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Abstract

Big data pipelines are developed to process big data and turn it into useful inform-
ation. They are designed to support one or more of the three big data features
commonly known as the three Vs (Volume, Velocity, and Variety). With big data
pipelines, massive volumes of data may be extracted, transformed, and loaded,
unlike with smaller data pipelines. The implementation of a big data pipeline in-
cludes several aspects of the computing continuum such as computing resources,
data transmission channels, triggers, data transfer methods, integration of mes-
sage queues, etc., making the implementation process difficult. The design gets
even more complex if a data pipeline is coupled to data storage, such as a distrib-
uted file system, which comes with additional challenges such as data mainten-
ance, security, scalability, etc. On the contrary, many cloud storage services, such
as Amazon Simple File Service offer nearly infinite storage with great fault toler-
ance, giving possible solutions to handle big data storage concerns. Thus, moving
data to cloud storage/storage-as-a-service (StaaS) will move the extra overhead
of data redundancy, backup, scalability, security, etc. to the cloud service provider,
which makes the implementation process of a big data pipeline relatively easier.

The work presented in this thesis aims to 1) realize big data pipelines with hy-
brid infrastructure, i.e., computation on a local server but integration with storage-
as-a-service; 2) develop a ranking algorithm to find the most suitable storage fa-
cility in real-time based on the user’s requirements; 3) develop and entail the use
of a domain-specific language to deploy a large data pipeline using StaaS. A novel
architecture is proposed to realize the big data pipeline with hybrid infrastruc-
ture. In addition, an evaluation matrix is proposed to rank all available storage
options based on five parameters; cost, physical distance, network performance,
impact of server-side encryption, and user weights. Further, to simplify the de-
ployment process, a new domain-specific language has been developed with an
extensive vocabulary to cover all major aspects of the cloud continuum in gen-
eral, and cloud storage in particular. This thesis proves the effectiveness of cloud
storage by implementing the big data pipeline using the newly proposed architec-
ture. Moreover, it justifies the importance of individual parameters involved in the
evaluation matrix, such as cost, physical distance, network performance, and the
impact of server-side encryption by the execution of a number of experiments.
It also talks about different ways that the new ranking algorithm or evaluation
matrix can be shown to work.
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Chapter 1

Introduction

The exponential expansion of digital data sources has the potential to transform
every aspect of society and human life. To achieve this impact; however, data must
be evaluated swiftly for extracting insights that may be used to drive decision-
making. One way to process data efficiently is through data pipelines using all
the available local and remote computing infrastructure. Yet, typical systems that
rely on data transfer to distant data centers for processing are no longer feasible.
Rather than that, it is critical to develop innovative methods for efficiently using
distributed computing infrastructure and services for big data pipelines. Specific-
ally, the combination of resources and services smoothly in the cloud and at the
edge, as well as throughout the data channel as needed [1].

This thesis outlines our concept for providing a strategy for processing big data
pipelines in the computing continuum, i.e., establishing a hybrid architecture for
big data pipelines. In this case, hybrid computing combines compute on a local
server or cloud server with storage-as-a-service integration. Moreover, the assess-
ment of available cloud storage providers and choosing the most suitable one ac-
cording to the customer’s needs. This necessitates a one-of-a-kind solution for data
pipeline design and a method for real-time data placement with unknown data
volumes, availability, location, and data security constraints. Figure 1.1 shows the
complete setup of the approach in the computing continuum. It can be that there is
a data pipeline server (on-premise or on the cloud), connected with a data place-
ment method for finding the most suitable cloud storage option in real-time. Once
cloud storage is integrated with the data pipeline server, the complete benefits of
cloud storage can be utilized, such as data redundancy, backup, and security.

1.1 Problem description

The development of a big data pipeline is a complicated task. It involves many
elements such as compute resources, data communication medium, triggers, data
transfer mechanism, integration of message queues, etc. The architecture becomes
even more complicated with a data pipeline is attached to data storage, such as
distributed file system. Data storage comes up with additional issues. These issues

1
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Figure 1.1: Big data pipeline in computing continuum

are created by the amount, velocity, and variety of Big Data. Storing big data on
traditional physical storage on-premise is troublesome as hard disk drives (HDDs)
regularly fail, and specific data protection measures, e.g., RAID, are not efficient
[2].

Cloud storage systems (e.g., Amazon S3, Elastic Block Store, or EBS) offer
nearly infinite storage with great fault tolerance, giving possible solutions to handle
big data storage concerns. However, moving to and hosting big data on the cloud
is expensive given the scale of data volume [3]. Principles and algorithms, in-
cluding the spatiotemporal patterns of data consumption, need to be created to
establish the data’s analytical value and its preservation datasets by balancing the
expense of storage and data transfer with the quick accumulation of big data [4].
In addition, the pace of big data necessitates the storage systems to scale up fast,
which is challenging to do with standard storage systems. That is why it is import-
ant to either select a suitable storage facility before data placement, or move the
compute step closer to the data during data processing.

In short, when it comes to big data pipelines, local storage is expensive, hard
to maintain, comes with additional challenges like data availability, data security,
and backup. Furthermore, it increases the complexity of the big data pipelines.

1.2 Justification, motivation, and benefits

This thesis aims to remove local storage and integrate storage-as-a-Service (StaaS)
with big data pipelines. Big data pipelines need large storage, and local storage
is limited and expensive, harder to manage, and has additional overheads of data
backup, security, and availability. For local storage, hardware must be purchased
for start-up and maintenance. Although it provides complete control over the re-



Chapter 1: Introduction 3

sources, organizations are responsible for it’s security. In addition to that, organ-
izations are responsible for hardware maintenance and updates.

Cloud storage provides the most flexibility. Organizations determine where to
run their applications. Even the physical hardware is not on premise, the organ-
izations control security, compliance, and legal requirements. StaaS provides a
viable solution in terms of cost, security, automation, accessibility, syncing, shar-
ing, collaboration, data protection, and disaster recovery. Following are some key
benefits of cloud storage:

• High availability
• Fault tolerance
• Scalability
• Global reach
• Customer latency capabilities
• Agility
• Predictive cost considerations

In terms of cost, cloud storage has operational expenditure, rather than capital
expenditure. Capital Expenditure or CapEx is the up-front spending of money on
physical infrastructure. Costs from CapEx have a value that reduces over time.
On the other hand, operational expenditure or OpEx is the spending and billing
of services as needed. Expenses are deducted in the same year. Cloud storage
providers operate on a consumption-based model, which means that end users
only pay for the resources that they use. Whatever they use is what they pay for.
It provides better cost prediction. Prices are for individual resources and services,
and most importantly, billing is based on actual usage.

Figure 1.2 shows an overall comparison of different level of services provided
in cloud computing. It clearly shows the amount of overhead being transferred to
the cloud service provider if an organization or user opt for cloud storage.

Figure 1.2: Comparison of resources and setup cost for IaaS, PaaS and SaaS [5]

Figure 1.3 shows a shared responsibility model i.e a detailed comparison of
management responsibilities between On-premises compute and storage resources
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and different levels of cloud services.

Figure 1.3: Shared responsibility model [6]

By using cloud storage or StaaS, full potential of cloud storage can be utilized.
Moreover, it increases the simplicity of the big data pipeline.

1.3 Research objectives

Following are the research objectives of this thesis:

• integration of storage-as-a-service(StaaS) with big data pipelines to over-
come technical and architectural challenges;

• to develop an effective evaluation criteria and method for ranking the avail-
able options so that an informed choice can be made;

• to develop a domain-specific language with an ability to deploy a big data
pipeline with integration to StaaS.

1.4 Research questions

To achieve the objectives identified in the Section 1.3, the following questions
need to be answered:

1. How StaaS is better than Local Storage for a big data Pipeline?

• In terms of Data Availability?
• In terms of Security and Reliability?

2. How big data pipelines can be deployed using StaaS?
3. How can we rank different cloud storage options based on the user require-

ments?
4. How can StaaS options be incorporated with DSL for big data Pipelines?
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1.5 Contributions

In the light of the problems and challenges identified in the preceding sections, to
advance state of the art, the research project presents a novel architecture, suppor-
ted by a proof-of-concept implementation, focusing on overcoming the previously
mentioned shortcomings. The findings of this research project can aid the big data
pipeline designers and other related stakeholders to exploit the full potential of
the compute servers and the benefits of cloud/edge storage by deploying a data
pipeline in a hybrid cloud environment.

1.5.1 Big data pipeline architecture

This thesis proposes a novel architecture for big data pipelines. Following the logic
outlined in Section 4.1, conventional data pipelines are installed either on a local
computer or in the cloud continuum, with a single cloud service provider serving
as the backbone. This work presents a hybrid architecture for big data pipelines.
More details about the data pipeline architecture is presented in Chapter 6.2.

1.5.2 Ranking criteria and method

Existing data placement mechanisms are either platform dependant, too generic
or are not related to big data pipelines as explained in Section 4.2. Hence, the
thesis aims to identify a set of criteria/parameters for cloud storage selection and
to develop a comprehensive method, which we call evaluation matrix (EM), to
calculate and find the best available storage facility from multiple cloud service
providers such as Amazon Web Services, Microsoft Azure, and Google Cloud Plat-
form. The parameters for the EM currently contain distance, cost, impact of server-
side encryption, and network latency. The multi-criteria decision making/analysis
(MCDA) is employed for this purpose.

1.6 Thesis outline

The rest of the thesis is arranged as follows:

Chapter 2: Methodology This chapter briefly describes the process of scientific
research in general and computer science and technology research in particular.
The major part of the chapter describes the complete research process which is
employed for this thesis, starting with formulating the Problem Statement, to tex-
titImplementation, and finally Evaluation and Results of the proposed solution,
along with the methods such as literature study, interviews, and quantitative and
qualitative analysis.
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Chapter 3: Current technological landscape This chapter covers the technical
terms involved in this research project. It gives a bigger picture of the big data
pipeline in the computing continuum. It starts with the importance of big data
and big data pipelines. Then it defines other technical terms such as computing
continuum, cloud continuum, fog and edge computing. The last section explains
storage-as-a-service (STaaS), data locality, and a big data pipeline, and how a
domain-specific language can be used to deploy big data pipelines.

Chapter 4: Related work This chapter discusses the specifics of the relevant
literature. It is divided into three sections, each section for each research question.
The first section explains the benefits of cloud storage in big data pipelines. The
second section explains the different techniques for large data placements. The
last section covers the existing relevant domain-specific languages and how STaaS
can be integrated with a DSL.

Chapter 5: Problem analysis This chapter starts with an overview of the prob-
lem that this thesis aims to resolve. Then it presents the justification of the selec-
ted parameters. It describes the selected parameters such as different storage tiers
offered by each cloud storage provider, pricing structure for the network usage,
and different types of data encryption methods, along with the chosen cloud stor-
age options for each parameter. Lastly, it explains multi-criteria decision analysis
and the selected VIKOR method for the ranking algorithm.

Chapter 6: Smart data placement solution design This chapter starts with
the brief introduction of the preliminary research work on the big data pipeline
architecture, domain-specific language, and effects of incorporating data local-
ity. Furthermore, it has five further sections. The first describes the proposed
novel architecture; the ranking/evaluation method; the software design for its
sub-component; and the software design for the evaluation matrix. The last sec-
tion contains the design details for the new extended domain-specific language.

Chapter 7: Smart data placement solution implementation This chapter con-
tains the implementation details of all the software components, such as finding
the physically closest storage facility, software package for cost estimation, meas-
uring the network performance, and studying the impact of server-side encryp-
tion on the performance. It also has the implementation details for the evaluation
method and algorithm. The last section of this chapter presents the implement-
ation details for the domain-specific language to deploy a big data pipeline with
STaaS integration. Relevant code snippets and links to the code repositories are
also presented in this chapter.

Chapter 8: Experiments and results Experiments are designed around four
parameters: distance, cost, network performance, and server-side encryption, as
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well as the method of evaluation. As a result, this chapter describes each experi-
ment in depth, including the technical setup and results.

Chapter 9: Discussions and conclusion The last chapter of the thesis sums up
the advances to the state of the art that have been made throughout the course
of the project. The final section of the thesis outlines possible avenues for future
research.





Chapter 2

Methodology

The objective of this chapter is to present an overview of the research process that
was used throughout this project work, as well as to situate it within a broader
framework of scientific research methodologies in general. Starting with a very
broad review of scientific research methodologies, the chapter sets this project
work within the context of the history of computer science and technology re-
search.

2.1 Scientific Research Method

When hypotheses are scrutinized, they may need to be modified or discarded in
light of the new findings. This is how scientific inquiry distinguishes itself from
other forms of inquiry. This section summarizes some of the most fundamental
components of scientific study and then situates this endeavor within the frame-
work of computer science and technology research.

2.1.1 Scientific Research

Deductive and inductive procedures are two of the most common methodolo-
gies used in scientific inquiry. It is possible to deduce new facts using deductive
approaches, which are based on the use of logical reasoning. A theory and a col-
lection of premises may be used to draw conclusions [7]. When we use inductive
approaches, we use observations to find principles that could be extended into
rules in order to develop theories that enable us to accurately anticipate the out-
comes of our experiments. To distinguish itself from non-sciences like religion and
pseudoscience, scientific research is prepared to examine ideas and discard them
if they don’t fit the facts. Even if evidence contradicts a theory, it doesn’t imply
that it must be discarded right away. Ad hoc hypotheses may be used to "rescue"
any hypothesis. When fresh data challenges an existing theory, new hypotheses
may be proposed to alter its assumptions or conclusions [7].

9
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2.1.2 Computer Science & Technology Research

Computer science research is usually technology-oriented, in contrast to many
other disciplines of study. Computer science is intended to create largely techno-
logical innovations, such as procedures, techniques, algorithms, or products [8].
Additionally, computer science integrates theory with real-world applications, but
often discusses theoretical issues using idealized perspectives of processing. For
example, time and memory needs for an algorithm are often expressed in terms
of abstract fundamental operations, whereas memory requirements are typically
expressed in terms of the algorithm’s upper limits of complexity. This enables us
to think about and compare algorithms theoretically (e.g., in terms of time and
memory complexity) in a manner that is independent of the algorithms and their
input. However, when those same algorithms are implemented or used in a real-
world situation, their behavior may vary significantly. For example, the distribu-
tion of data in the actual world often differs from the worst-case situations ex-
amined in theory, and there is typically a significant cost difference between an
expected basic operation and its practical implementation in a machine. Techno-
logy research, on the other hand, is essentially an applied science in which ideas
and models from several disciplines of study are applied to real-world situations
[9]. For instance, in technological research, focusing only on one technique from
a collection of choices while disregarding the others might be both adequate and
sensible. Generally, a comparable strategy would not be accepted from other re-
search viewpoints unless a compelling scientific basis for not investigating other
viable options could also be offered.

2.2 Research Process

To achieve the expected goals stated in Section 1.4, we have followed a combina-
tion of qualitative and design science research approaches. Figure 2.1 shows the
complete process of the research project from start to finish. Starting from de-
scribing the problem statement, research question formulation, literature survey,
implementation, and evaluation. Moreover, the overall work follows the design
science research guidelines. It is an inherent problem-solving process with a series
of guidelines that ensure proper understanding and knowledge of the design prob-
lem and its solution. Also, it relies upon the rigorous method in both solution
building and evaluation. Details for each task and information about the methods
used to perform that task is as follows:
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Figure 2.1: Complete research process for the thesis along with the used meth-
odologies.
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2.2.1 Formulation of Problem Statement

The process started by narrowing the research topic to big data pipelines and
data locality based on interest. Interviews were conducted (Semi-structured inter-
views) with the field experts to discuss the possible research area related to these
topics. Based on the feedback received from the field experts, I studied relevant
literature to find out suitable papers and case studies to validate the problem and
find out possible enhancements that can be done to the existing state of the art.
The first processing step is based on thoroughly studying and understanding the
case and getting all the relevant information on it, both from relevant literature
and from experts in the field. The 1st step is further divided into two parts for
efficient execution.

Interviews with field experts: This sub-step consisted of carrying out detailed
but comprehensive 1v1 interviews with renowned experts in the field [10]. This
step was important to gain significant insight into various perspectives regarding
the case, get knowledge from the field experts, and find out about the current
research trends and possibilities.

Literature Study: This sub-step involved the thorough study of relevant literat-
ure [11]. In this case, from various sources, mainly from scientific journals. We
reviewed the literature from an analytical and usability perspective. Literature
study is an integral part of any research project. It is used to discover existing
research and studies in the same subject area. It is also important to uncover the
research gaps and potential areas to add novelty. So that is why literature is done
in this project as well.

2.2.2 Formulation of Research Questions

This step consisted of two parts, extensive analysis and discussions. The data col-
lected from the first step was then discussed with the project supervisors to get
their insights. The analysis was important to get a good birds-eye view of the in-
formation and resources at disposal and to decide how to utilize them effectively
in this research process [12]. The discussions part included detailed discussions
with our peers and knowledgeable supervisors about this case. Through the dis-
cussions, we broadened our view on this case and refined the research questions.

Literature Survey This step was very important because it consisted of us re-
searching and compiling all the previous published literature relevant to this case
that we found usable [13]. The presence of previously published literature related
to our case served as a guideline and inspiration. Furthermore, we were also able
to analyze the weaknesses in those research papers and avoid them independently.
We gathered the relevant literature by using citations and references on papers as
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a guide to discover more. The snowball method is a strategy of gathering liter-
ature by employing a key publication on your subject as a starting point, then use
the bibliography supplied on the main page to seek other resources on the sub-
ject [14]. In this project, the snowball method is used to search and accumulate
scientific papers or simply for data generation because we have a wide range of
keywords involved in this project. Moreover, we employed qualitative analysis
techniques for data analysis since the data at hand was all textual.

2.2.3 Implementation

The step contains implementing a proof-of-concept prototype that covers the most
important functionality included in the system architecture. It includes 1) The
formulation of the evaluation matrix based on the careful analysis of the col-
lected data 2) The development of the evaluation matrix into a testable soft-
ware program. 3) The deployment of the new proposed architecture for big data
pipelines. The script is developed in Python, whereas the data pipeline is deployed
on the cloud continuum. The implementation also contains the development of a
Domain-specific language meta-model and its compiler.

2.2.4 Evaluation & Results

After working on developing the algorithm and implementing and successfully
deploying the prototype, the last step was evaluating and compiling the results.
I first carried out a detailed qualitative analysis and compiled the results using
the different methods. Qualitative analysis is carried out to analyze how much the
proposed solution fulfills the user’s non-functional requirements, such as security
policies. Quantitative analyses are used to compare structured data such as pro-
cessing time, network latency, etc. Lastly, we analyzed all the evaluations we had
gathered and compiled them into the final results.
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Chapter 3

Current technological landscape

This chapter will cover the technical terms involved in this research project. Figure
1.1 shows the complete setup of the project in the abstract. The big data pipeline
is set up in a computing continuum that contains cloud continuum, local compute
servers, and data transfer medium. A big data pipeline can be deployed either on
an Edge or on a local server depending on the business and use case requirements.
For data storage, this research project aims to exploit the benefits of cloud storage
of Storage-as-a-Service in the cloud continuum. Data transfer protocols such as
FTP and HTTP will be used for data transfer between the pipeline server and the
StaaS. Data Placement Strategy algorithm will be deployed on the data pipeline
server to evaluate all available storage facilities. Each technical term is explained
in detail below.

3.1 Big data

Data is considered an asset nowadays and it can be purchased and sold on data
markets [15]. Data markets enable harnessing vast kinds of data in large volumes
to boost the value of the end outcomes. Although there is no formal definition
of "big data," both the academic and industrial communities commonly describe
large data using a number of "Vs." [16]:

1. Volume: refers to the raw data size, which can range from hundreds of
gigabytes to petabytes.

2. Velocity: in tandem with the enormous amount of data, the fast pace at
which it is being created is also a distinguishing trait for big data. Systems
need to be built to scale up to meet the throughput needs.

3. Variety: Variety in big data refers to any structured or unstructured data
produced by humans or machines.

These features apply to the technological elements of processing large data,
and designing solutions that can meet these difficulties is hard and costly. Creating
the algorithms and tools that help extract value from data adds to the complexity
and cost of producing complete big data solutions. Consequently, another V, the

17
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value the solution creates, which needs to balance the high cost, is typically men-
tioned as a crucial aspect of big data. A latest study [17] demonstrates that the
diversity and the pace of big data play a more essential influence compared to the
volume when measuring innovation performance.

Big data has quickly gained popularity because it enables the exploitation of
data to discover hidden trends that provide important insights to drive corporate
decisions and aid research. It has been successfully applied in a wide variety of
fields, including marketing, social network analysis, healthcare, and finance. The
widespread use of big data patterns stems from the idea that with a large amount
of data, many real-world occurrences can be better understood and predicted.

3.2 Big Data Pipelines

Big data pipelines are developed to process the big data explained in the previous
section and turn it into useful information. Big data pipelines are data pipelines
designed to support one or more of the three big data features. The term "data
pipeline" describes a set of processes that performs a variety of transformations,
such as data enrichment and data duplication [18]. Compared to smaller data
pipelines, the volume of data processed by a big data pipeline is vastly greater.
Massive volumes of data may be extracted, transformed, and loaded using big
data pipelines. In what follows, we describe two key concepts concerning big data
pipelines.

Steps in big data pipelines Steps as shown in Fig 3.1 (as Compute Step A,
Compute Step B and Compute Step C) are the atomic unit of pipelines. Steps
are logical units that may be applied to data (e.g., cleaning text of the HTML
and JavaScript code). Using a basic generalization, each step receives data as
input from a data store and processes it before pushing the outputs back to a data
storage.

Data Communication Medium Processed data travels over the computer net-
work using the data transmission medium as a conduit. The inputs and outputs
of a step are coupled to such channels. The results of one stage must be used as
the input for the following step in the pipeline. Control messages such as notifica-
tions and triggers for the other steps are also passed through the communication
medium. Some common examples include KubeMQ, ZeroMQ etc.

3.3 Computing Continuum

This work presented in this thesis aims to deploy big data pipelines in the comput-
ing continuum, i.e., integration of cloud resources to data pipelines to exploit the
full potential of data pipelines. Continuum competitors make decisions through-
out the computing continuum and across the company in order to build an integ-
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Figure 3.1: Big data pipeline architecture example

rated technology and capabilities foundation capable of supporting the business’s
ever-changing demands. They recognize that the computing continuum is a collec-
tion of capabilities that range from public to edge computing — and everything in
between. This continuum includes various types of ownership and location (public
to private to hybrid to co-location, multi-cloud, and edge), which are all dynamic-
ally supported by next-generation connectivity technologies like 5G and software-
defined networks [19].

Historically, the term "cloud" was used to refer to both public cloud comput-
ing and shared data center computing. However, most businesses today utilize
a mix of public, private, and edge clouds — with minimal interaction between
them. As a consequence, innovation, data, and best practices developed in one
part of the business do not benefit other parts, limiting the company’s overall
value-generating potential. The computing continuum, which is defined as "from
public cloud to edge cloud and everything in between," encompasses a diverse
set of capabilities and services that are readily linked by cloud-first networks and
governed by complicated standards. Additionally, the collection of technologies
varies by who owns them and their location, which might range from inside the
company to off-site [19].
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3.3.1 Cloud Computing

The preceding section highlights how difficult and expensive it is to manage big
data activities. Big data’s characteristics result in problems at all levels of the tech-
nological stack: to process big data, vast raw network, storage, memory, and com-
putation resources are required at the infrastructure level. These resources are
frequently provided by a distributed system of multiple machines. Software frame-
works that can properly exploit existing resources and manage the ever-changing
needs of big data operations must be established on a regular basis at the platform
level.

At an application level, algorithms operating on the above-described platforms
need to be designed and coupled to extract value from the data. Applications can
also assist the engagement with a big data solution (e.g., visualization tools used
by corporate leaders to examine the findings provided by a big data solution) (e.g.,
visualization tools used by business executives to analyze the results produced by
a big data solution). The concept of cloud computing paves the way for access-
ible, economical, efficient big data processing through scalability, elasticity, pay
for what you use approach.

3.3.2 Fog Computing

Fog computing [20], also referred to as fog networking or fogging [21], is a net-
work architecture that utilizes edge devices to execute considerable amounts of
computation (edge computing), storage, and communication locally before send-
ing them across the Internet backbone to the rest of the world.

Fog computing is a type of distributed computing in which a large number
of "peripheral" devices are connected to a central server. (The term "fog" refers
to the edge or periphery of the cloud.) Instead of sending all of this raw data to
cloud-based servers for processing, fog computing aims to do as much processing
as possible on computing units co-located with data-generating devices, resulting
in processed data being transferred rather than raw data and lower bandwidth
needs. Processing locally rather than remotely reduces the latency between input
and response, which is a substantial gain, because the processed data is likely to be
requested by the same devices that provided it. This isn’t a new concept: special-
purpose hardware has long been utilized to reduce latency and relieve strain on
a CPU’s resources in traditional computing settings.

3.3.3 Edge Computing

Data localisation is a fundamental factor for any edge computing solution because
one of the key aims of the edge computing paradigm is to minimize the amount
of data carried from the network edge to the cloud, allowing for lower latency
scenarios.

Data pipeline deployments in edge computing are ideally suited for scenarios
where the producer of data is mostly centralized: for example, a web server re-
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cording and processing the network traffic for further analysis (clickstream data)
[22]. However, with the growth of ubiquitous computing, vast volumes of data
are created by devices (sensors, personal devices, automobiles, etc.) at the edge
of the network. With the number of such devices rising at a quick pace, the old
approach for making use of centralized cloud resources becomes untenable due
to the high costs of transporting data from the edge of the network to the cloud
and tighter latency requirements.

3.3.4 Storage as a Service (StaaS)

Storage as a Service (STaaS) is the practice of storing data on public cloud storage
facilities. When you can match data types to cloud storage solutions, using STaaS is
more cost-effective than building private storage infrastructure. Benefits of cloud
storage or Storage-as-a-Service(STaaS) are explained in detail in Section 4.1.

Organizations that use STaaS often store and back up their data on a public
cloud rather than on-premises. Public cloud storage can also be used for STaaS
with a variety of alternative storage strategies. Backup and restore, disaster re-
covery, block storage, SSD storage, object storage, and bulk data transfer are all
examples of these types of storage systems. In the event of data loss, the cloud
serves as a disaster recovery site for data that has been safely backed up. Data
from virtual computers can be protected and replicated as part of disaster recov-
ery (VMs). Customers can use block storage to create low-latency I/O volumes.
Typical applications for SSD storage include read/write and I/O intensive tasks.
Storage systems utilized in data analytics, disaster recovery and cloud computing
have a tendency to be slow.It is possible to produce and configure saved data fast
with the aid of cold storage. Transferring large amounts of data will necessitate
the usage of disks and other technology. [23].

3.4 Data Locality

In a distributed system, data locality is critical for data processing performance.
It refers to bringing computing closer to the data, which is frequently less expens-
ive and faster than transferring data closer to the calculation. Due to the nature
of dealing with enormous amounts of data, it is necessary to pool the resources
(network, RAM, CPU, and disk) of numerous machines in a distributed system.
A desirable property of distributed systems is that they hide the complexity of the
distributed nature of the resources behind a single interface, making the entire
system appear to be a single entity (e.g. cloud storage systems like Amazon S3),
making individual hosts backing the distributed systems more difficult to leverage.
The fact that a CPU may only execute data stored in the same machine’s memory
is a key invariant of modern computer design. As a result, data transfer between
devices has become an essential part of every big data system. Apart from stand-
ard communication protocols that rely on the operating system’s network stack
(e.g. TCP/IP-based protocols), more efficient protocols have been designed for
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use cases where latency is a critical factor. RDMA (Remote Direct Memory Access)
[24] is one such protocol that enables the transport of data stored in the memory
of one computer to another using specialized network cards without impacting
the CPU or the operating system kernel.

Network traffic and the latency associated with data transmission between
computers may have an impact on the overall cost and performance of a big data
processing due to the large volume of data. As a consequence, the capability of
the work to be distributed in a way that minimizes data transfers (data locality)
has been explored and implemented into a number of studies. Even for centralized
deployment systems (such as cloud deployments), data locality has been shown to
be effective in reducing costs and execution times [25, 26]. For instance, Apache
Spark [27] may leverage Hadoop File System (HDFS) metadata and prior know-
ledge about the outputs of previous operations to minimize data transfer. Locality
of data is just one factor that might be considered while scheduling operations.
Other concerns, such as load distribution and heterogeneity of available resources
among nodes, must be balanced against data locality in order to perform the op-
eration efficiently [28]. [29] and [30] provide complex scheduling algorithms for
balancing data transmission reduction and load distribution.

3.5 Domain-Specific Languages

A ’Domain-Specific Language’, or ’DSL’, is a computer language that has been spe-
cialized for one specific domain, as its name suggests. It is established upon a
language that serves as a host, such as C, Javascript, Java, etc. The host language
offers a jointed structure or syntax and connotations to represent notions, ideas,
concepts, patterns, and behaviors within a specific domain. Maximilien et al. [31]
stated in their summary of this broad topic that the designing or implementation
of a DSL usually provides help towards attaining top-level linguistic constructs,
natural and straightforward syntax, the convenience of programming, code gen-
esis, and terse code. Within the research societies and forums of programming
languages and software engineering, DSLs serve as an integral tool and method
to diminish the complications in programming along with enhancing productivity,
without compromising on efficiency[32]. On the bigger picture, the fundamental
goal of DSLs is to attain the notion of metaprogramming, which realizes the idea
of a computer program that is designed to produce, study, interpret, analyze and
modify other programs, and go as far as transforming[33] itself while executing
the tasks mentioned above. An Internal DSL is a DSL that requires itself to be in-
corporated within the host language. An External DSL is a DSL that has its own
syntax and does not need to be embedded in another language. [34]. One of the
most significant benefits of DSLs is that, because they are specialized to a given
application domain, they may take advantage of domain expertise to increase pro-
ductivity and efficiency. [35].

It is well acknowledged that creating custom DSLs and the model-driven work-
flows that go with them is a difficult endeavor that should be approached in an
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iterative manner [36]. As a result, domain-specific languages can be used for a
wide range of purposes. They can be utilized in a variety of ways and by a variety
of persons. Some DSLs are intended for programmers and so are more advanced,
whereas others are intended for non-programmers who want to use less geeky
notions and terminology.

3.6 Example Big Data Pipeline

To help the understanding of big data operations that can span resources span-
ning edge and cloud deployments, a fictitious scenario influenced by actual world
patterns is used. It is assumed that the data is stored from multiple streams, which
will be further processed in the big data pipeline. It can be seen in Figure 3.2, data
from multiple streams is gathered and stored in a cloud storage provider. A data
communication medium is setup between the cloud storage and the data pipeline
server. For data transfer, either HTTP or FTP protocols can be used. A message
queue is implemented on the data pipeline server for inter-step communication.
The important thing to note here is that the integration can either be done with
single cloud storage or multiple. For example, it is possible to store data collec-
ted from various streams in the storage facility by Amazon, but the data after
processing is stored in Azure, or Google cloud storage.

An example big data pipeline, shown in Figure 3.2, is composed of the follow-
ing steps:

1. FetchURL: This step will fetch URLs and will validate them using HTTP
protocol. Once the URL is validated, it will set a flag against the URL in
the Database. The operations involving in this step are not entirely storage
related.

2. Fetch Articles: This step will download only the validated URLs and will
fetch/scrap articles from each of the URL in a sequence. Again, HTTP pro-
tocol is used for fetching articles from the RSS feed.

3. Filter Articles: The operation involves in this step are entirely storage re-
lated. It fetches the articles in the chunk of one thousand each, cleans the
data by stripping out all the HTML tags and then stores the processed text
data back to the storage.
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Figure 3.2: Example big data pipeline
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Related work

Storage as a service is quickly becoming the preferred approach for all small and
medium-sized enterprises. This is due to the fact that storing data online rather
than locally provides a slew of benefits for professional users.

The scientific community has extensively acknowledged the necessity to use
cloud computing to execute scientific workflows/pipelines [37]. Many studies in-
vestigated and proved the viability of employing cloud computing for deploying
big data pipelines in terms of both cost [38] and performance [39]. Abouelhoda
et al. propose Tavaxy, a system that enables seamless integration of the Taverna
system with Galaxy processes based on hierarchical workflows and workflow pat-
terns [40]. Tavaxy provides an interface for creating a cluster on the AWS cloud
and using it to perform processes. Wang et al. [41] present early results and ex-
periences in enabling interaction between Kepler SWFMS and the EC2 cloud. Ant-
onio et al. [42] talks about Hybrid multi-cloud storage systems and different data
transfer techniques in general; however, it is not discussed with respect to big data
pipelines.

These approaches discuss the benefits and possibilities of deploying big data
pipelines in cloud infrastructure. But they do not discuss the possibility of hybrid
big data pipelines. In addition to that, since they focus on one cloud provider
each, the possibility of hybrid big data pipeline implementation with multi-cloud
platforms has not been discussed.

4.1 Storage as a Service advantages in terms of Data Avail-
ability, Integrity, and Security

The explosion of data traveling through the network is being caused by the rapid
expansion in the number of connected devices, including sensors, mobile, wear-
able, and other Internet of Things (IoT) devices. Gosh and Grolinger [43] presen-
ted a technique to combine Edge and Cloud computing in order to process data
closer to the edge node. In this project, they carried out feature learning opera-
tion with deep learning and found out that on the edge, data can be reduced by

25
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upto 80% without any significant loss in accuracy. Ricardo et al. [44] developed a
service for StaaS in Multi-Cloud Environment. In this approach, they did not focus
on the performance, but the confidentiality and integrity of the data, i.e how it
can be enhanced using Storage as a Service.

The cloud is an example of a centralized infrastructure system that stores data,
runs application logic, and handles data and analytics duties while being located
far away from end users and data sources. Because of their huge compute capab-
ilities, excellent scalability and durability, a pay-per-use pricing mechanism, and
cheap initial cost, they are very advantageous [45]. The purpose of Edge Comput-
ing (EC) is to reduce network traffic by moving computing closer to data sources
rather than farther away. As an example, mobile edge computing (mobile EC) of-
floads computation and data storage to the edge (for example, base stations) in
order to minimize network latencies, reduce battery consumption, enhance user
experience, and add location awareness [46] has been intensively researched.
When it comes to content delivery and caching, EC is particularly well suited,
since it is particularly effective for applications that need very low latency [47].

Data Availability

The accessibility of your data is critical to your business’s profitability and reputa-
tion among customers. If clients are unable to access your online presence due to
a lack of data availability, they are likely to visit the website of a rival. While the
great majority of cloud service providers use effective data backup and recovery
solutions, backing up and restoring data is just a part of what you genuinely want.
Data availability is a distinct area of focus since it is necessary before any storage
can occur [48]. Cloud service providers offers services in multiple regions. A re-
gion is made up of one or more data-centers that are near together. It gives you
the flexibility and capacity you need to cut down on client delay. With a full com-
pliance solution, it also protects data residency. For Azure cloud, region pairs are
at least 300 miles apart. Cloud service providers does automatic replication data.
They also provide prioritized region recovery in the even of outage. Furthermore,
in case of system update, updates are rollout sequentially to minimize downtime
[49].

Azure cloud and AWS both have several availability zones to improve data
availability. Within the same region, they are physically independent data-centers.
Each data-center has its own power, cooling, and networking systems. Private
fiber-optic networks link them together. Availability zones guard against data-
center failure-related downtime. Figure 4.1 shows the concept of availability zones
in an Azure region.

Data Redundancy

Data redundancy is the process of making several copies of your data, systems,
and equipment in order to ensure that if your cloud service becomes damaged or
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Figure 4.1: Availability zones in a region [49]

unavailable, you will have rapid and safe access to backup copies of your inform-
ation [50].

Failures are a possibility in any virtual system but are more prevalent in cloud-
based systems. Additionally, periodic maintenance, upgrades, and scheduled down-
time are required. If you deal with a reputable cloud storage provider, you can be
certain that your data is being stored on several computers and in line with any
industry requirements (for example, some businesses may be required to have up
to three copies of all data). The issue is more sophisticated than just duplicating
data. Redundancy ensures that your company’s data may be accessed at any time,
regardless of whether an issue was anticipated or occurred unexpectedly [50].

StaaS Security

Additionally, the nature of these risks varies between STaaS providers and com-
panies or individual customers, ranging from simple platform hardening and an-
timalware efforts to multitenancy. Customers can create vulnerabilities that a CSP
has little control over [51].

Multitenancy

Processing and storage resources are separated from the underlying hardware in a
cloud environment and made available in virtual pools via virtual machines (VMs)
or containers. On the same physical server, many virtual machines and containers
may operate. Your data and applications often share bare-metal resources with
those of other customers. This is referred to as multitenancy since several tenants
or customers share physical resources. Vulnerabilities in the workloads of another
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tenant may expose your workloads to hazard.
Workload segregation is critical to resolving the issue. While virtual machines

and containers are automatically isolated, additional hardware-based precautions
may also be beneficial.Intel® Software Guard Extensions (Intel® SGX), for ex-
ample, is designed to construct trusted memory enclaves inside a platform to pro-
tect and safeguard data both in transit and during use. [52].

Customer Vulnerabilities

The main security issue for STaaS clients will be determining who within their
company has read-only vs. read and write–level data access. Because CSPs have
limited control over who has access to their customers’ devices, it’s critical to be
wary of assaults like email phishing schemes that could compromise your point
of entry. Another layer of security can be added by using strong passwords, two-
factor authentication, and other recommended measures. [52].

Provider Practices

In STaaS, the cloud storage provider (CSP) who manages the cloud storage en-
vironment is primarily responsible for cloud security. The CSP is responsible for
addressing vulnerabilities at both the hardware and software levels, as well as
managing the human component by ensuring that all staff responsible for main-
taining the cloud infrastructure are trustworthy and follow best practices. In this
case, the consumer should educate themselves and be able to ask pointed queries
when selecting a CSP [52].

4.2 Data Placement Techniques for Big Data

Zhang et al. [53] describes BerryStore, a distributed object storage system suited
for the storing of huge quantities of little files. In a large web application, file shar-
ing generates a large number of requests. BerryStore is built to manage these re-
quests. The essential insight is that extraneous disk operations should be avoided
when reading metadata. When it comes to small file storage, the fault-tolerant
BerryStore system outperforms the more traditional NAS-based approach because
to its substantially better throughput. Additionally, with the addition of a distrib-
uted coordinate controller, the system gains scalability, concurrency, and fault
tolerance. The proposed mechanism does not provide any support for integra-
tion with the big data pipelines. In addition to that, A Dynamic Data Placement
Strategy for Hadoop in Heterogeneous Environments [54], An Improved Data Place-
ment Strategy for Hadoop [55] and Improving MapReduce performance through data
placement in heterogeneous Hadoop clusters [56] are all data placement techniques
for Hadoop.

Yuan et al. [57] researched the unique characteristics of scientific cloud op-
erations and proposed a clustering data placement strategy capable of dynamic-
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ally moving application data across data centers based on dependencies. Simula-
tions on their cloud workflow system SwinDeW-C shown that our data placement
strategy may significantly reduce data traffic during the execution of the process.
The build-time algorithm reduces the amount of data acquired, while the run-time
algorithm ensures a balanced distribution of data and may minimize data trans-
portation costs via data reallocation, even when fixed-location data exists in the
system. The suggested system is heavily platform dependant since it only works
for Hadoop.

Er-dun et al. [58] addresses the issues connected with scientific workflows in
the cloud computing environment, specifically the load balancing of datacentres.
After examining the storage capacity of data centers, data transit patterns, and
datacentre loads, they came with a workable data placement strategy using a
genetic algorithm. In compared to other data placement strategies, the genetic
algorithm-based data placement methodology performs well in terms of data cen-
ter load balancing and data movement volume. In order to arrive at a better job
placement strategy, further research on how to minimize task execution times and
integrate them with scheduling tasks is required. While the proposed technique
is effective, it does not address any functional requirement from the owners or
developers of big data pipelines. It is limited to the number of datasets and the
number of movements.

4.3 How can StaaS be integrated with DSL for big data
pipelines?

Ivens et al. [59], from the University of Waterloo, carried out an extensive survey
on the domain-specific languages for big data in the field of machine learning.
This survey covers seven languages released in the literature or being used in
the domain of Machine Learning in Big Data, and described them using a classi-
fication created from publications about DSL found in the literature. The major
goal of this survey is to provide detailed knowledge to the domain experts so
that they can make a sound decision while choosing the language. Moreover, in
terms of the commonly used construction steps/process to develop a new DSL,
Tomaz et al. [60] provides a preliminary study on different implementation tech-
niques/approaches of domain-specific languages. It discusses the advantages and
disadvantages of these approaches, but it does not provide any solid outcome
that which technique is the best. This paper states the empirical results on the
productivity of end-user, which is measured based on the number of lines of code
needed to describe the DSL. It also discusses the error-reporting and debugging
support in each implementation. Although both studies are focused on DSLs re-
lated to big data workflows, but none of them provides much information on the
domain-specific languages for workflow specification in cloud infrastructure and
date storage methods.

DSLs that are currently being used have a very limited scope. For example:
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1. A DSL developed by Fazle Rabbi and Wendy MacCaull for Workflow Devel-
opment [61] is focused more on providing an easier way to query data from
the storage system. It has only one key element that is directly relevant to
the workflow definition and that is dynamic task scheduling. It takes two
parameters delay and duration. Duration represents the time for each step
or task, whereas delay is the time between two tasks.

2. Mathias Slawik and Axel Küpper [62] developed a domain-specific language
for business big data workflow in a cloud environment. They focused mostly
on the challenge of connecting the workflow to the cloud. Figure 4.2 shows
an example of vocabulary definition, whereas the Figure 4.3 shows the ser-
vice description example. When this DSL provides an efficient way to solve
the challenge of connecting to the cloud, it does not provide any vocabulary
to actually define the individual workflow steps and their flow.

3. A few addresses the challenges such as scheduling [63] and connecting to
cloud [64], but they do not cover any cloud infrastructure elements in their
vocabulary.

4. DSLs that describe big data workflows covers elements such as containers,
communication medium and scheduling [65], but the meta-model does not
have any element to describe the storage system, network, ports and build
parameters, and resource provisioning/management.

Mathias Slawik and Axel Küpper [62] developed a domain-specific language
for business big data workflow in a cloud environment. They focused mostly on
the challenge of connecting the workflow to the cloud. In order to resolve that
problem, they provided the vocabulary to the DSL to generate a model based on
the type of service the user needs, i.e Platform as a Service (PaaS), Infrastructure
as a Service (IaaS), and Software as a Service (Saas). Figure 4.2 shows an example
of vocabulary definition, whereas the Figure 4.3 shows the service description
example such the workflow needs to be connected to Google Drive and the type is
SaaS. While this DSL provides an efficient way to solve the challenge of connecting
to the cloud, it does not provide any vocabulary to actually define the individual
workflow steps and their flow.

Figure 4.2: Vocabulary definition example

Aravind et al. [63] in their paper proposed techniques of scheduling big data
workflow tasks in the cloud environment. They explain how the processing time
and resources can be divided into multiple steps to minimize the cost. F# Work-
flow DSL [64] provides an efficient way to describe a big data workflow. It gives
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Figure 4.3: Service description example

the ability to create logical steps and their connection, but it does not cover any
cloud infrastructure elements in its vocabulary. Nikolov et al. [66] suggested a
DSL for scalable execution of large data operations using software containers.
They put a lot of emphasis on using a domain-specific language to define work-
flows. A communication medium and triggers can be used to design a workflow
stage. However, there is no element in the meta-model that describes the work-
flow’s storage system. Network, ports, and build parameters can also be supplied
because the DSL outputs a YAML file for cloud orchestration tools. Furthermore,
it lacks the ability to provision and manage resources.
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Chapter 5

Problem Analysis

This chapter analyses the problem addressed in this thesis in two folds, namely
in terms of criteria to evaluate storage service options and method to rank these
options with respect to these criteria. In this respect, firstly, we provide a descrip-
tion and analysis of different available cloud storage service options and their
pricing structures, followed by justification for the selection of a particular cloud
storage option used as an input for the development of the ranking algorithm.
Secondly, for ranking different cloud storage providers based on the selected cri-
teria, the use of multi-criteria decision analysis (MCDA) method is discussed.
Hence, the chapter also provides a detailed description and justification of the
chosen method.

Collecting information about different available options will help in under-
standing the problem better, i.e., to choose the best among available cloud storage
options. Because in order to rank different cloud storage services based on the user
requirements, it is important to collect and then normalize data about the offered
services and their pricing structures. For example, to estimate the total cost, it is
required to take into account not just the volume of data to be stored but also the
cost of network usage in terms of the concrete number of READ and WRITE opera-
tions as well as the amount of data transferred in Gigabytes. Moreover, each cloud
storage provider has multiple options for storage services. For example, Azure has
three different tiers, such as the hot tier, the cool tier, and the archive tier. Google
Storage, on the other hand, has exactly the same structure for storage options, but
with different names, which are standard, coldline, and archive. Amazon follows
the same pattern but with different names. Similarly, network usage is further
categorized into egress and ingress. When it comes to the selection of a storage
facility, the user is given the option of multiple regions and availability zones. For
data normalization, it is important to select common services from each of the
providers. For example, each service provider has several storage tiers and differ-
ent pricing models for each tier. So, one tier is selected from each storage provider
with similar characteristics, and then data is collected for the evaluation model.
This chapter contains brief details about the storage service providers and their
relevant offered services, as well as justification for the selected services.

35
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In what follows various criteria for cloud storage options are discussed and for
the development of a ranking algorithm, the following steps have been identified:

• get details about the different available storage tiers;
• comprehend the role of network utilization in cloud storage and its implic-

ations for cost;
• understand the different available encryption methodologies and identify

the most suitable for this problem;
• study the roles of availability zones and geographical regions so that an

informed choice can be made at the time of deployment.

5.1 Justification for the selected parameters

A total of four parameters were selected for the evaluation of different cloud stor-
age providers, which are cost, physical distance, network performance, and impact
of server-side encryption. Cost is selected because it is an important parameter
while selecting any service from a cloud storage provider. There are studies that
rank cloud services based on their cost ([67], [68]). Physical distance is selected
while keeping in mind the principle of data locality. The closer the data, the better
the performance is. So finding the closest storage facility is one of the problems
this thesis resolved. Physical distance is calculated as a straight line between two
points on the map, but the network infrastructure between two servers is not ne-
cessarily a straight line. It can be a mesh of wires, and there is a great possibility
that the length of the actual network line is far longer than the actual physical
distance between two servers. To overcome this challenge, a new parameter, net-
work performance, is selected. The fourth parameter is the impact of server-side
encryption. It has been selected based on the unstructured interviews and discus-
sions with the field experts.

5.2 Storage tiers

5.2.1 Microsoft Azure Storage Cloud

Azure storage offers a variety of access tiers. Access tiers for Azure Storage include
[69]:

• Hot tier: Data that is frequently accessed or modified is best stored in an
online tier. The storage costs for the Hot tier are the highest, but access costs
are the lowest.

• Cool tier: An online tier designed to store data that is accessed or modified
only on a rare occasion. It is recommended that data in the Cool tier be kept
for at least 30 days. In comparison to the Hot tier, the Cool tier has lower
storage costs but higher access costs.

• Archive tier: Data that is rarely accessed and has flexible latency require-
ments, on the order of hours, can be stored in an offline tier. A minimum of
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180 days should be kept in the Archive tier.

Azure storage capacity limits are set at the account level, rather than according
to access tier [69]. You have the option of maximizing capacity usage in one tier
or distributing capacity across two or more tiers.

5.2.2 Amazon Web Services

Amazon offers two file storage tiers: S3 (Simple Storage Service) and EBS (Elastic
Block Store). For the most part, the main difference between them is in what they
can be used for [70].

• EBS: EBS (Elastic Block Store) is only accessible when mounted to an EC2
(Elastic Computing Cloud) instance. To an EC2 instance, the volume moun-
ted with EBS appears exactly like a hard disk partition on the server. With
any file system, it can be used like a hard drive for storing data and writing
or reading files. EBS has a standard limit of 20 volumes, each of which can
hold 1 TB of data. A limitation of EBS is that it cannot be used concurrently
by multiple instances. Once an instance mounts it, no other instance may
use it. EBS data reads and writes almost instantly.

• Simple Storage Service (S3): In contrast, S3 can be used outside of EC2
as well. Retrieving files from an S3 bucket is as simple as using HTTP or
BitTorrent protocols. S3 is a popular choice for many websites because it
is accessible to HTTP clients, such as web browsers. S3 still has the upper
hand when it comes to total storage capacity. S3 has a standard limit of 100
buckets, each of which can hold an unlimited amount of data. S3 can store
multiple images of its contents, allowing it to be used concurrently by mul-
tiple users. A fascinating byproduct of this capability is something known as
’eventual consistency’. With S3, changes are not immediately written, which
means that if you write something, it may not be the data returned by a read
operation.

In short:

• EBS is only compatible with EC2 instances, whereas S3 is compatible with
non-EC2 instances.

• Even though the EBS looks like a volume that can be mounted, the S3 needs
extra software to read and write data. EBS can store less data than S3.

• A single EC2 instance can use EBS, but multiple instances can share S3.
• Typically, S3 has write delays, whereas EBS does not.

5.2.3 Google Cloud Storage

Google cloud storage offers three different tiers [71]:

• Standard: Standard tier does not have a minimum storage duration, and
this type is also used in this thesis. Objects of other types can be deleted
before they have been stored for the minimum duration, but at the time the
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object is deleted, replaced, or relocated, you are charged as if the object has
been stored for the minimum duration.

• Coldline: Data stored in Coldline Storage must be kept for a minimum
amount of time.

• Archive: Data stored in Archive Storage must be kept for a minimum amount
of time.

Selected tiers: For this thesis, hot tier from Azure, S3 from Amazon, and stand-
ard storage tier from Google is selected as they are most frequently used tiers with
similar characteristics.

5.3 Network usage

Network usage is the amount of data read from or moved between the buckets.
When Cloud Storage sends data via Egress, it’s represented in HTTP response
headers. An example of egress is reading data or metadata from a Cloud Stor-
age bucket. HTTP requests sent to Cloud Storage are represented by Ingress. An
example of ingress is the writing of data or metadata to a Cloud Storage bucket
[71].

5.3.1 Data Egress

The term "data egress" refers to the act of sending data from a network to another.
Data egress can be as simple as sending emails or transferring files to a cloud ser-
vice or another location. An organization’s network security might be jeopardized
when sensitive data is sent to an unapproved destination [72].

Examples of common channels for data egress include:

• Email
• Web uploads
• Cloud storage
• FTP/HTTP transfers

5.3.2 Data Egress vs. Data Ingress

Data egress refers to outbound traffic from a network, whereas data ingress refers
to traffic that originates outside the network and enters the network [73]. One
way to think about it is as the amount and type of traffic that leaves a network
and enters the outside world.

Egress filtering is the process of keeping tabs on outbound traffic for signals
of malicious activity, such as phishing. It is possible to prevent sensitive data from
being lost if malicious behavior is suspected or discovered. Egress filtering can
also limit egress traffic and reject efforts to egress large volumes of data at once
[72].
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5.3.3 Azure network usage

The total cost of Microsoft Azure cloud storage is dependent on the following :

• Volume of data stored per month.
• Quantity and kinds of activities carried out, in addition to any costs associ-

ated with data transport [74].
• Data redundancy option selected.

5.3.4 Amazon network usage

Amazon s3 pricing depends on three things:

• To save things in the buckets of the S3 service [75].
• Requests and data retrievals. Amazon imposes fees for every requests made

on the objects and buckets in your S3 storage. The expenses of an S3 request
are determined by the type of request being processed and the number of
requests that are being processed [76].

• Data transfer: Users of Amazon S3 storage are also responsible for paying
for any bandwidth entering and exiting Amazon S3, with rare exceptions
[77].

5.3.5 Google network usage

When you use cloud storage, you’ll have to pay fees for the operations you carry
out. A Cloud Storage operation is any action that modifies or retrieves data about
buckets or objects. Class A, Class B, and free operations are all subclasses of one
another [71]. Network usage charges apply for egress and are divided into the
following cases:

• Network egress to other Google Cloud Storage buckets or services
• Specialty network services, when egress uses certain Google Cloud network

products.
• When egress is out of Google Cloud or between continents, the item General

network usage is used.

Selected options: Class A operations are the only ones considered in this thesis
for Google. For Azure, no redundancy (LRS) and international data transfer rates
are selected. For Amazon, the S3 storage type is chosen because it doesn’t have
any redundancy and has fast international data transfer rates.
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Figure 5.1: High-level diagram showing the process of Server-side encryption
between On-premise servers and cloud storage using a server-managed key.

5.4 Server-side encryption

To prevent data from being read by unauthorized parties, the object storage ser-
vice uses server-side encryption. Server-side encryption is offered by all three pro-
viders, but implementation details differ, particularly in the management of keys.
Figure 5.1 shows the general scenario of the process of data being encrypted us-
ing a server-side encryption. Whereas the Figure 5.2 shows the same process for
server-side encryption for aws s3 bucket.

Figure 5.2: High-level diagram showing the process of Server-side encryption
when an object is uploaded to AWS S3 bucket using HTTP protocol [78].

5.4.1 AWS S3 server-side encryption

There are many alternatives for both server-side and client-side encryption on
Amazon S3. Server-side encryption is enabled by default for all items that are
uploaded to S3. AES-256 with Galois Counter Mode (GCM) is used by AWS for
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all symmetric key encryption activities, on both the server and client sides. GCM
authenticates encryption by adding a unique identifier to the ciphertext that en-
sures that the encrypted data has not been tampered with [78]. Except when the
customer provides the encryption key, envelope encryption is utilized on both the
client and server sides. For server-side encryption, Amazon S3 supports three op-
tions:

• Amazon S3-managed keys (SSE-S3)
• AWS Key Management Service (KMS) managed keys (SSE-KMS)
• Customer-provided keys (SSE-C)

SSE-S3 is the only storage and management solution that can handle both
KEKs and DEKs simultaneously. The service takes care of all aspects of key man-
agement, including the routine rotation of keys, so there is no need for human par-
ticipation in any of these processes. To accomplish this, S3 uses an AWS-managed
Key Management Service (KMS) [78].

The steps involved in the encryption process for SSE-S3 are as follows:

1. The Amazon S3 server receives the data.
2. A one-time-only, one-of-a-kind Data Encryption Key is produced by the S3

service (DEK)
3. The DEK is utilized to encrypt the data that is uploaded.
4. After that, the DEK is encrypted with a KEK that is controlled and kept secure

by the S3 service.
5. While the plaintext form of the DEK is removed from memory, the encrypted

version of it is saved alongside the ciphertext data as metadata.

The decryption workflow is as follows:

1. Amazon S3 retrieves the encrypted DEK for the requested object and de-
crypts it using the associated KEK

2. S3 decrypts the ciphertext object using the decrypted DEK and then deletes
the key from memory

3. The decrypted object is downloaded to the requesting client or application

5.4.2 Azure storage server-side encryption

Azure by Microsoft Blob Storage is a Microsoft Azure storage service. For the sake
of this post, Block Blob Storage is the closest thing to Amazon S3 and Google
Cloud Storage. Although Azure has nearly as many options for data encryption
and key management as AWS, the details are frequently difficult to discover and
frequently absent. [78].

Client-side encryption can be enabled by default for all objects uploaded to
Azure, however both server-side and client-side encryption are supported. Storage
Service Encryption refers to server-side encryption when it comes to Azure blob
storage. Encryption of data or content is performed using AES-256 symmetric
keys, whereas Key Encryption Key (KEK) encryption is performed using either
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symmetric or asymmetric keys, depending on who is creating and managing the
keys [78]. Azure supports both types of encryption.

Storage Service Encryption supports using a KEK that is either:

• Microsoft’s own internal key management infrastructure is used to admin-
ister the storage service.

• Customers store and manage their keys in Key Vault, which is a service from
Azure that helps them store and manage their keys.

The encryption workflow for Storage Service Encryption is as follows:

1. Data is uploaded to Azure Blob Storage
2. Using a cryptographic library, Azure Blob Storage generates a one-of-a-kind

one-time Content Encryption Key (CEK)
3. The uploaded data is encrypted using the CEK
4. It is then necessary to encrypt the CEK using an existing RSA public KEK,

which can either be located on-site at the storage facility or in Azure Key
Vault.

5. CEK information is retained alongside the encrypted ciphertext data; plain-
text CEK is removed from memory.

The decryption workflow is as follows:

1. As soon as a user requests a piece of data, Azure Blob Storage receives the
encrypted DEK and transfers it to the storage services’ internal key manage-
ment service or to Azure Key Vault.

2. The private key associated with the KEK is used to decrypt the CEK and send
it back to Azure Blob Storage.

3. The plaintext CEK is used to decode the data.
4. When a client requests encrypted data, Azure Blob Storage transmits the

decrypted data to the client.

Selected techniques: Each cloud storage provider gives multiple options for
data encryption. They include server-side encryption and client-side encryption.
Furthermore, for server-side encryption, different options are available, such as
encryption with server-managed keys and client managed keys. Each option not
only has an effect on the performance, complexity of the software but also on the
cost. For this thesis, server-side encryption with server-managed keys option is
selected as it requires minimal work from the user side and has no extra cost.

5.5 Availability Regions

Cloud data centers are located in Availability regions. In terms of latency, solution
offerings, and costs, different regions offer a variety of options. Large service pro-
viders have availability zones all over the world. The term Availability zone refers
to a specific geographic area in which a single data center is located. There is no
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single data center that is shared by multiple availability zones; instead, each zone
has its own collection of data centers [79].

At the time of the data pipeline deployment, a user is required to select the
region for storing the data. The new distance finding algorithm and the cloud
storage ranking algorithm will give region as an output.

5.6 Multi-criteria Decision Analysis

Our decision-making process can benefit greatly from Multi-Criteria Decision Ana-
lysis, or MCDA. It is best suited to situations when a decision must be made
between two or more choices. As an effective decision support tool, it helps us
focus on what matters most, is logical and consistent, and is simple to use [80].
MCDA is an effective tool that can be utilized to solve complex challenges. It is par-
ticularly applicable to addressing circumstances that are represented as a choice
among possibilities. It has all the elements of a useful decision assistance tool: it
helps us focus on what is vital, is sensible and consistent [81]. At its core MCDA
is useful for:

• Dividing the decision into smaller, more understandable parts
• Analyzing each part
• Integrating the parts to produce a meaningful solution

Since we are also dealing here with multiple alternatives of cloud service pro-
viders and multiple options on the storage facilities of each of these providers,
MCDA is suitable for this project. MCDA enables groups communicate about their
decision opportunity (the problem to be solved) in a way that allows them to
consider the values that each regards as relevant when making a choice together.
It also gives people a unique opportunity to think about and discuss complicated
trade-offs between various options. As a result, it encourages people to re-examine
their thoughts and revise their conclusions [80].

MCDA problems are comprised of five components:

1. Goal
2. Decision maker or group of decision makers with opinions (preferences)
3. Decision alternatives
4. Evaluation criteria (interests)
5. Outcomes or consequences associated with alternative/interest combina-

tion

For this project, VIKOR method is selected based on the generalised framework
developed by Jankowski et. [82]. It is an innovative tool for choosing the MCDA
approach that is most appropriate for the decision issue. The framework provided
a methodological and practical framework for selecting appropriate MCDA pro-
cedures for a given decision situation. A collection of 56 available MCDA methods
were analyzed, and a hierarchical set of method features and a rule base were
created as a result. This analysis, principles, and modeling of uncertainty in the
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decision issue description enabled the development of a framework to support the
selection of an MCDA approach for a given decision-making situation. The prac-
tical studies showed that the methods suggested by the proposed methodology
were similar to those used by experts in real-life situations. The VIKOR procedure
has the following steps:

5.6.1 VIKOR Steps

Step 1.

Determine the best f ∗i and the worst f ∧i values of all criterion functions,

i = 1,2, ..., n;

f ∗i = max( fi j , j = 1, ..., J),

f ∧i = min( fi j , j = 1, ..., J),

if the i-th function is benefit;

f ∗i = min( fi j , j = 1, ..., J),

f ∧i = max( fi j , j = 1, ..., J),

if the i-th function is cost.

Step 2.

Compute the values S j and R j ,

j = 1,2, ..., J ,

by the relations:

S j = sum[wi( f ∗i − fi j)/( f
∗
i − f ∧i ), i = 1, ..., n],

weighted and normalized Manhattan distance;

R j = max[wi( f ∗i − fi j)/( f
∗
i − f ∧i ), i = 1, ..., n],

weighted and normalized Chebyshev distance; where wi are the weights of cri-
teria, expressing the DM’s preference as the relative importance of the criteria.
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Step 3.

Compute the values
Q j , j= 1,2, ..., J ,

by the relation

Q j = v(S j˘S∗)/(S∧ − S∗) + (1− v)(R j − R∗)/(R∧ − R∗)

where
S∗ = min(S j , j = 1, ..., J), S∧ = max(S j , j = 1, ..., J),

R∗ = min(R j , j = 1, ..., J),

R∧ = max(R j , j = 1, ..., J);

and is introduced as a weight for the strategy of maximum group utility, whereas
1-v is the weight of the individual regret.These techniques may be imperiled by v
= 0.5, and in this case, v is adjusted as = (n + 1)/ 2n (from v + 0.5(n-1)/n = 1)
because the criterion (1 of n) associated to R is also included in S.

Step 4.

Sort the options by the values S, R, and Q, starting with the lowest value. The end
result is three ranking lists.

Step 5.

Propose as a compromise solution the alternative A(1) which is the best ranked
by the measure Q (minimum) if the following two conditions are satisfied: C1.
“Acceptable Advantage”: Q(A(2) – Q(A(1)) >= DQ where: A(2) is the alternative
with second position in the ranking list by Q; DQ = 1/(J-1). C2. “Acceptable Sta-
bility in decision making”: The alternative A(1) must also be the best ranked by
S or/and R. This compromise solution is stable within a decision making process,
which could be the strategy of maximum group utility (when v > 0.5 is needed),
or “by consensus” v about 0.5, or “with veto” v < 0.5). If one of the conditions is
not satisfied, then a set of compromise solutions is proposed, which consists of: -
Alternatives A(1) and A(2) if only the condition C2 is not satisfied, or - Alternat-
ives A(1), A(2),..., A(M) if the condition C1 is not satisfied; A(M) is determined
by the relation Q(A(M)) – Q(A(1)) < DQ for maximum M (the positions of these
alternatives are “in closeness”).

The obtained compromise solution could be accepted by the decision makers
because it provides a maximum utility of the majority (represented by min S),
and a minimum individual regret of the opponent (represented by min R). The
measures S and R are integrated into Q for compromise solution, the base for an
agreement established by mutual concessions.





Chapter 6

Smart Data Placement Solution
Design

6.1 Preliminary work

In [66] (see appendix also), we proposed a solution for specifying big data work-
flows at a high abstraction level, which allows for the separation of design and run-
time components and still allowing for scalable process execution. The approach
is based on usage of software container technologies, message-oriented middle-
ware (MOM), and a domain-specific language (DSL) that enables highly scalable
workflow execution and abstract workflow formulation. Based on the results of
our experiments, we show that the proposed technique may be applied in prac-
tice to the definition and scalability of large-scale data operations. Our method
was evaluated against Argo Workflows, a well-known tool in the field of big data
workflows, in terms of scalability, and a qualitative assessment of the suggested
DSL and overall approach was provided in comparison to the current literature.
The proposed DSL’s design stresses the separation of concerns between workflow’s
structural features and its execution. As a result, we believe that the DSL should be
used by non-technical users and so should avoid difficult structures. Therefore, in
the creation of the language, another method is to introduce linguistic ideas only
when they are absolutely necessary [83]. As a result, the DSL’s initial version only
includes notions that are relevant to our real-world use cases. The meta-model of
the prosed DSL is shown in Figure 6.1.

47
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Figure 6.1: Meta-model for the proposed DSL for representing big data pipelines
[66]

In [84] (see appendix also), we have proposed a unique architecture and a
prototype implementation for container-centric big data workflow orchestration
systems. Data locality is taken into consideration using a flexible model that takes
into account the physical distance between hosts dispersed across the computing
continuum in the method proposed. Long-lived containers in our system are bet-
ter suited for processing small, frequent data units, yet they are reused to process
many units instead. Furthermore, it extends the principles of isolating processing
stages in different containers to the data management element of big data pro-
cesses. As such, the logic needed to communicate with data management systems
is encased in containers, giving the same benefits as for processing logic (tech-
nology agnostic solution, isolation, lightweight, etc.). Hence the importance and
viability of 1) software containers, 2) domain-specific languages, 3) data-locality
has been tested and demonstrated.

6.2 Novel architecture

Both studies explained in Section 6.1 proposed an architecture for a big data
pipeline with a shared file volume setup on the same server as of the compute
steps. Steps are encapsulated in software containers and a message queue is im-
plemented for communication between different steps. The big data pipeline ar-
chitecture design idea is shown in the Figure: 6.2. The data is stored on a local
storage, hence no specific data transfer medium is required. Trigger model is also
proposed to start and stop the processing for each compute step.
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Figure 6.2: Prototype big data pipeline [66]. Shared file volume is setup on the
same server as of the compute steps. Steps are encapsulated in software contain-
ers and a message queue is implemented for communication between different
steps.

In this thesis, we propose an improved and extended architecture as shown in
Figure 6.3 where the compute steps are still encapsulated in software containers
with a communication medium attached, the local storage is replaced with hybrid
cloud storage as a service. For this thesis, we have considered and evaluated three
cloud storage providers: Amazon, Azure, and Google.

Figure 6.3: Big data pipeline proposed architecture with integration to Storage as
a Service (IP: Input, OP: Output). Steps are encapsulated in software containers
and a message queue is implemented for communication between different steps.
Local storage is replaced with the cloud storage or STaaS.
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6.3 Ranking method

There are several parameters that affects the choice of cloud storage such as the
cost of storage space, security, performance and the location. These parameters
are inter-dependant on each other. So there is a possibility that the cloud service
provider that fulfills security requirements does not have the best network per-
formance, or the one with closest to the data pipeline server is more expensive.
Another scenario involves more functional requirements. Cost structure for cloud
storage is not simple. So a data pipeline with an extensive data transfer opera-
tions and relatively less storage requirements, in this case, a cloud storage with
the least expensive storage does not necessarily have the least expensive band-
width as well.

Figure 6.4: Relation between cost, network performance and physical Distance.
Two data pipeline servers and three cloud storage options, each with it’s own pros
and cons.

The focus of the proposed method is mainly on data locality, that is, smart
data placement to achieve maximum performance output. But different locations
with different cloud storage providers have different costs. In addition to that, all
data centers have different network infrastructure, so that network performance
can vary between different data centers. Figure 6.4 shows the inter-dependency
between different parameters. It shows a hypothetical scenario where there are
two data pipeline server and three different data storage options, and each storage
option has different positive affect. The challenge is to decide which criteria is best
suited to the situation and user requirements. Hence, VIKOR, a Multi-criteria de-
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cision analysis method is used to rank different scenarios based on the weights set
by the user. For this very evaluation model, four different parameters are selected
in addition to the user weights. The parameters are as follows:

• Physical Distance
• Cost
• Network Performance
• Server-side encryption

The cost is further dependant on multiple parameters which are storage space,
network usage, number of read and write operations. The model involves a com-
prehensive implementation of each parameter. Following are the utilisation details
for all the parameters and the MCDA model.

6.3.1 Physical Distance

Data locality is a great approach to address the bottleneck problem of data hav-
ing to travel through slow networks. Data do not need to circulate between a VM
and remote hosts all the time as necessary data sets are available locally. Also,
it keeps the I/O operations within a single physical node. Thus, data locality al-
lows to avoid the processing overhead of the network stack, thereby considerably
lowering latency because much fewer data require transferring via network. In
order to do that, a software tool is developed to find out the physically closest
storage facility available to the data pipeline server. The distance is calculated in
real time. The tool analyses:

• two hundred and sixteen (216) storage facilities of Amazon Web Services
including Amazon Gov Cloud

and

• two hundred and eighty-three (283) Azure cloud facilities.

It calculates the physical distances in Kilometers (KM) between the data pipeline
server and the storage servers based on the longitude and latitude.

Pseudo Code

The pseudo code for the software program is as follows:

Algorithm 1 Psuedo Code for finding closest storage facility

1: procedure FINDPIPELINESERVERLOCATION

2: serverIP← IP Address of the data pipeline serverstring
3: return Long ← Longitude pipeline server, Lat ← Latitude pipeline server
4: end procedure
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Algorithm 2 Psuedo Code for finding closest storage facility

1: AWSRegionsDetail ← Details of all AWS regions
2: repeatr ∈R
3:

4: procedure FINDLONGLATOFEACHINSTANCE

5: return Long.← Longitude of instance, Lat.← Latitude of instance
6:

7: procedure FINDDISTANCE

8: LongPS← Longitude of pipeline server
9: LatPS← Latitude of pipeline server

10: Long← Longitude of AWS instance
11: Lat← Latitude of AWS instance
12: return distance
13: end procedure
14: if shortest() then
15: FetchRegionDetails()
16: end if
17:

Algorithm 3 Psuedo Code for finding closest storage facility

1: AzureRegionsDetail ← Details of all Azure regions AzureRegion ∈
AzureRegionsDetail

2:

3: procedure FINDLONGLATOFEACHINSTANCE

4: return Long.← Longitude of instance, Lat.← Latitude of instance
5:

6: procedure FINDDISTANCE

7: LongPS← Longitude of pipeline server
8: LatPS← Latitude of pipeline server
9: Long← Longitude of AWS instance

10: Lat← Latitude of AWS instance
11: return distance
12: end procedure
13: if shortest() then
14: FetchRegionDetails()
15: end if
16:
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Software Flow Chart

Figure 6.5 shows the software flow chart for the software component to find the
physically closest storage facility for AWS, Azure, and Google. The software first
finds out the longitude and latitude of the data pipeline server; after that, it finds
the longitude and latitude of each storage server and calculates the physical dis-
tance between the two points.

Figure 6.5: High-level design of a software component for physical distance cal-
culation. After finding out the longitude and latitude of data pipeline server, it
is then compared with each of the storage facility provided by Amazon, Azure
and Google. Data is fetched for the cloud service providers using REST API. After
calculation, the server details with the shortest distance is given as an output.

6.3.2 Cost of storage service

The data can be stored in the cloud without the need for on-premise storage infra-
structure. As long as you have an internet connection, you can access the inform-
ation stored in the cloud at any time and from any location.Despite the fact that
cloud storage’s primary selling point is its low cost, it’s crucial to know exactly
what those fees are and how to avoid an unexpected bill. Cloud storage costs
might vary widely depending on a company’s needs. Everything from retrieval
frequency and storage capacity to network bandwidth affects the cost.

In simple words, cost is calculated based on four variables. The storage space
itself, the Out Bandwidth and the number of READ and WRITE operations. When
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it comes to the cost of cloud storage, it’s not just about the price per gigabyte
(GB). Additionally, there are fees involved with moving data between the cloud
and on-premise systems. In many services there are two costs: one per-gigabyte
cost each time servers in different domains communicate with each other, and
another per-gigabyte cost to transfer data over the internet.

Table 6.1 shows the data for Azure Cloud Storage and AWS S3. The cost is for
EU West region. Data has been arranged so that the price can be compared easily
between different services.

Data Preparation for Cost Calculation: Next step involved in the process
is data normalization. Normalization is the process of organizing data, and to
arrange and prepare the data based on which a software script can be developed
to calculate the total cost of the cloud storage based on the user requirements.
Normalized data is shown in Table 6.1.

Cost Calculation: This step involves the development of the software script
to calculate the estimate cost of the storage service based on the user require-
ments. The input parameters are as follows: Requirements[Space](GB), Require-
ments[Bandwidth](GB), Requirements[WRITE](1000), Requirements[WRITE](1000).
The result is the estimate of total cost in US dollars. The process is shown in Figure
6.6. The output received from this step would one of the integral parameters of the
new proposed model. The script was tested for different set of user requirements
and output was analysed in Section 8.3.

Figure 6.6: High-level design of a software component for cost estimation. User-
requirements in terms of storage, bandwidth, READ and WRITE operations in
given as an output, and an estimate for the total cost in US dollars is given as an
output.
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AZURE (EU West) AWS (EU Stockholm)
Space TB Price Per GB Price Per GB
0-50 0.02 0.023
51-500 0.0188 0.022
>500 0.018 0.021

Bandwidth IN Price Per GB Price Per GB
ALL 0.00 0.00

Bandwidth OUT Price Per GB Bandwidth OUT Price Per GB
0-5 0.0 0-5 0.09
6 – 15 0.08 0-10 0.09
16 – 55 0.065 11 - 050 0.085
56 - 155 0.06 51 - 150 0.07
156 - 500 0.04 >150 0.05

Operations Price Per 10,000 Price Per 10,000
WRITE 0.07 0,05
READ 0.006 0,04

Table 6.1: Cost Data Collection

6.3.3 Network Performance

Customers’ perceptions of the quality of a network’s service have a direct impact
on network performance. Due to the variety of network types and architectures,
a wide range of performance evaluation methods are available. In order to assess
the overall quality of a data-center’s network, a collection of network statistics is
examined and evaluated. It is a quantitative technique that assesses and specifies
the degree of performance of a network under consideration. End-user perception
of network performance is the primary metric used to assess network performance
(i.e. quality of network services delivered to the user). Generally speaking, net-
work performance is assessed by examining the statistics and metrics from the
following network components [85]:

• Network bandwidth or capacity refers to the amount of data that may be
sent through a network.

• Network throughput is defined as the amount of data that is successfully
carried through a network in a given amount of time.

• Network delay, latency, and jittering are all terms used to describe any net-
work problem that causes packet transport to be slower than normal.
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Need for testing network performance:

In accordance with the concept of data locality, the performance of the storage
facility that is physically closest to the data pipeline server should be improved.
Each datacenter, on the other hand, has a unique network infrastructure and set
of capabilities. Furthermore, the physical distance between two points is a more
permanent characteristic than the network’s performance. As a result, while phys-
ical distance can provide an indication of which facility is likely to provide the best
performance, the actual network performance test can provide assurance in this
regard as well.

Software flowchart

Figure 6.7 shows the software chart for testing the network performance. The
simple software tool uploads data to the cloud storage and then downloads the
data to the local storage. In the third step, it takes the data from local storage to
cloud storage again.

Figure 6.7: High-level design of a software component for testing the network
performance. Data is uploaded, downloaded and then uploaded again from a data
pipeline server to a cloud storage. Total execution time is calculated for the these
operations.

6.3.4 Server-side Encryption

Server-side encryption is the encryption of data at its destination by the applic-
ation or service that receives it. Cloud storage providers encrypt the data at the
object level as it writes it to disks in its data centers and decrypts it for the user
when it is accessed. As long as the request is authenticated and access permis-
sions are properfly defined, there is no difference in the way to access encrypted
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or unencrypted objects. For example, if objects are shared using a presigned URL,
that URL works the same way for both encrypted and unencrypted objects. For
this master thesis, server-side encryption is selected only with platform managed
keys to transfer the overhead to the provider side as much as possible. Hence, no
additional workload on the consumer side. A set of experiments are designed to
study the affect of server-side encryption on the performance.

Figure 6.8: High-level design of a software component to test the impact of
server-side encryption on performance.

High-level software design

Figure 6.8 shows the high level design for the software component to test the
impact of server-side encryption on performance. The data is stored in the cloud
storage and encrypted using server-side encryption. Two steps data pipeline is
deployed on a separate compute instance. First step downloads the data from the
server and stores in temporarily on a local storage. The second step reads the
data from the local storage and uploads it back to the cloud storage. Some of the
noticeable features on this design are as follows:

1. The concept of intermediate storage is introduced in this software compon-
ent.

2. Use of relatively bigger data chunks to correctly observe the impact of de-
cryption on performance while retrieving data.

Two separate storage buckets are deployed in the same physical region for
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each storage provider. Server-side encryption is enabled for one bucket whereas
on the other bucket, data is stored without any encryption.

6.4 Evaluation Matrix

We are using Multi Criteria Decision Analysis (MCDA) for comparing different
cloud service providers. VIKOR is the MCDA method used in this work. The VIKOR
method is a multi-criteria decision making (MCDM) or multi-criteria decision ana-
lysis method. It was originally developed by Serafim Opricovic to solve decision
problems with conflicting and non-commensurable (different units) criteria, as-
suming that compromise is acceptable for conflict resolution, the decision maker
wants a solution that is the closest to the ideal, and the alternatives are evaluated
according to all established criteria. VIKOR ranks alternatives and determines the
solution named compromise that is the closest to the ideal.

Matrix development

Figure 6.9: Evaluation matrix. Three rows and five columns. Each row is allocated
to each cloud service provider that is Amazon, Azure and Google. The column
represents the parameters such as cost, network performance, distance, impact
of server-side encryption and user-weights.

Figure 6.9 shows the evaluation matrix for the proposed model. Values for
the parameters are calculated from the steps explained in Section 6.3 above. Cost
is calculated based on the storage space, bandwidth, read and write operations.
Network performance is calculated in real-time with an experiment explained in
Section 6.3.3. Distance is also calculated in real-time with the newly developed
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software tool explained in Section 6.3.1. Server-side encryption is implemented
on the stored data in each cloud storage provider and it’s affect is tested on the
performance. The last column shows the weights set by the user. As explained
earlier, the requirement could be different for each data pipeline. So the weights
column provides an opportunity to set the priorities in the requirements.

High-level software design

Figure 6.10: Multi-criteria Decision Analysis Flow Chart. An MCDA algorithm is
implemented, the data in the form a normalized matrix is given as input, output
shows the ranking of cloud service providers based on user-weights.

Figure 6.10 shows the flowchart for the proposed model. The evaluation mat-
rix explained above is given as an input to the MCDA VIKOR algorithm, and the
output is the ranking of the cloud service providers.

6.5 Domain-specific Language (DSL) Meta-model

The DSL core meta-model, depicted in Figure 6.11 and Figure 6.12, is technically
represented as an ECore model, organized into several smaller packages. Each of
these packages reflects a specific aspect of our DSL. In what follows, a compre-
hensive explanation of these packages is presented. It is extended version of DSL
meta-model proposed in [66]. Noticeable elements include, flexible class struc-
ture to integrate large number of third party applications, support for security
and monitoring packages. Most importantly, ability to integrated cloud storage
in added in the DSL vocabulary. In addition to that, the DSL has now enhanced
vocabulary to integrate a specific type of storage option such as MYSQL or NoSQL
from a specific cloud storage. To further ease the usability, the user has an op-
tion to either specify the container image path for security, communication me-
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dium, monitoring etc. If a user specifies a particular package, the compiler would
take that into account at the time of deployment, otherwise it would install the
standard publicly available packages. To improve the usability of the class objects,
single class for commands and environment variable is developed and reused at
workflow level, step level, and even at single packages level such as security and
storage.

6.5.1 Core Concepts

In this subsection, a brief overview of the main concepts of our meta-model is
presented. Few of the main concepts are Workflow, Steps, Communication Me-
dium and Storage.
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Figure 6.12: Domain-Specific Language Data Types

Sub-pipeline/workflow

In the designed DSL, each set of steps can be defined as a sub-workflow(pipeline);
then, each sub-pipeline can be used as a separate step in other pipelines. There-
fore, a sub-pipeline is a sequence of steps within a pipeline. By using sub-pipeline,
we can reuse common processes without re-creating them for each pipeline. The
CompositeStep entity represents the concept of sub-pipeline in the pipeline sys-
tem. This class contains many different important characteristics of a data pipeline/-
workflow. All the parameters that are need to be defined at the pipeline level are
included in this class. Those are as follows:

• Steps
• CommunicationMedium
• Storage
• Security
• Monitor

Step Containerization

In the proposed design, each step is wrapped in a container. By doing so, an isol-
ated virtual environment is provided for each step, which includes all the required
dependencies of the provisioned tools. The Step class has the following important
parameters:

• Trigger
• EnvironmentVariables
• InputParameters
• Command
• Network

Communication Medium

The data exchange mechanism is an essential element that binds the pipeline steps
together by allowing them to pass data. The communicationMedium represents
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the mechanism in which workflow steps exchange data. For example, a pipeline
step can pass data to another step using a message queue. The meta-model for the
communication medium is shown in Figure 6.13. CommunicationMedium is a sub-
class of Workflow object, as the communication medium would be defined at the
workflow level. This very sub-class has further three parameters and a sub-class for
for the CommunicationMediumTypes. There is a possibility to add three different
kinds of communication medium: 1) Message Queue, 2) Distributed File System,
and 3) Web Service. MessageQueue further has option for multiple packages such
as ZeroMQ, KubeMQ but those are implemented in the generator class, not in
the meta-model of the language Furthermore, pre-defined docker images can be
override by defining the path in the ContainerName parameter. Similarly, Ports
parameters can be used in the similar fashion as well.

Figure 6.13: Communication Medium

Storage

The Storage package, depicted in Figure 6.12, is designed to manage and estab-
lish a connection to different types of data sources. So far, four different types of
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data sources are considered: DistributedFileStorage, MySQL, NoSQL and Blob. In
addition, for each of these types, a specific type of credential is considered and are
defined in the EnvironmentVariable package. Storage can be defined at two levels,
workflow level and the step level.

Security

The Security package, shown in Figure 6.12, is designed to install and manage
security packages for the data pipeline. The security protocols and package will
be defined at the pipeline level, but will be deployed across the data pipeline at
the step level. The option to override these protocols at the step level is also under
consideration. Security options/packages can be defined at two levels, workflow
level and the step level. If defined at the workflow level, it will be implemented
across the workflow on all steps, but if defined separately at step level as well, it
will override the configuration defined at workflow for that particular step.

Monitor

The Monitor package, shown in Figure 6.12, is designed to install and manage the
software tool for big data pipeline monitoring. At this point, SEMTEXT is integ-
rated and tested for the pipeline. Monitoring options/packages can be defined at
two levels, workflow level and the step level. If defined at the workflow level, it
will be implemented across the workflow on all steps, but if defined separately at
step level as well, it will override the configuration defined at workflow for that
particular step.

Figure 6.14: Trigger package
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6.5.2 Trigger meta-model

Trigger, the package structure depicted in Figure 6.14, represents how the execu-
tion of a step instance is instantiated. Each step can potentially have zero or more
trigger mechanisms. With the help of the trigger concept, the execution of each
step can be triggered from a schedule that runs in a fixed interval of time, or it can
be configured to run only once (e.g., during the initialization of the workflow).
Execution can also be triggered by an external event (e.g., invocation from a REST
API or availability of input data in a message queue).

6.5.3 Environment Parameters meta-model

The environment requirement meta-model, depicted in Figure 6.15, can capture
the user functional and non-functional requirements, including but not limited to
hardware, quality, and security ones. This meta-model includes the top-level Exe-
cution Requirement concept; each step can potentially have zero or one Execution
Requirement, each of which can contain one or more parameters.



66 A.Q. Khan: Smart Data Placement for Big Data Pipelines

Figu
re

6.15:
Environm

ent
R

equirem
ents

m
eta-m

odel



Chapter 7

Smart Data Placement Solution
Implementation

The project involves the development of four software components, which are
as follows: physical distance, cost calculation, network performance, encryption,
and MCDA.

7.1 Physical Distance

This software component is developed for calculating the physical distance between
the data pipeline server and the data centers. Python is used as a programming
language. The software script is further divided into multiple procedures, which
are explained in the following sections. Figure 7.1 shows the flowchart of this soft-
ware component, showing different procedures and their interaction with each
other. Procedures are further explained in detail in the following sections.

7.1.1 Python libraries

The software program uses the following Python libraries:

• requests: It allows you to send HTTP/1.1 requests extremely easily. There’s
no need to manually add query strings to your URLs, or to form-encode your
POST data. Keep-alive and HTTP connection pooling are 100% automatic,
thanks to urllib3.

• time: Python has a module named time to handle time-related tasks.
• json: JSON (JavaScript Object Notation), specified by RFC 7159 (which

obsoletes RFC 4627) and by ECMA-404, is a lightweight data interchange
format inspired by JavaScript object literal syntax (although it is not a strict
subset of JavaScript 1). Python json exposes an API familiar to users of the
standard library marshal and pickle modules.

• geopy: It is a simple and consistent geocoding library written in Python that
provides access to GeoIP databases. It integrates with a variety of geocoding

67
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providers, including Google, Bing, OSM, and many others.

Figure 7.1: Flowchart for the software component to calculate the shortest phys-
ical distance.

7.1.2 Find Longitude & Latitude for Data Pipeline server

It is a simple procedure that finds out the longitude and latitude of the server
on which the data pipeline itself is deployed. The values would be used further
to calculate the distance. For this purpose, python geocoder library is used. The
code snippet is shown in the listing 7.1. The geocoder.ip() function takes the
string me as a parameter, stating that the longitude and latitude of the server on
which this software component is being run are required. If it is not on the data
pipeline server itself, the IP address can be passed as an input parameter.

Code listing 7.1: Python procedure for finding the longitude and latitude of the
data pipeline server

1 import geocoder
2 def FindLongLatofPipelineServer():
3 g = geocoder.ip('me')
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4 return (g.latlng)

7.1.3 Fetch details for AWS storage servers

This procedure involves downloading the details of AWS Storage facilities in real-
time from AWS IP Ranges 1. Python request library is used to download and
decode the JSON file.

Once the file is downloaded, the program loops through the json objects and
filters out the IP addresses only for S3 servers. Listing 7.2 shows the code snip-
pet for downloading the file from the AWS IP Ranges endpoint. The same code
structure is used for both the procedure and the code that downloads and sorts
the details for Azure storage servers.

Code listing 7.2: Python procedure for downloading the list of all AWS instances,
including S3 in real-time from their official IP Ranges endpoint

1 import requests
2 def getAWSIPRanges():
3 ip_ranges = requests.get('https://ip-ranges.amazonaws.com/ip-ranges.json'←-

).json()['prefixes']
4 s3_ips = [item['ip_prefix'] for item in ip_ranges if item["service"] == "←-

S3"]
5 return s3_ips

7.1.4 Calculate distance

In order to find the longitude and latitude of the storage server from the IP, python
geopy library is used. The procedure findLongLatofAWSInstance() in code listing
7.3 returns the longitude and latitude of an AWS S3 instance. whereas the pro-
cedure calculateDistance() calculates the actual distance in KMs between two sets
of coordinates.

Code listing 7.3: Python procedure for finding the longitude and latitude of an
AWS S3 instance and a procedure to calculate the distance between two sets of
coordinates.

1 import geopy.distance
2

3 def findLongLatofAWSInstance():
4 with urllib.request.urlopen("https://geolocation-db.com/jsonp/" + ip) as ←-

url:
5 d = url.read().decode()
6 d = d.split("(")[1].strip(")")
7 d = json.loads(d)
8 coords_aws = (d['latitude'], d['longitude'])
9 return coords_aws

10

1https://ip-ranges.amazonaws.com/ip-ranges.json
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11 def calculateDistance(coords_aws, coords_ps):
12 distance = geopy.distance.vincenty(coords_aws, coords_ps).km
13 return distance

The same code pattern is followed for the Azure cloud. For Azure, the list of
instances is downloaded in real-time from Azure IP Ranges 2. Since it provides the
list of all Azure services instances, the IP addresses are filtered out only for Azure
storage. Furthermore, the IP ranges for the GCP are downloaded from GStatic 3.
The code for filtering is different from the one shown in listing 7.2 as the json file
provided by Azure IP Ranges and GCP has a different schema.

The program checks for the shortest value returned from the procedure calcu-
lateDistance shown at line 11 in listing 7.3.

7.1.5 Code Repositories

Complete code for this software component is made available on GitHub 4. Final
version of the code has three versions:

1. Python file to run in a Windows or Linux environment (dependencies to be
installed)

2. Python Notebook with a block of code to self install the dependencies
3. Set of files to build a docker image and run as a software container

7.2 Cost Calculation

This software component calculates the total estimate of the per month cost of
using cloud storage in US dollars. It performs calculations for AWS S3 storage,
Azure cloud storage, and Google cloud storage. This script is also written using
the Python programming language. Since all cloud service providers work on a
pay-as-you-go model, Table 6.1 shows the prices of each cloud storage provider
divided on the basis of usage. The user requirements are passed as a 4x1 array,
and the function returns a 6x3 array. The first column of requirements array has
the total amount of storage required in GB. The unit GB is selected instead of TB
to provide more flexibility to the user. The second column of this array specifies
the required bandwidth in GB. The third and fourth columns of the requirements
specify the number of write and read operations respectively.

7.2.1 Code Listings

Code listing 7.4: Software component written in python programming language
to calculate to the estimated per month cost of a cloud storage based on user
requirements

2https://www.microsoft.com/en-us/download/details.aspx?id=56519
3https://www.gstatic.com/ipranges/cloud.json
4https://github.com/akifquddus/MS-DataPlacementModel
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1 #User Requirements
2 #requirements = [Storage, Bandwidth, WRITE, READ]
3 requirements = [5000, 15000, 50000, 50000]
4

5 #total_cost = [ProviderName, StorageCost, BandwidthCost, WRITECost, ←-
READCost, TotalCost]

6 total_cost = [
7 ['AWS', 0, 0, 0, 0, 0],
8 ['Azure', 0, 0, 0, 0, 0],
9 ['GCP', 0, 0, 0, 0, 0],

10 ]
11

12 def calculateCost(requirements, total_cost):
13 .
14 .
15 return total_cost
16

17 print(total_cost)
18

19 #SampleOutput
20 [
21 ['AWS', 1150.0, 1350.0, 0.25, 0.2, 1465.5],
22 ['Azure', 1000.0, 800.0, 0.35, 0.3, 900.65],
23 ['GCP', 1000.0, 1720.0, 2.50, 0.0, 1822.5]
24 ]

7.2.2 Code Repositories

Complete code for this software component is available on GitHub 5 and the pub-
lished code has three versions:

1. Python file to run in a Windows or Linux environment (dependencies to be
installed)

2. Python Notebook with a block of code to self install the dependencies
3. Set of files to build a docker image and run as a software container

7.3 Network Performance

Network performance refers to measures of the service quality of a network as
seen by the customer. The performance may vary because each data center has
a different network infrastructure. Hence, physical distance is not the only factor
that can be used to measure the performance of cloud storage.

The software component to test the network is developed in the Python pro-
gramming language. The simple program fetches articles from predefined online
blogs and uploads the data in JSON format to the cloud storage.

5https://github.com/akifquddus/MS-DataPlacementModel
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7.3.1 Python libraries

The program uses the following python libraries:

• requests_html: This library aims to make HTML parsing (for example, web
scraping) as simple and straightforward as feasible [86].

• time: Python has a module named time to handle time-related tasks.
• json: JavaScript Object Notation (JSON) is specified by RFC 7159 (which

obsoletes RFC 4627) and by ECMA-404, is a lightweight data interchange
format inspired by JavaScript object literal syntax (although it is not a strict
subset of JavaScript 1 ) [87]. Python json exposes an API familiar to users
of the standard library marshal and pickle modules [88].

• boto3: AWS services such as Amazon Elastic Compute Cloud (Amazon EC2)
and Amazon Simple Storage Service (Amazon S3) are created, configured,
and managed using Python (Boto3) (Amazon S3). The SDK has both an
object-oriented API and low-level access to Amazon Web Services.

• azure.storage.blog: Blobs are objects that can hold large amounts of text
or binary data, including images, documents, streaming media, and archive
data. You’ll upload, download, and list blobs, and you’ll create and delete
containers. The Python SDK for blog storage helps to manage blobs using
Python.

7.3.2 Code Listings

Code listing 7.5: Python code with two different procedures, get_source() to
return the source code for the provided URL whereas the get_feed() returns a
json object containing the RSS feed contents.

1 def get_source(url):
2 try:
3 session = HTMLSession()
4 response = session.get(url)
5 return response
6

7 except requests.exceptions.RequestException as e:
8 print(e)
9 return False

10

11 def get_feed(url):
12 response = get_source(url)
13

14 articles = []
15

16 with response as r:
17 items = r.html.find("item", first=False)
18

19 for item in items:
20 title = item.find('title', first=True).text
21 pubDate = item.find('pubDate', first=True).text
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22 guid = item.find('guid', first=True).text
23 description = item.find('description', first=True).text
24

25 row = {'title': title, 'pubDate': pubDate, 'guid': guid, '←-
description': description}

26 articles.append(row)
27

28 return articles

The code listing 7.5 shows two different python procedures. get_source() func-
tion takes the URL of the blog as an input parameter and returns the source code
for the provided URL. get_feed() function also takes the URL of the RSS feed as
an input parameter and uses the previously defined get_source() function to read
the content, and then format it into a JSON object.

The software components also contain three different procedures to upload
data to the s3 bucket, Azure blob storage, and Google cloud storage. There is no
server-side or client-side encryption involved to make sure there are no anomalies
in the experiment. In addition to that, all the data that is stored on the cloud
storage is unique, hence no over-write operations are involved either. Listings 7.6
shows the procedures to upload JSON objects to AWS, Azure and Google Cloud.

Code listing 7.6: Python code with two different procedures, get_source() to
return the source code for the provided URL whereas the get_feed() returns a
json object containing the RSS feed contents.

1 # Upload JSON Object to AWS
2 def uploadAWS(article):
3 object = s3.Object(BUCKET, article['title'])
4 result = object.put(
5 Body=(bytes(json.dumps(article).encode('UTF-8')))
6 )
7

8 res = result.get('ResponseMetadata')
9

10 if res.get('HTTPStatusCode') == 200:
11 return true
12 else:
13 return false
14

15 #Upload JSON Object to Azure
16 def uploadAzure(article):
17 blob_client = blob_service_client.get_blob_client(container=CONTAINER, ←-

blob=article['title'])
18 data = json.dumps(article)
19 res = blob_client.upload_blob(data,overwrite=True
20 if res.get('HTTPStatusCode') == 200:
21 return true
22 else:
23 return false)
24

25 #upload JSON Object to GCP
26 def uploadGCP(article):
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27 .
28 .
29 return true

7.3.3 Code Repositories

Complete code for this software component is available on GitHub 6 and the pub-
lished code has three versions:

1. Python file to run in Windows or Linux Environment (Dependencies to be
installed)

2. Python Notebook with a block of code to self install the dependencies
3. Set of files to build a docker image and run as a software container

7.4 Server-side Encryption

This section contains the implementation details for the software program to test
the impact of server-side encryption on performance. There are three different
components are setup to observe the stated purpose. System components are as
follows:

• Storage Server

◦ Amazon S3 Bucket (With and without server-side encryption)
◦ Azure Cloud Storage (With and without server-side encryption)
◦ Google Cloud Storage (With and without server-side encryption)

• Data Pipeline development

7.4.1 Python libraries

Following python libraries are used in this software program:

• requests_html: This library intends to make parsing HTML (e.g. scraping
the web) as simple and intuitive as possible.

• time: Python has a module named time to handle time-related tasks.
• json: JSON (JavaScript Object Notation), specified by RFC 7159 (which

obsoletes RFC 4627) and by ECMA-404, is a lightweight data interchange
format inspired by JavaScript object literal syntax (although it is not a strict
subset of JavaScript 1 ). Python json exposes an API familiar to users of the
standard library marshal and pickle modules.

• boto3: Python (Boto3) is used to create, configure, and manage AWS ser-
vices, such as Amazon Elastic Compute Cloud (Amazon EC2) and Amazon
Simple Storage Service (Amazon S3). The SDK provides an object-oriented
API as well as low-level access to AWS services.

6https://github.com/akifquddus/MS-DataPlacementModel
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7.4.2 Cloud Storage

Storage services are setup on three different cloud service providers. Amazon web
services, Azure cloud and Google cloud storage. On each of the provider, two
different types of buckets are deployed, one with server-side encryption enabled
and one without server-side encryption. Exactly same video data is uploaded to
all the buckets.

7.4.3 Data pipeline

A simple two steps data pipeline is developed to observe the impact of server-side
encryption on performance. Step 1 downloads data from the cloud storage and
saves on the local storage. Step 2 in return uploads the data stored in local storage
to the cloud storage and removes it from the local storage. For downloading and
uploading, HTTP is used. HTTP is a protocol for fetching resources such as HTML
documents. It is the foundation of any data exchange on the Web and it is a client-
server protocol, which means requests are initiated by the recipient, in this the
data pipeline server.

7.4.4 Code Listings

Listing 7.7 shows the python procedure to download data from AWS s3 bucket
in a sequential manner. The code is developed for the storage bucket with and
without server-side encryption enabled. Software script is also written in the sim-
ilar manner for Azure and Google cloud storage.

Code listing 7.7: Python procedure to download data from AWS s3 bucket. Same
code is setup for bucket with encryption and without encryption

1 s3client= boto3.client('s3',
2 aws_access_key_id=AWS_ACCESS_KEY_ID,
3 aws_secret_access_key=AWS_SECRET_ACCESS_KEY
4 )
5

6 def download_cloud_data():
7 for my_bucket_object in my_bucket.objects.filter(Prefix='videos_encrypted←-

/'):
8 key = my_bucket_object.key
9

10 s3client.download_file(bucket, 'videos_encrypted/' + key, "tempvideos←-
/" + key)

11

12 return "Operation completed!"

Listing 7.8 shows the python procedure to upload data to AWS s3 bucket in
a sequential manner and then subsequently deleting it from the local storage as
well. The code is developed for the storage bucket with and without server-side
encryption enabled. Software script is also written in the similar manner for Azure
and Google cloud storage.
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Code listing 7.8: Python procedure to upload data to AWS s3 bucket in a se-
quential manner and then subsequently deleting it from the local storage as well.
Same code is setup for bucket with encryption and without encryption

1 s3client= boto3.client('s3',
2 aws_access_key_id=AWS_ACCESS_KEY_ID,
3 aws_secret_access_key=AWS_SECRET_ACCESS_KEY
4 )
5

6 def download_cloud_data():
7 for my_bucket_object in my_bucket.objects.filter(Prefix='videos_encrypted←-

/'):
8 key = my_bucket_object.key
9

10 s3client.download_file(bucket, 'videos_encrypted/' + key, "tempvideos←-
/" + key)

11

12

13 body = open('tempvideos/' + key, 'rb')
14

15

16 object = s3.Object(bucket, 'videos_new/' + key)
17

18 result = object.put(Body=body)
19

20 res = result.get('ResponseMetadata')
21

22 if res.get('HTTPStatusCode') == 200:
23 print('File Uploaded Successfully for ' + key)
24 else:
25 print('File Not Uploaded')

7.4.5 Code Repositories

Complete code for this software component is available on GitHub 7 and the pub-
lished code has three versions:

1. Python file to run in Windows or Linux Environment (Dependencies to be
installed)

2. Python Notebook with a block of code to self install the dependencies
3. Set of files to build a docker image and run as a software container

7.5 Evaluation Matrix

This section provides the implementation details for the evaluation matrix to rank
different cloud service providers. For this purpose, the Python VIKOR method is
used. The first step in the process is data normalization. As discussed in the previ-
ous sections, there are a total of four parameters: the physical distance in kilomet-

7https://github.com/akifquddus/MS-DataPlacementModel
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ers; total cost estimation for each cloud service provider; network performance;
and the impact of server-side encryption. The VIKOR method ranks the entity high
with a higher value in the matrix, but in this situation, a higher value means poor
performance. For example, 200 km in distance is better than 300 km. Similarly,
the smaller the execution time, the better it is. So, to solve this problem, the values
are multiplied by -1.

7.5.1 Python libraries

Following python libraries are used in this software program:

• VIKOR: Python VIKOR function implements the "VIseKriterijumska Optim-
izacija I Kompromisno Resenje" (VIKOR) Method. VIKOR returns a data
frame which contains the score of the S, R and Q indixes and the ranking of
the alternatives according to Q index.

7.5.2 Code Listings

Code listings 7.9 shows the python code to define a VIKOR object with data and
data labels. On line number 6, a dataframe is defined for the VIKOR object. The
first parameter is a multi-dimensional array with the data about the cloud service
providers, such as cost, distance, network performance, and encryption impact.
The second parameter is also an array with the names of cloud service providers.
The third and last parameter is an array with labels such as cost, distance, time,
etc.

Code listing 7.9: Python code to define a VIKOR object with data and data labels

1 from scikitmcda.vikor import VIKOR
2 from scikitmcda.constants import MAX, MIN, LinearMinMax_, LinearMax_, ←-

LinearSum_, Vector_, EnhancedAccuracy_, Logarithmic_
3

4 vikor = VIKOR()
5

6 vikor.dataframe([
7 [AWS_COST, AWS_DISTANCE, AWS_NETWORK, AWS_ENCRYPTION],
8 [AZURE_COST, AZURE_DISTANCE, AZURE_NETWORK, AZURE_ENCRYPTION]
9 ],

10 ["AWS", "Azure"],
11 ["Cost", "Distance", "Time"]
12 )
13 print(VIKOR.pretty_original())

Code listing 7.10 shows the code snippet to set the weights for each parameter.
For example, on line number 1, the user has set the maximum weight for the
network performance. The ranking is based on the user weights, which are set
manually.
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Code listing 7.10: Python code to set the weights manually based on the user’s
preference

1 vikor.set_weights_manually([0.15, 0.05, 0.80])
2 topsis.set_signals([MIN, MAX, MAX])
3 topsis.decide()
4

5 print("NORMALIZED:\n", topsis.pretty_normalized())

Code listings 7.11 shows the code that analyzes the data and shows the results
with user weights set manually. The results are explained in detail in Section 8.5.

Code listing 7.11: Python code to define a VIKOR object with data labels

1 print("WEIGHTED:\n", topsis.pretty_weighted())
2 print("RANKING TOPSIS with", topsis.normalization_method , ":\n", topsis.←-

pretty_decision())

7.5.3 Code Repositories

Complete code for this software component is available on GitHub 8 and the pub-
lished code has three versions:

1. Python file to run in Windows or Linux Environment (dependencies to be
installed)

2. Python Notebook with a block of code to self install the dependencies
3. Set of files to build a docker image and run as a software container

7.6 Domain-specific Language (DSL)

This section provides the implementation details for the newly proposed domain-
specific language to deploy a big data pipeline. The language meta-model is de-
veloped using Xtext which is a framework for development of programming lan-
guages and domain-specific languages. To convert the language code written by
user based on the new meta-model, a compiler is constructed using Xtend, which
is is a flexible and expressive dialect of Java, which compiles into readable Java 8
compatible source code.

7.6.1 Code Listings

Code listing 7.12 shows the validated Xtext code to define a Workflow object
with reference to the objects for communication medium, storage, security, and
monitoring tools. The asterisk (textbf*) symbol determines if the object can be
defined multiple times or just once. The question mark (?) specifies that the object
is optional and that the code will compile without any errors even if the parameter

8https://github.com/akifquddus/MS-DataPlacementModel
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is not defined. As you can see, a "big data workflow" or "big data pipeline" can have
multiple steps and more than one way to store, protect, and keep track of the data.

Code listing 7.12: Xtext code to define a Workflow object with objects for com-
munication medium, storage, security and monitoring tools.

1 Workflow:
2 'workflow'
3 name = ID
4 ('extends' base = [Workflow])?
5 '{'
6 ('communicationMedium:' (communicationMedium = CommunicationMedium))
7 ('communicationParams:' (communicationParams = CommunicationParams))
8 ('parameters:' (params += InputParameter (',' params += InputParameter)*)←-

)?
9 ('steps:' ('-' steps += Step ('-' steps += Step)*))

10 ('storage:' (storage += Storage (',' storage += Storage)*))?
11 ('security:' (security += Security (',' security += Security)*))?
12 ('monitor:' (monitor += Monitor))?
13 ('resource:' (resource += Resource (',' resource += Resource)*))?
14 '}'
15 ;

The code listing 7.13 displays the validated Xtext code for defining a textbf-
Step object with references to objects for the trigger, implementation details, in-
put parameters, ports, environment variables, volumes, commands, network, and
the link to the previous step in the data pipeline/workflow. With trigger, a user
can define the schedule by which a step will start the processing. It can either
be manually triggered, event triggered, one time scheduled or cron scheduled.
With the implementation object, implementation details can be added such as a
link to the container image. Same as the Workflow object, the asterisk (*) symbol
determines if the object can be defined multiple times or just once. The ques-
tion mark (?) specifies that the object is optional and that the code will compile
without any errors even if the parameter is not defined.

Code listing 7.13: Xtext code to define a Step object with objects for implement-
ation, triggers, ports, volumes, command and other options.

1 Step:
2 'step' name = ID
3 ('triggers:' (triggers += Trigger (',' triggers += Trigger)*)+ )?
4 ('implementation:' implementation = DockerImplementation)
5 ('container_name:' container_name = ContainerName)?
6 ('parameters:' (params += InputParameter (',' params += InputParameter)*)←-

)?
7 ('ports:' (ports += Ports (',' ports += Ports)*))?
8 ('environment:' (environment += EnvironmentVariable (',' environment += ←-

EnvironmentVariable)*))?
9 ('volumes:' (volumes += Volumes (',' volumes += Volumes)*))?

10 ('command:' (command += Command (',' command += Command)*))?
11 ('networks:' (networks += Network))?
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12 ('previous:' ('none' | (previous += [Step] (',' previous += [Step])*)))←-
?;

The code listing 7.14 shows the validated Xtext code for defining a Commu-
nicationMedium object with references to objects such as the type of commu-
nication medium, implementation details, ports, and environment variables. Line
number 11 also shows an object for CommunicationParam. Figure 7.2 shows the
proposed class diagram for implementing the communication medium, but during
the development of the compiler, it resulted in a lot of redundant code. To solve
the problem, a modified class diagram is proposed, which is shown in Figure 7.3.
As can be seen, the objects for communication medium type have been changed
to enum type. The new class model greatly optimized the code in the compiler.

Code listing 7.14: Xtext code to define a Communication object with objects for
implementation, ports, volumes and environment.

1 CommunicationMedium:
2 name = ID
3 'type:' communicationMediumTypes = CommunicationMediumTypes
4 ('implementation:' implementation = DockerImplementation)?
5 ('container_name:' container_name = ContainerName)?
6 ('ports:' (ports += Ports (',' ports += Ports)*))?
7 ('environment:' (environment += EnvironmentVariable (',' environment += ←-

EnvironmentVariable)*))?
8 ('volumes:' (volumes += Volumes (',' volumes += Volumes)*))?
9 ;

10

11 CommunicationParams:
12 name = ID
13 ('implementation:' implementation = DockerImplementation)?
14 ('container_name:' container_name = ContainerName)?
15 ('ports:' (ports += Ports (',' ports += Ports)*))?
16 ('environment:' (environment += EnvironmentVariable (',' environment += ←-

EnvironmentVariable)*))?
17

18 enum CommunicationMediumTypes:
19 MESSAGE_QUEUE | DISTRIBUTED_FILE_SYSTEM | WEB_SERVICE;
20

21 enum MessageQueue:
22 KUBEMQ | ZEROMQ;
23

24 enum RESTService:
25 SERVICENAME
26 ;
27

28 enum FileSystem:
29 FILESYSTEMNAME
30 ;
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Figure 7.2: Proposed class diagram for implementing communication medium.

Figure 7.3: Revised class diagram for implementing communication medium.

The code listing 7.15 shows the validated Xtext code for Trigger model. There
are three main types of triggers, OneTimeTrigger, ScheduleTrigger and Extern-
alEventTrigger. OneTimeTrigger has an option to specify a start time. Schedu-
leTrigger further has two types, IntervalSchedule and CronSchedule. With In-
tervalSchedule, specific time intervals can be defined. The CronSchedule works
in a similar fashion to the server cron.
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Code listing 7.15: Xtext code to define a Trigger object with three different op-
tions such as OneTimeTrigger, ScheduleTrigger and ExternalEventTrigger.

1 Trigger:
2 OneTimeTrigger | ScheduleTrigger | ExternalEventTrigger;
3

4 OneTimeTrigger:
5 {OneTimeTrigger}
6 'one-time'
7 (startTime = STRING)?;
8

9 ScheduleTrigger:
10 IntervalSchedule | CronSchedule;
11

12 ExternalEventTrigger:
13 {ExternalEventTrigger}
14 'external-event';
15

16 IntervalSchedule:
17 {IntervalSchedule}
18 'interval-schedule'
19 ('frequency:' frequency = TimeUnits)?
20 ('interval:' interval = INT)?
21 ('start-time:' startTime = STRING)?;
22

23 CronSchedule:
24 {CronSchedule}
25 'cron-schedule'
26 ('start-time:' startTime = STRING)?
27 ('cron:' cron = STRING)?;
28

29 enum TimeUnits:
30 SECOND | MINUTE | HOUR | DAY | WEEK | MONTH;

The code listing 7.16 shows the code written in the new domain-specific lan-
guage. It is an example code that specifies a workflow/data pipeline with a com-
munication medium and two steps. This code is then further compiled into de-
ployable YAML code.

Code listing 7.16: A code sample of the newly developed domain-specific lan-
guage for the deployment of big data pipelines.

1 workflow CloudDataWorkFlow
2 {
3 communicationMedium: MESSAGEQUEUE
4 type: WEB_SERVICE
5 communicationParams: restservices
6 container_name: "kubemq"
7 ports: '"8080:8080"', '"9090:9090"', '"50000:50000"'
8 environment: KUBEMQ_HOST = "kubemq", KUBEMQ_TOKEN = "8297ae1b-d2bc-40b4-←-

bf95-39a67162984d"
9 volumes: "kubemqvol:/store"

10
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11 steps:
12 -step readzip_00
13 triggers: one-time '24/06/2021 15:00', external-event
14 implementation: docker-implementation image: "DOCKERPATH/ebw-movies-00-←-

read-zip:latest"
15

16 environment: STEP_NAME = 'readzip_00', KUBEMQ_HOST = 'kubemq'
17

18 volumes: '/home/data/ebw-movies/00-read-zip/input:/in',
19 '/home/data/ebw-movies/00-read-zip/work:/work',
20 '/home/data/ebw-movies/00-read-zip/output:/out',
21 '/home/data/ebw-movies/00-read-zip/sandbox:/sandbox'
22

23 command: '"60"', '/sandbox', '/code', '/in', '/work', '/out', '"-"', '"←-
MQ1"'

24 networks: 'ebw-movies-ntk'
25

26 - step unzip_01
27 triggers: cron-schedule
28 start-time:'2020-05-31T22:30:59'
29 cron: '0 15,30,45 * ? * *'
30 implementation: docker-implementation image: "DOCKERPATH/ebw-movies-01-←-

unzip:latest"
31

32 environment: STEP_NAME = 'unzip_01', KUBEMQ_HOST = "kubemq"
33

34 volumes: '/home/data/ebw-movies/00-read-zip/output:/in',
35 '/home/data/ebw-movies/01-unzip/work:/work',
36 '/home/data/ebw-movies/01-unzip/output:/out',
37 '/home/data/ebw-movies/01-unzip/sandbox:/sandbox'
38

39 command: '"60"', '/sandbox', '/code', '/in', '/work', '/out', '"MQ1"', ←-
'"MQ2"'

40

41 networks: "ebw-movies-ntk"
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Chapter 8

Experiments and Results

8.1 Experiment A - Novel Architecture

Using the above-mentioned system architecture presented in Figure 6.3, the fol-
lowing big data pipeline is designed. The pipeline is shown in Figure 8.1. A pipeline
server is set up in New York (US East). A software script is developed to find the
closest storage facility available. For the sake of this experiment, only AWS servers
were evaluated. Two storage servers are set up, one in the USEast (suggested by
the software package) region and another in the EU West region. Further details
for this experiment are as follows.

8.1.1 Experiment Setup

Following are the technical details for this experiment:

• Data pipeline server: Newyork Region, 1 CPU, 2GB RAM, 50GB SSD Stor-
age. Operation system: Ubuntu 20.04

• AWS s3 bucket: us-east-1 region and eu-west region.
• Data pipeline: Four steps data pipeline.
• Data set: Total 4MB. Data chunks: 3063. Each data chunk: Variable size.
• Execution: Serial and parallel execution of operations.

8.1.2 Minimal use of computing resources

Since the experiment was to study the role and impact of cloud storage in big data
pipelines, to make sure the results are a true representation of the role of StaaS in
the performance of a big data pipeline, simple textual data is used so that the least
amount of time is spent on actual processing of the data. More on data transfer,
data read, and data write operations. This way, the execution time of the data
pipeline reflects the more precise role of the storage service being used.

87
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Figure 8.1: Big data pipeline for the feasibility study (IP: Input, OP: Output)

8.1.3 Use of very small data chunks

The dataset used in the experiments is articles from different online blogs and
news websites, each occupying a few Kilobytes (KBs) of space on a disk. The use
of bigger data chunks is avoided to increase the number of disk operations. In
addition to that, a smaller data chunk means less use of computing power, as
discussed in the previous section.

8.1.4 Results - Novel Architecture

The compute steps were run multiple times with both storage services separately
in a serial and parallel manner. The results are shown in Figure 8.2 and Figure 8.3.
Figure 8.2 shows the comparison of results of computing steps in serial execution
between EUWest and USEast Storage. Whereas Figure 8.3 shows the comparison
of pipeline execution in a serial vs. parallel manner. The important point to notice
here is that the serial execution in the USEast region is faster than the parallel
execution in the EUWest region.

Figure 8.2: Comparison of results of computing steps in serial execution between
EUWest and USEast Storage. The y-axis shows the number of seconds taken to
finish each operation.
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Figure 8.3: Serial vs Parallel execution of big data pipeline compute steps. The
y-axis shows the number of seconds taken to finish each operation.

8.2 Experiment B - Physical Distance

To test the effect of the new software tool, a data pipeline is deployed on a server
located in the USEast region. The pipeline performance is integrated with four dif-
ferent storage facilities. Two from Amazon Web Services and two from the Azure
Cloud. Starting with the AWS S3, because the pipeline server is located in the
USEast region, one can choose between the region pair us-east-1 and us-east-2.
But the software suggested the us-east-1 region. In order to test the accuracy and
effectiveness of our software tool, we setup S3 on both region pairs and tested the
performance. During the test, a total of 3,601 WRITE operations were carried out,
with a total size of 3.2 Megabytes (MB). To make sure there was no temporary
downtime on the network, the operation was repeated three times.

8.2.1 Results with AWS S3

Figure 8.4 shows the difference in the performance of storage facilities located in
the same region but different region pairs. With the results generated from the
new software tool, an informed choice can be made to select the best region from
the cloud service provider. As a further extension of the work discussed in 6.2, the
test program was run in parallel. Figure 8.5 shows that the performance of the
recommended region, which is us-east-1 is clearly better than the AWS S3 storage
facility located in us-east-2.
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Figure 8.4: AWS region pair comparison in serial execution. The y-axis shows the
number of seconds taken to finish each operation.

Figure 8.5: AWS region pair comparison in parallel execution. The x-axis shows
the number of seconds taken to finish each operation.

8.2.2 Results with Azure Cloud

The same data pipeline as described in the previous section was then run with the
StaaS integration of Azure Cloud. First, the results were obtained from the new
software tool. The system suggested the USEast1 region of Azure Cloud. To test
the accuracy of the program, the pipeline was deployed with integration of the
USEast1 and USEast2 regions and run independently. Because Azure cloud offers
multiple storage tiers, the hot tier was chosen for this experiment. Furthermore,
the details of the operations and data size are as follows:
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• WRITE Operations: 3061
• Data Size: 3.2 MB

The results for sequential execution are shown in Figure 8.6 and for parallel exe-
cution are shown in Figure 8.7.

Figure 8.6: Azure region pair comparison in serial execution. The y-axis shows
the number of seconds taken to finish each operation.

Figure 8.7: Azure region pair comparison in parallel execution. The x-axis shows
the number of seconds taken to finish each operation.

8.2.3 Results with Google Cloud Storage

The same data pipeline as described in the previous section was then run with the
StaaS integration with Google cloud storage. First, the results of the new software
tool were obtained. The system suggested the us-east4 region of Azure Cloud. To



92 A.Q. Khan: Smart Data Placement for Big Data Pipelines

test the accuracy of the program, the pipeline was deployed with integration of us-
east1 and us-east4 regions and run independently. Because Google Cloud Storage
offers multiple storage tiers, the standard tier was chosen for this experiment.
Furthermore, the details for the operations and data size are as follows:

• WRITE Operations: 3061
• Data Size: 3.2 MB

The results for sequential execution are shown in Figure 8.8 and for parallel exe-
cution are shown in Figure 8.9.

Figure 8.8: Google region pair comparison in serial execution. The y-axis shows
the number of seconds taken to finish each operation.

Figure 8.9: Google region pair comparison in parallel execution. The x-axis shows
the number of seconds taken to finish each operation.
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8.2.4 Conclusion

Hence, the experiments do not only approve the effectiveness of the new software
tool, but as discussed earlier, along with the details of the storage region, the tool
also provides the physical distance between the pipeline server and the storage
server in KMs. This number will further be used in the evaluation matrix.

8.3 Experiment C - Cost of Cloud Storage

User requirements are given as an input to the newly developed software tool.
Following are the parameters:

• StorageSpace in Gigabytes (GB)
• Bandwidth in Gigabytes (GB)
• Number of WRITE Operations
• Number of Read Operations

8.3.1 Case 1

User requirements are as follows:

Space = 5000 GB
Bandwidth = 15000 GB
WRITE Op. = 50000
READ Op. = 50000

Table 8.1 shows the cost of each cloud service provider, that is, AWS, Azure,
and GCP in US dollars. There are separate columns for Space, Bandwidth, Write
and Read operations, and then the fifth column shows the accumulated cost as
well. It is clear from the estimation that Azure Cloud storage is the cheapest op-
tion, while Google Cloud storage is the most expensive. In addition to that, when
WRITE operations are significantly expensive on GCP, READ operations are abso-
lutely free.

Cost of
Space

Cost of
Bandwidth

Cost of
Write Op.

Cost of Read Op. Total Cost

AWS 115 1350 0.25 0.2 1465.45
Azure 100 800 0.35 0.3 900.65
GCP 100 1720 2.5 0 1822.5

Table 8.1: Per month cost estimation of AWS, Azure and GCP for 5TB space, 15TB
Bandwidth, 50 Thousand Write Operations and 50 Thousand Read Operations

Figure 8.10 shows the visual representation of cost comparison between differ-
ent cloud storage providers based on the cost estimation provided by the software
program. The color blue is allocated for Azure Cloud, Orange for AWS and Yellow



94 A.Q. Khan: Smart Data Placement for Big Data Pipelines

for GCP. It is clear from the Figure 8.10 that the major cost is of the bandwidth, and
Figure 8.11 shows that the bandwidth is cheapest on AWS while most expensive
on GCP.

Figure 8.10: Per month cost estimation in US dollars of AWS, Azure and GCP for
5TB space, 15TB Bandwidth, 50 Thousand Write Operations and 50 Thousand
Read Operations

Figure 8.11: Per month cost comparison of AWS, Azure and GCP for 5TB space,
15TB Bandwidth, 50 Thousand Write Operations and 50 Thousand Read Opera-
tions.

8.3.2 Case 2

The same experiment is run with slightly different user requirements. Everything
is kept the same except for the storage space. Updated user requirements are as
follows:

Space = 50000 GB
Bandwidth = 15000 GB
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WRITE Op. = 50000
READ Op. = 50000

Table 8.2 shows the cost estimation of each cloud service provider, that is,
AWS, Azure, and GCP in US dollars and their comparison with each other. These
values are based on the updated user requirements in which storage space has
been increased from 5TB to 50TB.

Cost of
Space

Cost of
Bandwidth

Cost of
Write Op.

Cost of Read Op. Total Cost

AWS 1150 1350 0.25 0.2 2500.45
Azure 1000 800 0.35 0.3 1800.65
GCP 1000 1720 2.5 0 2722.5

Table 8.2: Per month cost estimation of AWS, Azure and GCP for 50TB space,
15TB Bandwidth, 50 Thousand Write Operations and 50 Thousand Read Opera-
tions

Figure 8.12: Per month cost comparison of AWS, Azure and GCP for 5TB space,
15TB Bandwidth, 50 Thousand Write Operations and 50 Thousand Read Opera-
tions.
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Figure 8.13: Per month cost comparison of AWS, Azure and GCP for 5TB space,
15TB Bandwidth, 50 Thousand Write Operations and 50 Thousand Read Opera-
tions.

8.3.3 Conclusion

A cost estimation is created based on two different requirements. The cost of stor-
age based on the two test cases is similar for Azure and GCP, but it is slightly more
with AWS. GCP has the highest price for bandwidth, whereas Azure has the lowest
price. GCP has a significantly higher price for Write operations, but Read opera-
tions are completely free. In conclusion, bandwidth is proven to be an integral
deciding factor in the total cost.

8.4 Experiment D - Network Performance:

Network performance relates to the customer’s perception of a network’s service
quality. Because each network is unique in its nature and architecture, there are
many different techniques to assess its performance. To assess the performance of
the network in real-time, the algorithm deploys a sample data pipeline.

8.4.1 Experiment Setup

Following are the technical details for this experiment:

• Data pipeline server: Newyork Region, 1 CPU, 2GB RAM, 50GB SSD Stor-
age. Operation system: Ubuntu 20.04

• AWS s3 bucket: us-east-1 region and us-east-2 region.
• Azure cloud storage: us-east-1 region and us-east-2 region. Server-side en-

cryption with platform managed keys.
• Data set: Total 4MB. Data chunks: 3063. Each data chunk: Variable size.
• Execution: Serial execution of operations.

The reason for choosing a dataset with smaller data chunks and a large num-
ber of operations is to measure the network connection time for each operation.
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The software tool not only executes READ operations; it also executes WRITE
operations. The experiment is run three times, and the total execution time is
recorded.

Two different AWS servers and two different Azure Cloud servers. The servers
are selected based on the recommendation of the software tool explained in the
Section 6.3.3. Since the data pipeline server is located in the NewYork region,
there are two options for the storage server, us-east-1 or us-east-2. Based on the
distance finder algorithm, us-east-1 is selected and termed as AWS Recommended
and Azure Recommended. AWS Normal and Azure Normal are the names given
to us-east-2.

8.4.2 Results & Conclusion

Figure 8.14 shows the result of the Azure and AWS storage. AWS in us-east-2
region took an average of 254 seconds, whereas Azure in us-east-2 region took an
average of 195 seconds. For the storage servers in us-east-1 region, AWS took an
average of 162 seconds, whereas Azure took an average of 88 seconds.

Figure 8.14: Network performance. The x-axis shows the number of seconds
taken to finish each operation.

8.5 Experiment E - Server-side Encryption

Server side encryption relieves end users from the hassle of having to carry out the
encryption themselves. Users can just upload files as is and then the cloud service
provider will take care of encrypting them. But is there any trade-off with the
performance in this case? To answer this question, this experiment is carried out.
As explained in Section 7.4, storage servers are setup in the cloud with and without
server-side encryption enabled. A data pipeline is deployed in the NewYork region.
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8.5.1 Experiment Setup

Following are the technical details for this experiment:

• Data pipeline server: Newyork Region, 1 CPU, 2GB RAM, 50GB SSD Stor-
age. Operation system: Ubuntu 20.04

• AWS s3 bucket: us-east-1 region. Server-side encryption with s3 managed
keys.

• Azure cloud storage: us-east-1 region. Server-side encryption with plat-
form managed keys.

• Data set: Total 30GB. Data chunks: 100. Each data chunk: 30MB
• Execution: Parallel execution of data pipeline.

Unlike the data set used in other experiments, a comparatively larger dataset
is used with bigger data chunks, so that the impact of real-time decryption can be
observed.

8.5.2 Results - Azure s3 bucket

Figure 8.15 shows the comparison of the performance of a data pipeline with and
without server-side encryption enabled. The data pipeline is executed five times.
As it can be seen in the first execution of the data pipeline, with server-side en-
cryption, it took 87.14 seconds to finish the process, whereas without encryption,
it took 80.05 seconds. Hence the difference of 7 seconds for 30GB of data with
100 WRITE and 100 READ operations. Similarly, for the second execution, the
difference is less than 2 seconds. Hence, it can be concluded that server-side en-
cryption does impact the performance, but in most cases, that impact could be
unnoticeable.

Figure 8.15: Comparison of performance with and without server-side encryp-
tion enabled with an AWS S3 bucket. The values in the table right beneath the
bars show the actual value in seconds it took to finish the execution of the said
operations.

Figure 8.16 shows a comparison of performance, instead of actual numbers,
it shows a percentage. As it can be seen, the difference is quite small. Hence it
can concluded that for AWS S3 storage, the server-side encryption does not have
a noticeable impact on the performance.
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Figure 8.16: Comparison of performance with and without server-side encryp-
tion enabled with AWS S3 storage. When the same set of operations were run
simultaneously, without server-side encryption enabled, it took 49% of the total
time. Whereas, with the encrypted dataset, it took 51% of the time.

8.5.3 Results - Azure cloud storage

Figure 8.17 shows the comparison of the performance of a data pipeline with and
without server-side encryption enabled on Azure cloud storage. The data pipeline
is executed five times. As it can be seen in the first execution of the data pipeline,
with server-side encryption, it took 227.91 seconds to finish the process, whereas
without encryption, it took 115.06 seconds. Hence the difference of almost 113
seconds for 30GB of data with 100 WRITE and 100 READ operations. Similarly, for
the second execution, the difference is less than 88.6 seconds. For a few iterations,
the time consumption with server-side encryption is almost double that with no
encryption. Hence, it can be concluded that for Azure cloud storage, server-side
encryption does impact the performance and it is noticeable.

Figure 8.17: Comparison of performance with and without server-side encryp-
tion enabled with Azure cloud storage. The values in the table right beneath the
bars show the actual value in seconds it took to finish the execution of the said
operations.

Figure 8.18 shows a comparison of performance. Instead of actual numbers, it
shows a percentage. As can be seen, the difference is quite significant when com-
pared to what was observed for AWS. As a result, it can be concluded that, unlike
AWS S3 storage, server-side encryption has a noticeable impact on performance
for Azure cloud storage.
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Figure 8.18: Comparison of performance with and without server-side encryption
enabled with Azure cloud storage. When the same set of operations were run
simultaneously, without server-side encryption enabled, it took 37% of the total
time. Whereas, with the encrypted dataset, it took 67% of the time.

8.5.4 Results - Google cloud storage

Figure 8.19 shows the comparison of the performance of a data pipeline with and
without server-side encryption enabled on Azure cloud storage. The data pipeline
is executed five times. As it can be seen in the first execution of the data pipeline,
with server-side encryption, it took 227.91 seconds to finish the process, whereas
without encryption, it took 115.06 seconds. Hence the difference of almost 113
seconds for 30GB of data with 100 WRITE and 100 READ operations. Similarly, for
the second execution, the difference is less than 88.6 seconds. For a few iterations,
the time consumption with server-side encryption is almost double that with no
encryption. Hence, it can be concluded that for Azure cloud storage, server-side
encryption does impact the performance and it is noticeable.

Figure 8.19: Comparison of performance with and without server-side encryp-
tion enabled with Azure cloud storage. The values in the table right beneath the
bars show the actual value in seconds it took to finish the execution of the said
operations.

Figure 8.20 shows a comparison of performance. Instead of actual numbers, it
shows a percentage. As it can be seen, the difference is quite high as compared to
what has been observed for AWS. Hence, it can be concluded that for Azure cloud
storage, unlike AWS S3 storage, the server-side encryption does have a noticeable
impact on the performance.
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Figure 8.20: Comparison of performance with and without server-side encryption
enabled with Azure cloud storage. When the same set of operations were run
simultaneously, without server-side encryption enabled, it took 37% of the total
time, whereas with the encrypted dataset, it took 67% of the time.

8.6 Experiment E - Evaluation matrix

There are a few ways of identifying the good and poor use cases, but it’s more
important that we understand the underlying workload characteristics, as many
positives (or attractors) can still outweigh one or more negatives (detractors).
Therefore, we should consider the application portfolio as a whole, as well as in-
dividually. Nobody wants to retain an active data centre for the sake of one server
— the Pareto Principle and the assistance of a “palliative” care service provider
are strong allies in this war.

8.6.1 User requirements / Attractors

The following are the user scenarios those are served well by the public cloud.

Case: Temporary Requirements

As the cloud uses a pay-as-you-go, utility-based pricing model, it is well-suited
to short-term, transient workloads and projects. Example use cases: proof of con-
cepts, pilots, application testing, product evaluations, labs and training environ-
ments, etc.

For these type of temporary applications, following user requirements have
been setup:

Space = 1000 GB
Bandwidth = 15000 GB
WRITE Op. = 5000
READ Op. = 5000

Since the requirements are not clear or the resource consumption is not clear,
equal weights are setup for all the parameters:
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Cost = 25%
Distance = 25%
Network Performance = 25%
Encryption = 25%

Table 8.3 ranks the cloud service provider when a user puts equal weights for
all three parameters that is 25% for cost, distance, encryption and network per-
formance. As it can be seen, based on these input, GCP is the most suitable choice
recommended by the algorithm, whereas, AWS and Azure are ranked second and
third respectively.

Rank Alternatives Si Ri Qi
1 AWS 0.250378 0.150614 0
2 GCP 0.2803 0.25 0.529945
3 Azure 0.75 0.25 1

Table 8.3: Cloud service providers ranking for case 1. User weights are: network
performance 25%, distance 25%, encryption 25%, and cost 25%.

Case: Highly variable workloads

Demand variability comes in two distinct flavours: predictable (seasonal, tidal,
cyclical, etc.) and unpredictable. For example, month-end processing, on-season
vs. off-season, morning vs. evening, Friday night, Christmas, etc. are all predict-
able surges in demand that can be planned around with processing capacity in-
creased pro-actively according to a schedule or based on another trigger. Unpre-
dictable, or unexpected demand, requires a reactive approach for scaling capacity
and is triggered by a key event. The on-demand nature of the cloud, rapid elasti-
city, and a programmatic interface can be used to match supply with demand. This
approach reduces the need for capacity planning, avoids the consequences from
under-estimating peak loads, and avoids over-provisioning infrastructure that sits
idle for long periods of time.

In this case, storage requirements are slightly increased as compared to the
previous use cases. Bandwidth and WRITE and READ operations are increased
significantly.

Space = 2000 GB
Bandwidth = 25000 GB
WRITE Op. = 10000
READ Op. = 10000

In terms of user weights, more focus is put on network performance.

Cost = 10%
Distance = 10%
Network Performance = 70%
Encryption = 10%
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Table 8.4 ranks the cloud service provider when a user puts 70% weight on
the network performance, 10% on the cost, and only 10% on the physical distance
and 10% on encryption. It means, in this particular case, cost is a secondary factor,
and network performance has clear priority over others. As it can be seen, based
on these input, Azure is the most suitable choice recommended by the algorithm,
whereas, GCP and AWS are ranked second and third respectively.

Rank Alternatives Si Ri Qi
1 Azure 0.3 0.1 0
2 AWS 0.451092 0.421718 0.451409
3 GCP 0.71212 0.7 0

Table 8.4: Cloud service providers ranking for case 1. User weights are: network
performance 80%, distance 5% and cost 15%.

Case: High security, low scale/volume solutions

Although many customers fear the security of the cloud, there are many capabil-
ities within AWS to restrict and monitor access to resources. For small-scale solu-
tions that require a high-security perimeter, the cloud can provide an isolated, air-
gapped sandbox that uses shared, highly available security apparatus that would
be too costly to deploy in an on-premise or co-location environment.

For this scenario, the user requirements are similar to the first use case dis-
cussed in this chapter.

Space = 1000 GB
Bandwidth = 15000 GB
WRITE Op. = 5000
READ Op. = 5000

In terms of user weights, most weight is given to the the impact of encryption
in terms of performance.

Cost = 5%
Distance = 5%
Network Performance = 10%
Encryption = 80%

Table 8.5 ranks the cloud service provider when a user puts 80% weight on the
encryption, 10% on network performance, and only 5% on the cost and physical
distance. It means, in this particular case, cheapest cost is the main goal, and per-
formance and distance can be compromised if necessary. As it can be seen, based
on these input, GCP is the most suitable choice recommended by the algorithm,
whereas, AWS and Azure are ranked second and third respectively.
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Rank Alternatives Si Ri Qi
1 AWS 0.0801982 0.0602455 0
2 GCP 0.10606 0.1 0.0426433
3 Azure 0.9 0.8 1

Table 8.5: Cloud service providers ranking for case 1. User weights are: encryp-
tion impact: 80%, network performance 10%, distance 5% and cost 5%.

Case: Dormant workloads

A dormant workload occupies no compute capacity and generates no network
traffic, reducing the running costs to just storage. Re-animating such a workload
through an API call provides some unique opportunities to minimize costs. Ex-
ample use cases: test/development, UAT, unit and system testing, QA environ-
ments, cold disaster recovery sites, etc.

In this case, the storage are set to 5TB, whereas the bandwidth, WRITE and
READ operations requirements are reduced significantly.

Space = 5000 GB
Bandwidth = 1000 GB
WRITE Op. = 2000
READ Op. = 2000

In terms of user weights, cost is given the highest weight, whereas the distance,
network performance and encryption are given same weights.

Cost = 70%
Distance = 10%
Network Performance = 10%
Encryption = 10%

Rank Alternatives Si Ri Qi
1 GCP 0.11212 0.1 0.0098647
2 AWS 0.14817 0.0879241 0.0228776
3 Azure 0.9 0.7 1

Table 8.6: User weights are: cost: 70%, network performance 10%, distance 10%
and cost 10%.

8.6.2 Conclusion

The research project has discussed and evaluated various user scenarios such as
dormant workload, variable high demand, high security requirements etc. For
each scenario, a user of user requirements were assumed and user weights were
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set. Furthermore, cloud server providers such GCP, AWS and Azure were ranked
using the novel developed evaluation matrix model with MCDA algorithm.

Results are shown in Table 8.4, Table 8.5, Table 8.3 and Table 8.6. It can be
seen that each public cloud has it’s pros and cons.

Cost

If one is cheaper in terms of storage, the other one is cheaper in terms of band-
width and network operations. For example, storage is comparatively expensive
in GCP but it’s READ operations are entirely free.

Physical Distance

Physical distance is a highly variable characteristic in this situation as the data
pipeline server can be located anywhere. So no clear conclusion can be drawn for
that.

Network performance

Network performance can vary from provider to provider and from data center to
data center, as it is entirely related to the physical network structure of the data
center.

Encryption

All cloud service providers use more or less the same process and exactly same
key size for their server side data encryption and decryption. But it is interesting
to see the variable impact of encryption on the performance by each provider.

User weights

When it comes to multi criteria decision analysis, the user weights are basically
the deciding factors. As discussed earlier, each cloud service provider has its own
pros and cons, and there are huge variations when they are combined with the
user scenarios. So user weights are a good way to prioritize the requirements and
then rank them accordingly.
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Chapter 9

Discussions & Conclusion

The research work done in this thesis can be divided in the following artifacts:

1. A novel architecture for implementing big data pipelines with integration
cloud storage.

a. Hybrid-infrastructure i.e on-premise processing and on-cloud storage
b. Use of more than one cloud storage instead of just one
c. Use of local storage storage temporarily for inter-step data input and

output.

A big data pipeline is deployed and tested with all the above mentioned
characteristics.

2. Evaluation criteria to rank different cloud storage options based on the
user’s requirements. Four parameters are selected, and software tools are
developed accordingly. The results from each software tool are then put
into a matrix (called an evaluation matrix) and used as input for the rank-
ing algorithm (also called an evaluation method).

3. A domain-specific language is developed with extensive vocabulary incor-
porating not only cloud storage options, but also container security and
monitoring packages.

The thesis verified four major novel concepts for big data pipelines by con-
ducting these detailed experiments. 1) Use of Software Containers 2) the use of a
domain-specific language for data pipeline deployment, 3) the effectiveness of the
proposed pipeline architecture with StaaS integration, and last but not least, 4)
the effectiveness of the new evaluation model as a whole as well as the promising
results of software programs designed for individual parameters. In the follow-
ing sections, each artifact with respect to the research questions are discussed in
Section 4.1.
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9.1 State of the art

RQ 1: How STaaS is better than local storage for a big data pipeline? A com-
prehensive literature survey is carried out that suggested that STaaS is better than
local storage for big data pipelines in terms of capital expenditure, security, data
backup, data redundancy, data availability and data migration. Detailed study has
been presented in section

9.2 Novel architecture

RQ 2: How big data pipelines can be deployed using StaaS?
The proposed architecture reduces the complexity of the big data pipeline by

moving storage to the cloud continuum. By doing so, a lot of extra overhead of
data backup and security is also moved to the cloud service provider. In addition
to that, cloud storage provides easy and on-demand scability in case more storage
space is required. Also comes up with a flexible pay-as-you-go pricing plan.

Another purpose that we addressed is to construct pipelines stages into dis-
crete containers so that step specific logic may be built using any programming
language and make its deployment scalable. Hence, I utilised an approach in
which a given big data pipelines is composed of separately produced pipeline
stages. Containers for each pipeline stages are made using generic images. Moreover,
depending on the workload, variable number of step containers may be supplied.
Such strategy allows us to allocate more instances whenever speedier processing
is desired. During pipelines operation, it was desired to have inter-step commu-
nication with a coordinated flow of data. This was solved by developing an ex-
ternal communication middleware solution. This middleware binds the execution
of phases allowing them to pass data and form a pipelines. In addition, it stand-
ardises the link between the phases, allowing them to run in parallel without
encountering a race issue.

Finally, we can say that the proposed big data pipeline solution allows us to
separate the design and run-time parts of a particular pipeline, resulting in a scal-
able and race condition-free pipeline execution. Moreover, it promotes the cooper-
ation of domain and technical specialists to produce a fine-tuned pipeline concept
and composition.

9.3 Evaluation Matrix

RQ 3: How do we rank different cloud storage options based on the user
requirements?

The research project has developed, discussed and evaluated various user
scenarios such as dormant workload, variable high demand, high security require-
ments etc. using the newly proposed evaluation method. For each scenario, a user
of user requirements were assumed and user weights were set. Furthermore, cloud
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server providers such GCP, AWS and Azure were ranked using the novel developed
evaluation matrix model with MCDA algorithm. The solution provided a very clear
recommendations regarding the cloud storage options.

9.3.1 Physical distance

Physical distance is a highly variable characteristic while selecting the storage
facility as the data pipeline server can be located anywhere. So no clear conclusion
can be drawn for that as of which provider has closest facility available.

However, the experiments proved the positive affect of physical distance with-
in the same cloud storage provider. Whereas, it was an interesting observation to
see variability of the result between different cloud storage providers. The exper-
iments do not only approve the effectiveness of the new software tool, but along
with the details of the storage region, the tool also provides the physical distance
between the pipeline server and the storage server in KMs. This number is further
used in the evaluation matrix.

9.3.2 Cost of cloud storage

If one storage provider is cheaper in terms of storage, the other one is cheaper
in terms of bandwidth and network operations. For example, storage is compar-
atively expensive in GCP but it’s READ operations are entirely free. So it entirely
depends on the users’ operational requirements.

In summary:

• The cost of storage based on the two test cases is similar for Azure and GCP
but it is slightly more with AWS.

• GCP has the highest price for Bandwidth whereas the Azure has lowest price.
• GCP has significantly higher price for Write operations but Read operations

are completely free.

In conclusion, bandwidth is proved to be an integral deciding factor in the total
cost.

9.3.3 Network performance

Network performance can vary from provider to provider and from data center to
data center, as it is entirely related to the physical network structure of the data
center.

For example, two different servers on AWS as well as two different servers
on Azure Cloud. The servers are selected based on the recommendation of the
software tool explained in the Section 6.3.3. Since the data pipeline server is loc-
ated in NewYork region, so there are two options for the storage server, us-east-
1 or us-east-2. Based on the distance finder algorithm, us-east-1 is selected and
termed as AWS Recommended and Azure Recommended. us-east-2 is termed as
AWS Normal and Azure Normal. A clear performance difference can be observed



112 A.Q. Khan: Smart Data Placement for Big Data Pipelines

in performance between the storage units from the same cloud storage provider.
Whereas, it can be seen that even with a slightly larger physical distance, the stor-
age units between different cloud storage providers can have better performance.

9.3.4 Server-side encryption

All cloud service providers use more or less the same process and exactly same
key size for their server side data encryption and decryption. But it is interesting
to see the variable impact of encryption on the performance by each provider.

For AWS, it can be seen, the difference is quite small. Hence it can concluded
that for AWS S3 storage, the server-side encryption does not have a noticeable
impact on the performance. When same set of operations was run simultaneously,
without server-side encryption enabled, it took 49% of the total time. Whereas,
with the encrypted dataset, it took 51% of the time. In case of Azure cloud, it can
be seen, the difference is quite high as compared to what it has been observed
for AWS. Hence it can concluded that for Azure cloud storage, unlike AWS S3
storage, the server-side encryption does have a noticeable impact on the perform-
ance. When same set of operations was run simultaneously, without server-side
encryption enabled, it took 37% of the total time. Whereas, with the encrypted
dataset, it took 67% of the time.

9.3.5 User weights

When it comes to multi criteria decision analysis, the user weights are basically
the deciding factors. As discussed earlier, each cloud service provider has its own
pros and cons, and there are huge variations when they are combined with the
user scenarios. So user weights are a good way to prioritize the requirements and
then rank them accordingly.

9.4 Domain-specific language (DSL)

RQ 4: How can StaaS options be incorporated with DSL for big data Pipelines?
Initially, it was planned to provide a new DSL to allow the high-level specifica-

tion and technology-independent design of big data pipelines. This was managed
by building a specially built DSL that allows high-level pipelines development and
hides complicated technology specifics. The DSL gives an abstraction of essential
concepts and parameters that are necessary to create a particular pipeline. This
makes it conceivable to have a separation between pipelines definition and its
execution.

The new DSL has a flexible class structure to integrate large number of third
party applications, support for security and monitoring packages. Most import-
antly, ability to integrated cloud storage in added in the DSL vocabulary. In addi-
tion to that, the DSL has now enhanced vocabulary to integrate a specific type of
storage option such as MYSQL or NoSQL from a specific cloud storage. To further
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ease the usability, the user has an option to either specify the container image
path for security, communication medium, monitoring etc. If a user specifies a
particular package, the compiler would take that into account at the time of de-
ployment, otherwise it would install the standard publicly available packages. To
improve the usability of the class objects, single class for commands and environ-
ment variable is developed and reused at workflow level, step level, and even at
single packages level such as security and storage.





Chapter 10

Future Work

In this chapter, I will discuss the possibilities of enhancement in the proposed
model and the newly developed domain-specific language.

Evaluation Matrix: This master thesis has proposed a novel evaluation model to
rank cloud service providers based on 1) cost, 2) network performance, 3) physical
distance, and 4) impact of server-side encryption. Following are the possible future
enhancement for the evaluation matrix:

1. Cost: At this stage, the data for the cost is collected only for the storage
in the Europe west region. Although the cost will not vary a lot, but it is a
possibility to collect data for all available regions.

2. Server-side encryption: At this stage, server-side encryption with server
managed keys is evaluated. Server-side encryption with client managed keys
can also be evaluated. In addition to that, it’s impact on the cost can also be
considered.

3. More parameters: More parameters can be added into the evaluation mat-
rix that play role in making the decision to select the cloud storage.

Domain-specific Language (DSL): In future, there is a clear possibility of new
parameters, such as cost, bandwidth, and network latency. For the domain-specific
language, the work can be extended in multiple directions now:

1. Compiler construction: At this stage, the language meta-model is is de-
veloped. Whereas, the compiler construction/development is in progress.
The compiler or the generator class is used to generate YAML code based on
the code written in this new language.

2. Grammer enhancement: By enhancing the DSL grammar to support more
concepts from computing continuum.

3. Graphical user interface: Development of a graphical User Interface over
the language compiler so that the user can deploy a big data pipeline by
using a user-friendly, drag-and-drop interface.
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4. Evaluation: In order to test the effectiveness of the new DSL, usability tests
can be carried out.

Integration of evaluation matrix with the DSL: The language meta-model
is designed to support the integration of cloud storage with the big data pipeline.
In addition to that, multiple storage services can bed integrated with the data
pipeline between different compute steps. But the integration of the new proposed
evaluation model/matrix is missing. Hence, there is a possibility to integrate this
model to the language itself to enhance the usability.
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Appendix A

Published work

A.1 Contribution to the published work

In Conceptualization and scalable execution of big data workflows using domain-
specific languages and software containers [66], I contributed to language grammar
and conceptual design. In addition to that, I developed the compiler for the new
DSL to convert the code written in the newly developed language into a deployable
YAML code. The DSL presented in this project is an extension of DSL presented
in [66]. In Locality-Aware Workflow Orchestration for Big Data [84], I contributed
to doing the literature survey/compiling state-of-the-art for the paper, conceptual
design, and evaluation. Moreover, I worked on deploying orchestration tools in
the Kubernetes Environment on windows machines.
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A B S T R A C T

Big Data processing, especially with the increasing proliferation of Internet of Things (IoT)
technologies and convergence of IoT, edge and cloud computing technologies, involves handling
massive and complex data sets on heterogeneous resources and incorporating different tools,
frameworks, and processes to help organizations make sense of their data collected from
various sources. This set of operations, referred to as Big Data workflows, requires taking
advantage of Cloud infrastructures’ elasticity for scalability. In this article, we present the
design and prototype implementation of a Big Data workflow approach based on the use of
software container technologies, message-oriented middleware (MOM), and a domain-specific
language (DSL) to enable highly scalable workflow execution and abstract workflow definition.
We demonstrate our system in a use case and a set of experiments that show the practical
applicability of the proposed approach for the specification and scalable execution of Big Data
workflows. Furthermore, we compare our proposed approach’s scalability with that of Argo
Workflows – one of the most prominent tools in the area of Big Data workflows – and provide
a qualitative evaluation of the proposed DSL and overall approach with respect to the existing
literature.

1. Introduction

Massive amounts of data is being generated especially with the rise of Internet of Things (IoT) technologies creating new value
creation opportunities through Big Data analysis. Accordingly, Big Data analysis has been a driving factor in revolutionizing major
sectors, such as mobile services, finance, and scientific research. Big Data workflows are composed of multiple orchestrated steps, such
as workflow activities that perform various data analytical tasks. They are different from business and scientific workflows since they
are dynamic, process heterogeneous data, and are executed in parallel instead of a sequential set of scientific operators [1]. Although
many organizations recognize the significance of Big Data analysis, they still face critical challenges when implementing data
analytics into their process [2]. Firstly, multiple experts, ranging from technical to domain experts, need to be involved in specifying
such complex workflows. Secondly, given the fact that IoT, Edge and Cloud technologies converge towards a computing continuum,
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workflow steps need to be mapped dynamically to heterogeneous computing and storage resources to ensure scalability [3,4].
Providing a scalable, general-purpose solution for Big Data workflows that a broad audience can use is an open research issue [2,4].

The challenges in devising an applicable generalized solution come from the fact that bottlenecks can occur on an individual
workflow step level – for example, when the throughput of one step is lower than the others. Thus, scaling up the entire workflow
does not address the scalability issues and needs to be done on the individual step level. This issue becomes worse by the fact that
scalability needs to be organized and orchestrated over heterogeneous computing resources. Furthermore, scaling up individual steps
introduces race conditions between step instances that attempt to process the same piece of data simultaneously. Another major
challenge is achieving usability by multiple stakeholders as most Big Data processing solutions are focused on ad-hoc processing
models that only trained professionals can use. However, organizations typically operate on specific software stacks, and getting
experts in Big Data technology can introduce costs that are not affordable or practical. Even if an organization has the necessary
technical personnel, data workflow steps pertain to specific domain-dependent knowledge, which is possessed by the domain experts
rather than the data scientists who set up the data workflows. In this respect, this work aims to provide an approach that allows:

(a) Conceptualization of Big Data workflows using a domain-specific language (DSL) to support the high-level definition of
complex data processing across multiple types of parameters, inputs, and outputs; and

(b) Scalable execution of Big Data workflows using software container technologies and message-oriented middleware solutions.

In this article, we present the design and implementation of a Big Data workflow approach based on the use of software container
technologies, message-oriented middleware (MOM), and a DSL to enable highly scalable workflow execution and abstract workflow
definition [5]. Our design allows for scaling up on the level of individual workflow steps on top of heterogeneous infrastructures
while avoiding race conditions through a system of inter- and intra-step coordination. Furthermore, our container-based approach
allows for the separation of concerns between the stakeholders by providing a flexible means of injecting domain-specific code
involving any programming language and enabling the definition of workflows on a high level (i.e., without the step-specific code).
Finally, the DSL allows easy specification of Big Data workflows by abstracting low-level technical aspects. We demonstrate our
approach’s applicability by implementing a prototype based on a real-world data workflow and multiple experiments showing
satisfactory performance. Furthermore, a set of comparative experiments with Argo Workflows shows better performance due to
concurrent workflow execution. A qualitative evaluation of the overall approach and the DSL with respect to the existing literature
presents our approach’s benefits. This article extends our previous work in [5] by providing (i) more insights and explanations
about the motivation, approach and solution details, (ii) an extended presentation and analysis of the related work, (iii) an elaborate
account and analysis of the requirements for enabling Big Data workflows on the Computing Continuum, (iv) a qualitative evaluation
and discussion of the proposed DSL, and (v) a set of examples of real-life use cases of the approach.

The rest of the article is organized as follows. Section 2 sets the background, while Section 3 discusses related work. Section 4
describes the requirements and Section 5 presents the proposed approach. Section 6 discusses our proof-of-concept implementation
based on the proposed design, Section 7 provides an evaluation, and, finally Section 8 concludes the article and discusses possible
future work.

2. Background

In this section we briefly introduce technological background relevant in the context of scalable Big Data workflows execution.

2.1. Big data workflows

A Big Data workflow is the computerized modeling and automation of a process consisting of multiple orchestrated steps that
perform various data analysis tasks [6]. In practice, most Big Data workflows are usually represented by a Directed Acyclic Graph
(DAG) [7]. Various processing models can be applied for parallelizing data processing known as workflow data patterns [8]. In this
context, Pipe and Filter (P&F) is a relevant architectural design to decompose a larger processing task into a series of smaller, separate
processing steps (filters) that are connected by channels (pipes) [9]. The filters can then be integrated into a workflow, whereby
each filter receives and sends data in a standardized way, thus implementing the ‘‘shared data passed by reference’’ pattern [8].
This pattern, given that different steps are loosely coupled, enables scalability at the workflow step level, but introduces the issue
of handling concurrency control.

2.2. Message-oriented middleware

Achieving race-condition-free consistency and concurrency for scaling the homogeneous Big Data workflow steps requires using
a synchronization mechanism across the different step instances. One approach for addressing such synchronization issues is to
use Message-Oriented Middleware (MOM). MOM provides an infrastructure for loosely-coupled and asynchronous inter-process
communication using messaging capabilities [10]. In a system integrated using MOM, a client can send messages to and receive
from the other clients of the messaging system (without losses or message duplication) in a race-condition-free way through the use
of a message queue. Thus, in the context of Big Data workflows, the middleware can act as a medium for communication, whereby
step instances coordinate passing intermediate results through sending/receiving messages in MOM queues.
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2.3. Container technology

A container is a packaged, standalone, deployable collection of program elements [11]. Containers provide an isolated virtual
environment and include all the required dependencies of the provisioned tools. Docker is one of the most well-known platforms
for organizing solutions based on container technologies. When executing multiple containers, a container orchestration system can
manage their deployment, scaling, and networking. In particular, container technology is useful for deploying distributed scalable
applications (such as Big Data workflows), as it provides transparent means for infrastructure management and easy scalability of
individual application sub-components. Orchestration tools use a configuration file to define container images, network, and related
deployment schemes of an application.

2.4. Domain-specific languages

DSLs are programming languages or specification languages that target a specific problem domain. DSLs are small, descriptive,
and contain only the details needed for the desired domain. In general, there are two types of DSLs: internal and external [12]. An
internal DSL is a specific form of Application Programming Interface (API) in a host general-purpose language (GPL). In contrast, an
external DSL is a language that is parsed independently of the host GPL. Unlike GPLs, DSLs are limited in scope and cannot cover
all aspects of a given problem. However, they are more effective than GPLs in providing expressiveness at the cost of generality.
DSLs offer better domain-specificity and significantly improve collaboration between domain experts and developers [13].

3. Related work

In this section, related work is presented in terms of related scientific literature and commercial and non-commercial software
tools. Aspects such as workflow resource scheduling and others, as described in [4,14], are complementary to our approach as the
described concept uses container orchestration systems to specify them.

3.1. Related software tools

There is a large variety of Big Data workflow solutions that share similar design principles while fulfilling the needs of various
groups of users and use cases. We carried out a comparative analysis of the most promising workflow tools (chosen based on their
mass user base and relevance), including Pachyderm,1 Apache Airflow,2 Snakemake,3 Apache NiFi,4 Node-RED,5 Argo Workflows,6
NextFlow,7 and Conductor.8 An overview of the comparison is presented in Table 1 with respect to workflow type, usability for
non-technical experts, run time container support, and generality of the solution.

We consider two main types of workflows — scientific and general-purpose. Scientific workflow approaches are built to be applied
in homogeneous infrastructures, such as High-Performance Computing (HPC) clusters, where resources are shared between multiple
workflows and dedicated algorithms are used to optimize job scheduling and resource allocation. On the other hand, general-purpose
workflow tools are applicable in varying domains/scenarios and can be executed in heterogeneous computing infrastructures. In
terms of usability for non-technical experts, we consider three levels of support — easy, medium, and difficult. We regard approaches
that provide a dedicated DSL/UI that caters to domain experts as easy. If the approach requires the use of coding of the Big Data
workflows in a specific programming language, we consider the approach of medium usability. On the other hand, if the approach
requires coding and the use of approach-specific concepts and libraries in order to declare a workflow, we consider the approach to
be hard in terms of usability to non-technical experts. With respect to container support, we classify the approaches on whether or
not they support the use of container technologies (e.g., Docker) for encapsulating the entire Big Data workflow or individual steps.
We note that although some of the tools, such as Apache NiFi, are packaged and deployable using container technology,9 but we
do not consider them to provide container support. We consider the solutions in terms of whether or not they are generic or catered
for a specific vertical domain of knowledge. Thereby, we regard approaches that are applicable in any vertical domain as generic
and vice versa. Finally, in terms of monitoring capabilities, we classify workflow tools by the availability of monitoring execution
of the workflow. Depending on how the execution can be monitored, it can be further classified into logging and runtime. We regard
those tools that provide real-time monitoring as runtime. If the monitoring is based on logs at the end of execution, we classify the
tools as logging. Tools that mainly provide logging-based monitoring, which also support limited real time monitoring capabilities,
are regarded as logging and (partial) runtime.

1 https://www.pachyderm.com.
2 https://airflow.apache.org.
3 https://snakemake.readthedocs.io.
4 https://nifi.apache.org.
5 https://nodered.org.
6 https://argoproj.github.io/argo.
7 https://www.nextflow.io.
8 https://netflix.github.io/conductor.
9 https://hub.docker.com/r/apache/nifi.
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Table 1
Comparison matrix for tools supporting Big Data workflows.

Tool name Workflow type Usability Container support Generic solution Monitoring

Airflow General-purpose Difficult Docker Yes Logging and (partial) runtime
Argo General-purpose Difficult Docker Yes Logging and (partial) runtime
Conductor General-purpose Difficult No Yes Logging
Nextflow Scientific Medium Docker No Runtime
NiFi General-purpose Medium No No Runtime
Node-RED General-purpose Medium No No Logging
Snakemake General-purpose Medium Docker Yes Runtime
Pachyderm General-purpose Difficult Docker No Runtime
Our approach General-purpose Easy Docker Yes Runtime

Argo Workflows natively supports containers in workflows by implementing each step as a container. The workflow definition
and automation are done by YAML templates based on a custom DSL.10 The steps can be arranged either sequentially or in a DAG,
making it possible to orchestrate and parallelize jobs. However, Argo Workflows does not have a middleware solution to handle
inter-step communication, which may result in step instances running into race conditions when scaled horizontally. Additionally,
individual steps cannot be scaled up in order to increase the workflow throughput (although they can be run in parallel).

Nextflow is a workflow framework based on the dataflow paradigm [15]. It uses a declarative processing model to execute
parallel tasks and supports step-level scalability. Nextflow has built-in support for container technologies and the communication
among processes is handled using channels, and asynchronous First-In-First-Out (FIFO) queues preventing race conditions. Nextflow
provides a custom DSL to write complex workflows, which is an extension to Apache Groovy.11 Nextflow does not provide a clear
separation of concerns between workflow definition and implementation and relies on a specific software stack (through the DSL)
for workflow step implementation.

Apache Airflow is a platform for the creation, scheduling, and monitoring of data workflows. Python scripts are used to describe
DAG structured workflows. Airflow has a scheduler that executes workflows on a set of workers, but it lacks a mechanism to
avoid race-conditions when scaled. Airflow has a rich user interface support allowing users to visualize workflows and monitor
their execution. The workflow definition is done via programming. Pachyderm is a tool for managing data workflow and related
input/output data that results in all the data workflows’ reproducibility and scalability. Pachyderm is based on Docker and
Kubernetes, and provides advanced features such as pluralization and incremental processing. Users need technical knowledge to
define workflows.

Snakemake is a workflow system in which workflows are defined in terms of rules presenting the input–output conversion of
files. Determining dependencies between rules, Snakemake automatically forms parallelizable DAG workflows. It provides a concise
and readable DSL, an extension of Python programming language, for defining rules and workflow specific properties. It was initially
developed for scalable workflows in bioinformatics. Apache NiFi is a project of Apache Software Foundations that allows automation
of data flow between systems. It is based on a flow-based programming model for building scalable data workflows. Although it
comes with a user interface, it requires technical knowledge to design workflows.

Node-RED is another flow-based programming workflow tool that is built based on Node.js run-time. It follows the event-driven
and non-blocking model. It provides a Web-based visual editor for designing workflows, but it still requires technical knowledge
from the user. Even though Node-RED was initially designed for Internet-of-Things (IoT) applications, it has evolved to develop
various applications. Conductor is a workflow orchestration engine by Netflix that allows creating microservice-based business and
process workflows. Workflows are composed of tasks that are executed by remote workers. A JSON-based DSL is used to define
workflows.

3.2. Related studies

Many efforts have been made to use containers to address the challenges of scalability, resource provisioning, scheduling,
orchestration, and data management of data workflows. Authors in [16] propose an approach for decomposing scientific workflows
into micro-units that are containerized and contain sub-workflows that communicate through streaming middleware among each
other and other applications and devices. This approach is specific to the domain of digital twins and addresses the job dependency,
job scheduling, and streaming support issues, but does not provide means of independent scaling of steps and is domain-specific.

Another set of approaches relies on the use of container technology to deploy workers that execute jobs. Authors in [7] use
Docker to deploy a software stack to homogenize the environment where tasks are run. However, their approach has limitations
on the number of workflow step containers deployed on a single host and does not support long-running tasks (i.e., containers are
shut down after executing). The approach in [17] uses containers to encapsulate workers that contain the workflow engine and
execution environment but is applicable only in the context of workflows expressed in a specific stream-based dataflow DSL [18],
which reduces applicability for general-purpose data workflows.

10 https://argoproj.github.io/argo-workflows/fields.
11 https://groovy-lang.org.
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Another set of data workflow implementations in the area of HPC are built on top of the Shifter [19] framework. Authors
in [20] use the framework to distribute jobs and entire workflows (encapsulated in a single container) over an HPC cluster. This
approach does not support individual steps’ scalability but views data workflows as entire units of work. Authors in [21] rely on
Shifter for defining virtual HPC clusters to run jobs. Thereby, containers are used for creating worker nodes with the necessary HPC
functionality and for managing the jobs, but their approach is not applicable for general-purpose data workflows.

One approach that comes close to the one described in this paper is presented in [1], whereby containers are used to wrap
individual steps. The framework uses a TOSCA [22] to describe both the deployment and workflow steps, which containers can
implement. However, the framework does not support dynamic workflows — tasks are executed in a sequential manner, whereby
a task must finish for next to be deployed, which makes the approach not suitable for long-running workflows.

Finally, authors in [23] use Cloud orchestration for deploying distributed workflows in a similar manner as the one described
here, although containers are not supported. However, the approach does not support run-time scalability and relies on the step
definition to manage the input and output between the steps. Furthermore, the approach uses a DSL that provides no clear separation
of concerns between the design- and run-time phases of data workflows.

4. Requirements

Commonly used data processing frameworks (such as Spark, Flink, Beam) are designed with ad-hoc processing models that
technical experts on specific technology stacks can only use. The focus is on the programming and run-time aspects of workflows
than the actual definition of workflows themselves. Even though some solutions, as discussed in related work, have demonstrated
defining and executing Big Data workflows, they do not cater to the needs of domain experts. Solutions like Pachyderm, Snakemake,
and Airflow are merely designed for technical experts, and the definition of workflows is done using high-level programming and
scripting languages. To enable domain experts to participate in the process, some tools provide a user-friendly interface to define
workflows. However, they either are made for a specific application domain (e.g., bioinformatics, computational chemistry, ecology,
genomics, etc.) or require some level of technical knowledge to manipulate the data. Thus, although most approaches and tools
use some form of DSL or UI, the abstraction level is not sufficient to allow for separation of concerns between definition and
implementation, which is necessary to effectively involve domain experts in workflow definition.

Another major challenge in Big Data workflows is the dynamic mapping workflow steps to heterogeneous computing and storage
resources to ensure scalability. This challenge comes from the fact that bottlenecks can occur on an individual workflow step level,
e.g., the throughput of one step is lower than others. Thus, scaling up the entire workflow does not solve the scalability issues and
needs to be done on the individual workflow step level. This issue is exacerbated by the fact that the scalability needs to be organized
and orchestrated over heterogeneous computing resources. Achieving scalability in Big Data workflows has another dimension of
challenges: exchanging data among workflow components and race conditions when multiple instances of workflow components try
to modify a shared resource (e.g., a file) at the same time. Multiple workflow step instances can make up a large set of capabilities
to deliver the workflow’s needs. Some approaches and tools discussed in the related work attempt to address this issue through
the use of containers and different types of middleware. However, no approach is able to unlock the full potential for achieving
step-level scalability of workflows, which relies on workflow and step encapsulation.

Finally, in Big Data workflows, data need to be passed between the workflow components so that the communication overhead
is minimal. A communication solution must decouple the communication between the steps to be scaled up while maintaining race-
condition-free data access. Additionally, this communication module has to play a central role in determining data flow between
workflow steps. Based on our analysis of the state of the art, we find there is no holistic Big Data workflow solution that can provide
such a communication module along with high-level workflow definition and scalable execution.

Accordingly we extracted the following requirements for our Big Data Workflow solution:

(a) A workflow definition mechanism with a clear separation between design- and run-time aspects and not limited to a specific
technology stack, application domain or ad-hoc processing models;

(b) A workflow run-time support that considers workflows as separate units, rather than as a single unit, for individual workflow
steps; and

(c) A workflow enactment approach with event driven execution and support for race-condition-free parallel execution.

5. Proposed solution

In this section, we propose an approach for the workflow step design and inter-step communication. For the description of the
Big Data Workflow we use the DSL from [24].

5.1. Overall architecture

The solution enables various stakeholders to be involved in the creation of Big Data workflows. The desired properties of the
system are achieved by utilizing container and orchestration technologies and a DSL. The workflow system is composed of three
components: Workflow Modeling Manager, Deployment Service Runtime, and Data Storage/Sharing Ecosystem (see Fig. 1).

The Workflow Modeling Manager is the central element for defining workflow steps and composing them in workflows. It comprises
a set of tools and configurations that allow the formation of deployable Big Data workflows. The component uses models that provide
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Fig. 1. Overview of the our workflow system.

high-level descriptions of workflow steps and their dependencies. This component handles storage configurations, data preparation,
and step-level data processing and transformation operations. The output of the component is a deployable data workflow. The
Deployment Service Runtime is a component representing the collection of hybrid computing resources where workflows steps are
deployed. As individual workflow steps are wrapped as containers, container orchestration tools play an important role in managing
the heterogeneous resources and allowing workflows step containers to be deployed. The component also controls operations such
as scaling and load balancing. Data Storage/Sharing Ecosystem is responsible for storing intermediate and output data and the data
exchange mechanism during workflow execution. As workflow steps are deployed across heterogeneous distributed environments,
the data exchange mechanism is an essential element that binds the workflow steps together by allowing them to pass data.

The system ensures the separation of design-time and run-time aspects of the workflows, i.e., workflow definition is done
without considering the run-time execution. This allows having a separation of concerns among the involved stakeholders. Thereby,
domain-experts can be responsible for extracting data processing requirements and structuring the high-level design of workflow
steps. Technical experts provide the concrete programmatical implementations of the steps — for example, data scientists may
provide workflow step-specific analytical models and data preparation code. Finally, DataOps experts are engaged in deploying and
maintaining data workflows in production settings and monitoring data quality and related infrastructure status.

5.2. Big data workflow description

The DSL used in this work [24] for representing Big Data workflows is inspired by [25] and is shown in Fig. 2. The domain
conceptualized by the DSL is container-based Big Data workflows, which is reflected in the choice of concepts. The main concepts
of the metamodel are used to represent the different aspects of the Workflow Modeling Manager element shown in Fig. 1. Workflow
Step Definition is implemented by the Workflow concept, which is comprised of a set of Steps in the DSL. Additionally, the element
Data Preparation and Storage Configuration is implemented by the concepts Parameter, Trigger and Communication Medium, whereas
the Workflow Step Composition element relates to the Step Implementation concept in the metamodel.

A Workflow is a sequence of steps that need to be executed in some order to process a set of data. It represents the conceptualized
series of steps that perform different data ingestion, transformation, and analytics tasks. A given workflow can be defined by reusing
another workflow. Besides the steps, a workflow is composed of a communication medium and a set of parameters. The Steps
are the building blocks of a workflow, and each step corresponds to a single unit of data processing work in the workflow. The
steps in a workflow are executed independently and are isolated from each other. Further, a step can have various options for its
implementation and trigger mechanisms for executions.

A Parameter represents an input configuration value needed for the execution of a specific workflow instance. In addition to
workflows, parameters can also be used to define configurations for workflow steps. The Trigger concept represents how the execution
of a step instance is instantiated. In our metamodel, step execution can be triggered from a schedule that runs in a fixed interval of
time, or it can be configured to run only once (e.g., during initialization of the workflow). Execution can also be triggered by an
external event (e.g., invocation from a REST API or availability of input data in a message queue).

The Step Implementation is a concept that represents how the actual implementation of a workflow step is performed. A container-
based implementation can be considered as an example of step implementation. In this way, the DSL provides explicit support for the
container-based Big Data workflow approach described in the rest of this paper and additionally allows for other implementations
that may not necessarily make use of containers. The communication Medium represents the mechanism in which workflow steps
exchange data. A workflow step can pass data to another step using a message queue. Nevertheless, our approach allows that data
exchange be performed using other means such as distributed file systems or Web services.
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Fig. 2. Metamodel for the proposed DSL for representing Big Data workflows.

The design of the DSL emphasizes separation of concerns between the structural and implementation details of a workflow
(e.g., through the clear separation between Step usage in workflow and Step Implementation). These aspects correspond to the domains
of concerns of the two main groups of stakeholders — non-technical personnel (e.g., experts in a vertical domain) and technical
experts (e.g., programmers). In that way, the DSL satisfies the requirement discussed in Section 4). Furthermore, we assume that
the DSL should be used by non-technical experts and, therefore, should avoid complex constructions as much as possible. Therefore,
another approach we apply in the language design is introduction of language concepts only if necessary. This means that only
concepts used in our practical cases are supported in this first version of the DSL. Thus, constructs, such as loops and conditional
steps have not been introduced into the DSL presented in this paper. The introduction of more advanced control structures is part
of ongoing work in the context of the DataCloud project.12

5.3. Step design

Our approach takes advantage of container technology [26] in order to implement step encapsulation (in the DSL, this is reflected
in the Docker Implementation sub-class of the Step Implementation concept shown in Fig. 2). The implementation of the approach
implies wrapping workflow steps as containers and having step containers run independently of each other and in parallel. Moreover,
step templates (container images) are downloaded once, and multiple instances of the same template can be deployed.

To enable the definition and deployment of workflow steps and their composition into a workflow, workflow steps are derived
from a generic workflow step template supporting multiple programming languages. A workflow step can be prepared by customizing
the generic template according to the need of the step and other settings. To achieve such flexibility, this template needs to be
designed so that it is easy to introduce customization. The step template is composed of three main components: Input Processing,
Workflow Step Action, and Output Processing (see Fig. 3).

The Input Processing is responsible for handling incoming data; this includes fetching data from remote sources (e.g., copying or
downloading a file from shared file volumes and moving the data to the step workspace, where it will be processed). Based on the
step’s configuration, input data can be fetched once at a container startup or scheduled to poll for the data availability at a specific
time interval. The Input Processing can be triggered when a piece of data is available at the source. The Workflow Step Action is
a wrapper component for step-specific data processing code. This component allows the injection of custom code using different
programming languages. The data fetched by the Input Processing component is processed using the step-specific code in the step.
The Output Processing component is responsible for delivering the processed data to a specific destination (e.g., upload to a remote
source or move it to a shared volume for further processing by next steps) and notifying that the processed data is available for
the next steps. Output Processing also includes the clearing up of temporary and input data from the step workspace. Configuration
and attributes of a workflow step can be expressed as parameters and injected at the deployment time. The step parameters are
accessible only by the corresponding step, but workflow-level parameters can be defined as well.

12 https://datacloudproject.eu.
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Fig. 3. Components of workflow step template.

5.4. Inter-step communication

The step design approach described in the previous section implements loose coupling of steps that comprise a workflow.
However, in order to ensure that data between steps are transmitted consistently and correctly, consecutive steps need to
communicate to notify each other of data availability. This communication corresponds to the Fetch input data and Notify Next
Steps sub-processes of the Input and Output processing components in Fig. 3. In the proposed workflow approach, MOM serves as
a medium for workflow step communication. Two inter-dependent workflow steps communicate by passing data through MOM
without direct interaction. The sender step pushes data to the MOM so that it is consumed by the receiver step at any time after the
data becomes available in the MOM. The two steps do not need to run simultaneously for interaction, ensuring temporal decoupling.
The space decoupling is also achieved since none of the sequential steps needs to know the other nor how many other steps are in
the workflow. Since workflow steps are loosely coupled, they can be scaled independently. Therefore, it is possible to assign more
instances to bottleneck workflow steps that are, for example, more computationally heavy and reduce the overall processing time.

Specifically, message queues are used as a communication medium so that two inter-dependent workflow steps can share a
queue to exchange data asynchronously. Both workflow step processes do not necessarily need to be running simultaneously to
interact with the queue. Additionally, the messaging system is capable of providing an exactly-once message delivery guarantee.
Furthermore, MOM-based communication ensures that the workflow does not run into race conditions. These can be seen in two
scenarios:

• A workflow step that receives data does not access the data while the predecessor step is writing it. Message queues ensure
that sending a message to a queue is independent of when it enters the queue and when the receiver reads it; and

• When a workflow step is scaled up, a step instance does not process a piece of data already being processed. This problem is
avoided since a message is delivered to only a single step instance, i.e., data access is only for a specific instance.

The data patterns of the designed workflow are characterized according to the major workflow data patterns described in [27].
From a data visibility perspective, data elements are accessible from all workflow steps (e.g., data can be stored in shared file
storage). Though a data element is accessible for all, it can only be used by a single workflow step instance at a time (e.g., when a
reference of a file is transferred to the step from a message queue). Internally, data interaction happens only between two workflow
step instances. Depending on the workflow step’s purpose, it can also interact with an external source (e.g., by downloading a file
from a remote source or invoking an external API endpoint). Data transfer is undertaken by the reference to the data element in
some shared location (e.g., a file can be stored in a shared location, and its reference is exchanged over a message queue). In this
case, data locking is not required; message queues restrict concurrent access to the data element. In terms of data-based routing, a
given workflow step is executed whenever data are available at a network location.

6. Prototype implementation

To demonstrate the applicability of the proposed solution, we developed a prototype Big Data workflow (see Fig. 4) that
implements the design choices described in Section 5 (available on GitHub13 including a small anatomized sample of the used
data). The prototype workflow comes from the domain of digital marketing (see [28] for a detailed description) and was chosen

13 https://github.com/SINTEF-9012/ebw-prototype.



Internet of Things 16 (2021) 100440

9

N. Nikolov et al.

such that some of its steps have higher compute requirements than others. Those steps need to be assigned with more computing
resources than other workflow steps to enable faster data processing. This makes it possible to demonstrate the applicability of
step-level scalability. The prototype workflow demonstrates the implementation of Big Data workflows using container technology
(encapsulating individual steps of the workflow), a messaging system (Message Queue), shared file system volumes (can be local
or distributed file system), and includes the following steps: (i) extract tab-separated values (TSV) files from an archive file stored
on a volume in a shared file system, (ii) convert TSV files to comma-separated values (CSV) files, (iii) split CSV files into smaller
pieces if the number of rows in the files is above a certain number, (iv) clean and pre-process CSV files, (v) and convert tabular
CSV files to JSON collections for further storage. The DSL description of the prototype workflow using an Xtext-based14 grammar
specification over our DSL model is given in Listing 1.

6.1. Inter-step communication

Asynchronous FIFO message queues are used to implement inter-step communication and the KubeMQ15 messaging system
was chosen for this purpose. KubeMQ provides multiple message queues with a guarantee of exactly-once message delivery. A
communication link is established when a workflow step is configured with a message queue as its output channel, and the same
queue is used as an input channel for another step. In this way, the latter step waits for the output of the former and its execution
is triggered immediately when the shared queues have content. This communication mechanism enables the two step instances
to run concurrently during execution while maintaining race-condition-free data access. Such workflow execution follows the P&F
architecture, i.e., step instances as filters and message queues as pipes. In the example prototype, a containerized instance of KubeMQ
is used to handle the communication between the steps and is made accessible to all workflow steps. Each consecutive workflow
step is configured to share a message queue (except the first and last steps). Thereby, steps in the workflow use two message queues:
one for retrieving information about available input data from the previous step and one for signaling that data have been made
available for the next step. There is no direct link between two consecutive steps; instead, the message queue they share creates a
logical connection.

14 https://www.eclipse.org/Xtext/.
15 https://kubemq.io.
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Fig. 4. Prototype Big Data workflow.

Even though the message queues in the prototype workflow serve as a communication mechanism, the actual data for processing
are not stored in the message queues but are stored on shared volumes. Only references to the data are placed in the message
queues. To organize the processing of the data, a step container allocates at least four different file storage volumes: in, work, out,
and sandbox. When a file reference becomes available in the input message queue of a step container, it reads the file reference from
the queue and accesses the file from its in volume. Then, the file is moved to the work volume for processing. When file processing
is completed, the result is stored in the out volume, and the reference of the output file is published in the output message queue so
that the next step can use it for further processing. The sandbox volume is used to store any files that are not processed successfully.

6.2. Container orchestration

The individual steps in a workflow are wrapped as Docker containers. The Docker images of the workflow steps are derived
from a generic step template that implements the input processing, output processing, and communication logic. The template
is modified by adding the installation script for any necessary software libraries in the Docker image building configuration and
injecting relevant code scripts (step processing code) in a specific place in the template logic. Container orchestration systems provide
effective means to deploy distributed applications across a heterogeneous cluster of resources. To use these tools, it is necessary to
prepare a deployment configuration file either in JSON or YAML, which describes the location of the container images, network
setups, and other configurations. In the case of Big Data workflows, the configuration needs to include the description of different
workflow steps and the communication medium. Scalability and other constraints can also be stated in the configuration. When
deploying a workflow, the orchestration tool will automatically schedule the deployment of each workflow step to a cluster and
pick the right host, taking into account any stated requirements or constraints.

The prototype workflow deployment was done by composing individual workflow step Docker containers using a Docker-compose
file. A workflow step description in the file includes shared volumes, environment values, and message queue assignments. The
communication medium, KubeMQ, is also included as a separate service in addition to the workflow steps. Rancher16 is used as
an orchestration tool to deploy the workflow on a private cloud environment running Docker containers. In Rancher, the number
of instances for each step can be defined in a separate YAML file. When this YAML file, together with the Docker compose file, is
supplied, Rancher handles the deployment by taking the scalability requirement into account and finding the right host for each
container.

16 https://rancher.com.
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Table 2
Summary of feature-based comparison.

Workflow tool Step-level
containerization

Communication
mechanism

Parallelism DSL for
workflow

Separation of
concerns

Airflow Yes Yes No Yes Yes
Argo Yes No Yes No Yes
Conductor No Yes Yes Yes No
Nextflow Yes Yes Yes Yes No
NiFi No Yes No Yes No
Node-RED No No No No Yes
Pachyderm Yes No No No Yes
SnakeMake Yes No Yes No Yes
Our approach Yes Yes Yes Yes Yes

6.3. Fault tolerance

To address faults in Big Data workflows, it is necessary to keep track of each file’s status while it is being processed. Having this
information stored in a structured way helps for monitoring and debugging purposes. To this end, a centralized logging functionality
writing structured logs in JSON format is incorporated. These logs are stored in scalable message queues, such as Kafka [29], and
contain important execution statuses, warnings, and errors. A centralized logging system can be a bottleneck when the system grows.
This is because the logging unit gets overwhelmed by the flow of log data coming from scaled up workflow step instances. This
slows down the overall performance of the workflow. However, our implementation is not significantly affected by this problem as
the centralized logging approach is inspired by the state management system in well-known scalable platforms, such as Flink [30]
and MillWheel [31]. In addition, the bottleneck on the logging mechanism can also be alleviated by using decentralized queuing
systems. Errors in the common and step-specific scripts are handled differently by using a separate exception handler. This is done
by checking exit codes of program calls and operating system control flow constructs. Using such constructs, important program
calls in the scripts are bound together with an error handler function. The error handler will be invoked when the program exits
with an error code and logs error information, including the file causing the error, the line number that caused the error, and the
input file’s name being processed.

To make the workflow more resilient to intermittent failures, we implemented retrying processing of failed input files. Whenever
an error occurs, the input file is moved to the respective sandbox volume to be processed later or to be archived. Since the message
queue implements exactly-once delivery, the reference of the file will not be available in the queue for retrials. In this case, all the
failed files can be accessed directly from the sandbox without the need to access the message queue. When a step becomes free,
i.e., when there are no more files in the message queue (or input directory for the first step), it tries to re-process files from the
sandbox. With the current implementation, retrial is done only once.

7. Evaluation

In this section, we present the evaluation of the proposed solution. It includes a feature-based comparison of the workflow
solution against existing workflow tools and performance experiments based on the prototype implementation.

7.1. Feature-based comparison

To compare the proposed workflow solution with other similar tools, we selected five main implementation features: (i) the
ability to wrap workflow steps as containers (isolated units); (ii) communication mechanism between steps and their activation
trigger; (iii) parallel execution of workflow steps; (iv) inclusion of DSL for workflow definition; and (v) separation of concerns. (see
Table 2).

Granular containerization (i.e., step-level containerization) is not provided out of the box for Big Data workflows containing
multiple steps. Hence, step-level scalability cannot be achieved when faster processing is needed for an individual workflow step.
Argo Workflows, Nextflow, Pachyderm, and SnakeMake are instances of the few Big Data workflow tools supporting step-level
containerization. Nextflow also has an additional feature that allows deploying the entire workflow as a single container. The
majority of existing data workflow tools lack such a separate communication link and instead, steps in these tools are tightly coupled.
Thereby, the logic that determines the flow of step execution is embedded as part of the step implementation. Even though Argo
Workflows provides both sequential and parallel workflow step definitions, this type of communication mechanism is missing.

Apache NiFi and Nextflow use a queuing system for inter-step communication. Nextflow provides advanced data binding and
publish/subscribe features. Conductor has a special type of workflow step (i.e., event step) to enable event-based dependencies for
steps by publishing events internally or an external message queuing system like Amazon SQS. Apache Airflow uses a feature called
XCom to communicate small messages between steps and larger data are exchanged using remote storage such as S3 and HDFS.

Workflow tools such as Apache Airflow, Conductor, Nextflow, and Apache NiFi provide parallel execution of step instances from
different workflow steps. In Apache Airflow and Conductor, special operators are used to define a parallel set of workflow steps.
Parallelism support in Argo Workflows is limited to all workflows in the system (i.e., it is not granular to a class of workflows, or
steps within them).
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Fig. 5. Results of the horizontal scalability test.

Defining workflows in existing data workflow tools requires knowledge of general-purpose programming and scripting languages
such as Java, Python, Scala, or R. Consequently, domain-experts face a significant learning curve to master these languages. The
need for DSLs is indispensable in this regard. Only a few Big Data workflow tools, e.g., Argo Workflows, Conductor, Nextflow, and
SnakeMake, support a custom-made DSL for workflow definitions.

Separation of concerns is not a focus in tools like Conductor, Nextflow and Apache NiFi. Hence, there is no mechanism for the
separation of high-level workflow definition concerns from step-specific implementation and deployment details. Therefore, such
tools do not ensure the separation of design- and run-time aspects of workflows.

7.2. Performance evaluation

We evaluated our workflow approach’s horizontal scalability using the prototype workflow and compared it with the Argo
Workflows. We used eight heterogeneous physical hosts configured to form our distributed testbed. Three of them have 12-core
Intel CPUs and 64 GB RAM each; the other five — four-core AMD CPUs and 16 GB RAM each. The hosts are connected in a Gigabit
Ethernet network, share a distributed file system, and run the Docker engine connected to Rancher.

7.2.1. Scalability evaluation
Our workflow solution allows us to scale individual workflow steps. Hence, it is worth investigating the impact of horizontal

scalability on the performance of the workflow. Therefore, we designed an experiment to determine how the number of workflow
step instances (i.e., containers) affects workflow execution performance. The prototype workflow, shown in Listing 1, was used for
this experiment. We defined an increasing number of workflow step instances and measured the time it takes to complete processing
input files. Input data size is kept constant over all iterations. The results of this experiment are shown in Fig. 5.

We performed the scalability experiment by processing approximately 100 GB of compressed TSV files in nine rounds. These
are historical data from the use case described in [28] that comprises a large volume of extracts from the Google Ads platform17

and made available for this experiment by a digital marketing company. For each round, we increased the number of workflow
step instances by five (starting from 10), and the increased number was distributed among the steps based on the previous step
execution time. Hence, the step that takes the longest time was allocated a higher number of instances. We stopped adding more
step instances after nine rounds since we noticed the minimal effect in the last two rounds. Fig. 5 shows that with four times increase
in the number of instances, the total execution time decreases from 1406 to 455 min, i.e., approximately a three-times decrease.
There is a significant reduction of execution time up to 20 containers. However, from 25 containers upwards, the reduction in
execution time gets smaller. This reduction in performance gains is due to resource bottlenecks with the addition of more instances.
In our experimental setup, resources available to the containers are shared. They are split among the containers by availability time,
size or processing power and increasing the number of instances beyond 50 does not improve the performance further. Even though
such an arrangement helps to utilize the resources effectively, it can cause resource contention among the containers. As the number
of instances increases, it leads them to compete for the resources. Further increase of instances can result in degraded performance
due to CPU, memory, and I/O bottlenecks. Measuring the usage of such resources (CPU, memory, I/O, Network Receive/Transmit
Throughput, etc.) would be interesting but is considered out of scope for this evaluation as the container orchestration system does
not allow to easily change or customize them.

17 https://ads.google.com/home.
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Fig. 6. Workflow execution times (a) using Argo Workflows and (b) using the proposed approach.

7.2.2. Comparison with Argo Workflows
The implemented workflow approach allows individual workflow steps to run independently. In this experiment, we investigated

the effect of concurrent workflow execution on the workflow’s performance by comparing our approach with another workflow
tool that does not have built-in concurrency support. For the comparison, we chose Argo Workflows since it does not have built-in
concurrency support. The composition of a workflow can be done quickly using its custom DSL that is similar to traditional YAML.
Together with the step template invocator, the container template was used to compose the sequential workflow with a single
instance assigned for each step. The experiment had two parts: one using fixed input data size, and the other is by using increasing
input data size.

Experiment with fixed input data size. In this experiment, we compose workflows in both approaches and measure the execution time
of each step with a fixed volume of input data. We measure each the start and end time of each step to observe the performance
difference between concurrent and sequential execution modes. To achieve this, we used the workflow in Listing 1 and followed
the same workflow composition as in the scalability evaluation from Section 7.2.1, but with a single container instance assigned to
each step. A similar workflow structure was composed in Argo Workflows using the same step container images. Both workflows
were executed using 100 MB of input data on a Kubernetes cluster (Argo Workflows runs only on Kubernetes). We measured the
execution time for each step. To minimize systematic errors, we repeated each experiment 20 times and took the arithmetic mean of
execution time to compare the two modes. The repetitions were done in a cool start fashion without caching result or intermediate
data from previous rounds.

The sequential execution mode in Argo Workflows takes 38.7 min to complete, whereas the concurrent mode takes 34.6 min,
which shows a slight performance gain when using our approach. Fig. 6(a), shows the execution time for each step in Argo
Workflows. Since the workflow is in sequential execution mode, step container execution starts after the previous completes
processing all the input files. In this mode, step containers are not initialized at the time of workflow submission, and initialization
occurs right before step execution, which results in a short gap in between consecutive steps. The concurrent workflow execution
based on our workflow implementation is shown in Fig. 6(b). We observe a slight performance gain due to the concurrent execution
of steps. Concurrency is enabled by the P&F architectural design which allows workflow step container to continue processing the
next input file right after passing the processed file to the next step. Moreover, concurrent step containers share the host machine’s
resources, which explains the longer execution time of the last step (compared to sequential mode). Additionally, we do not observe
positive effects of the concurrency in the first three steps since their execution times are relatively short (they are completed in a
couple of minutes).
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Fig. 7. Performance with increasing input size.

Experiment with increasing input data size. The previous experiment is repeated to evaluate which of the two workflow approaches
performs better with increasing input data of compressed CSV files. To achieve this, we used the workflow from Listing 1 once again
and measured execution time for both approaches using input data starting from 0.1 up to 3 GB. Fig. 7 shows the results of the
experiment. It is evident from these results that our workflow approach performs better than Argo Workflows in all cases, with an
approximate performance gain of 36%. However, we did not observe a significant performance gain when input data are further
increased. This is because the last two steps are computationally intensive and they determine the overall speed of the workflow.
Having a single container instance for each step, the addition of more input data does not bring any significant performance gain
as the execution rate of steps is (relatively) constant independent of the size of the input data.

7.3. DSL evaluation

We evaluated the proposed DSL qualitatively in what follows from a development and quality perspectives from multiple
dimensions.

7.3.1. Development perspective
One of the benefits of using DSL over general-purpose programming language is to reduce code complexity and increase

development efficiency. However, it is challenging to measure the level of code abstraction introduced by using DSL. A simple
quantitative evaluation metric can be used by measuring and comparing the amount of code required to define a workflow with
and without DSL usage [32]. The measurement can be expressed in lines of code (LOC). Another metric is to compare the number
of concepts or technologies involved with and without the DSL. This metric shows the number of concepts abstracted by the DSL.

For example, to implement the example workflow presented without using the DSL, it is necessary to follow some specific steps;
however, the important work in this process is to compose all the workflow steps into a single deployment file. Then, assuming
we have all the step images ready, it is required to set up the MOM and shared volumes. Also, input/output parameters, message
queues, and environment variables must be adequately assigned for each workflow step. By using the DSL, composing a workflow
requires fewer configurations since the DSL abstracts some concepts. For example, it is not required to set up MOM and assign
message queues for workflow steps. Intermediate storage volumes and settings are not specified either. In other words, workflow
definition using the DSL does not necessarily require knowing technologies like shared volume management, MOM, and message
queues. To provide a quantitative comparison, we examined the LOC required to define workflow shown in Fig. 4 with and without
the DSL. Without using the DSL, the Docker compose file has 133 LOC.18 Whereas the same workflow can only be expressed using
36 LOC by the DSL on a higher level of abstraction — see Listing 1. The DSL provides the capability to define the example workflow
in a short LOC because of the abstraction of key concepts and technologies needed to define a workflow.

To test the functional ability of our DSL in the context of an IoT scenario, we mapped a third-party data preparation workflow
used at Bosch as described in [33]. The mapping of the workflow to our approach is shown in Fig. 8. The IoT scenario represents

18 https://github.com/SINTEF-9012/ebw-prototype/blob/master/docker-compose.yml.
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Fig. 8. Mapping of approach to an IoT Big Data workflow about welding data preparation for machine learning.

a use case at Bosch19 of quality monitoring for resistance spot welding. Data about the conducting of process are continuously
generated at high velocity by sensors attached to the welding equipment and are managed by a welding software system. These
data are stored in a database for and used by the software to signal for the current process status and potential issues. During the
welding process, signals need to be generated at near-real time as any necessary response by the system or operators at the factory
needs to be quickly addressed to avoid delays on the production lines. In addition to the sensor data from the welding machines,
the use case involves reference data that provide information about target parameters of the equipment as well as the settings of
the individual machines and welding programs. The overall goal of the work is to create a workflow for offline batch preparation
of data for machine learning as well as online scenario for real-time monitoring using trained ML models.

The workflow consists of two parallel dependent sub-workflows that are involved in processing the different parts of the data. We
use a gray shade to represent components specific to our approach that are necessary for the encapsulation of the workflow steps.
Data transmission in this workflow and the rest of the examples in this section is done through shared file volumes of a (possibly
distributed) file system, whereas the coordination of the steps (i.e., informing the next step of available data for processing) is
performed using a Message Queue that is dedicated for each pair of steps. The output of each step is passed by the Output Processing
(OP) script to the Input Processing (IP) script of the next step, both of which are part of the wrapper of the respective images that
wrap the step implementations. The left side of Fig. 8 represents the sub-workflow for processing the reference datasets. In the first
step, data are retrieved from the meta settings and reference process curves databases and sent for further processing. The curves
and metadata are integrated according to a common data model and are also re-formatted and prepared to be referenced by the
larger scale sub-workflow. After the preparation data are stored in a reference database (implemented using MongoDB20) where they
can be accessed for lookups. The reference datasets are continuously but infrequently updated as new machine settings or reference
data become available. The large-scale IoT data sub-workflow is displayed on the right side of Fig. 8. This sub-workflow processes
either very large volumes of historical welding quality and control data from a database (in the offline setting), or direct signals
from the welding software system in real-time (in the online setting). The data retrieval step (numbered as step 4) fetches the data
from the respective source and sends it to a dedicated slicing step. In the offline scenario, this step is used to chunk the data in a
specific way, whereby the data coming from the software system is packaged together with the exact sensor data that relates to it
in chunks of a pre-determined size (this correspondence is needed during the preparation step). The chunk size is calculated so that
when the workflow is scaled, there are enough hardware resources (esp. RAM and CPU) to process them are available. The chunks

19 https://www.bosch.com.
20 https://www.mongodb.com.
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Fig. 9. Mapping of approach to existing Big Data workflows — (a) CloudFlows data mining and (b) ENCODE Data access workflows.

are then sent for preparation during which the data are integrated, reformatted and packaged together with the specific relevant
reference data through a lookup from a reference database. The result is then stored on disk for further training of or use by the
machine learning models for welding quality prediction.

Another case study we tried to express in terms of our DSL is of the workflow CloudFlows, A data mining workflow platform [34].
Fig. 9a shows a semantic triplet graph workflow built on the ClowdFlows framework from an RSS feed workflow.

The first step of the workflow implements an RSS Reader that takes an RSS feed URL as input. The second step summarizes news
articles based on the generated read data from the first step. The text from the news feed is then passed to the next step of the
workflow that performs triplet extraction. This step implements NLP techniques to extract subject–verb–object triples from the news
articles. Step four of the workflow uses a WordNet21 Lemmatizer on the resulting triples, and step five performs a sliding window
that takes the number of triplets as input. Finally, the data window is passed to the Streaming triplet graph, which is the last step
of this workflow.

Another case study is of ENCODE Data Access [35] shown in Fig. 9b. In the first step of the workflow, the user enters a REST-
format ENCODE query or uploads an ENCODE metadata file that represents a dataset array corresponding to the so-called bags of
data. The selected data are then transferred for analysis to the DNase-seq sub-workflow that implements a set of analyses on the
data. After the analysis is performed, the result (also serialized into bags) is published on Amazon S3, and a metadata file (named
‘‘fetch.txt’’) is created and stored for serving to the users of the result. A user may then discover these new bags and perform further
analysis using the same type of querying as in step 1, but with another analysis set.

7.3.2. Quality characteristics
We used the Framework for Qualitative Assessment of DSLs (FQAD) [36] that defines sets of quality characteristics to evaluate

DSLs. The quality characteristics are mainly determined from ISO/IEC 25010:2011 standard but tailored for DSLs. FQAD is helpful
for evaluating the requisite quality characteristics at the outset of DSL development, as well as assessing the end product of the
DSL development process (i.e., the language). It defines a set of assessment goals and DSL characteristics to fulfill them, which are
derived from the ISO/IEC 25010:2011 international systems and software standards model.

Several works in literature have used this framework to evaluate their DSL. For example, Florian et al. [37] used this framework
to evaluate a DSL in the business domain for creating test case specification. They did not evaluate the test language itself but
only the output and, therefore, concentrated only on the expressiveness, usability and productivity characteristics using the sub-
characteristics of completeness, correctness, comprehensibility, reading flow, and reproducibility. Aleksandar et al. [38] employed

21 https://wordnet.princeton.edu.
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the full FQAD framework to perform a quality assessment of their DSL for modeling application-specific functionalities of business
applications. Sadiq and Geylani developed DSML4DT - a domain-specific modeling language for device tree software [39]. For
qualitative assessment of the language, they prepared a comprehensive questionnaire for the users. To prepare the scoring part of
the questionnaire, they employed FQAD and customized with respect to DSML4DT specifications.

Below, we outline the evaluated FQAD characteristics for our DSL and the respective assessments.

• Functional suitability : This refers to the degree to which a DSL is completely developed. Functional suitability further has two
sub-characteristics:

– Completeness: The ability of a DSL to express all concepts and scenarios of the domain is termed as completeness. We
successfully implemented four Big Data and IoT workflows from different domains with our DSL. The language was
expressive enough to describe the workflows efficiently.

– Appropriateness: The scale to which the DSL is appropriate for the particular applications of the domain is called
appropriateness. While implementing the Encode workflow, we faced the challenge of incorporating all elements in one
workflow. However, by breaking it down into two separate workflows based on the functionality and with additional
REST services, we achieved the required functionality with our DSL.

The functional suitability analysis shows that all the important functionality is included in the DSL. In other words, the DSL
should not contain functionalities that are not part of the domain. In this regard, based on the workflows that were mapped
to our DSL, we claim that the DSL implemented in this work covers the core functionality required to define a given data
workflow.

• Usability : This aspect refers to the degree to which a group of users can use a DSL to achieve specific goals. A DSL must be as
simple as possible to express the domain concepts and support its users. As presented, our DSL provides the option to define
concise workflows with minimal technical knowledge.

• Reliability : It defines the characteristics of the language that help to produce reliable code. This includes functionalities to
prevent errors and support for model checking. The DSL was implemented using the Eclipse environment that supports
languages designed with precise semantics based on well-defined principles. Additionally, the Eclipse IDE also has essential
features to debug and handle code errors. The reliability characteristics has two sub-characteristics:

– Model Checking: This concerns whether the DSL reduces user error rates. In comparison to writing YAML files, our
DSL-based approach has lower error rate. This is, on the one hand due to the conceptual schema that is defined using
the Ecore metamodel22 and Xtext grammar on top of it. When a user is defining a model of our DSL, the Xtext editor
uses the Ecore definitions to check for erroneous values or concept instances and highlights incorrectly defined values.

– Correctness: The term correctness concerns whether appropriate elements, as well as the correct relation between them,
are provided, i.e., any unexpected interactions are prevented. Ecore alongside the Xtext framework allow for checking of
the validity of each DSL model class instance and attribute value types thus ensuring the correct elements and relations
are chosen by the users.

• Maintainability : This characteristic refers to the degree to which it is easy to maintain a DSL. A DSL needs to be easy to modify
or introduce new concepts. Modularity falls under this characteristic as well. The DSL was designed based on the separation
of concerns principle. This makes it easily understandable and maintainable.

– Modifiability: This characteristic refers to the DSL’s ability to incorporate new functionality by as little modification as
possible. The modular approach of our DSL makes it easier to add new sub-vocabularies (which is also part of our future
work) that can be used to describe Big data workflows with more details.

– Low coupling: This means how discrete the elements of the DSL are. At this stage, each element of the DSL plays an
integral part in describing a workflow. Therefore, the change in each element will have an impact on other elements.

• Productivity : This is mainly related to the number of resources required by a user to achieve specific goals. Productivity can be
improved using our DSL because of two main reasons. First, the DSL incorporates high-level concepts of Big Data workflows.
Hence, designing a workflow using the DSL is simplified and can be done quickly. Second, the language provides automatic
generation of template workflow code and configurations. This saves a lot of time compared to when the process is done
manually from the ground up.

• Extensibility : This characteristic expresses the degree to which a language has mechanisms for users to add new features. The
language we have presented currently has a low degree of extensibility since it does not provide users a means (e.g., separate
packages in the Ecore model) to extend the language with new functionalities.

• Compatibility : This characteristic measures degrees to which a DSL is compatible with the domain and development process.
Our DSL was developed iteratively and modified to cover concepts relevant in the domain.

• Expressiveness: Expressiveness is defined as the degree to which a problem-solving strategy can naturally be mapped into
a DSL program. The DSL was developed after a thorough domain analysis in which each concept has mapped to its
corresponding metamodels to represent only core elements and does not cover complex structures such as cyclic workflows.
The sub-characteristics of the expressiveness are as follows:

22 http://www.eclipse.org/modeling/emft/search/concepts/subtopic.html.
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– Mind to program mapping: Concepts are designed appropriately and named so that they are intuitive in order to
accommodate problem-solving tasks for the domain.

– Uniqueness: Because of its simplicity, our DSL provides one and only one good way to express every concept of interest.
– Orthogonality: Each construct in our Big Data workflow DSL is used to represent exactly one distinct concept in the

domain.
– Correspondence to important domain concepts: DSL constructs correspond to important domain concepts and the

language does not include trivial domain concepts. Our DSL only includes highly relevant and non-trivial Big Data
workflow concepts.

– Conflicting elements: This refers to the absence of conflicts between the DSL elements. Our DSL concepts have no conflicts
as each element serves a unique purpose for data workflows specification.

– Right abstraction level: This refers to whether the DSL is at the correct abstraction level that it is not more complex or
detailed than necessary. Our DSL provides only the most important elements of the domain at the moment. A few more
elements are planned to be added to enhance the functionality — for example, concepts for aspects of data transmission
and resource requirements.

• Reusability : This characteristic refers to how a language construct can be used in more than one language. The grammar
specification of our DSL can be imported and reused in the Eclipse environment. Furthermore, the language is conceptualized
so that some elements can be reused in the workflow definition. For example, a workflow step from one workflow can be
copied and used as part of another workflow.

• Integrability : This characteristic measures how a DSL can be integrated with other languages and modeling tools. The DSL that
we have provided can be exported as a plug-in within the Eclipse environment. Integrability of a DSL is largely dependent on
the technical space in which it was defined. As shown in [40], the modelware technical space, which is the one used for defining
our DSL, provides a high level of integrability both within the technical space and across technical spaces. Furthermore, the
Eclipse modeling environment provides integrations with other languages and frameworks such as Javascript,23 which increases
the integrability of our DSL. Finally, as demonstrated in [40], the EMF framework provides automated migration of models
through the Edapt framework.24 Therefore, we conclude that the DSL has a high degree of integrability.

8. Conclusions

In this article, we described a Big Data workflow approach that allows specification of Big Data workflows at a high level
of abstraction and enables separation of design- and run-time aspects while maintaining scalable workflow execution. Scalable
workflow execution entails parallel data processing that requires workflow fragments to run separately on different computing
resources. In the future, we plan to implement comprehensive provenance support. Another limitation to be addressed is the use
of a centralized message-oriented communication, which could become a bottleneck for large-scale execution and is a single point
failure. Decentralized communication media, Web services, or distributed file systems can potentially be used to address this issue.
The DSL that is used in this work is limited to expressing core workflow structures. Thus, the experiments on scalable workflow
execution can be performed using an extended DSL, e.g., including infrastructure requirements or with different workflow (sub-)
structures. Finally, a visual language for workflow definition, composition, and run-time monitoring would be essential to support
domain-experts’ participation in workflow design.
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Abstract: The emergence of the edge computing paradigm has shifted data processing from cen-
tralised infrastructures to heterogeneous and geographically distributed infrastructures. Therefore,
data processing solutions must consider data locality to reduce the performance penalties from data
transfers among remote data centres. Existing big data processing solutions provide limited support
for handling data locality and are inefficient in processing small and frequent events specific to the
edge environments. This article proposes a novel architecture and a proof-of-concept implemen-
tation for software container-centric big data workflow orchestration that puts data locality at the
forefront. The proposed solution considers the available data locality information, leverages long-
lived containers to execute workflow steps, and handles the interaction with different data sources
through containers. We compare the proposed solution with Argo workflows and demonstrate a
significant performance improvement in the execution speed for processing the same data units.
Finally, we carry out experiments with the proposed solution under different configurations and
analyze individual aspects affecting the performance of the overall solution.

Keywords: big data workflows; orchestration; data locality; software containers

1. Introduction

In recent years, harnessing large data sets from various sources has become a pil-
lar of rapid innovation for many domains such as marketing, finance, agriculture, and
healthcare [1]. The big data domain has evolved rapidly, and new challenges have arisen at
different levels of the technological stack, from the complex business logic to the infrastruc-
ture required to process the ever-increasing volume, velocity, and variety of data. Working
with big data is a complex process involving collaboration among a wide range of speciali-
sations (such as distributed systems, data science, and business domain expertise) [2–4].
Handling such complexity naturally comes with an increased cost, and the value extracted
from the data must, thereby, offset this cost.

Big data workflows formalise and automate the processes that data go through to
produce value by providing necessary abstractions for defining workflows and efficiently
leveraging underlying hardware resources. In the context of big data workflows, we con-
sider computing resources, such as processors (CPUs), memory, and storage, as relevant
hardware resources (from now on referred to as just resources) among others, e.g., [5,6]. Big
data workflows usually integrate various data sets and leverage different programming
languages or technologies to process data. Therefore, a desirable feature of a big data
workflow system is to orchestrate workflows in a technology-agnostic manner, both in
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terms of data integration and processing logic. Accordingly, approaches based on software
containers have emerged to create and execute workflows using processing steps in line
with these considerations. While it is beneficial to leverage software containers, packaging
and isolating applications for deployment, to better separate concerns in a big data work-
flow system, higher-level abstractions come with a performance penalty; thus, it becomes
more relevant to ensure the system performs as efficiently as possible.

Traditionally, cloud service providers have been the standard solution for working
with big data. However, cloud services are inherently centralised in a small number of
locations (i.e., data centres) worldwide. Moreover, with the advent of the Internet of
Things (IoT), significant amounts of data are generated at edge networks [7]. With the
data processing happening on geographically distributed systems across edge and cloud
resources, reducing the delay and cost of transferring data over the network becomes crucial.
Transferring massive amounts of data to the cloud is expensive and may incur latency,
making low-latency scenarios unfeasible. To address these issues, the edge computing
paradigm [8] aims to complement cloud computing by leveraging hardware resources
situated closer to the edge of the network to offload processing, reduce transfer cost, and
satisfy the latency requirements. However, existing solutions are mainly designed for
cloud-only workloads, making them unsuitable or inefficient for workloads spanning both
the cloud and edge. In this context, in order to alleviate the aforementioned problems, this
article addresses the following research questions:

• How can data locality be implicitly integrated with container-centric big data work-
flow orchestration?

• How can software containers be used to facilitate the interaction with different data
management systems as part of big data workflows?

• How can containers encapsulating processing logic be used to improve the perfor-
mance of big data workflows?

To this end, we propose a novel architecture for container-centric big data workflow
orchestration systems that makes containerised big data workflow systems more efficient
on cloud and edge resources [9]. Our proposed approach considers (i) data locality, (ii)
leverages long-lived containers (i.e., containers whose life-cycle is not tied to a particular
data unit) to execute workflow steps, and (iii) handles the interaction with different data
sources through containers. We compare our proposed approach with a similar existing
solution, Argo workflows. The comparison shows that by considering data locality, our pro-
posed approach significantly improves the performance in terms of data processing speed
(up to five times better). We also present a set of experiments with different configurations
analysing individual aspects affecting the performance of the overall solution.

The rest of the article is structured as follows. Section 2 gives the relevant context.
Section 3 provides an analysis of the problem. Section 4 discusses related work. Section 5
presents the proposed solution and Section 6 describes its implementation. Finally, Section 7
provides experimental evaluation of the proposed solution, and Section 8 concludes the
article and outlines the future work.

2. Background

Big data has quickly gained momentum as it allows the exploitation of data to uncover
hidden trends that give valuable insights that drive business decisions and support research
(e.g., [10,11]). Big data solutions have been successfully leveraged in a large number of
industries. The general applicability of big data patterns stems from the fact that many
real-world phenomena can be better understood and predicted given sufficient data. The
characteristics, e.g., volume, velocity, and variety of big data, translate into challenges at all
levels of the technology stack for big data processing:

1. At the infrastructure level , significant raw network, storage, memory, and processing
resources are required to handle big data. Often these resources are provided by
multiple machines, organised in a distributed system.
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2. At the platform level, software frameworks that can effectively leverage the available
resources and handle the ever-changing needs of big data operations need to be
continuously developed.

3. At the application level, algorithms running on the previously mentioned platforms
need to be devised and combined to extract value from the data. Applications can
also facilitate the interaction with a big data solution (e.g., visualisation tools used by
business executives to analyse the results produced by the solution).

Devising algorithms and tools that help process and extract value from the data
further amplify the complexity and cost of building comprehensive big data solutions.
Consequently, another V, the value the solution generates, which needs to offset the high
cost, is often included as a central characteristic of big data.

2.1. Big Data Workflows

Raw data must be taken through a series of operations (e.g., cleaning, aggregation,
and transformation) before producing valuable insights. While it is possible for each of
these steps to be manually triggered and independently controlled in an ad-hoc manner,
workflow orchestration tools facilitate the automation of the execution and sequencing of
these operations, allowing reliable and reproducible execution of complex processes. Key
concepts used in workflow orchestration [12] (see Figure 1) include:

• Step: Steps are the atomic units upon which workflows are defined. A step encapsu-
lates business logic units that receive data as input from a data source, processes them,
and then pushes the outputs to a data sink.

• Workflow: Individual steps can be linked together to form a workflow. A workflow
is a linear sequence of steps with the semantics of executing the steps. Big data
workflows are specified in more complex configurations. A widely used model stems
from graph theory, which describes a workflow as a directed acyclic graph (DAG).

• Data communication medium: The distributed nature of big data processing war-
rants the existence of a data communication medium through which information can
be exchanged between the components of the system. Thereby, both the inputs and
the outputs of a step connect to such channels.

• Control flow communication medium: To be able to execute the workflows, control
messages (e.g., triggering a step, notifying when a step has finished) have to be ex-
changed within the system through a control flow communication medium. Examples
of such communication mediums include point-to-point network communication
between components and message queues.

Figure 1. Workflow as sequence of steps with communication mediums.
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Creating big data workflows is a complex process involving knowledge from multiple
domains (hardware provisioning, cluster management, data handling, different processing
steps, definition of workflows according to business needs, and orchestration). Delegating
the different responsibilities to independent components allows easier development of
both the orchestration frameworks and the workflows running on top of them, reducing
the costs and making big data workflows more accessible.

2.2. Cloud and Edge Computing

Cloud computing paves the way for accessible, affordable, and efficient big data
processing through scalable, elastic, and “pay-per-use” models. Cloud deployments are
best suited for cases where the producer of data is mainly centralised. However, with
the advancement of ubiquitous computing, tremendous amounts of data are produced
by devices (e.g., sensors, personal devices, and vehicles) at the edge of the network. With
the number of such devices increasing rapidly, the traditional model for using centralised
cloud resources becomes infeasible. Edge computing [8] complements cloud computing by
performing computations on resources physically located closer to the edge of the networks.
In this respect, Computing Continuum [13] refers to all available resources for a system,
from the edge of the network to the cloud.

Although the edge computing paradigm addresses some fundamental limitations
of cloud computing, it also faces a different set of challenges [14]. Among others, these
notably include:

• Hardware resources on edge devices exhibit different characteristics and capabilities
compared to cloud resources (e.g., processor architectures, processor clock speeds,
and amounts of memory). Therefore, software running on such devices has to be
designed to consider these resource constraints. At the same time, edge deployments
offer limited or no elasticity.

• Edge resources are geographically distributed, and the latencies can differ significantly
depending on the distance between the communicating parties.

• Geographical distribution also raises logistical challenges, as these devices can be
spread over wide areas and sometimes even in hard-to-reach locations, making provi-
sioning and maintenance a significant challenge.

• The nature of edge resources also makes them prone to failures at the device level
(hardware failures) or supporting infrastructure (network failures). Software solutions
targeting edge deployments need to tolerate failures gracefully and, if possible, operate
offline for extended periods.

• Security and privacy are two complex domains where edge computing plays a signif-
icant role. On the one hand, processing data closer to the source can make it easier
to adhere to a certain jurisdiction and ensure better security and privacy. On the
other hand, large-scale edge deployments are inherently more complicated to secure,
mainly due to their geographical spread, and the risk of having devices compromised
through physical interference is much higher than in a cloud-only setup.

2.3. Software Containers and Big Data

Software containers are standardised, isolated units of software that package every-
thing required to run an application (https://www.docker.com/resources/what-container,
accessed on 8 November 2021). They provide a lightweight and faster virtualisation alternative
to hypervisor virtualisation [15,16]. Software containers exhibit a series of characteristics that
make them applicable to a wide range of domains:

• Containers ensure the packaged software runs in complete isolation from other appli-
cations on the same operating system. Packaging all dependencies in a container can
avoid challenging issues such as conflicting dependencies and complex prerequisite
configurations.

• The low overhead introduced by containers allows many containers to be run effi-
ciently on a single node, making them a good fit for resource-constrained environments.
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• Software that can run in a container is not limited to a particular technology or pro-
gramming language, allowing solutions leveraging software containers to orchestrate
cooperation of components developed using different technologies easily.

• Containers are a widely adopted standard for software packaging, which translates
into two major benefits. First, containerised software is easier to share and reuse
across different environments. Second, containers can be used to move the execution
of logic onto a distributed system’s nodes (“function shipping”).

Container orchestration solutions, such as Kubernetes (https://kubernetes.io/, ac-
cessed on 8 November 2021), simplify the deployment and management of highly dis-
tributed systems by creating abstractions for the underlying infrastructure and facilitating
the interaction between the components of an application. Software containers are exten-
sively leveraged in cloud environments [17] and, in some cases, containerised applications
are referred to as cloud-native applications [18]. Several works also identify software
containers as a feasible technology for resource-constrained edge environments [19–21].
In the context of big data, containers have been used to simplify the deployment and
management of entire big data solutions or individual components. Leveraging containers
in big data solutions can also lead to performance improvements when compared to the
hypervisor-based virtualisation alternatives [22].

There is a distinction between the two strategies of using containers in big data so-
lutions at a high level. First, software containers are leveraged to deploy and manage
the components of a big data processing platform. Although this approach simplifies the
deployment process, it does not influence the run-time aspects of the platform. Second,
software containers are used as an integral part of the architecture and as a mechanism
through which custom behaviour can be injected into the platform (e.g., data processing
logic). Software containers have gained much traction in the field of microservices as they
greatly simplify the management of highly distributed systems [23,24]. Such an archi-
tecture can provide some benefits, including modularity, loose coupling, and technology
independence, which align with the needs of big data workflow systems.

3. Problem Analysis

The high velocity of the data, combined with the large volume, mandates the process-
ing to happen efficiently and cost-effectively to produce value that outweighs the costs.
Therefore, execution time and bandwidth usage are two indicators that are often measured
in big data systems and determine the feasibility of a given system. In the following, we in-
troduce the essential concepts and techniques to reduce the execution time and bandwidth
usage in big data workflows.

3.1. Data Locality

Data locality [25] refers to moving computation closer to the data, which is typically
cheaper and faster than moving data closer to the computation. The nature of working with
big data mandates the resources (e.g., network, memory, CPU, disk) of multiple machines
to be pooled together in a distributed system. A desirable characteristic of distributed
systems is to hide the complexities of the distributed resources behind a single interface,
such that the entire system appears as a single entity (e.g., cloud storage systems such
as Amazon S3). However, this makes it more challenging to leverage individual hosts
comprising the distributed systems. For example, a fundamental invariant of current
computer architectures is that a CPU can only work with data present in the memory of
the same machine.

Consequently, the movement of data across machines becomes an integral part of
any big data system. With traditional communication protocols that rely on the operating
system network stack (e.g., TCP/IP-based protocols), latency becomes critical for many use
cases. To this end, more efficient protocols have emerged. For example, RDMA (Remote
Direct Memory Access) [26] is a protocol that allows the transfer of data stored in the
memory of one machine to another without involving the CPU or the operating system
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kernel through specialised network cards. As the volume of data is significant in the context
of big data, the network traffic and the associated latency of transferring data between
machines can influence the overall cost and performance. Even for solutions targeted
at centralised deployment (such as cloud deployments), data locality has proven to be
effective in reducing the cost and execution times [27,28]. For example, Apache Spark [29]
leverages the information provided by the Hadoop File System (HDFS) and knowledge
about outputs of previous executions of jobs to minimise the data transfer.

One of the core motivations of the edge computing paradigm is reducing the amount
of data transferred from the edge of the network to the cloud and supporting lower
latency scenarios, making data locality a primary concern for any edge computing solution.
However, data locality is only one aspect that can be considered when scheduling data
processing tasks. Other aspects such as load distribution and heterogeneity of the available
resources on different nodes need to be balanced together with data locality to perform the
tasks effectively [30]. Studies exist that propose advanced scheduling strategies to balance
the reduction in data transfer with load distribution (e.g., [31,32]).

3.2. Inter-Component Communication Optimisation

Separation of concerns and delegating responsibilities to different components have
numerous benefits; however, the communication between components may introduce other
performance and efficiency overhead due to message serialisation and transfer through
potentially slow mediums. For example, a simple method invocation in a monolithic
solution can be turned into a REST API call for a solution where components are separated.
The choice of communication protocols directly impacts the performance and bandwidth
utilisation, as different protocols provide different guarantees related to data transmission
(e.g., TCP ensures an ordered and lossless transmission but requires multiple round trips
to establish connections and exchange data, while UDP is faster but less reliable).

Different protocols introduce additional overhead by injecting more data in transmis-
sion packets (e.g., HTTP headers). Techniques, such as compression and binary serialisation,
help reduce the size of the payload. Furthermore, there exist studies exploring the use of
RDMA-backed memory channels to support fast and efficient inter-container communica-
tion (e.g., [33]). Apart from the bandwidth utilisation and speed of a particular protocol,
the contract defining the communication between two entities (message format, content,
and semantics) plays a significant role in facilitating the integration between components.
Defining and enforcing a communication contract between components allows decoupling
them from one another.

3.3. Lifecycle Management of Containers

Software containers are a lightweight virtualisation alternative to traditional hypervisor-
based virtualisation; however, there is still a cost associated with starting up and shutting
down containers on demand. Life-cycle management has a high impact on workflow
execution time, and reusing containers to process multiple units of data (i.e., long-lived
containers) is a way to improve it [34]. For many use cases, the execution time of the
work delegated to a particular container is high, thus making the overhead of instantiating
containers negligible.

In edge computing environments, the available resources are limited, and less data
can be processed on a single host at a given point in time. Furthermore, with data being
constantly processed in small batches (or even streamed), there is a need for this processing
to happen as quickly as possible to achieve the desired throughput. In such cases, the
overhead of setting up and tearing down containers can quickly add up and become a
significant bottleneck for the solution’s performance.

3.4. Integration with Data Management Solutions

One of the pillars of big data processing is to reason over and process heterogeneous
data sets together in a unified manner. These data sets can be stored using different
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technologies, and the interaction with these technology requires complex logic in itself.
Thus, big data workflow systems should facilitate easy integration with different data
management solutions, such as databases, file systems, cloud storage, and Web services.

4. Related Work

In this section, we first present and discuss the related work in terms of existing
published literature and then in terms of existing tools.

Regarding the published literature, Valerie et al. [35] discuss the effect of in-memory
processing and data locality on neuroimaging data sets and show the importance and
benefits of data locality. However, they do not propose any new system or orchestrator
tool and only evaluate the performance of existing systems. Ching et al. [36] propose
new techniques for implementing locality-aware virtual machines. They mainly focus
on improving the performance of MapReduce programs in heterogeneous and hybrid
cloud environments and propose a technique to enhance data locality using a virtual
machine mapping technique. Thereby, the locality-aware technique balances workloads
and reduces communication overheads at run-time, but it is only restricted to MapReduce
applications. Therefore, it cannot be employed with the more general-purpose software
containers. August and Christoph [37] present a method of extending smart containers
for data locality-aware skeleton programming. They extend the existing SkePU skeleton
programming framework to enhance the performance of sequences of transformations on
smart containers. However, the framework does not provide support for orchestrating
workflows or container lifecycle management.

Bu et al. [38] describe a task scheduling technique for MapReduce applications
that minimizes interference while keeping task-data localization. The study, however,
disregards network effects, assuming that data flow between co-hosted virtual machines is
equally efficient as local data access. Choi et al. [39] present a mechanism for locality-aware
resource management in High-Performance Computing (HPC) cloud environments, called
Data-Locality Aware Workflow Scheduling (D-LAWS). Their solution condenses virtual
machines and includes task parallelism through data flow into the task execution planning
of a data-intensive scientific process. However, they do not take into account the role of
software containers in scientific workflows.

Ahlehagh et al. [40] present a video-aware scheduling strategy that includes storing
video data in a macro-base station to boost video throughput and lessens the likelihood
of movies freezing. A heuristic approach to the storage allotment issue in macro-base
stations is presented by Gu et al. [41]. Small base stations may deliver better data rates
than macro-base stations since they are located closer to users. Finally, Vengadeswaran
and Balasundaram [42] propose an approach that also considers the data locality factor,
but it is limited to Hadoop. The default data placement strategy of Hadoop creates and
allocates blocks randomly across the cluster. To overcome this issue, they propose an
optimal data placement strategy to improve the performance of big data applications.
These methods focus on optimising data placement strategies rather than the real-time
migration of computing steps closer to the data.

In the following, we review existing orchestration tools selected according to the
following criteria: (i) ability to incorporate data locality in the orchestration process,
(ii) support for container lifecycle management, and (iii) the ease of integration with data
management solutions.

• Snakemake [43] is a workflow orchestration tool that supports wrapping individual
steps in containers, and different data solutions can be integrated into workflows by
extending the Snakemake codebase. However, there is no support for controlling
where the computation happens (data locality).

• Kubeflow (https://www.kubeflow.org, accessed on 8 November 2021) is a workflow
orchestration tool for machine learning-related workflows. The only storage supported
is Minio (a cloud-native, open-source storage solution implementing Amazon S3 cloud
storage protocol). It offers no support for data locality.
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• Makeflow [44] is a workflow orchestration tool that can orchestrate workflows on a
wide variety of infrastructures. However, it does not have any built-in support for
different data management systems or data locality features.

• Pachyderm (https://github.com/pachyderm/pachyderm, accessed on 8 November
2021) is another machine learning workflow orchestration solution, but the only
storage system it supports is the Pachyderm file system, a distributed file system built
to provide supporting features to Pachyderm.

• Pegasus (https://pegasus.isi.edu, accessed on 8 November 2021) is a workflow or-
chestration solution that supports containerised steps and leverages the location of the
processed files to schedule the steps on the same host. However, its data management
is limited to using only file systems.

• Airflow (https://airflow.apache.org, accessed on 8 November 2021) is one of the most
popular data workflow orchestrators that supports the execution of the workflows
on a Kubernetes cluster. It also controls where instances of steps are created, but
it should be set manually when the workflow is defined, making it inefficient in
dynamically-changing environments. It is possible to integrate different data manage-
ment solutions by extending the Airflow code with providers, limiting it to Python
implementations only.

• Argo Workflows (https://argoproj.github.io/projects/argo, accessed on 8 November
2021) is a workflow orchestration solution natively built on Kubernetes and supports
data locality through a set of mechanisms. Similar to the Airflow solution, differ-
ent data management solutions can be integrated but require ad-hoc changes and
integration with the Argo code libraries.

All of the considered solutions leverage short-lived containers as part of the
orchestration—a container is created to execute work and is destroyed as soon as the
processing completes because these solutions target primarily batch processing scenarios.
In terms of data locality specification, Argo offers the most expressive features as it lever-
ages the complete functional offering of Kubernetes. However, by default, the limitation
of having to specify data locality at workflow definition time (introduced with Airflow
analysis) applies to Argo. Argo offers a mechanism through which respective outputs of
processing steps can be used to modify the parameters (for data locality in this case) of
subsequent steps in the workflow, allowing for dynamic data locality configurations at
run-time. However, such an approach would require additional logic to be injected into the
processing step. Although limited in terms of data locality features, Pegasus does handle
data locality implicitly, without modifying the workflow definition. In contrast, for both
Argo and Airflow, while offering more expressive data locality features, the workflow
definition has to capture these details, thus breaking the separation of concerns principle.

5. Proposed Solution

We propose an approach based on a workflow system architecture covering the run-
time considerations of big data workflows that take into account the separation of concerns
principle. The proposed architecture has three main layers:

1. Control layer: It is responsible for the execution of workflows concerning their defi-
nitions (e.g., correct step sequencing and data being processed). The main component
of the control layer is the orchestrator.

2. Data layer: It collectively refers to all the components involved in data handling (i.e.,
storage and retrieval of data, and moving data between hosts to make it available to
compute steps that require it). The layer includes the data store component, referring
to the technology used to store data (e.g., distributed file system and cloud storage)
and the data adapter component, serving as an interface between the data store and
the other components in the workflow.

3. Compute layer: It refers to the processing logic contained in the steps used in the
workflow. The compute layer is composed of multiple compute steps, and, in a
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sequence, they form a workflow. Additionally, the approach allows that multiple
instances of the same compute step type run in parallel.

The components of the different layers can be spread across multiple hosts, and the
orchestrator serves as the coordinator of the centralised architecture. Using a centralised
architecture is motivated by leveraging data locality when the execution of big data work-
flows requires knowledge about the entire system (e.g., component physical placement)
and the data that flows through it (the physical location where data are stored). The
centralised architecture greatly simplifies the acquisition, management, and usage of this
information. Data are organised into discrete, indivisible, and independent units when
passing through the system. These represent the units of work at both the orchestration
level and individual step level. Each unit is processed independently, and multiple units
can be processed in parallel across different steps. Handling the execution of the workflow
at the data unit level can improve the performance significantly compared to the models
that execute steps synchronously (all outputs of the previous step have to be available to
start the next one) [12,45].

Whenever a new unit of data is available in the system, the orchestrator is notified,
and it passes on the notification to a “compute step” for processing. The compute step may
produce one or more outputs from the input, each being a new data unit that continues to
flow through the system independently of the others. Organising the work in independent
units enables tasks to be distributed across all the available resources, allowing the proposed
solution to scale horizontally (increase the processing power by adding more hosts in the
distributed system). Figure 2a depicts a high-level overview of the three layers and their
interactions. The following sections present each layer in detail.

Figure 2. (a) Detailed view of a compute step, and (b) data locality as a multi-objective optimisation problem.
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5.1. Control Layer

Upon receiving a notification indicating that new data are available to be processed,
the orchestrator needs to determine what type of compute step needs to invoke for the
current data unit, according to the workflow specification. For example, in a workflow
consisting of three sequential steps, the data units outputted by the second step need to
be passed to an instance of the third step. Throughout the system, there can be multiple
instances of the same compute step type. The orchestrator is responsible for choosing one
of the instances to process the data.

Instead of relying on traditional load balancing algorithms (such as round-robin,
random, and least connections), the orchestrator needs to employ a custom routing decision
algorithm that takes the number of variables as input. The orchestrator decides about
the routing based on available information, such as data locality, current load, varying
resource availability, cost, and existing policies (see Figure 2b). This list is not exhaustive
and presents only a subset of potential aspects considered when making a routing decision.
Optimising cost and performance while ensuring all the explicit requirements of the
workflow are met makes the routing a complex, multivariate optimisation problem, with
no clear best decision where trade-off in one or more areas is necessary.

To provide data locality, the orchestrator needs to know the physical location of both
the data to be processed and the possible target step instances and also a model to calculate
the distance between two locations. Moreover, the orchestrator needs to continue operating
when presented with unexpected, partial, or missing locality data, as some data adapters
may not provide granular data locality information. The inputs to the routing decision need
to be acquired and made available by the module responsible for the decision. Depending
on the volume and velocity of the units of data flowing through the orchestrator, the
calculation of the routing decision needs to be efficient to avoid spending a significant
amount of time routing each unit. This means that some of the inputs may have to be
pre-calculated or estimated asynchronously, as acquiring information about all the possible
targets synchronously may incur a significant performance cost.

5.2. Data Layer

The ability to share data between the nodes hosting the compute step instances is a
fundamental requirement of the proposed solution. This allows the steps to pass data from
one another as part of the workflow execution. All the interactions with the data storage
happen through the data adapter in the proposed architecture, serving as an intermediary
between the data storage technology and the orchestration components. The data adapter
model hides the complexities and particularities of interacting with the data storage by
separating the logic into a dedicated component that exposes a simplified interface for
external communications. Separating data handling concerns from the compute step creates
a modular architecture that facilitates and encourages the reusability of both components
in multiple workflows. For example, a compute step processing images can be used to
process images from multiple data sources, and the same data solution can be reused with
different compute steps.

In addition to reusability, separating the compute steps from the data adapter allows
for more flexibility in terms of technologies chosen to implement either of them. For
example, a compute step can be implemented in Python while the data adapter in Java and
the two components can still communicate. Apart from interacting with the underlying
storage, the data adapter is also responsible for providing the other components in the
system with information about the physical localisation of the data to support locality-
aware work scheduling. The data locality model employed to communicate the localisation
information needs to have the following characteristics:

1. It needs to apply to both the data units flowing through the system and the compute
step instances, as the information it captures is used to route data units to be processed
on compute step instances in proximity.
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2. The localisation information needs to apply to resources throughout the Computing
Continuum, and a distance measure needs to be determinable for any two localisations.

3. The data locality model needs to be granular enough to capture host-level information.
4. Different data storage solutions have different capabilities of exposing information

about where data are stored; thus, the data locality model should support reserved
values to indicate that parts of the information are missing.

5.3. Compute Layer

The compute steps follow a simple execution model since both the orchestration and
data handling logic are handled by external components:

1. A compute step is provided with a unit of data as input (provided by the data adapter).
2. The processing logic is applied in the compute step.
3. The processing logic can produce one or more outputs, picked up by a data adapter,

resulting in notifications for the orchestrator.

This architecture gives complete freedom to execute any logic that can be run in
containers as the implementation of the compute step has no restrictions over what the
processing logic can do with the input data. Neither the input nor the output data are typed.

5.4. Extension Model

A widely used model for building upon and extending a framework is integrating a
software development kit (a set of language-specific libraries) that handles the interaction
between the features provided by the framework and the code extending or building
upon it (user logic). The communication between the two components then happens via
language-specific constructs, such as method invocations, and is backed by the memory of
the hosting process. With container technologies easing the management and deployment
of microservices, the framework functionality can be completely separated from the user
logic by being placed in a dedicated container. This container can communicate with the
user logic (presumably in another container) through an external communication medium.

This approach provides better isolation of the two components and allows for integra-
tion between different programming languages or frameworks, as the communication is
agnostic to the used programming language. Even though the communication medium
(e.g., network calls, files, sockets) can be accessed by both components, a crucial aspect is
to ensure the communication protocol (e.g., HTTP, gRPC) is supported by both ends. The
current architecture opts for the container-based extension model as it aligns better with
the architecture requirements. The container-based extension model becomes apparent
when diving deeper into the architecture of a compute step (Figure 3). A compute step
is logically composed of a framework agent and processing logic, running in a separate
container. The framework agent container is responsible for coordinating the execution
in the context of a single step (retrieving the input data, triggering the processing logic,
handling the output data). It effectively hides the complexities related to the orchestration
and acts as the intermediary between the data and compute components. Thus it allows
them to have simplified interfaces they need to adhere to dedicated only to their function
(handling data or processing it), as follows:

1. The framework agent needs to accept requests from the orchestrator to process a unit
of data.

2. Based on the instructions received from the orchestrator, it reaches out to the data
adapter to retrieve the input data.

3. Once the input data is accessible to the container hosting the processing logic, the
agent must send a request to trigger the computation.

4. The output data are passed to the data adapter and the orchestrator is notified that
new data have become available.
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Figure 3. A detailed view of a compute step.

By leveraging the container-based extension model, the microservice-inspired archi-
tecture combines the code contributed by the user (i.e., data adapter, business logic, and
data store) and the framework provided components (i.e., orchestrator and framework
agent) to define and execute workflows. By injecting two components implementing simple
interfaces (one for data handling and one for processing logic), the framework can orches-
trate the execution workflows composed of steps implemented in different programming
languages or technologies and leverage different data storage solutions. The data handling
and processing logic are completely separated, allowing them to be created and to evolve
independently, thus helping with the separation of concerns between the stakeholders
involved in creating workflows. The proposed architecture allows the framework users to
inject data and processing logic into a workflow definition, combining the two elements.

6. Implementation

We implemented our proposed solution as a proof of concept using Docker and
Kubernetes [15]. The code of our proposed solution, along with the associated Dockerfiles,
and Kubernetes YAML files to deploy the model to Kubernetes clusters, are publicly
available under the MIT license (https://github.com/alin-corodescu/MSc-workflows,
accessed on 8 November 2021).

Docker is used for building the container images for both the framework components
(orchestrator and framework agent) and the examples of pluggable components (compute
steps and data storage). The container images contain all the information needed by
a container run-time to run the components. At run-time, the container orchestration
solution uses the images to instantiate the different components as needed. Kubernetes
was used to manage and orchestrate the deployment and communication between the
components. Kubernetes is the industry standard for container orchestration and exposes
abstractions over the hardware resources it manages. Additionally, it is tailored to work
well in resource-constrained environments, such as edge environments.

The following is a brief introduction to the main Kubernetes abstractions and features
referenced in the remainder article:

1. Nodes: These are the abstraction Kubernetes uses for the hosts making up a cluster.
These can either be physical or virtual machines.

2. Pods: These are the smallest units that Kubernetes manages and deploys. A pod is a
group of one or more containers, logically belonging together to perform a particular
task.

3. Services: These are a type of Kubernetes resource that helps connecting pods or
expose functionalities outside the cluster. A selection criterion is used to identify the
pods hosting the application the service exposes. The communication with the service
is done through a designated IP address and port, with the request routing and load
balancing between the pods being handled by Kubernetes.
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4. DaemonSets: These enable Kubernetes users to deploy an instance of a pod to every
node in the cluster.

5. Labels: All Kubernetes resources can be associated with labels to help identify and dis-
tinguish resources serving different purposes (e.g., pods hosting different applications).

6. Volumes: These are abstractions that allow the storage used by a container to be
managed independently of the container. Volumes are made accessible by mounting
them in a container.

6.1. Fundamentals

The current implementation opts for a point-to-point communication model (cf. con-
trol flow communication medium). It allows for more straightforward and explicit commu-
nication between two parties, making it more suitable for the deliberate routing decisions
that consider data locality. The gRPC framework is chosen to support the communication
between different components. The containers used to perform the steps, inspired from
the microservice-oriented architecture, are long-lived, and each can process multiple units
of data. This reduces the overhead in performance incurred by creating and deleting
containers constantly throughout the execution of a workflow. A clear distinction between
different aspects of the communication between components is made:

1. The components communicating with each other adhere to a particular contract or
interface.

2. The actual execution is handled by the logic implementing the contract/interface.
3. The communicating parties have to employ compatible serialisation/deserialisation

protocols to exchange messages.
4. The transport aspect encompasses both fundamental mediums (memory, disk, net-

work) and abstractions on top of those (such as the HTTP protocol).

By leveraging the long-lived nature of the containers, the proposed implementation
also attempts to reuse established connections to remote machines (connection pooling).
The TCP protocol requires three network round-trips to perform the three-way handshake.
If the protocol on top of TCP uses SSL to secure the connections (e.g., HTTPS), more network
round-trips are required to negotiate and establish a secure connection. If the connection
pooling is not enabled, the time to establish connections increases with the number of
connections. For example, if many small data units flow through the system, the time
for establishing connections can represent a significant percentage of the total execution
time of the workflow. With geographically distributed resources, the performance cost of
network round-trips becomes more significant with the increase in the physical distance
between hosts, thus making connection pooling even more critical.

6.2. Orchestrator

A single instance of the orchestrator (Figure 4) is deployed, and it is for all the com-
ponents in the cluster through a Kubernetes service. The single-replica strategy is needed
because the central orchestrator is a stateful service that keeps the state in memory. Setting
up a multi-replica orchestrator is beneficial for performance, scalability, and resilience.
However, it also requires external solutions to store, share, and synchronise the state among
the replicas. A workflow consists of a sequence of processing steps. Each step specifies a
name that uniquely identifies the processing logic of the step. The orchestrator uses the
names of steps to find pods hosting the specified processing logic through Kubernetes
labels. In addition to the name, data source and data sink identifiers are also part of step
specification. The data source and sink identify the data storage solutions where the input
and output data should be retrieved and stored, respectively. A single workflow can utilise
multiple storage solutions, such as cloud, edge, and shared storage (cf. data communication
medium).

Registering and retrieving workflows is done through a service, workflow definition
service, using workflow definition store and exposed by the central orchestrator. The
orchestrator exposes another service, orchestration service, responsible for orchestrating
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the execution of the workflow registered through the workflow definition service. The
execution of the workflow is driven by the availability of data in the system, as opposed
to a task-driven execution approach [46]. The orchestrator is responsible for notifying
the pods hosting the logic necessary to process the new unit of data according to the
workflow definition. The communication between the orchestrator and pods hosting steps
is asynchronous with respect to the actual execution of the step. The step pod does not
wait for the step execution to finish before returning to the orchestrator. The work tracker
component stores a mapping between a request and the step executing the request. The
orchestrator reads this mapping to determine what is the next step to invoke. In parallel,
the work tracker also keeps a counter of active computation requests for each pod. When
a request arrives, it is put in a queue. This allows a response to be sent back to the caller
without waiting for the finishing of the processing of the data, which can potentially be a
long-running operation. The executor component retrieves requests from the queue and
starts a background thread to process the request, allowing it to process multiple requests
in parallel quickly. The cluster state provider component, using Kubernetes API Server,
provides a list of all the pods in the cluster that can perform the desired processing logic.
Finally, the agent extends the central orchestrator and handles the orchestration at a local
and individual step level. It handles the communication with other components on behalf
of the compute step.

Figure 4. An overview of the orchestrator component.
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6.3. Request Routing

Request routing discussed earlier is a multi-objective problem. For the proposed
implementation, request routing uses the distance and current load as inputs. Data localisa-
tion captures information about the host (either storing the data or running a pod) and the
zone. The zone is a general term meant to capture groups of hosts near one another. When
routing a request through the orchestrator, a unit of data with a specified data localisation
must be paired with a pod that can process it, with a potentially different data localisation.

One input to the routing decision algorithm is the distance between the localisation
of the data to be processed and the localisation of each pod. A large number indicates
the data transfer to the pod is likely to take longer. The distance between the same hosts
is considered to be zero. For all other cases, the orchestrator constructs a N × N matrix
hosting the distances between each of the N zones (assuming there are N zones in total
in the system). We presume that the distance between hosts within the same zone is
higher than zero but lower than the distance between two different zones. The orchestrator
uses the distance calculator to calculate the distance (see Figure 4) and the work tracker
component to get the number of concurrent requests on each pod.

We propose two flavors of the selection algorithm. The first one is the greedy approach:
(i) the pods with several active connections higher than a configurable number (three by
default) are eliminated, to avoid overloading a particular pod due to the uneven load
balancing introduced by the data locality preferences, (ii) from the remaining pods, the
one with the shortest calculated distance is selected (greedy selection), and (iii) if no pod
remains, the request is added back into the queue to be processed at a later time. The
second approach is slightly modified and focuses more on spreading the load among the
available resources. Instead of always choosing the closest pod, this variant spreads the
load evenly at a zone level and falls back to a different zone when the load on the pods
passes a configurable threshold (three by default). The zone with available resources closest
to where data are stored is chosen. Given seven requests to route, the order in which each
strategy leverages the available resources is presented in Figure 5. Both algorithms exhibit
the valuable characteristic of leveraging the full set of resources available in the continuum
in a prioritised order to reduce the cost and latency introduced by data transfer while at
the same time avoiding overloading a particular set of pods.
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Figure 5. Routing priority for the greedy and load spreading algorithms.

6.4. Framework Agent

Since the framework agent is logically coupled with a compute step, the two are always
deployed together by leveraging the sidecar deployment pattern [47]. The agent and the
compute step are separated in different containers, and they can communicate efficiently
via local network calls within the host. With pods being the atomic unit Kubernetes can
manage, this deployment model guarantees that each pod hosting a compute step container
also contains an agent container.

The agents implement a service to expose a communication endpoint for the orchestra-
tor. The request from the orchestrator contains the metadata needed by the data source to
find the data the step should process, a unique identifier for the request, and the identifier
of the data adapter to be used as a data sink. Upon receiving the request, the agent will
perform the following operations:

1. Forward the metadata to the data adapter specified in the request from the orchestrator.
2. Once the data adapter ensures that the data are available at a path the compute step

container can access, the compute step is invoked with the path to the file containing
the data it needs to process.

3. For each output emitted by the compute step, the framework agent will instruct the
sink data adapter to register the output.

4. Once the sink data adapter returns the metadata necessary to identify the newly
added data, it is sent, together with the initial request, back to the orchestrator to
notify that new data are available.

The agent keeps track of the number of concurrent requests being executed, allowing
only a configurable number of requests to be executed in parallel.
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6.5. Data Adapter

In the current implementation, data adapters only work with files (i.e., data retrieved
from the storage solution is stored in a file, and only uploading data from a file to the
storage solution is supported). Data adapters are deployed using the DaemonSet concept
in Kubernetes. One pod for each type of storage adapter is deployed to every node of
the Kubernetes cluster. The DaemonSet choice assumes the number of (possibly different)
types of storage adapters is limited, and, thus, the overhead of running one pod of each
type is negligible. Different storage solutions can be integrated, and the associated adapters
can be added to extend the solution’s capabilities.

The distributed storage system leverages the local storage of every node in the cluster
to store the data processed by the workflow. Besides reading and writing data, the interface
also captures the localisation information about the data as part of the communication.
Hard linking is used to leverage further the advantage provided by data locality. Hard
linking is a faster operation than copying, and thus it further reduces the time spent on
moving data between directories. The volumes are based on directories in the underlying
node file system. Even though different directories are mounted as different volumes in
pods, the resolution of hard links is delegated to the node file system. This allows the
hard links to cross volumes mounted in different pods. By contrast, symbolic links operate
by attempting to resolve a particular path, so they cannot cross different volumes unless
all pods mount the same volume under the same path. A data master was added as a
standalone component to separate data handling from the orchestration components. The
data master is responsible for keeping track of the location of files stored in the proposed
implementation for the distributed storage. The data master component could potentially
be extended to offer more functionalities (e.g., data lineage, sharing the same data across
multiple workflows, and others). The data master runs in a single pod in the cluster, made
available through a service. The state of the data master is stored in memory.

The proposed solution for the distributed storage system only offers basic functionali-
ties and lacks most of the features other alternative solutions provide (for example, data
replication and redundancy, security, and resilience to failures). However, in some cases, it
is possible that results from the processing steps only need to serve as input for the next
step and do not have strict requirements for how the data should be stored. For such cases,
the presented solution can be used as the data transfer medium, thus benefiting from an
efficient means to fully leverage the data locality functionality. Within a single workflow, it
is possible to use multiple storage solutions.

6.6. Example Flow

An example request flow is depicted in Figure 6. When a request is placed in the
queue, the orchestrator is notified about available new data (1). The executor then retrieves
the request (2) and starts a background thread to process the request. The first step in the
processing is to determine which step should be invoked for the current notification (3),
based on the request and the workflow definition. Once the step is determined, the cluster
state provider provides all the available pods to perform the required step (4). Based on
the current load and distance to the data to be processed, one of the available options is
chosen (5), and the request is sent to the appropriate agent (6).
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Figure 6. An example request flow in detail.

Once the agent receives the notification, it sends a request to the correct data adapter,
based on the received data (7). If the file is not available locally, the local storage adapter
will send a request to the data master (8) to determine where the file that needs to be
processed is stored and will then send a request to download the data from the respective
peer (9). After (8–9), or if the file is available locally, the local storage data adapter places the
data in the volume the compute step can access (10) and responds to request (7). The agent
then notifies the compute step that data are available (11), and the compute step reads the
data (12), performs the processing logic (13), writes the output to the corresponding volume
(14), and responds to the agent with the path to the output data (15). The agent sends a
request to the local storage adapter to register the newly available data (16). The local
storage adapter moves the new data into the permanent storage folder (17) and notifies the
data master about the new data (18). The agent notifies the orchestrator that new data are
available (19), and the process is repeated for all units of data flowing through the system.
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7. Evaluation

Through a series of experiments, we compare: (i) our approach with Argo Workflows
in order to analyse the run-time performances, and (ii) different configurations for the
proposed solution with one another, for analysing individual aspects in isolation. The test
environment is set up on the Microsoft Azure cloud using only Infrastructure-as-a-Service
offerings (virtual machines and networking capabilities). The test environment is Standard
D2s v3 (two vCPUs, 8GB memory) virtual machines, provisioned in three different Azure
regions (EastUS, WestEurope, and NorthEurope) to mimic the geographical distribution of
resources in a real cloud and edge topology. One virtual machine serves as the Kubernetes
master node (and did not run additional pods). In addition to the master node, two virtual
machines are configured as Kubernetes worker nodes in each region. The lightweight
K3s (https://k3s.io, accessed on 8 November 2021) distribution of Kubernetes is manually
installed on each virtual machine. All machines are part of the same cluster.

We use an example workflow to evaluate the architecture and implementation of the
systems, which contains four sequential steps, each accepting a file as input, randomly
shuffling the bytes, and writing the shuffled result as output. The motivation for choosing
an artificial workflow is the ability to capture and describe the behaviour of the solution in
terms of universally applicable measures (e.g., bytes for data size). In contrast, a workflow
processing particular data types (such as images) captures the specific behaviour better.
However, the conclusions are harder to generalise because the data type in specific cases
is more restrictive in terms of size and data characteristics. For the first three steps, every
machine in the cluster runs one instance of each step type. The final step is run only on
machines in the EastUS region, simulating a step that can only run on cloud instances in a
real scenario. Both the central orchestrator and the data master components are deployed
on machines in the WestEurope region. Two additional supporting components are used
when running the experiments. The load generator is responsible for injecting data into
the cluster and notifying the orchestrator when data are available. The load generator
creates files containing random bytes and triggers workflows for these files. The size and
number of files to be injected into the cluster are configurable. The load generator also
supports injecting data into two regions in parallel. The telemetry reader is responsible for
gathering data on the execution of the workflow (e.g., time spent in different components,
the quantity of data transferred between regions, and load spreading). The data are
retrieved using the Jaeger API and is exported to CSV files, which are later analysed
through Python/Jupyter notebooks.

The choice of the testing environment is motivated by the main focus of the paper
that is the impact of data locality on a geographically distributed computing setting.
The proposed cloud setup is capable of creating a geographically distributed system by
provisioning virtual machines in different regions and integrating them into a single system.
There are key differences from using a real IoT/Edge/Cloud setup, such as hardware
heterogeneity (different CPU capabilities and even architectures, I/O throughput, network
characteristics). However, to better isolate the benefit of data locality from other factors,
the cloud setup is sufficient, as it reduces the entropy introduced by a real world setup.
Changing the experimental setup either at hardware level or any upper level may result in
different results, to be demonstrated and discussed further in the following subsections;
however, we consider that the conditions simulated in the test setup are sufficiently generic
to be applicable to a wide-range of real world scenarios. We address the primary parameters
(data size and contention rates) that could influence the benefits introduced by the data
locality and leave out the parameters that could play a secondary role.

7.1. Comparison with Argo Workflows

The example workflow presented earlier is run with four different file sizes/counts,
both on Argo Workflows and the proposed solution, for comparing run-time performance.
We implement the workflow using the Argo workflow definition language. The data
communication medium between the steps is cloud storage (Azure BlobStorage), with one
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instance provisioned per region. The steps can read input data from any region but write
output data to the region they are running in (e.g., a step in WestEurope can retrieve data
from NorthEurope, but it always writes the output to WestEurope). Argo orchestration
components (e.g., Argo Server) are deployed to worker nodes in the WestEurope region,
similar to the proposed implementation.

Files of different sizes are uploaded manually to the cloud storage in WestEurope
and NorthEurope region, and workflows are triggered from a client running outside the
cluster, with these files as inputs. In terms of data locality, we evaluate two different
approaches. First, no data locality is captured in the workflow definition, allowing the
steps to be assigned to nodes anywhere in the cluster. Second, using the node selectors to
limit where step pods are instantiated, the processing is kept within the same region (e.g.,
files originating from WestEurope were to be processed in WestEurope as much as possible).
By default, the orchestration component of Argo reacts to changes in step states (e.g., a step
has finished) once every 10 s. This default value is unsuitable for workflows processing
small amounts of data quickly, and for these experiments, we change it to one second,
which is the minimum recommended value. The exact configuration used to deploy Argo
Workflows for the experiment is available in the GitHub repository of the solution.

Figure 7 presents the average running time of a workflow, given different data sizes
and numbers of files processed in parallel. The X-axis denotes the number of files used in
each of the two edge regions, WestEurope and NorthEurope, along with their size. For
example, “3 files, 1 MB” indicates that three files of 1 MB each are passed through the
workflow from both WestEurope and NorthEurope in parallel (six files in total). The Y-axis
is the time spent on the execution of the workflow, measured in milliseconds. The numbers
on the Y-axis are averaged from several iterations. The results show a low variance between
different iterations. The chart compares the numbers from four runs of the same workflow:
(i) in Argo, both with region-level data locality and without data locality, and (ii) in our
solution, with the two flavors of the routing algorithm, greedy and load spreading.

From experiments, we can observe the following:

1. In the case of processing small data chunks that take little time to process, the proposed
solution outperformed Argo workflows by a factor of five.

2. As the data size grows, the time spent on executing the logic of the step increases, and
the benefit of data locality reduces.

3. Data from the second case (three files, 10 MB) show that using data locality does
not affect the case of Argo workflows. Furthermore, in the fourth case (three files,
100 MB), using data locality in the workflow has a detrimental effect on performance.

4. The solutions that leverage data locality attempt to perform the work close to the data,
while the other solutions spread the load evenly across the available machines. The
gathered telemetry indicates that the steps of the example workflow are significantly
slower when multiple instances are scheduled on the same host, as they are competing
for resources.

5. Considering that there are two worker nodes available in each region, processing
three files in parallel results in at least two of the files to be processed on the same
node when data locality is enabled. This load distribution significantly offsets the
reduction in data transfer time.

6. When processing only two files of data sizes of 10 MB and 100 MB, the load can be
better spread on the testbed topology (two files can be processed in parallel on the
two host machines available in each region), and the benefit of data locality can be
observed.

7. On all cases, however, our proposed solution with the load spreading algorithm
proves faster to execute the example workflow. However, the benefits vary, depending
on the data size, from 500% (for the three files, 1 MB) to roughly 20% (for the two files,
100 MB case).
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Figure 7. Performance comparison between the proposed solution and Argo Workflows.

7.2. Evaluation under Different Configurations

A series of experiments are run with different configurations of the proposed solution
to better understand the effect and behaviour of particular aspects in isolation. The time
spent during the execution of the workflows is split into three categories:

(i) Data is referring to the time spent handling the necessary data movement (down-
loading the input data for a step, uploading the outputs, and moving data between
directories on the node file system).

(ii) Compute is referring to the time spent executing the logic of the processing step.
(iii) Control is referring to the time spent in the orchestration component and calcu-

lated as a difference between the total execution time of a step measured by the
orchestrator and the time spent on the other two categories.

Optimising individual areas does not always translate into significant improvements
in end-to-end performance. In some cases, optimisations in one area may degrade per-
formance for the other areas. In the example workflow, most of the time is spent on the
compute category, especially on larger data sizes. A different step implementation, which
only reads the input and writes it to the output directly (echo functionality), is used for
the following experiments. Under the same conditions, the two implementations cause
a significant difference in the distribution of time. Figure 8 presents the distribution of
where time is spent on average for a single-step processing 10 MB of data and showcases
the significant difference between the two-step implementations.
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Figure 8. Time distribution for same workflow, but different steps: echo (left) and byte shuffle (right).

Regarding data handling, we analyse locality-aware routing, hard linking, and load
spreading across the Computing Continuum. To study the effect of the locality-aware
scheduling in isolation, a configuration allowing the orchestrator to skip the locality-aware
routing and rely instead on reaching individual step instances through a Kubernetes
service is used. By default, Kubernetes services use a round-robin routing algorithm,
thus spreading the requests between all available instances, regardless of their physical
localisation. Figure 9 shows a significant difference in average time spent for transferring
data between machines, with data locality significantly reducing the time spent. The X-axis
represents three different experiments. We pass files of 1 MB, 10 MB, 100 MB through the
workflow, respectively. These sizes are reasonable when taking into account the scale of
IoT/Edge setups. For example, given 1000 devices generating 100 MB per minute each,
it suddenly becomes 100 Gb per minute in the entire system. The Y-axis represents the
average time spent on moving data (in milliseconds). We observe that the more routing
decisions in data are transferred over more considerable distances (e.g., from WestEurope
to EastUS), the higher the step’s overall execution time. This implies that data locality is
more beneficial for systems spread over more expansive areas.

An experiment comparing the performance of hard linking against the copying data
indicated that hard linking executes in constant time. In contrast, time spent copying
data increases with the size of the data. However, the performance benefit is negligible at
the end, especially under the assumption that the size of the data directly influences the
execution time of the processing step. For load spreading across a Computing Continuum,
tuning the example workflow with configurations where data is produced in a single zone
at increasing rates showed that the proposed solution spreads the load across the available
resources. Prioritising step instances, in the order of host storing the data, host in the same
zone as the host storing the data, host in the next closest zone, and host in the EastUS
zone, results in bandwidth utilisation savings, especially for cases when the data locality
information captures the exact host storing the data. The greedy solution is more likely
to perform better when it comes to bandwidth savings, as it weighs data locality higher
than the load spreading. However, it may perform poorly in terms of execution time for
resource-intensive cases, as presented in experiments with Argo workflows.
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Figure 9. Average time spent on transferring data with and without data locality.

Regarding the control time, we focus on long-lived containers and connection re-use.
The significant difference between Argo and the proposed solution in the cases where small
and frequent data units need to be processed is due to the overhead introduced by Argo
using ephemeral containers. Apart from the cost of instantiating the container, observations
made during the experimentation indicate that a significant portion of the time is spent
starting up the application after the container is created. This observation is made because
the first run of a workflow after deploying the Kubernetes cluster was significantly slower
than any subsequent run. For the example workflow, with three files of 1 MB each as input,
the first run took roughly 18 s while the subsequent runs took around 5 s.

We compare two configurations of the agent to measure the effect of connection re-use
in the agent component: (i) in the first configuration, the connection re-use is not enabled;
thus, a new connection for each message to be transmitted should be created, and (ii) in the
second configuration, a single connection is re-used for all the messages. The observations
indicate that while there is a performance gain in isolation (on average, 30 milliseconds per
message for the first case and 10 milliseconds per message on the second case), the impact
is not noticeable on the end to end latencies for the considered data sizes. However, more
frequent events and lower data sizes could potentially make connection pooling a relevant
optimisation.

The observations made throughout the experiments indicate that there are several
variables on which the benefit of the proposed approach depends:

1. The nature of the processing steps: The resource contention caused by multiple
steps running on the same machine can influence the routing algorithm’s optimal
configuration controlling the balance between load spreading and data locality.

2. Distance and connection speed between the resources: A topology spreading over a
wider area benefits more for the data locality-aware routing.

3. Frequency and processing duration of events: The biggest improvement is obtained
by leveraging long-lived containers for frequent and small events.

8. Conclusions

This article proposed a novel architecture and a proof-of-concept implementation
for container-centric big data workflow orchestration systems. Our proposed solution
enables the orchestration components to consider data locality, quantified using a flexible
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model that accounts for the physical distance between hosts spread across the Computing
Continuum. Our solution is better suited for processing small and frequent data units
by leveraging long-lived containers re-used to process multiple units. Furthermore, it
extends the ideas behind isolating processing steps in separate containers to address the
data management aspect of big data workflows. As such, the logic needed to interact
with data management systems is encapsulated in containers, providing the same benefits
as for processing logic (technology agnostic solution, isolation, and lightweight). The
communication between components is enabled by an efficient and contract-based remote
procedure call framework. Finally, a set of experiments are executed to compare the
proposed solution against Argo workflows and to study individual aspects in isolation.

Overall, the proposed solution improved the performance and reduced bandwidth
usage for container-centric big data workflows while maintaining a good separation of
concerns and reducing complexity for the framework’s users. The optimisations proved
the solution better suited for environments where cloud and edge resources are leveraged
together. Separating the interaction with data in a dedicated component, thus advancing
toward a better separation of concerns, also facilitated the implementation of data locality
as a built-in feature of the framework. This further proves the usefulness of creating
small and isolated components in a distributed system. The proposed solution is far from
feature-parity with the other existing solutions. However, it highlights potential areas
of improvement that do not deviate significantly from the fundamentals of the existing
architectures, making it possible to integrate the presented ideas and findings into them.
While limited in scope, the conducted experiments are representative of the challenges the
solution attempts to address. The experiments also highlighted that the benefit provided
by the solution could vary significantly based on different factors. The instrumentation
provided with the software solution can facilitate the same kind of performance analysis
under the conditions relevant for each use case.

Future work includes extending the solution in multiple directions: (i) Simple work-
flow definitions were supported in the current approach to investigate potential perfor-
mance improvements, but most real use cases require complex constructs. In this context, a
few examples include supporting direct acyclic graph-structured workflows, processing
steps to receive input from more than one data source, and supporting aggregation over
multiple data units. (ii) Both data and processing logic are isolated in different components,
and the workflow definition language uses these components as building blocks. A po-
tential direction is creating a marketplace-like ecosystem where data and processing logic
are exchanged between parties in the form of such components. (iii) A central piece of the
proposed solution is the routing algorithm that considers load and data locality. Further
improving the heuristic and adding more dimensions (such as matching node capabilities)
can lead to better results. (iv) The solution could be extended to support stream processing;
in addition, avoiding using a disk to transfer the data to be processed is also desirable in
such cases. (v) Finally, there are two possible scaling bottlenecks in the proposal. First,
the platform could benefit from creating and deleting processing steps dynamically to
meet the current demands. Second, the orchestrator and the data master components
are single instance applications, becoming a bottleneck under a high load and needing
horizontal scaling.
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Abbreviations
The following abbreviations are used in this manuscript:

DAG Directed acyclic graph
HDFS Hadoop file system
IoT Internet of things
RDMA Remote direct memory access
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