
Predictions on solar pow
er plant generation w

ith m
achine learning techniques

M
oham

ed H
adi &

 Stefan Q
uvald Jacob

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

Mohamed Hadi
Stefan Quvald Jacob

Predictions on solar power plant
generation with machine learning
techniques (PRESAV)

Bachelor’s thesis in Electrical Engineering
Supervisor: Jayaprakash Rajasekharan & Berhane Darsene Dimd
Co-supervisor: Alexis Sevault
June 2022

Ba
ch

el
or

’s
th

es
is

Mohamed Hadi
Stefan Quvald Jacob

Predictions on solar power plant
generation with machine learning
techniques (PRESAV)

Bachelor’s thesis in Electrical Engineering
Supervisor: Jayaprakash Rajasekharan & Berhane Darsene Dimd
Co-supervisor: Alexis Sevault
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electric Power Engineering

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Sammendrag av Bacheloroppgaven

Tittel: Prediksjoner på solcelleanleggets kraftproduksjon med
maskinlæring teknikker (PRESAV)

Dato: June 2022

Deltakere: Mohamed Hadi
Stefan Quvald Jacob

Veiledere: Jayaprakash Rajasekharan
Berhane Darsene Dimd

Oppdragsgiver: SINTEF

Kontaktperson: Alexis Sevault, alexis.sevault@sintef.no

Nøkkelord: Norway, Norsk
Antall sider: 57
Antall vedlegg: 4
Tilgjengelighet: Åpen

Sammendrag: Energiproduksjon har en betydelig innvirkning på men-
neskers liv, og forskere har forsøkt å predikere været
for å forbedre kraftstabiliteten, redusere energitap og øke
økonomisk gevinster. Med tanke på dagens klimautfor-
dringer og bekymringer, undersøker forskere fra SINTEF og
NTNU potensialet på å koble flere rene energikilder sammen
i et nullutslippsbygg laboratorium lokalisert i Trondheim.

Denne bacheloroppgaven undersøker et sett med maskin-
læringalgoritmer for prediksjon av mengden fotovoltaisk en-
ergi som genereres av ZEB-laboratoriet, og hensikten er å
sammenkoble den prediktive dataen i en styringsstrategi
som vil operere sammen med andre produksjonssystemer i
bygningen. Prosjektteamet vil fokusere på å bruke maskin-
læringsmetoder på tidligere data på solcelleproduksjon fra
anlegget og værdata samlet inn fra SINTEFs testcelle for å as-
sistere ZEB-bygningen med å bestemme den beste strategien
for redusert strømforbruk og klimagassutslipp samtidig øke
bruken av lokalt produsert energi. Konseptene som presen-
teres i denne rapporten er basert på tidligere forskningslit-
teratur, vitenskapelige artikler og arbeid gjort av andre viten-
skapsmenn.

i

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Summary of Graduate Project

Title: Predictions on solar power plant generation with ma-
chine learning techniques (PRESAV)

Date: June 2022

Authors: Mohamed Hadi
Stefan Quvald Jacob

Supervisor: Jayaprakash Rajasekharan
Berhane Darsene Dimd

Employer: SINTEF

Contact Person: Alexis Sevault, alexis.sevault@sintef.no

Keywords: Thesis, Latex, Template, IMT
Pages: 57
Attachments: 4
Availability: Open

Abstract:

Energy production has a significant impact on human life, and scientists have attempted to
predict weather in order to improve power stability, decrease the energy waste, and raise eco-
nomic wealth. Considering the current climate challenges and concerns, SINTEF and NTNU
researchers are examining the potential of merging several clean energy production sources
in a zero-emission building laboratory (ZEB-lab) in Trondheim.

This bachelor’s thesis investigates a set of supervised machine learning algorithms for predict-
ing the amount of photovoltaic energy generated by the ZEB-lab, with the goal of integrating
the predicted data into a control system that works in tandem with the building’s other power
generation systems. The project team will focus on using machine learning approaches on
historical photovoltaic production from the plant and weather data collected from SINTEF’s
test cell to assist the ZEB-building in determining the best strategy to reduce power consump-
tion and greenhouse gas emissions while increasing the usage of energy produced locally. The
concepts presented in this report are based on past research literature, scientific papers, and
other scholars’ work.

ii

Preface

This thesis is submitted as the final project from the course Bachelor Thesis Electrical Power
Engineering (IELET2910), which accounts for 20 credits, and is a final assessment of the de-
gree in Bachelor of Science in Electrical Engineering, Faculty of Information Technology and
Electrical Engineering, Department of Electrical Power Engineering at the Norwegian Uni-
versity of Science and Technology (NTNU). The bachelor thesis has been carried out during
the spring of 2022, where the scope of the thesis has been 20 weeks. The report is written
and prepared by two electrical engineering students with the same field of study.

This bachelor thesis aims to study the concept of machine learning and further implement
it by using weather information to make PV output power prediction model, using super-
vised machine learning algorithms. This project is an external project of SINTEF Energy in
Trondheim. Working with this project has been a tremendous and rewarding experience. We
have learned a lot about machine learning and how powerful of a tool that is. Additionally,
our knowledge in Python programming has improved significantly. But most importantly, our
skills in communication, planning and teamwork were improving and have been a major im-
portance for the implementation of this project.

The group want to express our sincerest gratitude towards to our supervisors, Berhane Darsene
Dimd and Jayaprakash Rajesekharan from NTNU for great support, guidance and motivation
throughout the process of writing this project. Further, the group wants to extend the grat-
itude towards Alexis Sevault from SINTEF Energy, for providing the assignment and giving
insightful information along the way.

Trondheim, 08.06.2022

Mohamed Hadi Stefan Quvald Jacob

iii

______________ ______________

Contents

Preface . iii

Contents . iv

List of Figures . vi

List of Tables . viii

1 Introduction . 1

1.1 Background . 1

1.2 Motivation . 1

1.3 Objectives . 2

1.4 Limitations . 2

Nomenclature . 3

2 Theory . 4

2.1 Integration of PRESAV in ZEB-laboratory . 4

2.1.1 PRESAV components . 5

2.2 PV Power Generation . 7

2.2.1 Solar irradiation instruments . 9

2.3 Time Series Analysis . 11

2.3.1 Elements of time series . 11

2.4 Algorithm performance . 13

2.4.1 Prediction score and metrics . 13

2.5 Algorithm selection . 15

2.5.1 Random Forest Regression . 15

2.5.2 XGBoost . 17

2.5.3 Support Vector Regression . 18

2.5.4 Multiple Linear Regression . 20

3 Pre-Processing . 22

3.1 Pre-Processing . 22

3.1.1 Combining data sets . 22

3.1.2 Statistics . 23

3.2 Visualization . 24

3.3 Seasonal patterns recognition . 27

3.4 Feature selection . 29

3.4.1 Pearsons correlations test . 29

4 Methodology Part 2 . 31

4.1 Machine learning aspects . 31

4.1.1 Train-Test split . 31

iv

Predictions on solar power plant generation with machine learning techniques (PRESAV)

4.1.2 Cross-validation/K-Fold . 32

4.1.3 StandardScaler . 32

4.2 Hyper parameters . 33

4.2.1 Hyper parameters for RF . 33

4.2.2 Hyperparameters for XGboost . 33

4.2.3 Hyperparameters for SVR . 33

4.3 Web Application . 34

4.3.1 Streamlit . 34

4.3.2 Restrictions . 34

4.4 Procedure . 35

5 Results . 36

5.1 Training/Test-Score . 36

5.2 Model evaluation . 37

5.2.1 Comparisons between cases . 37

5.2.2 Differences between actual and predicted 47

5.3 Streamlit . 49

6 Discussion . 50

6.1 Impacts on PV predictions . 50

6.1.1 Weather influence . 50

6.2 Constraints . 50

6.2.1 Area of focus . 50

6.2.2 Level of knowledge . 50

6.3 Algorithms analysis . 51

6.3.1 Pre-processing models . 51

6.3.2 Ratings of models . 51

6.4 Application . 51

6.5 Future work . 52

7 Conclusion . 53

7.1 Optimization of the PV forecast and contribution in the energy sector 53

7.2 Evaluation of the favored model . 53

Bibliography . 54

A Appendices . 58

A.1 Libraries . 58

A.2 Packages . 58

A.3 Functions . 60

B Gantt . 63

C Meeting Logs . 64

C.1 Temporal record of meetings . 64

D Python codes . 67

D.1 Algorithms . 67

v

List of Figures

1 ZEB-lab located in Trondheim . 4

2 Representation of the PRESAV structure . 5

3 Heating pump used in ZEB . 6

4 Worldwide PV growth from 1992 to 2018 . 8

5 Solar radiation components . 9

6 The schematic diagram(left) and photograph(right) of pyranometer (Solar
Instruments/atmospheric Science Instruments n.d.). 9

7 The global irradiance includes direct sunlight and diffuse sunlight 10

8 Illustration of an increasing trend, where the blue curve is the graph and
black one is the trend . 12

9 Illustration of repeating cycles, that illustrates a seasonality pattern 12

10 Illustration of randomly generated spikes . 12

11 How the decision tree splits operates . 15

12 XGBoost plot . 18

13 Visualization of Support Vector Regression in 2-D 19

14 A visual representation of MLR . 21

15 Energy production of each facades in KWh . 22

16 Measurements on weather parameters . 22

17 Combined data sets . 23

18 Heatmap on missing values . 24

19 Total production in KWh of each facade . 26

20 Monthly and weekly PV production . 27

21 The daily mean and max PV production . 27

22 Illustration of the different observed decomposition’s 28

23 Total_production re-sampled daily. 28

24 Plots of trend & seasonality . 28

25 Plots of residuals & observed . 29

26 How different correlations occurs . 29

27 Heatmap on correlated values . 30

28 How the approach on the methodology part 2 section will occur 31

29 5-Fold Cross-Validation . 32

30 Information section from application . 34

31 RF & XGBoost . 37

32 SVR & MLR . 37

vi

Predictions on solar power plant generation with machine learning techniques (PRESAV)

33 RF & XGBoost . 38

34 SVR . 38

35 RF & XGBoost . 39

36 SVR & MLR . 39

37 RF & XGBoost . 40

38 SVR & MLR . 40

39 RF & XGBoost . 41

40 SVR & MLR . 41

41 RF & XGBoost . 42

42 SVR & MLR . 42

43 RF & XGBoost . 43

44 SVR & MLR . 43

45 RF & XGBoost . 44

46 SVR & MLR . 44

47 RF & XGBoost . 45

48 SVR & MLR . 45

49 RF & XGBoost . 46

50 SVR & MLR . 46

51 Training/testing ratios on Streamlit . 49

52 After editing ratios . 49

vii

List of Tables

1 Solar panels datasheet . 5

2 Summary of measured data . 23

3 Training and test scores . 36

4 Performance comparison for Case 1 . 37

5 Performance comparison for Case 2 . 38

6 Performance comparison for Case 3 . 39

7 Performance comparison for Case 4 . 40

8 Performance comparison for Case 5 . 41

9 Performance comparison for Case 6 . 42

10 Performance comparison for Case 7 . 43

11 Performance comparison for Case 8 . 44

12 Performance comparison for Case 9 . 45

13 Performance comparison for Case 10 . 46

14 Average RMSE & R2 scores . 46

15 Performance of a forecast model based on RF . 47

16 Performance of a forecast model based on XG . 47

17 Performance of a forecast model based on SVR . 48

18 Performance of a forecast model based on MLR . 48

viii

1 Introduction

1.1 Background

SINTEF Energy is working on a project PRESAV with the intention of finding the best pre-
dictive controlling system for energy storage by collecting information from the electricity
market, district heating, weather forecasting and local heat demand in buildings with in-
stalled PV and active heat storage. This project is divided in three activities. Our bachelor
thesis focuses on the data science and feedback strategies part and is written solely on this
particular assignment.

Overview of this thesis

This paper starts with a brief introduction of the main purpose with the objectives and moti-
vation for the report and then goes into the core theories behind the PRESAV project and the
time series analysis. Then we’ll go through the methodology behind the algorithms before
presenting the proposed solutions, and finally move on to conclusions and discussions, while
adding some tips and additional information for future groups exploring the problem.

1.2 Motivation

The global demand for energy is really large and it presents major challenges in terms of its
growing rhythms. We need an energy portfolio that meets the criteria of an efficient, afford-
able but also clean resource. Billions of people in countries with a GDP of less than 25.000$
lack access to renewable energy source, for example electricity [1]. Lack of access to elec-
tricity forces people to live without refrigeration of food, washing machine, dishwasher or
central heating etc. The energy challenge in the world is two-folded. This means that the
countries in poor conditions cannot afford sufficient energy. There are two sides of a problem
that we need to solve. We lack energy alternatives to substitute energy fossil fuels that are
both cheap and sustainable. With the revolution of thinking of sustainability and starting to
form a path to clean and affordable energy, solar energy came to light. This is widely consid-
ered as the most promising candidate for sustainable power generation until this date.

Solar energy output for one hour equals the earth’s energy demand for an entire year. Even
though the solar power has untapped potential, the solar power generation is highly inter-
mittent [2]. The solar power is dependent on factors such as the weather, meteorological,
and temporal parameters, and many companies try to integrate PV technology systems into
the smart grid by forecasting the solar power generated by a particular PV module, in a cer-
tain location over a given time period. It is very important that the solutions is approximate,
because unexpected fluctuations in the solar power system could affect the health of the solar
grid, and in worst case interact with the quality of life of energy consumers.

1

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Physical inputs such as temperature, humidity, solar irradiance and wind speed, rely on the
vast majority of current forecasting algorithms. However, such systems tend to be not precise,
as recent research has prompted to implement machine learning algorithms to supplement
the use of such physical inputs in forecasting power generation. With given data, we build a
model-based system in the pursuit if predicting the solar power output. Within the framework
of improving the forecasting accuracy of the power produced, adaptive machine learning
algorithms capture the system behaviour, without even knowing the parameters, only the
constructed relationship between the input and the output [3]. The scope of this work is
presentation the methodology for deriving more precisely Next-day power predictions for
PV plants using machine learning approaches optimised for the selection of input features.
Included methods Support Vector Regression(SVR), Random Forest, Multiple Regression and
XGboost. The base methodology followed was to train the models with acquired data sets
and to construct relationships between the input and output features which in this particular
case is the power prediction for the new time.

1.3 Objectives

This report investigates on providing answers to following questions:

• Discussion of PV power generation, identifying the challenges of using such kind of
energy source, and discussion of the widely used methods to address these issues.
• Understanding the role of PV output power forecasting to make PV generation an equal

contributor in the energy mix.
• Design of a forecast model based on machine learning algorithms
• Performance evaluation of the various predictive models for a PV plant located at ZEB

Lab, Trondheim, Norway.

1.4 Limitations

Since the main focus is forecasting and prediction, the engineering and determining best
solutions for different low voltage couplings and combinations for PRESAV components were
not included in this report. Cost analysis, environmental, energy consumption’s and electricity
prices benefits as a consequence of implementation of PRESAV, were outside the main focus
of the thesis. The historical weather data provided from SINTEF on the ZEB-lab, were these
variables: outside temperature, dew point, wind and humidity measurements, barometric
pressure and solar radiation and power production from the PV’s.

2

Nomenclature

ȳi Data points actual value average

�T Temperature difference

y Actual value

ŷ Predicted value

BIPV Building Integrated Photo Voltaic

CSV Comma Seperated Values

DHI Direct Horizontal Irradiance

GHI Global Horizontal Irradiance

GW Gigawatt

IEA International Energy Agency

MAE Mean Absolute Error

MLR Multiple Linear Regression

MSE Mean Square Error

PRESAV Predictive Management Strategies For Active Heat Storage In Buildings

PV Photo Voltaic

RF Random Forest

RMSE Root Mean Square Error

SVR Supporting Vector Regression

SZA Solar Zenit Angle

XGBoost Extreme Gradient Boosting

ZEB Zero Emission Building laboratory

3

2 Theory

This section aims to provide an overview of supervised learning concepts used to predict PV
power generation, time series predictions and how the various components in the ZEB lab
work together in a coherent system. The amount of information included in each section
depends on what the main elements in this project are.

2.1 Integration of PRESAV in ZEB-laboratory

ZEB-lab

The purpose behind ZEB-lab is that the building intent aims to be a testing and research
facility and pilot project for greener building components. The aim is to inspire the ZEB-lab
and take the initiative for other national and international companies. ZEB-lab will be merged
with BIPV to replace some of the traditional building materials and the reason is that solar
energy collected by BIPV will represent the energy production [4]. The total area of the ZEB
laboratory is almost 2000 m3 including a 4-storey building, 2 of which are used for offices
and the others for educational purposes.

Figure 1: ZEB-lab with a view from southern and western facade

PRESAV

PRESAV is divided into three categories: predictive control strategies, implementation and
testing in the ZEB lab, and analysis of the recorded data to provide feedback on different
strategies. The main goal of PRESAV is to create forecasting strategies to control the ZEB lab-
oratory based on characteristics such as weather forecast, local heat demand and economics
in relation to district heating and electricity prices. The inputs of the predictive model will
include weather forecasts and energy generated from PV as well as electricity collected from
the grid, and the outputs will be combinations of active thermal storage strategies. The solar
power produced in the system can be converted into thermal energy using heat pumps and
then stored in PCM devices or charged using district heating. This energy can then be used
to pre-heat the building if required.

4

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Figure 2: Representation of the PRESAV structure

2.1.1 PRESAV components

BIPV

PV cells generate electricity when the solar cells are exposed to light, and it does so instan-
taneously. The electrical energy generated results from the semiconductor material placed
between two electrodes. The active part of a solar cell is a wafer assembled with the semi-
conductor, and the semiconductor has three layers, negative type, positive type and the mid-
dle layer.When the energy exceeds a threshold called the bandgap, the electrodes are free to
move, thus generating electrical energy [5]. PV panels are typically assembled in a forma-
tion containing multiple solar panel cells, which in turn are composed of multiple solar cells.
Nowadays, the applications of PV cells are increasing rapidly and are very demanding [3].
Considered the most reliable form of energy due to its availability and accessibility, solar en-
ergy has been established as a pioneering source of electrical energy due to recent advances
in solar cell conversion energy [6].

This installation is equipped with 701 solar panels, which corresponds to an area of 963.4
m2 with modules based on Mono-Si cells. The panels are released by different manufactur-
ers and the total installed power is 281.15kWp. Below is a table showing different areas,
manufacturers and how each panel contributes to the system.

Table 1: Solar panels datasheet

Placement Type of panels Fasteners Installed Power [KWp] Area [m2] Number of panels
Roof Sunpower 350 IRFTS 98 456.3 280
North facade Sunpower 375 Baywa 11.25 53 30
South facade Solarlab Nvelope 22.36 144.2 132
West facade Solarlab Nvelope 12.365 79.6 73
East facade Solarlab Nvelope 24.47 156.2 144
Pergola Sunpower 375/Solitek Baywa 7.875 + 4.83 37.1+37 21+21

PCM storage

PCM is a material’s ability to store/release energy by changing its phase. When a solid ma-
terial is heated above its melting point, the material absorbs thermal energy, and when the
material is cooled, it solidifies as it releases energy. This phenomenon is classified as latent
heat and several materials share this property. PCM systems absorb/release energy at a near

5

Predictions on solar power plant generation with machine learning techniques (PRESAV)

constant temperature and the use of PCM as thermal energy storage in industry is now widely
explored. The property that a PCM can absorb/release energy at a constant temperature al-
lows a massive amount of heat energy to be stored and used when needed. This property
minimizes waste of energy sources for heat and energy consumption in buildings and can be
used in many different modules [7].

The material used in ZEB-labs PCM is a bio-based wax containing 3 tons of the material
and has a melting point of T= 37 � C or 310.15 K. The PCM installed in the ZEB-lab has four
operating modes:

• Charge from heat pump
• Charge from district heating
• Discharge to heat pump
• Discharge to heating circuit

District heating and heat pump

District heating is all about taking energy released as heat from multiple energy sources and
from there connect to energy consumers through a system of highly insulated pipes. The heat
is obtained from fossil fuels or even biomass, but has also used heat boiling , heat pump and
solar heating systems.There have been quite a few developments of each generation of dis-
trict heating throughout the years. From coal heating in 1880s to cold heating.

Cold heating distributes heating at ground temperature to minimize heat losses to the ground,
in other words, it covers the expenses of a potential extensive insulation. Heat pump is one
of the components in the ZEB-lab structure, and the area of usage is to be an alternative re-
placement for the PCM-system. The way heat pumps work is to collect heat in form of water
or air from the surroundings and convert it to energy [8]. The heat pump input in this circuit,
will be electricity from the grid and PV’s combination and output will be heat energy. The self
produced energy from PV’s can be transformed through heat, with utilization of heat pumps
and after that stored in PCM as required.

Figure 3: Heating pump used in ZEB

6

Predictions on solar power plant generation with machine learning techniques (PRESAV)

2.2 PV Power Generation
PV growth

Solar power is described as the most elegant way of producing electricity, without moving
parts, emissions or noise. Easily described, it converts abundant sunlight without practical
limitations. The question has not yet been answered due to differing opinions on how much
this energy converter will contribute in the future.

The role of PV cells in the future energy supply chain has been lined out. Due to its pure
form of clean and affordable energy, PV technology is expected to play a big role in the re-
newable energy market. The increasing capacity to install PV systems and a maturing, policy-
driven market have driven down the cost of PV systems. The emission of greenhouse gases
has increased dramatically after the industrial revolution. Historically, the global PV market
has grown by approximately 33% over the period of 1998-2002 [9]. In 2020, PV capacity
increased by the same percentage.

PV growth is quite difficult to predict and involves many uncertain factors. Official agencies
such as International Energy Agency(IEA) have in the past decade increased their estimates,
but still fall short of projecting actual deployment in every forecast. IEA announced that the
capacity in the PV production increased by 50% in 2016 with a total capacity of 74GWh [10].
The growth have been close to exponential in the gap between 1992 and 2021. Global PV
electricity production reached the amount of 1000 TWh in 2021. As solar power increases
competitively, the total solar capacity in the world will continue to grow rapidly. Based on
IEA, its sustainable development scenario foresees to reach 4.7 Terawatts by 2050, and more
than half of it will be deployed in India and China, making photovoltaic technology the largest
source of electricity [11].

Photovoltaic technology has changed significantly in terms of the industry structure and its
market prices. When photovoltaic systems were first recognized as a promising renewable
technology, subsidy programs such as feed-in tariffs were introduced to boost and provide
economic incentives for investments. European pioneers and Japan were the only ones to
implement this for years and as a result, the cost of solar declined due to improvements in
technology and economic scale [12]. Several national programs were instrumental in increas-
ing PV deployment such as the Energiewende in Germany and China’s 2011 5-year plan for
energy plan. 30 countries have achieved socket parity which is an alternative energy source
that generates power at a levelized cost of electricity, or LCOE, that is equal to or even lower
than the price of power from the electricity grid.

7

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Figure 4: Worldwide PV growth from 1992 to 2018

The outbreak of COVID-19 had a slight impact on the marked growth and it effected nega-
tively and exposed the vulnerability of energy supply chains. Many solar PV developers have
experienced delays in importing solar PC modules and other supplies, due to transportation
restrictions imposed by several countries as an action against the virus outbreak. The cur-
rent disruption is short-term until COVID-19 is brought under control, and the world will
remain up to speed about the long term solar energy [13]. Many developing countries in
Asia, including the Pacific have limited manufacturing capacity in the PV value chain [12].
That is why they are very dependent of importing the solar modules and other equipment.
In addition to the manufacturing capacity, the solar value chain involves technical services,
such as engineering, designing and maintaining, and there is serious skill gap in many of
the developing countries. They are really dependent on foreign consultants or contractors to
implement them in their projects. As PV technology continues to grow, it is slowly building
momentum in developing countries to consider PV technology in terms of manufacturing and
technical capacity.

GHI

GHI stands for Global Horizontal Irradiance, and it describes the total solar radiation on a
horizontal irradiance, and is the most useful metric for predicting solar panel output. The GHI
is calculated with the sum of multiple DNI(Direct Normal Irradiance), DHI(Direct Horizontal
Irradiance). DNI is the solar radiation received per unit area by a surface that is always held
normal to the sun’s rays, that come in a straight line from direction of the sun at its current
position in the sky. DHI is the amount of solar radiation received per unit area by a surface
that does not arrive on a direct path from the sun, but has been scattered by molecules
and particles in the atmosphere and comes equally from all directions [14]. GHI is usually
meassured by a pyranometer which has 180 degree view. angle [15].

GHI formula given:

GHI = DHI + DN I ⇤ cos(z) (2.1)

8

Predictions on solar power plant generation with machine learning techniques (PRESAV)

The variable z is the solar zenith angle and described as the angle between the rays from the
sun and the vertical.Which concludes that the higher the sun is towards the sky the lower the
angle SZA will be. By analyzing the function you will see that maximum amount of radiance
received by a surface, is by keeping the incoming radiation perpendicular.

Figure 5: Solar radiation components

2.2.1 Solar irradiation instruments

Pyranometer

Pyranometer is an instrument that measures solar radiation from a hemispherical (180�)
point of view and is expressed in the SI unit of irradiance W/m2. which describes the amount
of visible light and non-visible parts of the spectrum in terms of solar energy per area. The
first pyranometer was by physicists Angstrom and Anders Knutsson in 1893 [16].

Figure 6: The schematic diagram(left) and photograph(right) of pyranometer (Solar In-
struments/atmospheric Science Instruments n.d.).

Pyranometers measure global radiation, specifically per unit time, incident on a surface or a
given orientation and include both direct sunlight and diffuse sunlight [17], and the formula
is given:

Eg #= E · cos(✓) + Ed (2.2)

Where E is the maximum amount of direct sunlight(normal) and theta is the angle between
the surface normal and the position of sun in the sky. Eg # is the denotion of solar energy per

9

Predictions on solar power plant generation with machine learning techniques (PRESAV)

unit area.

Figure 7: The global irradiance includes direct sunlight and diffuse sunlight

Solar energy is the original source of most energy found on the planet. This has important
implications in two main areas: weather and climate, and energy production by harvesting
solar energy. Because solar irradiance is one of the main factors climate and weather studies,
we measure the GHI to determine the amount of irradiance falling on the surface of a given
area really depends on factors like cloud coverage, aerosol concentration, fog and smog [18].
This only applies to surface measurements, but when we measure the GHI in Earth’s atmo-
sphere it is fairly predictable.

Pyranometers are sensors that measure solar irradiance and are designed to measure the
radiation flux density from a hemispherical view within a wavelength of 0.3 to 3 x 10�3 µm
[19]. Typically a pyranometer does not require power to operate, however, due to recent
technological developments including the use of digital systems that requires electronics and
therefore we require a small external power. The solar radiation spectrum reaches the earth’s
surface extends its wavelength from 300 to 2800 nm depending on which pyranometer we
use [20]. A pyranometer is built with one or two domes, a thermopile and a black absorber,
and in recent times, a digital version has been used. Which means that electronics are a part
of it. The glass dome works as a filter that transmits wavelength from 0.3 to 3 x 10�3 µm,
and blocks thermal radiation with longer wavelengths from convection. Many pyranometers
include a second glass dome as additional shielding to improve the equilibrium between the
sensors and the inner dome, compared to single-dome pyranometers [21]. A thermopile is
used to determine the dissimilarity in temperature between two surfaces and is referred to
as label active and reference, representing the hot and cold sides, respectfully. In other words,
a distinction is made between the sun-exposed and non-exposed area. The filtered radiation

10

Predictions on solar power plant generation with machine learning techniques (PRESAV)

is absorbed by the black surface of the pyranometer and converted into heat. The thermopile
plays an important role in measuring the temperature difference, and the potential difference
formed inside the thermopile is due to the temperature gradient between the two surfaces
[22]. The temperature gradient from the black surface through the thermopile to the pyra-
nometer body is given by the formula:

�T = Rthermal · Pabsorption (2.3)

Where Pabsorption describe the heat absoption and Rthermal is thermal resistance of the ther-
mopile sensor. The thermal resistance depends on the geometry and its composition of the
thermopile sensor. The output signal from the pyranometer is given in voltage from the ther-
mopile or an even more convenient signal by including electronics.

2.3 Time Series Analysis

Time series analysis is applied when dealing with a sequence of data points collected over
a time interval. Time series analysis illustrates how variables change over time and gives
engineers insight into systematic pattern trends and how they occur, e.g. monthly, weekly or
yearly. Time series are used in numerous applications such as statistics, econometrics, and
finance.

2.3.1 Elements of time series

Time series analysis provides a way to describe and predict future values based on past behav-
iors/performance. Predicting a complex structure by analyzing the factors behind it provides
advantages that can be used to improve its performance. In time series analysis, there are
three critical components that can be manipulated to provide a better understanding of the
time series concept:

• Trend
• Seasonality
• Noise

The combination of the mentioned components can form a model that allows a classification
of time series problems:

y(t) = t rend(t) + seasonali t y(t) + noise(t) (2.4)

Trend

Whether the approach is to visualize data or to calculate various metrics of the dataset, trends
are useful for predicting future movements. The trend patterns provide an opportunity to see
if there is a rising or falling movement, hence this term results in a long-term average trend.
In other words, trend is the linear increase/decrease pattern of a data set over a period of
time. Below is an image that illustrates an increasing curve, hence an increasing trend:

11

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Figure 8: Illustration of an increasing trend, where the blue curve is the graph and black
one is the trend

Seasonality

When a curve repeats a specific fluctuation or pattern over a period of time, this is known as
seasonality. Just because a cycle occurs in a data set doesn’t necessarily mean the data points
are seasonal. Seasonality indicates that a cycle repeats itself over and over with the same
frequency. Time series problems where the seasonality is eliminated is called for "Seasonal
Stationary" [23].

Figure 9: Illustration of repeating cycles, that illustrates a seasonality pattern

Noise

Noise can be seen as small/large random spikes in a data set that stand out from the rest
of the points. Deviations such as noise do not usually express the model, and occasionally a
measurement error can create such noise.

Figure 10: Illustration of randomly generated spikes

12

Predictions on solar power plant generation with machine learning techniques (PRESAV)

2.4 Algorithm performance

The study of historical data analysis, pattern recognition, modification and prediction of an
extended set of outcomes is based on the application of algorithms. To use machine learning
algorithms on a prediction data set, the end game is to recognize a label output based on
the input features [24]. Because the data provided has a set of functions that map inputs
to an output variable based on a set of input-output pairs, the supervised learning model is
implemented. In supervised learning, we have an input variable (x) and an output variable
(Y), and the goal is to estimate the mapping function so effectively that you can predict the
output (Y) for the data set.

Y = f (x) (2.5)

Within the supervised learning process, we can divide the problems into two groups of cat-
egories, namely classification and regression. When there is an association between the in-
dependent and dependent variables and the output variable is continuous, the regression
procedure is used. Continuous problems are based on the principle that the output variable
has a real value or quantity, such as an integer or floats.

2.4.1 Prediction score and metrics

Since the strategy is to predict the power generation using the regression method, the use of
regression metrics will play a crucial role to get an overview of the predicted score. The use
and evaluation of the metric score gives an indication of how the model is performing given
the input data set. A model’s performance is therefore addressed with error measures, and
this gives an opportunity to see how close the predictions were to their expected values.

The error can be identified as the difference between the actual and the predicted value.
The ideal state of the model is that this difference in error is equal to 0, which means that the
system can correctly predict all values [25]. Errors that appear in the data set can potentially
be items such as missing sets of data points that affect the x to y mapping. Corresponding
errors are named "irreducible errors", as they can not be minimized or removed.

Y = f (x) + er ror (2.6)

Error = y � ŷ (2.7)

There are many different and useful metrics to define performances, but this thesis will only
focus on four of them; Mean Absolute Error(MAE), Mean Square Error(MSE), Root Mean
Squared Error(RMSE) and coefficient of determination(R2) .

Mean Absolute Error

MAE is calculated as the sum of absolute differences between the actual value(y) and the
predicted value (ŷ). MAE does not account for the direction, hence the values can alternate
between positive and negative but with the absolute function the output will always remain
positive.

13

Predictions on solar power plant generation with machine learning techniques (PRESAV)

MAE =

Pn
i=1 |yi � ŷi |

n
(2.8)

Mean Squared Error

MSE values are measurements regarding the condition of an estimator, and this metric is
a crucial loss function for fitting and optimizing the algorithm. The mean of the squared
differences between the predicted and estimated values in the data set, is the MSE. This
demonstrates that if a data set contains large dissimilarity in predicted and estimated values,
the larger will the squared error get, hence a MSE value closer to 0 is ideal. This phenomena
is called for the "punish effect", and usually it punish data that carries large errors as a loss
function.

MSE =
1
n
⇤

nX

i=1

(yi � ŷi)2 (2.9)

Root Mean Squared Error

RMSE is an addition to the MSE, but here the square root of MSE is implemented. What
distinguish MSE from the RMSE metric is that with MSE the unit of the predicted value is
squared, so for instance the power production in MSE will be in (KWh)2, while in RMSE the
unit will remain unchanged (KWh). A flawless model will indicate that the RMSE score is 0,
but that is more a theoretical expression of the target variable [26].

RMSE =

vut1
n
⇤

nX

i=1

(yi � ŷi)2 (2.10)

RMSE =
p

MSE (2.11)

R-Squared Score

R2 score is a regression metrics such as the the others mentioned above, and this metric has
a interval between 0 and 1 from no suited to excellently suited. This metric is implemented
when the developer is interested in seeing how good the model is fitted, hence it is important
to know that this measurement does not mean that the actual quality of the model is excellent
[27]. This statistical measurement is also classified as"coefficient of determination", and the
formula is:

R2 = 1�
Pn

i=1(yi � ŷi)2Pn
i=1(yi � ȳi)2

(2.12)

14

Predictions on solar power plant generation with machine learning techniques (PRESAV)

2.5 Algorithm selection

Applying machine learning techniques to solve a problem, we usually evaluate and compare
different types of algorithms to find the best suited solution [28]. Regression problems can
be solved with many different types of models and algorithms, and each of them respec-
tively has both benefits and disadvantages. Given the statistical noise and missing elements
that can occur in a data sample, each and every algorithms has restrictions. A preferred and
robust model is one which performs competent, disregarding of the input variables. One ap-
proach to clarify which algorithm suits to the specified data set, is to predict the performance
of each algorithm separately, and then choose the most qualified based on their predicted
performance calculated [29]. This approach offers a beneficial factor, since the exchange of
algorithms can be completed without the use of training algorithm each time a new model
is implemented.

2.5.1 Random Forest Regression

Random Forest [RF] is a supervised machine learning algorithm that, when used properly, can
provide accurate, effective and reasonable forecasts and prediction outputs. The function of a
RF employs many decision trees and each decision tree splits a new set of random features. In
other words, a decision tree splits the data set repeatedly into binary choices: decision nodes
or leaf nodes.

Figure 11: How the decision tree splits operates

The data points find the best split and continue down the path using the decision nodes,
until they arrive at a leaf node. The random forest algorithm determines the outcome by tak-
ing the average or mean of the output from different trees. This means that as the number
of trees increases, the predictions become accurate.

Decision trees are the bases of the random forest algorithm, and each decision tree forms
a tree-like structure as a supporting-technique and consists of three components: decision
node, leaf node and finally a root node as mentioned before.The concept of any decision
tree is to divide the dataset into branches and then split into other branches and it continues
until a leaf node is reached. The decision trees have shown excellent performance in settings
where the number of variables is much larger than the number of observations [30]. This
supervised learning techinque works by sampling data sets using three main hyperparame-
ters, which need to be clear before we take it into training. We use the RF algorithm to solve

15

Predictions on solar power plant generation with machine learning techniques (PRESAV)

regression or classification problems [31]. In the random forest algorithm, the data sample
drawn from a training set, with each tree in the ensemble with replacement, also called boot-
strap sample.Bootstrap sample is used when the goal is to reduce the variance of each decision
tree, by sampling random with replacement from the available training data. Bagging is also
included to bring more diversity into the dataset, and helps reducing the correlation between
decision trees [32]. Everything on the task, if a regression task is set then each decision tree
will be averaged, and if a classification task is set then it finds the most common variable
in each category and gives the predicted class.The low correlation between the models is
important to build a portfolio where the sum of all parts can produce ensemble predictions
that are more accurate compared to individual predictions. Also, the great thing about the
random forest algorithm is that it can be applied to a variety of prediction problems when
there are only a few parameters to tune.

By looking at the mathematical aspect of it, given a training set with X = x1, ..., xn and Y =
y1, ..., yn as responses, by bagging it repeatedly, and train it in a classification or a regression
tree fb on for example X b and Yb. After training, we use predictions, the unseen samples x 0

by taking the average of each individual regression trees on x 0, given the formula:

^
f =

1
B

BX

b=1

fb(x 0) (2.13)

The majority vote is to decide the classification. By using bootstrapping, we also find that the
model’s performance of this model will decrease its variance without increasing the bias. This
means that the predictions of an average of multiple uncorrelated trees are not very sensitive
to noise compared to a single tree in its training set. We use the standard deviation of the
prediction for each individual regression tree, given the formula:

� =

vuut 1
B � 1

BX

b=1

(fb(x 0)�
^
f)2 (2.14)

The variable B stands for the number of total trees and is considered a free parameter. To
find an optimal B-value, we either use cross-validation(CV), a resampling method that uses
different parts of the data to test and further train a specific model with different iterations.
The optimal number of B can also be found by observing the mean prediction error for each
training sample xi using only samples without xi in their bootstrap sample [33]. This method
of measuring error estimation in a ML is called Out-of-bag error(OOB).

If one or more features are very strong in terms of predicting for the output variable, these
features will be selected in many of the B trees, causing them to correlate [34]. Considering
a classification problem with p features, pp features are used in each split [35], and p/3
is used for regression problems. The best values for these parameters depend highly on the
problem at hand and they are treated as tuning parameters [35].

16

Predictions on solar power plant generation with machine learning techniques (PRESAV)

2.5.2 XGBoost

Extreme Boosting, abbreviated XGBoost, is a gradient boosting decision tree framework that
provides parallel tree boosting and a scalable supervised algorithm used in machine learning
for supervised regression classification problems.The concept of "gradient boosting" combines
single weak model with another single weak model, to add a collectively stronger model [36].
This XGBoost features:

• Regularized Learning: it will allow us to select models that employ simple yet predic-
tive functions. Parameters such L2 or �, which are constants in the gain and predictions,
that help to smooth out the final touch [37].
• Gradient Tree Boosting: This type of tree model is not able to be optimized using

traditional optimization methods Euclidean space, therefore the model is trained with
an additive manner [36].
• Shrinkage and Column Sub-sampling: Shrinkage is commonly used to reduce the un-

stable regression coefficients. It is added by the factor ⌘ after each step of tree boosting,
reducing the impact of each three and leaves capacity for the future to further improve
the model [38]. Coloumn sub-sampling prevents over-fitting by adding a random por-
tion of the training data that is already used to fit a base-learner.

By looking at the mathematical aspect, the first prediction requirement is set to minimize
the errors in the data set. First, the prediction is simply the mean value of the observations,
and is used for future predictions. The loss function is measuring the difference between the
observed and predicted value scale value. In XGBoost the loss function is given:

`i(yi , ŷi) =
1
2
⇤ (yi � ŷ)2 (2.15)

i stands for each index in terms of row, ŷi stands for the predicted value at i and yi is variable
for the observed value at i. The next iteration creates a regression to predict the residuals,
which means the difference between the observed and the estimated value error from the
start. The reason for this, is to split the data into groups by separating data based on feature
values. Same principle as decision trees, but we are now talking about the regression trees.

17

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Figure 12: XGBoost plot

For the next iteration so-called learners, a new regression tree is built by making the error
smaller and then making the prediction smaller by increment, illustrated by the objective
function, which combines the loss function but also the regression tree functions, with in
other words, the penalty term for the model’s complex. This training proceeds with iteration,
predicting the residuals or errors of each previous tree, which are then combined with the
previous tree to make a final prediction gradient boosting.

Ob j = �
X

j

G2
j

H j +�
+ 3� (2.16)

This is the function we use to measure the performance of the trees. The weight of the resid-
uals in the leaf is only the mean value if � = 0. XGBoost does not build all subtrees at once,
but add a subtree at each iteration. Fitting is done by going step by step, and the prediction
result is given with the formula:

ŷi
(t) =

tX

k=1

fk(xi) = ŷi
(t�1) + ft(xi) (2.17)

! is the function of a subtree and is added to to the objective function. The complexion of
the tree is determined by regularisation terms as mentioned before and is defined:

⌦(fk) = �� +
1
2
�

TX

j=1

||! j ||2 (2.18)

� and � are the variables for the penalty coefficients of the regularisation. T is the number
of the leaf nodes of the kth tree. ! j is the weight of the jth leaf node of the kth tree.

2.5.3 Support Vector Regression

Support Vector Regression is a regression implementation of the Support Vector Machine
classification model, that is a supervised learning method, providing the flexibility to define

18

Predictions on solar power plant generation with machine learning techniques (PRESAV)

how much error is allowed. This is measured by variable ✏ which defines the margin of
tolerance. SVR is a regressor and we use this algorithm to predict continue values, instead of
discrete outputs.

Figure 13: Visualization of Support Vector Regression in 2-D

The concept of SVR can be described with a geometrical perspective, for example:using one-
dimensional graph with boundary lines. These lines define the distance ✏, in other words
the margin. In the middle of the boundary lines, we have so called Hyper Plane which can
be described as a separation line between the data classes, and the main goal is to try min-
imize the error rate. We get an idea of the data points that are closest to the hyperplane(if
it is 3-Dimensional) or the support vectors are within the boundary, in other words, those
data points with the least error rate [39]. Since SVR models can be performed at a higher
dimension(3-Dimensional), we need a function that should map all the data points, and this
function is called Kernel. Examples of kernel functions: Radial Basis Function(RBF), Sig-
moidal, Polynomial and Gaussian Kernel [40]. The supporting vector is used to define the
hyperplane and stays close to the boundary lines. With the data points forming a curve, the
SVR regression algorithm uses the curve to find the best possible match between the vec-
tor and position of the curve. Here come the Support Vectors in, by trying to determine the
nearest match between the function and the data points and further used as predictions. The
kernel trick is therefore a tool to use when the data is not linearly separable. The algorithm
does not operate in a higher dimensional feature space, but uses similarity measures without
doing the transformation.

Real data is often non-linear in terms of how linear and how separable it is. Error play in
an important role Support Vector Regression and parameters such as C and Gamma are re-
ally important a to understand how we separate the data points and then finding a balance
between the variance and bias [41]. The Gamma parameter � controls the distance of a sin-
gle data point, which means that low values of gamma indicates a large similarity radius,
which means that more data points are joined together. The decision boundary will therefore
be more curvature. If there are high values of gamma, that means that each data points are

19

Predictions on solar power plant generation with machine learning techniques (PRESAV)

closer to each other and will be over-fitting, and a small noise may cause data points to fall
out of a determined class [42].

A boundary might be placed too far for each class and will further contribute to some mis-
classified exceptions. This is why we use the C hyperparameter. C parameter control and tell
us that we need to avoid misclassifying each training example. C is a hyperparameter that
adds a penalty for each misclassified data point. When the C value is low, a large margin
for a decision boundary is set, which is good [43]. In our project we use the RBF kernel, and
therefore we need both C and gamma parameter is both optimized simultaneously. If gamma
parameter comes of as high, the effect of C comes negligible. If it comes of as low, the the
function will have a large variance and lower bias, hence points must be close to each other
in order to be in the same class. Formula for RBF is given:

K(x , xi) = exp(�� ⇤
X
(x � x2

i) (2.19)

Here is x defined as input variable and xi defined as supporting vector. A good value for �
will be around 0.1 to 1, the radial kernal is local, and can create space with complex regions.

2.5.4 Multiple Linear Regression

Multiple Linear Regression(MLR) regression model used to describe relationships between
several variables and a response variable output. The formula for a multiple linear regression
is given:

y = �0 + �1X1 + ...+ �nXn + ✏ (2.20)

y is the value for prediction or estimation in the nth - observation. n stands for the total
number of predictions. �0, intercept represents the change in mean response y when all the
other predictors are constant. �n is the regression coefficient in n-th predictor ✏ stands for
the residual error, and defines the difference between the model’s prediction and the and the
actual y value.

This technique allow us to determine the model’s variation and how each relative variable
contribute to the total variance [44]. For multiple linear regression we use matrix represen-
tation, because it expresses multiple linear regression models simultaneously and it becomes
easier to compute each model parameters. Matrix function is given:

y = � ⇤ x + ✏ (2.21)

The � coefficient indicates that it is linked to each independent variable. In a linear regression
model we minimize the sum of squared errors to find all of the � . This by actually finding
the error

20

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Figure 14: A visual representation of MLR

MLR have more parameters than a simple linear regression model, adding more terms
will definitely improve the fit for the data. But more terms will also raise the odds of over-
fitting the model which will further lead to fault results while trying to predict values. By
calculating the standard error of each coefficient or by regularization we can reduce the
number of parameters. When calculating the standard error, we will automatically see which
variables are the valuable in terms of its contribution to the model. By applying regularization,
we implement an error by adding to increase more terms in the model, and help us find a
balance of removing terms reduce the downside of extra terms, and still include enough of the
important terms to provide a good fit. To estimate the � values, we need the sum minimized
of squared errors for the data sample.

21

3 Pre-Processing

Preprocessing methods and procedures are covered in this chapter. When dealing with machine
learning algorithms, preprocessing is the first and most important stage. The chapter is separated
into sections, where we first go over how to combine the datasets, clean them up, visualize them,
and finally look for seasonal trends.

3.1 Pre-Processing

3.1.1 Combining data sets

The files provided by SINTEF contained two CSV-files where the first file had solar power
production values of each facades, while the second file had values of weather parameters
recorded by SINTEF’s test-cell. When processing data sets, the first step is to retrieve the CSV
files over to Python platform, where the refinements takes place and improves the data to
algorithms.

After importing the two separate CSV-files, we are now interested in observing how
the data sets looks like:

Figure 15: Energy production of each facades in KWh

Figure 16: Measurements on weather parameters

22

Predictions on solar power plant generation with machine learning techniques (PRESAV)

We observe that the two files start at different times and have distinct time formats,
since weather file has YYYY-DD-MM timeformat. We modify the files’ starting and ending
intervals to be equal and change the time format to a desirable one using Python ma-
nipulations. The next step is to merge the two data sets into one after deleting all of the
columns in figure 15 except "Timestamp" and "Total".

Figure 17: Combined data sets

3.1.2 Statistics

Next step would be to look at some statistics on the dataframe, and this can be done with
pandas describe() function. The reason for this is to get a sense of what kind of data we
possesses.

Table 2: Summary of measured data

Temp Dew W.speed W.direction R.humidity A.humidity Barometric Solar Total_production
count 2567.0 2567.0 2567.0 2567.0 2567.0 2567.0 2567.0 2567.0 2567.0
mean 1.542 -2.034 1.588 191.274 80.228 4.318 1001.416 27.877 5.551
std 4.331 4.308 1.099 54.775 20.667 1.350 15.547 68.696 16.394
min -12.430 -16.930 0.140 38.760 17.01 1.280 963.820 0.00 0.00
25% -1.040 -5.215 0.680 150.00 64.915 3.285 990.570 0.00 0.00
50% 1.570 -1.940 1.330 205.87 86.490 4.170 1003.29 1.040 0.00
75% 4.285 1.070 2.235 228.065 100.00 5.210 1013.810 12.00 1.781
max 15.210 9.930 6.380 331.32 100.00 9.360 1037.550 483.110 111.656

• count- Quantity of non-values
• mean- Mean/average of each parameter

x̄ =
P

x
N

(3.1)

• std- The standard deviation

s =

vut 1
N � 1

NX

i=1

(xi � x)2 (3.2)

• min- The minimum value
• 25%- The 25% percentile
• 50%- The 50% percentile
• 75%- The 75% percentile
• max- The maximum value

23

Predictions on solar power plant generation with machine learning techniques (PRESAV)

3.2 Visualization

After pre-processing and statistical analysis, a good next step is to check for missing values
in the data set. This can be accomplished by utilizing the Seaborn heatmap function,
which provides a visualizing perspective that can validate that all parameters have no
gaps or missing data.

Figure 18: Heatmap on missing values

When it comes to analyzing data, trends and then developing algorithms, it is usually
a good idea to plot each and every parameter first, and get an overview of how differ-
ent parameters behave over the time frame. Here are the features and target variables
presented, first each feature then the features and target variable in lineplots.

(a) Temperature in C� (b) Lineplot of Temperature and Total_production

24

Predictions on solar power plant generation with machine learning techniques (PRESAV)

(c) Dew point (d) Lineplot of Dew point and Total_production

(e) Wind speed measured in m/s (f) Lineplot of Wind speed and Total_production

(g) Wind direction (h) Lineplot of Wind direction and Total_production

(i) Relative humidity (j) Relative humidity and Total_production

25

Predictions on solar power plant generation with machine learning techniques (PRESAV)

(k) Absolute humidity in g/m3 (l) Absolute humidity and Total_production

(m) Barometric pressure (n) Barometric pressure and Total_production

(o) Solar radiation that is calculated by a horisontal pyra-
nometer that measures directly upwards

(p) Solar radiation and Total_production

Figure 19: Total production in KWh of each facade

26

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Since Total_production is the target variable, hence the one we are going to predict and
forecast, it may be appropriate to visualize how monthly, weekly and daily production
operates:

Figure 20: Monthly and weekly PV production

Figure 21: The daily mean and max PV production

3.3 Seasonal patterns recognition

When managing time series problems, a common belief is that history repeats itself, hence
we can assume that future data patterns may potentially resemble in historical data pat-
terns. Seasonal patterns effects can be viewed as related to calendar effects, where different
days/weeks/months/holidays and seasonal periods can affect on collected data sets.

Seasonality is generally divided into two branches; an additive seasonality pattern and
a multiplicative seasonality pattern

• Additive seasonality: The seasonal elements is attached as a absolute value, utilized
when the elements amplitudes remains constant.
• Multiplicative seasonality: The amplitude increases/decreases during the rise of trends.

Additive seasonal decomposition formula:

Observed(t) = Trend(t) + Seasonali t y(t) + Random(t) (3.3)

Multiplicative seasonal decomposition formula:

Observed(t) = Trend(t) ⇤ Seasonali t y(t) ⇤ Random(t) (3.4)

27

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Figure 22: Illustration of the different observed decomposition’s

Our dataframe is a combination of these two decomposition’s, which creates a new sys-
tem labeled "pseudo-additive" decomposition. Our model contains small and zero-value
numbers, resulting in us not being able to use the multiplicative decomposition [45]. Be-
fore we can plot the various patterns, we must manipulate the dataframe. Originally,
the frame has 2567 points, and this is not appropriate when it comes to plotting. We
have chosen to resample the frame into daily averages, to smooth the curves and avoid
zero-values. This approach reduces the amount of points to 107.

Figure 23: Total_production re-sampled daily.

Figure 24: Plots of trend & seasonality

28

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Figure 25: Plots of residuals & observed

3.4 Feature selection

Before we carry on with simulating each algorithm, we should also examine which parame-
ters correlates. This is done to optimize the algorithms and potentially remove unimportant
variables that can result in noise levels. Determination of the correlated variables can be done
by looking at techniques such as heat-map correlations.

3.4.1 Pearsons correlations test

Pearsons correlations test [PCT] is a statistical method for finding the linear connection be-
tween variables, and correlation demonstrates how robust the connection is. The values for
correlation goes from -1 to 1.

• Positive correlation coefficient = 1: When one variable increases, the other increases
simultaneously in the same rate.
• Negative correlation coefficient = -1: When one variable increases, the other variable

decreases simultaneously in same rate.
• Random correlation coefficient = 0: No correlation between the variables, changes

are randomly.

Figure 26: How different correlations occurs

29

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Pearsons =

Pn
i=1(xi � x̄)(yi � ȳ)

qPn
i=1(xi � x̄)2
qPn

i=1(yi � ȳ)2
(3.5)

Below we have put the values together pair-wise, and performed a Pearson correlation
test for finding the coefficients, then plotted them into a heat-map. The coefficients express
how dissimilar values are correlated from -1 to 1.

Heatmap on correlated values

Figure 27: Heatmap on correlated values

After glancing at the heatmap, we can observe that "Solar radiation" has the highest
correlation with the targeted variable, while "Relative humidity" has the lowest negative
correlation. We also see that "Wind speed" is by far the most random parameter, in terms
of the main variable.

30

4 Methodology Part 2

This section will go deeper into key machine learning methods and applications for model opti-
mization. The flowchart below shows how each algorithm’s procedure is applied to the tasks.

Figure 28: How the approach on the methodology part 2 section will occur

4.1 Machine learning aspects

4.1.1 Train-Test split

Considering that we are in the process of predicting and forecasting future solar production
using machine learning techniques, a conventional strategy is to split the data frame into
training/test sets [46]. The ratio of sets depends on many factors such as the dimensions of
the dataframe, the structure of the model and the intended use case. For our purposes, we
use 90% for training and the remaining 10% for testing our models. The reason is that we
want to use these samples for testing since our model has never seen them before. We think
the split ratio of 90:10 makes sense here, since the data set on 2567 points is not that large,
hence 2310 points will be in training and remaining 257 will be included in the testing set.

31

Predictions on solar power plant generation with machine learning techniques (PRESAV)

4.1.2 Cross-validation/K-Fold

In machine learning, a common approach when dealing with algorithms and predictions, we
usually split the dataset into two sets, which are training and test set. Let’s say we have a
dataset with a 90:10 ratio like in our case, we train the model on 90% and then test it on the
10% the model hasn’t already seen and then predict the values. This general approach has
some shortcomings, namely that not every data point is included in the test set, so we only
assess the strength of the model based on the 10% of the test set. Cross-validation solves this
problem by dividing the entire set into approximately equal groups, as in our case Kfold = 5,
meaning five groups each containing the same number of data points [47].

Figure 29: 5-Fold Cross-Validation

The procedure for KFold is that it first tests on the red block in the first row while training
on the remaining gray blocks, then jumps to the next row while repeating the same pattern
until it’s gone through all the groups.

4.1.3 StandardScaler

It is often convenient for the features to be scaled relatively similarly in relation to each other.
With StandardScaler from the scikit-learn library, each feature becomes equally important,
while the algorithms are given almost equally scaled values so they don’t get confused. Stan-
dardScaler compares different values through a method called for standardization, and in
SVR this function becomes even more important because the algorithm is very sensitive to
different values. Here is z = scaled output value, x = original value, µ = mean and � =
standard deviation from the mean.

z =
x �µ
�

(4.1)

32

Predictions on solar power plant generation with machine learning techniques (PRESAV)

4.2 Hyper parameters

Adjusting "hyper parameters" is a tool for enhancing models. One may fine-tune the algo-
rithms using this strategy to achieve more optimized performance. We’ve listed which "hyper
parameters" were modified for each algorithm below.

4.2.1 Hyper parameters for RF

n_estimators

n_estimators can be defined as the numbers of trees used in the model. This hyperparame-
ter encompasses the creation of multiple decision trees, while manage the quantity used in
the system. It is beneficial to keep in mind that a higher value of n_estimators will have an
impact of the running time of the code, but as well as provide a more stable and robust predic-
tions. After experimenting with many values, these where used in the code; ’n_estimators’=
[50,100,150]

max_depth

max_depth in RF is described as the maximum length of route there is between a root node
and the leaf node. This is a critical hyperparameter for the model, as this parameter affect
both the score and the pace of the algorithm. Low values for max_depth will lead to a lower
possibility for over fitting the model. These were used for code; ’max_depth’: [4,5,6]

max_features

This hyperparameter applies to the number of maximal attributes supplied to each tree in
the model. For the code; ’max_features’:[1,2,3]

4.2.2 Hyperparameters for XGboost

learning_rate

When it comes to XGboost, one crucial hyperparameter is the learning_rate which controls
and determines how quickly the model adapts to the problem. With Xgboost a possible out-
come can be that the decision trees learn too quickly and therefore overfit the model, which
can be issue when computing. learning_rate enters this equation just to slow down/pace up
the learning speed, thus giving us an advantage in controlling the number of steps.

colsample_bytree

When constructing each tree, the subsample ratio of columns is used. Subsampling occurs
only once for each tree built, and this is done by colsample bytree. In code; ’colsample
bytree’:[0.5,0.6,0.7]

4.2.3 Hyperparameters for SVR

C

The C hyper parameter instructs the SVR optimizer how much you don’t want each training
example to be misclassified. In code; ’C’: [150,200]

gamma

gamma is a hyper parameter that is established before the training phase and is used to
determine the decision boundary’s tangent strength. In code; ’gamma’: [0.1, 1, 5]

33

Predictions on solar power plant generation with machine learning techniques (PRESAV)

4.3 Web Application

4.3.1 Streamlit

The steps after data processing, training/testing and adapting to the best scoring model is
to realize an interactive user interface that demonstrates the power and performance of the
algorithms while deploying the model. For this we need a web application and there are
many potential applications that can be used, but for the sake of simplicity we chose Stream-
lit. Unlike other well-known applications like Flask and Django, Streamlit is a simple and
beginner-friendly application that is a Python extension, which means we don’t have to learn
any new programming languages since it is based on Python. Streamlit is an open-source
framework that allows easy realization of web applications while offering the possibility to
use some of the well-known Python packages such as sci-kit learn, matplotlib and pandas.

For our purposes we will use Streamlit to showcase the backend work done in the Jupyter
Notebook and the applications will have two main functions, one representing the best mod-
els and the other allowing other users to upload their own data and see the performance of
their dataset.

4.3.2 Restrictions

In terms of the application, we have set some limits on how input data from consumers should
be. One limitation is that the file must be a time series, since the application is directly aimed
at such problems. The algorithms here are modified to solve such problems, also the file must
be in CSV format. A solution for other types was not in focus as the file we received was in a
CSV file, so targeting the application at such files was a natural choice.

The input dataset must be in a natural form, and by that we mean date/timestamp must
be in the first column, then columns with desired features, and finally a target variable fea-
ture in the last column. The purpose of this is that the application is non-interactive and does
not take into account cleaning in the desired format, this will then significantly affect the
predictions and plots.

In addition, the data set should be uniform and clean, i.e. it should have undergone pre-
processing before it can be used in the application. There should be no empty cells in the
CSV file uploaded to the application.

Figure 30: Information section from application

34

Predictions on solar power plant generation with machine learning techniques (PRESAV)

4.4 Procedure

The approach will be that we will have ten different cases in which we will examine how the
models respond in each case. In case 1, we will initially include all parameters, then in case
2, we will include all parameters again, but this time optimized and finally remove one by
one weather parameter until we are left with only the last parameter. The four algorithms
outlined in the theory section 2 will be utilized to forecast PV production. This strategy allows
us to investigate the impact of excluding each specific parameter on models behavior while
iterating the algorithms repeatedly. For the optimization part, we’ll use grid searching for all
algorithms except MLR, because the group couldn’t come up with a technique for it.

When it comes to presenting the results, each case will be visually displayed using line plots,
and the algorithms models will be compared to one another, as well as a presentation of the
models metrics performance, as mentioned in chapter 2. The line plots will show randomly
generated values retrieved by the test set, which will be compared to the model’s predicted
values at that test set index. A table showing the difference between actually produced values
and predicted values will be displayed to give a clearer understanding of how each unique
model works.

To calculate which model we think performs best, we choose to rank the models based on
RMSE and R2 values, with the model with the lowest RMSE value and the highest R2 value.
Both the MAE and MSE values give a good indication of how accurately the model is perform-
ing and what the difference in error is between desired solutions and predicted solutions, but
for this purpose we will prioritize them down but also include them.

35

5 Results

5.1 Training/Test-Score

Below are the training and testing results each model has after the grid search and we notice
that the "all features" has no value and that is because this operator only works on models
that have completed the grid search. For RF and SVR models, a higher value closer to 1
indicates the model is well trained/tested, but for the XGBoost models, the value closest to 0 is
ideal. The reason XGBoost differs from the others is that it used the neg_mean_squared_error
metric, which is identical to MSE but only works with negative values instead.

Table 3: Training and test scores

Scores All All optimized Temp Dew W.speed W.direction R.humidity A.humidity Barometric Solar
Training RF x 0.850 0.853 0.858 0.857 0.859 0.853 0.855 0.832 0.356
Training XG x -33.740 -33.952 -34.074 -34.251 -36.238 -34.532 -34.227 -40.157 -150.181
Training SVR x 0.803 0.845 0.805 0.843 0.838 0.811 0.804 0.791 0.323
Testing RF x 0.871 0.868 0.878 0.872 0.864 0.854 0.874 0.864 0.418
Testing XG x -8.935 -8.761 -8.072 -10.094 -11.918 -7.975 -11.297 -14.459 -49.705
Testing SVR x 0.954 0.950 0.949 0.940 0.938 0.951 0.951 0.916 0.991

We find that RF performs quite similarly in both training and testing, with slightly
higher values in testing, which can tell us that the training for this cross-validation al-
gorithm was successful.For SVR and XGBoost we experience a big improvement when the
phase shift from training over to testing. These are significant improvements and it is rea-
sonable to assume that the cross-validation process using the 5-fold technique responds
well to these models.

36

Predictions on solar power plant generation with machine learning techniques (PRESAV)

5.2 Model evaluation

5.2.1 Comparisons between cases

Here are the 10 various cases displayed along with plots of each model next to each other
and, lastly a table illustrating models metrics measurements.

Case 1: All parameters as features

Figure 31: RF & XGBoost

Figure 32: SVR & MLR

Table 4: Performance comparison for Case 1

RF XG SVR MLR
MAE 2.467 2.381 2.944 3.447
MSE 45.908 41.332 51.434 52.759
RMSE 6.776 6.429 7.172 7.264
Rˆ2 0.8730 0.8856 0.8577 0.8540

In case 1, we observe XGBoost model has the best performance when it comes to including
all features but not optimized. XGBoost have the lowest values in MAE, MSE and RMSE.
while the highest value on R2, while MLR is on the other side of the spectrum, with the
highest values on MAE, MSE and RMSE and the lowest at R2. For RF and SVR, the models
seem to underfit on many occasions.

37

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 2: All parameters optimized as features

Figure 33: RF & XGBoost

Figure 34: SVR

Table 5: Performance comparison for Case 2

RF XG SVR MLR
MAE 2.970 1.400 3.062 x
MSE 49.951 8.935 51.674 x
RMSE 7.068 2.989 7.188 x
Rˆ2 0.8618 0.9753 0.8570 x

For case 2 RF, XGBoost and SVR have been optimized with all features included. Again,
we find that XGBoost performs best overall in comparisons to RF and SVR, and XGBoost
is also the model that performs better after grid search, while the others do not show
significant improvements, but rather a down scaling of the metrics.

38

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 3: All parameters optimized excluding temperature

Figure 35: RF & XGBoost

Figure 36: SVR & MLR

Table 6: Performance comparison for Case 3

RF XG SVR MLR
MAE 2.717 1.265 2.854 3.394
MSE 43.804 8.761 42.368 53.058
RMSE 6.618 2.960 6.509 7.284
Rˆ2 0.8788 0.9758 0.8828 0.8532

In case 3, XGBoost stands out with the best overall metrics performance, while MLR has
the worst metrics. There are a multitude of similarities between RF and SVR, with these
models hardly being separated. RF has lower MAE and R2 compared to SVR while SVR
has lower MSE and RMSE.

39

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 4: All parameters optimized excluding dew point

Figure 37: RF & XGBoost

Figure 38: SVR & MLR

Table 7: Performance comparison for Case 4

RF XG SVR MLR
MAE 2.747 1.228 3.048 3.451
MSE 44.928 8.072 53.308 52.750
RMSE 6.703 2.841 7.301 7.263
Rˆ2 0.8757 0.9777 0.8525 0.8541

In Case 4, the dew point feature was removed and the first thing that stood out was that
XGBoost differed from the other best performing models. SVR is comparable to MLR with
similar metrics and we can also observe on the plots that between intervals 15-20 on the
x-axis all models are overfitted.

40

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 5: All parameters optimized excluding wind speed

Figure 39: RF & XGBoost

Figure 40: SVR & MLR

Table 8: Performance comparison for Case 5

RF XG SVR MLR
MAE 2.825 1.335 2.782 3.415
MSE 48.170 10.094 43.825 53.489
RMSE 6.940 3.177 6.620 7.314
Rˆ2 0.8667 0.9721 0.8788 0.8520

For case 5 we observe the same patterns as for the other cases regarding XGBoost, where
the algorithm has the highest performance. Here, SVR and MLR are similar in terms of
metrics.

41

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 6: All parameters optimized excluding wind direction

Figure 41: RF & XGBoost

Figure 42: SVR & MLR

Table 9: Performance comparison for Case 6

RF XG SVR MLR
MAE 2.830 1.591 3.303 3.454
MSE 47.687 11.918 69.559 52.825
RMSE 6.906 3.452 8.340 7.268
Rˆ2 0.8681 0.9670 0.8076 0.8540

In case 6 we notice a drop in performance for XGBoost, where the overall metric performs
slightly worse than case 5. Another notable thing is that for SVR we see that the R2 score
for this model is significantly lower than case 5, while at the same time MAE, MSE and
RMSE are higher.

42

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 7: All parameters optimized excluding relative humidity

Figure 43: RF & XGBoost

Figure 44: SVR & MLR

Table 10: Performance comparison for Case 7

RF XG SVR MLR
MAE 2.963 1.319 3.054 3.418
MSE 50.609 7.975 51.993 53.010
RMSE 7.114 2.824 7.211 7.281
Rˆ2 0.8600 0.9779 0.8562 0.8533

In case 7, RF, SVR, and MLR have similar metric performances with few difference, while
the XGBoost model again performs better than the others. For XGBoost we can observe
that the model hits the peak well in the interval 12.5-15 on the X-axis, while SVR seems
to slightly overfit and MLR to underfit at this point.

43

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 8: All parameters optimized excluding absolute humidity

Figure 45: RF & XGBoost

Figure 46: SVR & MLR

Table 11: Performance comparison for Case 8

RF XG SVR MLR
MAE 2.846 1.450 3.046 3.431
MSE 47.203 11.297 53.910 52.860
RMSE 6.870 3.361 7.342 7.271
Rˆ2 0.8694 0.9687 0.8508 0.8538

In case 8 we see that the initial starting point on the RF and MLR plots the prediction
starts slightly earlier than the actual plot, while for SVR and XGBoost it starts symmet-
rically.

44

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 9: All parameters optimized excluding barometric pressure

Figure 47: RF & XGBoost

Figure 48: SVR & MLR

Table 12: Performance comparison for Case 9

RF XG SVR MLR
MAE 3.110 1.737 3.230 3.349
MSE 53.292 13.459 63.140 53.686
RMSE 7.300 3.669 7.946 7.327
Rˆ2 0.8526 0.9628 0.8253 0.8515

In case 9 we observe that every model starts the predicted graph slightly above the actual
one, same as for previous case.

45

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Case 10: All parameters optimized excluding solar radiation

Figure 49: RF & XGBoost

Figure 50: SVR & MLR

Table 13: Performance comparison for Case 10

RF XG SVR MLR
MAE 6.969 3.637 8.175 8.634
MSE 207.643 49.705 271.803 266.520
RMSE 14.410 7.050 16.486 16.325
Rˆ2 0.4255 0.8625 0.2480 0.2626

For the last case we see a big drop, especially for RF, SVR and MLR, while the XGBoost
model experiences a slight drop in metrics but performs well relative to the others. This
indicates that the solar radiation parameter plays an important role while the XGBoost
model performs very well. Below we see the average value of the RMSE and R2 scores for
each algorithm.

Table 14: Average RMSE & R2 scores

RF XG SVR MLR
RMSE 7.67 3.87 8.21 8.29
Rˆ2 0.82 0.95 0.79 0.78

46

Predictions on solar power plant generation with machine learning techniques (PRESAV)

5.2.2 Differences between actual and predicted

After running through all the models and doing metric calculations, we might want to have
some real world values to compare the predicted solution to the actual one as a reference point
in addition to the plots to see how our models behave versus the actually produced values y_test.
Actual values are randomly selected from the test set sample.

RF

Table 15: Performance of a forecast model based on RF

y_test All All optimized Temp Dew W.speed W.direction R.humidity A.humidity Barometric Solar
3.035 10.37 6.04 5.83 5.39 5.38 6.43 4.96 5.99 5.78 2.00
0.602 0.70 2.77 2.31 1.35 1.82 2.70 2.85 1.98 2.06 21.30
0 0.1 1.12 0.72 0.82 0.66 0.64 1.00 0.62 0.69 2.24
0 0.1 0.83 0.61 0.63 0.76 0.63 0.68 0.53 0.60 3.64
29.113 53.80 42.82 44.58 43.52 45.06 46.55 43.10 47.48 41.97 7.10
2.730 5.35 6.19 6.97 7.52 7.42 7.33 5.53 7.15 11.64 4.24
68.527 47.54 50.34 52.30 51.32 48.77 49.20 49.42 51.01 51.69 23.84

Comparing the actual and predicted values for the RF case, we see that the model never
gets right, but in most cases falls short with a little or too much. In one case with the
solar radiation model we see the model missing a lot with a production of 21,30 where
it should have been around 0,602.

XGBoost

Table 16: Performance of a forecast model based on XG

y_test All All optimized Temp Dew W.speed W.direction R.humidity A.humidity Barometric Solar
3.035 8.83 4.68 4.62 4.32 4.85 6.83 5.19 4.38 5.89 2.08
0.602 0.63 1.36 0.02 1.44 0.41 0.94 0.43 1.25 0.87 21.98
0 0.13 0.44 0.01 0.25 0.28 0.78 0.13 0.20 0.77 2.61
0 0.12 -0.18 0.49 0.24 -0.07 0.39 -0.50 0.22 0.64 3.37
29.113 50.57 39.60 42.41 39.83 41.33 39.52 40.20 41.97 38.28 14.52
2.730 5.83 5.27 5.2 5.47 6.83 6.33 4.86 6.46 7.08 3.80
68.527 43.90 60.73 65.59 61.02 61.38 60.93 61.36 60.00 61.89 54.32

The most striking part of the XGBoost case instance is the similar spike on the model
without solar radiation as for the RF case, where the predicted value is higher than the
actual value. Surprisingly, there were some negative numbers in this case, which can be
attributed to the scaling methods used, which included StandardScaler.

47

Predictions on solar power plant generation with machine learning techniques (PRESAV)

SVR

Table 17: Performance of a forecast model based on SVR

y_test All All optimized Temp Dew W.speed W.direction R.humidity A.humidity Barometric Solar
3.035 5.36 3.61 4.75 3.06 5.59 3.58 3.84 3.28 6.50 6.40
0.602 0.14 0.95 1.19 1.64 1.98 -0.46 1.27 1.58 0.94 13.26
0 1.09 0.92 0.22 1.11 0.57 0.48 -0.02 1.09 1.23 1.20
0 0.18 1.35 1.37 1.35 1.10 0.89 1.52 1.28 -0.75 2.44
29.113 43.23 43.37 44.57 42.75 41.22 41.93 45.16 42.85 52.43 64.14
2.730 6.18 4.20 3.66 6.05 3.24 2.28 4.24 5.20 6.13 7.236
68.527 45.68 37.34 40.74 36.21 43.24 45.97 37.66 35.09 36.50 11.00

Closer inspection of the table reveals that, with the exception of the last case, the models
perform decently, with implications that the models over-predicts in the majority of cases
disregarded from the last row.

MLR

Table 18: Performance of a forecast model based on MLR

y_test All All optimized Temp Dew W.speed W.direction R.humidity A.humidity Barometric Solar
3.035 9.21 x 9.12 9.16 10.04 9.22 9.26 9.26 8.70 1.26
0.602 0.34 x 0.79 0.33 0.15 0.45 0.46 0.45 0.08 18.85
0 1.47 x 1.11 1.42 1.66 1.64 1.25 1.43 0.39 2.58
0 -0.26 x -0.38 -0.35 -0.39 -0.07 -0.46 -0.25 -0.39 4.07
29.113 43.89 x 43.19 43.73 43.70 43.75 43.41 43.89 44.01 10.53
2.730 12.56 x 12.03 12.42 12.62 12.72 12.03 12.53 13.27 5.30
68.527 48.64 x 49.43 48.83 48.08 48.66 49.12 48.60 48.81 25.30

When it comes to MLR, we can observe that "All optimized" has no values specified. This is
due to the fact that this algorithm did not go through a grid search. In several instances,
we can find that the models both over-predict and under-predicts.

48

Predictions on solar power plant generation with machine learning techniques (PRESAV)

5.3 Streamlit

Our application will have two main functions, as stated in the method section 4. Users of this
app will also be able to choose their preferred "training / test ratio," which the program will
adjust to. When you change this variable, the model is retrained, and new predictions are
generated. Below we first display a version of 80:20 "training / testing ratio", then further
change the variable to 90:10 to show how the function occurs:

Figure 51: Training/testing ratios on Streamlit

Figure 52: After editing ratios

The link for the application can be found at;

https://share.streamlit.io/moahadii/streamlit/main/main.py

49

6 Discussion

In this section, the experiments and solutions discovered in the results chapter 5 are dis-
cussed and analyzed. The chapter is divided into several parts, where we first summarize the
understanding of the project and then go deeper into analyses before finally offering some
reflections on how future work can build on this paper.

6.1 Impacts on PV predictions

6.1.1 Weather influence

A source of uncertainty when working with PV production can be that solar production de-
pends not only on previous production values, but also on factors such as weather parameters.
Weather can have an impact on output production as solar panels have an ideal temperature
range for best efficiency [48]. It can therefore be assumed that the weather parameters used
in this dataset are perhaps theoretical in nature, since the records were only made for the
winter months and not for the whole year. One can perhaps get a better overview of PV
production in the ZEB-lab if you have more precise data over a longer period of time. Cau-
tion should be exercised when the sample size of data is small, as the results may not be as
meaningful as desired.

6.2 Constraints

6.2.1 Area of focus

Since the task was narrowed to only develop an optimized model that predicts the power
generation from PV’s, rather than looking at the big picture holistically with energy manage-
ment and maximum utilization of locally generated energy, our experiments will be rather
limited. With a broader understanding of how the system is built and how it is supposed
to work, the algorithms could possibly have been more precisely specified and targeted to
contribute to the PRESAV structure.

6.2.2 Level of knowledge

The task partially catered to our specialization, but machine learning was a new and interest-
ing concept that we had no experience with. In addition to all the new information the group
needed to gather, one member dropped out of the program, and there were repercussions.
The ideas and thoughts surrounding the project had to be reorganized.

50

Predictions on solar power plant generation with machine learning techniques (PRESAV)

6.3 Algorithms analysis

6.3.1 Pre-processing models

The algorithms scaling was first attempted with the MinMaxScaler function, rather than the
StandardScaler, to ensure that the output predicted production always remained at positive
values. The group was unable to come up with a solution for implementing MinMaxScaler, so
StandardScaler was utilized instead. When using the StandardScaler, every model is scaled
between -1 and 1, resulting in negative numbers when comparing actual and predicted val-
ues. For that reason these few negative points are incorrect since PV production cannot con-
tain negative values.

6.3.2 Ratings of models

Except in case 10, RF models reacted decent with the data set. One thing to notice is that
with all parameters assigned, the model had marginally better measurements than when
the identical scenario was executed only with optimization. This is likely somewhat linked
to the fitting part where the optimized model in case 2 may have been exposed for overfitting.

The most interesting findings that emerges from the different case analysis is that XGBoost
outperformed the other algorithms in all ten cases in these experiments in terms of metrics
performance. The XGBoost appeared to be quite promising for this data set, as evidenced by
an average scores at RMSE of 3.87 and R2 of 0.95. One unexpected observation was that
even when the "Solar radiation" parameter was removed in Case 10, the model still produced
satisfactory measures scores. Furthermore, when "Relative humidity" was omitted from the
parameters, the highest values were obtained. For XGBoost 180 fits appeared to be the ideal
because the computation time, (being the time the model takes to simulate and identifying
the most optimal combinations of hyper parameters), got delayed, 180 fits was deployed. The
computation time was excessive in circumstances where the number of fits was increased.

SVR and MRL performed somewhat lower than RF and XGBoost, although MRL remained
the most steady throughout the testings, with the exception of the last case. Grid search-
ing was not performed on MRL because the group couldn’t come up with solutions and this
algorithm doesn’t have a lot of hyper parameters to adjust.

6.4 Application

After coming up with predictions, one of the project’s next objectives was to locate and con-
struct a digital system for showcasing the work done in the back-end. There is no option to
insert an unclean data set into the application, and a solution to integrate this as a function
was investigated however without any success. As a consequence, the application is unable
to predict when a document with missing cells is uploaded. The algorithms RF, XGBoost, and
MRL are applied in the application, and the case 1 is chosen, which includes all parameters
but not optimized.

51

Predictions on solar power plant generation with machine learning techniques (PRESAV)

6.5 Future work

Despite these encouraging results, there are still several unanswered problems about how
to combine machine learning with PV generation, as well as some areas of research that the
project group believe should be investigated further:

• Include a larger data set that stretches over a year to get a broad overview of how the
algorithms perform when the weather is more diverse. This will possibly enable one to
see which one of the four algorithms should be explored further, and perhaps reach to
better combinations of regulated hyper parameters.
• Use several machine learning approaches, such as deep learning techniques.
• Compare how a machine learning approach impacts the amount of energy returned

back to the power grid with a case where no machine learning is used.
• Develop the web application further so that you may adjust particular weather param-

eter values and then receive an estimation of how much the PV’s will generate the
following day.

52

7 Conclusion

This chapter provides a summary of the conclusions found in the research process as well as
the performance of the selected best model.

7.1 Optimization of the PV forecast and contribution in the energy sec-
tor

The purpose of this paper was to evaluate the various proposals for machine learning pre-
dictions, with a particular focus on the PRESAV project. The relevance of implementing ma-
chine learning in the PRESAV facility to predict power output is clearly supported by the
current unstable electricity prices. This new understanding should help improve PV impacts
on predictions and potentially make the PRESAV more cost and energy efficient. Smarter and
innovative approaches are urgently needed for PV production in cold and unstable weather
conditions such as locations like Trondheim.

7.2 Evaluation of the favored model

The XGBoost algorithm stood out a bit from the crowd, surprised on the upside and deliv-
ered impressive results for this data set. While the other algorithms performed less well in
removing the solar radiation weather parameter, XGBoost had a stable outcomes in the test.

53

Bibliography

[1] Xuyi Liu, Hao Kong, and Shun Zhang. Can urbanization, renewable energy, and eco-
nomic growth make environment more eco-friendly in northeast asia? Renewable En-
ergy, 169:23–33, 2021.

[2] Matthieu Metayer, Christian Breyer, and Hans-Josef Fell. The projections for the future
and quality in the past of the world energy outlook for solar pv and other renewable en-
ergy technologies. In 31st European Photovoltaic Solar Energy Conference and Exhibition,
volume 5, 2015.

[3] Spyros Theocharides, George Makrides, George E. Georghiou, and Andreas Kyprianou.
Machine learning algorithms for photovoltaic system power output prediction. pages
1–6, 2018.

[4] Alessandro Nocente, Berit Time, Hans Martin Mathisen, Tore Kvande, and Arild Gus-
tavsen. The zeb laboratory: the development of a research tool for future climate
adapted zero emission buildings. In Journal of Physics: Conference Series, volume 2069,
page 012109. IOP Publishing, 2021.

[5] Antonio Luque and Steven Hegedus. Handbook of photovoltaic science and engineering.
John Wiley & Sons, 2011.

[6] Towhidul Islam. Household level innovation diffusion model of photo-voltaic (PV) solar
cells from stated preference data. Energy Policy, 65:340–350, February 2014.

[7] Mohamed Abdirazak. Bruken av faseendringsmaterialet i kontorbygg under forskjellige
klimatiske forhold. Master’s thesis, OsloMet-storbyuniversitetet. Institutt for bygg-og
energiteknikk, 2020.

[8] Jørn Stene. Varmepumper for oppvarming og kjøling av bygninger. SINTEF Energi-
forskning AS, 2000.

[9] Winfried Hoffmann. Pv solar electricity industry: Market growth and perspective. Solar
energy materials and solar cells, 90(18-19):3285–3311, 2006.

[10] Mitsutsune Yamaguchi. Is it possible to achieve global-scale net-zero emissions by 2050?
2021.

[11] Gerry Carrington and Janet Stephenson. The politics of energy scenarios: Are inter-
national energy agency and other conservative projections hampering the renewable
energy transition? Energy research & social science, 46:103–113, 2018.

[12] SK Mohiddin, Dharmappa Barki, Ravi Shankar DVB, and Kiran Kumar. Sustainable
framework for global solar exim as a stimulus to supply value chain in india. In 2021
IEEE 48th Photovoltaic Specialists Conference (PVSC), pages 1984–1986. IEEE, 2021.

54

Predictions on solar power plant generation with machine learning techniques (PRESAV)

[13] Yongping Zhai. The pandemic may break value chains, but solar energy can still shine.

[14] Manajit Sengupta, Yu Xie, Anthony Lopez, Aron Habte, Galen Maclaurin, and James
Shelby. The national solar radiation data base (nsrdb). Renewable and sustainable
energy reviews, 89:51–60, 2018.

[15] Mudit Kapoor and Rahul Dev Garg. Evaluation of optimum pv tilt angle with gener-
ated and predicted solar electric data using geospatial open source software in cloud
environment. Sādhanā, 46(2):1–14, 2021.

[16] Pio C Lobo. An electrically compensated radiometer. Solar Energy, 36(3):207–216,
1986.

[17] MR Nugraha and A Adriansyah. Optimization of sensor model for solar radiation mea-
surement with a pyranometer. In IOP Conference Series: Earth and Environmental Sci-
ence, volume 739, page 012080. IOP Publishing, 2021.

[18] Yashwant Kashyap, Ankit Bansal, Anil Kumar Sao, and Annette Hammer. Model for
estimation of global horizontal irradiance in the presence of dust, fog, and clouds. IEEE
Transactions on Geoscience and Remote Sensing, 56(12):7030–7037, 2018.

[19] Seiji Kato, Thomas P Ackerman, Eugene E Clothiaux, James H Mather, Gerald G Mace,
Marvin L Wesely, Frank Murcray, and Joseph Michalsky. Uncertainties in modeled and
measured clear-sky surface shortwave irradiances. Journal of Geophysical Research:
Atmospheres, 102(D22):25881–25898, 1997.

[20] S Oyelami, NA Azeez, SA Adedigba, OJ Akinola, and RM Ajayi. A pyranometer for solar
radiation measurement-review. Adeleke University Journal of Engineering and Technol-
ogy, 3(1):61–68, 2020.

[21] Qiang Ji, S-C Tsay, KM Lau, RA Hansell, JJ Butler, and JW Cooper. A novel nonintrusive
method to resolve the thermal dome effect of pyranometers: Radiometric calibration
and implications. Journal of Geophysical Research: Atmospheres, 116(D24), 2011.

[22] AW Van Herwaarden, DC Van Duyn, BW Van Oudheusden, and PM Sarro. Integrated
thermopile sensors. Sensors and Actuators A: Physical, 22(1-3):621–630, 1990.

[23] Paul SP Cowpertwait and Andrew V Metcalfe. Introductory time series with R. Springer
Science & Business Media, 2009.

[24] Björn Wolff. Support vector regression for solar power prediction. PhD thesis, Universität
Oldenburg, 2017.

[25] Alexei Botchkarev. Performance metrics (error measures) in machine learning
regression, forecasting and prognostics: Properties and typology. arXiv preprint
arXiv:1809.03006, 2018.

[26] Binh Thai Pham, Tuan-Anh Hoang, Duc-Manh Nguyen, Dieu Tien Bui, et al. Prediction
of shear strength of soft soil using machine learning methods. Catena, 166:181–191,
2018.

[27] Ferenc Moksony and Rita Heged. Small is beautiful. the use and interpretation of r2 in
social research. Szociológiai Szemle, Special issue, pages 130–138, 1990.

55

Predictions on solar power plant generation with machine learning techniques (PRESAV)

[28] Sebastian Raschka. Model evaluation, model selection, and algorithm selection in ma-
chine learning. arXiv preprint arXiv:1811.12808, 2018.

[29] Lars Kotthoff, Ian P Gent, and Ian Miguel. An evaluation of machine learning in algo-
rithm selection for search problems. Ai Communications, 25(3):257–270, 2012.

[30] Gérard Biau and Erwan Scornet. A random forest guided tour. Test, 25(2):197–227,
2016.

[31] Jaime Lynn Speiser, Michael E Miller, Janet Tooze, and Edward Ip. A comparison of
random forest variable selection methods for classification prediction modeling. Expert
systems with applications, 134:93–101, 2019.

[32] Tae-Hwy Lee, Aman Ullah, and Ran Wang. Bootstrap aggregating and random forest.
In Macroeconomic Forecasting in the Era of Big Data, pages 389–429. Springer, 2020.

[33] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to
statistical learning, volume 112. Springer, 2013.

[34] Tin Kam Ho. A data complexity analysis of comparative advantages of decision forest
constructors. Pattern Analysis & Applications, 5(2):102–112, 2002.

[35] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The el-
ements of statistical learning: data mining, inference, and prediction, volume 2. Springer,
2009.

[36] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceed-
ings of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785–794, 2016.

[37] Lu Ye, Saadya Fahad Jabbar, Musaddak M Abdul Zahra, and Mou Leong Tan. Bayesian
regularized neural network model development for predicting daily rainfall from sea
level pressure data: Investigation on solving complex hydrology problem. Complexity,
2021, 2021.

[38] SARITHA DOPPALAPUDI, SRILATHA BADDURI, NAVYA BOMMU, SRI LAVANYA KA-
PAROUTHU, and N MD JUBAIR BASHA. A model for automated bug classification
using machine learning. 2022.

[39] Tamilarasan Thiyagarajan, Suganyadevi Mv, A Karuppa Samy, and A Venkadesan. Per-
formance investigation of svr for evaluating voltage stability margin in a power utility.
In 2021 IEEE International Power and Renewable Energy Conference (IPRECON), pages
1–4. IEEE, 2021.

[40] E Kakaei Lafdani, A Moghaddam Nia, and A Ahmadi. Daily suspended sediment load
prediction using artificial neural networks and support vector machines. Journal of
Hydrology, 478:50–62, 2013.

[41] C Deng, SQ Xie, J Wu, and XY Shao. Position error compensation of semi-closed loop
servo system using support vector regression and fuzzy pid control. The International
Journal of Advanced Manufacturing Technology, 71(5):887–898, 2014.

56

Predictions on solar power plant generation with machine learning techniques (PRESAV)

[42] Md Shah Alam, Nahid Sultana, and SM Zakir Hossain. Bayesian optimization algo-
rithm based support vector regression analysis for estimation of shear capacity of frp
reinforced concrete members. Applied Soft Computing, 105:107281, 2021.

[43] Pijush Samui. Slope stability analysis: a support vector machine approach. Environ-
mental Geology, 56(2):255–267, 2008.

[44] David J Olive. Multiple linear regression. In Linear regression, pages 17–83. Springer,
2017.

[45] Nhlanhla Mbuli, Malusi Mathonsi, Modisane Seitshiro, and Jan-Harm C Pretorius. De-
composition forecasting methods: A review of applications in power systems. Energy
Reports, pages 298–306, 2020.

[46] Jose J Salazar, Lean Garland, Jesus Ochoa, and Michael J Pyrcz. Fair train-test split in
machine learning: Mitigating spatial autocorrelation for improved prediction accuracy.
Journal of Petroleum Science and Engineering, pages 2–4, 2022.

[47] Daniel Berrar. Cross-validation., 2019.

[48] Zele Zhang. Influence of special weather on output of pv system. In IOP Conference
Series: Earth and Environmental Science, volume 108. IOP Publishing, 2018.

57

A Appendices

A.1 Libraries

Since the assignment is to design a system that will predict power production based on the
weather forecast, we were given room to choose which programming language we wanted.
The group has previously used Python for other subjects in the course of study, so it was a
natural and preferred choice for a programming language. With Python installed, we went
further with the Anaconda platform, that contains Jupyter Notebook, which is an excellent
tool for data processing and manipulations.

When applying the selected algorithms, you have to download specific libraries and these in-
stallations can be done on CMD.exe Promt:

Random Forest Regressor
[conda install -c r r-randomforest]

Support Vector Machine Regressor
[conda install -c conda-forge libsvm]

XGBoost
[conda install -c anaconda py-xgboost]

Streamlit
[conda install streamlit]

A.2 Packages

- pandas
Pandas is a Python library, that provides flexible and multiple functions for data manipula-
tions, analysing, and visualising and among other things such as reading a CSV file into a
Dataframe. [import pandas as pd]

- numpy
When working with numerical data, Numpy module is preferred since it supplies Array ob-
jects. Numpy functions are placed in one specific location in the storage space, hence be
control very easy. [import numpy as np]

- matplotlib.pyplot
Matplotlib.pyplot are used for producing graphics and visualizations, and it makes plotting
more effortless. When executing plots with Matplotlib.pyplot, one must extend the package,
since it is not included in default. [import matplotlib.pyplot as plt]

58

Predictions on solar power plant generation with machine learning techniques (PRESAV)

- %matplotlib.inline
This function is called for a "magic function" since it gives the graphs the possibility to be in
the notebook.

- seaborn
Seaborn is a statistical data visualization tool, for plotting the dataset. Seaborn is more flexi-
ble than the matplotlib.pyplot function, and the reason for that is it serve more function such
as lineplots or scatterplots. [from seaborn import scatterplot]

- sklearn.preprocessing
This package generates several functions for transforming and manipulating data for a more
optimized preferred fit. sklearn.preprocessing can be very useful when dealing with machine
learning problems since the algorithms favours small and clean numerical values.

- sklearn.metrics
This module gives the opportunity to take advantage of several loss, score and efficiency
measurements to check how well the model is performing. Here we can evoke MSE, MAE
and RMSE metrics.

- test_train_split
test_train_split is a command, that split arrays and list into two seperate sets, training set
and the testing set. This command is advantageous in different algorithms used in this thesis.
This function is provided in the Scikit-learn package. [from sklearn.model_selection import
train_test_split]

- sklearn.svm
This module allows us to apply Support Vector Machine algorithm on the raw data. [from
sklearn.svm import SVR]

- RandomForestRegressor
RandomForestRegressor is a package delivered from Scikit-learn, and it creates an algorithm
based on RandomForest. [from sklearn.ensemble import RandomForestRegressor]

- LinearRegression
LinearRegression is used to predict a value based on another value, which makes the variable
we want to predict dependent.

- KFold
This is a cross validator, that provides trained or tested indices to spilt the data in a given set.
from sklearn

- GridSearchCV
Implemets a fit and score method. The parameters of the estimator is used to run through all
the different parameters in the parameter grid to make the best combinations, in terms of

59

Predictions on solar power plant generation with machine learning techniques (PRESAV)

score.

- xgboost
Xgboost is gradient boosting library that implements ML algorithms under the Gradient
Boosting framework.

- XGBRegressor
XGBRegressor is a class of the XGBoost package and classifies the order of features based on
importance for the prediction.

A.3 Functions

- read_csv
This is a function that is important for the pandas frame and is brought in to load a CSV file
and the parameters can be customized to get a better output.

- random_state
This function is an integer value that is used to set the seed for the random generator so
that we can ensure that the results can be reproduced. The value is an implication for the
selection of the random combination between the train and test.

- index_col
It says which column that should act as an index, and is given as an int, str, False, optional,
default or a sequence of int/str.

- parse_dates
This function is helps to to convince pandas to specify real date time types. It reads the data
column correctly, even though the loading data from the CSV file is represented as an object.

- test_size
This function defines the size of a test set, and is given as an int or a float

- n_splits
This parameter determines how many different validation and training sets we will be creat-
ing.

- shuffle
This function take a sequence and reorganize the position of its items.

- estimator
A function in ML which persists and retrieve the ML models and data sets. This is an object
that could be a regressor a classifier.

60

Predictions on solar power plant generation with machine learning techniques (PRESAV)

- param_grid
This function makes the parameter to explore as a dictionary, and is useful to avoid useless
parameter combinations that have no impact. param_grid will give a grid of parameters with
a discrete number of values for each, and enable to search over any sequence.

- verbose
Verbose is a term for producing lots of logging output/information, that allow us to write
regular expressions that that look better and more readable by allowing us to separate for
example comments and logical commands.

- fit_transform
This method are method of class sklearn.preprocessing.StandardScaler() and used to scale
and standardising the parameters of the training and data set. This method will calculate the
mean and variance of each features presented in the data, and then transforming all by using
the given mean and variance.

- cv
Stands for cross-validation, and is the number of cv folds that held each combination of pa-
rameters.

- seed
This method is used to initialize thee random number generator, which needs to start with a
seed value to generate a pseudo-random number. This function is needed to save the state of
a random function, and when there is no previous value it will then use current system time.

- scoring
This function measures the accuracy if the model compared to the training data, and is used
as a list or tuple of unique strings if it represents multiple scores. If it only represent a single
score, it can then be used as a single string, and used to return/recall a single value. It is used
to rank the results.

- intercept_
This function represents the �0 value, and shows us where the regression line crosses the y
axis, in other words, when f (x = 0).

- coef_
This function represents the coeffient �1 and determines an of the slope from the estimated
linear regression line.

- best_params_
This is a dictionary where a parameter setting gives the best result on the hold out data.

- best_score_
This function describe the mean of the cross-validated score, this is done by observing the a

61

Predictions on solar power plant generation with machine learning techniques (PRESAV)

repeated process of parameter combinations.

- transform
This function returns a function, that is self produced, with transformed values that has the
same dataframe.

- inverse_transform
This method will transform its label to the original encoding, meaning it will return an in-
verse transformed value.

62

B Gantt

Gantt chart for the project

63

C Meeting Logs

C.1 Temporal record of meetings

03.02.2022 - Bachelor Information Meeting

Discussion of the process and setup of the thesis. The Presav project, and explain in details.
Deadlines for submission of documentation. Introduction to the process and the sessions to
help with writing the thesis....

10.02.2022

Met with supervisors Jay and Berhane to discuss the project. Actions:

1. decide our focus point in the thesis, what we should bring to the table as a group and
what impact we have towards the whole PRESAV project.

2. discussing input/output in forecast, and data. Regression etc.
3. draft agreements by next week. simple plots in power production. Write on pre-project.

18.02.2022

Met with supervisor Berhane to discuss the project. Actions:

1. discuss working on the algorithms, finding which parameters that are suitable.
2. decide how we should solve the problem technically.
3. draft agreements by next week. Come up with questions around the topic so the meet-

ing will get more productive.

25.02.2022

Met with supervisors Jay and Berhane to discuss the project. Actions:

1. discuss feedback on the pre-project. Improvement in the technical part. Formulate/un-
derstand our task even better. Add and remove different subtopics in the pre-project.
Find out in the data: what is the interval, duration, explanations about the dataset.
Example. solar radiation. Include where we get data from in the pre-project. discuss
what we found in terms of plotting the parameters:temperature, solar duration and
GHI, and we found the score with SVM: support vector machine. Before tuning and
after grid-searching.

2. install development environment
3. draft agreements by next week: Start to understand the statistical approach and ran-

dom forest. Try to visualize our plots, in terms of its maximum or minimum. Boxplot,
or candlestick. Maybe come with a presentation of next week’s work and present it to
the supervisors.

04.03.2022

Met with supervisors Jay and Berhane to discuss the project. Actions:

1. discuss machine learning algorithms, and compare them with statistical methods. See

64

Predictions on solar power plant generation with machine learning techniques (PRESAV)

which algorithm that provides the best results. Feedback from Jay about the thesis struc-
ture: literature review vs theory, discuss our information source and how we should
write in the first chapters. We talk about statistics, Auto-regression. We also talk about
how we should structure chapter one and chapter two.

2. install development environment
3. draft agreements by next week: Make a time plan, due to an unexpected incident and

try to form a working schedule, of what and when we should be done with each task.
Try to plan week-wise in terms of progress. How we pre-process our data, how we
collect the data and how should we compare. Focus on the methods and finalizing.

01.04.2022

Met with supervisor Berhane to discuss the project. Actions:

1. Discuss our strategy of work in the coming weeks.
2. Which and how many algorithms should we try, and should present each algorithm.
3. draft agreements by next week: Try to implements the given data set with Random For-

est, ARIMA, SARIMA and XGBoost. Get a broader perspective on how each algorithm
works.

08.04.2022

Met with supervisor Berhane to discuss the project. Actions:

1. Discuss about the introduction and PRESAV chapter, on how it should be presented.
2. install development environment
3. draft agreements by next week: What to include in the report, and which elements of

PRESAV should be explained. Start writing!

22.04.2022

Met with supervisors Berhane and Jay to discuss the project. Actions:

1. discuss what type of sources to use in the report. Examples: research papers, published
articles and reliable wiki-sites.

2. ARIMA and SARIMA are dropped because it is hard to implement these algorithms in
our forecast due to our dataset parameters.

3. draft agreements by next week: Continue working on the algorithms,

06.05.2022

Met with supervisor Berhane to discuss the project. Actions:

1. describe what we have done so far. Writing theory, and finishing each algorithm used
in the forecast.

2. Discussed our report, how we should continue writing and how we should present our
results.

3. draft agreements by next week.etc. Future work, report layouts, and technical writing.

20.05.2022

Met with supervisor Berhane to discuss the project. Actions:

1. describe what we have done so far. Writing theory, and finishing each algorithm used

65

Predictions on solar power plant generation with machine learning techniques (PRESAV)

in the forecast.(SVR, RF, MLR and XGBoost) Discuss the idea of creating a web page
for illustrating RF and XGBoost algorithm, where we can tune the parameters.

2. Discussed our report, how we should continue writing and how we should present our
results.

3. draft agreements by next week.etc. Future work, report layouts, and technical writing.

27.05.2022

Met with supervisor Berhane to discuss the project. Actions:

1. Show the website with XGboost, Random Forest and the parameters and shape etc.
2. Berhane commenting on the graphs, we need to label the x,y-axis, and what we mea-

sure in the plot. feedback on adjusting parameters. Suggest how we should present the
result.

3. draft agreements by next week.etc. Future work, report layouts, and technical writing.

03.06.2022

Met with supervisor Berhane to discuss the project. Actions:

1. Talk about structure and how the report should be presented, in terms of chapters,
headers, and what type of information should be considered as important explanations
in the theory part .

2. Berhane commenting on the graphs, how the result section should be in the report and
how we should present the values.

3. Will come with feedback, and how we could correct the writing of the thesis. Prepare
a presentation and an introducing article with a cover.

08.06.2022

Met with supervisor Berhane to discuss the project. Actions:

1. Berhane’s feedback was elaborated, as well as some thoughts on how the poster should
be displayed.

2. Information about further execution of presentation

66

D Python codes

D.1 Algorithms

Random Forest

Importing the necessary libraries for retrieving the CSV-file and
plotting graphs

import pandas as pd
import numpy as np
from matplotlib import pyplot
import matplotlib.pyplot as plt

Importing different libraries for various metrics calculations
from sklearn import metrics
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score

Importing the library that enables the use of Random Forest Regressor
from sklearn.ensemble import RandomForestRegressor

Importing the scikit-learn’s train_test_split function
from sklearn.model_selection import train_test_split

Importing the Cross-validation method Kfold
from sklearn.model_selection import KFold

Importing the library needed for grid searching
from sklearn.model_selection import GridSearchCV

Using pandas to retrieve the file
Setting ’Timestamp’ column as index of the dataframe
df_rf = pd.read_csv("df.csv", index_col = ’Timestamp’)

Testing with all features
Assigning [x] to only containing desired features and [y] to

target-variable
x_all = df_rf.iloc[:,:8].values
y_all = df_rf.iloc[:,[-1]].values

Splitting dataframe into train/test sets, 90% training and 10% testing
x_train, x_test,
y_train, y_test = train_test_split(x_all, y_all, test_size=0.1,

random_state=42)

Looking at the shapes
x_train.shape ,y_train.shape ,x_test.shape ,y_test.shape

Instantiate the RF model and then fitting it for X and Y trainings
rf_all = RandomForestRegressor()
rf_all.fit(x_train, y_train);

67

Predictions on solar power plant generation with machine learning techniques (PRESAV)

Predicting the test sets features
pred_rf_all = rf_all.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_all)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_all)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_all))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_all)))

Assigning the metric scores to variables for later use
mae_score_all = "{:.3f}".format(mean_absolute_error(y_test, pred_rf_all))
mse_score_all = "{:.3f}".format(mean_squared_error(y_test, pred_rf_all))
rmse_score_all =

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_all)))

r2_score_all = "{:.4f}".format(r2_score(y_test,pred_rf_all))

Testing with all features optimized
Instantiate the model
rf_all_optimized = RandomForestRegressor()

Inserting the hyper parameters for tuning
param_grid_all_optimized = {’n_estimators’: [50,100,150], ’max_depth’:

[4,5,6], ’max_features’:[1,2,3]}
Applying 5-fold
kf_all_optimized = KFold(n_splits = 5, shuffle=True, random_state=42)

Activating the grid searching and 5-fold to find the best combination
grid_search_all_optimized = GridSearchCV(RandomForestRegressor(),

param_grid_all_optimized, cv=kf_all_optimized, n_jobs=-1)

Fitting the model with the best found combination of hyper parameters
grid_search_all_optimized.fit(x_train, y_train);

Printing the most optimal hyper parameters
print(’Best Parameter: ’, grid_search_all_optimized.best_params_)

Printing the training score after cross-validation and hyper tuning
print(’Training Score: ’,

"{:.3f}".format(grid_search_all_optimized.best_score_))

Printing the best estimators
print(’Best Estimator: ’, grid_search_all_optimized.best_estimator_)

Predicting the test sets features
pred_rf_all_optimized = grid_search_all_optimized.predict(x_test)

Printing the testing score after cross-validation and hyper tuning
print(’Test Score: ’,

"{:.3f}".format(grid_search_all_optimized.score(x_test, y_test)))

68

Predictions on solar power plant generation with machine learning techniques (PRESAV)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test,
pred_rf_all_optimized)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test,
pred_rf_all_optimized)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_all_optimized))))

print(’\n---------------------\n’)
print(’R^2-Score:’,

"{:.4f}".format(r2_score(y_test,pred_rf_all_optimized)))

mae_score_all_optimized = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_all_optimized))

mse_score_all_optimized = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_all_optimized))

rmse_score_all_optimized =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_all_optimized)))

r2_score_all_optimized =
"{:.4f}".format(r2_score(y_test,pred_rf_all_optimized))

Using the same steps but this time "Temperature" is excluded
Every feature except Temperature
x_w_temp = df_rf.iloc[:,1:8].values
y_w_temp = df_rf.iloc[:,[-1]].values

x_train, x_test, y_train, y_test = train_test_split(x_w_temp, y_w_temp,
test_size=0.1, random_state=42)

rf_w_temp = RandomForestRegressor()
param_grid_w_temp = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_temp = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_temp = GridSearchCV(RandomForestRegressor(),

param_grid_w_temp, cv=kf_w_temp, n_jobs=-1)
grid_search_w_temp.fit(x_train, y_train);

print(’Best Parameter: ’, grid_search_w_temp.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_temp.best_score_))
print(’Best Estimator: ’, grid_search_w_temp.best_estimator_)
pred_rf_w_temp = grid_search_w_temp.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_temp.score(x_test,

y_test)))
MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_temp)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_temp)))
print(’\n---------------------\n’)

69

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’Root Mean Squared Error:’,
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_temp))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_temp)))

mae_score_w_temp = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_temp))

mse_score_w_temp = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_temp))

rmse_score_w_temp =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_temp)))

r2_score_w_temp = "{:.4f}".format(r2_score(y_test,pred_rf_w_temp))

Every feature except Dew point
x_w_dew = df_rf.iloc[:,[0,2,3,4,5,6,7]].values
y_w_dew = df_rf.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_dew, y_w_dew,

test_size=0.1, random_state=42)
rf_w_dew = RandomForestRegressor()
param_grid_w_dew = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_dew = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_dew = GridSearchCV(RandomForestRegressor(),

param_grid_w_dew, cv=kf_w_dew, n_jobs=-1)
grid_search_w_dew.fit(x_train, y_train);
print(’Best Parameter: ’, grid_search_w_dew.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_dew.best_score_))
print(’Best Estimator: ’, grid_search_w_dew.best_estimator_)
pred_rf_w_dew = grid_search_w_dew.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_dew.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_dew)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_dew)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_dew))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_dew)))

mae_score_w_dew = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_dew))

mse_score_w_dew = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_dew))

rmse_score_w_dew =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_dew)))

r2_score_w_dew = "{:.4f}".format(r2_score(y_test,pred_rf_w_dew))

Every feature except Wind speed

70

Predictions on solar power plant generation with machine learning techniques (PRESAV)

x_w_winds = df_rf.iloc[:,[0,1,3,4,5,6,7]].values
y_w_winds = df_rf.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_winds, y_w_winds,

test_size=0.1, random_state=42)
rf_w_winds = RandomForestRegressor()
param_grid_w_winds = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_winds = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_winds = GridSearchCV(RandomForestRegressor(),

param_grid_w_winds, cv=kf_w_winds, n_jobs=-1)
grid_search_w_winds.fit(x_train, y_train);
print(’Best Parameter: ’, grid_search_w_winds.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_winds.best_score_))
print(’Best Estimator: ’, grid_search_w_winds.best_estimator_)
pred_rf_w_winds = grid_search_w_winds.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_winds.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_winds)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_winds)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_winds))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_winds)))

mae_score_w_winds = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_winds))

mse_score_w_winds = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_winds))

rmse_score_w_winds =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_winds)))

r2_score_w_winds = "{:.4f}".format(r2_score(y_test,pred_rf_w_winds))

Every feature except Wind direction
x_w_windd = df_rf.iloc[:,[0,1,2,4,5,6,7]].values
y_w_windd = df_rf.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_windd, y_w_windd,

test_size=0.1, random_state=42)
rf_w_windd = RandomForestRegressor()
param_grid_w_windd = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_windd = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_windd = GridSearchCV(RandomForestRegressor(),

param_grid_w_windd, cv=kf_w_windd, n_jobs=-1)
grid_search_w_windd.fit(x_train, y_train);
print(’Best Parameter: ’, grid_search_w_windd.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_windd.best_score_))
print(’Best Estimator: ’, grid_search_w_windd.best_estimator_)
pred_rf_w_windd = grid_search_w_windd.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_windd.score(x_test,

y_test)))

71

Predictions on solar power plant generation with machine learning techniques (PRESAV)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_windd)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_windd)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_windd))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_windd)))

mae_score_w_windd = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_windd))

mse_score_w_windd = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_windd))

rmse_score_w_windd =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_windd)))

r2_score_w_windd = "{:.4f}".format(r2_score(y_test,pred_rf_w_windd))

Every features except Relative humidity
x_w_relh = df_rf.iloc[:,[0,1,2,3,5,6,7]].values
y_w_relh = df_rf.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_relh, y_w_relh,

test_size=0.1, random_state=42)
rf_w_relh = RandomForestRegressor()
param_grid_w_relh = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_relh = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_relh = GridSearchCV(RandomForestRegressor(),

param_grid_w_relh, cv=kf_w_relh, n_jobs=-1)
grid_search_w_relh.fit(x_train, y_train);
print(’Best Parameter: ’, grid_search_w_relh.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_relh.best_score_))
print(’Best Estimator: ’, grid_search_w_relh.best_estimator_)
pred_rf_w_relh = grid_search_w_relh.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_relh.score(x_test,

y_test)))
MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_relh)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_relh)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_relh))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_relh)))

mae_score_w_relh = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_relh))

mse_score_w_relh = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_relh))

72

Predictions on solar power plant generation with machine learning techniques (PRESAV)

rmse_score_w_relh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_relh)))

r2_score_w_relh = "{:.4f}".format(r2_score(y_test,pred_rf_w_relh))

Every features except Absolute humidity
x_w_absh = df_rf.iloc[:,[0,1,2,3,4,6,7]].values
y_w_absh = df_rf.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_absh, y_w_absh,

test_size=0.1, random_state=42)
rf_w_absh = RandomForestRegressor()
param_grid_w_absh = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_absh = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_absh = GridSearchCV(RandomForestRegressor(),

param_grid_w_absh, cv=kf_w_absh, n_jobs=-1)
grid_search_w_absh.fit(x_train, y_train);
print(’Best Parameter: ’, grid_search_w_absh.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_absh.best_score_))
print(’Best Estimator: ’, grid_search_w_absh.best_estimator_)
pred_rf_w_absh = grid_search_w_absh.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_absh.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_absh)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_absh)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_absh))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_absh)))

mae_score_w_absh = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_absh))

mse_score_w_absh = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_absh))

rmse_score_w_absh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_absh)))

r2_score_w_absh = "{:.4f}".format(r2_score(y_test,pred_rf_w_absh))

Every features except Barometric pressure
x_w_baro = df_rf.iloc[:,[0,1,2,3,4,5,7]].values
y_w_baro = df_rf.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_baro, y_w_baro,

test_size=0.1, random_state=42)
rf_w_baro = RandomForestRegressor()
param_grid_w_baro = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_baro = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_baro = GridSearchCV(RandomForestRegressor(),

param_grid_w_baro, cv=kf_w_baro, n_jobs=-1)
grid_search_w_baro.fit(x_train, y_train);

73

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’Best Parameter: ’, grid_search_w_baro.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_baro.best_score_))
print(’Best Estimator: ’, grid_search_w_baro.best_estimator_)
pred_rf_w_baro = grid_search_w_baro.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_baro.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_baro)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_baro)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_baro))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_baro)))

mae_score_w_baro = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_baro))

mse_score_w_baro = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_baro))

rmse_score_w_baro =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_baro)))

r2_score_w_baro = "{:.4f}".format(r2_score(y_test,pred_rf_w_baro))

Every features except Solar radiation
x_w_solar = df_rf.iloc[:,0:7].values
y_w_solar = df_rf.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_solar, y_w_solar,

test_size=0.1, random_state=42)
rf_w_solar = RandomForestRegressor()
param_grid_w_solar = {’n_estimators’: [50,100,150], ’max_depth’: [4,5,6],

’max_features’:[1,2,3]}
kf_w_solar = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_solar = GridSearchCV(RandomForestRegressor(),

param_grid_w_solar, cv=kf_w_solar, n_jobs=-1)
grid_search_w_solar.fit(x_train, y_train);
print(’Best Parameter: ’, grid_search_w_solar.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_solar.best_score_))
grid_search_w_solar.cv_results_;
print(’Best Estimator: ’, grid_search_w_solar.best_estimator_)
pred_rf_w_solar = grid_search_w_solar.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_solar.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_rf_w_solar)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_rf_w_solar)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,

74

Predictions on solar power plant generation with machine learning techniques (PRESAV)

pred_rf_w_solar))))
print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_rf_w_solar)))

mae_score_w_solar = "{:.3f}".format(mean_absolute_error(y_test,
pred_rf_w_solar))

mse_score_w_solar = "{:.3f}".format(mean_squared_error(y_test,
pred_rf_w_solar))

rmse_score_w_solar =
"{:.4f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_rf_w_solar)))

r2_score_w_solar = "{:.4f}".format(r2_score(y_test,pred_rf_w_solar))

Making a new dataframe comparing all predicted values up against the
reference point y_test

predictions_all2 = pd.DataFrame({ ’y_test’:y_test[:,0],
’Temperature’:pred_rf_w_temp, ’Dew point’:pred_rf_w_dew,’Wind
speed’:pred_rf_w_winds,’Wind direction’:pred_rf_w_windd, ’Relative
humidity’:pred_rf_w_relh,’Absolute
humidity’:pred_rf_w_absh,’Barometric pressure’:pred_rf_w_baro,’Solar
radiation’:pred_rf_w_solar, ’All’:pred_rf_all, ’All
optimized’:pred_rf_all_optimized})

predictions_all2.head(15)

Creating a dataframe with MAE scores
scores_mae = {

’All’: mae_score_all,
’All optimized’: mae_score_all_optimized,
’Without temperature’: mae_score_w_temp,
’Without dew point’: mae_score_w_dew,
’Without wind speed’: mae_score_w_winds,
’Without wind direction’: mae_score_w_windd,
’Without relative humidity’: mae_score_w_relh,
’Without absolute humidity’: mae_score_w_absh,
’Without barometric pressure’: mae_score_w_baro,
’Without solar radiation’: mae_score_w_solar,

}

Creating a dataframe with MSE scores
scores_mse = {

’All’: mse_score_all,
’All optimized’: mse_score_all_optimized,
’Without temperature’: mse_score_w_temp,
’Without dew point’: mse_score_w_dew,
’Without wind speed’: mse_score_w_winds,
’Without wind direction’: mse_score_w_windd,
’Without relative humidity’: mse_score_w_relh,
’Without absolute humidity’: mse_score_w_absh,
’Without barometric pressure’: mse_score_w_baro,
’Without solar radiation’: mse_score_w_solar,

}

Creating a dataframe with RMSE scores
scores_rmse = {

’All’: rmse_score_all,
’All optimized’: rmse_score_all_optimized,
’Without temperature’: rmse_score_w_temp,
’Without dew point’: rmse_score_w_dew,

75

Predictions on solar power plant generation with machine learning techniques (PRESAV)

’Without wind speed’: rmse_score_w_winds,
’Without wind direction’: rmse_score_w_windd,
’Without relative humidity’: rmse_score_w_relh,
’Without absolute humidity’: rmse_score_w_absh,
’Without barometric pressure’: rmse_score_w_baro,
’Without solar radiation’: rmse_score_w_solar,

}

Creating a dataframe with R2 scores
scores_r2 = {

’All’: r2_score_all,
’All optimized’: r2_score_all_optimized,
’Without temperature’: r2_score_w_temp,
’Without dew point’: r2_score_w_dew,
’Without wind speed’: r2_score_w_winds,
’Without wind direction’: r2_score_w_windd,
’Without relative humidity’: r2_score_w_relh,
’Without absolute humidity’: r2_score_w_absh,
’Without barometric pressure’: r2_score_w_baro,
’Without solar radiation’: r2_score_w_solar,

}

XGBoost

Importing the library that enables the use of XGboost
import xgboost
import xgboost as xgb

df_xg = pd.read_csv("df.csv", index_col = ’Timestamp’)

x_all = df_xg.iloc[:,:8].values
y_all = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_all, y_all,

test_size=0.1, random_state=42)
xgb_reg = xgb.XGBRegressor(objective=’reg:squarederror’,seed=123,

learning_rate = 0.1);
xgb_reg.fit(x_train, y_train);
y_pred = xgb_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, y_pred)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, y_pred)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test, y_pred))))
print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,y_pred)))

Assigning the metric scores to variables for later use
mae_score_all = "{:.3f}".format(mean_absolute_error(y_test, y_pred))
mse_score_all = "{:.3f}".format(mean_squared_error(y_test, y_pred))
rmse_score_all =

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

76

Predictions on solar power plant generation with machine learning techniques (PRESAV)

r2_score_all = "{:.4f}".format(r2_score(y_test,y_pred))

Every parameters with optimizations
Inserting the hyper parameters for tuning
params_all = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_all = KFold(n_splits = 5, shuffle=True, random_state=42)
xgb_reg_all = xgb.XGBRegressor(seed = 20)
grid_search_all = GridSearchCV(estimator=xgb_reg_all,

param_grid=params_all,
cv = kf_all,
scoring=’neg_mean_squared_error’,
verbose=1)

grid_search_all.fit(x_all, y_all);
print(’Best Parameter: ’, grid_search_all.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_all.best_score_))
pred_xg_all = grid_search_all.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_all.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_all)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_all)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_all))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_all)))

mae_score_all_optimized = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_all))

mse_score_all_optimized = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_all))

rmse_score_all_optimized =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_all)))

r2_score_all_optimized = "{:.4f}".format(r2_score(y_test,pred_xg_all))

Every parameters optimized without temperture
x_w_temp = df_xg.iloc[:,1:8].values
y_w_temp = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_temp, y_w_temp,

test_size=0.1, random_state=42)
xgb_w_temp = xgb.XGBRegressor(seed = 20)
params_w_temp = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_temp = KFold(n_splits = 5, shuffle=True, random_state=42)

77

Predictions on solar power plant generation with machine learning techniques (PRESAV)

grid_search_w_temp = GridSearchCV(estimator=xgb_w_temp,
param_grid=params_w_temp,
cv = kf_w_temp,
scoring=’neg_mean_squared_error’,
verbose=1)

grid_search_w_temp.fit(x_w_temp, y_w_temp);
print(’Best Parameter: ’, grid_search_w_temp.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_temp.best_score_))
pred_xg_w_temp = grid_search_w_temp.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_temp.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_temp)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_temp)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_temp))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_temp)))

mae_score_w_temp = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_temp))

mse_score_w_temp = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_temp))

rmse_score_w_temp =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_temp)))

r2_score_w_temp = "{:.4f}".format(r2_score(y_test,pred_xg_w_temp))

Every parameters without Dew point
x_w_dew = df_xg.iloc[:,[0,2,3,4,5,6,7]].values
y_w_dew = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_dew, y_w_dew,

test_size=0.1, random_state=42)
Instantiate the model
xgb_w_dew = xgb.XGBRegressor(seed = 20)
params_w_dew = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_dew = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_dew = GridSearchCV(estimator=xgb_w_dew,

param_grid=params_w_dew,
scoring=’neg_mean_squared_error’,
cv = kf_w_dew,
verbose=1)

grid_search_w_dew.fit(x_w_dew, y_w_dew);
print(’Best Parameter: ’, grid_search_w_dew.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_dew.best_score_))
pred_xg_w_dew = grid_search_w_dew.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_dew.score(x_test,

y_test)))

78

Predictions on solar power plant generation with machine learning techniques (PRESAV)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_dew)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_dew)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_dew))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_dew)))

mae_score_w_dew = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_dew))

mse_score_w_dew = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_dew))

rmse_score_w_dew =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_dew)))

r2_score_w_dew = "{:.4f}".format(r2_score(y_test,pred_xg_w_dew))

Every parameters without wind speed
x_w_winds = df_xg.iloc[:,[0,1,3,4,5,6,7]].values
y_w_winds = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_winds, y_w_winds,

test_size=0.1, random_state=42)
Instantiate the model
xgb_w_winds = xgb.XGBRegressor(seed = 20)
params_w_winds = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_winds = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_winds = GridSearchCV(estimator=xgb_w_winds,

param_grid=params_w_winds,
scoring=’neg_mean_squared_error’,
cv = kf_w_winds,
verbose=1)

grid_search_w_winds.fit(x_w_winds, y_w_winds);
print(’Best Parameter: ’, grid_search_w_winds.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_winds.best_score_))
pred_xg_w_winds = grid_search_w_winds.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_winds.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_winds)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_winds)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_winds))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_winds)))

79

Predictions on solar power plant generation with machine learning techniques (PRESAV)

mae_score_w_winds = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_winds))

mse_score_w_winds = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_winds))

rmse_score_w_winds =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_winds)))

r2_score_w_winds = "{:.4f}".format(r2_score(y_test,pred_xg_w_winds))

Every parameters without wind direction
x_w_windd = df_xg.iloc[:,[0,1,2,4,5,6,7]].values
y_w_windd = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_windd, y_w_windd,

test_size=0.1, random_state=42)
Instantiate the model
xgb_w_windd = xgb.XGBRegressor(seed = 20)
params_w_windd = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_windd = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_windd = GridSearchCV(estimator=xgb_w_windd,

param_grid=params_w_windd,
scoring=’neg_mean_squared_error’,
cv = kf_w_windd,
verbose=1)

grid_search_w_windd.fit(x_w_windd, y_w_windd);
print(’Best Parameter: ’, grid_search_w_windd.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_windd.best_score_))
pred_xg_w_windd = grid_search_w_windd.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_windd.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_windd)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_windd)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_windd))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_windd)))

mae_score_w_windd = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_windd))

mse_score_w_windd = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_windd))

rmse_score_w_windd =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_windd)))

r2_score_w_windd = "{:.4f}".format(r2_score(y_test,pred_xg_w_windd))

Every parameters without relative humidity
x_w_relh = df_xg.iloc[:,[0,1,2,3,5,6,7]].values

80

Predictions on solar power plant generation with machine learning techniques (PRESAV)

y_w_relh = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_relh, y_w_relh,

test_size=0.1, random_state=42)
Instantiate the model
xgb_w_relh = xgb.XGBRegressor(seed = 20)
params_w_relh = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_relh = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_relh = GridSearchCV(estimator=xgb_w_relh,

param_grid=params_w_relh,
scoring=’neg_mean_squared_error’,
cv = kf_w_relh,
verbose=1)

grid_search_w_relh.fit(x_w_relh, y_w_relh);
print(’Best Parameter: ’, grid_search_w_relh.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_relh.best_score_))
pred_xg_w_relh = grid_search_w_relh.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_relh.score(x_test,

y_test)))
MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_relh)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_relh)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_relh))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_relh)))

mae_score_w_relh = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_relh))

mse_score_w_relh = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_relh))

rmse_score_w_relh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_relh)))

r2_score_w_relh = "{:.4f}".format(r2_score(y_test,pred_xg_w_relh))

Every parameters without absolute humidity
x_w_absh = df_xg.iloc[:,[0,1,2,3,4,6,7]].values
y_w_absh = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_absh, y_w_absh,

test_size=0.1, random_state=42)
Instantiate the model
xgb_w_absh = xgb.XGBRegressor(seed = 20)
params_w_absh = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_absh = KFold(n_splits = 5, shuffle=True, random_state=42)

81

Predictions on solar power plant generation with machine learning techniques (PRESAV)

grid_search_w_absh = GridSearchCV(estimator=xgb_w_absh,
param_grid=params_w_absh,
scoring=’neg_mean_squared_error’,
cv = kf_w_absh,
verbose=1)

grid_search_w_absh.fit(x_w_absh, y_w_absh);
print(’Best Parameter: ’, grid_search_w_absh.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_absh.best_score_))
pred_xg_w_absh = grid_search_w_absh.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_absh.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_absh)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_absh)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_absh))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_absh)))

mae_score_w_absh = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_absh))

mse_score_w_absh = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_absh))

rmse_score_w_absh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_absh)))

r2_score_w_absh = "{:.4f}".format(r2_score(y_test,pred_xg_w_absh))

Every features except Barometric pressure
x_w_baro = df_xg.iloc[:,[0,1,2,3,4,5,7]].values
y_w_baro = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_baro, y_w_baro,

test_size=0.1, random_state=42)
Instantiate the model
xgb_w_baro = xgb.XGBRegressor(seed = 20)
params_w_baro = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_baro = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_baro = GridSearchCV(estimator=xgb_w_baro,

param_grid=params_w_baro,
scoring=’neg_mean_squared_error’,
cv = kf_w_baro,
verbose=1)

grid_search_w_baro.fit(x_w_baro, y_w_baro);
print(’Best Parameter: ’, grid_search_w_baro.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_baro.best_score_))
pred_xg_w_baro = grid_search_w_baro.predict(x_test)

82

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’Test Score: ’, "{:.3f}".format(grid_search_w_baro.score(x_test,
y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_baro)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_baro)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_baro))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_baro)))

mae_score_w_baro = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_baro))

mse_score_w_baro = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_baro))

rmse_score_w_baro =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_baro)))

r2_score_w_baro = "{:.4f}".format(r2_score(y_test,pred_xg_w_baro))

Every parameters without solar radiation
x_w_solar = df_xg.iloc[:,0:7].values
y_w_solar = df_xg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_solar, y_w_solar,

test_size=0.1, random_state=42)
Instantiate the model
xgb_w_solar = xgb.XGBRegressor(seed = 20)
params_w_solar = { ’max_depth’: [4,5],

’learning_rate’: [0.01, 0.1],
’n_estimators’: [50, 100, 150],
’colsample_bytree’: [0.5,0.6,0.7]}

kf_w_solar = KFold(n_splits = 5, shuffle=True, random_state=42)

grid_search_w_solar = GridSearchCV(estimator=xgb_w_solar,
param_grid=params_w_solar,
scoring=’neg_mean_squared_error’,
cv = kf_w_solar,
verbose=1)

grid_search_w_solar.fit(x_w_solar, y_w_solar);
print(’Best Parameter: ’, grid_search_w_solar.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_solar.best_score_))
pred_xg_w_solar = grid_search_w_solar.predict(x_test)
print(’Test Score: ’, "{:.3f}".format(grid_search_w_solar.score(x_test,

y_test)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_xg_w_solar)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_xg_w_solar)))
print(’\n---------------------\n’)

83

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’Root Mean Squared Error:’,
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_solar))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_xg_w_solar)))

mae_score_w_solar = "{:.3f}".format(mean_absolute_error(y_test,
pred_xg_w_solar))

mse_score_w_solar = "{:.3f}".format(mean_squared_error(y_test,
pred_xg_w_solar))

rmse_score_w_solar =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_xg_w_solar)))

r2_score_w_solar = "{:.4f}".format(r2_score(y_test,pred_xg_w_solar))

Support Vector Regressor

Importing the library that enables the use of Support Vector Regressor
from sklearn.svm import SVR
Importing the library needed for scaling
from sklearn.preprocessing import StandardScaler

df_svr = pd.read_csv("df.csv",parse_dates=True,index_col = 0)

Assigning [x] to only containing desired features and [y] to
target-variable

x = df_svr.iloc[:,:8].values
y = df_svr.iloc[:,[-1]].values

x_all = df_svr.iloc[:,:8].values
y_all = df_svr.iloc[:,[-1]].values

Testing with "Temperature" removed
x_w_temp = df_svr.iloc[:,1:8].values
y_w_temp = df_svr.iloc[:,[-1]].values

Testing with "Dew point" removed
x_w_dew = df_svr.iloc[:,[0,2,3,4,5,6,7]].values
y_w_dew = df_svr.iloc[:,[-1]].values

Testing with "Wind speed" removed
x_w_winds = df_svr.iloc[:,[0,1,3,4,5,6,7]].values
y_w_winds = df_svr.iloc[:,[-1]].values

Testing with "Wind direction" removed
x_w_windd = df_svr.iloc[:,[0,1,2,4,5,6,7]].values
y_w_windd = df_svr.iloc[:,[-1]].values

Testing with "Relative humidity" removed
x_w_relh = df_svr.iloc[:,[0,1,2,3,5,6,7]].values
y_w_relh = df_svr.iloc[:,[-1]].values

Testing with "Absolute humidity" removed
x_w_absh = df_svr.iloc[:,[0,1,2,3,4,6,7]].values

84

Predictions on solar power plant generation with machine learning techniques (PRESAV)

y_w_absh = df_svr.iloc[:,[-1]].values

Testing with "Barometric pressure" removed
x_w_baro = df_svr.iloc[:,[0,1,2,3,4,5,7]].values
y_w_baro = df_svr.iloc[:,[-1]].values

Testing with "Solar radiation" removed
x_w_solar = df_svr.iloc[:,0:7].values
y_w_solar = df_svr.iloc[:,[-1]].values

Splitting dataframe into train/test sets, 90% training and 10% testing
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1,

random_state=42)

x_train_all, x_test_all, y_train_all, y_test_all = train_test_split(x_all,
y_all, test_size=0.1, random_state=42)

x_train_w_temp, x_test_w_temp, y_train_w_temp, y_test_w_temp =
train_test_split(x_w_temp, y_w_temp, test_size=0.1, random_state=42)

x_train_w_dew, x_test_w_dew, y_train_w_dew, y_test_w_dew =
train_test_split(x_w_dew, y_w_dew, test_size=0.1, random_state=42)

x_train_w_winds, x_test_w_winds, y_train_w_winds, y_test_w_winds =
train_test_split(x_w_winds, y_w_winds, test_size=0.1, random_state=42)

x_train_w_windd, x_test_w_windd, y_train_w_windd, y_test_w_windd =
train_test_split(x_w_windd, y_w_windd, test_size=0.1, random_state=42)

x_train_w_relh, x_test_w_relh, y_train_w_relh, y_test_w_relh =
train_test_split(x_w_relh, y_w_relh, test_size=0.1, random_state=42)

x_train_w_absh, x_test_w_absh, y_train_w_absh, y_test_w_absh =
train_test_split(x_w_absh, y_w_absh, test_size=0.1, random_state=42)

x_train_w_baro, x_test_w_baro, y_train_w_baro, y_test_w_baro =
train_test_split(x_w_baro, y_w_baro, test_size=0.1, random_state=42)

x_train_w_solar, x_test_w_solar, y_train_w_solar, y_test_w_solar =
train_test_split(x_w_solar, y_w_solar, test_size=0.1, random_state=42)

Scaling the features

sc_x = StandardScaler()
sc_y = StandardScaler()

sc_x_all = StandardScaler()
sc_y_all = StandardScaler()

sc_x_w_temp = StandardScaler()
sc_y_w_temp = StandardScaler()

sc_x_w_dew = StandardScaler()
sc_y_w_dew = StandardScaler()

sc_x_w_winds = StandardScaler()
sc_y_w_winds = StandardScaler()

85

Predictions on solar power plant generation with machine learning techniques (PRESAV)

sc_x_w_windd = StandardScaler()
sc_y_w_windd= StandardScaler()

sc_x_w_relh = StandardScaler()
sc_y_w_relh = StandardScaler()

sc_x_w_absh = StandardScaler()
sc_y_w_absh = StandardScaler()

sc_x_w_baro = StandardScaler()
sc_y_w_baro = StandardScaler()

sc_x_w_solar = StandardScaler()
sc_y_w_solar = StandardScaler()

Scaling the training sets
x_train = sc_x.fit_transform(x_train)
y_train = sc_y.fit_transform(y_train)

x_train_svr_all = sc_x_all.fit_transform(x_train_all)
y_train_svr_all = sc_y_all.fit_transform(y_train_all)

x_train_svr_w_temp = sc_x_w_temp.fit_transform(x_train_w_temp)
y_train_svr_w_temp = sc_y_w_temp.fit_transform(y_train_w_temp)

x_train_svr_w_dew = sc_x_w_dew.fit_transform(x_train_w_dew)
y_train_svr_w_dew = sc_y_w_dew.fit_transform(y_train_w_dew)

x_train_svr_w_winds = sc_x_w_winds.fit_transform(x_train_w_winds)
y_train_svr_w_winds = sc_y_w_winds.fit_transform(y_train_w_winds)

x_train_svr_w_windd = sc_x_w_windd.fit_transform(x_train_w_windd)
y_train_svr_w_windd = sc_y_w_windd.fit_transform(y_train_w_windd)

x_train_svr_w_relh = sc_x_w_relh.fit_transform(x_train_w_relh)
y_train_svr_w_relh = sc_y_w_relh.fit_transform(y_train_w_relh)

x_train_svr_w_absh = sc_x_w_absh.fit_transform(x_train_w_absh)
y_train_svr_w_absh = sc_y_w_absh.fit_transform(y_train_w_absh)

x_train_svr_w_baro = sc_x_w_baro.fit_transform(x_train_w_baro)
y_train_svr_w_baro = sc_y_w_baro.fit_transform(y_train_w_baro)

x_train_svr_w_solar = sc_x_w_solar.fit_transform(x_train_w_solar)
y_train_svr_w_solar = sc_y_w_solar.fit_transform(y_train_w_solar)

Testing with all parameters
Instantiate the SVR model and then fitting it for X and Y trainings
svr_all = SVR()
svr_all.fit(x_train_svr_all,y_train_svr_all)

Predicting the scaled test sets features
And after that inversing the scaled to original values
y_pred =

sc_y_all.inverse_transform(svr_all.predict(sc_x_all.transform(x_test_all)))

MAE , MSE , RMSE and R^2 scores

86

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’Mean Absolute Error:’,
"{:.3f}".format(metrics.mean_absolute_error(y_test, y_pred)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, y_pred)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test, y_pred))))
print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,y_pred)))

All parameters but optimized
param_grid_all = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_all = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_all = GridSearchCV(SVR(), param_grid_all, cv=kf_all, n_jobs=-1)
grid_search_all.fit(x_train_svr_all, y_train_svr_all);
print(’Best Parameter: ’, grid_search_all.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_all.best_score_))
print(’Best Estimator: ’, grid_search_all.best_estimator_)
pred_svr_all=

sc_y_all.inverse_transform(grid_search_all.predict(sc_x_all.transform(x_test_all)))
print(’Test Score: ’,

"{:.3f}".format(grid_search_all.score(x_train_svr_all,
y_train_svr_all)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_all, pred_svr_all)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_all, pred_svr_all)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_all,
pred_svr_all))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test_all,pred_svr_all)))

mae_score_all = "{:.3f}".format(mean_absolute_error(y_test_all,
pred_svr_all))

mse_score_all = "{:.3f}".format(mean_squared_error(y_test_all,
pred_svr_all))

rmse_score_all =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_all,
pred_svr_all)))

r2_score_all = "{:.3f}".format(r2_score(y_test_all,pred_svr_all))

Every feature except Temperature
param_grid_w_temp = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_temp = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_temp = GridSearchCV(SVR(), param_grid_w_temp, cv=kf_w_temp,

n_jobs=-1)
grid_search_w_temp.fit(x_train_svr_w_temp, y_train_svr_w_temp)
print(’Best Parameter: ’, grid_search_w_temp.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_temp.best_score_))
print(’Best Estimator: ’, grid_search_w_temp.best_estimator_)
pred_svr_w_temp=

sc_y_w_temp.inverse_transform(grid_search_w_temp.predict(sc_x_w_temp.transform(x_test_w_temp)))

87

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’Test Score: ’,
"{:.3f}".format(grid_search_w_temp.score(x_train_svr_w_temp,
y_train_svr_w_temp)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_temp,
pred_svr_w_temp)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_temp,
pred_svr_w_temp)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_temp,
pred_svr_w_temp))))

print(’\n---------------------\n’)
print(’R^2-Score:’,

"{:.4f}".format(r2_score(y_test_w_temp,pred_svr_w_temp)))

mae_score_w_temp = "{:.3f}".format(mean_absolute_error(y_test_w_temp,
pred_svr_w_temp))

mse_score_w_temp = "{:.3f}".format(mean_squared_error(y_test_w_temp,
pred_svr_w_temp))

rmse_score_w_temp =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_temp,
pred_svr_w_temp)))

r2_score_w_temp = "{:.4f}".format(r2_score(y_test_w_temp,pred_svr_w_temp))

Every feature except Dew point
param_grid_w_dew = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_dew = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_dew = GridSearchCV(SVR(), param_grid_w_dew, cv=kf_w_dew,

n_jobs=-1)
grid_search_w_dew.fit(x_train_svr_w_dew, y_train_svr_w_dew);
print(’Best Parameter: ’, grid_search_w_dew.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_dew.best_score_))
print(’Best Estimator: ’, grid_search_w_dew.best_estimator_)
pred_svr_w_dew=

sc_y_w_dew.inverse_transform(grid_search_w_dew.predict(sc_x_w_dew.transform(x_test_w_dew)))
print(’Test Score: ’,

"{:.3f}".format(grid_search_w_dew.score(x_train_svr_w_dew,
y_train_svr_w_dew)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_dew,
pred_svr_w_dew)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_dew,
pred_svr_w_dew)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_dew,
pred_svr_w_dew))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test_w_dew,pred_svr_w_dew)))

88

Predictions on solar power plant generation with machine learning techniques (PRESAV)

mae_score_w_dew = "{:.3f}".format(mean_absolute_error(y_test_w_dew,
pred_svr_w_dew))

mse_score_w_dew = "{:.3f}".format(mean_squared_error(y_test_w_dew,
pred_svr_w_dew))

rmse_score_w_dew =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_dew,
pred_svr_w_dew)))

r2_score_w_dew = "{:.4f}".format(r2_score(y_test_w_dew,pred_svr_w_dew))

Every feature except Wind speed
param_grid_w_winds = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_winds = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_winds = GridSearchCV(SVR(), param_grid_w_winds,

cv=kf_w_winds, n_jobs=-1)
grid_search_w_winds.fit(x_train_svr_w_winds, y_train_svr_w_winds);
print(’Best Parameter: ’, grid_search_w_winds.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_winds.best_score_))
pred_svr_w_winds=

sc_y_w_winds.inverse_transform(grid_search_w_winds.predict(sc_x_w_winds.transform(x_test_w_winds)))
print(’Test Score: ’,

"{:.3f}".format(grid_search_w_winds.score(x_train_svr_w_winds,
y_train_svr_w_winds)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_winds,
pred_svr_w_winds)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_winds,
pred_svr_w_winds)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_winds,
pred_svr_w_winds))))

print(’\n---------------------\n’)
print(’R^2-Score:’,

"{:.4f}".format(r2_score(y_test_w_winds,pred_svr_w_winds)))

mae_score_w_winds = "{:.3f}".format(mean_absolute_error(y_test_w_winds,
pred_svr_w_winds))

mse_score_w_winds = "{:.3f}".format(mean_squared_error(y_test_w_winds,
pred_svr_w_winds))

rmse_score_w_winds =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_winds,
pred_svr_w_winds)))

r2_score_w_winds =
"{:.3f}".format(r2_score(y_test_w_winds,pred_svr_w_winds))

Every feature except Wind direction
param_grid_w_windd = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_windd = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_windd = GridSearchCV(SVR(), param_grid_w_windd,

cv=kf_w_windd, n_jobs=-1)
grid_search_w_windd.fit(x_train_svr_w_windd, y_train_svr_w_windd);
print(’Best Parameter: ’, grid_search_w_windd.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_windd.best_score_))

89

Predictions on solar power plant generation with machine learning techniques (PRESAV)

pred_svr_w_windd=
sc_y_w_windd.inverse_transform(grid_search_w_windd.predict(sc_x_w_windd.transform(x_test_w_windd)))

print(’Test Score: ’,
"{:.3f}".format(grid_search_w_windd.score(x_train_svr_w_windd,
y_train_svr_w_windd)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_windd,
pred_svr_w_windd)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_windd,
pred_svr_w_windd)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_windd,
pred_svr_w_windd))))

print(’\n---------------------\n’)
print(’R^2-Score:’,

"{:.4f}".format(r2_score(y_test_w_windd,pred_svr_w_windd)))

mae_score_w_windd = "{:.3f}".format(mean_absolute_error(y_test_w_windd,
pred_svr_w_windd))

mse_score_w_windd = "{:.3f}".format(mean_squared_error(y_test_w_windd,
pred_svr_w_windd))

rmse_score_w_windd =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_windd,
pred_svr_w_windd)))

r2_score_w_windd =
"{:.3f}".format(r2_score(y_test_w_windd,pred_svr_w_windd))

Every feature except Relative humidity
param_grid_w_relh = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_relh = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_relh = GridSearchCV(SVR(), param_grid_w_relh, cv=kf_w_relh,

n_jobs=-1)
grid_search_w_relh.fit(x_train_svr_w_relh, y_train_svr_w_relh);
print(’Best Parameter: ’, grid_search_w_relh.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_relh.best_score_))
pred_svr_w_relh=

sc_y_w_relh.inverse_transform(grid_search_w_relh.predict(sc_x_w_relh.transform(x_test_w_relh)))
print(’Test Score: ’,

"{:.3f}".format(grid_search_w_relh.score(x_train_svr_w_relh,
y_train_svr_w_relh)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_relh,
pred_svr_w_relh)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_relh,
pred_svr_w_relh)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_relh,
pred_svr_w_relh))))

90

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’\n---------------------\n’)
print(’R^2-Score:’,

"{:.4f}".format(r2_score(y_test_w_relh,pred_svr_w_relh)))

mae_score_w_relh = "{:.3f}".format(mean_absolute_error(y_test_w_relh,
pred_svr_w_relh))

mse_score_w_relh = "{:.3f}".format(mean_squared_error(y_test_w_relh,
pred_svr_w_relh))

rmse_score_w_relh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_relh,
pred_svr_w_relh)))

r2_score_w_relh = "{:.3f}".format(r2_score(y_test_w_relh,pred_svr_w_relh))

Every feature except Absolute humidity
param_grid_w_absh = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_absh = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_absh = GridSearchCV(SVR(), param_grid_w_absh, cv=kf_w_absh,

n_jobs=-1)
grid_search_w_absh.fit(x_train_svr_w_absh, y_train_svr_w_absh);
print(’Best Parameter: ’, grid_search_w_absh.best_params_)
print(’Training Score: ’, "{:.3f}".format(grid_search_w_absh.best_score_))
pred_svr_w_absh=

sc_y_w_absh.inverse_transform(grid_search_w_absh.predict(sc_x_w_absh.transform(x_test_w_absh)))
print(’Test Score: ’,

"{:.3f}".format(grid_search_w_absh.score(x_train_svr_w_absh,
y_train_svr_w_absh)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_absh,
pred_svr_w_absh)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_absh,
pred_svr_w_absh)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_absh,
pred_svr_w_absh))))

print(’\n---------------------\n’)
print(’R^2-Score:’,

"{:.4f}".format(r2_score(y_test_w_absh,pred_svr_w_absh)))

mae_score_w_absh = "{:.3f}".format(mean_absolute_error(y_test_w_absh,
pred_svr_w_absh))

mse_score_w_absh = "{:.3f}".format(mean_squared_error(y_test_w_absh,
pred_svr_w_absh))

rmse_score_w_absh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_absh,
pred_svr_w_absh)))

r2_score_w_absh = "{:.4f}".format(r2_score(y_test_w_absh,pred_svr_w_absh))

Every feature except Barometric pressure
param_grid_w_baro = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_baro = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_baro = GridSearchCV(SVR(), param_grid_w_baro, cv=kf_w_baro,

n_jobs=-1)

91

Predictions on solar power plant generation with machine learning techniques (PRESAV)

grid_search_w_baro.fit(x_train_svr_w_baro, y_train_svr_w_baro);
print(’Training Score: ’, "{:.3f}".format(grid_search_w_baro.best_score_))
pred_svr_w_baro=

sc_y_w_baro.inverse_transform(grid_search_w_baro.predict(sc_x_w_baro.transform(x_test_w_baro)))
print(’Test Score: ’,

"{:.3f}".format(grid_search_w_baro.score(x_train_svr_w_baro,
y_train_svr_w_baro)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_baro,
pred_svr_w_baro)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_baro,
pred_svr_w_baro)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_baro,
pred_svr_w_baro))))

print(’\n---------------------\n’)
print(’R^2-Score:’,

"{:.4f}".format(r2_score(y_test_w_baro,pred_svr_w_baro)))

mae_score_w_baro = "{:.3f}".format(mean_absolute_error(y_test_w_baro,
pred_svr_w_baro))

mse_score_w_baro = "{:.3f}".format(mean_squared_error(y_test_w_baro,
pred_svr_w_baro))

rmse_score_w_baro =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_baro,
pred_svr_w_baro)))

r2_score_w_baro = "{:.4f}".format(r2_score(y_test_w_baro,pred_svr_w_baro))

Every feature except Solar radiation
param_grid_w_solar = {’C’: [150,200], ’gamma’: [0.1, 1, 5]}
kf_w_solar = KFold(n_splits = 5, shuffle=True, random_state=42)
grid_search_w_solar = GridSearchCV(SVR(), param_grid_w_solar,

cv=kf_w_solar, n_jobs=-1)
grid_search_w_solar.fit(x_train_svr_w_solar, y_train_svr_w_solar);
print(’Training Score: ’, "{:.3f}".format(grid_search_w_solar.best_score_))
pred_svr_w_solar=

sc_y_w_solar.inverse_transform(grid_search_w_solar.predict(sc_x_w_solar.transform(x_test_w_solar)))
print(’Test Score: ’,

"{:.3f}".format(grid_search_w_solar.score(x_train_svr_w_solar,
y_train_svr_w_solar)))

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test_w_solar,
pred_svr_w_solar)))

print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test_w_solar,
pred_svr_w_solar)))

print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_solar,
pred_svr_w_solar))))

print(’\n---------------------\n’)

92

Predictions on solar power plant generation with machine learning techniques (PRESAV)

print(’R^2-Score:’,
"{:.3f}".format(r2_score(y_test_w_solar,pred_svr_w_solar)))

mae_score_w_solar = "{:.3f}".format(mean_absolute_error(y_test_w_solar,
pred_svr_w_solar))

mse_score_w_solar = "{:.3f}".format(mean_squared_error(y_test_w_solar,
pred_svr_w_solar))

rmse_score_w_solar =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test_w_solar,
pred_svr_w_solar)))

r2_score_w_solar =
"{:.3f}".format(r2_score(y_test_w_solar,pred_svr_w_solar))

Multi Linear Regression

Importing the library that enables the use of Multi Linear Regressions
from sklearn.linear_model import LinearRegression
df_reg = pd.read_csv("df.csv", index_col = 0, parse_dates= True)

Testing with all features
Assigning [x] to only containing desired features and [y] to

target-variable
x_all = df_reg.iloc[:,:8].values
y_all = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_all, y_all,

test_size=0.1, random_state=42)

Instantiate the MRL model and then fitting it for X and Y trainings
multiple_reg = LinearRegression()
multiple_reg.fit(x_train,y_train)
Predicting the test sets features
pred_mlt_all = multiple_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_all)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_all)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_all))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_all)))

Assigning the metric scores to variables for later use
mae_score_all = "{:.3f}".format(mean_absolute_error(y_test, pred_mlt_all))
mse_score_all = "{:.3f}".format(mean_squared_error(y_test, pred_mlt_all))
rmse_score_all =

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_all)))

r2_score_all = "{:.3f}".format(r2_score(y_test,pred_mlt_all))

Every feature except Temperature

93

Predictions on solar power plant generation with machine learning techniques (PRESAV)

x_w_temp = df_reg.iloc[:,1:8].values
y_w_temp = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_temp, y_w_temp,

test_size=0.1, random_state=42)

multiple_reg = LinearRegression()
multiple_reg.fit(x_train,y_train)
pred_mlt_w_temp = multiple_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_temp)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_temp)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_temp))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_w_temp)))

mae_score_w_temp = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_temp))

mse_score_w_temp = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_temp))

rmse_score_w_temp =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_temp)))

r2_score_w_temp = "{:.4f}".format(r2_score(y_test,pred_mlt_w_temp))

Every feature except Dew point
x_w_dew = df_reg.iloc[:,[0,2,3,4,5,6,7]].values
y_w_dew = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_dew, y_w_dew,

test_size=0.1, random_state=42)
multiple_reg.fit(x_train,y_train)
pred_mlt_w_dew = multiple_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_dew)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_dew)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_dew))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_w_dew)))

mae_score_w_dew = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_dew))

mse_score_w_dew = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_dew))

94

Predictions on solar power plant generation with machine learning techniques (PRESAV)

rmse_score_w_dew =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_dew)))

r2_score_w_dew = "{:.4f}".format(r2_score(y_test,pred_mlt_w_dew))

Every feature except Wind speed
x_w_winds = df_reg.iloc[:,[0,1,3,4,5,6,7]].values
y_w_winds = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_winds, y_w_winds,

test_size=0.1, random_state=42)
multiple_reg.fit(x_train,y_train)
pred_mlt_w_winds = multiple_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_winds)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_winds)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_winds))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_w_winds)))

mae_score_w_winds = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_winds))

mse_score_w_winds = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_winds))

rmse_score_w_winds =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_winds)))

r2_score_w_winds = "{:.4f}".format(r2_score(y_test,pred_mlt_w_winds))

Every feature except Wind direction
x_w_windd = df_reg.iloc[:,[0,1,2,4,5,6,7]].values
y_w_windd = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_windd, y_w_windd,

test_size=0.1, random_state=42)
multiple_reg.fit(x_train,y_train)
pred_mlt_w_windd = multiple_reg.predict(x_test)
MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_windd)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_windd)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_windd))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.3f}".format(r2_score(y_test,pred_mlt_w_windd)))

mae_score_w_windd = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_windd))

95

Predictions on solar power plant generation with machine learning techniques (PRESAV)

mse_score_w_windd = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_windd))

rmse_score_w_windd =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_windd)))

r2_score_w_windd = "{:.3f}".format(r2_score(y_test,pred_mlt_w_windd))

Every features except Relative humidity
x_w_relh = df_reg.iloc[:,[0,1,2,3,5,6,7]].values
y_w_relh = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_relh, y_w_relh,

test_size=0.1, random_state=42)
multiple_reg.fit(x_train,y_train)
pred_mlt_w_relh = multiple_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_relh)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_relh)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_relh))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_w_relh)))

mae_score_w_relh = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_relh))

mse_score_w_relh = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_relh))

rmse_score_w_relh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_relh)))

r2_score_w_relh = "{:.4f}".format(r2_score(y_test,pred_mlt_w_relh))

Every features except Absolute humidity
x_w_absh = df_reg.iloc[:,[0,1,2,3,4,6,7]].values
y_w_absh = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_absh, y_w_absh,

test_size=0.1, random_state=42)
multiple_reg.fit(x_train,y_train)
pred_mlt_w_absh = multiple_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_absh)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_absh)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_absh))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_w_absh)))

96

Predictions on solar power plant generation with machine learning techniques (PRESAV)

mae_score_w_absh = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_absh))

mse_score_w_absh = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_absh))

rmse_score_w_absh =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_absh)))

r2_score_w_absh = "{:.4f}".format(r2_score(y_test,pred_mlt_w_absh))

Every features except Barometric pressure
x_w_baro = df_reg.iloc[:,[0,1,2,3,4,5,7]].values
y_w_baro = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_baro, y_w_baro,

test_size=0.1, random_state=42)
multiple_reg.fit(x_train,y_train)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_baro)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_baro)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_baro))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_w_baro)))

mae_score_w_baro = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_baro))

mse_score_w_baro = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_baro))

rmse_score_w_baro =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_baro)))

r2_score_w_baro = "{:.4f}".format(r2_score(y_test,pred_mlt_w_baro))

Every features except Solar radiation
x_w_solar = df_reg.iloc[:,0:7].values
y_w_solar = df_reg.iloc[:,[-1]].values
x_train, x_test, y_train, y_test = train_test_split(x_w_solar, y_w_solar,

test_size=0.1, random_state=42)
multiple_reg.fit(x_train,y_train)
pred_mlt_w_solar = multiple_reg.predict(x_test)

MAE , MSE , RMSE and R^2 scores
print(’Mean Absolute Error:’,

"{:.3f}".format(metrics.mean_absolute_error(y_test, pred_mlt_w_solar)))
print(’\n---------------------\n’)
print(’Mean Squared Error:’,

"{:.3f}".format(metrics.mean_squared_error(y_test, pred_mlt_w_solar)))
print(’\n---------------------\n’)
print(’Root Mean Squared Error:’,

"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_solar))))

print(’\n---------------------\n’)
print(’R^2-Score:’, "{:.4f}".format(r2_score(y_test,pred_mlt_w_solar)))

97

Predictions on solar power plant generation with machine learning techniques (PRESAV)

mae_score_w_solar = "{:.3f}".format(mean_absolute_error(y_test,
pred_mlt_w_solar))

mse_score_w_solar = "{:.3f}".format(mean_squared_error(y_test,
pred_mlt_w_solar))

rmse_score_w_solar =
"{:.3f}".format(np.sqrt(metrics.mean_squared_error(y_test,
pred_mlt_w_solar)))

r2_score_w_solar = "{:.4f}".format(r2_score(y_test,pred_mlt_w_solar))

Correlation test

import pandas as pd
import numpy as np
import seaborn as sns

df_c = pd.read_csv("df.csv",parse_dates=[’Timestamp’], index_col = 0)

mask = np.zeros_like(df_c.corr())
triangle_indices = np.triu_indices_from(mask)
mask[triangle_indices] = True
mask

plt.figure(figsize=(10,6))
sns.heatmap(df_c.corr(), mask=mask , annot=True, annot_kws={"size":14})
plt.xticks(fontsize = 14)
plt.yticks(fontsize = 14)
plt.show()

98

Predictions on solar pow
er plant generation w

ith m
achine learning techniques

M
oham

ed H
adi &

 Stefan Q
uvald Jacob

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ric

 P
ow

er
 E

ng
in

ee
rin

g

Mohamed Hadi
Stefan Quvald Jacob

Predictions on solar power plant
generation with machine learning
techniques (PRESAV)

Bachelor’s thesis in Electrical Engineering
Supervisor: Jayaprakash Rajasekharan & Berhane Darsene Dimd
Co-supervisor: Alexis Sevault
June 2022

Ba
ch

el
or

’s
th

es
is

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Objectives
	Limitations

	Nomenclature
	Theory
	Integration of PRESAV in ZEB-laboratory
	PRESAV components

	PV Power Generation
	Solar irradiation instruments

	Time Series Analysis
	Elements of time series

	Algorithm performance
	Prediction score and metrics

	Algorithm selection
	Random Forest Regression
	XGBoost
	Support Vector Regression
	Multiple Linear Regression

	Pre-Processing
	Pre-Processing
	Combining data sets
	Statistics

	Visualization
	Seasonal patterns recognition
	Feature selection
	Pearsons correlations test

	Methodology Part 2
	Machine learning aspects
	Train-Test split
	Cross-validation/K-Fold
	StandardScaler

	Hyper parameters
	Hyper parameters for RF
	Hyperparameters for XGboost
	Hyperparameters for SVR

	Web Application
	Streamlit
	Restrictions

	Procedure

	Results
	Training/Test-Score
	Model evaluation
	Comparisons between cases
	Differences between actual and predicted

	Streamlit

	Discussion
	Impacts on PV predictions
	Weather influence

	Constraints
	Area of focus
	Level of knowledge

	Algorithms analysis
	Pre-processing models
	Ratings of models

	Application
	Future work

	Conclusion
	Optimization of the PV forecast and contribution in the energy sector
	Evaluation of the favored model

	Bibliography
	Appendices
	Libraries
	Packages
	Functions

	Gantt
	Meeting Logs
	Temporal record of meetings

	Python codes
	Algorithms

