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Abstract 

In this paper we propose an empirical study of the forecasting performance of LSTM, 

Random Forest and AR-GARCH models on daily spot rates of implied volatility for 

EUR/USD exchange rate options. We apply a univariate time series of implied volatility as 

explanatory variables to forecast out-of-sample predictions for implied volatility, and compare 

the forecast performance across models based on the statistical error measurements mean 

squared error, root mean squared error and mean absolute error. Additionally, we conduct a 

Diebold-Mariano test to question the statistical differences between the models. We impose 

Random Forest and a Gaussian distributed AR(1)-GARCH(1,1) as benchmark models and 

compare their forecasting performance to the more advanced LSTM model. In addition to the 

benchmark AR(1)-GARCH(1,1) model, we extend the analysis with models that include an 

asymmetric GARCH term, moving average terms, along with Gaussian distributed residuals 

and Student t-distributed residuals. Our findings conclude that the LSTM model is better than 

the benchmark models for shorter option maturities, whilst the AR-GARCH model is superior 

when the maturities increase. However, when imposing other specifications and residual 

distribution for the GARCH models, we find that the AR-GARCH framework outperforms 

the more advanced machine learning models for all options. For shorter maturities the t-

distributed models perform best, while ARIMA-GARCH-type models perform better for 

longer maturities. Implied volatility of FX options, and hereby this paper, are of interest to all 

market participants that are exposed to foreign exchange risk, for hedging and trading 

purposes. 
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Sammendrag 

I denne artikkelen gjennomfører vi en empirisk studie av prognosenøyaktigheten til LSTM-, 

Random Forest- og AR-GARCH-modeller for implisitt volatilitet på daglige spotkurser for 

EUR/USD-valutaopsjoner. Vi bruker en univariate tidsserier med implisitt volatilitet som 

variabler og sammenligner prognosenøyaktigheten på tvers av modellene med de statistiske 

målemetodene kvadratisk gjennomsnittsfeil, rot av kvadratisk gjennomsnittsfeil og absolutt 

gjennomsnittsfeil. I tillegg, gjennomfører vi en Diebold-Mariano-test for å undersøke om 

forskjellene mellom modellene er statistisk signifikant. Vi benytter Random Forest og AR(1)-

GARCH(1,1) med normalfordelte restledd som referansemodeller for den mer avanserte 

LSTM modellen. Utover AR(1)-GARCH(1,1) utvider vi analysen med økonometriske 

modeller som inkluderer asymmetriske variabler, MA-variabler, sammen med normalfordelte 

og t-fordelte restledd. Våre funn konkluderer med at LSTM modellen er bedre enn 

referansemodellene for opsjoner med korte løpetider, og AR-GARCH er bedre for lengre 

løpetider. Videre finner vi at AR-GARCH-rammeverket er bedre enn de mer avanserte 

maskinlæringsmodellene når vi utvider modellene med andre spesifikasjoner og restledd 

distribusjoner. For kortere løpetider er t-fordelte restledd best, mens ARIMA-GARCH 

modeller er bedre for lengre løpetider. Valutaopsjoners implisitte volatilitet, og herved denne 

artikkelen, er av interesse for alle markedsaktører som er eksponert for valutarisiko, for 

sikring og spekulative formål. 
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1.Introduction 

Forecasting the implied volatility of foreign exchange (FX) options and financial time series 

in general, is a challenging task mainly due to incomplete information and unprecedented 

changes in economic trends and conditions. However, as periods of transitions from a low to 

high market volatility regime can be abrupt and short-lived, the development of effective 

modeling framework is of critical importance for the design and implementation of active 

portfolio immunization strategies in order to avoid sizeable drawdowns during periods of 

turmoil in particular (Galakis & Vrontos, 2021). As implied volatility measures the market 

expectations of future risk, an effective forecasting framework can identify high volatility 

regimes, benefiting market players exposed to currency fluctuations. 

Traditional econometric time series models struggle to capture non-linearity in data, 

incentivizing economic researchers to adapt toward more advanced models. Machine learning 

methods can alleviate the complexity in time series forecasting by identifying structures and 

patterns of data such as non-linearity and dependency between predictors. Particularly, 

LSTM  (Long Short-Term Memory) has received increased focus in forecasting financial 

time series, however, with mixed results. 

 

Given the importance of developing an effective modeling framework to minimize FX risk, 

the subject of this study is: 

Comparing the predictive power of LSTM models to Random Forest and AR-GARCH-type 

models for forecasting implied volatility for options on the EUR/USD foreign exchange rate. 

We structure the analysis into two parts: 

1. Statistical distribution: Analyzing the univariate time series characteristics of the 

implied volatility components, including dependency structure. 

2. Forecasting models: Evaluating and proposing forecasting models for implied 

volatility. 

 

We optimize an LSTM model on a training set of the data and compare its forecasting 

predictability to a RF (Random Forest) model and AR-GARCH-type models. The estimator 

is the daily spot rates for the implied volatility for the EUR/USD FX options. We impose RF 

and a Gaussian distributed AR(1)-GARCH(1,1) as benchmark models and compare their 

forecasting performance to the more advanced LSTM model. In addition to the benchmark 

AR(1)-GARCH(1,1) model, we extend the analysis with models that include an asymmetric 
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GARCH term, moving average terms, along with Gaussian distributed residuals and Student 

t-distributed residuals. The machine learning models are optimized using different 

hyperparameters, and we compare the best-fitted structures for each option to the benchmark 

models.  

 

Our findings conclude that the LSTM model is better than the benchmark models for shorter 

option maturities, whilst the AR-GARCH model is superior when the maturities increase. 

However, when imposing other specifications and residual distribution for the GARCH 

models, we find that the AR-GARCH framework outperforms the more advanced machine 

learning models for all options. For shorter maturities the t-distributed models perform best, 

while ARIMA-GARCH-type models perform better for longer maturities.  

Further, this thesis is organized as follows. Section 2 discusses previous publications on 

implied volatility and the models we apply in our analysis. Section 3 presents the data, 

including statistical and distribution behavior. Section 4 presents the theory behind our work 

and the models we use, and further describes the methodology and model architecture. In 

Section 5, we present results and findings. Section 6 summarizes our findings and concludes. 
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2. Literature Review  

Garman and Kohlhagen (1983) derive an implied volatility modification to the Black-Scholes 

formula for option pricing, introduced by Fischer Black and Myron Scholes in 1973. 

According to Stan (1981), Latane and Rendleman (1976), several studies have shown that 

implied volatility is a better forecaster of future price variability than measurements based on 

history (Bharadia et al., 1996). In recent years implied volatility has become a common 

estimator for forecasting purposes. Ornelas and Mauad (2019) find that the slopes of currency 

implied volatility term structures have predictive power for the behavior of exchange rates 

from both cross-sectional and time series perspectives. Carr et al. (2020) build a volatility 

index by formulating a variance prediction model using machine learning methods such as 

Feedforward Neural Networks and Random Forest on the S&P 500 index options. According 

to Haug et al. (2010), the standard derivation of implied volatility has an evident variation 

over time and declines as time to maturity increases. Therefore, it is vital to be aware of the 

challenges that follow from the time-varying properties of implied volatility. Time-varying 

properties entail another challenge; volatility clustering. That is, small (big) changes in the 

volatility tend to be followed by small (big) changes in the volatility (Mandelbrot, 1963).  

A profound approach to account for this was introduced in 1982 when Robert Engle 

introduced a non-linear model allowing the time-varying conditional variance to depend on 

the lagged values of the squared errors, the autoregressive conditional heteroskedasticity 

(ARCH) model. Regardless of the innovations of the ARCH model, it has a few weaknesses. 

It is unclear how many lags to include in the variance equation. A high number of lags results 

in fewer degrees of freedom, and too many lags may cause the model to produce negative 

estimates for the variance. An extension to the ARCH model that allows the conditional 

variance to depend on lags of the conditional variance is the general ARCH model, or the 

GARCH model, introduced by Bollerslev (1986). The GARCH model is more parsimonious 

than the ARCH model. The GARCH model avoids overfitting and is still today a much-

applied modeling framework for financial time series data.  

In 1993, Glosten et al. formulated an extension to the GARCH model that accounted for an 

asymmetric response to a volatility shock, i.e., “good” news and “bad” news had different 

impacts on the subsequent period volatility, known as the GJR-GARCH. Lim and Sek (2013) 

found that in “normal times”, that is in post- and pre-crisis times, the symmetric GARCH 
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performs well, and in times of big volatility fluctuations, i.e. times of crisis, the asymmetric 

model is preferred. Schmidt (2021) argues that the asymmetric models are better forecasters 

for financial indexes in the aftermath of the shock caused by the outbreak of the Covid-19 

pandemic compared to the symmetric specifications. Poon and Granger (2001) argue that the 

simpler GARCH models seem to provide more extensive volatility forecasts when compared 

to the more sophisticated models. In contrast, the GJR-GARCH seems to forecast lower 

values due to its asymmetry for the financial markets, which helps this model to quickly 

revert from different volatility states. Ramasamy and Minusamy (2012) found that the 

asymmetric GJR does not improve the forecasting performance considerably compared to 

symmetric GARCH models. According to Javed and Mantalos (2013) the performance of 

information criteria for the GARCH(1,1) is satisfactory, compared to higher order GARCH 

specifications.  

Employing machine learning models for time series predictions is a relatively new topic. To 

the best of our knowledge, the literature dedicated to implementing machine learning 

techniques for forecasting the implied volatility of FX options is scarce. However, some 

research exists regarding machine learning for predicting stock prices, returns and volatility. 

We find research dating back to 1993, when Galler and Kruzanowski (1993) implemented 

deep learning to classify whether stock returns are positive or negative one-year-ahead. 

Further, Krauss et al. (2017) used various machine learning models, such as deep learning 

and tree-based models, to model S&P 500 constituents. Surprisingly, Krauss et al. (2017) 

reported that gradient-boosted trees and Random Forest outperformed deep learning models. 

More interestingly, Krauss et al. (2017) revealed that deep learning models performed 

exceptionally well in times of market turmoil. Yu and LI's (2018) findings are consistent with 

the claim that deep learning networks perform well during market turmoil. Yu and Li (2018) 

forecasted the volatility of the Shanghai compos stock price index using LSTM and GARCH, 

where they only selected extreme values (highs and lows) and concluded that the LSTM 

model was superior. A paper somewhat similar to ours is Namin and Namini (2018). Namin 

and Namini (2018) compares an Arima model and a univariate multistep LSTM model 

imposed by Brownlee (2016) on different stock indexes. They conclude that the LSTM model 

outperforms the ARIMA model. Galakis and Vrontos (2021) published an interesting paper 

regarding implementation of machine learning techniques for implied volatility. They study 

whether the application of machine learning approaches can outperform traditional 

econometric models in forecasting implied volatility indices. They concluded that certain 
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machine learning techniques are strongly encouraged as they significantly improve the 

accuracy of the out-of-sample forecasts. However, they also report that the model accuracy is 

not consistent across all models. 
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3. Data - Distribution and Statistical Behavior 

In this Section, we discuss the statistical properties and distribution of the data. The dataset, 

provided by Morten Risstad from Sparebank 1 Markets, consists of daily observations of 

implied volatilities for eleven options with distinct levels of moneyness and five different 

times to maturity over the period from 02.01.2007 to 31.08.2021. This provides 55 distinct 

time series of implied volatility consisting of 164.670 observations, enabling us to analyze 

the forecast performance for different maturities and the distinct moneyness levels. Table 3.1 

summarizes descriptive statistics for ATM (at-the-money) put options for the five distinct 

maturities. The variance of the volatilities declines as the time to maturity increases. The 

shorter maturities have both higher peaks and lower troughs of implied volatility. In 

comparison, the longer maturities have higher average levels of implied volatility, measured 

in both mean and median (50% quantile). 

Table 3.1 Descriptive statistics for ATM put options for each maturity. 

 
1 week 1 month 3 months 6 months 1 year 

Obs 2994 2994 2994 2994 2994 

Mean 9,14 9,16 9,29 9,43 9,62 

Min 2,74 3,77 4,14 4,42 4,97 

25 % 6,43 6,64 6,75 6,96 7,23 

50 % 8,32 8,38 8,51 8,63 8,95 

75 % 10,76 10,96 11,24 11,44 11,91 

Max 33,58 28,88 24,65 22,29 19,91 

Var 14,70 12,58 11,26 10,28 9,32 

𝜎 3,83 3,55 3,36 3,21 3,05 

  Table 3.1 Descriptive statistics for ATM put options for each maturity.  

The options level of moneyness is measured by the option delta and can be interpreted as the 

probability that the option will finish in-the-money at expiration. For the most volatile option, 

the one-week to maturity option, a summary of descriptive statistics is presented in Table 3.2. 

Likewise, for the least volatile option, the one-year to maturity, descriptive statistics are 
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exhibited in table 3.3. Descriptive statistics for the remaining options with a maturity of one 

month, three months and six months can be found in Appendix B. When the delta is equal to 

50, the option is ATM, and as the delta value decreases, the option becomes increasingly 

OTM (out-of-the-money). For the most OTM option, the delta value is 5. In this study we use 

put and call options with OTM delta values of 5, 10, 18, 25, 35 and ATM put options with a 

delta equal 50. The level of implied volatility, measured in mean and different quantiles, is 

higher for options OTM than ATM or close to ATM, and it is higher for puts than for calls. 

This is also the case for the volatility (i.e. daily changes in the level of implied volatility). 

This distribution pattern is the same for all five distinct maturities and is referred to as the 

volatility smile and is visualized in Figure 3.1. The implied volatility is higher for OTM put 

options than similar call options, consistent with a negative risk reversal that measures the 

volatility smile's skewness. The most common is to measure the risk reversal for call and put 

options with a delta of 25 (McDonald, 2014). When looking at the 25-delta risk reversal, on 

average for the whole data sample, all risk reversals are negative and increasingly negative as 

the time to maturity increases. The risk reversal also becomes more and more negative as the 

options become increasingly OTM (see Appendix B Figure B.2) and can be interpreted as a 

market-based measure of implied skewness.  
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Table 3.2. Descriptive statistics of implied volatility for options with one week to maturity 

 Put  

5 

Put 

10 

Put 

18 

Put 

25 

Put 

35 

Put 

50 

Call  

35 

Call 

25 

Call 

18 

Call 

10 

Call  

5 

Obs 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 

Mean 10,39 10,02 9,70 9,50 9,28 9,14 9,11 9,19 9,29 9,48 9,72 

Min 3,02 2,92 2,83 2,79 2,75 2,74 2,79 2,87 2,94 3,06 3,19 

25 % 7,17 6,94 6,74 6,64 6,51 6,43 6,45 6,57 6,65 6,82 6,97 

50 % 9,31 9,00 8,72 8,56 8,41 8,32 8,32 8,39 8,48 8,62 8,85 

75 % 12,35 11,93 11,49 11,24 10,99 10,76 10,70 10,76 10,83 11,01 11,26 

Max 38,94 37,09 36,01 35,10 34,27 33,58 33,20 33,27 33,54 33,88 35,02 

Var 21,14 18,84 17,29 16,26 15,35 14,70 14,32 14,40 14,78 15,33 16,77 

   σ 4,60 4,34 4,16 4,03 3,92 3,83 3,78 3,80 3,84 3,92 4,10 

 

Table 3.2 descriptive statistics of implied volatility for options with one week to maturity. Put with delta 50 is ATM and put and 

call options become increasingly OTM as the delta value decreases. Put 5 indicates a put option with an option delta of 5. 

Different quantiles measure the level of the implied volatility throughout the data sample. 
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Table 3.3 Descriptive statistics for options with one year to maturity 

 Put  

5 

Put 

10 

Put 

18 

Put 

25 

Put 

35 

Put 

50 

Call  

35 

Call  

25 

Call  

18 

Call 

10 

Call 

5 

Obs 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 

Mean 12,88 12,05 11,11 10,58 10,05 9,62 9,46 9,50 9,66 10,05 10,41 

Min 5,39 5,19 5,01 4,93 4,90 4,97 5,15 5,37 5,61 6,02 6,41 

25 % 9,10 8,48 7,89 7,58 7,35 7,23 7,23 7,30 7,45 7,76 8,04 

50 % 12,21 11,45 10,58 10,06 9,49 8,95 8,66 8,62 8,67 9,01 9,33 

75 % 15,96 14,93 13,81 13,12 12,48 11,91 11,53 11,38 11,39 11,67 12,02 

Ma 25,28 23,65 21,69 20,88 20,27 19,91 20,21 20,91 21,79 23,67 25,25 

Var 20,90 17,75 14,21 12,40 10,68 9,32 8,70 8,66 9,01 10,18 11,28 

𝜎 4,57 4,21 3,77 3,52 3,27 3,05 2,95 2,94 3,00 3,19 3,36 

 Table 3.3 descriptive statistics of implied volatility for options with one year to maturity. Put with delta 50 is ATM and put and 

call options become increasingly OTM as the delta value decreases. Put 5 indicates a put option with an option delta of 5. 

Different quantiles measure the level of the implied volatility throughout the data sample. 
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Figure 3.1 Volatility smiles for the different maturities

Figure 3.1 Volatility smiles for each distinct maturity, calculated as an average across the data sample. Top left is for one year 

to maturity, top right six months, mid left is three months, mid right is one month and bottom one week to maturity. Level of 

implied volatility along the vertical axis, and level of moneyness along the horizontal axis.  

When comparing the historical values of the implied volatility for one week and one year 

options (see Figure 3.2), the variation in implied volatility is vast for the two. Since the one 

week option has a shorter time to maturity, the implied volatility reacts more to news and 

small shocks and is more volatile (i.e., more extensive daily changes). The cost of short-term 

options is smaller than for long-term options. According to financial theory, FX option 

traders have limited capital, which results in higher demand for short-term options. This 

causes the longer maturity options to trend more, meaning it recovers slower from massive 

shocks than the shorter maturities, implying that the time series for the longer maturities is 

non-stationary ( see Appendix A). The shorter maturities tend to return and intersect their 

mean more often, whilst the longer maturities trend for a longer period before crossing their 
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mean. When we study the different maturities, we observe a decline in how often the option 

crosses its mean, as the time to maturity increases. The fact that the amplitude of the daily 

changes in implied volatility declines will contribute to a change in the tails of the return 

distribution. Since there is a significant difference in the behavior and distribution for the 

different maturities and levels of moneyness, we expect that there will be a difference in 

which models will fit better for the different options. We will come back to this in Section 4.  

Figure 3.2 Implied volatility for ATM put options with one week and one year to maturity  

 

Figure 3.2 Spot rates of implied volatility for ATM put options with one week and one year to maturity from 2. January 2007 until 

31. August 2021. The red horizontal line exhibits the options mean value for the sample period  

 

Several macroeconomic factors impact the EUR/USD exchange rate, along with foreign and 

domestic news for the US and the eurozone, that will directly affect the exchange rate and 

implied volatility. Our data set stretches from January 2007 to August 2021 and during this 

time, the financial markets worldwide endured multiple shocks and events that impacted the 

EUR/USD exchange rate. Figure 3.2 exhibits the implied volatility for the ATM one week 

and one year option. Especially after the financial crisis in 2008, we see a considerable rise in 
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implied volatility. Also, shocks such as the European debt crisis, US ceiling debt crisis, and 

in more recent years, the Covid-19 pandemic had enormous consequences for the implied 

volatility. These different shocks throughout the data will affect the implied volatility, the 

daily return of the implied volatility, and the residual distribution of the options when 

analyzed. Intuitively this can cause challenges for the GARCH-type models, considering the 

normality assumption for the distribution of the residuals. When looking at the tails of the 

distribution, the outliers result in fatter tails for the shorter maturities, implying a fatter tail 

than the normal distribution provides. We will further address these issues regarding our 

models in Section 5.5. Graphing of daily change distribution and log daily change 

distribution are found in Appendix B.  

 

Different shocks throughout the data increase the consecutive volatility, resulting in all option 

maturities having positive skewness, which reflects the right-tailed empirical distribution of 

the ATM options in figure 3.3. The figure exhibits the ATM option for each maturity, and the 

distribution widens as the time to maturity increases. The empirical distribution has a double 

peak for the longest maturities, caused by more extended periods away from their respective 

mean value, as visualized in Figure 3.2. The distribution pattern corresponds to OTM options, 

and our findings regarding EUR/USD FX derivatives' statistical and distributional behavior 

align with earlier literature. 
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Figure 3.3 Empirical distribution for ATM options for each maturity, Gaussian distribution 

drawn for each maturity 

 
Figure 3.3 Empirical distribution of ATM options for each of the five maturities. The distributions implied volatility along the 

horizontal axis, and frequency measured in number of observations along the vertical axis. The Gaussian distribution is marked 

as a curved line for each plot. There are 200 bins and 2994 observations for each maturities plot.  

 

 

 

 

 

 
 
 
 



 
 

14 
 

4. Theory and Methodology  

In the following Section we will briefly introduce the most important theory behind the 
models we apply, along with the methodology for the analysis. Further elaborations and 
theory for the extensions to the models can be found in Appendix A.  

4.1 Forecast Evaluation  

To evaluate the forecast performance of the different models we use mean squared error 

(MSE), root mean squared error (RMSE) and mean absolute error (MAE). These statistical 

measurements are given by the following formulas: 

 

 
𝑀𝑆𝐸 =  

1
𝑛 ∑(𝑦𝑖 − 𝑦�̂�)2

𝑛

𝑖=1

 
(1) 

 

 

𝑅𝑀𝑆𝐸 = √
1
𝑛 ∑(𝑦𝑖 − 𝑦�̂�)2

𝑛

𝑖=1

  

(2) 

 

 
𝑀𝐴𝐸 =  

1
𝑛 ∑|𝑦𝑖 − 𝑦�̂�|

𝑛

𝑖=1

 
(3) 

 

Where 𝑦𝑡 is the implied volatility at time t,  𝑦�̂� is the forecasted value of implied volatility at 

time t, and n is the number of observations. While the mean absolute error measures the 

average across errors, where the errors are weighted equally, the mean squared error 

penalizes higher errors. Provided that high forecast errors in the FX market may result in 

significant losses for market players, we rank the MSE over the MAE. 

In addition, we implement a Diebold-Mariano (DM) test to check whether the forecasts are 

statistically significantly different from each other. The DM test we conduct is based on the 

MSE for each forecasted value, and test results and methodology are exhibited in Appendix 

A and E. 
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4.2 Benchmark Models 

We use GARCH and supervised Random Forest as our benchmark model. Common practice 

is to use 80% of the dataset as a training set and 20% as an out of sample test set. This split 

results into 2396 observations in the training set and 599 in the out-of-sample test set. 

 

Figure 4.1. 80:20 data split for training and test set, option exhibited is ATM put option with 

six months to maturity.

      
          Figure 4.1 80:20 Data Split For an ATM Put Option with Six Months to Maturity 

 

4.2.1 Econometric Model 

In traditional economics, there is an assumption that the variance of the residuals is 

homoscedastic, i.e., they have a constant variance. For time series econometrics, this proves 

to be difficult, considering different events and shocks yield different levels of volatility over 

time. This is volatility clustering, where large changes tend to be followed by large changes – 

of either sign – and small changes tend to be followed by small changes (Mandelbrot, 1963). 

In 1986, Tim Bollerslev introduced the general heteroskedastic conditional variance model, 

known as the GARCH model, a much-applied model for modeling and forecasting financial 

time series. The GARCH is a generalized extension of Robert F. Engles ARCH model from 
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1982 (see Engle, 1982). The GARCH model allows for the conditional variance to change 

over time due to past errors leaving the unconditional variance constant (Bollerslev 1986). 

We impose an AR(1)-GARCH(1,1) model as the benchmark econometric model. The AR 

term in the mean equation accounts for autocorrelation in the level of implied volatility and 

GARCH-terms for the impact of changes in the conditional variance. The GARCH model 

framework in this study models volatility of implied volatility. The benchmark AR(1)-

GARCH(1,1) can be written as: 

 𝑦𝑡  =  𝜇 + 𝜃𝑦𝑡−1 + 𝜀𝑡 (4) 

 

 𝜖𝑡 ~ 𝑁(0, 𝜎𝑡−1
2 ) (5) 

 

 𝜎𝑡
2  =  𝜔 + 𝛼1𝑢𝑡−1

2 + 𝛽1𝜎𝑡−1
2  (6) 

where equation (4) denotes the mean equation, and equation (6) is the conditional variance 

equation. 𝜃 is the autoregressive coefficient, 𝜇 is a constant term, and 𝜀𝑡 is a white noise 

disturbance term. A critical condition for an AR(p) model is that the model coefficients are 

stationary. If the models’ coefficients are non-stationary, the error terms will have a non-

declining effect on the value of 𝑦𝑡 (see Appendix A). We interpret the fitted variance in 

equation (6) as a weighted function of information of the volatility from the last period, 

𝛼1𝑢𝑡−1
2 , the fitted variance from the model for the last period, 𝛽1𝜎𝑡−1

2 , and a long-term 

average value which is dependent on the coefficient, 𝜔 (Brooks, 2014). All coefficients 𝜔, 𝛼1 

and 𝛽1 are non-negative, and the stationary condition states that 𝛼 + 𝛽 < 1 to ensure that the 

time series process is weakly stationary. It is possible to extend the model to the 

GARCH(m,s) model. However, according to Brooks (2014) a GARCH(1,1) model is 

sufficient to capture the volatility clustering in the data, and researchers rarely entertain 

higher-order specifications of GARCH  in academic finance literature, particularly not for 

forecasting purposes. The simpler specifications are less likely to suffer from overfitting to 

the training data.  

When modeling financial data, the distribution of returns appears to have mean clustering and 

fatter tails than the normal distribution, i.e., more weight in the tails. A distribution that better 
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fit a variable with clustering around the mean and fat tails is the student t-distribution, which 

we derive as: 

 𝜀𝑡 ∼ 𝑇𝑣(0, 𝜎𝑡
2)  (7) 

where 𝑇𝑣(0, 𝜎𝑡
2) denotes the Student t-distribution with mean 0, variance 𝜎𝑡

2 and v degrees of 

freedom (Miazhynskaia & Dorffner, 2006).  

When modeling the volatility, such as within the GARCH framework, the subsequent period 

volatility reacts to shocks in the data. One of the models' restrictions is that it assumes 

symmetry in the response to these shocks, i.e., the volatility responds to positive and negative 

news alike. In financial data, adverse shocks will have a more significant impact on the 

subsequent period volatility compared to positive shocks. Glosten et al. (1993) formulated a 

model extension to the GARCH that accounts for asymmetry in response to shocks. This 

model, known as GJR-GARCH, can be written as an extension of the GARCH(1,1) model:  

 𝜎𝑡
2  =  𝜔 + 𝛼1𝑢𝑡−1

2 + 𝛽1𝜎𝑡−1
2 + 𝛾𝑢𝑡−1

2 𝐼𝑡−1 (8) 

where 𝐼𝑡−1 =  1 𝑖𝑓 𝑢𝑡−1 < 0, and otherwise = 0.   

Where the 𝛾 term captures the asymmetric impact causing a leverage effect when positive, 

and when 𝛾 = 0, we are back to the standard GARCH(1,1) model (Enders, 2004). The non-

negative restrictions of the coefficients 𝜔, 𝛼1 and 𝛽1still apply.  

 

Econometric Model Methodology 

To confirm the presence of autoregressive conditional heteroskedasticity in the data, we 

perform Engle’s Lagrange multiplier test, also known as an ARCH-LM test. The results from 

the ARCH-LM test can only be interpreted as an indication to investigate if ARCH effects are 

present or not, and according to Sjölander (2010), the test is biased in finite samples. It does 

not consider whether the stationarity constraints are met or not. Test results can be found in 

Appendix E. Test results show that for all options, we can at any significance level reject the 

null hypothesis of no ARCH effects. We conclude that there is proof of autoregressive 

conditional heteroskedasticity in the squared residuals for all options.  
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In addition to the benchmark AR(1)-GARCH(1,1), we extend the analysis with a GJR-

GARCH specification to analyze for asymmetric behavior of shocks in the conditional 

variance. We compare both in-sample goodness of fit and out-of-sample forecast error for all 

models, focusing on the out-of-sample forecast performance. Further, we test the data with 

additional lags of the AR(p) and moving average (MA(q)) process, and lastly, we perform the 

same regressions with a Student t-distribution from equation (7). Additional lags beyond an 

ARMA(1,1) process do not improve the model’s forecasting accuracy and will not be 

included further in this study.  

When modeling and forecasting econometric time series, the variable in question must be 

stationary. The main problems with non-stationary time series, are that non-stationary 

variables can produce spurious regressions, meaning the regression has a high 𝑅2 and t-

statistics that appear to be significant but without any economic meaning (Enders, 2015). To 

test for stationarity we use the Augmented Dickey-Fuller test. Results can be found in 

Appendix E. 

Based on the Augmented Dickey-Fuller test and the Phillips-Perron test, we cannot, at a 5% 

significance level, reject the null hypothesis that the options with time to maturity of 3 

months and more follow a unit root process and therefore are non-stationary. To avoid 

spurious regressions, we apply first difference to all options with three months or more to 

maturity. After differencing these options, the Augmented Dickey-Fuller test and the Phillips-

Perron test rejects the null hypothesis of unit-root, and all options are now stationary. When 

applying the first difference for the options with one week and one month to maturity, the 

forecast error measured by MSE, RMSE and MAE was reduced, along with the in-sample 

goodness of fit. Therefore, the benchmark AR(1)-GARCH(1,1) model is not differentiated for 

the shorter maturities, i.e., one week and one month to maturity.  

The in-sample goodness of fit for the models are compared by information criteria Log-

Likelihood, AIC and BIC. According to these information criteria, the in-sample model is 

considerably improved for all distinct options when adding a moving average (MA) term and 

other autoregressive term lags. When looking at the autocorrelation and partial 

autocorrelation, there are individual preferences of which lag of AR(p) and MA(q) terms 

should be included and show significance for the different options. When testing for 

asymmetries in the conditional variance, the threshold term improves the goodness of fit and 

is statistically significant for all options across the level of moneyness and maturities. Based 
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on these findings, we can say that there is an asymmetry in the volatility shocks, i.e., the 

volatility reacts differently to positive and negative shocks. When comparing the out-of-

sample forecast accuracy measured in MSE, RMSE and MAE, the simple AR(1)-

GARCH(1,1) proved to outperform the better in-sample specified models on shorter 

maturities. Therefore, the in-sample models are not the best-fitted models in terms of 

goodness of fit to the data. Interestingly, the better the in-sample model specification 

measured in goodness of fit is, the poorer the out-of-sample forecasting accuracy is for the 

short maturity options. For longer maturities, the findings vary. However, the AR(1)-

GARCH(1,1), as described in Equations (3), (4) and (5), is used as a benchmark model for 

simplicity. The forecast performance of all extensions to the AR(1)-GARCH(1,1) are 

exhibited in Appendix D.  

 

4.2.2. Random Forest and Tree-Based Model 

An ensemble method is an approach that combines many simple models in order to create a 

single and powerful model (Brownlee, 2021). The simple models are known as weak learners 

since they may lead to mediocre predictions independently. In this Section we derive 

regression trees, bagging, Random Forest and our model architecture for the Random Forest 

model. 

  

Regression Trees 

Tree-based regression methods are powerful models to address a regression problem. 

Classification and regression trees (CART), introduced by Breiman et al. (1984), offer a 

flexible way to analyze the non-linear relationship between the dependent variable and a set 

of predictors. Initially, we group all training set records in the same partition, and the 

algorithm begins allocating the data into the first two partitions, using every possible binary 

split. The algorithm chooses the splits that minimize an error statistic, such as mean squared 

error or absolute mean error in the two partitions. Further, we apply the same splitting rule to 

a new set of partitions, and the same procedure continues until each node reaches a user-

specified minimum node size and becomes a terminal node (Vrontos et al., 2021). 
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Bagging 

The issue with the regression trees is that they suffer from high variance. Bootstrap 

aggregation (Breiman, 1996), widely known as bagging, is a solution to this issue. A Bagging 

estimator is an ensemble meta-estimator that fits each base regressor on a random subset of 

the dataset and aggregates their individual predictions by averaging to form a final prediction 

(Pedregosa et al., 2011). Such a meta estimator can typically reduce the variance of a simple 

model (e.g. decision trees) by introducing randomization into its construction procedure and 

then making an ensemble. The algorithm creates B bootstrap samples 𝐵1, 𝐵2, . . . , 𝐵𝐵, and 

from each bootstrap sample, 𝐵𝑖 , 𝑖 = 1, . . . , 𝐵, each predictor 𝑓𝑖 is estimated based on the 

same learning procedure. Further, we find the bagged predictor, 𝑓𝑏𝑎𝑔 by aggregating all the 

bootstrap predictors. 

 

 

Random Forest 

Bagging is an effective ensemble algorithm as each decision tree fits on different training sets 

and has a slightly different performance. Random forest, introduced by Breiman (2001), is an 

extension of bagging. Random forest has the same procedure as bagging, where a specific 

tree, 𝑇𝑖
𝑟𝑓,  is created for each bootstrap and the predicator  𝑓𝑖

𝑟𝑓, 𝑖 = 1, . . . , 𝐵 , is estimated 

based on the same learning procedure. We obtain the aggregated random forest estimator, 

𝑓𝑟𝑓, by averaging all tree-specific estimators. The modeling techniques of Random Forest and 

bagging are similar. However, there are significant modifications in creating trees in random 

forest compared to bagging. We chose the splitting variable to be the best among a random 

subset of m candidate variables taken from the complete set of the p predictive variables. 

Further, we take a new random sample of m candidate splitting variables from each splitting 

node of the tree. The use of different bootstrap samples and the introduction of the 

randomness at each node splitting results in several uncorrelated trees.  

 

 

 

 

 

 

 



 
 

21 
 

 

Figure 4.2 Random Forest algorithm. 

 
                       Figure 4.2 Depiction of the Random Forest Algorithm. Source: Vaiciukynas, (2016) 

  

The algorithm in figure 4.2 has the following steps: 

step 1:  Creation of subsets from the original data. 

step 2:  Creation of individual decision trees for each subset. 

step 3:  Output from each decision tree. 

step 4:  Final output is considered based on the average from all outputs from step 3. 

  
Random Forest Model Architecture  

We start our model architecture by implementing the Random Forest regressor from scikit 

learn (Pedregosa et al., 2011). The sklearn.ensemble.RandomForestRegressor has several 

parameters that can be tuned. There has been uncertainty in the literature related to many 

features, the ratio of m to p, to include in the Random Forest regressor. Breiman (2001) 

argued that the optimal number of features should be the square root of p. Hastie et al. (2008) 

argued that p / 3 is the set of features best suitable for the Random Forest regressor. However, 

Geurts et al. (2006) researched the ratio empirically. They concluded that the optimal set of 

features is simply m = p. After running our Random Forest model for different sets of m on 

different options, we conclude that our model's optimal set of features is m = p. 
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Table 4.1 Search for optimal features RF model for ATM put option with one year to 

maturity. 

 

Features m = p Log2 (p) Sqrt (p) p / 3 

One Year ATM Put 0,0404 0,0448 0,0448 0.0444 

            Table 4.1 Search for Optimal Features 

 

The next parameters we investigate are the number of trees and the length of the window 

size. Our initial model was equipped with ten trees and a window size of two. However, 

increasing the number of trees to the sklearn default of one hundred trees decreased the mean 

squared error, significantly so for options with a shorter time to maturity. The downside of 

increasing the number of decision trees is an increase in run-time. We also ran the model with 

a window size architecture from two to forty. However, this was too computationally 

expensive to do for each option. Table 4.2 illustrates the mean squared error for an ATM 

option with one year to maturity. The table indicates that increments in window size do not 

improve the mean squared error.  

 

Table 4.2 Search for optimal window size RF model for ATM put option with one year to 

maturity. 
                                                                                      Window size 

 2 10 20 30 40 

One Year ATM Put 0,0404 0,0421 0,0412 0,0426 0,0412 

Table 4.2 Search for Optimal Window Size 

 

 

 

4.3 Artificial Neural Networks 

Artificial Neural networks are software implementations of the network of neurons present in 

the human brain. The neurons in the human brain can be thought of as organic switches as the 

neurons, depending on the strength of their electrical or chemical input, can change their 
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output state. The neurons have millions of connections with other neighboring neurons (

Neural Networks Tutorial – A Pathway to Deep Learning, 2017). This highly complex 

network allows the human brain to carry out its learning function by activating particular 

neural connections. The learning process includes feedback resulting in strengthened neural 

connection when the expected outcome occurs. 

 

Recurrent Neural Networks 

A recurrent neural network (RNN) is a neural network where the objective is to predict the 

next step in the sequence, based on the previous steps observed. The idea of RNNs is to learn 

from earlier stages to forecast future trends. The earlier data stages need to be remembered 

when predicting the next step. In RNNs the hidden layers act as internal storage for storing 

the information captured in earlier stages of reading sequential data (Namin & Namini, 

2018). A substantial challenge with vanilla RNNs is that the networks only remember a few 

earlier steps in the sequence. Ideally, the network's memory horizon should be of the 

magnitude/length that the network understands real-world coherences, such as trends in 

financial time series. The more time steps we feed the network, the higher the chance of 

backpropagation gradients either accumulating, exploding, or vanishing (Brownlee, 2017). 

Therefore, the gradient becomes close to zero, the weights will not adjust, and the network 

does not learn relationships separated by time periods.  

 

Long Short-Term Memory (LSTM) 

LSTM is an adaptation of the Recurrent Neural Network (RNNs) with features adjusting for 

the memory challenges in traditional RNNs. The memorization of earlier trends and shocks of 

the data is possible through gates and a memory line incorporated in LSTM networks.  

Figure 4.3 demonstrates the internal structure of an LSTM cell.  

 
                                  Figure 4.3. LSTM Cell. Source: De Palma, (2019).  
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Each LSTM is a set of cells, or system modules, where the data streams are captured and 

stored. The cells resemble a transport line (the upper line in each cell) that connects out of 

one module to another one conveying data from past modules and gathering them for the 

present one. The number of cells in an LSTM model equals the size of the chosen window 

size. The gates in each cell decide if the data passing will be disposed, filtered, or added for 

the next cells (Namin & Namini, 2018).  Hence, the gates which are based on sigmoidal 

neural network layer, enable the cell to optionally let data pass through or be disposed. Each 

sigmoid layer yields a number in the range of zero to one, where an estimation of zero 

implies that no data passes through and an estimation of one implies that all data passes 

through. There are three types of gates involved of controlling the state of each cell: 

  

Forget Gate generates a number between 0 and 1, where 1 indicates keep all data and zero            

 indicates forget all data. 

Memory Gate chooses which new data needs to be stored in the cell. First, a sigmoid layer, 

called the “input door layer” chooses which values will be modified. Next, a tanh layer makes 

a vector of new candidate values that could be added to the state 

Output Gate decides the output of each cell. The output value is based on the cell state          

 along with the filtered and newly added data. 

 

 

LSTM Data Split 

First, we split our dataset into training, validation and test sets. This is important as the model 

will be near perfect if we feed the model with the test data. A common practice is to use 80% 

of the dataset as a training set and 20% as a test set. We settle on a 60:20:20 split, where 60% 

is used as the training set, 20% is used as the validation set and 20% is used as a test set. In 

other words, the first 1797 of the first observations in the dataset are used to train the model, 

the next 599 observations are used to improve the model and fine-tune hyperparameters and 

the last 599 observations are used for out-of-sample forecasts.   

The date intervals are as follows: 

-    Training set:    January 2007 – October 2015 

-    Validation set: October 2015 – September 2018 

-    Test set:           September 2018 – August 2021 
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Figure 4.4 Data split for training, validation and test set for LSTM model   

 
               Figure 4.4 LSTM Data Split  

 

 

 

 

LSTM Model Architecture and Hyperparameter Search  

Neural network algorithms are stochastic, i.e., they make use of randomness, such as 

initializing random weights, which will yield different results for a network that is trained on 

the same data. To improve the LSTM model, we use a random seed, which generates a long 

sequence of numbers, which will function as weights in the stochastic algorithm, and ensure 

that the same result occurs when we run the same model twice. 

Several parameters require tuning to optimize the LSTM model. The common practice is to 

evaluate every possible combination of parameters on the validation set and choose the 

varieties that minimize the statistical properties. However, this approach becomes 

computationally expensive, especially with an increased window size. For this reason, we 

develop an architecture that starts by combining smaller sets of hyperparameters, and for each 

iteration, the hyperparameters increase by 10. 

 

We start our architecture by implementing an LSTM model from the Keras functional API 

(Chollet, F., & others., 2015) with two hidden layers searching for hyperparameters. We tried 

using different stacks of LSTM layers, which was computationally expensive and did not 



 
 

26 
 

improve the model. Even though the activation function ReLU has risen in popularity 

because of its computability efficiency (James, 2018), we choose to use the Keras LSTM 

built-in activation function tanh, as this function seems to work better for our datasets. We 

use Sigmoid for the recurrent activation function, and Adam as our optimizer. Adam is a 

variant of the mini-batch gradient descent that adjusts the learning rate at each iteration for 

each model parameter (Chollet, F., & others., 2015). Our model is specified to minimize the 

mean squared error. Initially, we construct our model architecture with 300 epochs, a batch 

size of 64, a window size of 50 and 50 hidden neurons. Another issue with LSTM is 

overfitting. With excessive training, the model will learn the statistical noise in the training 

set, predicting the next value based on memory. To avoid overfitting, we implement early 

stopping, which stops the network as the learning rate stops improving1.   

The hyperparameters that are left to tune are the following: 

-       Batch size 

-       Hidden Neurons 

-       Window Size 

 

 

Batch Size 

We use the previously stated model architecture to speed up the hyperparameter search to 

locate the optimal batch size. Our goal is to find a batch size that minimizes the mean squared 

error, and the common practice is to increase the batch size by the power of two because of 

computational efficiencies (Kandel & Castelli, 2020). Figure 4.5 shows the results for the 

batch sizes and indicates an optimal batch size of 16.   

 

 

 

 

 

 

 

 
1 In addition to early stopping, we tried implementing Keras dropout (Chollet, F., & others., 2015) and Keras 
Gaussian noise (Chollet, F., & others., 2015), both techniques aimed at preventing overfitting. However, both 
features either increased - or unaffected the error statistics. 
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Figure 4.5 Optimal Batch size for LSTM network on ATM six months option 

 
                      Figure 4.5 Optimal batch size for a Delta 50 Put Option with Six Months to Maturity 
 

 

 

Combinations of Window Sizes and Neurons 

Further, we investigate the combinations of window sizes and hidden neurons, which are the 

parameters that largely affect the model's ability to learn. We implement the optimal batch 

size of 16 to our initial model and develop an architecture that combines the different neurons 

and window sizes from two to fifty. Table 4.3 reports the mean squared errors for each 

combination for an ATM option with six months to maturity. The hyperparameter search 

indicates that a simple model of two lags and twenty hidden neurons minimizes the mean 

squared error for this specific option.  
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Table 4.3 Reports the 36 Different Mean Squared Error Estimates for a Delta 50 Put Option 

with Six Months to Maturity. 

Window size 

Neurons 2 10 20 30 40 50 

2 0,2471 0,0566 0,0831 0,0604 0,0880 0,0597 

10 0,0933 0,1121 0,1127 0,2031 0,0609 0,0769 

20 0,0550 0,1008 0,0800 0,5671 0,0721 0,0589 

30 0,1035 0,0824 0,0637 0,0556 0,0611 0,0565 

40 0,0801 0,0740 0,0652 0,0579 0,0625 0,0565 

50 0,0765 0,0682 0,0639 0,0555 0,0594 0,0555 

           

Table 4.3. Reported error estimates for different choices of neurons and window size. The number of neurons along the vertical 

axis and window size along the horizontal axis. Optimal combination of neurons and window size is highlighted, and for this 

particular option the best combination of window size and neurons are 20 neurons and a window size of 2.  

4.4 Model Expectations 

There are different expectations for the forecasting performance of the models when 

considering the changes in distribution and properties of the various option maturities 

addressed in Section 3. The AR-GARCH model are modeling the conditional variance of the 

options, whilst the machine learning models use complicated algorithms to forecast one-day-

ahead. As the shorter maturities are more volatile and experience more extensive changes in 

the implied volatility, the more complex machine learning models expect to perform better 

than the GARCH-type models. We expect the models to perform more equally on the longer 

maturities, as the day-to-day changes in implied volatility are minuscule. Previous literature 

disagrees on which one of RF and LSTM is the best forecaster for securities and volatility. 

LSTM has proven better than ARIMA models, notably do LSTMs perform well in times of 
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market turmoil with extreme values. Therefore, we expect LSTM to perform well for volatile 

options on shorter maturities and OTM options. 
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5. Forecasting Results 

For the out-of-sample forecast, the accuracy is significantly lower for ATM options or 

options close to ATM, and decreases as the option becomes increasingly OTM. As the time 

to maturity increases, the forecast accuracy significantly improves. From one-week to 

maturity to one-year to maturity the average RMSE decreases from 0,7357 to 0,2417 for the 

GARCH model, 0,7303 to 0,2521 for LSTM and 0,8224 to 0,2473 for Random Forest. A 

decline of respectively 67,16%, 65,47% and 69,92%. The daily change in the implied 

volatility, computed as the absolute value of the average daily change for each maturity, 

declines by 76,21% when the maturity increases from one week to one year. The reduction in 

RMSE is therefore declining with longer maturities as expected beforehand. The daily change 

in the implied volatility is also lower for options ATM and options close to ATM than OTM 

options. It is also lower for call options than put options with the same option delta (negative 

risk-reversal). 

5.1 ATM and OTM Options Summary 

The results for an ATM put and an OTM put and call for each of the five specific times to 

maturity are presented in table 5.1. The first column indicates the options level of moneyness 

and time to maturity, the three following columns the forecasting accuracy of the AR(1)-

GARCH(1,1) model, the three mid columns the results for the LSTM model, and the three 

columns to the right the results for the Random Forest model.  
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Table 5.1. Forecast performance for OTM put/call options and ATM put options 

 
AR(1)-GARCH(1,1) LSTM RANDOM FOREST 

  MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

1 week put 5 0,6262 0,7913 0,5056 0,6362 0,7976 0,4974 0,8277 0,9098 0,5973 

1 week put 50 0,4895 0,6997 0,4632 0,4763 0,6901 0,4475 0,6944 0,8333 0,5492 

1 week call 5 0,5947 0,7712 0,4813 0,5917 0,7692 0,2833 0,7820 0,8843 0,5583 

1 month put 5 0,2561 0,5061 0,2729 0,2645 0,5143 0,2767 0,2670 0,5167 0,3055 

1 month put 50 0,1500 0,3873 0,2709 0,1537 0,3920 0,2308 0,1842 0,4292 0,2640 

1 month call 5 0,2519 0,5019 0,2518 0,2519 0,5019 0,2513 0,2806 0,5297 0,2782 

3 months put 5 0,1706 0,4131 0,2002 0,1792 0,4233 0,2056 0,1777 0,4215 0,2346 

3 months put 50 0,0773 0,2781 0,1540 0,0850 0,2915 0,1610 0,0888 0,2980 0,1757 

3 months call 5 0,1387 0,3725 0,1772 0,1413 0,3759 0,2278 0,1642 0,4052 0,1999 

6 months put 5 0,1324 0,3639 0,1641 0,1392 0,3731 0,1679 0,1443 0,3799 0,1963 

6 months put 50 0,0506 0,2248 0,1191 0,0550 0,2345 0,1269 0,0634 0,2518 0,1445 

6 months call 5 0,0975 0,3123 0,1433 0,1022 0,3197 0,1449 0,1137 0,3372 0,1649 

1 year put 5 0,1135 0,3369 0,1421 0,1215 0,3486 0,1436 0,1399 0,3740 0,1714 

1 year put 50 0,0367 0,1916 0,0972 0,0398 0,1995 0,0992 0,0404 0,2010 0,1124 

1 year call 5 0,0770 0,2776 0,1195 0,0815 0,2855 0,1232 0,0841 0,2900 0,1359 

Table 5.1 First column indicates the level of moneyness measured in delta for the different maturities. Delta 50 is the ATM 

option, and delta 5 is the OTM put and call option. The highlighted value indicates the best fitted value for that particular option 

for MSE, RMSE and MAE, respectively.  

The benchmark AR-GARCH model is performing superior for both put and call options 

compared to the machine learning methods for options with longer maturities. For all options 

with maturities of three months or more, the AR-GARCH model outperforms both of its 

more advanced competitors. The Random Forest model has the lowest forecast performance 

of the three models for all options across the different maturities. On shorter maturities, i.e., 

for options with one week and one month to maturity, the LSTM and AR-GARCH model are 

the best-fitted models. For an OTM put option with one week to maturity, the GARCH model 

is the best fitted with an RMSE of 0,7913 whilst the LSTM model has an RMSE of 0,7976. 
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The Random Forest model performs significantly poorer with an RMSE of 0,9098, an 

increase of 14,97% compared to the GARCH model. It is somewhat surprising that the 

GARCH outperforms the LSTM model for this particular option, considering this is the most 

volatile of the fifty-five options. The LSTM performs better in terms of MAE, meaning it is 

not as robust to outliers in the test set as the GARCH model. When we perform a DM test for 

this option we see that there are no significant differences between LSTM and GARCH or 

LSTM or RF. However, the AR-GARCH is significantly better than the RF. According to the 

DM test, AR-GARCH is significantly better than RF for one week options. AR-GARCH is 

significantly better than LSTM for the ATM option, but not for OTM options when time to 

expiration is one week.  

5.2 One Week to Maturity 

For all other options with a maturity of one week, the LSTM model outperforms the 

benchmark models on RMSE and MAE. An exception is a put option with a delta of 35, 

where the benchmark GARCH model has an MAE 1,96% lower than the LSTM, and a put 

option with a delta of 10, in which both models have an RMSE of 0,7635, a forecast accuracy 

7,85% better than the Random Forest model. On average, for all options with one week to 

maturity, the LSTM outperforms the GARCH model with 0,75% in RMSE and 2,77 % 

measured by MAE, whilst LSTM is 11,07% and 14,99% lower than the Random Forest in 

terms of RMSE and MAE, respectively. These findings show that the benchmark AR-

GARCH model is not significantly poorer than the LSTM model at shorter maturities, whilst 

the LSTM outperforms the Random Forest model considerably. For the one week to maturity 

there is no significant difference between LSTM and RF, according to the DM test.  

In Figures 5.1, 5.2 and 5.3, the forecasted values for the ATM put option with one week to 

maturity are plotted against the actual spot of implied volatility for the forecasting period for 

LSTM, RF and benchmark GARCH, respectively.  
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Figure 5.1. Forecast results for LSTM model on ATM one week to maturity option. 

 

Figure 5.1. Forecast results for LSTM model on ATM one week to maturity option plotted against the actual spot rate for the 

implied volatility.  

 

Figure 5.2. Forecast results for RF model on ATM one week to maturity option.  

 

Figure 5.2. Forecast results for Random Forest model on ATM one week to maturity option plotted against the actual spot rate 

for the implied volatility.  

 



 
 

34 
 

Figure 5.3. Forecast results for benchmark AR-GARCH model on ATM one week to 

maturity option.  

 

Figure 5.3. Forecast results for the benchmark AR-GARCH model on ATM one week to maturity option plotted against the 

actual spot rate for the implied volatility.  

 

5.3 One Month to Maturity 

When the time to maturity increases to one month, the results fluctuate more. Comparing the 

OTM and ATM put and call options depicted in Table 5.1, the benchmark AR-GARCH 

model seems to deliver the best forecast accuracy of the three models measured by RMSE. 

The LSTM performs equally well for the OTM call option and beats the benchmark AR-

GARCH at MAE for the OTM put option. When comparing RMSE for all levels of 

moneyness, the benchmark AR-GARCH model performs on average 0,78% better than the 

LSTM model. However, the LSTM is, on average, 1,56% more accurately measured by 

MAE. The benchmark AR-GARCH model captures the outliers, i.e., significant sudden 

changes in the volatility, better than the LSTM model. It is also interesting that the LSTM 

model outperforms both benchmark models in terms of RMSE and MAE for OTM call 

options, i.e., options with a delta of 25 and lower. Comparing the LSTM to the Random 

Forest model, the RMSE and MAE are 4,97% and 10,82% lower for the LSTM model. The 

LSTM model outperforms the Random Forest model more for call options than for put 

options. 
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According to the DM test, LSTM is significantly better than the RF for OTM call option, but 

not significantly better for ATM and OTM put options. Comparing LSTM to AR-GARCH 

model, the same applies here where the LSTM is significantly better for OTM call option, 

and there is no significant difference for ATM and OTM put options. When comparing AR-

GARCH to RF, RF are significantly poorer for ATM and OTM put options, and there are no 

significant differences between OTM call options.  

Figures 5.4, 5.5 and 5.6, plot the forecasted values for ATM one month to maturity put 

options for the LSTM, RF and AR-GARCH model. The plot shows that the RF model has 

problems with the extensive shocks in implied volatility, especially around March 2020, 

when the COVID-19 pandemic had its outbreak worldwide. The RF overestimates the peaks 

from COVID-19 shocks, whereas the LSTM model underestimates these shocks. All through 

the test period, which stretches from the end of September 2018 to august 2021, the AR-

GARCH fits the rapid changes in implied volatility better than the machine learning models, 

especially around the extensive shocks, whereas the implied volatility rises significantly.   

 

Figure 5.4. Forecasting results for LSTM model on ATM one month option. 

 

Figure 5.4. Forecast results for LSTM model on ATM one month to maturity option plotted against the actual spot rate for the 

implied volatility.  
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Figure 5.5. Forecasting results for Random Forest model.  

 

Figure 5.5. Forecast results for Random Forest model on ATM one month to maturity option plotted against the actual spot rate 

for the implied volatility.  

 

Figure 5.6. Forecasting results for benchmark AR-GARCH model. 

 

Figure 5.6. Forecast results for AR-GARCH model on ATM one month to maturity option plotted against the actual spot rate for 

the implied volatility.  



 
 

37 
 

5.4 Longer Maturities 

For all options with a time to maturity of three months and longer, the simple benchmark 

AR(1)-GARCH(1,1) model proved superior to the more complicated machine learning 

models across all moneyness levels. Due to non-stationarity at a 5% significance level, the 

first difference is applied for all options when the maturity surpasses three months. The 

benchmark AR-GARCH model is better than the LSTM model with increasing maturity. At 

the same time, the Random Forest comes closer to the LSTM with increasing maturity, 

measured in average RMSE. However, LSTM still outperforms the Random Forest for all 

moneyness levels except for a three-month put option with a delta of five and a call option 

with a delta value of 35. On average, the difference in RMSE between the Random Forest 

and LSTM declines from 11,07% for one-week options to 2,80% for a one-year option. When 

comparing the MAE for the LSTM and Random Forest model, the differences are more 

significant, varying from the lowest for the three-month option at 8,24% to 14,99% for the 

one-week option. Interestingly, the MSE increases between the two models as the time to 

maturity increases with respectively 10,08% at six months and 11,25% when the time to 

maturity increases to one year, while the difference in RMSE decreases. When conducting 

the DM test on the longer maturities, the results indicate no significant difference between the 

forecasts, statistically speaking. This result is expected as the day-to-day changes in implied 

volatility decrease as maturity increases. 

5.5 Other Findings  

The distribution for the changes in implied volatility has high peaks and fat tails. As 

mentioned in Section 3, the distribution changes with time to maturity. When regressing in-

sample, we assume that the residuals follow a normal distribution. This precondition is 

applied for the in-sample regressions for the benchmark AR(1)-GARCH(1,1) model. In the 

same regressions with Student t-distribution, the average RMSE declined by 1,36% for one-

week to maturity options, making the Student t-distributed model the superior model for 

forecasting compared to the benchmark AR-GARCH model. For the options with one month 

to maturity, the Student t-distributed model performs 0,24% better than the benchmark AR-

GARCH model. The t-distribution fits better for data with mean clustering and fat tails than 

the normal distribution. Our findings support that the t-distributed models fit the data better 

for shorter maturities. The benchmark AR(1)-GARCH(1,1) model with normal distribution is 
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better than the t-distribution for the first-order integrated options with a maturity of three 

months and more. It is essential to state that the in-sample goodness of fit decreases for the 

Student t-distributed model compared to the normal distribution model used as the 

benchmark. According to the DM test, the t-distributed AR(1)-GARCH(1,1) is significantly 

better than the LSTM and RF model for one week OTM options. The differences between 

other options are not significant.  

When the extensions to the AR(1)-GARCH(1,1) as explained in Appendix D are imposed, we 

see that other econometric model specifications outperform the benchmark model. Further, 

when all econometric specifications are considered, the machine learning models are 

outperformed for all options. The results of these models are exhibited in Appendix D.  

5.6 Results Discussion  

Previous literature has proven that LSTM models are forecasting better than ARIMA models 

for financial time series. However, the market expectation of risk changes is quickly absorbed 

when modeling implied volatility. Combining the ARMA and GARCH framework as we 

impose in this study makes the econometric framework more accurate when different 

specifications are considered. The LSTM was, compared to the econometric models, more 

accurate for shorter option maturities, which are the most volatile. When studying the time 

series properties as discussed in Section 3, the shorter maturities cross their mean more often 

than the longer maturities. The LSTM model seems to pick up these rapid changes in implied 

volatility better than the benchmark, which is an interesting finding as transitions from low to 

high market volatility regimes can be abrupt and short lived. However, when we extend the 

AR-GARCH model with a moving average term and t-distribution in the residuals are 

accounted for, the ARMA-GARCH models capture most of the features in the implied 

moments of the data—resulting in more accurate forecasts for the implied volatility.  
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6 Conclusion 

The main objective of this thesis is to analyze the forecasting performance of an LSTM 

model compared to two types of benchmark models, i.e. the Random Forest model and 

Gussian distributed AR(1)-GARCH(1,1) model, for daily observations of the implied 

volatility for FX options. All regressions and analyses are conducted on daily observations of 

the spot rate of implied volatility for EUR/USD FX options. Implied volatility is of interest to 

market participants for hedging and trading purposes. The models applied in this analysis are 

widely used on financial data such as return rates, volatility and indexes, but literature 

regarding the implied volatility of FX options are scarce.  

 

We find that the AR-GARCH model outperforms the LSTM model for longer maturities, and 

the RF model was the poorest overall forecaster. LSTM is the better model for shorter 

maturities. Shorter maturity options are more volatile than the longer maturities. The LSTM 

seems to capture rapid changes better than the benchmark models, which is consistent with 

the findings in previous literature. The LSTM model provides a stable framework for when 

immense and immediate changes in implied volatility occur, particularly essential for hedging 

and trading against significant shifts in FX rates to avoid big losses.  

Overall, the Random Forest model is a poorer forecaster of implied volatility than the LSTM 

and AR-GARCH model for all moneyness levels and time to maturity. When we conduct the 

benchmark AR(1)-GARCH(1,1) with t-distribution, the LSTM model is also outperformed 

for shorter maturities. According to our findings, the LSTM model is outperformed by 

traditional econometric models with respect to forecasting accuracy of the implied volatility 

of EUR/USD FX options when different specifications of the ARMA-GARCH framework 

are taken into consideration. As discussed in Section 5 we find that for some options the AR-

GARCH is significantly better than the LSTM, but for most options the forecasting difference 

between the two is not statistically significant, according to the Diebold-Mariano test 

measured by MSE. RF is for most options significantly poorer than the AR-GARCH model. 

RF is poorer than LSTM, but the difference is not statistically significant for most options.  
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7 Appendix 

7.1 Appendix A: Theory 

Appendix A elaborate theory that is relevant for understanding the processes, analysis and 

tests conducted in this thesis, but were considered excess information for a knowledgeable 

reader. 

Volatility Theory  

Volatility measures the fluctuated deviation of the underlying asset (in our case, the price of a 

currency) from its mean over a defined period, given by the formula: 

 
𝜎 =  √

1
𝑛 ∑(𝑥𝑡 − �̅�)2

𝑛

𝑡=1
 

(A.1) 

 

Where 𝑥𝑡 is the exchange rate at time t, �̅� is the mean of the exchange rate over the given 

period, and n is the number of observations. Equation (A.1) is often called the realized 

volatility, and realized volatility is computed from historical data of the exchange rate (or the 

underlying asset) spot prices. In the stock market, the implied volatility is derived from 

option prices observed in the market and interpreted as the market's expectations for future 

volatility. Thus, implied volatility measures expected future fluctuations in the option price. 

In the FX market on the other hand, implied volatility is directly quotas and you do not have 

to calculate the option price to obtain it, and it is a market-based measure of future risk. A 

widely applied model for option pricing is the Black-Scholes model, and for a European call 

option on a stock is given by:( Black & Scholes, 1973):  

 𝐶(𝑆, 𝐾, 𝜎, 𝑟, 𝑇, 𝛿)  =  𝑆𝑒−𝛿𝑇𝑁(𝑑1) −  𝐾𝑒−𝑒𝑇(𝑑2) (A.2) 

 

where: 

𝑑1 =  
𝑙𝑛(𝑆

𝐾) +  (𝑟 − 𝛿 + 1
2 𝜎2)

𝜎√𝑇
 

𝑑2  =  𝑑1 − 𝜎√𝑇 

Where S is the stock's current price, K is the option's strike price, σ is the volatility of the 

stock, r is the continuous compounded risk-free interest rate, T is time to maturity, and δ is 
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the dividend yield on the stock. The N(x) function is the cumulative normal distribution 

function. When applying the Black-Scholes formula to other underlying assets, we need to 

modify the formula. By replacing the dividend yield with foreign risk-free interest rate 𝑟𝑓 and 

the stock price with the spot exchange rate 𝑥0 we define the prepaid forward price for the 

currency as: 

 𝐹0,𝑇
𝑃  =  𝑥0𝑒−𝑟𝑓𝑇 (A.3) 

Using equation A.3 above, we can rewrite the Black-Scholes model to a European call option 

on foreign exchange spot rates as: 

 
𝐶(𝑥, 𝐾, 𝜎, 𝑟, 𝑇, 𝑟𝑓)  =  𝑥𝑒−𝑟𝑓𝑇𝑁(𝑑1) −  𝐾𝑒−𝑟𝑇(𝑑2) 

(A.4) 

where: 

𝑑1  =  
𝑙𝑛(𝑥

𝐾) + (𝑟 − 𝑟𝑓 − 1
2𝜎2)𝑇

𝜎√𝑇
 

𝑑2   = 𝑑1  −  𝜎√𝑇 

Equation A.4 is known as the Garman-Kohlhagen model (McDonald 2014), after Garman 

and Kohlhagen (1983). Using the put-call-parity we can derive the price of a European put: 

 
𝑃(𝑥, 𝐾, 𝜎, 𝑟, 𝑇, 𝑟𝑓)  =  𝐶(𝑥, 𝐾, 𝜎, 𝑟, 𝑇, 𝑟𝑓)  +  𝐾𝑒−𝑟𝑇 − 𝑥𝑒−𝑟𝑓𝑇 

(A.5) 

From equation A.5, it is impossible to rearrange the Black-Scholes model for the volatility 

alone (McDonald 2014). Instead, it is possible when all other variables are known to observe 

the volatility from the model. This observed volatility is the implied volatility and for FX 

options implied volatility is a market-based measure of expected risk.  

 
 
Econometric Models Theory - ARMA 
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The autoregressive process is a time series where the current value of a variable depends on 

its previous or lagged values. The equation for the autoregressive process of order p, the 

AR(p) process, can be written as a linear difference equation: 

 
𝑦𝑡  =  𝜇 + ∑ 𝜙𝑖𝑦𝑡−𝑖+𝜀𝑡

𝑝

𝑖=1

 
(A.6) 

where:  

 𝜀𝑡 ∼ 𝑁(0, 𝜎𝑡
2)  (A.7) 

Which means that the residuals follow a normal distribution with a mean of 0 and variance 

𝜎𝑡
2, Another form of a time series process is the moving average process of order p, the 

MA(q) process, which is a linear combination of white noise processes so that 𝑦𝑡 depends on 

current and previous values of a white noise disturbance term (Books, 2014). We derive the 

MA(q) process as: 

 
𝑦𝑡  =  𝜇 + ∑ 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡

𝑞

𝑖=1

 
(A.8) 

where 𝜇 is a constant, 𝜃𝑖 is the moving average coefficient, and 𝜀𝑡 is a white noise disturbance 

term from equation A.7. The moving average term accounts for the effect of a sudden shock 

in the mean equation. A time series can be a combination of an AR(p) and MA(q) process by 

letting the 𝜀𝑡 in equation A.7 be written as an MA(q) process. We obtain the model by 

combining the expressions for 𝑦𝑡 from equations A.6 and A.8, which gives: 

 𝑦𝑡  =  𝜇 + ∑ 𝜙𝑖𝑦𝑡−𝑖 +𝑝
𝑖=1  ∑ 𝜃𝑖𝜀𝑡−𝑖 + 𝜀𝑡

𝑞
𝑖=1  (A.9) 

This is known as an ARMA(p,q) process and is the expression for the mean equation for our 

model. When the values for p and q equal zero, we are back to the AR(p) and MA(q) 

processes, respectively. When the ARMA(p,q) model described in equation A.9 is used to 

forecast, we rewrite the equation like this: 

 
𝑓𝑡,𝑠  =  ∑ 𝜙𝑖𝑓𝑡,𝑠−1

𝑝

𝑖=1

+  ∑ 𝜃𝑖𝜀𝑡+𝑠−𝑗

𝑞

𝑖=1

 
(A.10) 
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The ARMA model can be extended to an ARIMA model, when the I stand for integrated 

order. When a time series is integrated of order one, i.e. I(1), the variable in question is 

differenced one time. The difference of a variable is the change from 𝑦𝑡−1 to  𝑦𝑡. The lagged 

value of a variable can be written as 𝑦𝑡−1  =  𝐿𝑦𝑡. Using this we can formulate the difference 

of the variable in three ways: 𝛥𝑦𝑡  =  (1 − 𝐿)𝑦𝑡  =  𝑦𝑡 − 𝑦𝑡−1.  

 

ARCH-LM 

The ARCH-LM test can be expressed as an auxiliary test regression on the squared residuals 

of the ARCH(q) (See Engle 1982) and is examined by running the regression: 

 
𝑒𝑡
2  =  𝛿0 + ∑ 𝛿𝑠𝑒𝑡−𝑠

2 + 𝑣𝑡

𝑞

𝑠=1

 
(A11) 

Then the regression 𝑅2 is multiplied by the number of observations to obtain the test statistic. 

A Lagrange multiplier interpretation can be given the test statistic and is asymptotically 

distributed as a 𝜒2(p) random variable (Sjölander, 2010). Test results show that for all 

options, we can at any significance level reject the null hypothesis of no ARCH effects. We 

conclude that there is proof of autoregressive conditional heteroskedasticity in the squared 

residuals for all options. The test estimated a 0,0001 for a put option with one week to 

maturity and a delta of 10, and 0,0004 for the one-week option with a delta of 5. For all other 

options, the estimator was 0,0000, and the test firmly states the presence of ARCH effects, 

and GARCH models are the proper econometric framework for modeling the data.  

White noise 

A white noise time series process can be written as a stochastic difference equation given by: 

 𝑥𝑡  =  𝑢𝑡~ 𝐼𝐼𝐷 (0, 𝜎𝑡
2) (A.12) 

Where IID stands for independent and identically distributed, and the process is stationary in 

mean with a E(𝑥𝑡) = 0 and a variance var(𝑥𝑡) =  𝜎𝑡
2.  

Stationary 
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When modeling and forecasting econometric time series, the variable in question must be 

stationary. A variable need to fulfill three requirements to be weakly stationary, i.e., have a 

constant mean, a constant variance and a constant autocovariance structure (Brooks, 2014). 

Weak stationarity essentially means that the time series will return to its mean after a shock, 

and the effect of the shock will disappear with time. If the effect of shocks affects the time 

series in the long run, the series is non-stationary and could be trending away from its mean. 

The white noise series from equation A.12 is an example of a stationary time series.  

 

Augmented Dickey-Fuller (ADF) Test 

The augmented Dickey-Fuller test for unit root is a test to determine if the time series process 

follows a unit root, and therefore is non-stationary. A time series process needs to be 

stationary to avoid spurious regression, meaning the regression has a high 𝑅2 and t-statistics 

that appear to be significant, but without any economic meaning (Enders, 2015). Consider the 

simple autoregressive process of order one, an AR(1) process, given by the equation: 

 𝑦𝑡  =  𝜙𝑦𝑡−1 + 𝑢𝑡 (A.13) 

where 𝑢𝑡 is required to be a white noise process. To determine if the process is stationary, the 

test 𝜙 = 1 is tested against the alternative hypotheses that 𝜙 < 1, formally expressed: 

𝐻0: 𝜙 = 1, a unit root process 

𝐻1: 𝜙 < 1, a stationary process 

where the test is conducted on the first difference of equation XX, expressed as: 

 𝛥𝑦𝑡  =  (𝜙 − 1)𝑦𝑡−1 + 𝑢𝑡 (A.14) 

where 𝜙 − 1 = 𝜓, which entails equation XX to be expressed as:  

 𝛥𝑦𝑡  =  𝜓𝑦𝑡−1 + 𝑢𝑡 (A.15) 

with the test hypotheses:  
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𝐻0: 𝜓 = 0, a unit root process 

𝐻1: 𝜓 < 0, a stationary process 

The test statistic DF = �̂�
𝑠𝑒(𝜓)̂

 where  �̂� is the estimated coefficient of 𝜓 and se(�̂�) = 𝜎�̂�. Given 

a significance level 𝛼, 𝐻0 is rejected if DF < 𝐶𝛼where 𝐶𝛼 is the critical value. The test is 

conducted as a t-test, and since the null hypothesis is unit root (non-stationarity), the test 

statistic does not follow a standard t-distribution. This causes the critical values to be 

interpreted more strictly, meaning they need to be sufficiently more negative than normal test 

statistics. This is known as the Dickey-Fuller test. To determine that the residuals follow a 

unit root process, the test is conducted at equation XX, that includes lags of the process to test 

for autocorrelations in the error term. The augmented Dickey-Fuller test is therefore the same 

test as above, applied on the model given by: 

 
𝛥𝑦𝑡  =  𝜇 + 𝜓𝑦𝑡−1 + ∑ 𝛼𝑖𝛥𝑦𝑡−𝑖

𝑝

𝑖=1
+ 𝜆𝑡 + 𝑢𝑡 

(A.16) 

Phillips-Perron Test 

The Phillips-Perron, introduced by Phillips and Perron in 1988, test for unit root are a 

conducted as a regression of 𝑦𝑡 as expressed in the following equation:  

 𝑦𝑡  =  𝛼 + 𝜌𝑦𝑡−1 + 𝜀𝑡 (A.17) 

Where 𝜌 works as a correction term for serial correlation and heteroskedasticity. The 

correction term 𝜌 is non-parametric which makes it robust to the presence of serial correlation 

and heteroskedasticity. The test is done by a t-test, where the hypothesis is, like the ADF, 

expressed: 

𝐻0: 𝜌 = 1 

𝐻1: 𝜌 < 1 

The main differences between the ADF and PP test are that the PP test does not need to be 

specified with the number of lags in the regression, and according to Wang and Tomek 
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(2004) the estimated coefficients from the regression are modified to Z statistics, which are 

referred to as Dickey-Fuller critical values.  

Diebold-Mariano Test 
The Diebold-Mariano test measures if a forecasted time series is significantly better than 

another, measured from the forecasted MSE. 

First compute the loss-differential: 𝑑𝑖 = 𝑒𝑖
2 − 𝑟𝑖

2 where 𝑒𝑖
2 is the error measure from the test 

model and ri2 from the reference model. Calculate average loss-differential �̅� = 1
𝑛

∑ 𝑑𝑖
𝑛
𝑖=1  , 

𝜇=E[𝑑𝑖]. For each n > k ≥ 1, we define: 𝛾𝑘 = 1
𝑛

∑ (𝑑𝑖 − �̅�)(𝑑𝑖−𝑘 − �̅�)𝑛
𝑖=𝑘+1  

For each h ≥ 1 the DM test statistic is:  

DM = �̅�

√
𝛾0+2 ∑ 𝛾𝑘

ℎ−1
𝑘=1 𝑛⁄

  

Generally, it is sufficient that h = 𝑛1/3 + 1. Under the null hypothesis 𝜇 = 0 the DM test 

statistic follow a normal distribution DM ~N(0,1) where there is a significant difference 

between the two forecasts if DM > 𝑍𝑐𝑟𝑖𝑡 where 𝑍𝑐𝑟𝑖𝑡 is the two-tailed critical value for the 

normal distribution (Zaiontz, 2022).  
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7.2 Appendix B: Descriptive Statistics 

In this section we present descriptive statistics that isn’t included but referred to in the main 
paper.  

Table B.1 Descriptive statistics of implied volatility for options with one month to maturity 
 

Put 5 Put 10 Put 18 Put 25 Put 35 Put 50 Call 35 Call 25 Call 18 Call 10  Call 5 
Obs 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 

Mean 10,78 10,35 9,93 9,67 9,40 9,16 9,08 9,10 9,18 9,33 9,54 
Min 3,74 3,69 3,67 3,66 3,69 3,77 3,89 4,01 4,12 4,20 4,29 
25 % 7,39 7,18 6,99 6,87 6,73 6,64 6,66 6,71 6,78 6,87 7,02 
50 % 9,70 9,36 9,04 8,82 8,57 8,38 8,28 8,32 8,39 8,52 8,68 
75 % 13,07 12,56 12,00 11,68 11,28 10,96 10,79 10,76 10,78 10,88 11,05 
Maks 35,12 33,51 32,01 31,02 29,94 28,88 28,25 28,19 28,57 29,38 31,04 
Var 21,04 18,48 16,23 14,89 13,63 12,58 12,03 12,02 12,32 12,94 14,24 
σ 4,59 4,30 4,03 3,86 3,69 3,55 3,47 3,47 3,51 3,60 3,77 

Table B.1 descriptive statistics of implied volatility for options with one month to maturity. Put with delta 50 is ATM and put and 
call options become increasingly OTM as the delta value decreases. Put 5 indicates a put option with an option delta of 5. 

Different quantiles measure the level of the implied volatility throughout the data sample. 

 

Table B.2 Descriptive statistics of implied volatility for options with three months to maturity 
 

Put 5 Put 10 Put 18 Put 25 Put 35 Put 50 Call 35 Call 25 Call 18 Call 10  Call 5 
Obs 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 

Mean 11,60 11,01 10,39 10,01 9,62 9,29 9,16 9,18 9,28 9,52 9,76 
Min 4,18 4,10 4,05 4,03 4,05 4,14 4,33 4,50 4,64 4,72 4,81 
25 % 7,90 7,57 7,23 7,05 6,89 6,75 6,77 6,88 6,97 7,14 7,30 
50 % 10,74 10,20 9,63 9,27 8,88 8,51 8,37 8,37 8,48 8,66 8,87 
75 % 14,36 13,61 12,82 12,30 11,80 11,24 10,98 10,87 10,89 11,02 11,24 
Maks 30,28 28,43 26,82 25,76 24,76 24,65 25,05 25,74 26,58 28,23 29,82 
Var 21,61 18,69 15,69 14,04 12,51 11,26 10,69 10,68 11,05 12,03 13,30 
σ 4,65 4,32 3,96 3,75 3,54 3,36 3,27 3,27 3,32 3,47 3,65 

Table B.2 Descriptive statistics of implied volatility for options with three months to maturity. Put with delta 50 is ATM and put 
and call options become increasingly OTM as the delta value decreases. Put 5 indicates a put option with an option delta of 5. 

Different quantiles measure the level of the implied volatility throughout the data sample. 
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Table B.3 Descriptive statistics of implied volatility for options with six months to maturity 
 

Put 5 Put 10 Put 18 Put 25 Put 35 Put 50 Call 35 Call 25 Call 18 Call 10  
Obs 2994 2994 2994 2994 2994 2994 2994 2994 2994 2994 

Mean 12,25 11,53 10,74 10,29 9,82 9,43 9,28 9,30 9,44 9,74 
Min 4,60 4,48 4,38 4,34 4,34 4,42 4,63 4,84 5,02 5,32 
25 % 8,48 8,02 7,57 7,31 7,11 6,96 6,94 7,05 7,19 7,40 
50 % 11,44 10,72 10,00 9,56 9,07 8,63 8,42 8,39 8,50 8,75 
75 % 15,35 14,44 13,41 12,77 12,09 11,44 11,04 10,89 11,02 11,28 
Maks 26,92 25,50 23,83 23,08 22,53 22,29 22,63 23,31 24,17 25,86 
Var 21,48 18,45 15,04 13,28 11,61 10,28 9,69 9,67 10,04 11,16 
σ 4,63 4,30 3,88 3,64 3,41 3,21 3,11 3,11 3,17 3,34 

Table B.3 Descriptive statistics of implied volatility for options with six months to maturity. Put with delta 50 is ATM and put and 
call options become increasingly OTM as the delta value decreases. Put 5 indicates a put option with an option delta of 5. 

Different quantiles measure the level of the implied volatility throughout the data sample. 

 

Figure B.1 Implied volatility for one month, three and six months 

 

Figure B.1 Time series for the spot rates of implied volatility for ATM put options with one, three and six months to maturity from 
2. January 2007 until 31. August 2021. The red horizontal line exhibits the options mean value for the sample period 
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Figure B.2 Plot of the 25 delta risk reversal for all maturities, an illustration of implied 
skewness over the sample.  

 

Figure B.2 Plot of the risk reversal for the 25 delta option for each maturity. The red line highlights zero, where implied volatility 
is equal for OTM call and put options. Recall that risk reversal is RR = IVcall - IVput and indicate that put options mostly have a 

higher implied volatility compared to the equivalent call option.  
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Figure B.3 Daily returns and log daily returns for ATM options for each maturity  

Figure

 

Figure B.3 Daily returns and daily log returns for the ATM option for each maturity. The label indicates 
option maturity, vertical axis the frequency of returns and horizontal axis amplitude of returns.  
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7.3 Appendix C: Test Results LSTM and Benchmark Models 
In this section the forecast accuracy for LSTM compared to the benchmark RF model and 

benchmark AR(1)-GARCH(1,1) is reported, measured in MSE, RMSE and MAE.  

 
Table C.1 Forecast accuracy for one week to maturity options.  
 

LSTM AR(1)-GARCH(1,1) Random forest  
MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

Put 5 0,6362 0,7976 0,4974 0,6262 0,7913 0,5056 0,8277 0,9098 0,5973 
Put 10 0,5830 0,7635 0,4852 0,5830 0,7635 0,4933 0,6864 0,8285 0,5628 
Put 18 0,5332 0,7302 0,4666 0,5422 0,7364 0,4826 0,7395 0,8599 0,5509 
Put 25 0,5073 0,7122 0,4604 0,5211 0,7218 0,4767 0,6811 0,8253 0,5497 
Put 35 0,4852 0,6966 0,4786 0,4995 0,7067 0,4692 0,5813 0,7624 0,5144 
Put 50 0,4763 0,6901 0,4475 0,4895 0,6997 0,4632 0,6944 0,8333 0,5492 
Call 35 0,4869 0,6978 0,4490 0,4980 0,7057 0,4609 0,6128 0,7828 0,5249 
Call 25 0,5079 0,7127 0,4579 0,5155 0,7180 0,4632 0,6269 0,7918 0,5221 
Call 18 0,5209 0,7217 0,4327 0,5322 0,7295 0,4652 0,5660 0,7523 0,5158 
Call 10 0,5500 0,7416 0,4423 0,5605 0,7486 0,4714 0,6655 0,8158 0,5445 
Call 5 0,5917 0,7692 0,4707 0,5947 0,7712 0,4813 0,7820 0,8843 0,5583 

Table C.1 One week to maturity forecast accuracy for LSTM and the two benchmark models. The first column indicates option 

level of moneyness. Put 50 is ATM option and put/call 5 is furthest OTM. The three next columns is reported accuracy for LSTM 

model, the mid columns the AR(1)-GARCH(1,1) and the three right columns is reported forecast accuracy for RF model.  

 
Table C.2 Forecast accuracy for one month to maturity options.  

   
LSTM AR(1)-GARCH(1,1) Random forest  

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 
Put 5 0,2645 0,5143 0,2767 0,2561 0,5060 0,2729 0,2670 0,5167 0,3055 
Put 10 0,2310 0,4806 0,2606 0,2236 0,4728 0,2610 0,2557 0,5057 0,2876 
Put 18 0,1971 0,4440 0,2479 0,1893 0,4351 0,2479 0,1961 0,4428 0,2782 
Put 25 0,1771 0,4208 0,2394 0,1709 0,4134 0,2397 0,1978 0,4447 0,2694 
Put 35 0,1584 0,3980 0,2316 0,1555 0,3944 0,2324 0,1683 0,4102 0,2558 
Put 50 0,1537 0,3920 0,2308 0,1500 0,3873 0,2709 0,1842 0,4292 0,2640 
Call 35 0,1595 0,3994 0,2300 0,1582 0,3978 0,2270 0,1730 0,4159 0,2498 
Call 25 0,1736 0,4167 0,2292 0,1737 0,4167 0,2300 0,1996 0,4468 0,2602 
Call 18 0,1899 0,4358 0,2302 0,1909 0,4369 0,2340 0,2272 0,4767 0,2650 
Call 10 0,2181 0,4670 0,2361 0,2215 0,4706 0,2415 0,2576 0,5075 0,2731 
Call 5 0,2519 0,5019 0,2513 0,2519 0,5019 0,2518 0,2806 0,5297 0,2782 

 
Table C.2 One month to maturity forecast accuracy for LSTM and the two benchmark models. The first column indicates option 

level of moneyness. Put 50 is ATM option and put/call 5 is furthest OTM. The three next columns is reported accuracy for LSTM 

model, the mid columns the AR(1)-GARCH(1,1) and the three right columns is reported forecast accuracy for RF model.  
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Table C.3 Forecast accuracy for three months to maturity options. 
 

LSTM AR(1)-GARCH(1,1) Random forest  
MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

Put 5 0,1792 0,4233 0,2056 0,1706 0,4131 0,2002 0,1777 0,4215 0,2346 
Put 10 0,1484 0,3852 0,1906 0,1421 0,3769 0,1888 0,1626 0,4032 0,2116 
Put 18 0,1177 0,3431 0,1800 0,1127 0,3357 0,1758 0,1284 0,3583 0,2016 
Put 25 0,1045 0,3233 0,1802 0,0975 0,3123 0,1685 0,1159 0,3404 0,1921 
Put 35 0,0903 0,3005 0,1660 0,0845 0,2907 0,1604 0,1120 0,3347 0,1889 
Put 50 0,0850 0,2915 0,1610 0,0773 0,2781 0,1540 0,0888 0,2980 0,1757 
Call 35 0,0825 0,2872 0,1805 0,0795 0,2820 0,1532 0,0900 0,3000 0,1727 
Call 25 0,0921 0,3035 0,1688 0,0872 0,2953 0,1556 0,1049 0,3239 0,1838 
Call 18 0,0991 0,3148 0,1601 0,0974 0,3122 0,1595 0,1111 0,3333 0,1815 
Call 10 0,1240 0,3521 0,1746 0,1185 0,3442 0,1679 0,1370 0,3701 0,1938 
Call 5 0,1413 0,3759 0,1886 0,1387 0,3725 0,1772 0,1642 0,4052 0,1999 

Table C.3 Three months to maturity forecast accuracy for LSTM and the two benchmark models. The first column indicates 

option level of moneyness. Put 50 is ATM option and put/call 5 is furthest OTM. The three next columns is reported accuracy 

for LSTM model, the mid columns the AR(1)-GARCH(1,1) and the three right columns is reported forecast accuracy for RF 

model.  

 

 

Table C.4 Forecast accuracy for six months to maturity options. 
 

LSTM AR(1)-GARCH(1,1) Random forest  
MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

Put 5 0,1392 0,3731 0,1679 0,1324 0,3639 0,1641 0,1443 0,3799 0,1963 
Put 10 0,1169 0,3419 0,1585 0,1072 0,3274 0,1523 0,1282 0,3581 0,1814 
Put 18 0,0887 0,2978 0,1493 0,0805 0,2837 0,1392 0,0932 0,3053 0,1673 
Put 25 0,0738 0,2717 0,1436 0,0674 0,2596 0,1317 0,0810 0,2846 0,1571 
Put 35 0,0620 0,2490 0,1337 0,0564 0,2375 0,1244 0,0675 0,2598 0,1490 
Put 50 0,0550 0,2345 0,1269 0,0506 0,2248 0,1191 0,0634 0,2518 0,1445 
Call 35 0,0557 0,2360 0,1249 0,0518 0,2276 0,1182 0,0597 0,2443 0,1365 
Call 25 0,0608 0,2466 0,1350 0,0572 0,2392 0,1206 0,0656 0,2561 0,1429 
Call 18 0,0699 0,2644 0,1358 0,0649 0,2548 0,1243 0,0747 0,2733 0,1422 
Call 10 0,0860 0,2933 0,1361 0,0815 0,2855 0,1337 0,0925 0,3041 0,1534 
Call 5 0,1022 0,3197 0,1449 0,0975 0,3123 0,1433 0,1137 0,3372 0,1649 

Table C.4 Six months to maturity forecast accuracy for LSTM and the two benchmark models. The first column indicates option 

level of moneyness. Put 50 is ATM option and put/call 5 is furthest OTM. The three next columns is reported accuracy for LSTM 

model, the mid columns the AR(1)-GARCH(1,1) and the three right columns is reported forecast accuracy for RF model.  
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Table C.5 Forecast accuracy for one year to maturity options. 

 
 

LSTM AR(1)-GARCH(1,1) Random forest  
MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

Put 5 0,1215 0,3486 0,1436 0,1135 0,3369 0,1421 0,1399 0,3740 0,1714 
Put 10 0,1006 0,3172 0,1443 0,0899 0,2998 0,1302 0,1012 0,3181 0,1578 
Put 18 0,0722 0,2687 0,1260 0,0641 0,2531 0,1160 0,0813 0,2851 0,1429 
Put 25 0,0582 0,2412 0,1201 0,0520 0,2281 0,1087 0,0676 0,2600 0,1334 
Put 35 0,0468 0,2163 0,1083 0,0421 0,2052 0,1021 0,0473 0,2175 0,1211 
Put 50 0,0398 0,1995 0,0992 0,0367 0,1916 0,0972 0,0404 0,2010 0,1124 
Call 35 0,0390 0,1975 0,0969 0,0372 0,1928 0,0961 0,0420 0,2049 0,1105 
Call 25 0,0451 0,2124 0,1032 0,0413 0,2031 0,0973 0,0454 0,2131 0,1155 
Call 18 0,0516 0,2272 0,1038 0,0477 0,2183 0,1008 0,0524 0,2289 0,1148 
Call 10 0,0674 0,2596 0,1144 0,0631 0,2512 0,1104 0,0719 0,2681 0,1315 
Call 5 0,0815 0,2855 0,1232 0,0770 0,2776 0,1195 0,0841 0,2900 0,1359 

Table C.5 One year to maturity forecast accuracy for LSTM and the two benchmark models. The first column indicates option 

level of moneyness. Put 50 is ATM option and put/call 5 is furthest OTM. The three next columns is reported accuracy for LSTM 

model, the mid columns the AR(1)-GARCH(1,1) and the three right columns is reported forecast accuracy for RF model.  
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7.4 Appendix D: Test Results Extensions to GARCH-type Models 
Appendix D exhibits a summery and estimating results for the different ARMA-GARCH 

extensions, GJR-extensions, and t-distributed residual models. The other econometric model 

imposed in this study in addition to the benchmark AR(1)-GARCH(1,1) is: 

● AR(1)-GARCH(1,1) - t-distributed residuals   

● ARIMA(1,1,1)-GARCH(1.1) 

● ARIMA(1,1,1)-GARCH(1,1) t-distributed residuals 

● ARIMA(1,1,1)-GJR-GARCH(1,1) 

● ARIMA(1,1,1)-GJR-GARCH(1,1) - t-distributed residuals 

 

 

Table D.1 Forecast accuracy for ARIMA(1,1,1)-GARCH(1,1), one week to maturity options. 

The model specification is labelled above all tables. The three columns to the left show the 

forecast accuracy for the same model using t-distributed residuals. 
 

ARMA(1,1)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,6471 0,8044 0,4891 0,6126 0,7827 0,4904 
Put delta 10 0,5922 0,7695 0,7489 0,5677 0,7535 0,4780 
Put delta 18 0,5418 0,7361 0,4624 0,5271 0,7260 0,4657 
Put delta 25 0,5148 0,7175 0,4545 0,5056 0,7111 0,4595 
Put delta 35 0,4911 0,7008 0,4463 0,4830 0,6950 0,4507 
Put delta 50 0,4796 0,6926 0,4401 0,4741 0,6885 0,4452 
Call delta 35 0,4897 0,6998 0,4392 0,4843 0,6959 0,4443 
Call delta 25 0,5097 0,7140 0,4427 0,5025 0,7088 0,4475 
Call delta 18 0,5303 0,7282 0,4477 0,5207 0,7216 0,4513 
Call delta 10 0,5677 0,7534 0,4583 0,5506 0,7420 0,4591 
Call delta 5 0,6078 0,7796 0,4694 0,5835 0,7638 0,4694 
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Table D.2 Forecast accuracy for ARIMA(1,1,1)-GARCH(1,1), one month to maturity 

options. The model specification is labelled above all tables. The three columns to the left 

show the forecast accuracy for the same model using t-distributed residuals. 
 

ARMA(1,1)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,2559 0,5059 0,2701 0,2541 0,5041 0,2726 
Put delta 10 0,2266 0,4760 0,2589 0,2225 0,4717 0,2604 
Put delta 18 0,1892 0,4350 0,2451 0,1887 0,4344 0,2477 
Put delta 25 0,1724 0,4152 0,2380 0,1705 0,4130 0,2397 
Put delta 35 0,1564 0,3954 0,2305 0,1552 0,3939 0,2318 
Put delta 50 0,1497 0,3869 0,2248 0,1490 0,3860 0,2262 
Call delta 35 0,1576 0,3969 0,2238 0,1571 0,3963 0,2258 
Call delta 25 0,1726 0,4154 0,2262 0,1720 0,4147 0,2286 
Call delta 18 0,1894 0,4352 0,2301 0,1888 0,4345 0,2326 
Call delta 10 0,2196 0,4687 0,2377 0,2176 0,4665 0,2395 
Call delta 5 0,2488 0,4988 0,2472 0,2470 0,4970 0,2470 

 

 
 
Table D.3 Forecast accuracy for ARIMA(1,1,1)-GARCH(1,1), three months to maturity 
options. The model specification is labelled above all tables. The three columns to the left 
show the forecast accuracy for the same model using t-distributed residuals. 
 
 

ARMA(1,1)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,1696 0,4118 0,2002 0,1714 0,4140 0,2005 
Put delta 10 0,2495 0,4995 0,3515 0,1892 0,4350 0,2822 
Put delta 18 0,1927 0,4390 0,3118 0,1159 0,3405 0,1761 
Put delta 25 0,0993 0,3152 0,1683 0,0996 0,3156 0,1682 
Put delta 35 0,0855 0,2924 0,1601 0,0858 0,2928 0,1602 
Put delta 50 0,0778 0,2788 0,1537 0,0779 0,2792 0,1537 
Call delta 35 0,0797 0,2824 0,1526 0,0979 0,3129 0,2040 
Call delta 25 0,0874 0,2957 0,1551 0,0875 0,2959 0,1552 
Call delta 18 0,0977 0,3126 0,1592 0,0979 0,3128 0,1593 
Call delta 10 0,1190 0,3449 0,1677 0,1193 0,3454 0,1682 
Call delta 5 0,1393 0,3732 0,1767 0,1397 0,3737 0,1773 
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Table D.4 Forecast accuracy for ARIMA(1,1,1)-GARCH(1,1), six months to maturity 
options. The model specification is labelled above all tables. The three columns to the left 
show the forecast accuracy for the same model using t-distributed residuals. 
 
 

ARMA(1,1)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,1327 0,3642 0,1640 0,1361 0,3689 0,1656 
Put delta 10 0,1075 0,3278 0,1522 0,1098 0,3314 0,1533 
Put delta 18 0,1319 0,3632 0,2496 0,0818 0,2859 0,1397 
Put delta 25 0,0675 0,2598 0,1317 0,0694 0,2634 0,1325 
Put delta 35 0,0944 0,3073 0,2178 0,0577 0,2402 0,1250 
Put delta 50 0,0510 0,2259 0,1195 0,0512 0,2264 0,1195 
Call delta 35 0,0693 0,2632 0,1736 0,0522 0,2285 0,1183 
Call delta 25 0,0725 0,2693 0,1708 0,0576 0,2401 0,1207 
Call delta 18 0,0652 0,2553 0,1243 0,0654 0,2558 0,1244 
Call delta 10 0,0955 0,3090 0,1804 0,0851 0,2918 0,1520 
Call delta 5 0,0974 0,3121 0,1434 0,0981 0,3132 0,1440 

 

 

 

Table D.5 Forecast accuracy for ARIMA(1,1,1)-GARCH(1,1), one year to maturity options. 
The model specification is labelled above all tables. The three columns to the left show the 
forecast accuracy for the same model using t-distributed residuals. 
  

ARMA(1,1)-GARCH(1,1) ARMA(1,1)-GARCH(1,1)t-dist  
MSE RMSE MAE MSE RMSE ABE 

Put delta 5 0,1136 0,3371 0,1421 0,1166 0,3415 0,1433 
Put delta 10 0,0902 0,3004 0,1300 0,0921 0,3034 0,1312 
Put delta 18 0,0642 0,2534 0,1160 0,0652 0,2553 0,1168 
Put delta 25 0,0522 0,2284 0,1087 0,0525 0,2292 0,1093 
Put delta 35 0,0421 0,2052 0,1021 0,0423 0,2056 0,1021 
Put delta 50 0,0366 0,1913 0,0972 0,0367 0,1915 0,0968 
Call delta 35 0,0368 0,1919 0,0959 0,0376 0,1938 0,0958 
Call delta 25 0,0410 0,2024 0,0972 0,0417 0,2041 0,0974 
Call delta 18 0,0474 0,2177 0,1007 0,0481 0,2194 0,1005 
Call delta 10 0,0630 0,2510 0,1105 0,0633 0,2516 0,1103 
Call delta 5 0,0771 0,2776 0,1195 0,0773 0,2781 0,1195 
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Table D.6 Forecast accuracy for ARIMA(1,1,1)-GJR-GARCH(1,1), one week to maturity 
options. The model specification is labelled above all tables. The three columns to the left 
show the forecast accuracy for the same model using t-distributed residuals. 
  

ARMA(1,1)-GJR-GARCH(1,1) ARMA(1,1)-GJR-GARCH(1,1) with t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,6323 0,7951 0,4880 0,6277 0,7923 0,4853 
Put delta 10 0,5798 0,7614 0,4736 0,5776 0,7600 0,4716 
Put delta 18 0,5357 0,7319 0,4684 0,5343 0,7310 0,4647 
Put delta 25 0,5135 0,7166 0,4567 0,5061 0,7114 0,4514 
Put delta 35 0,4895 0,6997 0,4510 0,4837 0,6955 0,4435 
Put delta 50 0,4817 0,6940 0,4464 0,4730 0,6878 0,4372 
Call delta 35 0,4926 0,7019 0,4455 0,4828 0,6948 0,4357 
Call delta 25 0,5031 0,7093 0,4423 0,5013 0,7080 0,4386 
Call delta 18 0,5224 0,7228 0,4472 0,5207 0,7216 0,4433 
Call delta 10 0,5586 0,7474 0,4575 0,5546 0,7447 0,4525 
Call delta 10 0,5985 0,7736 0,4699 0,5916 0,7692 0,4624 

 
 

 

 

Table D.7 Forecast accuracy for ARIMA(1,1,1)-GJR-GARCH(1,1), one month to maturity 
options. The model specification is labelled above all tables. The three columns to the left 
show the forecast accuracy for the same model using t-distributed residuals. 

                                   ARMA(1,1)-GJR-GARCH(1,1) ARMA(1,1)-GJR-GARCH(1,1) with t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,2541 0,5041 0,2738 0,2574 0,5073 0,2786 
Put delta 10 0,2222 0,4714 0,2618 0,2239 0,4732 0,2595 
Put delta 18 0,1897 0,4355 0,2484 0,1904 0,4363 0,2466 
Put delta 25 0,1705 0,4129 0,2381 0,1730 0,4160 0,2382 
Put delta 35 0,1564 0,3955 0,2317 0,1579 0,3974 0,2400 
Put delta 50 0,1497 0,3870 0,2255 0,1502 0,3876 0,2243 
Call delta 35 0,1575 0,3969 0,2246 0,1579 0,3973 0,2234 
Call delta 25 0,1726 0,4154 0,2273 0,1727 0,4156 0,2261 
Call delta 18 0,1894 0,4352 0,2311 0,1885 0,4341 0,2300 
Call delta 10 0,2196 0,4686 0,2387 0,2193 0,4683 0,2380 
Call delta 10 0,2488 0,4988 0,2484 0,2479 0,4979 0,2470 
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Table D.8 Forecast accuracy for ARIMA(1,1,1)-GJR-GARCH(1,1), three months to maturity 
options. The model specification is labelled above all tables. The three columns to the left 
show the forecast accuracy for the same model using t-distributed residuals. 
 

                                   ARMA(1,1)-GJR-GARCH(1,1) ARMA(1,1)-GJR-GARCH(1,1) with t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,1679 0,4097 0,2006 0,1707 0,4131 0,2004 
Put delta 10 0,1401 0,3742 0,1890 0,1419 0,3767 0,1889 
Put delta 18 0,1110 0,3331 0,1760 0,1120 0,3346 0,1757 
Put delta 25 0,1333 0,3650 0,2471 0,0967 0,3110 0,1683 
Put delta 35 0,0834 0,2887 0,1607 0,0838 0,2895 0,1603 
Put delta 50 0,0775 0,2784 0,1540 0,0767 0,2770 0,1540 
Call delta 35 0,0795 0,2820 0,1530 0,0791 0,2813 0,1532 
Call delta 25 0,0865 0,2941 0,1553 0,0874 0,2956 0,1552 
Call delta 18 0,0973 0,3120 0,1603 0,0973 0,3119 0,1597 
Call delta 10 0,1186 0,3444 0,1679 0,1174 0,3426 0,1677 
Call delta 10 0,1389 0,3727 0,1772 0,1393 0,3732 0,1773 

 

 

 

Table D.9 Forecast accuracy for ARIMA(1,1,1)-GJR-GARCH(1,1), six months to maturity 
options. The model specification is labelled above all tables. The three columns to the left 
show the forecast accuracy for the same model using t-distributed residuals. 
 

                                   ARMA(1,1)-GJR-GARCH(1,1) ARMA(1,1)-GJR-GARCH(1,1) with t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,1327 0,3643 0,1646 0,1357 0,3684 0,1656 
Put delta 10 0,1074 0,3278 0,1527 0,1095 0,3309 0,1532 
Put delta 18 0,0807 0,2840 0,1396 0,0955 0,3090 0,1845 
Put delta 25 0,0675 0,2597 0,1319 0,0679 0,2606 0,1320 
Put delta 35 0,0560 0,2366 0,1248 0,0566 0,2379 0,1246 
Put delta 50 0,0510 0,2258 0,1196 0,0506 0,2249 0,1192 
Call delta 35 0,0644 0,2537 0,1620 0,0628 0,2506 0,1586 
Call delta 25 0,0571 0,2389 0,1218 0,0571 0,2389 0,1205 
Call delta 18 0,0650 0,2550 0,1248 0,0725 0,2693 0,1557 
Call delta 10 0,0813 0,2851 0,1342 0,0847 0,2911 0,1505 
Call delta 10 0,0973 0,3120 0,1437 0,0981 0,3132 0,1441 
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Table D.10 Forecast accuracy for ARIMA(1,1,1)-GJR-GARCH(1,1), one year to maturity 
options. The model specification is labelled above all tables. The three columns to the left 
show the forecast accuracy for the same model using t-distributed residuals. 
 

                                   ARMA(1,1)-GJR-GARCH(1,1) ARMA(1,1)-GJR-GARCH(1,1) with t-dist  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,1138 0,3374 0,1423 0,1166 0,3414 0,1434 
Put delta 10 0,0902 0,3004 0,1302 0,0920 0,3033 0,1312 
Put delta 18 0,0643 0,2537 0,1162 0,0675 0,2598 0,1174 
Put delta 25 0,0522 0,2285 0,1089 0,0525 0,2292 0,1093 
Put delta 35 0,0416 0,2040 0,1023 0,0423 0,2056 0,1021 
Put delta 50 0,0362 0,1902 0,0972 0,0366 0,1914 0,0968 
Call delta 35 0,0367 0,1917 0,0960 0,0370 0,1925 0,0958 
Call delta 25 0,0409 0,2022 0,0974 0,0416 0,2040 0,0974 
Call delta 18 0,0473 0,2175 0,1010 0,0481 0,2193 0,1005 
Call delta 10 0,0631 0,2512 0,1107 0,0632 0,2515 0,1104 
Call delta 10 0,0770 0,2775 0,1197 0,0773 0,2780 0,1196 

 

 

Table D.11 Forecast accuracy for AR(1)-GARCH(1,1) with t-distributed residuals for the 

three shortest maturities.  
 

One week to maturity One month to maturity Three months to maturity  
MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,6221 0,7888 0,4899 0,2559 0,5059 0,2726 0,1706 0,4131 0,2002 
Put delta 10 0,5766 0,7593 0,4775 0,2239 0,4732 0,2605 0,1421 0,3769 0,1888 
Put delta 18 0,5358 0,7320 0,4642 0,1907 0,4367 0,2474 0,1127 0,3357 0,1758 
Put delta 25 0,5129 0,7162 0,4566 0,1725 0,4154 0,2393 0,0975 0,3123 0,1685 
Put delta 35 0,4918 0,7013 0,4491 0,1570 0,3963 0,2314 0,0845 0,2907 0,1604 
Put delta 50 0,4819 0,6942 0,4441 0,1507 0,3882 0,2254 0,0773 0,2781 0,1540 
Call delta 35 0,4915 0,7011 0,4430 0,1585 0,3982 0,2245 0,0795 0,2820 0,1532 
Call delta 25 0,5091 0,7135 0,4457 0,1735 0,4165 0,2271 0,0872 0,2953 0,1556 
Call delta 18 0,5271 0,7260 0,4499 0,1900 0,4359 0,2306 0,0974 0,3122 0,1595 
Call delta 10 0,5572 0,7465 0,4567 0,2196 0,4686 0,2384 0,1185 0,3442 0,1679 
Call delta 10 0,5904 0,7683 0,4658 0,2480 0,4980 0,2473 0,1387 0,3725 0,1772 
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Table D.12 Forecast accuracy for AR(1)-GARCH(1,1) with t-distributed residuals for the two 

longest maturities 
 

Six months to maturity One year to maturity  
MSE RMSE MAE MSE RMSE MAE 

Put delta 5 0,1324 0,3639 0,1641 0,1135 0,3369 0,1421 
Put delta 10 0,1072 0,3274 0,1523 0,0899 0,2998 0,1302 
Put delta 18 0,0805 0,2837 0,1392 0,0641 0,2531 0,1160 
Put delta 25 0,0674 0,2596 0,1317 0,0520 0,2281 0,1087 
Put delta 35 0,0564 0,2375 0,1244 0,0421 0,2052 0,1021 
Put delta 50 0,0506 0,2248 0,1191 0,0367 0,1916 0,0972 
Call delta 35 0,0518 0,2276 0,1182 0,0372 0,1928 0,0961 
Call delta 25 0,0572 0,2392 0,1206 0,0413 0,2031 0,0973 
Call delta 18 0,0649 0,2548 0,1243 0,0477 0,2183 0,1008 
Call delta 10 0,0815 0,2855 0,1337 0,0631 0,2512 0,1104 
Call delta 10 0,0975 0,3123 0,1433 0,0770 0,2776 0,1195 
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7.5 Appendix E: ADF, PP and Diebold-Mariano Test Results  
In Appendix E test results from augmented Dickey-Fuller test, Phillips-Perron and Diebold- 

Mariano tests are reported.  

 

Table E.1 ADF and PP test for options with one week to maturity. 

 

 

Table E.2 ADF and PP test for options with one month to maturity. 
 

ADF Phillips-Perron  
Test statistic Test statistic  

Z(t) p-value Z(rho)      Z(t)      p-value 
Put delta 5 -3,754 0,0034 -26,242 -3,606 0,0056 
Put delta 10 -3,848 0,0025 -26,481 -3,625 0,0053 
Put delta 18 -3,906 0,0020 -25,865 -3,580 0,0062 
Put delta 25 -3,951 0,0017 -25,476 -3,553 0,0067 
Put delta 35 -3,973 0,0016 -24,820 -3,505 0,0079 
Put delta 50 -3,970 0,0016 -23,981 -3,443 0,0096 
Call delta 35 -3,968 0,0016 -23,518 -3,408 0,0107 
Call delta 25 -3,929 0,0018 -23,151 -3,379 0,0117 
Call delta 18 -3,871 0,0023 -22,827 -3,353 0,0127 
Call delta 10 -3,803 0,0029 -22,692 -3,343 0,0130 
Call delta 5 -3,672 0,0045 -21,913 -3,282 0,0157 

 
 
 
 
 
 
 
 

 
ADF                   Phillips-Perron  

      Test statistic 
 

    Test statistic  
Z(t) p-value Z(rho) Z(t) p-value 

Put delta 5 -6,968 0,0000 -64,197 -5,711 0,0000 
Put delta 10 -7,158 0,0000 -67,347 -5,853 0,0000 
Put delta 18 -7,231 0,0000 -68,025 -5,885 0,0000 
Put delta 25 -7,307 0,0000 -69,023 -5,930 0,0000 
Put delta 35 -7,353 0,0000 -69,442 -5,950 0,0000 
Put delta 50 -7,326 0,0000 -68,608 -5,913 0,0000 
Call delta 35 -7,287 0,0000 -67,974 -5,884 0,0000 
Call delta 25 -7,214 0,0000 -66,779 -5,829 0,0000 
Call delta 18 -7,084 0,0000 -64,685 -5,733 0,0000 
Call delta 10 -6,945 0,0000 -62,622 -5,637 0,0000 
Call delta 5 -6,684 0,0000 -58,145 -5,425 0,0000 
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Table E.3 ADF and PP test for options with three months to maturity. 
 

ADF Phillips-Perron  
Test statistic Test statistic  

Z(t) p-value Z(rho) Z(t) p-value 
Put delta 5 -2,745 0,0666 -15,473 -2,753 0,0653 
Put delta 10 -2,798 0,0586 -15,243 -2,732 0,0687 
Put delta 18 -2,862 0,0500 -14,752 -2,683 0,0770 
Put delta 25 -2,907 0,0445 -14,446 -2,654 0,0824 
Put delta 35 -2,933 0,0417 -14,051 -2,613 0,0904 
Put delta 50 -2,943 0,0406 -13,706 -2,576 0,0980 
Call delta 35 -2,933 0,0416 -13,620 -2,565 0,1005 
Call delta 25 -2,905 0,0448 -13,659 -2,566 0,1002 
Call delta 18 -2,854 0,0510 -13,747 -2,573 0,0987 
Call delta 10 -2,780 0,0612 -13,894 -2,588 0,0955 
Call delta 5 -2,703 0,0736 -14,034 -2,601 0,0928 

 
 
Table E4 ADF and PP test for options with six months to maturity. 

 
ADF Phillips-Perron  

Test statistic Test statistic  
Z(t) p-value Z(rho) Z(t) p-value 

Put delta 5 -2,247 0,1898 -11,655 -2,386 0,1458 
Put delta 10 -2,253 0,1875 -11,186 -2,333 0,1616 
Put delta 18 -2,305 0,1704 -10,607 -2,264 0,1838 
Put delta 25 -2,332 0,1618 -10,220 -2,218 0,1998 
Put delta 35 -2,351 0,1561 -9,851 -2,170 0,2172 
Put delta 50 -2,363 0,1525 -9,614 -2,137 0,2299 
Call delta 35 -2,362 0,1527 -9,627 -2,135 0,2307 
Call delta 25 -2,338 0,1599 -9,757 -2,147 0,2261 
Call delta 18 -2,305 0,1702 -9,993 -2,174 0,2160 
Call delta 10 -2,227 0,1965 -10,243 -2,205 0,2046 
Call delta 5 -2,211 0,2024 -10,737 -2,261 0,1849 
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Table E.5 ADF and PP test for options with one year to maturity. 
 

ADF Phillips-Perron  
Test statistic Test statistic  

Z(t) p-value Z(rho) Z(t) p-value 
Put delta 5 -1,998 0,2874 -9,618 -2,188 0,2107 
Put delta 10 -1,964 0,3027 -9,040 -2,108 0,2413 
Put delta 18 -1,982 0,2945 8,347 -2,016 0,2794 
Put delta 25 -1,990 0,2911 -7,913 -1,954 0,3069 
Put delta 35 -1,996 0,2882 -7,567 -1,901 0,3318 
Put delta 50 -1,995 0,2888 -7,347 -1,861 0,3504 
Call delta 35 -1,997 0,2880 -7,400 -1,862 0,3501 
Call delta 25 -1,982 0,2947 -7,577 -1,882 0,3407 
Call delta 18 -1,956 0,3062 -7,867 -1,920 0,3229 
Call delta 10 -1,904 0,3302 -8,235 -1,969 0,3005 
Call delta 5 -1,928 0,3191 -8,857 -2,052 0,2643 

 
 
Table E6 Critical values for Z(t) augmented Dickey-Fuller test for stationarity.  
Significant level           1 % 5 % 10 % 
Z(t)  -3,43 -2,86 -2,57 

 
 
Table E.7 Critical values for Phillips-Perron test for stationarity. 
Significant level                     1 % 5 % 10 % 
R(rho) -20,700 -14,100 -11,300 
Z(t) -3,430 -2,860 -2,570 
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Table E.8 Test statistics for the Diebold-Mariano test for benchmark models 
 
Option       LSTM / RF LSTM / AR-GARCH AR-GARCH / RF 

One week OTM put 0,1993 0,1515 0,0012 

One week ATM put 0,1539 0,0208 0,0008 

One week OTM call 0,1290 0,1038 0,0000 

One month OTM put 0,0667 0,0622 0,0410 

One month ATM put 0,2135 8,0319 0,0017 

One month OTM call 0,0276 0,0202 0,706 

Three months OTM put 0,1378 0,1586 0,1238 

Three months ATM put 0,3411 0,2007 0,2824 

Three months OTM call 0,000 0,000 0,3121 

Six months OTM put 0,0721 0,0744 0,5098 

Six months ATM put 0,4053 0,1204 0,1111 

Six months OTM call 0,3084 0,2885 0,2899 

One year OTM put 0,3465 0,2947 0,2571 

One year ATM put 0,0717 0,0606 0,0630 

One year OTM call 0,2363 0,2413 0,3675 

Table E.8 Test statistic to reject null hypothesis is 0,05. Numbers <0,05 reject H0 and the difference in the forecasts are 

statistically significant from each other.  

 

Table E.9 Test statistics for the Diebold-Mariano test for t-distributed AR-GARCH against 

benchmark models for one week and one month.  

Option LSTM/RF LSTM/AR-
GARCH 

LSTM/AR-GARCH 
t-dist 

GARCH/t
dist  

RF/GARC
H 

RF/t-
dist 

One week  OTM put 0,2193 0,3177 0 0,3179 0,3177 0 
One week ATM put 0,2127 0,4786 0,4291 0,2208 0,2428 0,2508 
One week OTM call 0,0882 0,5677 0,496 0,054 0,107 0,1177 

One month  OTM put 0,0471 0,0702 0,1585 0,5737 0,1468 0,1581 
One month ATM put 0,1378 0,8831 0,9217 0,9269 0,0985 0,0952 
One month OTM call 0,3814 0,307 0,3048 0,4314 0,137 0,1255 

Table E.9 Test statistic to reject null hypothesis is 0,05. Numbers <0,05 reject H0 and the difference in the forecasts are 

statistically significant from each other.  
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