40] P. Saadatpanah, A. Shafahi and T. Goldstein, ‘Adversarial attacks on copy-
right detection systems,’ in International Conference on Machine Learning,
PMLR, 2020, pp. 8307–8315.

[41] K. Gardåsen, Clipped: A solution for finding the source footage from a video
clip, https://web.archive.org/web/20180611001102/https://github.
com/Data-Kjetil/CLIPPED, Dec. 2013.

[42] Scientific method. DOI: 10.1093/oi/authority.20110803100447727. [On-
line]. Available: https://www.oxfordreference.com/view/10.1093/oi/
authority.20110803100447727.

[43] Elastic, Hardware | elasticsearch: The definitive guide [2.x], https://www.
elastic.co/guide/en/elasticsearch/guide/current/hardware.html,
(Accessed on 29/04/2022), Apr. 2022.

[44] Elastic, Hardware prerequisites | elastic cloud enterprise reference [3.1], https:
//www.elastic.co/guide/en/cloud-enterprise/current/ece-hardware-
prereq.html, (Accessed on 28/04/2022), Apr. 2022.

[45] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D.
Borth and L.-J. Li, ‘Yfcc100m: The new data in multimedia research,’ Com-
munications of the ACM, vol. 59, no. 2, pp. 64–73, 2016.

[46] Amazon, Aws command line interface, https://aws.amazon.com/cli/,
(Accessed on 04/05/2022), May 2022.

[47] Gyan, How to capture first x frames every x seconds into a png with ffmpeg?
https://superuser.com/questions/1388870/how-to-capture-first-
x-frames-every-x-seconds-into-a-png-with-ffmpeg/1389002, (Ac-
cessed on 05/05/2022), Dec. 2018.

[48] mayya-sharipova, Issue - forbid negative values for "weight" in function score
query, https://github.com/elastic/elasticsearch/issues/31927,
(Accessed on 09/05/2022), Jul. 2018.

[49] F. W. T. Reite, Pyclipnsearchit: A scalable approach to video indexing and
search for use in the identification of fragmented and transformed image/video
files, https://github.com/WilhelmThon/pyClipNSearchIt, Jun. 2022.

https://www.anishathalye.com/2021/12/20/inverting-photodna/
https://www.anishathalye.com/2021/12/20/inverting-photodna/
https://support.google.com/youtube/answer/2797370?hl=en
https://support.google.com/youtube/answer/2797370?hl=en
https://doi.org/10.1177/2053951720919963
https://doi.org/10.1177/2053951720919963
https://doi.org/10.1177/2053951720919963
https://doi.org/10.1177/2053951720919963
https://web.archive.org/web/20180611001102/https://github.com/Data-Kjetil/CLIPPED
https://web.archive.org/web/20180611001102/https://github.com/Data-Kjetil/CLIPPED
https://doi.org/10.1093/oi/authority.20110803100447727
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100447727
https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100447727
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html
https://www.elastic.co/guide/en/cloud-enterprise/current/ece-hardware-prereq.html
https://www.elastic.co/guide/en/cloud-enterprise/current/ece-hardware-prereq.html
https://www.elastic.co/guide/en/cloud-enterprise/current/ece-hardware-prereq.html
https://aws.amazon.com/cli/
https://superuser.com/questions/1388870/how-to-capture-first-x-frames-every-x-seconds-into-a-png-with-ffmpeg/1389002
https://superuser.com/questions/1388870/how-to-capture-first-x-frames-every-x-seconds-into-a-png-with-ffmpeg/1389002
https://github.com/elastic/elasticsearch/issues/31927
https://github.com/WilhelmThon/pyClipNSearchIt

Bibliography 57

[50] R. Feynman, Feynman on scientific method, https://www.youtube.com/
watch?v=EYPapE-3FRw, (Accessed on 07/05/2022), 1965.

[51] GNU Project - Free Software Foundation, The gnu general public license
v3.0, https://www.gnu.org/licenses/gpl-3.0.en.html, (Accessed
on 18/04/2022), Jun. 2007.

[52] Wikipedia contributors, File format (magic number) — Wikipedia, the free
encyclopedia, (Accessed on 19/04/2022), 2022. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=File_format&oldid=1082030016#
Magic_number.

[53] FFmpeg, Ffmpeg git repo, https://git.ffmpeg.org/ffmpeg.git, (Ac-
cessed on 19/04/2022), Apr. 2022.

https://www.youtube.com/watch?v=EYPapE-3FRw
https://www.youtube.com/watch?v=EYPapE-3FRw
https://www.gnu.org/licenses/gpl-3.0.en.html
https://en.wikipedia.org/w/index.php?title=File_format&oldid=1082030016#Magic_number
https://en.wikipedia.org/w/index.php?title=File_format&oldid=1082030016#Magic_number
https://en.wikipedia.org/w/index.php?title=File_format&oldid=1082030016#Magic_number
https://git.ffmpeg.org/ffmpeg.git

Appendix A

Frontend setup script

Code listing A.1: Python script for setting up the desktop/master frontend en-
vironment

import sys
import os
import platform
import subprocess
import json

from src import logger
from src import util

FILE_DIR = os.path.dirname(__file__)
CONFIG = {

"elasticsearch": {
"hosts": [

"https://localhost:9200"
],
"http_auth": [

"user",
"password"

],
"verify_certs": False,
"ssl_show_warn": False

},
"elasticsearch_index": {

"number_of_shards": 9,
"number_of_replicas": 1

},
"ffmpeg": {

"use_hwaccel": False,
"capture_every_n_seconds": 1

},
"search": {

"max_size_response": 15,
"r": 5

}
}

def install_requirements_pip():
logger.info("...Attempting␣to␣install␣pip␣requirements")

59

60 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

These are included to ensure we don’t encounter any weird errors when
,→ installing the requirements

subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", ’
,→ pip’])

subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", ’
,→ setuptools’])

subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", ’
,→ distlib’])

subprocess.check_call([sys.executable, "-m", "pip", "install", "--upgrade", ’
,→ requests’])

Install requirements
subprocess.check_call([sys.executable, "-m", "pip", "install", "-r", os.path.

,→ join(FILE_DIR, "requirements.txt")])
logger.info("...Success,␣installed␣pip␣requirements")

def install_requirements_windows():
import ssl
from urllib.request import urlopen, Request
from urllib.error import URLError
from http.client import IncompleteRead
from io import BytesIO
from zipfile import ZipFile

Download and install ffmpeg
try:

logger.info("...Attempting␣to␣download␣ffmpeg")
http_header = {’User-Agent’: ’Mozilla/5.0␣(Windows␣NT␣10.0;␣Win64;␣x64)␣

,→ AppleWebKit/537.36␣(KHTML,␣like␣Gecko)␣Chrome/70.0.3538.77␣Safari
,→ /537.36’}

context = ssl._create_unverified_context()

with urlopen(Request(
url="https://www.gyan.dev/ffmpeg/builds/git-version",
headers=http_header),
context=context

) as response:
content = response.read()
encoding = response.headers.get_content_charset(’utf-8’)
ffmpeg_version = content.decode(encoding)

logger.info(f"...Latest␣ffmpeg␣git␣version␣is␣{ffmpeg_version}")

with urlopen(Request(
url=f"https://github.com/GyanD/codexffmpeg/releases/download/{

,→ ffmpeg_version}/ffmpeg-{ffmpeg_version}-essentials_build.zip",
headers=http_header),
context=context

) as response:
url_file = BytesIO(response.read())

logger.info("...Success,␣downloaded␣ffmpeg")

except (URLError, IncompleteRead) as e:
logger.error(f"Failed␣to␣download␣ffmpeg␣’{e}’")
quit()

with ZipFile(url_file, mode = ’r’) as zipObj:
logger.info("...Extracting␣ffmpeg␣from␣archive")
for zip_info in zipObj.infolist():

if zip_info.filename[-1] == ’/’: continue

Chapter A: Frontend setup script 61

basename = os.path.basename(zip_info.filename)

if not basename == ’ffmpeg.exe’: continue

zip_info.filename = basename
zipObj.extract(zip_info, path=FILE_DIR)
break

logger.info("...Success,␣extracted␣ffmpeg.exe␣from␣archive")

def install_requirements_linux():
logger.info("...Attempting␣to␣download␣dependencies")
subprocess.check_call([’sudo’, ’add-apt-repository’, ’ppa:savoury1/ffmpeg4’],

,→ stdout=sys.stdout, stderr=sys.stderr)
subprocess.check_call([’sudo’, ’apt’, ’install’] + [’ffmpeg’, ’libjpeg8-dev’, ’

,→ zlib1g-dev’, ’python3.9-distutils’] + [’-y’], stdout=sys.stdout, stderr
,→ =sys.stderr)

logger.info("...Success,␣dependencies␣downloaded")

def main():
logger.info("Running␣frontend␣setup!")

if util.is_frontend_setup():
logger.error("setup_frontend.py␣has␣already␣been␣run!")
return

system_name = platform.system()

System specific install requirements
if system_name == ’Windows’:

install_requirements_windows()
elif system_name == ’Linux’:

install_requirements_linux()
else:

logger.error("You␣are␣not␣on␣a␣supported␣system")
return

install_requirements_pip()

Create temp data folder
tmp_dir = os.path.join(util.ROOT_DIR, ".tmp")
os.mkdir(tmp_dir)

if system_name == ’Windows’:
os.system(f"attrib␣+h␣{tmp_dir}")

Create config
config_file = os.path.join(util.ROOT_DIR, "config.json")
with open(config_file, ’w+’) as file:

json.dump(CONFIG, file, indent=4)

logger.info("Created␣config.json.␣Remember␣to␣edit␣the␣default␣configuration!")
logger.info("Finished␣running␣frontend␣setup!")

if __name__ == "__main__":
main()

Appendix B

Default pyClipNSearchIt
configuration

Code listing B.1: JSON file for configuring the pyClipNSearchIt settings

{
"elasticsearch": {

"hosts": [
"https://localhost:9200"

],
"http_auth": [

"user",
"password"

],
"verify_certs": false,
"ssl_show_warn": false

},
"elasticsearch_index": {

"number_of_shards": 9,
"number_of_replicas": 1

},
"ffmpeg": {

"use_hwaccel": false,
"capture_every_n_seconds": 3

},
"search": {

"max_size_response": 50,
"r": 5

}
}

63

Appendix C

Backend setup script

Code listing C.1: Python script for setting up the Elasticsearch backend environ-
ment

import sys

from src import logger
from src import util

HMDSCRIPT_TEMPLATE = {
"id": "hmd64bit",
"script": {

"lang": "painless",
"source": """

long u = params.subcode^doc[params.field].value;
long uCount = u-((u>>>1)&-5270498306774157605L)-((u>>>2)

,→ &-7905747460161236407L);
return ((uCount+(uCount>>>3))&8198552921648689607L)%63;

"""
}

}

PIPELINE_TEMPLATE = {
"id": "split-hash",
"description": "Splits␣the␣input␣hashes␣into␣smaller␣subsets",
"processors": [

{
"set": {

"field": "fhash",
"value": {}

}
},
{

"script" : {
"lang": "painless",
"source": """

ctx.bhash = new BigInteger(ctx.hash, 16).longValue();
ctx.fhash.f1 = ctx.hash.substring(0, 4);
ctx.fhash.f2 = ctx.hash.substring(4, 8);
ctx.fhash.f3 = ctx.hash.substring(8, 12);
ctx.fhash.f4 = ctx.hash.substring(12, 16);

"""
}

65

66 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

}
]

}

INDEX_TEMPLATE = {
"index": "hashes",
"settings" : {

"number_of_shards": util.get_config()["elasticsearch_index"]["
,→ number_of_shards"],

"number_of_replicas": util.get_config()["elasticsearch_index"]["
,→ number_of_replicas"],

"default_pipeline": "split-hash"
},
"mappings": {

"properties": {
"origin": { "type": "text" },
"timestamp": { "type": "integer" },
"hash": { "type": "keyword" },
"bhash": { "type": "long" },
"fhash": {

"properties": {
"f1": { "type": "keyword" },
"f2": { "type": "keyword" },
"f3": { "type": "keyword" },
"f4": { "type": "keyword" },

}
}

}
}

}

def clear(client):
logger.info("...Attempting␣to␣delete␣old␣pipelines␣and␣indexes")
try:

client.indices.delete(index=INDEX_TEMPLATE["index"])
client.ingest.delete_pipeline(id=PIPELINE_TEMPLATE["id"])
client.delete_script(id=HMDSCRIPT_TEMPLATE["id"])

except:
pass

logger.info("...Success,␣deleted␣old␣pipelines␣and␣indexes")

def setup(client):
logger.info("...Attempting␣to␣create␣hemming␣distance␣script")
client.put_script(**HMDSCRIPT_TEMPLATE)
logger.info("...Success,␣created␣hemming␣distance␣script")

logger.info("...Attempting␣to␣create␣split-hash␣pipeline")
client.ingest.put_pipeline(**PIPELINE_TEMPLATE)
logger.info("...Success,␣created␣split-hash␣pipeline")

logger.info("...Attempting␣to␣create␣hash␣index")
client.indices.create(**INDEX_TEMPLATE)
logger.info("...Success,␣created␣hash␣index")

def main():
logger.info("Running␣backend␣setup!")

if not util.is_frontend_setup():
logger.error("setup_frontend.py␣must␣be␣run␣first")
return

Chapter C: Backend setup script 67

Import later to not give error if frontend has not been ran
import src.database as database

try:
client = database.connect()

except Exception as e:
logger.error(str(e))

if len(sys.argv) > 1 and sys.argv[1] == "--force":
logger.info("Forcing␣clean␣setup")
clear(client)

if util.is_backend_setup(client):
logger.error("The␣database␣is␣already␣setup")
return

setup(client)

logger.info("Finished␣running␣backend␣setup!")

if __name__ == "__main__":
main()

Appendix D

Elasticsearch nodes
configuration

Code listing D.1: Elasticsearch.yml node-1 (master) configuration

======================== Elasticsearch Configuration =========================
#
NOTE: Elasticsearch comes with reasonable defaults for most settings.
Before you set out to tweak and tune the configuration, make sure you
understand what are you trying to accomplish and the consequences.
#
The primary way of configuring a node is via this file. This template lists
the most important settings you may want to configure for a production cluster.
#
Please consult the documentation for further information on configuration options

,→ :
https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
---------------------------------- Cluster -----------------------------------
#
Use a descriptive name for your cluster:
#
cluster.name: hash-cluster
#
------------------------------------ Node ------------------------------------
#
Use a descriptive name for the node:
#
node.name: node-1
node.roles: [master, data]
#
Add custom attributes to the node:
#
#node.attr.rack: r1
#
----------------------------------- Paths ------------------------------------
#
Path to directory where to store the data (separate multiple locations by comma):
This path is a mounted 1TB HDD. Subsituting it for a SSD would likely yield much

,→ better indexing/search speeds
path.data: /data/elastic
#

69

70 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

Path to log files:
#
path.logs: /var/log/elasticsearch
#
----------------------------------- Memory -----------------------------------
#
Lock the memory on startup:
#
#bootstrap.memory_lock: true
#
Make sure that the heap size is set to about half the memory available
on the system and that the owner of the process is allowed to use this
limit.
#
Elasticsearch performs poorly when the system is swapping the memory.
#
---------------------------------- Network -----------------------------------
#
By default Elasticsearch is only accessible on localhost. Set a different
address here to expose this node on the network:
#
network.host: 192.168.0.35
#
By default Elasticsearch listens for HTTP traffic on the first free port it
finds starting at 9200. Set a specific HTTP port here:
#
#http.port: 9200
#
For more information, consult the network module documentation.
#
--------------------------------- Discovery ----------------------------------
#
Pass an initial list of hosts to perform discovery when this node is started:
The default list of hosts is ["127.0.0.1", "[::1]"]
#
#discovery.seed_hosts: ["host1", "host2"]
#
Bootstrap the cluster using an initial set of master-eligible nodes:
#
#cluster.initial_master_nodes: ["node-1", "node-2"]
#
For more information, consult the discovery and cluster formation module

,→ documentation.
#
---------------------------------- Various -----------------------------------
#
Allow wildcard deletion of indices:
#
#action.destructive_requires_name: false

#----------------------- BEGIN SECURITY AUTO CONFIGURATION -----------------------
#
The following settings, TLS certificates, and keys have been automatically
generated to configure Elasticsearch security features on 14-03-2022 09:40:26
#
--

Enable security features
xpack.security.enabled: true

Chapter D: Elasticsearch nodes configuration 71

xpack.security.enrollment.enabled: true

Enable encryption for HTTP API client connections, such as Kibana, Logstash, and
,→ Agents

xpack.security.http.ssl:
enabled: true
keystore.path: certs/http.p12

Enable encryption and mutual authentication between cluster nodes
xpack.security.transport.ssl:
enabled: true
verification_mode: certificate
keystore.path: certs/transport.p12
truststore.path: certs/transport.p12

Create a new cluster with the current node only
Additional nodes can still join the cluster later
cluster.initial_master_nodes: ["node-1"]

Allow HTTP API connections from localhost and local networks
Connections are encrypted and require user authentication
http.host: [_local_, _site_]

Allow other nodes to join the cluster from localhost and local networks
Connections are encrypted and mutually authenticated
#transport.host: [_local_, _site_]

#----------------------- END SECURITY AUTO CONFIGURATION -------------------------

Code listing D.2: Elasticsearch.yml node-2 (data, ingest) configuration

======================== Elasticsearch Configuration =========================
#
NOTE: Elasticsearch comes with reasonable defaults for most settings.
Before you set out to tweak and tune the configuration, make sure you
understand what are you trying to accomplish and the consequences.
#
The primary way of configuring a node is via this file. This template lists
the most important settings you may want to configure for a production cluster.
#
Please consult the documentation for further information on configuration options

,→ :
https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
---------------------------------- Cluster -----------------------------------
#
Use a descriptive name for your cluster:
#
cluster.name: hash-cluster
#
------------------------------------ Node ------------------------------------
#
Use a descriptive name for the node:
#
node.name: node-2
node.roles: [data, ingest]
#
Add custom attributes to the node:
#
#node.attr.rack: r1
#

72 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

----------------------------------- Paths ------------------------------------
#
Path to directory where to store the data (separate multiple locations by comma):
This path is a mounted 1TB HDD. Subsituting it for a SSD would likely yield much

,→ better indexing/search speeds
path.data: /data/elastic
#
Path to log files:
#
path.logs: /var/log/elasticsearch
#
----------------------------------- Memory -----------------------------------
#
Lock the memory on startup:
#
#bootstrap.memory_lock: true
#
Make sure that the heap size is set to about half the memory available
on the system and that the owner of the process is allowed to use this
limit.
#
Elasticsearch performs poorly when the system is swapping the memory.
#
---------------------------------- Network -----------------------------------
#
By default Elasticsearch is only accessible on localhost. Set a different
address here to expose this node on the network:
#
network.host: 192.168.0.149
#
By default Elasticsearch listens for HTTP traffic on the first free port it
finds starting at 9200. Set a specific HTTP port here:
#
#http.port: 9200
#
For more information, consult the network module documentation.
#
--------------------------------- Discovery ----------------------------------
#
Pass an initial list of hosts to perform discovery when this node is started:
The default list of hosts is ["127.0.0.1", "[::1]"]
#
#discovery.seed_hosts: ["192.168.0.35:9300"]
#
Bootstrap the cluster using an initial set of master-eligible nodes:
#
#cluster.initial_master_nodes: ["node-1"]
#
For more information, consult the discovery and cluster formation module

,→ documentation.
#
---------------------------------- Various -----------------------------------
#
Allow wildcard deletion of indices:
#
#action.destructive_requires_name: false

#----------------------- BEGIN SECURITY AUTO CONFIGURATION -----------------------
#
The following settings, TLS certificates, and keys have been automatically

Chapter D: Elasticsearch nodes configuration 73

generated to configure Elasticsearch security features on 14-03-2022 09:44:44
#
--

Enable security features
xpack.security.enabled: true

xpack.security.enrollment.enabled: true

Enable encryption for HTTP API client connections, such as Kibana, Logstash, and
,→ Agents

xpack.security.http.ssl:
enabled: true
keystore.path: certs/http.p12

Enable encryption and mutual authentication between cluster nodes
xpack.security.transport.ssl:
enabled: true
verification_mode: certificate
keystore.path: certs/transport.p12
truststore.path: certs/transport.p12

Discover existing nodes in the cluster
discovery.seed_hosts: ["192.168.0.35"]

Allow HTTP API connections from localhost and local networks
Connections are encrypted and require user authentication
http.host: [_local_, _site_]

Allow other nodes to join the cluster from localhost and local networks
Connections are encrypted and mutually authenticated
#transport.host: [_local_, _site_]

#----------------------- END SECURITY AUTO CONFIGURATION -------------------------

Code listing D.3: Elasticsearch.yml node-3 (data, ingest) configuration

======================== Elasticsearch Configuration =========================
#
NOTE: Elasticsearch comes with reasonable defaults for most settings.
Before you set out to tweak and tune the configuration, make sure you
understand what are you trying to accomplish and the consequences.
#
The primary way of configuring a node is via this file. This template lists
the most important settings you may want to configure for a production cluster.
#
Please consult the documentation for further information on configuration options

,→ :
https://www.elastic.co/guide/en/elasticsearch/reference/index.html
#
---------------------------------- Cluster -----------------------------------
#
Use a descriptive name for your cluster:
#
cluster.name: hash-cluster
#
------------------------------------ Node ------------------------------------
#
Use a descriptive name for the node:
#
node.name: node-3

74 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

node.roles: [data, ingest]
#
Add custom attributes to the node:
#
#node.attr.rack: r1
#
----------------------------------- Paths ------------------------------------
#
Path to directory where to store the data (separate multiple locations by comma):
This path is a mounted 1TB HDD. Subsituting it for a SSD would likely yield much

,→ better indexing/search speeds
path.data: /data/elastic
#
Path to log files:
#
path.logs: /var/log/elasticsearch
#
----------------------------------- Memory -----------------------------------
#
Lock the memory on startup:
#
#bootstrap.memory_lock: true
#
Make sure that the heap size is set to about half the memory available
on the system and that the owner of the process is allowed to use this
limit.
#
Elasticsearch performs poorly when the system is swapping the memory.
#
---------------------------------- Network -----------------------------------
#
By default Elasticsearch is only accessible on localhost. Set a different
address here to expose this node on the network:
#
network.host: 192.168.0.61
#
By default Elasticsearch listens for HTTP traffic on the first free port it
finds starting at 9200. Set a specific HTTP port here:
#
#http.port: 9200
#
For more information, consult the network module documentation.
#
--------------------------------- Discovery ----------------------------------
#
Pass an initial list of hosts to perform discovery when this node is started:
The default list of hosts is ["127.0.0.1", "[::1]"]
#
#discovery.seed_hosts: ["host1", "host2"]
#
Bootstrap the cluster using an initial set of master-eligible nodes:
#
#cluster.initial_master_nodes: ["node-1", "node-2"]
#
For more information, consult the discovery and cluster formation module

,→ documentation.
#
---------------------------------- Various -----------------------------------
#
Allow wildcard deletion of indices:

Chapter D: Elasticsearch nodes configuration 75

#
#action.destructive_requires_name: false

#----------------------- BEGIN SECURITY AUTO CONFIGURATION -----------------------
#
The following settings, TLS certificates, and keys have been automatically
generated to configure Elasticsearch security features on 14-03-2022 09:48:10
#
--

Enable security features
xpack.security.enabled: true

xpack.security.enrollment.enabled: true

Enable encryption for HTTP API client connections, such as Kibana, Logstash, and
,→ Agents

xpack.security.http.ssl:
enabled: true
keystore.path: certs/http.p12

Enable encryption and mutual authentication between cluster nodes
xpack.security.transport.ssl:
enabled: true
verification_mode: certificate
keystore.path: certs/transport.p12
truststore.path: certs/transport.p12

Discover existing nodes in the cluster
discovery.seed_hosts: ["192.168.0.35"]

Allow HTTP API connections from localhost and local networks
Connections are encrypted and require user authentication
http.host: [_local_, _site_]

Allow other nodes to join the cluster from localhost and local networks
Connections are encrypted and mutually authenticated
#transport.host: [_local_, _site_]

#----------------------- END SECURITY AUTO CONFIGURATION -------------------------

Appendix E

Multimedia Commons download
script

Code listing E.1: Python script for downloading a small subset of the Multimedia
Commons dataset

import sys
import os
import subprocess

from src import logger

def main():
if len(sys.argv) != 2:

logger.error("Requires␣an␣output␣directory")
return

output = os.path.abspath(sys.argv[1])

if not os.path.isdir(output):
logger.error("Ouput␣path␣is␣not␣a␣directory")
return

base_cmd_images = f"python␣-m␣awscli␣s3␣sync␣--no-sign-request␣s3://multimedia-
,→ commons/data/images/{{0}}␣{output}/images/{{0}}"

base_cmd_videos = f"python␣-m␣awscli␣s3␣sync␣--no-sign-request␣s3://multimedia-
,→ commons/data/videos/mp4/{{0}}␣{output}/videos/{{0}}"

logger.info(f"Downloading␣the␣dataset")

Yes I know these loops are basically identical.
Yes they can be improved.
for i in range(0, 256, 8):

p_handles = []

try:
for j in range (i, i + 8):

hex_i = hex(j)[2:].rjust(3, ’0’)
p_handles.append(subprocess.Popen(base_cmd_images.format(hex_i),

,→ stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL))
p_handles.append(subprocess.Popen(base_cmd_videos.format(hex_i),

,→ stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL))

77

78 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

for p_handle in p_handles:
p_handle.wait()

except KeyboardInterrupt as e:
logger.error("Interrupted␣download.␣Terminating␣running␣download␣

,→ processes")

for p_handle in p_handles:
p_handle.terminate()

raise e

logger.info(f"Downloaded␣{i␣+␣8}/256␣of␣the␣general␣dataset")

for i in range(256, 512, 8):
p_handles = []

try:
for j in range (i, i + 8):

hex_i = hex(j)[2:].rjust(3, ’0’)
p_handles.append(subprocess.Popen(base_cmd_videos.format(hex_i),

,→ stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL))

for p_handle in p_handles:
p_handle.wait()

except KeyboardInterrupt as e:
logger.error("Interrupted␣download.␣Terminating␣running␣download␣

,→ processes")

for p_handle in p_handles:
p_handle.terminate()

raise e

logger.info(f"Downloaded␣{(i␣-␣248)␣}/256␣of␣the␣additional␣video␣dataset")

logger.info(f"Finished␣downloading␣the␣dataset")

if __name__ == "__main__":
main()

Appendix F

Tool - Count hashes script

Code listing F.1: Python script for counting the number of hashes in a .pregen-
hashes file

import sys
import os
import json

sys.path.insert(1, os.path.join(sys.path[0], ’..’))

from src import logger
from src import util
from src.structures import FileType

def main():
logger.info("Running␣count␣hashes!")

if not util.is_frontend_setup():
logger.error("setup_frontend.py␣must␣be␣run␣first")
return

if len(sys.argv) != 2:
logger.error("You␣must␣provide␣a␣.pregenhashes␣or␣.pregenhashes.

,→ notnormalized.txt␣input␣file")
return

path = os.path.abspath(sys.argv[1])

if (not os.path.isfile(path)) or (util.get_file_type(path) != FileType.HASHES
,→ and not path.lower().endswith(".pregenhashes.notnormalized.txt")):
logger.error("The␣provided␣path␣is␣either␣not␣valid␣or␣the␣correct␣file␣

,→ type␣(.pregenhashes,␣.pregenhashes.notnormalized.txt)")
return

with open(path) as file:
hash_sets = json.load(file)

number_of_hashes = 0

for origin in hash_sets:
data = hash_sets[origin]

if type(data) is str:

79

80 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

number_of_hashes += 1
else:

number_of_hashes += len(data)

logger.info(f"The␣number␣of␣hashes␣in␣{os.path.basename(path)}␣is␣{
,→ number_of_hashes}")

logger.info("Finished␣running␣count␣hashes!")

if __name__ == "__main__":
main()

Appendix G

Tool - Extract clips script

Code listing G.1: Python script for extracting fragments/clips from videos

import sys
import os
import subprocess
import imagehash

sys.path.insert(1, os.path.join(sys.path[0], ’..’))

from collections import defaultdict
from PIL import Image
from distutils.util import strtobool
from src import logger
from src import util
from src.arguments import _is_valid_input, _is_valid_output
from src.hasher import preprocess, _write_to_file

def hash_videos(videos: list):
if not videos:

return None

tmp_dir = os.path.join(util.ROOT_DIR, ".tmp")
base_cmd = util.get_converter(ignore_settings=True)
videos_len = len(videos)
hash_sets = defaultdict(list)

for i in range(0, videos_len, 20):
videos_left = videos_len - i
remaining = videos_left if videos_left < 20 else 20

for j in range(i, i + remaining):
output = os.path.join(tmp_dir, f"{os.path.basename(videos[j])}.%d")
cmd = base_cmd.format(videos[j], output)

logger.info(cmd)

subprocess.Popen(cmd, shell=True).wait()

files = []

with os.scandir(tmp_dir) as it:
for entry in it:

81

82 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

files.append(entry.path)

for file in files:
try:

image = Image.open(file)
name, frame = os.path.splitext(os.path.basename(file))
hash_sets[name].append((str(imagehash.phash(image, 8)), int(frame

,→ [1:]) - 1))
except:

pass

hash_sets[name].sort(key=lambda x: x[1])

os.remove(file)

return hash_sets

def extract_clips(hash_sets: dict, length, offset):
to_remove = []

for origin in hash_sets:
data = hash_sets[origin]
video_length = len(data)

if video_length < (offset + length):
logger.info(f"The␣chosen␣offset␣’{offset}’␣and␣length␣’{length}’␣=␣{

,→ offset+length},␣exceeds␣␣the␣video␣length␣of␣{origin},␣’{
,→ video_length}’.␣Skipping␣the␣clip")

to_remove.append(origin)
continue

hash_sets[origin] = data[offset:offset+length]

for origin in to_remove:
del hash_sets[origin]

def normalize_output(hash_sets: dict):
frame_capture_setting = util.get_config()["ffmpeg"]["capture_every_n_seconds"]

for origin in hash_sets:
data = hash_sets[origin]
tmp_data = {}

for i in range(0, len(data), frame_capture_setting):
frame, timestamp = data[i]
tmp_data[frame] = timestamp

hash_sets[origin] = tmp_data

def main():
logger.info("Running␣extract␣clips!")

if not util.is_frontend_setup():
logger.error("setup_frontend.py␣must␣be␣run␣first")
return

num_args = len(sys.argv)

if num_args < 4 or num_args > 6:

Chapter G: Tool - Extract clips script 83

logger.error("You␣must␣provide␣a␣valid␣input␣path,␣output␣path,␣clip␣length
,→ ␣(int),␣and␣optionally␣an␣offset␣(int,␣default␣0)␣and␣normalize␣
,→ option␣(bool,␣default␣true)")

return

try:
input_path = _is_valid_input(sys.argv[1])
output_path = _is_valid_output(sys.argv[2])
length = int(sys.argv[3])
offset = int(sys.argv[4]) if len(sys.argv) > 4 else 0
normalize = strtobool(sys.argv[5].lower()) if len(sys.argv) > 5 else True

if length <= 0:
raise Exception("The␣length␣must␣be␣above␣0")

_, videos, _ = preprocess.run(input_path)
hash_sets = hash_videos(videos)

if not hash_sets:
raise Exception("No␣hashes␣could␣be␣calculated␣or␣read␣from␣the␣input")

except Exception as e:
logger.error(str(e))
return

Extract the clips for each video
extract_clips(hash_sets, length, offset)

if normalize:
Normalize the output so the .pregenhashes can be read
normalize_output(hash_sets)

else:
output_path += ".notnormalized.txt"

_write_to_file(output_path, hash_sets)

logger.info("Finished␣running␣extract␣clips!")

if __name__ == "__main__":
main()

Appendix H

Tool - Transform videos script

Code listing H.1: Python script for applying transformations to a video set

import sys
import os
import platform
import subprocess

sys.path.insert(1, os.path.join(sys.path[0], ’..’))

from src import logger
from src import util
from src.arguments import _is_valid_input
from src.hasher import preprocess

def get_valid_output(path: str):
abs_path = os.path.abspath(path)

if os.path.isfile(abs_path):
raise TypeError("The␣output␣path␣cannot␣be␣a␣file")

os.makedirs(abs_path, exist_ok=True)

return abs_path

def get_converters():
system_name = platform.system()

if system_name == ’Windows’:
converter = os.path.join(util.ROOT_DIR, "ffmpeg.exe")

elif system_name == ’Linux’:
converter = "ffmpeg"

converters = []

converters.append((f"{converter}␣-nostdin␣-y␣-v␣0␣-vsync␣passthrough␣-i␣
,→ \"{{}}\"␣-vf␣\"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2,eq=brightness
,→ =0.25\"␣\"{{}}\"", "brightness_high"))

converters.append((f"{converter}␣-nostdin␣-y␣-v␣0␣-vsync␣passthrough␣-i␣
,→ \"{{}}\"␣-vf␣\"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2,eq=brightness
,→ =-0.25\"␣-pix_fmt␣yuv420p␣\"{{}}\"", "brightnesss_low"))

converters.append((f"{converter}␣-nostdin␣-y␣-v␣0␣-vsync␣passthrough␣-i␣
,→ \"{{}}\"␣-vf␣\"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2,eq=contrast

85

86 Fredrik Reite: pyClipNSearchIt - A new scalable video identification method

,→ =0.25\"␣-pix_fmt␣yuv420p␣\"{{}}\"", "contrast_high"))
converters.append((f"{converter}␣-nostdin␣-y␣-v␣0␣-vsync␣passthrough␣-i␣

,→ \"{{}}\"␣-vf␣\"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2,eq=contrast
,→ =-0.25\"␣-pix_fmt␣yuv420p␣\"{{}}\"", "contrast_low"))

converters.append((f"{converter}␣-nostdin␣-y␣-v␣0␣-vsync␣passthrough␣-i␣
,→ \"{{}}\"␣-vf␣\"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2,rotate=10*PI
,→ /180\"␣-pix_fmt␣yuv420p␣\"{{}}\"", "rotate"))

converters.append((f"{converter}␣-nostdin␣-y␣-v␣0␣-vsync␣passthrough␣-i␣
,→ \"{{}}\"␣-vf␣\"pad=width=ceil(iw/2)*2:height=ceil(ih/2)*2,crop=0.75*
,→ in_w:0.75*in_h\"␣-pix_fmt␣yuv420p␣\"{{}}\"", "crop"))

return converters

def transform_videos(videos: list, path: str):
converters = get_converters()

for video in videos:
for converter_cmd, convert_type in converters:

output = os.path.join(path, f"{convert_type}_{os.path.basename(video)}"
,→)

cmd = converter_cmd.format(video, output)

logger.info(cmd)

subprocess.Popen(cmd, shell=True).wait()

def main():
logger.info("Running␣transform␣videos!")

if not util.is_frontend_setup():
logger.error("setup_frontend.py␣must␣be␣run␣first")
return

if len(sys.argv) != 3:
logger.error("You␣must␣provide␣a␣valid␣input␣path␣and␣output␣directory")
return

try:
input_path = _is_valid_input(sys.argv[1])

_, videos, _ = preprocess.run(input_path)

if not videos:
raise Exception("No␣videos␣were␣found␣at␣the␣input␣path")

output_path = get_valid_output(sys.argv[2])
except Exception as e:

logger.error(str(e))
return

transform_videos(videos, output_path)

logger.info("Finished␣transform␣videos!")

if __name__ == "__main__":
main()

A scalable approach to video indexing and search
Fredrik W

ilhelm
 Thon Reite

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

Fredrik Wilhelm Thon Reite

A scalable approach to video
indexing and search

For use in the identification of fragmented and
transformed image/video files

Master’s thesis in Information Security
Supervisor: Lasse Øverlier
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Acknowledgements
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Covered Topics
	IEEE Keywords
	Problem Description
	Justification, Motivation and Benefits
	Research Questions
	Planned Contributions

	Background
	Content Identification
	Traditional
	Machine Learning

	Existing Solutions
	Griffeye
	PhotoDNA
	Youtube Content ID
	CLIPPED
	PYVIDID

	Methodology
	Research
	Collection
	Processing
	Presentation

	Setup
	Frontend
	Backend

	Dataset
	Experiments

	Results
	Implementation
	Hashing
	Indexing
	Searching

	Source Code
	Experiments
	Size Reduction
	Speed
	Accuracy

	Discussion
	Experiments - Size Reduction
	Experiments - Speed
	Hashing
	Indexing
	Searching

	Experiments - Accuracy
	Fragmented
	Transformed

	Potential Applications
	Video Source Finder
	Forensic Investigations
	Copyright Enforcement

	Future Work
	Low-hanging Fruit
	Additional file metadata
	Native phash functionality
	Greater size-reduction
	Detection of temporal continuity
	Graphical user interface
	Better error handling

	High-hanging Fruit
	C/C++ port
	Native FFmpeg functionality
	Better perceptual hashing algorithm

	Conclusion
	Bibliography
	Frontend setup script
	Default pyClipNSearchIt configuration
	Backend setup script
	Elasticsearch nodes configuration
	Multimedia Commons download script
	Tool - Count hashes script
	Tool - Extract clips script
	Tool - Transform videos script

