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Abstract

In the area of audio forensics there has been some skepticism toward the applic-
ation of noise suppression by machine learning models. Even if noise suppression
using machine learning could add both efficiencies and help out handling the
amount of data that an investigator would be facing, it has not been adopted as a
go-to solution. One major reason for this is likely reliability. When working within
the field of forensics, the importance of maintaining integrity and chain of cus-
tody related to the data at hand is essential. If these principles are violated, it
can make the entire investigation collapse. An example of integrity violation is
through the application of machine learning when performing noise suppression,
and manifestation of artificial residual noise.

We will therefore investigate artificial residual noise with the goal of better un-
derstanding how it can be detected, and possible implications for digital forensics
and investigations. Through experimentation we will replicate artificial residual
noise in different machine learning models. Efficiency of current audio quality
measurement methods and results from the experiments are analysed and dis-
cussed. Difference between the types of machine learning algorithms used in the
experiment are also evaluated to determine how much artificial residual noise
they produce based on type of audio noise. We present a method for detecting
indicators for when artificial residual noise occur, and discusses the importance of
discovering and mitigating artificial residual noise in order to avoid violating the
integrity of the data at hand.

The ultimate goal of this thesis is to create awareness and understanding of
artificial residual noise, and providing a novel method for detecting it and ex-
plaining what can go wrong from a digital forensic perspective. By directing the
spotlight on this problem with current machine learning methods, the intention is
to draw more attention towards research on adapting methods for audio forensics.
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Sammendrag

Innen området for digital etterforskning av lyd har det vært en viss skepsis til
bruken av maskinlæringsmodeller i forbindelse med fjerning av bakgrunnsstøy.
Selv om støydemping ved hjelp av maskinlæring kan gi både effektivitet og hjelpe
til med å håndtere mengden data som en etterforsker vil stå overfor, har det ikke
blitt tatt i bruk som en standardløsning. En av hovedårsakene til dette er sannsyn-
lig pålitelighet. Når man arbeider innen etterforskning, er viktigheten av å op-
prettholde integritet og sporbarhet knyttet til de tilgjengelige dataene avgjørende.
Hvis disse prinsippene brytes, kan det få hele etterforskningen til å kollapse. Et
eksempel på integritetsbrudd er når bruk av maskinlæring som utfører støydemp-
ing, tilfører kunstig reststøy.
Vi vil derfor undersøke kunstig reststøy med mål om å bedre forstå hvordan det
kan oppdages, og mulige implikasjoner for digital etterforskning. Gjennom eksper-
imentering vil vi replikere kunstig reststøy i forskjellige maskinlæringsmodeller.
Effektiviteten til gjeldende målemetoder for lydkvalitet og resultater fra eksperi-
mentene blir analysert og diskutert. Forskjeller mellom typene maskinlæringsal-
goritmer som brukes i eksperimentet blir også evaluert for å evaluere hvor mye
kunstig reststøy de produserer basert på type lydstøy. Vi presenterer en metode for
å avdekke indikatorer for når kunstig reststøy oppstår, og diskuterer viktigheten
av å oppdage og håndtere kunstig reststøy for å unngå å krenke integriteten til de
aktuelle dataene.
Det endelige målet med denne oppgaven er å skape bevissthet og forståelse for
kunstig reststøy, og presentere en ny metode for å oppdage det og forklare hva
som kan gå galt fra et digitalt etterforskningsperspektiv. Ved å rette søkelyset på
dette problemet med gjeldende maskinlæringsmetoder, er hensikten å rette mer
oppmerksomhet mot forskning på tilpasningsmetoder for lydetterforskning.
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Chapter 1

Introduction

The first known audio recording was conducted in 1860 on the “Phonautograph”
patented by Edouard-Leon Scott, and contained a 10 seconds long performance of
a folk singer [1]. By etching the captured sound waves onto a piece of blackened
paper it could be played back, but the quality was very distorted and had a high
amount of noisy artifacts. The simple solution that could capture and store audio
started what has become very commonly applied technology today. Capability of
capturing and storing audio data holding information on an event occurring at a
specific moment in time has been proven to have many use cases.

With all this audio information available, audio forensics has become an im-
portant field within the forensics area of work. An investigator can potentially ex-
tract information such as indicators of events happening, the presence of objects
or persons, or the environmental surroundings. Information in audio recordings
can be crucial when working with cases and take hours of work depending on the
complexity and amount of information available.

With an increasing amount of information to process, new tools and methods
that can help increase efficiency and handle large amounts of data are becom-
ing more important [2]. Especially considering how technological advancements
today are significantly increasing the number of devices that possess the capability
to obtain audio recordings. The amount of digital media that is recorded and up-
loaded to the internet is enormous. Also, just considering how many smartphone
devices that move around in the world, picking up sound in the background while
recording for social media or making a phone call, is of such a proportions that it
is probably not possible to process it all. To add context to the magnitude, Gartner
reported 1,433,859,400 smartphone units sold on a global scale in 2021 which
is a 6% increase compared to 2020 [3]. Statista estimated 6,259 million smart-
phone users world wide in 2021, and estimate continous growth towards 2027
where the number could reach 7,690 million [4].

In order to better address some of these volume of data, machine learning
has been adopted in many cases of data science. It has also quickly become a tool
that has proven itself to be very well suited for conducting different types of audio
analysis. One of these applications is noise suppression. The capability of removing

1



2 GEH: Artificial Residual Noise in Machine Learning

unwanted background noises and enhancing speech. This is a very useful method
when cleaning up heavily distorted and noisy audio samples in order to enhance
the quality of a conversation for example. Then one can ask, why has it not been
adopted into audio forensics? There are many reasons for this, but one of them is
reliability in terms of preserved data integrity. The integrity is violated especially
when artificial residual noise is introduced into the audio recording at hand, and
this problem is what we are focusing on in this thesis.

1.1 Keywords

Keywords covered: Audio analysis, Audio forensics, Residual noise, Artificial noise,
Machine learning

1.2 Problem description

In the field of digital forensics, it is important to present evidence “as-is” without
introducing any bias or in other ways altering or manipulating the data so that it
may change the outcome of an investigation. It is a principle that also applies in
audio forensics, where the investigator makes use of different filters, and methods
of adjustment in order to enhance and process the audio recording being analyzed.
A lot of this is performed as manual work due to the need of maintaining control
of the process.

Although there are available automated solutions for audio analysis, they are
built around altering data in order to achieve better quality, which in relation
to forensics equals to not being considered as an option for handling evidence
[5]. This has through history often proven to be correct when automate systems
have been set up against manual methods, working on the same case data [6, 7].
Looking at how machine learning has entered the field and quickly has been put
into play in modern-day data analysis, comparison of methods will happen more
often in the years to come because of how this technology lends it well to handle
big complex datasets.

For machine learning to become accepted as a method of forensic analysis,
what is considered as major issues with the approach needs to be solved first. In
audio forensics, there exist a problem that is inherited from audio noise suppres-
sion called artificial residual noise. This is a combination of residual noise [8] and
artificial noise [9], which are both products of processing audio during analysis.
This phenomenon has also been proven to occur when applying machine learning
to conduct the audio analysis [10, 11].

Artificial residual noise has the potential of causing a severe impact if not
handled properly. Anomalies that manifest can be misinterpreted as additional au-
dio sources in the audio recordings when analyzing [7]. There is a risk of causing
confusion and misleading the forensic investigator, as they suddenly find them-
selves in a situation where more information has been artificially added to the
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data, that analysis up until that point has not previously recorded.
Even if machine learning in audio analysis has come a long way and will con-

tinue to evolve as new methods are presented, this problem has persisted through
multiple iterations and variants. Understanding what artificial residual noise is,
how it can be identified, if it appears under certain conditions, and how it impacts
forensic investigation are the goals we seek to answer in this thesis.

We will focus on understanding the foundation of the artificial residual noise,
in order to provide a platform of knowledge to continue work. There has not been
a lot of concrete research on audio noise directly related to machine learning and
artificial residual noise from a forensic perspective. Most of the available research
material are written to present a machine learning algorithm that mentions the
problem but does not fully address it [10–12].

1.3 Justification, motivation, and benefits

When conducting forensic data analysis it is important to maintain the integrity
and chain of custody of the data at hand [7]. Introducing machine learning to the
process puts an ethical challenge into the equation. First and foremost it is diffi-
cult to explain how an algorithm arrived at a provided conclusion [13]. Second,
machine learning algorithms are programmed by humans and therefore is prone
to introduce biased results [14]. These two problems violates integrity and chain
of custody, and proves the importance of having the capability to uncover if one
or both issues has in some way influenced the result.

The importance of maintaining integrity and chain of custody, is the reason
why a forensic copy is worked on instead of the original audio recording during
an investigation [7]. Processing the data will to some degree always alter inform-
ation stored, but this must be a well-documented and controlled process. If audio
processing results in the introduction of unwanted information that the investig-
ator is not aware of, it can have a severe impact and will most certainly breach
the integrity of the evidence[7].

In a worst-case scenario, there can be an outcome where the analyst makes
a wrong decision [6, 15], which can have severe consequences for others. An
example of this can be audio recording processed and presented as evidence in
a criminal trial. A wrong decision will likely influence a ruling and in turn make
someone become sentenced for a crime they did not commit, or have a guilty
person walk free.

Therefore, gathering knowledge on artificial residual noise is important in or-
der to understand what it is, how it might occur, and why it should be mitigated
when machine learning is used for audio processing. Digital forensics is a field
where the amount of information can be enormous, and the available resources
and manpower to handle it limited. Machine learning has proven to be a very
valuable solution for assisting in data analysis. But at the same time, it is equally
important to have a thorough understanding of the limitations in capability that
comes with the tool at hand. This thesis focuses on artificial residual noise which
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is one of the hurdles that needs to be addressed in order to make proper use of
machine learning for audio denoising in the digital forensics field.

Achieving a better understanding of artificial residual noise will create a found-
ation for developing methods of controlling and mitigating the occurrence of this
anomaly in audio recordings. We will address a problem in digital forensic in-
vestigation tied to reliability, were processing large amounts of audio information
with the use of machine learning could be considered the most efficient way. Most
important, it can ensure that the outcome of a forensic investigation results in the
correct decision because precautions were taken that ensure the integrity of the
data. This last point is most essential in this project as it is considered a funda-
mental problem of artificial residual noise.

1.4 Research questions

This thesis answers the following research questions:

• Research Question 1: How can artificial residual noise appear in audio
recordings enhanced with machine learning?
• Research Question 2: Is there a difference in amount of artificial residual

noise produced related to difference in types of noise sources? If this is the
case how much of a difference is there and which types are more prone to
make it manifest?
• Research Question 3: How large is the difference is there between different

types of machine learning algorithms and occurrence of artificial residual
noise?
• Research Question 4: Why is it important to detect and/or mitigating artifi-

cial residual noise, and what are the consequence of not handling it properly
in the context of audio forensics?

1.5 Contributions

There is scarce research related to artificial residual noise available, as focus re-
lated to noise suppression often comes down to presenting a new machine learn-
ing model and how it performs compared to an existing alternatives [8, 10, 11].
The potential value of the contribution that machine learning can have in the
forensic field is huge, but there are requirements that need to be met before this
become possible. Part of this gap is what this thesis seeks to address, by providing
context from a audio forensic perspective and conducting experiments related to
identifying artificial residual noise in audio recordings.

The results will build a foundation for explaining which indicators to identify,
and how to look for them when artificial residual noise manifests in processed
audio recordings. Through a better understanding of this problem, it is possible
to discuss and suggest solutions on how to better approach machine application.
Especially from an audio forensics perspective, with the application of machine
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learning as a tool or supplement. The main contribution of this thesis is to provide
knowledge on how to detect the presence of artificial residual noise, and under-
stand what impact it has in a digital forensic setting. In addition we will:

• Compare different neural networks for denoising audio files, wherein focus-
ing on residual and artificial noise.
• Identify difference in performance between the neural networks when con-

ducting noise suppression. As an example, a Convolutional Neural Network
has less complexity compared to the Recursive Network with Dynamic At-
tention noise, which is reflected in the results presented in chapter 5.
• Identify which kind of audio sources that causes most artificial residual noise

after being processed. Out of the 10 different audio sources there are vari-
ance in complexity. The air conditioner is an almost constant sound while
street music has a lot of variation in both frequencies and amplitude.
• Identify if conventional audio quality measurement methods detects indic-

ators of artificial residual noise. Perceptual evaluation of speech quality,
Segmental SNR, and Short-time objective intelligibility is commonly used
for quality measurement of audio, but was not created to handle artificial
residual noise.
• Present a method for identifying indicators of artificial residual noise in de-

noised audio recordings, by analyzing the short-time Fourier transform ar-
ray.

1.6 Thesis outline

The rest of the thesis consists of the following chapters:

• Background: In this chapter the reader is introduced briefly to background
of audio forensics and relevant knowledge on artificial and residual noise.
The goal is to provide the reader with an understanding of the fundamentals
for the rest of this thesis.
• Theory: The chapter on theory aims to giver a deeper and more detailed

understanding of theory behind audio analysis and machine learning meth-
ods. The goal is to provide the reader with knowledge on why and how
audio and machine learning is applied to handle noise suppression.
• Methodology: This chapter contain the methods used in this thesis in order

to answer the research questions and conduct the experiments.
• Results: This chapter presents the result and output gathered during the

experimentation. Information in this chapter makes up the foundation for
the next chapter.
• Discussion: Analysis of the experiments and results acquired in the previous

two chapters will be covered in this chapter. The analysis is then mapped to
the research questions by illustrating how the experiments can be used to
answer them. It also covers some limitations that were encountered during
the thesis.
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• Conclusion: This chapter presents a conclusion based on the content dis-
cussed in the discussion chapter.
• Future work: Some potential areas of research, improvements, and future

work is presented in this chapter.



Chapter 2

Background

This chapter contains an introduction to the concept of audio forensics and artifi-
cial residual noise. The intention is to provide the reader with enough information
about these two topics to understand the rest of this thesis.

2.1 Introduction to audio forensics

First of all, it is important to understand what audio forensics refers to. In this
thesis it goes by the definition of Robert C. Maher:

“Audio forensics refers to the acquisition, analysis, and evaluation of audio re-
cordings that may ultimately be presented as admissible evidence in a court of law
or some other official venue.” [7, p.84]

When obtaining forensic audio evidence, it is most often a product of an on-
going investigation. This can be either in the context of a civil or law enforcement
case, but also in official inquiry might there be evidence in form of audio record-
ings. Audio forensics also comes with some concerns which are [7]:

• Establish authenticity of the audio evidence.
• Perform enhancement of audio recordings in order to improve speech intel-

ligibility and audibility of low level sounds.
• Interpreting and documenting sonic evidence. Examples of this are identi-

fying sources of speech, transcription of dialog, and reconstruction of crime
scenes or scenes of accidents and timelines.

When performing these steps, it is essential to remember that the methods
used must previously have been proven to be unbiased, be statistically reliable,
non-destructive, and widely accepted by experts within the field of audio forensics
if it is to be presented in a court of law [7]. This is essential when moving into
the application of new methods like machine learning algorithms for processing
audio.

It can be understandably tempting to make use of machine learning algorithms
for speech enhancement in order to clean up several hours of seized audio re-
cordings. But as long as this method is not previously accepted it will potentially

7
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damage the case severely by being denied as evidence based on the lack of admiss-
ibility. Besides, there might also be concerns that through processing the evidence
presented might have been altered and as such become biased[7]. An example
of this could be that during noise removal, a statement spoken during the au-
dio recording can be interpreted differently. Someone saying what sounded like
“I didn’t do it” could suddenly be interpreted as “I did do it”, which would be
complete opposites of each other and of course have a large impact.

Because of these kinds of strict conduct and regulations that need to be fol-
lowed, audio forensics is a field that requires a lot more than what is considered
standards within an academic setting of audio processing. The demand for main-
taining a strict chain of custody and authenticity of the audio recording is a good
example of how different audio forensics is compared to the academic field [7].
To better understand why it has come to this strict regime, it is useful to take a
look at some historical defining events that have dictated how audio forensics are
done today.

2.1.1 Audio forensics history

A major paradigm shift in audio forensics came in 1974 as a consequence of the
investigation of a White House conversation between President Richard M. Nixon
and Chief of Staff H. R. Haldeman [7, 16]. The recording itself was made in the
Executive Office Building in 1972. While examining the audio recording, invest-
igators uncovered an unexplained section that ran for 18,5 minutes. During that
timespan only the presence of a buzz sound could be heard, and no audible speech.

This lead to appointment of an advisory panel of technical experts to study the
audio recordings. These experts represented engineers and acoustics communit-
ies such as AT&T Bell Laboratories, Magnetic Reference Laboratory, University of
Utah and the Federal Scientific Corp [16]. They performed a series of analyses
including observations the audio signals themselves as well as studies of the mag-
netic development of domain patterns and head signatures. The conclusion of
the investigation was the the gap was caused by multiple overlapping erasures
of the original recording, using a different type of recording device than the one
that originally made the audio recording [7, 16]. The conclusion itself was made
based mainly on the characteristics of the magnetic signatures on the original
tape, caused by starting and stopping the recording.

Their approach was quickly adopted as the standard for audio forensics when
checking authenticity of forensic audio recordings. A 5 step approach was estab-
lished as guidelines for audio forensics [7]:

1. Physically observe the entire length of the tape.
2. Document the total length of the mechanical integrity of the tape, reel, and

housing.
3. Verify that the recording is continuous with no unexplained stop/start se-

quences or erasures.
4. Preform critical listening of the entire tape.
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5. Use nondestructive signal processing as needed for intelligibility enhance-
ment.

Another defining event occurred some years prior to the Watergate case [16],
the assassination of President John F. Kennedy. As part of this investigation, audio
forensics became a central part of it to try to determine the placement of the
shooter [15]. One of the most important pieces of evidence was an audio recording
from one of the officers presumably riding a motorcycle in the area of interest.
Normally these microphones were voice-activated, but this officer’s microphone
was stuck in active mode at what they estimated to be the time span of shots being
fired.

The conclusion of the investigation has been changed a couple of times re-
garding the audio recordings. At first, analysts came under the assumption that a
total of four indicators pointed toward shots being fired, where the third one was
placed at the grassy knoll area of Dealey Plaza [15]. This led to the belief that
there were two shooters.

Later more thorough investigation rectified this as forensic analysis involved
attempts to reconstruct the soundscape at the time of the assassination. The reason
for this was based on the original recording from the officers’ microphone being
subject to heavy distortion and noise. In fact, the report published by the Federal
Bureau of Investigation (FBI) in 1980 dismissed the audio recording for the reason
being “...did not scientifically prove that the Dictabelt recording channel 1. . . contains
the sound of gunshots or any other sounds originating in Dealey Plaza. . . ” [15] This
conclusion was later confirmed by the Committee on Ballistic Acoustics in 1981
[15].

The committee commended the novel approach of analysing audio recording
by trying to estimate shooter location based on how sound patterns were perceived
based on the environment, but at the same time underlined the importance of
questioning the conclusion based on the quality of the audio recording and iden-
tification of the audio source is based on subjective opinions, and not scientifically
proven. The case is an example of the importance of having scientifically objective
means to back up a hypothesis.

One last example of forensic audio recording analysis being conducted in a
more modern setting happened in November 2002 [6]. An audio recording of a
phone call, from what was stated to be former al Qaeda leader Osama bin Laden,
was broadcasted by the independent Arabic station al Jazeera. This triggered an
immediate response from security agencies starting to analyze the recording in
order to verify the identity of the speaker. Even if it is not known which tools the
CIA and National Security Agency have at their disposal, the conclusion was that
this was indeed bin Laden speaking.

At the same time, Dalle Molle Institute for Perceptual Artificial Intelligence
(IDIAP) decided to conduct an experiment testing their, at the time, state-of-the-
art speaker authentication system. As opposed to the conclusion of the United
States agencies, their system concluded that this was an impostor with a 55 to 60
percent certainty [6].
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Benchmarking the biometric system of IDIAP had demonstrated precision in
the performance of 97 percent [6]. Tests had been made with 15 authentic record-
ings and 16 imitations of bin Laden. The system had correctly identified all 16
imitations, and wrongly classified only 1 of the authentic audio samples. In other
words, these numbers added some credibility to the system. This was not well
received by some as it implied that traditional methods for conducting forensic
audio analysis were out of date.

Based on what happened several years later when a military operation in 2011
resulted in the elimination of bin Laden, it adds credibility to the established ap-
proaches of forensic audio analysis. As was stated by the director of IDIAP, there
are certain aspects of how speech has characteristics that algorithms do not neces-
sarily have the capabilities to catch. The director of IDIAP also stated that systems
such as what they are developing should be used as a supplement, and not be
looked upon as a replacement[6]. This underlines the importance of understand-
ing the limitations that comes with automated audio processing systems built for
analysis.

What is important to learn from these examples is how historical events have
shown that audio forensics is an essential area of research. Some form of audio
will almost always be present where humans are involved, and as such creates
potential evidence that can be used in further explanation of what has happened.
Another important point is to understand how there are limitations to the techno-
logy at hand. As demonstrated by both the Kennedy case and the bin Laden event,
information can be misinterpreted and lead to wrong assumptions and conclu-
sions.

But history also shows us how important it is to question and not adopt meth-
ods that have not been established as a standard. Making use of new technology
like machine learning should be used as a supplement, to begin with, and con-
tinue to be used as such until it is proven to be reliable. Quick and Choo pointed
out that although machine learning has many advantages, the lack of control the
can lead to information not being included, which underlines the importance of
human supervision [17].

2.1.2 Audio forensics and the law

Another very important part of audio forensics is to understand some of the legal
aspect that needs to be considered when handling and processing audio record-
ings. As will be presented in this section there are differences in how the legal
framework is built which also has an impact for practitioners within the forensic
field.

In the United States, foundations for how audio recordings were to be treated
as evidence was laid down in 1958 [7]. The evidence in question was a tape-
recorded conversation that involved the defendant, in the case of the United States
versus McKeever. The tape itself was never played in court, as a transcript of it
was delivered instead, but the judge had to establish some requirements, that
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are still in use today with some variations. These 7 requirements revolves around
authenticity of audio recordings [7]:

1. That the recording device was capable of taking the conversation now offered
as evidence.

2. That the operator of the device was competent to operate the device.
3. That the recording is authentic and correct.
4. That changes, additions, or deletions have not been made in the recording.
5. That the recording has been preserved in a manner that is shown to the

court.
6. That the speaker are identified.
7. That the conversation elicited was made voluntarily and in good faith, without

any kind of inducement.

Considered most important today are points 3 to 7 [7], where 3 and 4 can
refer to a forensic audio expert being involved. 5 sets the requirement of chain of
custody. Requirement 6 addresses the importance of being able to clearly identify
the participants in the audio recording. This can be either by their voice or through
participants addressing them directly by name for instance. The 7. requirement
implies that the conversation should not be rehearsed or prepared, but be spon-
taneous.

But even when following these guidelines, there are concerns that can lead
to a court rejecting an audio recording as evidence [7]. First of, the participants
in the audio recording has not sworn to tell the truth, like they do in court. One
might consider this a formality, but it is still reason enough for dismissing the
evidence. Another issue is cross-examination of witnesses, that may or may not
be available for this process.

In Norway there are some differences for how audio recordings are treated
legally. Most important is the principle of freedom of evidence. This means that a
person can bring any legally acquired evidence in front of a court, and then it is
up to the court to decide whether the evidence is allowed or not, as outlined in
the Norwegian Criminal Procedure Act §294 [18].

Audio recordings are considered to capture an overflow of information, such
as a persons way of speaking and potentially their mood [19]. It is therefore con-
sidered as intrusive when it come to personal information and must adhere to the
Personal Data Act which draws many similarities from the general data protection
regulation (GDPR) [20]. There are other ways that are considered less intrusive,
like for instance taking notes based on what is said in the recording, which would
be aligned with the Personal Data Act principle of data minimisation.

Anyone that wants to record, store or in other ways make use of audio record-
ings containing information on other persons must therefore adhere to Norwegian
law. In short this means that the following applies [19]:

• A fundamental principle is that in order to make an audio recording there
need to be a legal basis for it.
• Those who are subject of being part of an audio recording must be notified
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before recording begins.
• There must be a clear purpose, and the audio recording must be limited to

what is strictly necessary.
• An audio recording can not be stored after it has served its purpose.
• Audio recordings can only take place if information security is considered

to be properly applied to protect it.

There are situations where the Personal Data Act and these principles does
not apply [19]. One example of this is when the police are using audio recordings
as part of their ongoing investigation of criminal cases. In this case they adhere
to The Police Databases Act and the The Criminal Procedure Act. Journalism are
also considered partially excepted from this when operating within their line of
work.

Understanding and being acquainted with both local and foreign legislation
as a forensic investigator is essential as it will dictate how an investigation would
need to be planned and conducted. Because of how a lot of infrastructures today
is spread across geographical borders, an investigation is not necessarily bound
to only one jurisdiction. As the examples in this section demonstrate there are
differences that will have an influence one way or the other.

2.2 Previous work

When it comes to artificial residual noise there is little available research directly
aimed at the field of digital forensic. The same applies to academic research as
well, and most often what is presented is in context of a new machine learning
algorithm and mainly focused on improving quality of speech [8–11, 21]. This
indirectly touches upon the field of residual noise as it can be tied to suppressing
natural background noise.

There is, to our knowledge, no information or research of how these machine
learning algorithms specifically addresses the artificial residual noise problem.
One of the reasons for this can be related to how they focus on achieving best
possible result in quality measurement scores like perceptual evaluation of speech
quality score, short-time objective intelligibility score, or segmental signal to noise
ratio score [8]. But in none of the cases are artificial residual noise directly ad-
dressed as a problem.

Considering how machine learning has been available for some time and the
amount of research that is being put into audio enhancement area of the techno-
logy, it is a bit strange that there has not been more focus on this from an audio
forensic perspective. Especially when evaluating the potential beneficial gain it
can yield in terms of processing speed and volume of information handling. The
amount of potential audio data that a forensic investigator will face in the future
will continue to grow when considering a constant introduction of new social
media and sharing solutions, and how the number of devices like smartphones
continue to increase [3]. In order to keep up with all of these sources of audio
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information, automation in form of machine learning has a big potential.





Chapter 3

Theory

This chapter presents additional theoretical background information on the pur-
pose and functionalities of audio analysis, machine learning algorithm and quality
measurement approaches made use of in this thesis. The aim is to grant more the-
oretical knowledge on each respective method.

3.1 Introduction to artificial residual noise

When working with audio signals there will always be some form of noise present.
Noise is added to an audio signal as soon as the signal moves from the source hold-
ing it to the receiver. During the signal transmission, elements in the environment
will influence the signal and degrade it by adding some static noise [22]. It is
called additive noise, and applies even within a device as a signal has to move
through components before it can be broadcasted from a speaker for instance.
Additive noise is not always possible for a human to hear, as there are limitations
to the sound that we are able to perceive. But measuring a raw signal before and
after signal transmission will show that some noise has been added [22].

3.1.1 Artificial noise

Artificial noise is created in an artificial way by human devices. It can manifest in
various ways being wave or vibration, audible, electromagnetic, or other signals
to mention some examples. In some cases it can be intentional in order to test
the audio cancellation of microphones in a laboratory, or it can be unintentional
if a system or device malfunctions. Even if artificial noise has some use cases it is
often not desired.

In this thesis, artificial noise is an area of interest because machine learning
algorithms that perform audio processing might be prone to introduce artificial
noise. The hypothesis of this is tied partially to the concept of additive noise. Sim-
ilar to components in an audio playback device, a machine learning model is com-
posed of components, that handle different operations during audio processing in
this case. As pointed out earlier, processing an audio signal will alter it and will

15
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very likely degrade it to some degree. In previous research it has been proven that
under certain conditions when attempting to control or remove noise, it did add
artificial noise to the audio recording instead, which is not wanted behavior [9].

While working with audio the term "phase" is guaranteed to be encountered.
When we talk about audio phase we are referring to a specific point within a audio
wave cycle. As audio waves travels, the easiest way of visualizing it is through sine
waves because of how they vary in amplitude over time. Audio phase contains
some interesting information that can be applied when conducting audio analysis.
As illustrated in Figure 3.1 a phase is represented by the green area, and contain
information about a cycle of the blue signal. A phase spectrum, represented by the
pink area, holds information about multiple phases for both blue and red signal
in this case. A phase shift is is illustrated in Figure 3.1 as the difference between
the blue and the red signal reaching the same amplitude at different times.

Figure 3.1: Example of audio phase terminology

Not including phase information in training of machine learning can cause the
introduction of artificial noise. There were indications of this during a study made
by Paliwal, Wójcicki and Shannon [9]. To elaborate on what their study uncovered,
the way that phase spectrum display phase shifts between signals with different
frequencies at a given time, allows for the estimation of noise versus clean signal
phase. By applying this knowledge to adjust for changes and variations, yielded
promising results especially when a clean speech spectrum is known beforehand
[9]. Knowledge of the clean speech spectrum before processing also helps with
the challenge of working with audio processing close to real-time, which can be
very difficult if complex computation is needed.

Another technique within audio denoising, is application of ratio masks in an
attempt to isolate clean speech [11]. The approach is often performed in combina-
tion with machine learning in order to try to estimate how the clean speech signal
will appear [10, 11]. Based on these estimates, the machine learning algorithm
makes an attempt at predicting how to best mask the noisy signal. Multiple meth-
ods exists for how to create a ratio mask, but the common challenge they all
face is how to achieve perfect precision [10]. This is especially hard when the
audio source or noise has a lot of variance in behaviour and amplitude. As a con-
sequence, there can be noise bleeding through where the mask does not provide
the proper coverage. In these cases, the machine learning algorithm might not
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handle noise removal properly [10, 11]. Additive noise is manifesting instead, res-
ulting in artificial noise, as it processes parts of the noise into what is considered
clean speech, which is not wanted behavior.

Variations in the amplitude of clean speech are another factor that can result
in the creation of artificial noise [21]. The reason for this resembles that of the
mask ratio, in that the human voice can be difficult to predict. If the amplitude of
the audio source presenting clean speech goes soft, a machine learning algorithm
might have a challenge distinguishing it from the background noise. It might lead
to a situation where noise is interpreted as speech and vice versa, especially if the
source of the noise has similarities with a human voice in terms of frequencies
and variance in pitch and amplitude.

3.1.2 Residual noise

Within the area of audio signal theory, residual noise can be explained as noise
that is still present after noise suppression has been conducted at a given position
and situation [8]. It is not necessarily unwanted in all settings, as it can be used
as a tool to block out other sounds. However, in the field of audio forensics where
the aim is to achieve as high precision in the result as possible, it is not desired in
most cases.

As this is a common concept there has been research made on residual noise
and how to mitigate it, but there is no perfect way of handling it as it can be a
complex problem. Variance in motion, amplitude, and frequency are all factors
that contribute and makes it difficult to control. It is in all essence audio signal
noise and has the same attributes.

Now that the basics of artificial and residual noise have been presented, an
understanding of the building blocks of what makes up artificial residual noise
should be easier to understand. When using machine learning algorithms for noise
suppression, the process can add and leave the noise behind in the processed
audio recording that was not present in the original recording. Considering how
strict requirements are for evidence in the field of forensics, as presented earlier
in this chapter, we understand that this is not accepted by a method used in an
investigation.

3.2 Audio analysis

When working with machine learning algorithms it is important to understand
how to best represent the data to the machine learning model. In our case, data
consists of interpreting and handling audio. A human’s perception through hear-
ing that has been trained for multiple years can understand and single out indi-
vidual sounds even if they are mixed together in an audio clip. When presenting
the same challenge to a machine learning algorithm, it needs a lot of time and a
lot of data in order to understand how it is supposed to interpret the information.
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To further help the machine learning algorithm, it is useful to select features
from the data that are distinct and as such makes it easier to distinguish sets of
data from each other when compared. In order to further increase the perform-
ance of a machine learning algorithm, especially when working with large data-
sets, is selecting only the features that contribute most to the uniqueness of the
data. By taking this approach there will be less data (features) to look at while
they still make it easier to conduct data classification.

As the data, in this case, consists of audio, it needs to be converted in such a
way that features can be extracted. Audio is a field where there is a lot of existing
research, and looking within the scope of audio features for data analysis there
are multiple possibilities.

One of the easiest features to understand is the chroma feature [23]. It is typ-
ically built up of twelve elements indicating how much energy of each respective
pitch class is present in a signal. The different pitch classes is what we in music
describe as “C”, “C#”, “D”, “D#”, “E”, and so on. These features are often used
when comparing or classifying music pieces.

The Mel-frequency Cepstral Coefficients (MFCCs) [24] can be used to extract
features when an audio signal is measured in the frequency-amplitude plane. By
looking at the overall shape of the sine wave curve (spectral envelope) a signal
makes in time one can extract anywhere from ten to twenty features from it based
on its shape. An example of the application of the MFCCs is for modeling the
characteristics of the human voice.

Another feature that can be used is the Zero-Crossing rate [25]. Considered
a simple way to calculate the smoothness of a signal by counting the number of
times it oscillates within a set segment. An example is how a human voice can
oscillate slowly. A 100 Hz signal will cross zero 100 times per second. At the same
time, it can oscillate fast as an unvoiced fricative can have 3000 zero crossings
per second.

An efficient way of extracting features from audio signals is through Fourier
analysis, because of how the method was developed to define periodic waveforms.
Considering that audio consists of periodic sine waves as illustrated in Figure 3.1,
The principle of Fourier analysis is to convert a signal from its original domain like
time or space to a representation in the frequency domain and vice versa. There
are some variants of Fourier transform:

• The Discrete Fourier transform (DFT) [26] is a method for converting a se-
quence of complex numbers to a new sequence of complex numbers. This
approach is applied in order to find the coefficients of an approximation
of the signal, so that different sound files can be compared by these coeffi-
cients.
• Another variant is the Fast Fourier transform (FFT) [26], which is considered

to be a variant of the Discrete Fourier transform algorithm. It reduces the
number of computations needed, by making use of a shorter sequence if the
Discrete Fourier Transform equals the power of 2.
• Then there is the variant that was used during this project. The Short-time
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Fourier transform (STFT) [26] converts signals to enable the amplitude of
the given frequency at a given time to be identified. Using STFT we can
determine the amplitude of various frequencies playing at a given time of
an audio signal, and provides a very good foundation for data to be provided
for the machine learning algorithms.

STFT is converted back to an audio signal by providing a sample rate. There
exist multiple tools that can process the data into common formats like wav, mp3,
flac, and so on. The STFT also lends itself well to being plotted as spectrograms,
as it holds 3 parameters; time, frequency, and amplitude.

The Spectral Centroid indicates where the ”center of mass” for a sound is
located and can be used as a value for measuring the robustness of an audio
signal, like a weighted mean value [27].

Spectral Rolloff is another feature and is used as a way to measure the shape
of the signal [28]. It represents the frequency at which high frequencies break and
starts to decline towards 0.

The last common way to measure audio features is the Spectral Bandwidth.
It is defined as the portion of a signal spectrum in the frequency domain which
contains most of the energy of the signal.

3.3 Machine learning algorithms

3.3.1 Artificial Neural Networks

Conventional Artificial Neural Networks are known as feed-forward networks, or
a multilayer perceptron, meaning each of the layers are fully connected to the sub-
sequent one. This setup seeks to imitate how the neurons of the human brain are
laid out and connected. A simplified presentation often used would be as demon-
strated by Figure 3.2

Figure 3.2: Example architecture Artificial Neural Network
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In its simplest form, the neural network consists of an input layer where fea-
tures of the data model are fed into the network. The following layer is known
as a hidden layer, meaning that the model is not directly aware of its presence.
It has the purpose of altering the values by applying additional weights as they
are passed forward toward the output layer. This way the model has to repeatedly
train itself to increase its precision, as it does not fully control the outcome [29].

As stated this is a neural network in one of its simplest forms. This project
made use of several different types of neural networks with different degrees of
complexity in order to compare how they handle the task of conducting audio
noise removal, and the potential of generating and adding artificial noise to the
result in that same process. Before the architecture of these neural networks are
covered, there are some concepts that need to be explained and taken into ac-
count, as they can have a big influence on neural network performance.

One of two learning paradigms that can be applied by an Artificial Neural
Network is supervised learning [29]. In this case, the input fed to the network is
pre-labeled, meaning that for each input there exists a designated target output.
The approach seeks to increase the precision of the model by constantly compar-
ing and adjusting weights applied to the calculations, in order to minimize the
classification error as much as possible.

The second learning paradigm is unsupervised learning [29]. As opposed to
supervised learning, there are no labels present. Instead, the network tries to in-
crease or decrease a cost function in order to achieve better precision. In this
case, the model itself is given more freedom as the model learns directly from
the data without having any form of previous knowledge. As this is a rather time-
consuming process and demands both experience and good knowledge within the
field of machine learning, supervised learning will be used when working with
data as part of this thesis. A set of training and validation data will be used for
pretraining the different models.

Another important factor to control is the concept of overfitting [30]. When a
model learns the details of the training data too well, it will in fact have a negat-
ive impact on performance when new data is introduced. Because the model has
learned all concepts of the initial data, it is not able to interpret the new dataset
because it lacks the ability to generalize. It is therefore important to include meth-
ods and/or techniques for limiting and constraining how well the model learns
the data presented. In the case of this thesis, an exhaustion mechanism is put in
place. The purpose of this mechanism is to stop the training after a set amount of
intervals where it no longer detects any increase in precision. This is a common
and efficient way to avoid overfitting the model.

In order to control how a model learns, some form of adjustment needs to
be applied to correct or align the output between layers. There are multiple ap-
proaches to do this and a sigmoid [31] or tanh [31] activation function has been a
common way of handling nonlinearity. However, as the depth of a neural network
increases the gradient signal of sigmoid and tanh functions will vanish.

To address the vanishing gradient, using Rectified Linear Unit (ReLU) [31] is
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recommended. It sustains a constant gradient, it will also provide a more sparse
representation, and can reach a complete zero, as opposed to a sigmoid, and tanh
that can only provide non-zero results. it leads to a more precise output compared
to the older alternatives. ReLU will therefore be utilized when training models as
part of this thesis unless other methods are recommended in the literature.

3.3.2 Convolutional Neural Network

The Convolution Neural Network has become a well-established alternative when
making use of neural networks for applications related to pattern recognition [32].
One of the main advantages it has over conventional artificial neural networks is
the reduced number of parameters needed to conduct classification. Because of
this, it allows researchers to make use of larger and more complex datasets for
solving problems that were not possible with previous algorithms.

Another advantage of this algorithm is spatial independence when mapping
features. A good example of this is how an image is analyzed. If the aim of an
application is to identify cars in images, the spatial independence makes it irrel-
evant where the car is located in the image. The algorithm is simply looking for a
pattern that corresponds to the car itself [32]. This feature is why the method also
suits well for audio analysis as in this project. The main aim is to identify patterns
in the audio clip that can be mapped and processed for denoising.

Derived from this ability to handle details, convolutional neural networks are
also able to map abstract features [32]. Input can propagate as the model moves
towards deeper layers, granting more granular data. In relation to audio analysis,
this means that the presence of an audio source versus silent frames can be detec-
ted in the first layer, differences in the beat of a rythm on the second finer layer,
and tonal differences in the third more detailed layer. This is made possible by
how the algorithm processes data on the different layers.

A layer in the convolutional neural network defines a subset of data [33], also
known as a filter or kernels, of the complete dataset that it examines. The output
is often referred to as a feature map. As demonstrated in Figure 3.3 a subset of the
full matrix is extracted into a pooled vector. This is then transformed into a filter/
kernel where a scalar product is calculated for each value it holds. The values
provided from this operation are learned by the network, so that the next time
this feature is observed in a spatial position, the kernel will activate.

Figure 3.3: Example Convolution layer
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One of the main advantages of this approach is granted the ability to make use
of a very high number of features compared to a conventional Artificial Neural
Network. As an example, if the classification of images was the task the most
suitable features would be the individual pixels. If this data were to be fed into
an Artificial Neural Network, there would be a need for one input perceptron
per pixel. Considering how an image consists of x times y number of pixels, the
number requires such a high number of perceptrons that the entire network would
not operate in a proper way.

Because of how Convolutional Neural Networks naturally break down chunks
of data into segments [32, 33], it is much more suitable for handling such a task.
This also applies when handling multidimensional data like images consisting of
an x and y parameter along with color values for each pixel at the x and y location.
Another example that applies to this project is audio analysis, where an audio
signal consists of data in the dimensions of different frequencies over time and
the amplitude of the audio at a given time in a given frequency.

There are some drawbacks to this algorithm that needs to be considered. One
is how it is very common to make use of pooling layers in order to reduce the
dimension of feature maps in the neural network. By doing so the number of
parameters to learn and computational power demanded is also reduced. From a
performance perspective, this is a wanted feature, but one has to take into account
how removing parameters will impact the uniqueness and potentially valuable
information.

To give an example we can consider a human face. If we break it down there
are features that will help us identify a human face such as the presence of two
eyes, a nose, a mouth, and an oval shape of the face itself. We, as humans, also
know that in order to classify this as a human face, these components need to be
placed in a certain way. An algorithm that makes use of pooling and discarding
information might not take any heed to the placement of the facial features. It
simply identifies them through pattern recognition and concludes that they are
present. Therefore it must be a human face.

Another challenge is how backpropagation [30] is used as a learning method
in a convolutional neural network. The size of the dataset needed to efficiently
benefit from backpropagation to find gradients is a factor that needs to be ac-
counted for. Also, backpropagation in itself is very much dependent on the input
data and can be sensitive to noise. Because of this, it raises the need to do some
preprocessing on the data before it is handled by the machine learning algorithm.

As the convolutional neural network grows deeper [32], it is also important to
be aware of problems tied to vanishing gradients. To mitigate this, Batch Normal-
ization is an important method where the input is normalized to be kept within an
acceptable range so that the gradient does not become too small. But normaliza-
tion in itself is not enough to address vanishing gradients. Therefore an activation
method such as the Rectified Linear Unit (ReLU) [31] is used in combination with
Batch Normalization. The benefit is that ReLU does not saturate and has a con-
stant and bigger gradient compared to legacy activation methods such as sigmoid
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[31] and tanh [31] functions. In practice, ReLU treats a gradient that is greater
than 0 as 1, and otherwise, it is zero. This binary approach makes it so that the
result is either true or false instead of some value. Although this is good, there
might be situations where the input is negative. In these cases, ReLU will set the
value to 0, but the side effect is that the network cannot make backpropagation
because of this. The phenomenon is known as the “dying ReLU problem”.

In order to mitigate this problem another variant of ReLU, called Leaky ReLU
[31] has been presented, capable of handling negative values. Although it solves
the problem with negative values, it adds additional performance requirements
as computational work needs to be performed when calculating negative values.
Also, when learning rates become very small, dead neurons will remain dead and
will not participate in training.

3.3.3 Convolutional Recurrent Neural Network

Drawing from the same benefits as the convolutional neural network makes up the
foundation of the more advanced convolutional recurrent neural network [34].
In addition, it makes use of capability from another type of machine learning
algorithm known as the recurrent neural network. The recurrent neural network
is an established method that was developed during the 1990s. It is an algorithm
designed to learn patterns in a sequential manner [34]. The main feature of a
recurrent neural network is the ability to handle feedback in form of possessing a
short-term memory. This makes it so that recurrent neural networks are designed
with the vanishing gradient problem in mind, able to keep track of arbitrary long-
term dependencies.

To mitigate the long-term gradients from either vanishing or exploding into
infinite value, the algorithm makes use of feedback connections as illustrated in
Figure 3.4. There are some variants of these, the Long short-term memory (LSTM)
being one of the more known ones [35]. This connection is composed of three
components. Input is taken by the input gate, which decides if the information is to
be stored in the long-term memory or not. It operates with the current information
and the information from the last step. The input gate has two options. It can either
forward information as output, feeding it further into the network and at the same
time update the short-term memory with the new value. The second option is the
forget gate, which results in discarding the information as it is considered to not
contribute to improvement. The main goal of this method is to constantly drive
improvement forward, and leave out information that does not serve this purpose.
convolutional recurrent neural network used in the experiment.
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Figure 3.4: Example of Recurrent Neural Network feedback connection

An alternative to LSTM is the gated recurrent unit (GRU) [35]. Compared
to LSTM, it has only two gates and as such is simpler. The update gate decides
how much information is needed to pass to the next state. If needed, it can copy
all of the past information in order to eliminate the risk of vanishing gradient.
The second component of GRU is the reset gate. As opposed to update gate, it
decides how much information to discard, meaning whether the previous state
was important or not.

Comparing GRU versus LSTM [35] it is important to take note of the differ-
ences. As the gated recurrent unit is simpler in design and operation than long
short-term memory, it is also faster when it comes to performance. However, it
does not contain an internal memory. This means that long short-term memory
handles the data internally making decisions based on the information it possesses
itself. A Gated recurrent unit, on the other hand, applies the reset gate directly to
a previous hidden state.

Deciding on which option to use will depend on the size of data to be handled.
The short gated recurrent unit is better for smaller datasets, while a larger dataset
would benefit more from long short-term memory, and the internal memory capa-
city that comes with it. Considering how this project was operating on a relatively
small dataset, the gated recurrent unit was applied to the convolutional recurrent
neural network used in the experiment.

Even if the recurrent neural network handles sequential data [34], varying
outputs, and possesses the ability to memorize historical information, it comes
with some shortcomings that one needs to be aware of. First of all the added
step of handling historical information can impact the performance making it
slow. Second, the network does not have the capability of taking future inputs
into account when making decisions. Third, even if methods like long short-term
memory and gated recurrent unit are tools for addressing the vanishing gradients,
it does not completely mitigate the problem. When using gradients for updating
the weights of a network move close to zero, it can prevent the network from
learning new weights. This problem is more likely to occur the deeper the net-
work becomes. It is therefore important to take this into account when building
the network model [34].
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3.3.4 Densely Connected Convolutional Networks

Just like the convolutional recurrent neural network, a densely connected convo-
lutional network draws on much of the same capability as a conventional convolu-
tional neural network. What sets this variant apart is how layers are connected in
order to handle the flow of information [36]. Each layer, including the input layer,
is connected and shares its information with all subsequent layers through the
network until a transition layer consolidates and prepares the final result which
is forwarded to the output layer as illustrated in Figure 3.5.

Figure 3.5: Example of Densely connected layers

As described by Huang et al.[36] the concept is to ensure a maximum flow
of information when feeding forward in the network and preserving data from
all previous layers. Each layer consists of a convolutional block so that the data
forwarded will be much the same as in a convolutional neural network.

Another difference in the densely connected convolutional networks, is the
number of features needed. Because of how information is shared between lay-
ers, a lot fewer are needed as relearning already processed features would be
considered a redundant operation. This makes the model a bit more performant
and faster to train compared to the conventional variant of the algorithm.

3.3.5 Recursive Network with Dynamic Attention

This algorithm was developed especially for handling speech processing and back-
ground noise [12]. It highlights how other algorithms often become restricted
because of how a number of parameters are kept to a minimum in order to in-
crease performance, which in turn restricts the dept of the network. Secondly, it
also points to the vanishing gradient problem which is an ever-present factor tied
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to the depth of the neural network. Because of this, the recursive network with
dynamic attention approaches a progressive way of learning, subdividing the in-
formation mapping process into multiple smaller stages. The network is then re-
used for training these smaller stages by linking a memory mechanism. It allows
for deeper network architecture without introducing extra parameters.

Another core aspect of this model is how it seeks to emulate human behavior
when it comes to the capability of focusing attention on audio in a noisy environ-
ment [12]. The basic principle is that when focusing on a specific audio source,
more neuron capacity is applied in order to enhance attention toward the target
source.

The result of this concept is two networks running in parallel. The main net-
work operates as the noise reduction module, and the sub-network cooperates
with functions as an attention generator [12]. The workflow of this collaboration
begins at each intermediate stage where the noisy feature and the estimation from
the previous stage are combined. The result serves as the input for the next stage.
The attention generator sub-network creates an attention set which is then ap-
plied to the noise removal network as pointwise convolution. It makes use of the
Attention generator function as a perceptron module that can adjust weight dis-
tribution in a flexible way. Figure 3.6 below is an illustration of one stage. Several
of these stages are linked together into a sequence when training.
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Figure 3.6: Example of one stage in processing data

To better understand the purpose of the attention generator it can be broken
down into smaller components. There can be some variations to the usage of
building blocks, but in this project, it makes use of a variant that consists of an
encoder and a decoder.

For audio analysis, the encoder is set up with successive two-dimensional con-
volutional layers [12, 32]. Like previously explained algorithms it utilizes batch
normalization to normalize the output from the convolutional layer. Then instead
of Rectified Linear Units as an activation method, it makes use of Exponential Lin-
ear Unit (ELU). This method is very similar to the rectified version except but has
a smoother slope in transition compared to the sharp approach that ReLU has.
The advantage is that ELU this way has higher precision.

As opposed to the encoder, the decoder is a mirrored version. All the con-
volutional layers are replaced by deconvolution layers to enlarge the mapping
size back, step by step until it reaches its original state. When reverting back it
is recommended to compensate for information loss that can occur during the
encoding process, by having a mechanism in place like a skip connection. The
processed result from the decoder is then fed back into the noise reduction part
of the network.

The noise reduction part of the network consists of the convolution and decon-
volution blocks as explained when looking at the encoders and decoders. Between
the encoders and decoders, there exists a section containing a sequence of mul-
tiple Gated Linear Units (GLU) [12].

A Gated Linear Unit [12] is derived from the long short-term memory [35]
method but is different in the way that it is built to be applied to convolutions and
linear layers. The purpose of GLU in this neural network is to look at contextual
correlation efficiency. Multiple GLU segments operate in a sequence and the res-
ult is concatenated before being passed on to the decoder section of the neural
network in order to extract features for further processing.
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3.3.6 Gated Residual Networks With Dilated Convolutions

This is also a model building on the basis of convolutional neural networks. In
order to increase the accuracy of a model, there are multiple options available.
Previously the most common approaches were to either increase the depth or ker-
nel size of a model [32]. However, a known drawback of increased depth comes
in the form of decreased computational efficiency, and also results in vanishing
gradients. Another known issue related to the conventional way is related to in-
creasing the kernel size. It also comes with a potentially high cost related to in-
creased computation and training time for the model.

Dilated convolutions are an alternative method to increase the depth of the
neural network [37, 38]. The idea behind this technique is to increase the number
of receptive fields exponentially, as compared to a linear increase in conventional
convolution layers. The benefit of the method is increased accuracy through a
more granular network. Dilation makes use of space between the convolutions by
widening the kernel. Figure 3.7 below illustrates dilated convolution.

Figure 3.7: Example of 2 dilated convolution

As demonstrated in the example the receptive field is increased to a size of 3
x 3. The exponential increment applies for each additional level added when it
comes to receptive fields, but the number of parameters will grow linearly.

Gating mechanisms are a method applied in order to control the gradients
of a network [38]. As an example, there is a state called “exploding gradients”
that can cause unstable networks unable to improve from the provided training
data. When an error gradient accumulates over time, it can result in very large
gradients. As a result, very large updates of the network weights can in turn cause
instability, or in the worst case cause an overflow resulting in unreadable values.
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By applying gating mechanisms to the model one is able to control and thereby
avoid this kind of behavior.

Another aspect of this algorithm is residual learning. It is known as a bot-
tleneck design that utilizes a gated linear unit and dilated convolution to create
a residual block, with the aim to reduce network depth and maintain perform-
ance, while at the same time increasing receptive fields (kernels) to handle more
information.

The drawback of this algorithm is the increased requirement of computational
power due to the number of features it has to process. This is something to be
aware of especially if the dataset has a high number of features in the first place
which can often be the case when operating with image or audio data.

3.4 Audio denoising

Processing audio for noise removal is a problem that has been around for some
time. The main goal of this process is to filter away as much of the background
noise as possible from the noisy audio sample. A good example of this would be
a conversation recorded in a high-traffic city environment. Ideally, post-process,
only the speech would be left as an audio source. A conventional method to this
has been through means of filtering or statistical approaches.

An example of a statistical method was suggested by [39]. Time-frequency au-
dio denoising is the process where the short-time Fourier transform of the noisy
audio sample is calculated. It is a way of uncovering the time-frequency signal
structure that can be separated from the noise by applying a statistical approach.
This converts audio into matrixes and runs computational algorithms in an at-
tempt to identify and average out unwanted data.

Instead of the statistical approach, there is the usage of filtering. This method
is a more direct attempt at removing unwanted sources from the audio sample.
The target in this case is frequencies operating in different channels when taking
spatial dimension into account [40]. It allows for locating audio sources that by
combining temporal frequencies and spatial dimensions occur isolated from the
rest of the audio mix.

One of the main challenges when trying to statistically handle noise, is com-
putational strain due to the size of the matrix needed. Another problem when it
comes to approaching by filtering noise is that these methods often add distortion.
These methods work better when the complexity is low and audio sources remain
more stationary.

This is why machine learning has quickly gained a foothold as a very good tool
for audio denoising. The more sophisticated algorithms allow for higher precision
in terms of removing noise and at the same time maintaining as much quality as
possible of the target audio source.
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3.5 Audio quality measurement

3.5.1 Perceptual evaluation of speech quality

Perceptual evaluation of speech quality is a model that initiates its operation by
level aligning an input reference signal with a degraded signal, (we will use a
denoised signal), to what is considered listening standard. A filter is applied to
make use of the Fast Fourier transform. A new alignment of the signals in the
time domain is then done, including equalizing linear filtering for gain variations
[41].

This time alignment assumes that delay in a system is constant, which is valid
in most systems including packet based transmission systems. The model has tol-
erance for some delays as long as they happen during silent periods and when
speech is present. The following steps are involved in the time alignment pro-
cess[41]:

• Narrowband filtering of both signals for what is considered as perceptual
important parts.
• Estimation based on envelope delay.
• Signaldivision of the reference signal into utterance.
• Estimation based on envelope delay for each utterance.
• Fine correlation based on histogram delay identification for each utterance.
• Splitting utterance and re-aligning to test for changes in delay during the

occurrence of utterance.

Part of the time-aligned processing involves mapping the signal into a model
called auditory transform. The purpose is to unveil what is perceived as loudness
in time and frequency. This process is solved through four steps [41].

First, the calculation is done using the fast Fourier transform and Hamming
window to find the instantaneous power spectrum in each frame for 50% overlap-
ping frames of 32 milliseconds duration. The result is then grouped into 42 bins
equally spaced in the perceptual frequency on a scale named “Bark scale”. The
step is known as the “Bark spectrum”.

The second step is Frequency equalization which calculates the mean Bark
spectrum for active speech frames. The difference between the spectrum of the
reference signal and the degraded signal gives an estimate of the transfer function,
assuming the system being tested has a constant frequency response. Reference is
then equalized to the degraded signal using this estimate along with a tolerance
threshold of approximately 20 decibels.

The third step is the equalization of gain variation. Making use of the ratio
between the audible power of the reference and the degraded in each frame is
used as means of identifying variations in gain. A first-order low-pass filter is then
applied and bound before the degraded signal is equalized to the reference signal.

The final step is mapping loudness using the Bark spectrum [41] from the first
step. It includes a threshold depending on frequency and exponent. The result
from this is a perceived loudness in each time-frequency cell.
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Another aspect of the model is handling disturbance. Audible error is meas-
ured by calculating the absolute difference between the degraded signal and the
reference signal [41]. This process is completed over multiple steps before calcu-
lating a non-linear average over time and frequency.

One of these steps is to delete a negative delay change. This leaves a section
which overlaps with the degraded signal [41]. If the deleted part is longer than
half a frame, the entire overlapping section is discarded. Another step is applying
masking with a threshold that is set to the lesser of the loudness of the reference
and degraded signal divided by four. This threshold is then subtracted from the
absolute loudness difference with values less than zero set to zero. Masks are
applied in each time-frequency cell.

The final step computes asymmetry [41]. It is performed by taking a stable
ratio of the Bark spectral density of the degraded signal to the reference signal
in every time-frequency cell. The result is raised to the power of 1.2 and bound
with an upper limit of 12.0. If a value is less than 3.0 it is set to 0. Because of how
the asymmetrically weighted disturbance is obtained through multiplication, only
additive distortion are measured.

This method is complicated because of all the parameters that needs to be
calculated as part of the process. In Figure 3.8 a diagram of the Perceptual eval-
uation of speech quality model is presented that illustrates how both clean and
denoised signal flows through the model when applied as part of evaluation in
the experiments we conduct in this thesis.

Figure 3.8: Simple examples of Perceptual evaluation of speech qualit flow

3.5.2 Segmental SNR

Signal to noise ratio is a well-established technique for measuring signal quality,
audio being one of them. Measuring the relation between the desired signal level
and amplitude of what is considered background noise yields a quality metric.
Another way to describe the signal-to-noise ratio is the signal power to the noise
power. Measurement is typically done in decibels, where a ratio greater than 0 or
a higher than 1:1 indicates more signal than noise. Ideally, it is desired to have as
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large a gap as possible. the following scale is used for the classification of signal
transmission in wireless networks but provides a good guideline for level classi-
fication.

• 5 to 10 decibels:: considered below the minimum level of what is accepted.
In this case, signal and noise level is nearly indistinguishable from each
other.
• 10 to 15 decibels: is looked upon as barely acceptable but it can still be

hard to distinguish the two signals from each other unless they are static.
• 15 to 25 decibels: classified as a minimum for poor quality. Not ideal as

analysis and processing might be a bit harder if signal and noise are dynamic
leading to variance.
• 25 to 40 decibels: considered as a good range to operate within. Signal and

noise are easily distinguished from each other which makes the analysis and
processing easier.
• 41 decibels or higher: in this case, the ratio is considered excellent and

does not cause any problems.

With the basic concept of signal-to-noise ratio explained it is important to
emphasize that this in itself is not the best approach for measuring signal-to-noise
ratio when operating with audio samples that contain highly dynamic sources
that have variance in both presence and amplitude as is the case in this thesis.
Therefore a slightly more advanced version is recommended with the capability
of breaking up and looking at smaller segments of the audio sequence.

This approach allows for a better analysis as some audio sources are not
present all the time, and when they are, might vary in amplitude. A suggested
method to measure signal-to-noise quality in such a scenario is the segmental SNR.
It is defined as the average of signal-to-noise values over segments, and calculates
an arithmetic average of linear signal-to-noise followed by logarithm calculation
for the respective segment where speech is considered active [42, 43]. This way it
is possible to get a more correct result as only part where speech is present are cal-
culated instead of the entire audio sample as a whole. Because of this, segmental
SNR lends itself well to provide an objective quality measurement in experiments
conducted as part of this thesis, as the target signal consist of speech.

Figure 3.9 illustrates how segmental SNR is measured compared to conven-
tional signal-to-noise ratio. The blue line in the diagram represents a clean signal,
and the red line noise. Normal signal-to-noise ratio is averaged to a value for the
entire sample as illustrated by the dotted green line, while the dotted pink lines
show how segmental SNR is calculated and varies within its respective segment.
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Figure 3.9: Illustration of segmental SNR

3.5.3 Short-time objective intelligibility

The short-time objective intelligibility was developed as a means of alleviating
the need for time and resources spent to conduct listening experiments. The de-
velopers also had the process of noisy unprocessed speech in their minds, giving
it the capability of assisting in providing answers for improving intelligibility in
these scenarios. The core of short-time objective intelligibility is to create a func-
tion out of the clean and degraded speech signal. The output of this function is a
scalar value where an expected monotonic relation to the percentage amount of
correctly understood words averaged across a group of users [44].

The first part of the process is to segment both audio signals into smaller
frames [44]. These frames are further analyzed to identify silent regions that do
not contain speech, and as such do not contribute to speech intelligibility. Frames
that do not contribute are therefore discarded. Then both audio signals are re-
constructed without the removed frames where the energy of clean speech falls
below a threshold of 40 decibels in relation to the maximum energy recorded in
the clean speech frame.

The next step is to conduct a one-third octave band analysis. This is done by
gathering discrete Fourier transform-bins into groups. Two thresholds are then
used where a lower center frequency is set to 150 hertz, and an upper center
frequency is set at 4.3 kilohertz. A total of 15 one-third bins are then distributed
between these two thresholds. what happens next is that the changes in amplitude
and frequency, also known as the short-time temporal envelope, are measured and
compared between the clean and noisy speech signals by means of the correlation
coefficient [44, 45]. The output of this analysis is a score between 0 and 1, where 1
is considered the better result. Just as with segmented SNR, short-time objective
intelligibility suits this project well as a form of measuring as the target audio
signal is speech in relation to noise which this method is specially developed to
process.

In Figure 3.10 an illustration of the Short-time objective intelligibility model is
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presented. When compared to the Perceptual evaluation of speech quality model
it has is a lot simpler.

Figure 3.10: Illustration of Short-time objective intelligibility model
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Methodology

This chapter describes the methodology used to examine and address the research
questions raised in this thesis. We will describe how datasets were selected and
pre-processed to prepare for experimentation with machine learning models. We
also describe both the physical and logical environment of the experimentation.

The following experiments are performed:

• Five different machine learning models are applied to conduct noise sup-
pression in audio recordings.
• Audio analysis for comparing noise suppressed audio recordings with clean

speech.
• Comparison analysis of noise suppressed audio data between machine learn-

ing models.
• Comparison of machine learning models and difference in noise suppression

between types of audio noise.
• Dataset analysis looking for patterns in noise suppressed audio data.

Figure 4.1 presents an overview of the entire experiment process form a bird’s-
eye-view. Each step in the flowchart will be explained in more detail throughout
this chapter.

4.1 Datasets

It is decided early in the process to build a synthetic dataset for training the ma-
chine learning models made use of in the experiments. The major reason for this
is to avoid spending time sanitizing recorded audio out of privacy concerns when
handling data containing human speech. Because of how this project revolves
around audio denoising, the data needed is split into two categories. One would
be clean speech acting as the target audio, and the other category is a variety
of different audio sources to synthetically mix with the speech audio acting as
noise. There are multiple audio datasets available for research related to machine
learning. But many of them are not maintained, have restrictions related to data
privacy, or include ambiguous data that may introduce a bias or other problems

35
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Figure 4.1: Experiment workflow overview

in the test results.
For the clean speech dataset, the decision fell upon Mozilla Common Voice[46].

It is a publicly available voice dataset licensed under creative commons, made up
of voices from voluntary contributors. Another benefit is that it is maintained on a
regular basis by receiving updates every third month. The common voice dataset
also has multilanguage support if needed, but only the English samples are used
as part of this project as they covered the requirement. It currently contains 81
085 voice samples and each approximately 3 to 5 seconds in length. This dataset
also comes with a predefined splits into training, validation, and test data, which
needs to be adhered to in order to ensure validation of the results.

Also, one criterion for the dataset in this project is to contain a wide selec-
tion of audio sources that could represent noise when mixed with speech data.
It should also not consist of static noise like constant white or brown noise. The
reasoning for this is that constant and/or stationary noise is easier to handle, and
does not put the same challenge on machine learning algorithms in a real world
environment setting because of a lack of variance[47]. It also means that manifest-
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ation of artificial residual noise is less likely to occur compared to non-stationary
audio sources[21].

The decision, therefore, landed on UrbanSound8k[48] as noise data, licensed
under creative commons. It is a dataset made up of labeled audio samples. Each
clip is approximately 4 seconds in length, taken from the urban environment. It
is divided into 10 different classes, and also has very clear instructions on how
training should be conducted in terms of file usage, e.g. how to split the dataset
and perform cross-validation to increase the validity of the end result.

There is also a need for a third temporary dataset consisting of mixed audio
clips where clean speech and noise were used to create samples that the trained
algorithms would attempt to process for denoising. As this data was only needed
during testing, it is created on the run by mixing a set amount of speech samples
with a set amount of noise samples from the respective test samples of each cat-
egory. The same temporary dataset would then run against each machine learning
algorithm for performance comparison of the same samples. An illustration of how
the temporary dataset is used, is presented in Figure 4.2.

4.2 The Experimental phase

The experiment consisted of an environment split in two. It is described in detail
in the following sections, along with how data is sampled, processed, and results
extracted.

4.2.1 Physical environment

In this section a description of the physical resources that were utilized for compu-
tation and analysis for this thesis. As the training of machine learning algorithms
benefits from running on a powerful Graphics Processing Unit and has a high de-
mand for memory and disc space. To meet these requirements, a virtual machine
dedicated to machine learning was set up with the following specifications:

• Type: Virtual machine
• OS: Ubuntu 20.04.3 LTS 64-bit
• CPU: Intel Xeon Processor (Cascadelake)
• RAM: 90 GB
• Storage: 40 GB
• GPU: Tesla V100 8GB GPU RAM (¼ of GPU = 1 core)

For script development, prototyping, audio analysis, audio processing, audio
editing, and other relevant lab work, a virtual lab was set up on a personal laptop:

• Type: Virtual machine
• OS: Ubuntu 20.04.3 LTS 64-bit
• CPU: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
• RAM: 4GB
• Storage: 60GB
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Figure 4.2: Temporary dataset flow

• GPU: VMWare SVGA controller

4.2.2 Logical environment

This list contains the major applications that made up the virtual laboratory when
conducting the experiment along with their respective version number:

• Audacity 3.1.0 - Used for sound processing, analysis, and editing.
• Python 3.8.10 - Programming machine learning algorithms and other util-

ities.
• PuTTY - SSH and Telnet client for remote connection between lab machines.
• Rsync - used for taking backup of folder and files over ssh
• Sublime Text 3 - Text editor used for Python programming
• Vi IMproved (VIM) - Text editor used for Python programming.
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• WinSCP - SFTP/FTP client used for file transfer between Windows client
and virtual hosts over SFTP.

4.2.3 Audio database and machine learning algorithms

This phase involves creating an audio database consisting of audio noise, and
clean speech samples from the datasets selected. Variants of deep neural network
algorithms with different capabilities for conducting experiments and tests are
also evaluated. Five different algorithms are chosen based on their foundational
similarity, but at the same time having variations in capability. These machine
learning algorithms and their main features was introduced in section 3.3.2 Con-
volutional Neural Network, 3.3.3 Convolutional Recurrent Neural Network, 3.3.4
Densely Connected Convolutional Networks, 3.3.5 Recursive Network with Dy-
namic Attention, and 3.3.6 Gated Residual Network With Dialated Convolutions.

Each model is programmed in Python 3.8.10 [49] using API, example code
and documentation as provided by Tensorflow [50] in order to conform to the
frameworks layered standard. This also made application of Tensorflows storage
system easier as it is natively supported out of the box. The Tensorflow API has
been in development since 2015, and all functionality needed for building the
models part of the experiments were available as integrated modules.

To provide an example of how these modules work in Tensorflow, we can start
by looking at the convolutional block in the convolutional neural network. The
convolution layer is available in several variants depending on the need. Audio
data that we use in this experiment is evaluated in two dimension (time and fre-
quency), and the convolutional 2 dimensional layer, Conv2D [50], is considered
the best option. The layer can be configured by specifying filters, kernels size,
and stride in order to optimize prediction, and some experimentation is needed
in order to find the optimal values.

After the convolution layer, an activation layer is set that takes the output from
the convolutional layer as an input. The role of an activation layer is to serve as
a helper function which in this case applies Rectified Linear Unit (ReLU) to the
network, as discussed in chapter 3, section 3.3.2. The activation layer is followed
by a batch normalization layer taking in the output of the activation layer and
normalizing the data. By combining activation layer and batch normalization like
this the vanishing gradient problem is addressed as discussed in chapter 3, section
3.3.2. The output from the batch normalization layer is forwarded in the network
to the next convolution block and the process repeated until every block has been
traversed, and output in form of a prediction is compared against the validation
target.

All of the machine learning models used in the experiments make use of the
Tensorflow modules as building blocks to ensure that the functionality is stand-
ardized across all 5 of them. The structure of each machine learning model used
in the experiments are based of the following papers:

• Convolutional Neural Network was based on the paper made by Park and
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Lee [51]
• Convolutional Recurrent Neural Network Was built using Tan and Wangs

suggested method [34].
• Densely Connected Convolutional Networks is based of Huang et al. [36]
• Recursive Network with Dynamic Attention was built based on the paper

presented by Li et al. [12].
• Gated Residual Networks With Dilated Convolutions are built from two pa-

pers by K. Tan, J. Chen and D. Wang [37, 38]

Every model used during experimentation with a detailed diagram description
of its modules, their respective output shapes, number of paramters and connec-
tions, are presented in Appendix A, B, C, D, and E for reference.

4.2.4 Feature extraction

The main part of the experiment goes into data preprocessing and preperation.
The clean speech data of the Mozilla Common Voice dataset[46] is first split into
three respective parts, training, validation, and test. This is done according to the
documentation of the dataset and using the three tsv-files supplied along when
downloaded. The tsv-files contain a pre-determined split of the data based on
analysis and classification deciding on which files are suited for each of the three
categories. The result is 864 450 audio files in the training set, 1 530 387 files in
the validation set, and 16 328 files in the test set.

The next step is to sort out the binary mp3 files that correspond to the files
in the three different tsv-files. The audio files are converted to wav format in the
same process as they are sorted and moved by category. The format of the noise
data represented by UrbanSound8k[48] dataset comes in wav format which is
preferred over mp3. Compressing UrbanSound8k down to mp3 format that the
Mozilla Common Voice comes in, is not wanted because of how it can degrade
the audio quality in the process. Converting from mp3 to wav does not involve
additional loss to the audio quality which is desired behavior, and therefore the
method used in this experimental setup.

After splitting the data into three different sets, each file in its respective data-
set is broken down into logical information by extracting a spectral magnitude
vector from the short-time Fourier transform consisting of 256-points. In order to
calculate this, window size is set that defines how big of a segment will be ana-
lyzed at a time. As this window needs to move across the audio sample in order
to analyze it in its entirety, a hop size value of 64 is also set.

The defined window then slides across the audio sample based on the hop size
and calculates the Discrete Fourier Transform (DFT)[26] of the data within each
segment. It is used to build the short-time Fourier transform by simply combining
the acquired segments of the discrete Fourier transform. Then, the magnitude vec-
tors of the signal are extracted from the 256-point short-time Fourier Transform,
but only the first 129 points are needed so the symmetric half is discarded.

As machine learning algorithms make use of features for training, these need
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to be extracted from the short-time Fourier transform. By using the 256 points set
in the short-time Fourier transform and the hop size of 64, the short-time Four-
ier transform vectors will overlap by 75% to avoid loss of data when a function
moves towards zero at the boundaries. Then 8 consecutive noisy short-time Four-
ier transform vectors are concatenated together that will be used as input for the
algorithm with a shape of (129, 8). The input vector consists of the current short-
time Fourier transform vector, along with 7 previous ones. Figure 4.3 illustrates
the feature creation process.

Figure 4.3: STFT feature creation

This makes it so that the machine learning algorithm can read the profile of
the audio sample. Each short-time Fourier transform vector is stored in a corres-
ponding entry in their respective Tensorflow record file representing the datasets.
Figure 4.4 illustrates the flow of the feature selection process of the Mozilla clean
speech data.
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Figure 4.4: Clean speech feature extraction flow

In parallel, pre-processing of the noise files is conducted. This data is struc-
tured into training, validation, and test data like the Mozilla Common Voice data-
set[46]. The approach to the split is however a bit different from the clean speech
dataset. UrbanSound8k[48] comes with 8732 audio files in wav format split across
10 folders. One folder is dedicated to testing data as stated in the documentation
for the dataset. The 9 other folders are split into training and test datasets. As
pointed out by the documentation, no shuffling of the noise files is done in order
to not mix audio samples meant for testing with the training and validation set,
and vice versa.

When the dataset containing noise data is split, the same conversion process
from audio to short-time Fourier transform and feature extraction as with the
clean speech data is conducted. The output is stored as part of the training and
validation TensorFlow record[50]. The training and validation variant is then up-
loaded to the physical machine responsible for handling the training of the ma-
chine learning models. At the same time, the test records are stored on the ma-
chine dedicated to testing, analysis, and other tasks. The binary wav version of
the test data files is also uploaded to the laboratory machine that will make use of
these files when conducting experiments at a later stage. The flow of this process
is presented in Figure 4.5.
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Figure 4.5: Noise feature extraction flow

4.2.5 Training and validation of machine learning algorithms

With data prepossessed and prepared the next stage is training and validation of
the machine learning algorithms. This is done by making use of the created train-
ing and validation record files. Because of the size of both training and validation
data available, a subset is created by randomly selecting from each respective
training and validation pool. A total of 4000 samples equally divided providing
2000 noise samples and 2000 clean speech samples makes up the active training
set for the algorithms, and the validation set is made up of 1000 clean speech
samples and 200 noise samples. The reason for differentiation in ratio in valid-
ation samples is because of wider variation in in clean speech samples making
them more difficult for the algorithm to distinguish, and as such more sample are
needed.

When the training and validation sets are provided to the model, the first step
is to shuffle and mix random clean speech and noise samples from the training set.
These mixed noise samples are then processed by the machine learning model who
makes a prediction that is compared against the clean speech validation target.
The difference between the prediction and the validation target is measured and
optimized using mean square error for each step in an epoch. The result of the
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mean square error calculation is stored in a variable for the next epoch if one of
the following two conditions are met:

1. Current epoch is the first one in the training cycle, or
2. Result of current mean square error calculation is better than the previous

one.

A new epoch is then initiated, and the process of making prediction is repeated
until either the max number of epochs are reached, or no further improvement in
precision is detected for a set number of tries (patience value). A simple illustra-
tion of this process is presented in Figure 4.6

Figure 4.6: Machine learning model training example

Multiple tests were done for each machine learning model in order to try to
find an optimized setting for training and validation in order to maximize the pre-
cision score. This resulted in a setup that worked well for all 5 models used as part
of this experiment. Max number of allowed epochs is set to 400, with 400 steps
per epoch using Mean Square Error (MSE) [52] as the loss function and “Adam”
[53] as the optimizer function. A learning rate of 3e-4 yielded the best preci-
sion during test runs, with precision overall evaluated using Root Mean Square
Error(RMSE) [54]. With this setup, all models reached root mean square error
values of between 13.0 and 16.5. A patience value was set to 50 in order to avoid
overfitting or underfitting the model, by forcing a drop out if no improvement
where detected within 50 steps.

As previously explained in section 4.2.4 Feature extraction, input was provided
to the models in form of Tensorflow records [50]. The settings were a window
length of 256, with an overlapping hop size of 64. The input sample rate was
set to 48000 and the output sample rate at 16000 in order to fit the data. The
number of features is, as previously discussed during feature extraction, set to
129 by discarding the symmetrical half. The number of segments is set to 8 as is
the number of noisy short-time Fourier transform vectors concatenate together.
Once finished the model is saved as an h5 file for later use during testing of the
trained machine learning algorithm.
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4.2.6 Test, comparison, and analysis

When all machine learning algorithms have finished training, a series of tests are
conducted. First, all of the test noise samples are mixed with the same randomly
selected clean speech clip and denoised by the trained machine learning models,
as was previously illustrated in Figure 4.2. Each of these denoised samples are
tested against the clean speech sample with all quality measure methods (percep-
tual evaluation of speech quality [41], short-time objective intelligibility [44], and
segmental SNR [42]), for all the machine learning models.

The result is then stored in tables by the respective type of audio measuring
quality used. Each table hold scores for the 5 machine learning models in all of
the 10 noise categories. In addition, a table with an overall score for the measured
quality models is also stored, along with the variance for each parameter to display
stability (reliability) within the respective category. The purpose of this test is to
look for patterns and correlations in data that can help understand if there are
indicators that help estimate if and why artificial residual noise is likely to manifest
in quality measurement. These results will be presented in chapter 5.

Another test conducted is done on the short-time Fourier transform data. In
this test, the noisy audio sample is compared against the denoised version of itself.
Then the noisy audio sample is subtracted, element by element, against the noise
suppressed version, and the remaining magnitude (in decibel) is stored in the
indexes of the array. An analysis is then performed summarizing each segment in
the new array, and comparing the corresponding entry in both noisy and noise
suppressed versions. The purpose of this test is to look for segments where the
total magnitude is higher than it initially was before the noise suppression model
processed the audio sample. If such segments are found, it indicates that values
in the segment have been amplified by the model while conducting audio noise
suppression.

What is achieved by measuring the magnitude of decibel in the segments, is to
uncover if there is additional artificial noise added by the machine learning model
and not removed as part of denoising. As documented earlier in this thesis this is
not wanted behavior and not the purpose of the noise suppression process. The
results of this test will be covered in chapter 5, and further discussed in chapter
6.

For the purpose of better understanding, a plot is created for visual analysis
where the noisy sample is compared to its respective denoised variant. Then the
difference between these two is calculated and plotted for comparison. The aim of
this is to visually present differences in how each machine learning model handles
noise suppression. Examples of this will also be presented in chapter 5.
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Results

Table 5.1 displays the calculated result of the overall performance of each machine
learning model while disregarding the type of noise. This is done for all of the
three objective quality measure types (PESQ[41], STOI[44], and segSNR[42]).
Two values are presented for each attribute, the mean value, and the variance.
The mean value for each attribute operates with its respective scale.

• For PESQ[41] this ranges from -0.5 to 4.5 where a higher value equals a
better score.
• The STOI[44] scale ranges from 0 to 1, where a higher value also equals a

better score.
• SegSNR[42] indicates the mean value of the segment’s distance between

noise and clean signal value, with the higher the value equals less noise.

In addition a color gradient has been applied to each column to easily display
which machine learning model that performs best and which one that is worse.
The more green a color get, that better it is compared to the other values in the
column, and in the opposite way the more red in a color, the worse the score.
As an example in the case of PESQ mean, crnn_model has the best score, while
grn_model has the worst score.

Model PESQ mean PESQ variance STOI mean STOI variance segSNR mean segSNR variance

cnn_model 1.099780459 0.002260387 0.660671655 0.001384592 12.07599318 4.402803336
crnn_model 1.144246805 0.003259915 0.633326674 0.001534108 12.12821492 5.253023318
dcn_model 1.0843152 0.001081946 0.672776618 0.001365926 14.50326785 2.094892975
grn_model 1.057394427 0.0003396 0.640932738 0.00091489 15.17393267 1.74317249

darcn_model 1.073179877 0.00122739 0.647036492 0.00172265 14.40728753 2.109838259

Table 5.1: Table with overall measured audio parameter results.
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5.1 PESQ

In Table 5.2 mean PESQ score for every type of noise for each machine learning
algorithm is presented. The values adhere to the scale of PESQ, with a range
from -0.5 to 4.5 where a higher value equals a better score. In order to clarify
the comparison within each noise type category, a color gradient is applied for
easier identification of which algorithm performed best within the respective type
of noise. The more red colors indicate worse performance, while the darker the
green color gets, the better. As an example looking at the air conditioner category,
observe that crnn_model displays a dark green color meaning the best score in
this case, while grn_model has a dark red color meaning the worst score in this
case.

PESQ cnn_model crnn_model dcn_model grn_model darcn_model

Air conditioner 1.104935395 1.197383982 1.08810618 1.054722317 1.073293406
Car horn 1.130879706 1.182435343 1.088397629 1.055669792 1.067690521
Children playing 1.095845003 1.146176292 1.089255241 1.057913768 1.075058246
Dog barking 1.122073152 1.151795028 1.122972125 1.080601865 1.106088151
Drilling 1.046038321 1.087320496 1.042019299 1.035611713 1.037560264
Engine idling 1.132795334 1.218950401 1.100585163 1.056868529 1.094520384
Gun shot 1.149410788 1.14348406 1.116701256 1.0935959 1.114204649
Jackhammer 1.032994211 1.072438526 1.035941976 1.032713068 1.030565228
Siren 1.092828436 1.112628328 1.078982347 1.05366947 1.067885735
Street music 1.090004247 1.129855598 1.080190778 1.052577851 1.06493219

Table 5.2: Table presents individual models versus different noise evaluated with
the PESQ method.

5.2 STOI

In Table 5.3 mean STOI score for every type of noise for each machine learning
algorithm is presented. Just as for the PESQ table, the values adhere to the scale
of STOI, with a range from 1 to 1 where a higher value equals a better score. In
order to clarify the comparison within each noise type category, a color gradient
is applied for easier identification of which algorithm performed best within the
respective type of noise the same way as in Table 5.2. The more red colors indic-
ate worse performance, while the darker the green color gets, the better. As an
example looking at the air conditioner category, observe that dcn_model displays
a dark green color meaning the best score in this case, while crnn_model has a
dark red color meaning the worst score in this case.
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STOI cnn_model crnn_model dcn_model grn_model darcn_model

Air conditioner 0.644003585 0.623302488 0.661278724 0.630346146 0.629813752
Car horn 0.682290349 0.655221305 0.686688409 0.656303558 0.654829015
Children playing 0.652431059 0.622479856 0.673321076 0.637174805 0.646996058
Dog barking 0.674307843 0.653010556 0.695070636 0.658501593 0.682111815
Drilling 0.649870385 0.620667281 0.655494138 0.629997111 0.626752435
Engine idling 0.674859373 0.651109121 0.693842387 0.652869564 0.666994517
Gun shot 0.701875848 0.669436178 0.710991041 0.672370093 0.703803776
Jackhammer 0.630448699 0.615829409 0.62439975 0.611270728 0.587788841
Siren 0.670073794 0.629398462 0.681257269 0.647538513 0.658220513
Street music 0.626555617 0.592812083 0.645422753 0.612955274 0.613054194

Table 5.3: Table presents individual models versus different noise evaluated with
the STOI method.

5.3 SegSNR

In Table 5.4 mean segSNR score for every type of noise for each machine learn-
ing algorithm is presented. Just as for the PESQ table, the values adhere to the
scale of segSNR, where a higher value equals a better score. In order to clarify
the comparison within each noise type category, a color gradient is applied for
easier identification of which algorithm performed best within the respective type
of noise the same way as in Table 5.2. The more red colors indicate worse per-
formance, while the darker the green color gets, the better. As an example looking
at the air conditioner category, observe that grn_model and darcn_model display
a dark green color meaning the best score in this case, while cnn_model has a
dark red color meaning the worst score in this case.

SegSNR cnn_model crnn_model dcn_model grn_model darcn_model

Air conditioner 12.59056241 12.93791829 14.53924116 14.93326674 14.93482928
Car horn 10.90736553 10.12490989 14.25367265 14.24967889 14.38444214
Children playing 12.00657207 12.41872246 14.29026557 14.96538645 14.37142694
Dog barking 11.12435252 12.29470361 13.81222411 14.46731325 13.7192939
Drilling 13.38273395 11.96080167 15.39481887 16.09473059 15.0470475
Engine idling 11.43564798 11.40992421 13.88282 14.94908703 13.57149935
Gun shot 9.100205013 13.13440924 13.05952191 13.66087898 13.03540009
Jackhammer 13.66964467 10.84717231 15.0236329 16.47431912 14.65657288
Siren 12.22524543 11.89114628 14.70636202 15.42016495 14.4512208
Street music 14.31760226 14.26244128 16.07011936 16.52450067 15.90114246

Table 5.4: Table presents individual models versus different noise evaluated with
the segSNR method.

5.4 Short-Time Fourier Transform analysis

Presented in this section are example outputs from analyzing the short-term Four-
ier transform. The following 5 figures 5.1,5.2, 5.3, 5.4, and 5.5, are each divided
into three spectrograms. The one located at the top in each of them is extracted
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from the same audio recording containing noise from an air conditioner before
it is processed for audio noise suppression by each respective machine learning
model. The middle spectrogram in each figure is the denoised version of the same
audio recording processed by the respective model. The bottom spectrogram in
each figure displays the difference between the top and middle spectrogram in
each respective case.

Figure 5.1: Convolutional Neural Network noise to noise suppressed comparison

Figure 5.2: Convolutional Recurrent Neural Network noise to noise suppressed
comparison
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Figure 5.3: Denseley Connected Convolutional Network noise to noise sup-
pressed comparison

Figure 5.4: Recursive Network with Dynamic Attention noise to noise suppressed
comparison
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Figure 5.5: Gated Residual Networks With Dilated Convolutions noise to noise
suppressed comparison

The next results presented are from comparing noise and denoised short-time
Fourier transform segments for each model for sample from each category of
noise. Only segments in the denoised audio recording, where a value is higher than
the corresponding segment in the noisy audio recording were counted against the
total. These numbers are presented in Tables 5.5 to 5.14 both as integers and
percent.

Air conditioner

Model Segemnts observed Percentage
cnn_model 21 2%
crnn_model 22 2%
dcn_model 216 21%

darcn_model 263 26%
grn_model 341 33%

Table 5.5: Number of segments with difference - Air conditioner.
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Car horn

Model Segemnts observed Percentage
cnn_model 33 3%
crnn_model 95 9%
dcn_model 177 17%

darcn_model 488 48%
grn_model 446 44%

Table 5.6: Number of segments with difference - Car horn.

Children playing

Model Segemnts observed Percentage
cnn_model 177 17%
crnn_model 294 29%
dcn_model 71 7%

darcn_model 317 31%
grn_model 277 27%

Table 5.7: Number of segments with difference - Children playing.

Dog bark

Model Segemnts observed Percentage
cnn_model 509 50%
crnn_model 531 52%
dcn_model 759 74%

darcn_model 668 65%
grn_model 676 66%

Table 5.8: Number of segments with difference - Dog bark.

Drilling

Model Segemnts observed Percentage
cnn_model 40 4%
crnn_model 338 33%
dcn_model 303 30%

darcn_model 621 61%
grn_model 302 29%

Table 5.9: Number of segments with difference - Drilling.
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Engine idling

Model Segemnts observed Percentage
cnn_model 0 0%
crnn_model 3 0%
dcn_model 0 0%

darcn_model 104 10%
grn_model 121 12%

Table 5.10: Number of segments with difference - Engine idling.

Gun shot

Model Segemnts observed Percentage
cnn_model 365 36%
crnn_model 603 59%
dcn_model 637 62%

darcn_model 720 70%
grn_model 476 46%

Table 5.11: Number of segments with difference - Gun shot.

Jackhammer

Model Segemnts observed Percentage
cnn_model 24 2%
crnn_model 68 7%
dcn_model 16 2%

darcn_model 11 1%
grn_model 26 3%

Table 5.12: Number of segments with difference - Jackhammer.

Siren

Model Segemnts observed Percentage
cnn_model 28 3%
crnn_model 11 1%
dcn_model 9 1%

darcn_model 381 37%
grn_model 141 14%

Table 5.13: Number of segments with difference - Siren.
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Street music

Model Segemnts observed Percentage
cnn_model 184 18%
crnn_model 201 20%
dcn_model 136 13%

darcn_model 369 36%
grn_model 290 28%

Table 5.14: Number of segments with difference - Street music.





Chapter 6

Discussion

In this chapter, the experiments conducted in chapter 4 and results presented in
chapter 5 are discussed to answer the research questions defined in section 1.5.

• Research Question 1: How artificial residual noise appear in audio recording
enhanced with machine learning?

In section 2.2 Introduction to artificial residual noise artificial noise and re-
sidual noise were explained. Artificial residual noise is a product of the combined
components of these two types of noise, as it would fulfill the following criteria:

1. It is residual noise left behind as the filtering process was not able to sup-
press or cancel all of it.

2. Noise present is an artificial audible product of a machine learning algorithm,
which is considered a human device.

Both of these criteria were also proven to be fulfilled after experimentation de-
scribed in section 4.2.6 on short-Time Fourier transform, and the result presented
in 5.4 on how to detect both residual and artificial noise.

The reason for this was that the example spectrograms demonstrate that when
looking at the difference between the mixed audio recording containing noise,
and the processed audio recording where the machine learning algorithm has
made an attempt at suppressing the noise, there is still residual noise present
in all 5 algorithms. If no residual noise was present, the bottom spectrogram in
Figures 5.1 to 5.5 would have only a background color of black, which is not the
case in any of them.

When it comes to the presence of artificial noise, Tables 5.5 to 5.14 are based
on observations of elements in the short-time Fourier transform array that have a
higher magnitude in terms of decibel than they originally had in the noisy short-
time Fourier transform array. If this is the case, the machine learning model would
have increased the magnitude instead of suppressing noise as it is intended to do.
As analysis of the data show, it is only in a couple of cases where additive noise
did not occur. In fact, there were cases reporting as much as 70 percent alteration
to the array which is not desired.

57
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The presence of artificial residual noise can also be heard if the denoised au-
dio recording is played. It occurs as distorted artifacts that are not present in the
original noisy audio recording. In some cases, it can be misinterpreted as whis-
pering or heavily distorted speech. In other cases where added noise come in for
om a short burst of sound, the artifact manifests either right before, or right after,
and in some cases both before and after the burst of sound. It sounds like digital
distortion and does not resemble anything natural.

In relation to research question 1, it is considered as answered based on how
unsuppressed noise created by the machine learning model used was not removed
during the denoising process.

• Research Question 2: Is there a difference in amount of artificial residual noise
produced related to difference in types of noise sources? If this is the case how
much of a difference is there and which types are more prone to make i mani-
fest?

When analyzing the results in Tables 5.5 to 5.14, there are variations when
comparing the type of noise versus how the machine learning algorithm per-
forms. These differences can be seen when comparing machine learning complex-
ity within a noise category, and there are also variations when comparing overall
performance between different noise categories. This can also be further analyzed
by taking in the quality measurements in Tables 5.1 to 5.4, by looking at how the
machine learning algorithms scored overall and in each category.

The two advanced models, the recursive network with dynamic attention and
the gated residual networks with dilated convolutions, seem more prone to gener-
ate artificial residual noise compared to the simpler models convolutional neural
network and the convolutional recurrent neural network. The densely connected
convolutional network is in the middle to lower tier, which is interesting consid-
ering that it could be classified as a simple algorithm because of its similarities
with the convolutional neural network, except for the added flow of information
through interconnected layers.

Type of noise appears to have some impact as noise like children playing,
dog barking, drilling, gunshot, and street music seems to have produced a higher
count of changed segments than simpler more monotone with little variance, and
repeating noise like engine idling and jackhammer. This observation is supported
by the theory stating that non-stationary audio sources are more difficult to pro-
cess correctly [8]. The meaning of this is that the more variation there is to an
audio source for instance movement or change in amplitude, the more difficult
becomes to properly process it.

In the area of audio forensics, this poses a great challenge. Audible evidence
is after all taken from the real world and not a laboratory with a controlled envir-
onment. The chance of having to work with the presence of highly non-stationary
audio sources is very likely all the time. But as proven in this experiment, one
must be aware of the limitations in the capability of machine learning models the
more complex the audio sources become.
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• Research Question 3: How much of a difference is there between different types
of machine learning algorithms and occurrence of artificial residual noise?

By looking at the convolutional neural network model, which can be con-
sidered the simplest of the 5 used in this thesis, performs well in all categories
except for segSNR compared to the other models. In addition, the algorithm does
not have the same number of changed segments as the more advanced algorithms
in most cases. What should be noted is how variance can impact this algorithm, es-
pecially the segSNR variance. With a segSNR mean value of 12.07 and a variance
of 4.4 decibels, it means that the segSNR value can drop beneath 10.

What happens then is that the audio recording get heavily distorted. If it were
to be presented as evidence in an investigation it would not have any value as the
speech can not be distinguished from the background noise. This is also illustrated
in Figure 6.1 where the spectrogram shows that there is a good amount of residual
noise still present after the noise suppression process.

A model that handles segSNR very well both in terms of mean value and vari-
ance is the gated residual networks with dilated convolutions. Observing the dif-
ference spectrogram in Figure 6.5 displays less residual noise compared to most
of the other algorithms. The mean value makes it so that it is the only algorithm
that breaks into the 15 to 25-decibel bracket as explained in section 4.4.2.

The main problem with this model however is that it has a tendency of altering
a rather high amount of segments at times, which becomes a problem in a forensics
situation as it introduces artificial residual noise as high as 66 percent in one
case. In other words over two-thirds of the segments in the audio sample show
alterations that are above what the original noisy audio recording had.

When comparing the results of altered segments in the results, the more ad-
vanced machine learning models are more often outputting a higher number of
alterations than the basic convolutional neural network. One explanation of this
can be related to the loss function of the models.

Using mean squared error as a loss function comes with some limitations.
This is tied to how it optimizes the average of training examples. Taking this ap-
proach limits precision in prediction, especially when handling the more complex
samples. It is also important to keep in mind that if the model makes a bad pre-
diction mean squared error magnifies it. Therefore, in order to increase precision
in the results, a custom loss function should be applied that is adapted to better
handle audio noise samples of a more complex nature.

When presenting evidence as a forensic investigator, having this amount of
alteration to an audio sample would not be accepted. The fact that all models
show alterations in most cases would not be tolerated, and both reliability and
integrity in the data become a big concern.

• Research Question 4: Why is it important to detect and/or mitigating artificial
residual noise, and what are the consequence of not handling it properly in the
context of audio forensics?

Considering the results and discussion presented up to this point creates the
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foundation for the argument of why it is important to both detect and mitigate
the foundation of artificial residual noise. As discussed under research questions
2 and 3, there are clear indicators that data is being altered by introducing artifi-
cial additive noise, when comparing the noisy audio recording and the processed
denoised version of the respective audio sample.

From a forensic investigations point of view, this makes the investigation more
difficult. The fact that artificial audio manifests in the audio recording essentially
introduces a new audio source that needs to be considered. This can in the worst
case force the investigator to go back several steps depending on how the audio
source behaves. The investigator needs to determine if this new source is of sig-
nificant importance to the ongoing case. If the artificial noise resembles known
sources, like speech, or objects of which presence might be important for the in-
vestigation, it will be considered worth focusing on until properly identified and
classified.

Essentially misleading the forensic investigation this way will come with a
cost of both time and resources. In time-critical investigations where there is mar-
ginal room for mistakes, it can not be tolerated and should not happen. Especially
considering that noise suppression in audio recordings that make use of machine
learning is a tool where processes can and should be controlled to such a degree
that the tool itself and its output integrity is known and can be fully trusted.

This brings up the next problem of importance, violation of dataset integrity.
Even if the main concept of audio denoising is to some degree to make alterations
to the data in such a way that it enhances audio sources of interest, what happens
in this case, as discussed, is an alteration that negatively influences the data. What
needs to be addressed when it comes to artificial residual noise is maintaining
control of the number of audible sources in the recording and the level at which
they contribute to the overall soundscape of the recording.

Failing to maintain data integrity and using reliable methods results in, as
history has proven, situations where evidence becomes not usable in a court of
law. Considering the importance of an investigation method being looked at as
reliable and proven in order to be presented as the method for providing evidence,
audio forensics using machine learning methods has to demonstrate that precision
is narrowed down to the point where it is beyond reasonable doubt that the result
can wrong. Anomalies like artificial residual noise will undoubtedly weaken the
accountability and position of evidence no matter what degree it appears.

6.1 Limitations

As this thesis has focused on understanding and identifying artificial residual
noise, some known audio quality measure methods in the form of perceptual eval-
uation of speech quality, short-time objective intelligibility, and segmental SNR
have been applied. These methods are often made use of in research papers when
determining the precision en performance of the machine learning model by meas-
uring the original and processed audio recording.
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When trying to identify the presence of artificial residual noise, these quality
metrics can help in providing information on the quality of the audio recording,
but they do not provide clarification on whether or how the machine learning
algorithm introduced artificial residual noise. In an everyday setting where the
aim is to present as good a result as possible like clean speech, manipulation of
data is of less importance as long as the purpose is met. In these cases, these kinds
of metrics serve their intention.

In a forensic setting where the integrity and reliability of the result weigh more
than the quality of the output, this does not suffice and has more requirements that
must be fulfilled to be considered as an appropriate method that can be considered
as a valid go-to method for usage outside of a laboratory.





Chapter 7

Conclusion

The application of machine learning in audio analysis has become an established
field of research. Audio noise suppression is one method that is derived from this
technology and has become a common method of enhancing audio sources while
controlling background noise. In the related field of audio forensics, however,
there is still some ground to be covered until technology can be fully accepted.

Machine learning algorithms tend to focus on achieving as good a result as
possible, without taking the preservation of data integrity into account. Deciding
on this approach sacrifices reliability and data integrity, which are cornerstones
when handling any kind of evidence in an investigation. The importance of main-
taining a chain of custody can not be set aside in order to increase precision.

When conducting forensic analysis, how the data at hand is treated along the
way is almost more important than the result. It is, after all, a case where the focus
lies with the idea of data already containing the result, and it is more a matter of
refining it in a proper way to highlight important information.

The purpose of this thesis is to prove what artificial residual noise is, how
it manifests and why it is important to take action related to it from an audio
forensics point of view. We have achieved this by conducting experiments that
yields results containing artificial residual noise, illustrating how it can be un-
covered, and discussing the importance of properly addressing it by presenting
how it can negatively impact the work of a forensic investigation.

As we demonstrate with results presented chapter 5, and through discussion
in chapter 6, indicators of artificial residual noise are identifiable when looking
directly at the data arrays holding information on audio signal amplitude. We also
demonstrate that conventional methods for quality measurement of audio signals
is not an efficient way of identifying artificial residual noise.

Machine learning can become a valuable tool or supplement in the forensic
area because of how it can reduce the need for manual labor. But in order to get to
that point, there is a need for more research in order to improve methods that can
address the challenges that negatively impact the technology today from a forensic
perspective. Therefore some proposed future work is presented in chapter 8.
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Chapter 8

Future work

Based on the discussions and results presented in this thesis, there are multiple
challenges remaining that offer path for future work and research. Some of these
are presented below:

• A thorough analysis of STFT array: When analyzing the audio recordings
to detect artificial residual noise, indicators of change in the short-time Four-
ier transform array were used as signs of occurrence. A better understanding
of what exactly is the trigger, and if there are certain frequencies, thresholds
in signal amplitude, or similar requirements that need to be handled in or-
der to avoid the problem is an area to look into.
• More complex loss function: The machine learning algorithms in the ex-

periments conducted as part of this thesis have all used mean squared error
as the loss function. The challenge with this as presented in the discussion
in chapter 6 is that it averages out the optimization. Taking this approach
sacrifices precision when it comes to handling complex data. The need for a
customized loss function would assumably overcome this problem by grant-
ing more control to the analyst.
• More complex machine learning algorithms: Improved machine learning

algorithms are presented rather often as it has become an area that has a
lot of attention related to how it can be applied in a wide variety of use.
This thesis approached the problem of artificial residual noise using already
established machine learning methods to conduct the experiments. These
were chosen because how they have already been tested within the area
of audio processing. There are other alternatives out there like Generative
Adversarial Networks which are more advanced and have the potential to
provide better results.
• The machine learning framework for audio forensics: A ambitious task

would be to try to develop a method specially adapted for audio forensics. As
discussed in this thesis it has set requirements that need to be met. Integrity
and reliability are some of these. This will require time and effort which
probably would require multiple theses to complete, but like everything else
in a project it should be broken down into components that combined makes
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up the final product, either as a stand-alone solution or part of something
bigger.
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Appendix A

CNN layer layout

Layer type Output Shape Param # Connected to
==================================================================================================
input_1 InputLayer [None, 129, 8, 1] 0 []

zero_padding2d ZeroPadding2D None, 137, 8, 1 0 [’input_1[0][0]’]

conv2d Conv2D None, 129, 1, 18 1296 [’zero_padding2d[0][0]’]

activation Activation None, 129, 1, 18 0 [’conv2d[0][0]’]

batch_normalization BatchNorm None, 129, 1, 18 72 [’activation[0][0]’] alization

conv2d_1 Conv2D None, 129, 1, 30 2700 [’batch_normalization[0][0]’]

activation_1 Activation None, 129, 1, 30 0 [’conv2d_1[0][0]’]

batch_normalization_1 BatchNo None, 129, 1, 30 120 [’activation_1[0][0]’] rmalization

conv2d_2 Conv2D None, 129, 1, 8 2160 [’batch_normalization_1[0][0]’]

activation_2 Activation None, 129, 1, 8 0 [’conv2d_2[0][0]’]

batch_normalization_2 BatchNo None, 129, 1, 8 32 [’activation_2[0][0]’] rmalization

max_pooling2d MaxPooling2D None, 129, 1, 8 0 [’batch_normalization_2[0][0]’]

conv2d_3 Conv2D None, 129, 1, 18 1296 [’max_pooling2d[0][0]’]

activation_3 Activation None, 129, 1, 18 0 [’conv2d_3[0][0]’]

batch_normalization_3 BatchNo None, 129, 1, 18 72 [’activation_3[0][0]’] rmalization

conv2d_4 Conv2D None, 129, 1, 30 2700 [’batch_normalization_3[0][0]’]

activation_4 Activation None, 129, 1, 30 0 [’conv2d_4[0][0]’]
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batch_normalization_4 BatchNo None, 129, 1, 30 120 [’activation_4[0][0]’] rmalization

conv2d_5 Conv2D None, 129, 1, 8 2160 [’batch_normalization_4[0][0]’]

activation_5 Activation None, 129, 1, 8 0 [’conv2d_5[0][0]’]

batch_normalization_5 BatchNo None, 129, 1, 8 32 [’activation_5[0][0]’] rmalization

conv2d_6 Conv2D None, 129, 1, 18 1296 [’batch_normalization_5[0][0]’]

activation_6 Activation None, 129, 1, 18 0 [’conv2d_6[0][0]’]

batch_normalization_6 BatchNo None, 129, 1, 18 72 [’activation_6[0][0]’] rmalization

conv2d_7 Conv2D None, 129, 1, 30 2700 [’batch_normalization_6[0][0]’]

activation_7 Activation None, 129, 1, 30 0 [’conv2d_7[0][0]’]

batch_normalization_7 BatchNo None, 129, 1, 30 120 [’activation_7[0][0]’] rmalization

max_pooling2d_1 MaxPooling2D None, 129, 1, 30 0 [’batch_normalization_7[0][0]’]

conv2d_8 Conv2D None, 129, 1, 8 2160 [’max_pooling2d_1[0][0]’]

activation_8 Activation None, 129, 1, 8 0 [’conv2d_8[0][0]’]

batch_normalization_8 BatchNo None, 129, 1, 8 32 [’activation_8[0][0]’] rmalization

conv2d_9 Conv2D None, 129, 1, 18 1296 [’batch_normalization_8[0][0]’]

activation_9 Activation None, 129, 1, 18 0 [’conv2d_9[0][0]’]

batch_normalization_9 BatchNo None, 129, 1, 18 72 [’activation_9[0][0]’] rmalization

conv2d_10 Conv2D None, 129, 1, 30 2700 [’batch_normalization_9[0][0]’]

tf.__operators__.add TFOpLamb None, 129, 1, 30 0 [’conv2d_10[0][0]’, da ’conv2d_4[0][0]’]

activation_10 Activation None, 129, 1, 30 0 [’tf.__operators__.add[0][0]’]

batch_normalization_10 BatchN None, 129, 1, 30 120 [’activation_10[0][0]’] ormalization

conv2d_11 Conv2D None, 129, 1, 8 2160 [’batch_normalization_10[0][0]’]

activation_11 Activation None, 129, 1, 8 0 [’conv2d_11[0][0]’]

batch_normalization_11 BatchN None, 129, 1, 8 32 [’activation_11[0][0]’] ormalization

conv2d_12 Conv2D None, 129, 1, 18 1296 [’batch_normalization_11[0][0]’]

activation_12 Activation None, 129, 1, 18 0 [’conv2d_12[0][0]’]

batch_normalization_12 BatchN None, 129, 1, 18 72 [’activation_12[0][0]’] ormalization
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conv2d_13 Conv2D None, 129, 1, 30 2700 [’batch_normalization_12[0][0]’]

tf.__operators__.add_1 TFOpLa None, 129, 1, 30 0 [’conv2d_13[0][0]’, mbda ’conv2d_1[0][0]’]

activation_13 Activation None, 129, 1, 30 0 [’tf.__operators__.add_1[0][0]’]

batch_normalization_13 BatchN None, 129, 1, 30 120 [’activation_13[0][0]’] ormalization

conv2d_14 Conv2D None, 129, 1, 8 2160 [’batch_normalization_13[0][0]’]

activation_14 Activation None, 129, 1, 8 0 [’conv2d_14[0][0]’]

batch_normalization_14 BatchN None, 129, 1, 8 32 [’activation_14[0][0]’] ormalization

spatial_dropout2d SpatialDrop None, 129, 1, 8 0 [’batch_normalization_14[0][0]’] out2D

conv2d_15 Conv2D None, 129, 1, 1 1033 [’spatial_dropout2d[0][0]’]

activation_15 Activation None, 129, 1, 1 0 [’conv2d_15[0][0]’]

batch_normalization_15 BatchN None, 129, 1, 1 4 [’activation_15[0][0]’] ormalization

max_pooling2d_2 MaxPooling2D None, 129, 1, 1 0 [’batch_normalization_15[0][0]’]

spatial_dropout2d_1 SpatialDr None, 129, 1, 1 0 [’max_pooling2d_2[0][0]’] opout2D

dense Dense None, 129, 1, 1 2 [’spatial_dropout2d_1[0][0]’]

reshape Reshape None, 129, 1, 1 0 [’dense[0][0]’]

==================================================================================================
Total params: 32,939
Trainable params: 32,377
Non-trainable params: 562
__________________________________________________________________________________________________





Appendix B

CRNN layer layout

Layer type Output Shape Param # Connected to
==================================================================================================
input_1 InputLayer [None, 129, 8, 1] 0 []

zero_padding2d ZeroPadding2D None, 137, 8, 1 0 [’input_1[0][0]’]

conv2d Conv2D None, 129, 1, 18 1296 [’zero_padding2d[0][0]’]

activation Activation None, 129, 1, 18 0 [’conv2d[0][0]’]

batch_normalization BatchNorm None, 129, 1, 18 72 [’activation[0][0]’] alization

conv2d_1 Conv2D None, 129, 1, 30 2700 [’batch_normalization[0][0]’]

activation_1 Activation None, 129, 1, 30 0 [’conv2d_1[0][0]’]

batch_normalization_1 BatchNo None, 129, 1, 30 120 [’activation_1[0][0]’] rmalization

conv2d_2 Conv2D None, 129, 1, 8 2160 [’batch_normalization_1[0][0]’]

activation_2 Activation None, 129, 1, 8 0 [’conv2d_2[0][0]’]

batch_normalization_2 BatchNo None, 129, 1, 8 32 [’activation_2[0][0]’] rmalization

max_pooling2d MaxPooling2D None, 129, 1, 8 0 [’batch_normalization_2[0][0]’]

conv2d_3 Conv2D None, 129, 1, 18 1296 [’max_pooling2d[0][0]’]

activation_3 Activation None, 129, 1, 18 0 [’conv2d_3[0][0]’]

batch_normalization_3 BatchNo None, 129, 1, 18 72 [’activation_3[0][0]’] rmalization

conv2d_4 Conv2D None, 129, 1, 30 2700 [’batch_normalization_3[0][0]’]

activation_4 Activation None, 129, 1, 30 0 [’conv2d_4[0][0]’]
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batch_normalization_4 BatchNo None, 129, 1, 30 120 [’activation_4[0][0]’] rmalization

conv2d_5 Conv2D None, 129, 1, 8 2160 [’batch_normalization_4[0][0]’]

activation_5 Activation None, 129, 1, 8 0 [’conv2d_5[0][0]’]

batch_normalization_5 BatchNo None, 129, 1, 8 32 [’activation_5[0][0]’] rmalization

conv2d_6 Conv2D None, 129, 1, 18 1296 [’batch_normalization_5[0][0]’]

activation_6 Activation None, 129, 1, 18 0 [’conv2d_6[0][0]’]

batch_normalization_6 BatchNo None, 129, 1, 18 72 [’activation_6[0][0]’] rmalization

conv2d_7 Conv2D None, 129, 1, 30 2700 [’batch_normalization_6[0][0]’]

activation_7 Activation None, 129, 1, 30 0 [’conv2d_7[0][0]’]

batch_normalization_7 BatchNo None, 129, 1, 30 120 [’activation_7[0][0]’] rmalization

max_pooling2d_1 MaxPooling2D None, 129, 1, 30 0 [’batch_normalization_7[0][0]’]

conv2d_8 Conv2D None, 129, 1, 8 2160 [’max_pooling2d_1[0][0]’]

activation_8 Activation None, 129, 1, 8 0 [’conv2d_8[0][0]’]

batch_normalization_8 BatchNo None, 129, 1, 8 32 [’activation_8[0][0]’] rmalization

conv2d_9 Conv2D None, 129, 1, 18 1296 [’batch_normalization_8[0][0]’]

activation_9 Activation None, 129, 1, 18 0 [’conv2d_9[0][0]’]

batch_normalization_9 BatchNo None, 129, 1, 18 72 [’activation_9[0][0]’] rmalization

conv2d_10 Conv2D None, 129, 1, 30 2700 [’batch_normalization_9[0][0]’]

tf.__operators__.add TFOpLamb None, 129, 1, 30 0 [’conv2d_10[0][0]’, da ’conv2d_4[0][0]’]

activation_10 Activation None, 129, 1, 30 0 [’tf.__operators__.add[0][0]’]

batch_normalization_10 BatchN None, 129, 1, 30 120 [’activation_10[0][0]’] ormalization

conv2d_11 Conv2D None, 129, 1, 8 2160 [’batch_normalization_10[0][0]’]

activation_11 Activation None, 129, 1, 8 0 [’conv2d_11[0][0]’]

batch_normalization_11 BatchN None, 129, 1, 8 32 [’activation_11[0][0]’] ormalization

conv2d_12 Conv2D None, 129, 1, 18 1296 [’batch_normalization_11[0][0]’]

activation_12 Activation None, 129, 1, 18 0 [’conv2d_12[0][0]’]

batch_normalization_12 BatchN None, 129, 1, 18 72 [’activation_12[0][0]’] ormalization
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conv2d_13 Conv2D None, 129, 1, 30 2700 [’batch_normalization_12[0][0]’]

tf.__operators__.add_1 TFOpLa None, 129, 1, 30 0 [’conv2d_13[0][0]’, mbda ’conv2d_1[0][0]’]

activation_13 Activation None, 129, 1, 30 0 [’tf.__operators__.add_1[0][0]’]

batch_normalization_13 BatchN None, 129, 1, 30 120 [’activation_13[0][0]’] ormalization

conv2d_14 Conv2D None, 129, 1, 8 2160 [’batch_normalization_13[0][0]’]

activation_14 Activation None, 129, 1, 8 0 [’conv2d_14[0][0]’]

batch_normalization_14 BatchN None, 129, 1, 8 32 [’activation_14[0][0]’] ormalization

spatial_dropout2d SpatialDrop None, 129, 1, 8 0 [’batch_normalization_14[0][0]’] out2D

conv2d_15 Conv2D None, 129, 1, 1 1033 [’spatial_dropout2d[0][0]’]

activation_15 Activation None, 129, 1, 1 0 [’conv2d_15[0][0]’]

batch_normalization_15 BatchN None, 129, 1, 1 4 [’activation_15[0][0]’] ormalization

max_pooling2d_2 MaxPooling2D None, 129, 1, 1 0 [’batch_normalization_15[0][0]’]

spatial_dropout2d_1 SpatialDr None, 129, 1, 1 0 [’max_pooling2d_2[0][0]’] opout2D

flatten Flatten None, 129 0 [’spatial_dropout2d_1[0][0]’]

reshape Reshape None, 129, 1 0 [’flatten[0][0]’]

bidirectional Bidirectional None, 129, 258 102168 [’reshape[0][0]’]

batch_normalization_16 BatchN None, 129, 258 1032 [’bidirectional[0][0]’] ormalization

spatial_dropout1d SpatialDrop None, 129, 258 0 [’batch_normalization_16[0][0]’] out1D

bidirectional_1 Bidirectional None, 129, 258 301086 [’spatial_dropout1d[0][0]’]

batch_normalization_17 BatchN None, 129, 258 1032 [’bidirectional_1[0][0]’] ormalization

spatial_dropout1d_1 SpatialDr None, 129, 258 0 [’batch_normalization_17[0][0]’] opout1D

dense Dense None, 129, 129 33411 [’spatial_dropout1d_1[0][0]’]

activation_16 Activation None, 129, 129 0 [’dense[0][0]’]

batch_normalization_18 BatchN None, 129, 129 516 [’activation_16[0][0]’] ormalization

dense_1 Dense None, 129, 1 130 [’batch_normalization_18[0][0]’]

reshape_1 Reshape None, 129, 1, 1 0 [’dense_1[0][0]’]

==================================================================================================
Total params: 472,312
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Trainable params: 470,460
Non-trainable params: 1,852
__________________________________________________________________________________________________



Appendix C

DCN layer layout

Layer type Output Shape Param # Connected to
==================================================================================================
input_1 InputLayer [None, 129, 8, 1] 0 []

zero_padding2d ZeroPadding2D None, 137, 8, 1 0 [’input_1[0][0]’]

conv2d Conv2D None, 129, 1, 32 2304 [’zero_padding2d[0][0]’]

batch_normalization BatchNorm None, 129, 1, 32 128 [’conv2d[0][0]’] alization

activation Activation None, 129, 1, 32 0 [’batch_normalization[0][0]’]

conv2d_1 Conv2D None, 129, 1, 32 1024 [’activation[0][0]’]

spatial_dropout2d SpatialDrop None, 129, 1, 32 0 [’conv2d_1[0][0]’] out2D

concatenate Concatenate None, 129, 1, 64 0 [’conv2d[0][0]’,
’spatial_dropout2d[0][0]’]

batch_normalization_1 BatchNo None, 129, 1, 64 256 [’concatenate[0][0]’] rmalization

activation_1 Activation None, 129, 1, 64 0 [’batch_normalization_1[0][0]’]

conv2d_2 Conv2D None, 129, 1, 32 2048 [’activation_1[0][0]’]

spatial_dropout2d_1 SpatialDr None, 129, 1, 32 0 [’conv2d_2[0][0]’] opout2D

concatenate_1 Concatenate None, 129, 1, 96 0 [’conv2d[0][0]’,
’spatial_dropout2d[0][0]’,
’spatial_dropout2d_1[0][0]’]

batch_normalization_2 BatchNo None, 129, 1, 96 384 [’concatenate_1[0][0]’] rmalization

activation_2 Activation None, 129, 1, 96 0 [’batch_normalization_2[0][0]’]

conv2d_3 Conv2D None, 129, 1, 32 3072 [’activation_2[0][0]’]
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spatial_dropout2d_2 SpatialDr None, 129, 1, 32 0 [’conv2d_3[0][0]’] opout2D

batch_normalization_3 BatchNo None, 129, 1, 32 128 [’spatial_dropout2d_2[0][0]’] rmalization

activation_3 Activation None, 129, 1, 32 0 [’batch_normalization_3[0][0]’]

conv2d_4 Conv2D None, 129, 1, 32 1024 [’activation_3[0][0]’]

spatial_dropout2d_3 SpatialDr None, 129, 1, 32 0 [’conv2d_4[0][0]’] opout2D

concatenate_2 Concatenate None, 129, 1, 64 0 [’spatial_dropout2d_2[0][0]’,
’spatial_dropout2d_3[0][0]’]

batch_normalization_4 BatchNo None, 129, 1, 64 256 [’concatenate_2[0][0]’] rmalization

activation_4 Activation None, 129, 1, 64 0 [’batch_normalization_4[0][0]’]

conv2d_5 Conv2D None, 129, 1, 32 2048 [’activation_4[0][0]’]

spatial_dropout2d_4 SpatialDr None, 129, 1, 32 0 [’conv2d_5[0][0]’] opout2D

concatenate_3 Concatenate None, 129, 1, 96 0 [’spatial_dropout2d_2[0][0]’,
’spatial_dropout2d_3[0][0]’,
’spatial_dropout2d_4[0][0]’]

batch_normalization_5 BatchNo None, 129, 1, 96 384 [’concatenate_3[0][0]’] rmalization

activation_5 Activation None, 129, 1, 96 0 [’batch_normalization_5[0][0]’]

flatten Flatten None, 12384 0 [’activation_5[0][0]’]

dense Dense None, 129 1597665 [’flatten[0][0]’]

reshape Reshape None, 129, 1, 1 0 [’dense[0][0]’]

==================================================================================================
Total params: 1,610,721
Trainable params: 1,609,953
Non-trainable params: 768
__________________________________________________________________________________________________



Appendix D

DARCN layer layout

Layer type Output Shape Param # Connected to
==================================================================================================
input_1 InputLayer [None, 129, 8, 1] 0 []

conv2d_32 Conv2D None, 129, 8, 64 640 [’input_1[0][0]’]

activation_28 Activation None, 129, 8, 64 0 [’conv2d_32[0][0]’]

conv2d_33 Conv2D None, 129, 8, 64 36928 [’activation_28[0][0]’]

activation_29 Activation None, 129, 8, 64 0 [’conv2d_33[0][0]’]

conv2d_34 Conv2D None, 129, 8, 1 65 [’activation_29[0][0]’]

dense_1 Dense None, 129, 8, 129 258 [’conv2d_34[0][0]’]

dense Dense None, 129, 8, 129 258 [’conv2d_34[0][0]’]

activation_30 Activation None, 129, 8, 129 0 [’dense_1[0][0]’]

batch_normalization_24 BatchN None, 129, 8, 129 516 [’dense[0][0]’] ormalization

batch_normalization_25 BatchN None, 129, 8, 129 516 [’activation_30[0][0]’] ormalization

tf.math.multiply TFOpLambda None, 129, 8, 129 0 [’batch_normalization_24[0][0]’,
’batch_normalization_25[0][0]’]

dense_3 Dense None, 129, 8, 129 16770 [’tf.math.multiply[0][0]’]

dense_2 Dense None, 129, 8, 129 16770 [’tf.math.multiply[0][0]’]

activation_31 Activation None, 129, 8, 129 0 [’dense_3[0][0]’]

batch_normalization_26 BatchN None, 129, 8, 129 516 [’dense_2[0][0]’] ormalization

batch_normalization_27 BatchN None, 129, 8, 129 516 [’activation_31[0][0]’] ormalization
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tf.math.multiply_1 TFOpLambda None, 129, 8, 129 0 [’batch_normalization_26[0][0]’, ’batch_normalization_27[0][0]’]

dense_5 Dense None, 129, 8, 129 16770 [’tf.math.multiply_1[0][0]’]

dense_4 Dense None, 129, 8, 129 16770 [’tf.math.multiply_1[0][0]’]

activation_32 Activation None, 129, 8, 129 0 [’dense_5[0][0]’]

batch_normalization_28 BatchN None, 129, 8, 129 516 [’dense_4[0][0]’] ormalization

batch_normalization_29 BatchN None, 129, 8, 129 516 [’activation_32[0][0]’] ormalization

tf.__operators__.add TFOpLamb None, 129, 8, 129 0 [’tf.math.multiply[0][0]’, da ’tf.math.multiply_1[0][0]’]

tf.math.multiply_2 TFOpLambda None, 129, 8, 129 0 [’batch_normalization_28[0][0]’, ’batch_normalization_29[0][0]’]

tf.__operators__.add_1 TFOpLa None, 129, 8, 129 0 [’tf.__operators__.add[0][0]’, mbda ’tf.math.multiply_2[0][0]’]

conv2d_35 Conv2D None, 129, 8, 1 130 [’tf.__operators__.add_1[0][0]’]

conv2d_68 Conv2D None, 129, 8, 64 640 [’conv2d_35[0][0]’]

activation_61 Activation None, 129, 8, 64 0 [’conv2d_68[0][0]’]

conv2d_69 Conv2D None, 129, 8, 64 36928 [’activation_61[0][0]’]

activation_62 Activation None, 129, 8, 64 0 [’conv2d_69[0][0]’]

max_pooling2d_7 MaxPooling2D None, 64, 4, 64 0 [’activation_62[0][0]’]

flatten Flatten None, 16384 0 [’max_pooling2d_7[0][0]’]

dense_6 Dense None, 129 2113665 [’flatten[0][0]’]

reshape Reshape None, 129, 1, 1 0 [’dense_6[0][0]’]

==================================================================================================
Total params: 2,259,688
Trainable params: 2,258,140
Non-trainable params: 1,548
__________________________________________________________________________________________________



Appendix E

GRN layer layout

Layer type Output Shape Param # Connected to
==================================================================================================
input_1 InputLayer [None, 129, 8, 1] 0 []

zero_padding2d ZeroPadding2D None, 137, 8, 1 0 [’input_1[0][0]’]

spatial_dropout2d SpatialDrop None, 137, 8, 1 0 [’zero_padding2d[0][0]’] out2D

conv2d Conv2D None, 137, 8, 8 208 [’spatial_dropout2d[0][0]’]

activation Activation None, 137, 8, 8 0 [’conv2d[0][0]’]

batch_normalization BatchNorm None, 137, 8, 8 32 [’activation[0][0]’] alization

conv2d_1 Conv2D None, 137, 8, 8 1608 [’batch_normalization[0][0]’]

activation_1 Activation None, 137, 8, 8 0 [’conv2d_1[0][0]’]

batch_normalization_1 BatchNo None, 137, 8, 8 32 [’activation_1[0][0]’] rmalization

conv2d_2 Conv2D None, 137, 8, 16 3216 [’batch_normalization_1[0][0]’]

activation_2 Activation None, 137, 8, 16 0 [’conv2d_2[0][0]’]

batch_normalization_2 BatchNo None, 137, 8, 16 64 [’activation_2[0][0]’] rmalization

conv2d_3 Conv2D None, 137, 8, 16 6416 [’batch_normalization_2[0][0]’]

activation_3 Activation None, 137, 8, 16 0 [’conv2d_3[0][0]’]

batch_normalization_3 BatchNo None, 137, 8, 16 64 [’activation_3[0][0]’] rmalization

conv1d Conv1D None, 137, 8, 64 1088 [’batch_normalization_3[0][0]’]

activation_4 Activation None, 137, 8, 64 0 [’conv1d[0][0]’]
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batch_normalization_4 BatchNo None, 137, 8, 64 256 [’activation_4[0][0]’] rmalization

conv1d_4 Conv1D None, 137, 8, 64 4160 [’batch_normalization_4[0][0]’]

activation_8 Activation None, 137, 8, 64 0 [’conv1d_4[0][0]’]

batch_normalization_8 BatchNo None, 137, 8, 64 256 [’activation_8[0][0]’] rmalization

conv1d_8 Conv1D None, 137, 8, 64 4160 [’batch_normalization_8[0][0]’]

activation_12 Activation None, 137, 8, 64 0 [’conv1d_8[0][0]’]

batch_normalization_5 BatchNo None, 137, 8, 64 256 [’batch_normalization_4[0][0]’] rmalization

batch_normalization_6 BatchNo None, 137, 8, 64 256 [’batch_normalization_4[0][0]’] rmalization

batch_normalization_9 BatchNo None, 137, 8, 64 256 [’batch_normalization_8[0][0]’] rmalization

batch_normalization_10 BatchN None, 137, 8, 64 256 [’batch_normalization_8[0][0]’] ormalization

batch_normalization_12 BatchN None, 137, 8, 64 256 [’activation_12[0][0]’] ormalization

tf.math.multiply TFOpLambda None, 137, 8, 64 0 [’batch_normalization_5[0][0]’,
’batch_normalization_6[0][0]’]

tf.math.multiply_1 TFOpLambda None, 137, 8, 64 0 [’batch_normalization_9[0][0]’, ’batch_normalization_10[0][0]’]

batch_normalization_13 BatchN None, 137, 8, 64 256 [’batch_normalization_12[0][0]’] ormalization

batch_normalization_14 BatchN None, 137, 8, 64 256 [’batch_normalization_12[0][0]’] ormalization

conv1d_3 Conv1D None, 137, 8, 64 4160 [’tf.math.multiply[0][0]’]

conv1d_7 Conv1D None, 137, 8, 64 4160 [’tf.math.multiply_1[0][0]’]

tf.math.multiply_2 TFOpLambda None, 137, 8, 64 0 [’batch_normalization_13[0][0]’, ’batch_normalization_14[0][0]’]

activation_7 Activation None, 137, 8, 64 0 [’conv1d_3[0][0]’]

activation_11 Activation None, 137, 8, 64 0 [’conv1d_7[0][0]’]

conv1d_11 Conv1D None, 137, 8, 64 4160 [’tf.math.multiply_2[0][0]’]

batch_normalization_7 BatchNo None, 137, 8, 64 256 [’activation_7[0][0]’] rmalization

batch_normalization_11 BatchN None, 137, 8, 64 256 [’activation_11[0][0]’] ormalization

activation_15 Activation None, 137, 8, 64 0 [’conv1d_11[0][0]’]

tf.__operators__.add TFOpLamb None, 137, 8, 64 0 [’batch_normalization_7[0][0]’, da ’batch_normalization_11[0][0]’]

batch_normalization_15 BatchN None, 137, 8, 64 256 [’activation_15[0][0]’] ormalization

tf.__operators__.add_1 TFOpLa None, 137, 8, 64 0 [’tf.__operators__.add[0][0]’, mbda ’batch_normalization_15[0][0]’]
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conv1d_12 Conv1D None, 137, 8, 64 4160 [’tf.__operators__.add_1[0][0]’]

activation_16 Activation None, 137, 8, 64 0 [’conv1d_12[0][0]’]

batch_normalization_16 BatchN None, 137, 8, 64 256 [’activation_16[0][0]’] ormalization

conv1d_13 Conv1D None, 137, 8, 64 4160 [’batch_normalization_16[0][0]’]

activation_17 Activation None, 137, 8, 64 0 [’conv1d_13[0][0]’]

batch_normalization_17 BatchN None, 137, 8, 64 256 [’activation_17[0][0]’] ormalization

conv1d_14 Conv1D None, 137, 8, 32 2080 [’batch_normalization_17[0][0]’]

activation_18 Activation None, 137, 8, 32 0 [’conv1d_14[0][0]’]

batch_normalization_18 BatchN None, 137, 8, 32 128 [’activation_18[0][0]’] ormalization

flatten Flatten None, 35072 0 [’batch_normalization_18[0][0]’]

dense Dense None, 129 4524417 [’flatten[0][0]’]

reshape Reshape None, 129, 1, 1 0 [’dense[0][0]’]

==================================================================================================
Total params: 4,572,057
Trainable params: 4,570,105
Non-trainable params: 1,952
__________________________________________________________________________________________________
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