
N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Bjørn Ivar Nielsen

Continuous Authentication on an
SSH Connection

Hovedoppgave i MIS4900
Veileder: Patrick Bours
Juni 2022

H
ov

ed
op

pg
av

e

Bjørn Ivar Nielsen

Continuous Authentication on an SSH
Connection

Hovedoppgave i MIS4900
Veileder: Patrick Bours
Juni 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for datateknologi og informatikk

Abstract

With a shift to more remote-based work, that is only accelerated by the COVID19
pandemic, new ways of ensuring the identity of users of IT systems are important.
The classical approach of username and password for authentication is vulnerable
to stolen credentials. By stealing credentials of a user, an adversary can act on the
system as the rightful owner of the credentials. Continuous authentication can be
implemented to increase the chance of discovering an intruder, and secures the
system by revoking access to the account suspected of not being controlled by the
owner. The goal of this thesis has been to investigate whether analysis of keystroke
dynamics on keystroke data captured at the server side of an SSH session can be
used to identify the rightful owner of an account. A publicly available data set has
been used as the source of data for our testing, and eBPF has been used to extract
the decrypted SSH traffic on the server. The functionality of a commonly used
distance measure has been compared on both sides of an SSH session. Different
network stress has been applied to investigate the impact of network-introduced
interference. A stability of the functionality of keystroke dynamics has been ob-
served at the server side in normal network behavior, whereas a network under
stress shows signs of heavily impacting the functionality of keystroke dynamics
on the captured data of the SSH channel. With these observations we can state
that it is possible to conduct continuous authentication on data capered on the
server side of an SSH channel, but in unstable network condition the process will
experience degradation.

iii

Sammendrag

I nyere tid har mye arbeid beveget seg i retning av jobbing fra forskjellige lokas-
joner. Dette har blitt veldig forsterket av hjemmekontor under COVID19 pandemien.
I denne sammenheng er det viktig å utvikle hvordan brukere identifiseres mot IT
systemer. Den vanligste tilnærmingen for å identifisere en bruker ved passord og
brukernavn er åpen for utnytting enten ved at brukerinformasjon blir stjålet eller
ved at sesjonen blir kapret. En ondsinnet aktør vil i dette tilfelle bli behandlet som
en genuin bruker av systemet. Kontinuerlig autentisering kan i disse tilfellene bli
brukt til å fange opp at brukeren av systemet ikke samsvarer med eieren av kon-
toen og stenge brukeren ute av systemet. Målet med dette masterprosjektet har
vært å se på kontinuerlig autentisering av data fanget opp på serversiden av en
SSH forbindelse. eBPF har blitt brukt til å hente ut den dekrypterte SSH trafikken
fra en server. Forskjellig nettverksstress har blitt introdusert for å teste innvirknin-
gen av støy har på den kontinuerlige autentiseringen. En stabilitet i resultatet
av den kontinuerlige autentiseringen er blitt observert mellom server og klient
når nettverket ikke introduserer mye støy. Ved en høyere mengde støy introdusert
over nettverket har vi observert en tydelig forverring av funksjonaliteten til den
kontinuerlige autentiseringen. Med disse observasjoenen er det konkludert med
at kontinuerlig autentisering kan fungere på data fanget opp over en SSH session,
ved mye netverks støy vil nøyaktigheten av autentiseringen svekkes.

v

Acknowledgement

I would like to express my gratitude and appreciation to everyone that have helped
me in the process of this project. I will start of by thanking my colleagues at Tel-
enor, they have been extremely helpfully in the technical part of my work the time
saved trouble shooting scripts have been invaluable.

I would like to extend my sincere gratitude my supervisor Professor Patrick
Bours that have been a great source of both insight into the theoretical field, as
well as helped with keeping me on track when stress and doubt has crept in.

And lastly but not least I want to thank my fiancée Hedvig for all the support
she have given during this project. Both with input on the project as well as the
patience she has showed me during this stressful period.

vii

Contents

Abstract . iii
Sammendrag . v
Acknowledgement . vii
Contents . ix
Figures . xi
Tables . xiii
1 Introduction . 1

1.1 Topic covered by the project . 1
1.2 Keywords . 2
1.3 Problem description . 2
1.4 Justification, motivation and benefits 2
1.5 Research questions . 3
1.6 Planned contributions . 3

2 Related work . 5
2.1 Authentication . 5
2.2 Keystroke dynamics . 6

2.2.1 R and A-measures . 7
2.3 True continuous authentication . 9
2.4 SSH and TCP . 10
2.5 eBPF . 14

3 Data and design . 15
3.1 Lab setup . 15
3.2 Dataset . 16
3.3 Emulator . 17
3.4 Data capture . 17
3.5 Data processing . 18
3.6 A-measure and R-measure . 19
3.7 Limitations and adjustments . 19

4 Result and Discussion . 21
4.1 Baseline . 21

4.1.1 Baseline full sample . 22
4.1.2 Baseline block size 100 . 24
4.1.3 Baseline block size 250 . 24

4.2 Static Delay . 25

ix

x B.I.Nielsen: Continuous Authentication on an SSH Connection

4.2.1 Static delay full sample . 26
4.2.2 Static delay block size 100 . 26
4.2.3 Static delay block size 250 . 27

4.3 Jitter . 27
4.3.1 Jitter full sample . 28
4.3.2 Jitter block size 100 . 28
4.3.3 Jitter block size 250 . 29

4.4 Package loss . 29
4.4.1 Package loss full sample . 30
4.4.2 Package loss block size 100 . 31
4.4.3 Package loss block size 250 . 31

4.5 Package loss and jitter . 32
4.5.1 Package loss and jitter full sample 32
4.5.2 Package loss and jitter block size 100 33
4.5.3 Package loss and jitter block size 250 33

4.6 Sampling error . 34
4.7 General . 34
4.8 Discussion . 35

5 Conclusion and Future Work . 37
5.1 Conclusion . 37
5.2 Further work . 38

Bibliography . 39

Figures

2.1 Key stroke features: image taken from [6] 6
2.2 R-measure example: image taken from [8] 8
2.3 Characteristic TCP saw tooth pattern: image taken from [4] 13

3.1 Experiment setup . 16

xi

Tables

2.1 R-measure example: table taken from [8] 8
2.2 Example taken from [8] . 9
2.3 Digraph timing sending and receiving side 14

4.1 Timing statistics:Baseline . 22
4.2 EER of measures of Dataset . 23
4.3 EER Baseline . 23
4.4 EER of measures of Dataset block size 100 24
4.5 EER Baseline block size 100 . 24
4.6 EER of measures of Dataset block size 250 25
4.7 EER Baseline block size 250 . 25
4.8 Time change statistics: Static delay . 25
4.9 EER with introduced static delay . 26
4.10 EER with introduced static delay block size 100 26
4.11 EER with introduced static delay block size 250 27
4.12 Time change statistics with introduced jitter 27
4.13 EER with introduced jitter . 28
4.14 EER with introduced jitter block size 100 29
4.15 EER with introduced jitter block size 250 29
4.16 Time change statistics with introduced package loss 30
4.17 EER with introduced package loss . 30
4.18 EER with introduced package loss block size 100 31
4.19 EER with introduced package loss block size 250 31
4.20 Time change statistics with introduced package loss and jitter 32
4.21 EER with introduced package loss and jitter 32
4.22 EER with introduced package loss and jitter block size 100 33
4.23 EER with introduced package loss and jitter block size 250 34

xiii

Chapter 1

Introduction

1.1 Topic covered by the project

In today’s society, almost everyone is interacting with online accounts daily, that
being for online banking, work or e-commerce. To access these accounts, the sys-
tem needs a way to authenticate that the user is the one they claim to be. In
practise there are three ways a system can do this:

• Something you know: Password, PIN code.
• Something you have: Key card, authenticator.
• Something you are: Fingerprint, retina scan.

Due to the ease of implementation, passwords stay the most commonly used way
of conducting authentication. Most systems conduct authentication once at the
start of a session. This opens up for an unauthenticated user gaining access to an
authenticated account and gaining access to parts of the system they should not
have, also known as session hijacking. Continuous authentication is a technique
that aims to prevent this by continuously reconfirming the identification of the
user. This can be done in different ways. The project will focus on one of the
approaches in the form of monitoring the behavior of the user. In this project
the behavior that will be monitored is how the user types on a keyboard, also
known as keystroke dynamics. Keystroke dynamics is one of the most common
authentication mechanisms used in continuous authentication. Most research into
the concept is based on the behavioral data being captured locally on the users
machine. In this project however, an approach for capturing parts, or all, of the
data at the server side of an SSH communication will be explored. This introduces
some possible difficulties with the amount of data features being available for
the authentication process. Another problem is the fact that the captured data
is affected by noise from the network. At the same time, being able to conduct
continuous authentication on the server side provides some advantages, in the
form of not needing to manage the client, thereby making it more applicable in a
"bring your own device" environment.

1

2 B.I.Nielsen: Continuous Authentication on an SSH Connection

1.2 Keywords

Authentication, continuous authentication, periodic authentication, behavioral bio-
metrics, keystroke dynamics, eBPF, SSH

1.3 Problem description

Much of the work done by IT administrators today is performed remotely, a fact
that the pandemic has only proven more evident. Administrators often have ac-
cess to large parts of IT systems, for example for user creation and access control
settings. This makes an administrator account an attractive target for an adversary
that wants to gain unauthorized access to a system. Logins often allow authentic-
ation solely with the use of a username and password. This leads to an adversary
that has gotten access to an administrator account, by either stealing the cre-
dentials, or hijacking the session, being able to impersonate as the administrator
unhindered until the breach is discovered. With continuous authentication, the
goal is to discover if an account is being controlled by another person than the
owner of the account. When it is discovered, the session should be reset and the
locked out. This should preferably happen as soon as possible so the imposter gets
the least amount of time to perform unwanted activity. Most of the research into
continuous authentication using keystroke dynamics captures the data from the
client of the user. In this project, we want to focus on capturing behavioural data
on the server side of an SSH connection.

1.4 Justification, motivation and benefits

As we can see from the problem description, today’s solution of mainly static au-
thentication is not adapted to prevent an unauthorized user exploiting the sys-
tem with stolen credentials. By implementing continuous authentication, what
an unauthorized user is able to do on the system can be greatly reduced. Key-
stroke dynamics can be used to implement continuous authentication. With the
increased use of remote working, not every IT department will have the luxury of
managing all its end user clients, thus limiting the possibility of capturing client-
side keystroke dynamics. An implementation of keystroke dynamics that can be
conducted from data captured on the server side could reduce the consequence
of unauthorized access.

This project is written based on a suggested topic from Telenor. Telenor is a
telecommunication provider. They have proposed a topic looking into a use case
of eBPF to extract data from the server side of SSH communication. eBPF is a
technology that allows for running sandboxed programs in a privileged context,
such as the system kernel, and has its origins in Linux. In the project we will
cooperate with supervisors from Telenor.

Chapter 1: Introduction 3

1.5 Research questions

In this project the main research question we want to answer is the following:

Can continuous authentication be implemented using keystroke dynam-
ics based on data features extracted on the server side of an SSH connection?

Sub-questions we need to satisfy to answer our main question:

1. How can keystroke data features be extracted from a server? To conduct
keystroke dynamics from the server side data, a way of extracting it needs
to be decided.

2. Is it feasible to implement continuous authentication using the data features
captured on the server? In combination with the extraction of these features,
an investigation into the usability of the features that can be extracted is
needed.

3. How will network latency impact the accuracy of keystroke dynamics? A
continuous authentication solution based on server side data features needs
to work in variable network conditions.

1.6 Planned contributions

The goal of the master project will be to create a proof of concept of a continuous
authentication scheme based on the data that can be gathered on the server side
of a SSH connection with the use of eBPF. With this proof of concept, an evaluation
will be performed on the functionality of a continuous authentication system. The
evaluation will be based on the data features that are possible to extract on the
server side of a client server SSH connection.

Chapter 2

Related work

This chapter will look at the general concept that lays the groundwork that is
needed to answer our research questions. The chapter is going to look at some
general facts about the topics authentication, keystroke dynamics,eBPF, SSH
and TCP as well as presenting research relevant to this project.

2.1 Authentication

Authentication is the process of ensuring that the person or service requesting
access to a resource is in fact who they present them self to be. Traditional au-
thentication is done by one or more factors. The tree factors used in authentication
are something you know, something you have or something you are also known as
biometrics. To exemplify the three factors we can say that the most common form
of the first is a password or pass code, for the second a token, and for the third fin-
gerprint recognition. Multi factor authentication is the concept of requiring two or
more of these factors for authentication. An example of this can be two factor au-
thentication used for email login, where the user would need to authenticate with
both a password as well as a time-based PIN generated from a shared secret in a
mobile app. These methods can be categorized as a static authentication, where
the system conducts authentication of the user once and creates a session.

There are a couple of ways this can be insecure: session hijacking [1] where a
malicious actor uses an exploit to hijack an authenticated session, stolen creden-
tials, or an unlocked session being left physically unattended by the owner and
someone else accessing it.

Static authentication is not equipped to prevent these problems, and though
multi factor authentication can decrease the likelihood of stolen credentials, the
most secure systems might need additional authentication mechanisms. One op-
tion here is to re-authenticate the user either by periodical authentication or con-
tinuous authentication. In periodical authentication the system re-authenticates
the user after a certain interval. This can often be experienced in online bank-
ing where you need to authenticate before conducting a transaction. Continuous

5

6 B.I.Nielsen: Continuous Authentication on an SSH Connection

authentication is the process of continuously re-authenticating the user. Continu-
ous authentication schemes by nature need to be non-intrusive. This leads the
main focus of continuous authentication to be on behavioral biometrics. This pro-
ject will focus on the use of keystroke dynamics. We will now present keystroke
dynamics before we show how this is used in continuous authentication and peri-
odical authentication. In the literature periodical authentication is often described
as continuous authentication. In this project we will be referring to periodical au-
thentication as continuous authentication, and continuous authentication as true
continuous authentication.

2.2 Keystroke dynamics

The earliest mention of the concept of keystroke dynamics, as far as we are able to
tell, is in Gaines et al. [2] 1980 study. In this study the researchers examined the
probability distribution of the time between letters in specific digraphs (combina-
tion of two letters). By focusing on certain digraphs, they suggested a "signature"
that could be used to identify right-handed typists. Even though the study [2] is
more than 40 years old, the research into the field did not take off before the early
2000s as can be seen in Teh et al. [3] 2013 survey paper into keystroke dynamics.

Mondal [4] states that most keystroke dynamics systems are implemented
through software, even though some studies use specialized hardware on the cli-
ent to gather extra input in the form of pressure and or sound. In these software
solutions, raw data from the keyboard is recorded and can be used to extract
timing information used in the authentication process. Banerjee and Woodard [5]
define the input of the raw data as the keys pressed, consisting of the timing of the
key press and the key release. In figure 2.1 it can be seen how different features
can be extracted from this raw data in the form of latencies.

Figure 2.1: Key stroke features: image taken from [6]

Chapter 2: Related work 7

With our suggested feature extraction from an SSH channel, we will be lim-
ited in the raw features available to us, the reason for this will be described in
section 2.4. We will in particular be limited to the latency between different keys
presses or the PP-latency from figure 2.1. Due to this we will have to look into the
research that only rely on the latency timing. Gunetti, Picardi and Bergadano’s re-
search into keystroke analysis [7] and Gunetti and Picardi’s further research into
keystroke analyses of free text [8] focus on the timing between characters. They
describe the rudimentary timing measures in keystroke dynamics based on meas-
uring the time elapsed between when keys are pressed and the next key being
pressed. With this information, they were able to calculate the latency between
keystrokes. This again was used to calculate n-graphs of different lengths [8]. N-
graphs are representation of the latency between n key press from the first key
press to the n-th key press. A digraph would be the time elapsed between two
characters while a trigraph is the time elapsed between three characters. Gunetti
and Picardi investigated two different distance measures based on the sampled
n-graphs, R and A-measures. The R-measure is based on the relative speed of n-
graphs. This is based on the assumption that a tired typist will type everything
slower and the relative speed between the n-graphs will stay constant over time.
The A-measure is based on the absolute typing speed and builds on the assump-
tion that a user will have the same typing speed of n-graphs over time. A number
of studies build on Gunetti and Picardi’s A and R-measures [8], some of these
studies includes the following studies: [9–18]

2.2.1 R and A-measures

Gunetti and Picard proposed the R-measure in [8]. The R-measure can be de-
scribed as follows.

R-measure is a way of comparing two different arrays of keystroke data by
calculating a distance measure based on the disorder of the arrays. This is done
by taking the two samples E1 and E2 and comparing the matching n-graphs of
the two samples. Both arrays are ordered based on the timing of each n-graph.
Then every element in both array is given the value 1-N where N is the number of
matching n-graphs. With this ordered arrangement the distance of the positions of
S1 and S2 is calculated where one of the arrays act as a reference, and the other as
a probe. An example will illustrate this better. The example is taken from [8]. We
use two samples consisting of the timing data of typing the words authentication
and theoretical.

By selecting the matching n-graphs of the two samples we can calculate the
R-measure for digraph and trigraphs, written as R2(E1,E2) and R3(E1,E2). We can
also see that there is one shared 4-graph in the form of tica. Since there only is
one shared 4-graph this will not give any useful information. In figure 2.2 we can
see the corresponding digraphs and trigraphs and a visual representation of the
calculation for R2(E1,E2) and R3(E1,E2).

Adding up the numbers for R2(E1,E2) we get 8 and R3(E1,E2) gives 4. This

8 B.I.Nielsen: Continuous Authentication on an SSH Connection

Table 2.1: R-measure example: table taken from [8]

E1 Timing in ms E2 Timing in ms
a 0 t 0
u 180 h 150
t 440 e 340
h 670 o 550
e 890 r 670
n 1140 e 990
t 1260 t 1230
i 1480 i 1550
c 1630 c 1770
a 1910 a 1970
t 2010 l 2100
o 2600
n 2850

Figure 2.2: R-measure example: image taken from [8]

calculation is visualized in figure 2.2. To be able to compare R-measures with dif-
fering numbers of n-graphs, three values need to be normalized. This is done by
multiplying them with a normalization factor. The normalizing factor for the R-
measure is as follows: N2

2 (if N is even); and N2−1
2 (if N is odd). So in the example

the normalized disorder would be 8
52−1

2

or 8/12 = 0.666 and 4
32−1

2

or 4/4 = 1. This

example is mainly to show the procedure. A longer sample with more correspond-
ing n-graphs is needed to be able to infer anything about whether or not the same
user typed the sample and the probe.

A shortcoming of the R-measure becomes clear when calculations are per-
formed between two persons with similar relative typing speed, e.g. they type the
same n-graphs in the same relative order. They will have an R-measure of 0 even
though the two have drastically different actual typing speed. Therefore Gunetti
and Picardi [8] proposed the A-measure to be able to also differentiate based on
the absolute typing speed and not just the relative typing speed.

The A-measure [8] is based on the premise that a user will be able to have the
same or close to the same typing speed on the same n-graphs over time, and that
the typing speed of a user will be more similar than that of another individual.

Chapter 2: Related work 9

We can look at the similar example as before for the matching digraphs of our
two samples.

Table 2.2: Example taken from [8]

digraphs E1 E2 max/min Match t=1.25
ca 280 200 1.400 N
he 220 190 1.157 Y
ic 150 220 1.466 N
th 230 150 1.533 N
ti 265 320 1.207 Y

As we can see from table 2.2, the A-measure is concerned with the ratio
between the slowest and the fastest digraph. With a determined threshold we
decide if the digraph is close enough to be deemed a match. In this example the
threshold is set to 1.25, but this threshold can be adjusted to best fit a system.
The A-measure will be the number of mismatches divided by the total numbers of
shared digraphs. The A-measure can, like the R-measure, be done for n-graphs of
varying lengths. For both measures Gunetti and Picardi [8] proposed a weighting
that can be used to combine multiples of the same measure e.g. R2,3 or A2,3. Gun-
etti and Picardi’s[8] approach to profiles were done by having multiple samples
from each known user stored. When authenticating a user, the selected meas-
ure is calculated against each sample from the user to generate a mean distance
between the stored profile and the provided sample. A decision on whether or not
the typing was performed by the same user is done based on this distance.

2.3 True continuous authentication

Gunetti and Picardi [8] addressed authentication using R and A-measure in dif-
ferent combinations, but they did not look at it in a sense of true continuous au-
thentication but rather by using full samples to authenticate against known users.
Their approach can be described as continues authentication. In their test they
used the whole sample instead of splitting into segments. To be able to move from
this approach of comparing full samples, to an approach where every single key-
stroke is continuously used to conduct authentication an intermediate step need
to be introduced. It is not enough information in a single digraph to conclude that
a user is legitimate or not. One way to make a decision based on this incomplete
data is to use a trust model. Trust model in continuous authentication was first
introduced by Bours [19]. The trust model builds on the fact that a genuine user
will more often than not act like what the system expects of the genuine user while
an imposter will most of the time not act like the system expects from the user. A
trust model consists of two stages, first it need to determine if the current user’s
typing complies the template storing the users expected typing pattern. Secondly
the trust needs to be updated based on whether the user is deemed to comply

10 B.I.Nielsen: Continuous Authentication on an SSH Connection

or not. The trust score will vary based on the current typing of the active user.
When the trust score falls below a given threshold the session is locked out. This
increase and decrease in trust can be referred to as reward and penalty [19]. The
action of a genuine user will never be totally inline with the profile, and the ac-
tion of an imposter will at times match that of the genuine user. A well tuned trust
model should preferably never lock out the genuine user, and should lock out the
imposter as early as possible. This relies on a well set lockout threshold. It is also
important that there is an upper bound for the trust score. This is to prevent the
system from generating a very high trust score. Given a high trust score built up
by a legitimate user, an imposter could stay active for a long time before the trust
would decrease bellow the lockout threshold.

When it comes to the actual amount the score will be incremented and de-
creased, both [19] and [4] divide it into the two alternatives static and dynamic.
Static has a predefined set of values the score will increase or decrease by. This
means that there can be multiple different alternatives for reward and penalty
values, but they are predefined. With the dynamic approach the increments and
decrements are calculated based on the distance of the current action of the user
and what is stored in the profile of the user.

To be able to evaluate how well an authentication system operates, some com-
mon metrics are used. In static authentication systems the most common metrics
are False Match Rate (FMR), False Non-Match Rate (FNMR) and Equal Error Rate
(EER). The FMR and FNMR are the rate of an imposter being accepted as the
genuine user (FMR) and the chance the genuine user does not get recognised by
the system (FNMR). And EER is the intersection where FMR and FNMR are equal
[19]. For continuous and true continuous authentication we are more interested
in knowing how long a user will have access to the system before being locked
out. Bours [19] mentioned this metric, while Soumik and Bours [20] named it as
average number of impostor actions (ANIA) and also introduced average number
of genuine actions (ANGA). A system should have as low as possible ANIA and as
high as possible ANGA.

2.4 SSH and TCP

We are not going into the deep inner workings of SSH in this project. Since we are
going to look at keystroke dynamics over an SSH channel, we are going to present
how it works and which part of the protocol impacts the keystroke timing. SSH or
secure shell is defined in RFC 4253 [21] and is an application layer protocol that
enables encryption, cryptographic host authentication, and integrity protection.
In addition, higher level protocols can be utilised to achieve user authentication.
SSH supports multiple functions, but the main functionality of the protocol we are
going to utilize, is a secure way to communicate between a client and a server. The
data being transmitted over the SSH channel is represented by UTF-8 encoding
[22]. This will say that the key presses gets translated into UTF-8 on the sender
side before transmission. This strips some latency information from the typing

Chapter 2: Related work 11

in the form of the different latency that can be measured from keystrokes, as
presented in section 2.2 in the form of timing of keys being pressed and released.
What we are left with are a timing of the character being received. SSH running in
interactive mode has the effect of sending one package for every character [23],
this is needed to circumvent latency that TCP (Transmission Control Protocol)
introduce that would makes the typing jagged for the user, and is therfor needed
in an interactive application like a text shell. This is a prerequisite to be able to
conduct any form of keystroke dynamics on an online channel due to the fact that
TCP normally waits for multiple character and send them in a bulk of characters
which removes all information needed to conduct keystroke dynamics. Encrypted
data also lacks information for keystroke dynamics since the information of which
key being pressed is not available, there is statistic analysis that can be done on
the encrypted traffic, as seen in [23]. For our use however this information is
available after the decryption on the server side. The only latency left at this point
is a form of RR or PP latency, in the form of timings between each character.

This latency can be monitored at the receiving side of an SSH channel, due to
the transmission latency being variable, it will impact the timing of the received
data compared to data being emulated and sent. SSH is most often transmitted
over network using TCP. TCP was first defined in RFC 675 [24] i 1974 and in 1981
RFC 793 [25] defined TCP as a standalone protocol. TCP was designed as a reliable
way of communication over an unreliable network. The IP protocol transporting
TCP does not guarantee that each package reaches the destination, this is then
something that has to be ensured by overlaying protocols, this is some of what
TCP delivers. The internet is built up as a packet switched network structure using
TCP/IP. A packet switched network is a communication network where the data
is sent in small packages on a shared network, this differs from the earlier line
switched network, where signals was sent on a designated circuit. This opens up
for both more unforeseen variable delay, rearranging order of package and data
loss of small segments of the data.

To ensure that the package is not lost TCP is designed so that the receiver
needs to inform the sender that it has received the package. The protocol also
needs to support the cases where the receiver never receives the package. This is
done by a timeout mechanism, and acknowledgment. The timeout ensures that
if no acknowledgment is received by the timeout timer, the package is re sent.
To prevent problems from reordering during transmission sequence numbers are
used, the sequence numbers are used as part of the acknowledgment mechanism.

Since TCP is operating on a shared network, mechanisms to prevent overload-
ing the network is needed, to prevent degradation for both ones own communica-
tion as well as that of others. An important mechanism to ensure reliable transition
as well as decrease the data load is flow control, flow control is mentioned in RFC
793 [25] it lets the receiver adjust the amount of data the sender can transmit.
This is done to prevent the sender from overloading the receiver by sending more
data than the receiver can handle, which again would lead to the data needing
to be re transmitted and causing more load to the network. This is done by the

12 B.I.Nielsen: Continuous Authentication on an SSH Connection

receiver sending a "receiving window" which informs the sender of the sequence
number that the sender is permitted to send, before getting a new permission. This
will control that the sender never sends more data than the receiver can handle.
This window will continuously be adjusted based on the receivers ability to pro-
cess the incoming data. In practice both the client and server will act as both a
sender and a receiver in the TCP transmission.

Another mechanism that TCP implement is congestion control which was in-
troduced in RFC 896 [26]. Congestion control aims to prevent congestion in the
network by adjusting the data rate based on the feedback from the network. This
builds on the assumption that if a package is lost it is due to congestion in the net-
work, and the assumption that if there is no package loss, the network can handle
more data load. Congestion is based on a slow start, and a back off algorithm.
An initial low data amount is chosen as the most data that can be handled by the
network. When the sender receives acknowledgment an assumption that there is
more capacity to use is made, TCP will then gradually increase the data amount
until package loss is encountered. At that point, the sender will back off by de-
creasing the sender window and start increasing again. There exist different al-
gorithms for this, but as an example the congestion control algorithm TCP Tahoe,
will half the sending window and start the slow start again with a window size
of half the size it was at when experiencing data loss. This implementation of the
mechanism leads to a characteristic saw tooth pattern that can be seen in TCP
traffic an example of this pattern can be seen in figure 2.3. It can be noted that
this is mostly a problem when transferring large data loads where there is more
data to send.

Another mechanism described in RFC 896 [26] that somewhat impacts SSH
is the small-packet problem. The small-packet problem, consist of the amount of
overhead being sent when sending a small amount of data per package. In SSH
a single byte sent will be represented by a 36 bytes after encryption. The header
for each sent package is 40 bytes, leading to over 50% overhead. In the example
mentioned in the RFC telnet is used, which send 1 byte per byte, so a overhead
of over 97,5%. By sending multiple bytes in the same package the overhead is
reduced, this mechanism is implemented by an algorithm called Nagle’s algorithm.
Nagle’s algorithem holds of sending a TCP package based on some parameters to
decrease the amount of packages needed to be sent. This however impacts the
timing of the packages in real time application. The interactive SSH mode that we
mentioned in the introduction of this section disables Nagle’s algorithm, which
normally are a default part of TCP.

An example on how these mechanisms can impact our goal of monitoring
timing of an SSH channel on the server. In particular how package loss can wipe
out the timing information to be used in keystroke dynamics. We can visualise
the timing effect this can have on keystroke timings as following. Given sending
the string "Hello world" where each character is separated by 200ms. If the "o" in
"word" is lost and the timeout and re-transition takes 400 ms the following two
character will already have arrived before the "o" actually arrives. This will impact

Chapter 2: Related work 13

Figure 2.3: Characteristic TCP saw tooth pattern: image taken from [4]

the digraph "wo" "or" and "rl". The digraph timing on the sender and receiver can
be seen int table 2.3. Here we can see that the timing of the 3 digraphs are affected
by the loss of one package.

We have now presented aspects of TCP and SSH that can impact the latency
between characters from what is sent to that receiver. We touched in on how
a package switched network could lead to variable delay between package. This
variable network delay is also known as jitter [27]. Other than our example where
a packet loss is the cause of jitter, traffic where no package are lost can also ex-
perience jitter in the form of packages having slightly different travel time in the
network. Claypool and Tanner [27] present the impact jitter has on a real time
application in form of video, where QoS (Quality of service) is important, due
to the user impact severe jitter can cause, voice communication is another place
where jitter maters.

As mentioned in the introduction we want to explore the effect of capturing
keystroke timing data from a server the user is connected to. In this regards net-
work latency and jitter are important aspects. Network latency is the time it takes
to transfer the input sent from the user to the server. In a perfect situation, this
time should be the same for each package, but due to different factors in the net-
work this time varies from package to package. This variance between the latency
of single packages and the expected latency. This jitter introduces a difference in
the delay between actions being monitored on the server compared to the real
delay based on the users action. An example of how jitter can ruin other real time

14 B.I.Nielsen: Continuous Authentication on an SSH Connection

Sender
Digraph Latency
He 200
el 200
ll 200
lo 200
o 200
w 200
wo 200
or 200
rl 200
ld 200

(a) subtable no. 1

Reciver
Digraph Latency
He 200
el 200
ll 200
lo 200
o 200
w 200
wo 600
or 0
rl 0
ld 200

(b) subtable no. 2

Table 2.3: Digraph timing sending and receiving side

application is voice, where jitter can cause interference of the sound leading to an
unusable service. In our proposed setup the stable network delay should not pose
a problem, but the jitter can cause degradation to the keystroke dynamic. We want
to explore the impact of this depredation based on different network conditions.

2.5 eBPF

eBPF no longer is an acronym for anything, though it was once called the "ex-
tended Berkeley Packet Filter". eBPF is a further development based on McCann
and Jacobson 1992 paper into user-level packet capture [28]. McCann and Jac-
obs proposed BPF as an improvement on the original Unix packet filter. Packet
filter in this sense is a way for users to monitor or tap network traffic. Network
monitoring software needs to run in user space and due to this, every network
packet needs to be copied over the kernel/user-space protection boundary. The
improvements seen in BPF compared to earlier Unix packet filters comes in their
pseudo-machine. This pseudo-machine is a virtual machine running in the kernel.
The virtual machine is designed to be programmable and BPF programs can be
deployed into the kernel. With the filtering taking place inside the kernel, BPF re-
duces the overhead of copying all unwanted data from kernel to user space saving
on CPU usage. eBPF was released in 2014 in the Linux kernel 3.18 [29]. This ex-
tension to BPF improved on the efficiency of the BPF virtual machine, and opened
for a broader use to other kernel component than network cards.

Chapter 3

Data and design

This chapter will describe the dataset used in this project to conduct our testing
on continuous authentication as well as the lab setup and the data proseesing
conducted. We will start off by describing the lab setup and the script we used
to capture data, before presenting Clarkson’s [30] keystroke dataset that we have
used as the source for user data in this project. We will describe how we have
processed the data and how it has been analyzed in regards to applicability for
keystroke dynamics.

3.1 Lab setup

Figure 3.1 gives a high level overview of the lab setup. The lab setup consists
of two virtual machines, one representing the client where the participants key-
strokes get sent from, and one representing the server where the keystrokes get
captured. On the client where the participants keystrokes were emulated using
the Clarkson dataset [30]. An SSH channel was established between the client
and the server. When the SSH channel was established then the capture points
were initiated on the server in order to capture the keystroke data from the emu-
lation transmitted over the SSH channel. Afterwards, the emulator was initiated
to transmit the keystroke data from the client to the server over the SSH channel.
The data captured on the server as well as the emulation timing from the client
was used in our analysis, we have calculated the timing change introduced by the
emulator and the network, as well as analyzed the impact this changes had on the
A-measure and R-measure and A+R-measure when it comes to EER.

The two machines making up the lab setup were both Linux machines running
Debian 10. Both of the machines are virtual machines located on geographical
separated servers, with an expected network latency of around 7,5 ms each way.
The servers are connected with Ethernet and the connection between the two
locations is over dimensioned. This gave the setup a good baseline in order to
have a low amount of interference to impact the data during transmission.

15

16 B.I.Nielsen: Continuous Authentication on an SSH Connection

Figure 3.1: Experiment setup

3.2 Dataset

In this project we chose to use Clarkson’s keystroke dataset as our data source. The
alternative was to carry out our own data capture with live participants. We chose
to use Clarkson’s dataset due to the uncertainty and restrictions in the current
corona situation, along with the flexibility this gave us in the form of replaying .
The dataset was developed by Vural et al. [30] and published in 2014. The data-
set was developed with the goal of creating a shared dataset to be used in the
testing of keystroke authentication, due to the tendency in the literature of us-
ing proprietary private datasets. The Clarkson keystroke dataset consists of data
collected from 39 subjects during two sessions for each subject. 34 of the users
have conducted both sessions fully, while the remaining five participants did not
fully completed the tasks, or did not conduct the second session. However in the
version of the dataset we were supplied, there were 7 participant files missing
data, leaving us with 32 participants who had fully completed the tasks. The ses-
sions consisted of 72 tasks containing repeated password entering, free text and
transcription tasks. in the form of password writing, free text survey question an-
swering, and transcription of a speech by Steve Jobs. Both sessions consisted of
the same tasks. In this project the free text survey questions were the ones that
were used. The dataset consisted of one csv file per session, per participant. Each
csv file was represented by a line for each task. Each line consisted of four tab
separated values where the three first consisted of administrative information,
and the forth is the keystroke data from the task. An example of keystroke data:
"0:61:1312903092233:1242719,..." four values separated by colons representing:

1. Key down/ Key up
2. Virtual key code
3. Timestamp in ms
4. Elapsed time since last keystroke in ms

In the example 0 represent key press, 61 represent that the key pressed was
numpad-1 while the two last values is timing values. Each keystroke is separated
by a comma. The key code is presented in the format presented in this Microsoft
documentation [31].

Chapter 3: Data and design 17

3.3 Emulator

In order to be able to use this dataset in our project, the participants keystrokes
needed to be transmitted over an SSH channel to be recaptured, as described in
section 3.1. To do this, we developed a keystroke emulator that parsed the free
text tasks of the dataset to emulate the keystrokes as represented in the dataset.
The emulator was ran on all the files in the dataset, continuously parsing the
files, until all data was emulated. The action of the emulator was sent over the
SSH channel. The script was written in Python and used the library Pyautogui, a
python library that allows python to take control of keyboard and mouse input.
This script parsed through the dataset and used the key code as well as the elapsed
time since the last action to emulate the participants keystrokes. Some corrections
where needed in files which did not properly end, to be able to parse them. These
files ended in the middle of a keystroke and was corrected by removing everything
after the last properly formatted keystroke. With everything formatted we were
left with 32 participants with the desired data for our emulation. Some of the
characters in the dataset could not be sent directly through our emulator due to
them interfering with the sending terminal, eg. start opening a menu where the
typing would continue. To circumvent this, these keys were represented by other
characters that were possible to transmit. We timed the emulator to get a timing
when each keystroke was pressed. This timing was used to calculate the time
change introduced by the emulation script compared to the original dataset.

3.4 Data capture

In our project we were interested in looking at keystrokes on the receiving side
of an SSH channel. To monitor the keystrokes on both sides of the SSH chan-
nel, as mentioned we timed the emulator to represent the sender side, while
we on the server side used an eBPF script that monitored the Linux system call
"vfs_write" against the process running SSH shell. This gave a data feed consisting
of a timestamp in milliseconds and the character that was received, this together
with the timing of the emulator was used in our analyses. In most keystroke dy-
namics research monograph timings down up and down down can be used. Due to
SSH only transmitting UTF-8 encoded character, the timing of when the key was
pressed and released was not accessible to us. We were only left with one timing
for each character, represented by the time the character is written to the shell by
vfs_write. With the timestamp of each key, the latency between each succeeding
character was calculated to represent the digraph timing to be use in keystroke
dynamics. Another effect of monitoring the SSH channel compared to the meas-
urement used in most research was the ability to distinguish between keys. In
the Clarkson dataset, we could distinguish a 3 and a numpad-3 as two different
keys. On the other hand, in our data the capture UTF-8 character representation
can not distinguish which key that has been used to write a character that can be
written by multiple keys, eg numbers, symbols. There are also keys that can not

18 B.I.Nielsen: Continuous Authentication on an SSH Connection

be monitored in this data capture, for example shift, caps lock, and numb lock.
These keys affect the behavior of the keyboard, but for the SSH keylogging we
could not discern any of them. A capital letter "A" can be both an "A" written with
the shift key down, or with caps lock enabled. As mentioned in the previous sec-
tion, we chose to circumvent this by sending another key that could be discerned
and that was not used in the Clarkson dataset, eg. shift was emulated as "*". This
was done to simplify the problem due to the time aspect of this project. For future
work however it is advised to look further into the data capture to look at only
the actual received data.

The data gathered from the sender and receiver side gave us different data to
be used in our analysis. The sender side data gave us the actual timings of when
the keystrokes were made by the emulator, giving us a way of finding the delay
introduced by our emulator as compared with the dataset. On the receiving side
the described eBPF script was ran, this gave the timing of when the characters
were written to the SSH shell on the server. When comparing the data captured
on the sender side and the receiving side we were able to analyzed the impact of
network delay had on our data, and for comparison the functionality of keystroke
dynamics on both transmitted and transmitted data. From this data we were able
to calculate multiple forms of introduced delay. From the client side data we were
able to calculate the delay introduced by our emulator onto the data by comparing
it with the original timings in the dataset. The difference between the client and
server data gave a measure of the jitter introduced by the network channel.

3.5 Data processing

The captured data described in the last section consisted of a continuous data
stream of all the data sent by the emulating script and the data captured by our
eBPF script. The data contained all the free text tasks for each participant. To be
able to separate the data in our data capture, some administrative data strings
were sent together with the tasks by the emulator. This administrative data was
used to split the captured data into one file per task. This left us with 16 files for
each of the 32 participants that had completed all the free text tasks. The 16 files
consisted of 2 occurrences of the 8 tasks answered by the participants. From the
16 files we created 8 reference profiles for each participant. We did a 8-fold cross
validation of the A-measure and R-measure by taking the two sessions of one task
for testing and training the profiles with the 2x7 remaining tasks. Our reasoning
for keeping out data from two tasks and not just one task, was due to the similarity
expected between the same tasks from the different sessions, due to them being
the answer to the same question. This was done on both the sender side and the
receiving side data.

The same profile creation was also conducted on the timing extracted directly
from the Clarkson dataset. This was done to have a comparison to look for even-
tual degradation seen on the measures from the data to the recaptured data. For
our recaptured data, we have compared the data with profile generated from the

Chapter 3: Data and design 19

recaptured data as well as the profile generated timing from our emulation, we
will refer to this profiles as SP or the sender side profile and RP or the receiver side
profile. This left us with the three following comparison sets for each conducted
comparison.

1. Comparing emulated timing with SP .
2. Comparing the recaptured data against RP.
3. Comparing the recaptured data against SP.

We did this comparison against multiple different data captures to represent
different conditions both in the form of differing network conditions, and we used
different size of probes to look at the trends.

3.6 A-measure and R-measure

As mentioned in the last section, the A and R-measure was conducted as a 8 fold
cross validation. With each reference profile, the two tasks left out of the profile
creation were used as probes. For each reference profile we are left with 32x2
probes, where 31x2 of them gives us an imposter score and the reminding two
gives us a genuine score. This was repeated for all the 32 reference profiles leaving
us with 32x2x8 or 512 genuine scores and 31x2x32x8 or 15872 imposter scores.
We used the A-measure,R-measure and combinations to calculate the "Equal Er-
ror Rate"(EER). We mainly focused on the digraph, and calculated A2, R2 and
A2+R2 for each of the comparisons mentioned in the last session. The calcula-
tions were conducted by python scripts that calculated the values based on the
specified dataset. The results are presented in Chapter 4. We have conducted test-
ing with different probe sizes. One with the probe being represented with the
entire tasks, here the data amount can vary from approximately 500 characters
to over 1300. We have also conducted a test with the probe being a limited block
size, we have here looked at 100 and 250 digraphs. The first test consist with what
the test done by Gunetti and Picard [8] where the entire data sample was used as
the probe. While the latter test is more in accord with the literature on continues
authentication.

3.7 Limitations and adjustments

Compared to a real world implementation of a server side keystroke dynamic sys-
tem, we have added some limitation to better be able to directly compare with a
traditional keystroke dynamics system. As mentioned earlier in this chapter, due
to the scope of the dataset containing an array of keys that are not directly trans-
mitted from the sending side to the receiving side over the SSH channel, some
characters were sent as alternative characters by our emulator. Another adjust-
ment was that some keystrokes in the dataset had a delay of an unnaturally long
time, this will be when the participant was waiting or thinking which deviated

20 B.I.Nielsen: Continuous Authentication on an SSH Connection

from the normal typing rhythm. We chose to exclude every digraph with a latency
over 500 ms and under 30 ms, the same as [30] used in their test of the dataset
against A-measure and R-measure, in our emulator to reduce the time of the test,
keystrokes with a delay over 600 milliseconds were reduced to 600 milliseconds.
This was done both in the profile creation, and from the probe.

During the process of this project some adjustments have been conducted due
to narrowing in what we are looking for, due to the result giving us more insight
into or data. Some revision of our test end emulation have been conducted. We
have chosen to not describe the full process done with both the original assump-
tion, and with all the iterative changes we have done due to discoveries made
during the process. So the content presented in this chapter describes the final
approach of our data and design.

Chapter 4

Result and Discussion

In this chapter we will present the results we have gotten from our testing presen-
ted in chapter 3. We will present the test results one by one for each test scenario.
The impact of the results when it comes to the functionality and applicability of
continuous authentication will be discussed. We have conducted tests with dif-
ferent parameters. The results for these tests will be presented in their own sec-
tion. Each section in this chapter consists of an introduction where we present
the timing change experienced by the data during emulation and transmission.
Each section also consists of two subsections, one for the results based on the full
samples, and one looking at different block sizes. We have conducted tests to look
at the impact of delay, jitter and data loss has on the functionality of R-measure,
R-measure and A+R-measure. The following test cases have been conducted:

1. Baseline
2. Static delay
3. Jitter
4. Package loss
5. Jitter and package loss

4.1 Baseline

The first test is a baseline to see how the network behave with no added limitation
or stress and how this impacts our measurements. To start of we will present
some statistics on the timing changes we see from the original dataset during the
emulation, as well as the network delay. We will present them in a split table
consisting of: Emulation time changes representing the time difference between
introduced by the emulation, and Network time changes representing the time
changes introduced by the delay in the network.

With our limitation on which tasks to use, and which participants to include,
as well as administrative data added, the baseline dataset consisted of 433486
digraph values. Both sides of the table consist of 3 columns each: latency change,
number and percentage. The delay change is presented as a range, 0 is all the

21

22 B.I.Nielsen: Continuous Authentication on an SSH Connection

unchanged delays, 1 representing every digraph where there is one millisecond
change, 2-5 for the digraphs where there are 2-5 millisecond changes and 6-10
represent the ones changing 6-10 millisecond and the>10 represent the once with
more than 10 millisecond changes. The number column is the number of keystroke
in the given range. While percentage is the percentage of all the characters in the
range. The latency changes represent the absolute value of the change, in the
emulation there are strictly speaking only positive changes, while the network
time changes consist of both positive and negative time changes.

Emulator time change
Delay change Number Percentage
0 5504 1,27%
1 257862 59,49%
2-5 168290 38,82%
6-10 1724 0.40%
>10 106 0.02%

Network time change
Delay change Number Percentage
0 270236 62,34%
1 150883 33,81%
2-5 11945 3,75%
6-10 359 0.09%
>10 63 0.01%

Table 4.1: Timing statistics:Baseline

From table 4.1 we can see that there is some time change introduced into our
data from the emulation, for our testing this is seen as an acceptable delay, seeing
that over 99,5% have a less than 6 ms change from the dataset and 99.98% with
less than 11 ms. It is expected to see some delay introduced due to the processing
time of the emulation script. In total the introduced delay from our emulation
causes a 0.75% increase in the total time of the dataset. This introduces some
change in how the A and R-measure behave with the data. Therefor we will use
the timing after emulation for all our comparison. We also see that there is some
network introduced time changes. In the baseline test this is at a very small scale,
where 99,9% of the data have less than a 6 millisecond change, and over half the
data experience no changes at all.

During our test period we have also looked at the capacity of the network
connection used between the sender and receiver. The data load of the network
link newer exceed 20% of the capacity of the network. We noticed some outages
for the connection, but they were all during planed downtime’s, no testing were
conducted during these network outages.

4.1.1 Baseline full sample

Now we will present the tables representing the EER and standard deviation for
the A-measure, R-measure and the A+R-measure when comparing the full sample
with the different profiles. In the baseline test we have also presented the EER for
the dataset. The EER is calculated for each of the eight profiles used in our eight
fold cross validation, the EER is the mean of the false non match rate (FNMR)
and the false match rate (FMR) at the threshold they are closest. The presented

Chapter 4: Result and Discussion 23

EER is the mean of these 8 values. While the standard deviation is the standard
deviation of the 8 values.

Dataset
A-measure R-measure A+R-measure

EER 6.4% 3.9% 3.8%
Std Dev 1.17 0.83 0.78

Table 4.2: EER of measures of Dataset

From table 4.2 we can see the EER expected from the original data we have
used. By comparing these EER with what we see from our sending side data in
table 4.3, we can ensure that there are no unexpected changes occurring in the
emulation.

A-measure R-measure A+R-measure
Sending EER 6.4% 4.2% 3.5%

Std dev 1.14 0.98 0.67

Receiving RP EER 6.7% 4.1% 3.7 %
Std dev 1.04 0.98 0.70

Receiving SP EER 6.7% 4.1% 3.7%
Std dev 1.05 0.98 0.75

Table 4.3: EER Baseline

When comparing the EER of the dataset from table 4.2 and the sending data
from table 4.3 we can see there are some small changes of 0.3% to the EER for
the R and the A+R-measures. Due to the time changes intruded by the emulation
some changes are to be expected. From the standard deviation seen in the original
dataset in table 4.2 the change is within a scale where the changes seen in our
sending side data is well within half a standard deviation.

By comparing the receiving RP and receiving SP section of 4.3 with the send-
ing section we can see that the small amount of network introduced delay from
the network in this test, results in changes to the EER on the receiver side data
as compared to the sending side. Also here the changes fall with in the observed
variance of the data. When it comes to comparison with the different profiles this
gives the same result with some minuscule changes in the standard deviation.
From the data we have seen from this initial test it can seem like a low latency
stable network connection does not greatly impact the functionality of the meas-
ures we are testing, and that keystroke dynamics can be conducted using network
captured data, given the right conditions.

24 B.I.Nielsen: Continuous Authentication on an SSH Connection

4.1.2 Baseline block size 100

Now we will present the tables representing the EER and standard deviation for
the A-measure, R-measure and the A+R-measure when using a block sizes of 100
with the different profiles. In the baseline test we have also presented the EER for
the dataset. A note to make here is that the EER is generally higher in this and
the following subsection focusing on bloc sizes. This is due to the decreased data
amount in the probes, the EER is expected to increase when reducing the block
size. As mentioned earlier, we are not focusing on achieving the lowest EER, we
are interested in the trends seen in the data when it comes to the impact the
network has on the EER.

Dataset block size 100
A-measure R-measure A+R-measure

EER 18.4% 16.1% 12.5%
Std Dev 1.62 1.82 1.72

Table 4.4: EER of measures of Dataset block size 100

A-measure R-measure A+R-measure
Sending EER 18.4% 16.0% 12.4%

Std dev 1.91 1.69 1.87

Receiving RP EER 18.0% 16.3% 12.5%
Std dev 1.93 1.88 1.93

Receiving SP EER 18.1% 16.3% 12.5%
Std dev 1.93 1.88 1.93

Table 4.5: EER Baseline block size 100

We can see that the sending side EER in table 4.5 is similar to what is seen in
the corresponding dataset table 4.4. We see similar result in table 4.5as we saw
in the test with the full text sample, where there are some small changes between
the sending side and the receiving side EER of up to 0.4%, at this scale of the
changes it seems like it is stable with no additional network stress.

4.1.3 Baseline block size 250

Now we will present the tables representing the EER and standard deviation for
the A-measure, R-measure and the A+R-measure when using a block sizes of 250
with the different profiles. In the baseline test we have also presented the EER for
the dataset.

We can see that the sending side EER in table 4.7 is similar to what is seen in
the corresponding dataset table 4.6. Also at this block sizes we see similar result
in table 4.7 as we saw in the test with the full text sample and with the block size

Chapter 4: Result and Discussion 25

Dataset block size 250
A-measure R-measure A+R-measure

EER 11.6% 8.8% 7.7%
Std Dev 1.79 1.66 0.96

Table 4.6: EER of measures of Dataset block size 250

A-measure R-measure A+R-measure
Sending EER 11.8% 8.3% 7.7%

Std dev 1.89 1.60 1.46

Receiving RP EER 11.7% 8.7% 7.5%
Std dev 1.96 1.49 1.25

Receiving SP EER 11.7% 8.8% 7.5%
Std dev 1.94 1.49 1.25

Table 4.7: EER Baseline block size 250

of 100, where there are some small changes between the sending side and the
receiving side EER of up to 0.4%.

4.2 Static Delay

To investigate that a static delay do not impact the result of the EER any more
than the baseline test, we have conducted a test where we have introduced a
static delay to all network traffic. This is done by adding a 150 millisecond delay
on all outgoing network traffic from the sender this is approximately a 20 times
longer delay than the data experience in the network. From table 4.8 we can
see that the emulation delay is consistent with what we saw from our baseline
test, with approximately 99,9% of the data having less than 6ms delay and only
some minor changes as compared to the baseline test. The same holds true for the
network time changes as can be seen from table 4.8.

Emulator time change
Delay change Number Percentage
0 5882 1,36%
1 256883 60,62%
2-5 168527 99,49%
6-10 2059 99,99%
>10 135 100%

Network time change
Delay change Number Percentage
0 255640 58,97%
1 159092 95,67%
2-5 18266 99,89%
6-10 451 99,99%
>10 36 100%

Table 4.8: Time change statistics: Static delay

26 B.I.Nielsen: Continuous Authentication on an SSH Connection

4.2.1 Static delay full sample

In this subsection we present the EER from the full sample test with introduced
150 ms static delay.

A-measure R-measure A+R-measure
Sending EER 6.5% 4.1% 3.7%

Std dev 1.09 0.98 0.75

Receiving RP EER 6.6% 4.0% 3.8%
Std dev 1.25 0.81 0.81

Receiving SP EER 6.5% 4.0% 3.8%
Std dev 1.14 0.80 0.78

Table 4.9: EER with introduced static delay

From the EER in this test as can be seen in table 4.9, we can see a small
differences of 0.1% consistent with what we saw from the baseline test. This is in
line with what we expect from the theory, where a flat delay should not impact the
EER in any way. In a real world network a longer delay that comes with a larger
distance from the receiver, would naturally introduce some more jitter, but from
Wondernetworks ping statistics [32] we can see that it is not directly correlated
to distance, and seem to be more tied to the stability of the network between the
nodes. With a longer distance between the sender and the receiver, it is a larger
probability of encountering a link experiencing congestion or other problems that
might effect the inter package timing.

4.2.2 Static delay block size 100

In this subsection we present the EER from the block size test of 100 characters
with 150 ms static delay introduced.

A-measure R-measure A+R-measure
Sending EER 18.6% 15.9% 12.3%

Std dev 1.09 1.88 2.03

Receiving RP EER 18.0% 16.4% 12.5%
Std dev 1.31 1.91 2.05

Receiving SP EER 18.1% 16.2% 12.4%
Std dev 1.08 2.11 1.90

Table 4.10: EER with introduced static delay block size 100

In table 4.10 we can see a similar EER change as we saw in the baseline test
instead of an up to 0.4% change as seen in the baseline test we see an up to 0.6%
change in the EER for the 100 character test but still well within the standard
deviation of the sending side data.

Chapter 4: Result and Discussion 27

4.2.3 Static delay block size 250

In this subsection we present the EER from the block size test of 250 characters
with 150 ms static delay introduced.

A-measure R-measure A+R-measure
Sending EER 11.6% 8.8% 7.7%

Std dev 1.65 1.80 1.09

Receiving RP EER 11.8% 8.7% 7.3%
Std dev 1.83 1.72 0.99

Receiving SP EER 11.9% 8.5% 7.3%
Std dev 1.87 1.74 1.01

Table 4.11: EER with introduced static delay block size 250

In table 4.10 we can see a similar EER change as we saw in the baseline test
with some small differences from the sender side to the receiving side, but no
changes to any large extent.

4.3 Jitter

We have conducted testing where we have introduced jitter. This test was con-
ducted to view the effect of jitter on the A, R and A+R-measure. In the following
test we have introduced jitter by introduced a 25 millisecond delay, with a +-25
millisecond variance. This gives the chance of 50 millisecond jitter if one package
have the maximal delay, followed by one with the minimum delay. The chosen
jitter is based on the maximum jitter Cisco deems voice and video should be able
to handle [33], to see if continuous authentication using A and R-measures can
handle the same extreme. This gave the timing statistics that can be seen in table
4.20.

Emulator time change
Delay change Number Percentage
0 6213 1,43%
1 263528 62,22%
2-5 161868 99,56%
6-10 1765 99,99%
>10 112 100%

Network time change
Delay change Number Percentage
0 8704 2,01%
1 17510 6,05%
2-5 64563 20,94%
6-10 72753 37,73%
11-25 166185 76,06%
26-50 103750 99,99%
>50 20 100%

Table 4.12: Time change statistics with introduced jitter

We can see from table 4.20 that the emulation timing is approximately the
same as for the earlier tests, and that as we expect the changes are due to the

28 B.I.Nielsen: Continuous Authentication on an SSH Connection

jitter. From the timing changes introduced by the network as seen in table 4.20
we can see that there is a large shift from what we saw in the baseline and the
static delay test. In the baseline mostly all the packages were within 0, 1 or 5 ms
bracket amounting to 99,9% as can be seen in table 4.1 while in this test we only
got one fifth of the data falling within this range. Where as two thirds of the data
falls within the 10, 25 or 50 ms brackets in this test. As to how this impacts the
A and R-measures we can see the result from this in the tables presented in the
next two subsections. We have also added the >50ms bracket to show that only
20 characters are effected more than the maximum introduced jitter.

4.3.1 Jitter full sample

In this subsection we present the EER from the full sample test with 50 ms jitter
introduced.

A-measure R-measure A+R-measure
Sending EER 6.5% 4.1% 3.7%

Std dev 1.13 0.98 0.73

Receiving RP EER 7.7% 5.1% 4.3%
Std dev 1.22 1.06 0.67

Receiving SP EER 7.3% 5.0% 3.9%
Std dev 0.95 0.57 0.81

Table 4.13: EER with introduced jitter

The distance measurements on the sending side in this test as seen in table
4.13 give us the same result as we saw in the baseline test falling in line with the
values seen in the EER against the dataset. When we look at the receiving side data
however, we start to see some degradation to the EER. For the A-measurement
we see between 0.8-1.3% increase, depending on the profile we are comparing
with, the change to the R-measure is between 0.9-1.0% while the A+R-measure
experience a 0.2-0.6% change. There are some signs that the degradation is some-
what reduced when comparing against the SP, compared with the RP. Especially
the A+R-measure only experience a 0.2% increase representing under 1/3 of a
standard deviation from the mean as seen in the sender in the sender side data.

4.3.2 Jitter block size 100

In this subsection we present the EER from the 100 character block size test with
50 ms jitter introduced.

In table 4.14 the sending data is consistent with what we have seen in the
earlier tests. In the other sections of the table however we see degradation in the
form of increased EER. In table 4.14 we see the A-measure increasing 2% from
sending side to receiving side when compared with both profiles, the R-measure
see a between 1.6-1.9% increase while the A+R-measure experience a 2.2-2.8%

Chapter 4: Result and Discussion 29

A-measure R-measure A+R-measure
Sending EER 18.3% 16.1% 12.4%

Std dev 1.21 1.66 1.78

Receiving RP EER 20.3% 18.0% 14.6%
Std dev 1.60 2.18 2.09

Receiving SP EER 20.3% 17.7% 15.2%
Std dev 1.91 1.37 2.20

Table 4.14: EER with introduced jitter block size 100

increase. When looking at this increases with regards to the standard deviation
of the sending section the the A-measure and the A+R-measure SP is the most
impacted bought having an EER change of more than 1.6 standard deviation from
the mean.

4.3.3 Jitter block size 250

In this subsection we present the EER from the 250 character block size test with
50 ms jitter introduced.

A-measure R-measure A+R-measure
Sending EER 11.4% 8.8% 7.4%

Std dev 2.13 1.55 1.24

Receiving RP EER 15.7% 11.3% 9.8%
Std dev 1.58 1.58 1.54

Receiving SP EER 15.1% 11.3% 9.8%
Std dev 2.18 2.00 1.58

Table 4.15: EER with introduced jitter block size 250

In table 4.15 the sending data is consistent with what we have seen in the
earlier tests. When looking at the 250 character test in table 4.15 we also see large
changes in the EER from the sending side to the receiving side. For the A-measure
the increase is 3.7-4.3% the R-measure increase 2.5% while the A+R-measure
increase 2.4%. The largest increases in the 250 character test is more significant
at around 2 standard deviations from what is seen in the sending side.

4.4 Package loss

Another aspect Cisco describes that impacts QoS applications are package loss
[33], they mention a 1% package loss as the limit. We have preformed one test to
see the impact 1% package loss got on our measures.

In table 4.16 we see a similar distribution for the emulation timer as that we
have experienced from our other tests. On the network timing we can however see

30 B.I.Nielsen: Continuous Authentication on an SSH Connection

Emulator time change
Delay change Number Percentage
0 5883 1,36%
1 259735 61,28%
2-5 165842 99,98%
6-10 1922 99,99%
>10 104 100%

Network time change
Delay change Number Percentage
0 262445 60,54%
1 149550 95,04%
2-5 12207 97,86%
6-10 345 97,94%
>10 8938 100%

Table 4.16: Time change statistics with introduced package loss

that approximately 2% of the data is at over 10 ms changed delay. This correspond
with what we visualized in our example in section 2.4 in table 2.3 given that 1%
of the packages is lost and only one character gets sent before the re-transition.
Th. We observed a pattern in the data that corresponds with this where there are
groups of two characters with high timing change. By looking at these characters
we have observed that the first character have an added delay , due to being
lost and having to wait for the time out, while the second have gotten received
during this wait time and have therefor 0 delay to the first character. Since we
are looking at the timing between characters, the difference of the timing of the
second character in the group is (zero-original latency).

4.4.1 Package loss full sample

In this subsection we present the EER from the full sample test with a 1% package
loss.

A-measure R-measure A+R-measure
Sending EER 6.8% 4.2% 3.8%

Std dev 1.10 0.95 0.73

Receiving RP EER 7.1% 4.1% 4.1%
Std dev 1.48 0.73 0.79

Receiving SP EER 6.5% 3.9% 3.9%
Std dev 1.13 0.71 0.69

Table 4.17: EER with introduced package loss

From the EER in table 4.17 we see no irregularities in the EER on the sending
side. We can see that this seem to not impact the EER any more than what we
saw in the baseline and the static delay tests. This might be due to the fact that
half of the digraphs experiencing high change as seen in the timing table, will
be excluded as an outlier due to being less than 30 ms. This might minimize the
impact of data loss on the result. This might also explain why we see a degradation
when compared the received data against the receiving side profile, that we do
not see when comparing the receiving data against the sender side profile. In the

Chapter 4: Result and Discussion 31

RP comparison, the data with altered timing impacts the profiles as well as the
comparison, while in the SP comparison the impacted data will only alter the
comparison and not affect the profile.

4.4.2 Package loss block size 100

In this subsection we present the EER from the 100 character block size test with
a 1% package loss.

A-measure R-measure A+R-measure
Sending EER 18.4% 16.0% 12.6%

Std dev 1.31 1.69 1.53

Receiving RP EER 19.1% 16.5% 13.5%
Std dev 2.29 1.76 1.33

Receiving SP EER 18.5% 16.8% 13.2%
Std dev 1.67 1.76 1.67

Table 4.18: EER with introduced package loss block size 100

Table 4.18 seem to have a sending side EER consistent with what we are ex-
pecting from our previous tests. The most visible pattern in the data from this
test is an increase in the EER for the A-mesure on the receiving side compared
to the RP is higher than that of the EER when comparing with the SP. In general
the values on the receiving side seems to be higher than what we saw in both
the baseline and the static delay data, this is a change that was not that visible in
4.4.1, this might be due to the fact that there is less data left to average out the
error in each probe.

4.4.3 Package loss block size 250

In this subsection we present the EER from the 250 character block size test with
a 1% package loss.

A-measure R-measure A+R-measure
Sending EER 11.6% 8.6% 7.5%

Std dev 1.99 1.53 1.26

Receiving RP EER 13.6% 9.1% 8.1%
Std dev 2.15 1.29 1.14

Receiving SP EER 12.2% 9.2% 8.2%
Std dev 2.00 1.41 1.00

Table 4.19: EER with introduced package loss block size 250

Table 4.19 seem to have a sending side EER consistent with what we are ex-
pecting from our previous tests. We see a similar pattern here as we diid in our

32 B.I.Nielsen: Continuous Authentication on an SSH Connection

100 character sample, where A-measure on the receiving side compared with RP,
an a general increase across the board.

4.5 Package loss and jitter

The last test we have conducted is one where we have introduced both jitter and
package loss, we have used the same amount of package loss and jitter as we have
done in the earlier tests. From the timing statistics of the test we can see that the
timing change from the network looks like a combination of the one we saw in
our package loss test and jitter, where most of the data is shifted from >10 ms to
between 10-50 ms, the difference from the jitter only test is that we hare see 2%
of the data with a >50 ms delay change.

Emulator time change
Delay change Number Percentage
0 6619 1,53%
1 261461 61,84%
2-5 163449 99,55%
6-10 1848 99,98%
>10 109 100%

Network time change
Delay change Number Percentage
0 8589 1,98%
1 16559 5,80%
2-5 62797 20,29%
6-10 71116 36,69%
11-25 163632 74,44%
26-50 102156 98,01%
>50 8636 100%

Table 4.20: Time change statistics with introduced package loss and jitter

4.5.1 Package loss and jitter full sample

In this subsection we present the EER from the full sample test with both 50 mil-
lisecond jitter and a 1% package loss.

A-measure R-measure A+R-measure
Sending EER 6.8% 4.1% 3.6%

Std dev 1.17 0.75 0.93

Receiving RP EER 8.9% 5.8% 5.2%
Std dev 0.71 1.04 1.23

Receiving SP EER 7.5% 5.6% 4.5%
Std dev 1.39 1.02 1.09

Table 4.21: EER with introduced package loss and jitter

This test is where we have introduced most interference, and from the results
we can see that it also has the highest impact on our EER. In table ?? we can see an
almost two standard deviation change in all the measures on the receiving side

Chapter 4: Result and Discussion 33

from what is seen on the sender side. The R-measure experiencing the highest
change in the form of 2.26 standard deviations from the mean on the sender
side to the receiver. When comparing the two different profiles on the receiving
data, we can see the same pattern that we have earlier observed. Where the EER
when compared with the SP is noticeably lower than what we saw from the RP.
The change seems to be largest when looking at the A-measure and the A + R-
measure, while the R-measure is pretty stable. We can see a similar pattern for the
EER in section 4.3. Signs of the pattern can also be seen in section 4.4, in in this
section it is however somewhat more uncertain, since we see a distance between
receiver side RP and SP EER comparison, however they are approximately the
same distance from the sender side EER.

4.5.2 Package loss and jitter block size 100

In this subsection we present the EER from the 100 character block size test with
both 50 millisecond jitter and a 1% package loss.

A-measure R-measure A+R-measure
Sending EER 18.2% 16.0% 12.9%

Std dev 1.29 1.78 1.96

Receiving RP EER 22.8% 18.9% 16.0%
Std dev 2.8 2.7 0.9

Receiving SP EER 20.9% 18.6% 15.4%
Std dev 2.26 2.71 1.47

Table 4.22: EER with introduced package loss and jitter block size 100

In this test we can see that there is a high impact on the EER across all receiving
side measures as seen in table 4.5. A pattern that seem to emerge here that was
not as distinct in 4.5.1 is that the EER is somewhat lower when using the SP as
compared to the RP. As suggested in subsection 4.4.1 this could be the fact that
when comparing with RP bought the profile and the probe is impacted, will for
the SP only the probe is impacted.

4.5.3 Package loss and jitter block size 250

In this subsection we present the EER from the 250 character block size test with
both 50 millisecond jitter and a 1% package loss.

In this test we can see that there is a high impact on the EER across all receiving
side measures as seen in table 4.7. The same pattern is visible here as saw in the
100 character test data, where the EER is generally lower in the SP comparison
then the RP.

34 B.I.Nielsen: Continuous Authentication on an SSH Connection

A-measure R-measure A+R-measure
Sending EER 11.4% 8.9% 7.5%

Std dev 2.05 1.61 1.02

Receiving RP EER 15.4% 12.8% 10.9%
Std dev 1.73 1.00 1.09

Receiving SP EER 14.9% 11.2% 10.2%
Std dev 1.25 1.57 1.32

Table 4.23: EER with introduced package loss and jitter block size 250

4.6 Sampling error

Something we observed from our testing, was the fact that there was some irreg-
ularity of the timing of the captured data compared to the presented data. This
was especially present when testing the capturing script by holding one key down,
where sometimes multiple keys were registered simultaneously, and sometime it
would be 100 ms delay between them. This also held true when looking at locally
recaptured data. When trying to find documentation on the sampling rate used
by bpftrace we could not find this specified. We have conducted a test to look at
the sampling by sending 100 keys at each timing in the interval 0ms to 50ms to
see if we could see a pattern of irregularities with low latency key presses. There
was no sign of the scale of irregularities as we observed when holding down a key.
This might be tied to either the emulation delay spacing the keys out enough for
the problem to disperse, or that the keystroke when holding down a key is sent at
different timings based on factors in the operating system. By the result it seem
that the sampling rate seem to be somewhere between 1-2 milliseconds. We have
observed some instances of simultaneous keys in our data that seem to be caused
by network jitter lining up keys with a low inter key latency.

4.7 General

We have in all our result presented two different comparisons of the measures on
the receiving side. One where the reference profiles were generated from the SP,
and one where the reference profiles were generated from the RP. In our results we
see a trend toward comparison with SP giving slightly better EER in cases where
we add interference to the network channel, while the profiles are comparable
with low to no interference. In our testing the profiles have been generated on
both sides for each test, while in a real life scenario a choice on where to cap-
ture the users profile would have to be made. An impotent thing to considerate
there is that the profile should be applicable both in ideal conditions, as well as
variable different network environment that could impact the traffic. Using an
approach where the participants profile are generated onsite will give the most
accurate measurement, however if the participant is mainly connecting via a net-

Chapter 4: Result and Discussion 35

work connection that introduces some latency, the recaptured data might give a
more accurate view of the normal typing pattern the server will observe. From our
data it seems like it would be a good approach to generate new profile by getting
the user’s profile generated locally from the computer instead of over network.
This approach is also where the profile is most accurate to the actual typing of
the user, with the least chance of interference from any sources, and in a real life
scenario without any emulation delay this will be the real typing time of the user.

In our test we have excluded outliers where the digraph latency was less than
30 ms or over 500 ms. This works for our testing where there is no one trying to
misuse the system, however given a real implementation such an outlier exclusion
policy will lead to a potential security flaw. If an imposter were able to recognise
this mechanism, they could circumvent the system by typing with a slow typing
speed. At this point mechanisms to look for high amount of outliers could help
prevent miss use.

4.8 Discussion

In our research we have utilized Clarckson’s keystroke database as our source for
user input. This gives a good source for free text that works well in keystroke dy-
namics in general. A thing to keep in mind is that this dataset and the content of
it is not in line with normal content seen in an SSH session. SSH use in system
administration is often used to conduct changes on a server’s configuration. This
will mostly consist of shorter predefined cli(Command-line interface) commands
typed repeatedly. This might open for giving extra weighting to some specific di-
graph of commands a user actively uses. By looking at commands that can be
written in different ways a heavier emphasis could be placed on deviation from
the users normal behavior. Another point to bring up is that a lot of changes can
be done to a server with a small number of characters. An example is that a server
could be shut down given the right permission with less than 20 characters. With
in our testing we have tested using 100, 250 as well as the total test consisting
of between 500 and 1300 character per probe. As mentioned earlier our research
have not aimed at creating the most accurate EER, somthing we can see from our
research however is that a increase in the probe size increase the accuracy of the
measures. Another momentum is that a lot of work done over SSH consists of fol-
lowing procedures, where a user will copy the text from the procedure, and past
it into the SSH session. This kind of use will not give us any timings that can be
used for keystroke dynamics. This makes our test a way of seeing that an SSH ses-
sion is not interfering too much with the keystrokes in general. However we can
not guarantee the applicability of keystroke dynamics with real life traffic from an
SSH connection. A thing to keep in mind when bringing up this is the fact that we
have not looked to optimize the EER in our project. Previous research point at a
combination of A and R- measure of multiple n-graphs being more accurate than
just the digraph that have been focused on in this project.

From our results we can see that a low latency network connection dose not

36 B.I.Nielsen: Continuous Authentication on an SSH Connection

impact the ability to conduct continues authentication using the data. A trend
that seem to emerge is how the more data used in the measure the more stable
it seem to be. By viewing the tables in this chapter is that the standard deviation
seem to change most in the 100 block size test. A less obvious trend that seem
to also point at this is how the A-measure seem to be the measure where we see
the highest spread, while he A+R-measure is the one experience the most stable
standard deviation. This might hint to the fact that applying a highly accurate
measure might give an increased robustness against interference.

An intention when starting this project was to look at true continuous authen-
tication as well as continuous authentication. After the implementation and the
testing of the R and A-measure this however showed to be infeasible due to the
time constraint of the project. A contribution we can make in this regard however
is that the data size for each participant need to be larger than what we get from
the Clarkson dataset. We looked at the statistics of a trust model with the data in
the dataset consisting of both the free text and the transcription tasks. This gave
approximately 20000 characters per participant. Applying a trust model approach
as described in chapter 2 with 80% of the data going to training and 20% going
to testing, did not give a significant enough difference between the imposters and
the genuine user. With a similar amount of participants a full scale data collection
with double this amount would run for around 10 days. This would lead to us
needing to focus all our effort on this to be able to gather similar data.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

The results of our test gives an indication that keystroke dynamics can be applied
on keystroke latency’s gathered from the server side of an SSH connection on free
text data. This result however mostly points to the functionality of keystroke dy-
namics on data gathered with network delay. The dataset used in this project is
somewhat atypical of the normal typing seen over an SSH channel. In this project
we have seen that there is a sufficient amount of data that can be extracted from an
SSH session to conduct continuous authentication. The reduced amount of data
that is expected from an SSH session will put a higher strain on the authentica-
tion system. We have seen that a large amount of jitter on the network traffic will
lead to degradation of the functionality of continuous authentication. If an imple-
mentation of continuous authentication or true continuous authentication on an
SSH channel was to be introduced, a decision of how to capture data to train the
reference profiles will have to be made. From what we have seen in our test an
approach of locally captured data seems to be more suitable than capturing on a
server. Another alternative that seems to work is to do the data capture remotely
using a server given that it can be confirmed that the data has not experienced
any noticeable interference over the network, this however might lead to data
needing to be discarded, and the user having to input more data to compensate.
The problem here is to determine what data should be discarded without directly
knowing which part of the data is impacted by network interference. With a more
realistic user pattern for SSH the data amount will in most cases be more limited
both in the form of a reduced character set as well as reduced length. In the test-
ing conducted in this project the probes have been approximately 500 digraphs
long. With the decreased amount of data to work on in a real life scenario, an
authentication mechanism that can take an authentication decision with a lower
amount of data is needed for an functional implementation of a network based
continuous authentication system.

37

38 B.I.Nielsen: Continuous Authentication on an SSH Connection

5.2 Further work

In this project we have utilized a publicly available keystroke dataset from Clark-
son University, and utilized the free text data found in it. A shortcoming of this
is that the typing data of the dataset is not consisted with what would normally
be seen in an SSH session. In the dataset we see structured sentences answering
questions, while a more normal SSH interaction to a large extent is consisting of
different CLI commands and paths. In future research into this topic we would
suggest looking at conducting data collection of actual SSH traffic. An alternate
perspective to look at here is to gather the profile from normal typing tasks, and
the probes from CLI tasks, to see if the typing pattern are consistent enough to be
used in combination.

We have seen that the data amount we utilized in this project is to limited to
generate a profile to be used in a trust model approach for continuous authen-
ticating. We suggest looking at an extended data amount in combination with
network captured keystroke dynamics, to be able to test the impact of network
delay on a trust model based continuous authentication system. In our mind, free
text data gathered from open tasks would fit better to generate large amount of
data compared with CLI tasks. So also here the interaction between a typical SSH
session’s traffic, with a more generally gathered profile would be interesting.

We have in this section described SSH specific tasks since this has been our
focus. The suggestion hold true for all network communication that sends char-
acters one by one.

Bibliography

[1] M. Johns, ‘Session hijacking attacks,’ in Encyclopedia of Cryptography and
Security, H. C. A. van Tilborg and S. Jajodia, Eds. Boston, MA: Springer US,
2011, pp. 1189–1190. DOI: 10.1007/978-1-4419-5906-5_661.

[2] R. S. Gaines, W. Lisowski, J. P. S and N. Shapiro, ‘Authentication by key-
stroke timing: Some preliminary results,’ RAND report, pp. 123-132, May
1980.

[3] P. S. Teh, A. Teoh and S. Yue, ‘A survey of keystroke dynamics biometrics,’
The Scientific World Journal, 2013. DOI: 10.1155/2013/408280.

[4] S. Mondal, ‘Continuous user authentication and identification: Combina-
tion of security forensics,’ Ph.D. dissertation, 2016. DOI: 10.13140/RG.2.
1.1152.0882.

[5] S. Banerjee and D. Woodard, ‘Biometric authentication and identification
using keystroke dynamics: A survey,’ vol. 7, pp. 116–139, 2012.

[6] A. Morales, M. Falanga, J. Fierrez, C. Sansone and J. Ortega-Garcia, ‘Key-
stroke dynamics recognition based on personal data: A comparative exper-
imental evaluation implementing reproducible research,’ 2015. DOI: 10.
1109/BTAS.2015.7358772.

[7] F. Bergadano, D. Gunetti and C. Picardi, ‘User authentication through key-
stroke dynamics,’ ACM Trans. Inf. Syst. Secur., vol. 5, no. 4, pp. 367–397,
Nov. 2002. DOI: 10.1145/581271.581272.

[8] D. Gunetti and C. Picardi, ‘Keystroke analysis of free text,’ ACM transactions
on information and system security, vol. 8, no. 3, pp. 312–347, 2005.

[9] H. Davoudi and E. Kabir, ‘A new distance measure for free text keystroke
authentication,’ 2009 14th International CSI Computer Conference, DOI: 10.
1109/csicc.2009.5349640.

[10] H. Davofudi and E. Kabir, ‘Modification of the relative distance for free
text keystroke authentication,’ 2010 5th International Symposium on Tele-
communications, DOI: 10.1109/ISTEL.2010.5734085.

[11] H. Ferreira J. Santos, ‘Keystroke dynamics for continuous access control
enforcement,’ International Conference on Cyber-Enabled Distributed Com-
puting and Knowledge Discovery, 2012. DOI: 10.1109/CyberC.2012.43.

39

https://doi.org/10.1007/978-1-4419-5906-5_661
https://doi.org/10.1155/2013/408280
https://doi.org/10.13140/RG.2.1.1152.0882
https://doi.org/10.13140/RG.2.1.1152.0882
https://doi.org/10.1109/BTAS.2015.7358772
https://doi.org/10.1109/BTAS.2015.7358772
https://doi.org/10.1145/581271.581272
https://doi.org/10.1109/csicc.2009.5349640
https://doi.org/10.1109/csicc.2009.5349640
https://doi.org/10.1109/ISTEL.2010.5734085
https://doi.org/10.1109/CyberC.2012.43

40 B.I.Nielsen: Continuous Authentication on an SSH Connection

[12] J. Hu, D. Gingrich and A. Sentosa, ‘A k-nearest neighbor approach for user
authentication through biometric keystroke dynamics,’ in 2008 IEEE Inter-
national Conference on Communications, 2008, pp. 1556–1560. DOI: 10.
1109/ICC.2008.301.

[13] J. Huang, D. Hou and S. Schuckers, ‘A practical evaluation of free-text key-
stroke dynamics,’ in 2017 IEEE International Conference on Identity, Security
and Behavior Analysis (ISBA). DOI: 10.1109/ISBA.2017.7947695.

[14] A. Kolakowska, ‘User authentication based on keystroke dynamics analysis,’
Computer Recognition Systems 4., 2011. DOI: 10.1007/978-3-642-20320-
6_68.

[15] P. Kang and S. Cho, ‘Keystroke dynamics-based user authentication using
long and free text strings from various input devices,’ Information Sciences,
vol. 308, pp. 72–93, 2015. DOI: https://doi.org/10.1016/j.ins.2014.
08.070.

[16] A. Messerman, T. Mustafić, S. A. Camtepe and S. Albayrak, ‘Continuous and
non-intrusive identity verification in real-time environments based on free-
text keystroke dynamics,’ in International Joint Conference on Biometrics
(IJCB), 2011. DOI: 10.1109/IJCB.2011.6117552.

[17] P. Pinto, B. Patrão and H. Santos, ‘Free typed text using keystroke dynamics
for continuous authentication,’ in Communications and Multimedia Secur-
ity, B. De Decker and A. Zúquete, Eds., 2014.

[18] K. A. Rahman, K. S. Balagani and V. V. Phoha, ‘Making impostor pass rates
meaningless: A case of snoop-forge-replay attack on continuous cyber-behavioral
verification with keystrokes,’ in CVPR 2011 WORKSHOPS, 2011. DOI: 10.
1109/CVPRW.2011.5981729.

[19] P. Bours, ‘Continuous keystroke dynamics: A different perspective towards
biometric evaluation,’ Information Security Technical Report, vol. 17, no. 1-
2, pp. 36–43, 2012.

[20] S. Mondal and P. Bours, ‘Performance evaluation of continuous authentic-
ation systems,’ IET Biometrics, 2015. DOI: 10.1049/iet-bmt.2014.0070.

[21] T. Ylonen and C. Lonvick, ‘The secure shell (ssh) transport layer protocol,’
RFC Editor, RFC 4253, Jan. 2006. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4253.txt.

[22] T. Ylonen and C. Lonvick, ‘The secure shell (ssh) protocol architecture,’
RFC Editor, RFC 4251, Jan. 2006. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc4251.txt.

[23] D. X. Song, D. Wagner and X. Tian, ‘Timing analysis of keystrokes and tim-
ing attacks on ssh,’ in Proceedings of the 10th Conference on USENIX Security
Symposium, USA, 2001.

https://doi.org/10.1109/ICC.2008.301
https://doi.org/10.1109/ICC.2008.301
https://doi.org/10.1109/ISBA.2017.7947695
https://doi.org/10.1007/978-3-642-20320-6_68
https://doi.org/10.1007/978-3-642-20320-6_68
https://doi.org/https://doi.org/10.1016/j.ins.2014.08.070
https://doi.org/https://doi.org/10.1016/j.ins.2014.08.070
https://doi.org/10.1109/IJCB.2011.6117552
https://doi.org/10.1109/CVPRW.2011.5981729
https://doi.org/10.1109/CVPRW.2011.5981729
https://doi.org/10.1049/iet-bmt.2014.0070
http://www.rfc-editor.org/rfc/rfc4253.txt
http://www.rfc-editor.org/rfc/rfc4253.txt
http://www.rfc-editor.org/rfc/rfc4251.txt
http://www.rfc-editor.org/rfc/rfc4251.txt

Bibliography 41

[24] V. Cerf, Y. Dalal and C. Sunshine, ‘Specification of internet transmission
control program,’ RFC Editor, RFC 675, Dec. 1974. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc675.txt.

[25] J. Postel, ‘Transmission control protocol,’ RFC Editor, STD 7, Sep. 1981.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc793.txt.

[26] J. Nagle, ‘Congestion control in ip/tcp internetworks,’ RFC Editor, RFC 896,
Jan. 1984. [Online]. Available: https://www.rfc- editor.org/rfc/
rfc896.txt.

[27] ‘The effects of jitter on the peceptual quality of video,’ Proceedings of the sev-
enth ACM international conference on Multimedia (Part 2), author=Claypool,
Mark and Tanner, Jonathan, year=1999, DOI: 10.1145/319878.319909.

[28] S. McCanne and V. Jacobson, ‘The bsd packet filter: A new architecture
for user-level packet capture,’ USENIX’93,San Diego, California: USENIX
Association, 1993, p. 2.

[29] F. Ellis, Ebpf, part 1: Past, present, and future, 2017, https://www.ferrisellis.
com/content/ebpf_past_present_future/, Accessed: 2022-04-18.

[30] E. Vural, J. Huang, D. Hou and S. Schuckers, ‘Shared research dataset to
support development of keystroke authentication,’ IEEE International Joint
Conference on Biometrics, 2014. DOI: 10.1109/btas.2014.6996259.

[31] Unknown, Virtual-key codes (winuser.h) - win32 apps, Accessed: 2021-10-
18. [Online]. Available: https://docs.microsoft.com/en-us/windows/
win32/inputdev/virtual-key-codes.

[32] Ping time between oslo and other cities, Accessed: 2022-04-20. [Online].
Available: https://wondernetwork.com/pings/Oslo.

[33] Video quality of service (qos) tutorial, Accessed: 2022-03-10, Sep. 2017.
[Online]. Available: https://www.cisco.com/c/en/us/support/docs/
quality- of- service- qos/qos- video/212134- Video- Quality- of-
Service-QOS-Tutorial.html.

http://www.rfc-editor.org/rfc/rfc675.txt
http://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc896.txt
https://www.rfc-editor.org/rfc/rfc896.txt
https://doi.org/10.1145/319878.319909
https://www.ferrisellis.com/content/ebpf_past_present_future/
https://www.ferrisellis.com/content/ebpf_past_present_future/
https://doi.org/10.1109/btas.2014.6996259
https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes
https://docs.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes
https://wondernetwork.com/pings/Oslo
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html
https://www.cisco.com/c/en/us/support/docs/quality-of-service-qos/qos-video/212134-Video-Quality-of-Service-QOS-Tutorial.html

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r d

at
at

ek
no

lo
gi

 o
g

in
fo

rm
at

ik
k

Bjørn Ivar Nielsen

Continuous Authentication on an
SSH Connection

Hovedoppgave i MIS4900
Veileder: Patrick Bours
Juni 2022

H
ov

ed
op

pg
av

e

	Abstract
	Sammendrag
	Acknowledgement
	Contents
	Figures
	Tables
	Introduction
	Topic covered by the project
	Keywords
	Problem description
	Justification, motivation and benefits
	Research questions
	Planned contributions

	Related work
	Authentication
	Keystroke dynamics
	R and A-measures

	True continuous authentication
	SSH and TCP
	eBPF

	Data and design
	Lab setup
	Dataset
	Emulator
	Data capture
	Data processing
	A-measure and R-measure
	Limitations and adjustments

	Result and Discussion
	Baseline
	Baseline full sample
	Baseline block size 100
	Baseline block size 250

	Static Delay
	Static delay full sample
	Static delay block size 100
	Static delay block size 250

	Jitter
	Jitter full sample
	Jitter block size 100
	Jitter block size 250

	Package loss
	Package loss full sample
	Package loss block size 100
	Package loss block size 250

	Package loss and jitter
	Package loss and jitter full sample
	Package loss and jitter block size 100
	Package loss and jitter block size 250

	Sampling error
	General
	Discussion

	Conclusion and Future Work
	Conclusion
	Further work

	Bibliography

